
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Automation of Delta Sigma ADC Filter

Design with High-Level Synthesis

Supervisors

Prof. Luciano LAVAGNO

Prof. Mihai LAZARESCU

Co-supervisors

Josef POLAK

Davide MARIZ

Candidate

Shehryar AKBAR

March 2024

Summary

This thesis presents an innovative exploration of the design process of various

digital filter IPs used inside a Delta-Sigma ADC. This work has been carried out

in collaboration with Infineon Technologies, Austria and it is based on the use of

High-Level Synthesis (HLS) to create parameterized and reusable digital filters

hardware architectures. In this thesis, we focus on Finite Impulse Response (FIR)

filters, Polyphase decimation filters and Cascade Integrator Comb (CIC) decimation

filters, which are amongst the most common filter structures used in this type of

application.

The hardware design of these filters is achieved through Siemens EDA HLS tool

‘Catapult’. HLS is a technology that assists with the transformation of a high-level

description of hardware (written in C++ or SystemC) into a synthesized netlist

and, as by-product, an RTL model. Although significantly faster than writing RTL

code, using a higher abstraction level can still be time consuming when designing

specific hardware blocks according to user/customer requirements. To this end, we

have tried to take the power of HLS one step further by automating the complete

process: from concept design in Matlab to synthesizable netlist, until functional

verification of the hardware. Through our research, we aim to make this digital

design process smoother, faster and adaptable to quick changes which will allow

for shorter concept-synthesis loops.

ii

iii

Acknowledgements

First of all, I would like to thank my supervisor, Professor Luciano Lavagno, for

his guidance during my master’s thesis. Then, I must express my wholehearted

gratitude to Josef Polak for providing me with this opportunity and to Davide

Mariz, whose everyday support, explanations, and tutoring made this thesis possible.

Lastly, I would like to extend my gratitude to Bachhuber Werner from Siemens

for his indispensable assistance. It has been a great honor and pleasure to meet

and learn from all the staff of Infineon Techonologies Austria, which gave me

the incredible opportunity to work on this project in a friendly, productive and

enjoyable environment.

iv

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiv

1 Introduction 1

1.1 High-level Synthesis . 1

1.1.1 Definition . 2

1.1.2 Advantages of HLS . 3

1.1.3 HLS flow description . 4

1.2 State of the Art . 6

1.3 Catapult . 10

1.3.1 Catapult flow description . 12

2 Methodology of thesis work 17

2.1 Matlab code and reference model 17

2.2 Algorithmic description in C++ . 18

2.3 Optimization . 19

2.4 Testbench and functional verification 19

2.5 Comparison with existing products 20

vi

3 Design of FIR filter 22

3.1 Architecture and frequency response 22

3.2 Matlab code and reference model 23

3.3 Synthesizable C++ code (Algorithmic description) 25

3.4 Architectural optimizations . 28

3.5 Class-based hierarchical design . 40

3.5.1 Hierarchy . 41

3.5.2 Template Features . 43

4 Design of Polyphase decimation filter 47

4.1 Architecture . 47

4.2 Matlab code and reference model 49

4.3 Mathematical modeling and manual hardware sharing 49

4.4 Synthesizable C++ code (Algorithmic description) 52

4.5 Architectural optimizations . 54

4.6 Results . 58

4.6.1 Order:5 , Decimation:2 & 3 58

4.6.2 Order:123 , Decimation:2 & 62 61

4.6.3 Order:28 , Decimation:8 . 63

5 Design of CIC decimation filter 66

5.1 Architecture and frequency response 66

5.2 Matlab code and reference model 68

5.3 Algorithmic description in C++ . 69

5.4 Architectural optimizations . 73

5.5 Results . 76

5.5.1 Order:3 , Decimation:512 . 76

5.5.2 Order:4 , Decimation:8 . 79

vii

6 Design of Filter Chain 82

6.1 Architecture . 83

6.2 Matlab code and reference model 83

6.3 Algorithmic description in C++ . 86

6.4 Architectural optimizations . 92

6.5 Results . 94

7 Conclusion 97

viii

List of Tables

6.1 Filter chain specifications . 95

ix

List of Figures

1.1 HLS Flow[2] . 4

1.2 Table of performances[4] . 7

1.3 Quality of results and design effort of HLS compared to hand-written

RTL in several case studies[12] . 9

1.4 Verification effort comparison for a video decoder compatibility

regression . 11

1.5 Catapult design flow [16] . 11

1.6 Hardware implementation of fully unrolled loop [17] 14

1.7 Pipelining with II=1 [17] . 15

2.1 Catapult SCVerify flow[18] . 20

2.2 Methodology . 21

3.1 FIR filter of order N . 23

3.2 Filter response using designed vs quantized coefficient values 25

3.3 Internal architecture of un-optimized MAC and SHIFT loops 29

3.4 Bill of materials after loop unrolling 31

3.5 Simulation result after loop unrolling 32

3.6 Bill of materials after unrolling and pipelining 33

3.7 Internal architecture after unrolling and pipelining 34

x

3.8 Internal architecture after storing coefficients inside registers 35

3.9 Bill of materials after storing coefficients inside registers 36

3.10 Design optimizations of FIR filter 37

3.11 Simulation result after optimizations 38

3.12 Graphical illustration of slice method[17] 39

3.13 Graphical illustration of half bit rounding 40

4.1 Illustration of decimation by 8 . 48

4.2 Polyphase implementation of decimation filter. (a) Two polyphase

components. (b) Equivalent configuration. [20] 49

4.3 Output equations of order 5 FIR filter 50

4.4 Shifting of input samples inside shift register 51

4.5 Derivation of coefficient index . 52

4.6 Derivation of register index . 52

4.7 2 multipliers used for 6 taps . 58

4.8 Simulation on NCSim showing output with decimation rate of 3 . . 59

4.9 Result of HLS generated design as compared to Matlab results . . . 59

4.10 Comparison of areas for two different decimation rates 60

4.11 Simulation on NCSim showing output with decimation rate of 2 . . 60

4.12 3 multipliers used for 6 taps . 61

4.13 Area comparison: Polyphase filter of order 123 designed using HLS

flow and RTL flow . 62

4.14 Order 123 and Decimation 2 . 63

4.15 Order 123 and Decimation 62 . 63

4.16 Area comparison of order 28 and decimation 8 filter 64

4.17 Resource sharing inside polyphase filter 64

4.18 Area saving after optimization . 65

xi

5.1 CIC decimation filter of order 1 . 67

5.2 Design Analyzer view of CIC filter composed of separate sub-blocks 70

5.3 Comb part before optimization . 74

5.4 Comb part after optimization . 74

5.5 Block diagram view: With pipe . 75

5.6 Block diagram view: No pipe . 75

5.7 Comparison of areas for CIC filter architectures 75

5.8 NCSim simulation of given CIC filter 76

5.9 BOM of Order 3 CIC filter . 77

5.10 Area comparison of order 3 and decimation 512 filter 78

5.11 Area comparison of order 4 and decimation 8 filter 80

5.12 Schedule of order 4 and decimation 8 filter 81

6.1 Filter chain in a hierarchical design 83

6.2 Block diagram view of the filter chain inside Catapult 92

6.3 Scheduling operation showing an un-shared adder 93

6.4 Scheduling operation of a shared adder over 4 ccs 94

6.5 Block diagram view of the filter chain 94

6.6 Area score of filter chain . 95

6.7 Area comparison of filter chain with 7 filters 96

xii

Acronyms

HLS

High-level Synthesis

DSP

Digital Signal Processing

DFG

Data Flow Graph

IP

Intellectual Property

ADC

Analog to Digital Converter

FIR

Finite Impulse Response

FF

Flip Flop

xiv

GUI

Graphical User Interface

CIC

Cascaded Integrator Comb

DUT

Device Under Test

ccs

Clock cycles

BOM

Bill of Materials

LSB

Least Significant Bit

VLSI

Very Large-Scale Integration

RTL

Register Transfer Level

FPGA

Field Programmable Gate Array

SoC

System on Chip

xv

Chapter 1

Introduction

1.1 High-level Synthesis

The ever-increasing digitization of the physical world and the need for better

hardware has resulted in a growing complexity of digital electronic systems. As

the complexity of systems increases, it becomes more difficult to not only design

but also market them. Even with the best efforts of skilled engineers, embedded

systems can become so complex that their development becomes increasingly risky

and prone to delays. Against this backdrop of increased technological advancements

and faster time-to-market requirement of companies, the traditional method of

describing hardware by using hand-written code no longer seems a viable option.

These reasons have forced design methodologies and tools to raise the abstraction

description levels. In particular, designers would use a High-Level-Language (HLL)

to describe the algorithm, instead of describing an RTL architecture.

Moreover, in this era of highly intricate digital systems , there is a need to be

flexible and quick whenever design changes need to be implemented either due to

changes in user requirements or the need to explore different micro-architectures.

Case in point are digital filter chains which are deployed after Delta Sigma ADCs

1

Introduction

for the purpose of filtering and low-rate sampling using decimation. The number

of filters in the chain, the type of filters and their architectures are parametrized

constructs which change with each new user requirement.

This calls for the need to deploy HLS tools whose versatility, easy debugging

capabilities and easy optimization options are a perfect match to meet this demand

of complex hardware design. Moreover, there exists the possibility also to take

the power of HLS tools even one step further and ’automate’ the whole process of

creating new IP designs which are flexible, reusable and conforming to the desired

target requirements with the best possible results in terms of resource sharing and

latency.

1.1.1 Definition

High-level synthesis (HLS) is a technology that assists with the transformation of

a behavioral description of hardware into an RTL model.

Typically, design projects start with some kind of specification. HLS tools work by

converting this abstract functional description (usually written in C/C++) into a

language-independent control-data-flow-graph (CDFG) that represents the flow of

data. Then the arithmetic operators and control logic are added, and scheduled

statically over the clock cycles. In the next step, the functional operations are

bound to a physical resource and some optimizations are also carried out. Lastly,

the final RTL architecture is generated.

To sum up, the HLS tool performs a translation of the high-level code into RTL-

code starting from the description in a high-level programming language (C++, C,

SystemC and others). A set of constraints and goals must be specified together with

the high-level description as they affect the behaviour of the final hardware and its

implementation. The quality of these final results has been showing progress over

the course of time as the related concepts and technology of HLS are becoming

2

Introduction

more and more mature[1].

1.1.2 Advantages of HLS

1. Shorter design cycle: HLS greatly decreases the design cycle time of

hardware / IPs by raising the abstraction level and freeing the programmer

of low-level details. Functionality is achieved by writing fewer lines of code

as compared to HDL. HLS tools automatically map abstract transactions to

actual RTL interfaces, add necessary hardware details, handshake protocols

and I/O interfaces etc. Moreover, the target technology can be changed

instantly and caters to ASICs and FPGAs both.

2. Micro-architectural exploration: Due to fast synthesis process, it is

possible to explore a large number of different architectures, early on in the

design phase or even in the concept phase. This exploration of different

implementations is done by applying constraints in the HLS tools (either

through GUI or by using pragma directives) and not changing the source code.

Comparative analysis can then be done of the different designs in terms of

latency, throughput, area and scheduling etc. It is also possible to compare

the utility of implementing memories versus register arrays.

3. Documentation: HLS tools keep a track of all the decisions carried out

which makes the documentation process easier to make and maintain. After

successful synthesis, many output reports are automatically generated e.g. bill

of materials (BOM), scripts and timing / area reports etc.

4. Faster verification: HLS tools enable very fast simulation in comparison

to RTL flow. Functional verification is instantly possible by using the same

testbench to simulate the C++ / System C model and the synthesized RTL

code. This eliminates the need to write extra testbench code for testing the

3

Introduction

design at the hardware level and provides one-on-one matching between C++

and generated RTL.

5. Design optimization: It is possible to do rapid iterations from C++ to

alternative RTL implementations for the purpose of optimizations. HLS tools

provide excellent optimization techniques which include arithmetic optimiza-

tions, bit-width trimming, dead code removal, pipelining, fine / coarse grain

resource sharing and low power design techniques (multiple clock domains,

multi-level clock gating).

1.1.3 HLS flow description

The HLS flow description can generally be described in few steps which are

summarized below:

Figure 1.1: HLS Flow[2]

4

Introduction

1. Compilation: The first step includes generation of a formal model through

compilation which produces a data flow graph (DFG). Optimizations like false

data dependency elimination and dead code removal are carried out and the

representation of control flow is also made by extending DFG representation

to control DFGs (CDFG). It shows the control flow between basic blocks and

the data dependencies inside them.

2. Allocation: This step provides the number and the type of allocated resources

but this is not the only step for allocation of resources. Some resources could

be added during the scheduling and the binding step also. The allocation is

done using the components of a specified library, where also timing, power

and area properties of the components are contained.

3. Scheduling: The functional operations are scheduled into cycles. These

functional operations can be chained, so that their outputs feed other successive

operations, or scheduled to be executed in parallel, when no data dependencies

occur. The final scheduling graph will depend on the usage of options like

pipelining and loop unrolling.

4. Binding: In the binding phase, the tool checks if the allocated resources

and scheduling allows resource sharing or not. As a result, every functional

operation, variable and connection is bound to a physical resource. Since area

and delay are estimated as early as possible, the binding step can perform

some kind on optimization of the architecture.

5. Generation: This step takes all the decisions taken in the allocation, schedul-

ing and binding steps and it generates the final RTL architecture. The RTL

code is mostly available in VHDL and Verilog both.

5

Introduction

1.2 State of the Art

As mentioned in section 1.1, HLS is an automated technique that significantly

influences the design of digital circuits. Numerous scholarly works have examined

and established the superiority of this novel technique over the conventional design

flow over the years.

The works that ultimately reach a conclusion (positive or negative) about HLS

as a method for designing DSP components and some other applications, will be

highlighted in this section.

[3] is somewhat connected to the scope of this work in which one of the earliest

versions of Synopsis HLS tool was used for the design and VLSI implementation of

a ’fast’ FIR filter. And the results are compared with the conventional methods

also, which are shown to be quite encouraging. T.Ognunfunmi and S.Desai used

Verilog hardware description language as the input language to the HLS tool, which

was deemed as somewhat "high level" in 1994. At that time, C-like language had

not been introduced for the HLS tools and this work can be classified as being in

the midst of Generation 2. According to the report, the tool’s results were quite

remarkable for its time, but they fall short of what modern tools are capable of

producing.

Hanbo, Shaojun, and Yigang conducted an analysis of FIR filter implementation

in 2015[4], which can be categorized as one of the modern works. Following an

explanation of how HLS differs from standard RTL design, this work shows the FIR

filter implementation (20-order low-pass filter with 16-bit input data) using three

separate tools: Vivado HLS, LabVIEW FPGA, and DSP Builder. Although

the tool utilized in our study, Catapult HLS, is not included in the comparison, we

can still draw meaningful deductions from this study.

The paper discusses the general advantages of using HLS tools and offers a brief

introduction to them also. Furthermore, it goes into detail about the project design

6

Introduction

flows and the corresponding platforms, as well as the optimization strategies they

have to offer. It also furnishes comparison against the traditional method of IP core

design as well, with focus on resources occupation, synthesis time, optimization

options, the highest frequency of devices running and latency.

Figure 1.2: Table of performances[4]

From the table above, it can be seen that one of the most distinct features of

HLS tools is the ability to shorten the synthesis time. In case of Vivado HLS and

DSP Builder, the time is more than halved. Also, the performances for highest

frequency and latency are better, as well as provision of more optimization options.

In case of resource occupation, most of the DSP blocks are occupied by Vivado HLS.

Its DSP block demands a lot of logical resources due to the numerous optimization

options it requires, (e.g. splitting the arrays and unrolling the loops), but it also

performs exceptionally well when the DSP unit is used extensively. Improving the

performance of the design outcomes requires a significant investment of resources.

However due to IP core’s complete optimization, it performs better while requiring

comparatively fewer hardware resources.

HLS has applications outside of the realm of digital signal processing also[5]. It

is also extensively utilized in algorithm validation, design space exploration[6][7],

migration, hardware acceleration[8], and other domains since it can be explained

at the algorithmic level[9].

7

Introduction

The work of C. Fibich and S. Tauner[10] evaluates the use of two HLS tools (Vi-

vado HLS and PandA Bambu) for offloading computation-intensive algorithms

to an FPGA implementation using four case studies (matrix multiplication, FIR

filter, Atmel barcode reader and QR decoding library). PandA Bambu[11], is an

open-source C-based HLS tool that is under development at the Politecnico di

Milano. As with Vivado HLS, the tool supports a subset of standard C. The case

studies had to be combined into appropriate designs with measurement facilities

and appropriate interfaces for data and control information transmission in order

to quantify runtime performance on hardware.

The software implementations were evaluated both on a 64-bit Intel x86 CPU and

an ARM Cortex A9 SoC,whereas the hardware implementations were obtained

both from Vivado HLS (for a Zynq 7010 SoC FPGA), and PandA Bambu (for

Altera Cyclone V SoC FPGA).

The paper goes into further detail regarding setup of benchmark environments,

estimation of timing results and compiler optimization options for software etc,

but overall this conclusion is drawn that the execution times of the hardware

implementations are slower when compared to their software counterparts, even

after taking into account the influence of the interface to/from the accelerator.

This shows that the performance of HLS is also application-dependent and some-

times it may not have the desired effect of getting better results. This is further

elaborated by the Masters thesis work of Tero Joentakanen of Tampere University

of Technology[12] in which he investigates the compliance of HLS with existing

ASIC implementation flow, for different applications. The summary of previous

works on HLS design as compared to traditional manual design is depicted in

Figure 1.3

8

Introduction

Figure 1.3: Quality of results and design effort of HLS compared to hand-written
RTL in several case studies[12]

One thing becomes extremely evident from the analysis of all these works:

performance varies greatly depending on the tool and the target technology. Upon

looking at all the results of these works, it is shown that area ranges from -38% to

+173% and maximum frequency from -29% to +10%. For the sake of clarity, it is

imperative to note that these numbers are the variations between the HLS designs

with respect to the manual one.

Additionally, the same application, but for two distinct target platforms, performs

entirely differently. Case in point is the design of Systolic FIR created in Catapult

for both FPGA and ASIC. Catapult shows better performance when the target is

ASIC (-11% area), whereas it displays poor results (+23% LUT, +11% FF and

-29% fmax) for FPGA target technology.

One feature, however, remains consistent in all these case studies and that is the

effort estimation required to design all these applications with HLS. The speed of

implementation in the front end design is apparent and results demonstrate a 2-5

times higher design productivity as compared to manually written RTL. This can

be attributed to the fact that designers can concentrate on functionality rather than

implementation specifics. Also, the fact that high-level description is at the same

abstraction level as the algorithm model, makes it possible to reuse code/model

9

Introduction

specifics in the HLS design.

1.3 Catapult

According to the fact sheet provided by Siemens Digital Industries Software[13],

their EDA tool “Catapult” is one of the leading HLS solutions for ASIC and FPGA

design. Supporting C++ and SystemC, designers work in their preferred language,

moving up in productivity and quality. With 80% less coding and simulation

speeds up to 1000x faster than Verilog[14], design and verification using Catapult

is faster and easier. This process gives designers the possibility to move up to a

higher abstraction level for both design and verification of ASICs and FPGAs. Both

time-to-market and freedom to automatically explore different solutions are boosted

and a fully optimized and error-free hardware implementation is quickly achieved.

Catapult has integrated High-Level Verification (HLV) tools and methodologies

that enable designers to complete their verification signoff at the C++ level with

fast closure for RTL. Different architectural solutions can be explored by setting

constraints such as folding/unfolding, pipelining, retiming etc. Shifting to a new

target technology is also easier and faster by selecting a different library and no

need of changing the source code.

[15] discusses a case study published by NVIDIA® where the company adopted

Catapult HLS to design a JPEG encoder/decoder and obtained monumental time/-

effort savings with respect to traditional RTL design methodology. By adopting

this flow, NVIDIA® was able to simplify their code by 5X, reduce the number

of CPUs required for regression testing by 1000X, and run 1000X more tests to

achieve higher functional coverage of their designs. HLS decreased design time by

50% and overall development time, including verification, by 40%.

10

Introduction

Figure 1.4: Verification effort comparison for a video decoder compatibility
regression

The highly interactive Catapult workflow provides full visibility and control of the

synthesis process, enabling designers to rapidly converge to the best implementation

for performance, area, and power. After the RTL has been synthesized, Catapult

automates a complete verification infrastructure reusing the original C++ or

SystemC testbench to exercise the generated RTL.

Figure 1.5: Catapult design flow [16]

11

Introduction

1.3.1 Catapult flow description

A user friendly and accessible GUI is provided by Catapult in order to help attain

the final synthesized netlist. There are some simple steps which are needed to be

performed, details of which are mentioned below:

• Input files: The overall design flow starts with the inclusion of .cpp files

which can be source code files also as well as testbench files. Header files need

not be included, but it is important to put them in the same directory incase

they are used. It is possible to exclude files from the synthesis process e.g.

testbench.

• Hierarchy: Catapult requires establishing a hierarchy in the design in order

to output the required structure. This hierarchical setting is set for functions

and classes both, and the type of setting greatly influences design parameters

such as timing, pipelining and resource sharing. There are three possible

statuses: Top, Block and Inline.

For simple, single block designs, the Top setting is by default. For hierarchical

designs containing multiple blocks, it is necessary to choose the type of setting.

In a design, only one function/class can be specified as ‘Top’ which will

further call other functions/classes. They can be specified as ‘inline’ or ‘block’.

Inline functions are contained inside that particular block so there is no

special communication established between them. In case of ‘block’ setting, it

designates a separate sub-block inside the top-level block and communication

is only possible through dedicated ac_channels. To define this setting in the

source code, hls_design pragma directive is used, followed by one of the three

types.

• Libraries: This step requires selecting the technology which we have to use

for synthesis. To specify the technology, the target RTL synthesis tool and a

12

Introduction

device are selected. Based on this selection, an associated list of IP libraries

appears in the Compatible Libraries field on the right. The set of libraries

consists of a base library and some additional IP libraries (i.e. for RAMs and

ROMs). In this thesis work, a target library of 130 nm is used when I have to

compare my results with those of Infineon IPs. In other cases, (such as design

of generic architectural flows) I have used inbuilt synthesizer provided with

Catapult, with target library Nangate 45nm.

• Mapping: This step allows setting the clock frequency, period, duty cycle, off-

set and uncertainty. Advanced signals like reset (synchronous or asynchronous),

enable signal for clock gating, transaction done signal (for synchronization

of input/output signals) and triosy signal (to indicate completion of I/O

transaction when there is no specified handshake). For this thesis work, we

have used ac_channel interface which has in-built ready/valid handshake, also

known as the wait handshake. Further details on this will be discussed later.

• Architecture: This step is one of the most crucial ones in the whole design

flow as it allows the designer to set different constraints. Changing these

constraints has a big impact on the overall architecture and therefore, particular

attention should be paid while deciding on these settings. The constraints are

set on loops, I/O interfaces, arrays and memories. The interface is of different

types and can be set depending on multiple parameters, and it defines the

process level handshakes between the design and the outside world. We have

used the wait protocol in my designs (atleast for the top level) which is a two-

way handshake with valid/ready signal, and it is also the default handshake

for ac_channel ports (will be discussed later). It automatically determines

whether the source is ready to send data, and the output is ready to receive

it. If the source is not ready, or if there is no data to send, then the design

stalls. The arrays inside the ‘Core’ are the register memories used for storing

13

Introduction

data (coefficients, input data, output data, accumulator data etc). Then we

can select the settings for the ‘Loops’ which is useful for optimization and

forms an integral part of the whole design process. The two main techniques

provided by Catapult for this purpose are “Pipelining” and “Unrolling”, both

of which are used for exploiting parallelism between loop iterations.

– Unrolling: Loop unrolling is the primary mechanism to add parallelism

into a design. This is done by automatically scheduling multiple loop iter-

ations in parallel, when possible. The amount of parallelism is controlled

by how many loop iterations are run in parallel and it is only possible if

there are no data dependencies in between the successive iterations. Loop

unrolling can theoretically execute all loop iterations within a single clock

cycle as long as there are no dependencies between successive iterations,

also called ‘fully unrolled loops’. It is also possible to do ‘partial unrolling’

which only duplicates the loop “x” number of times e.g. unrolling a loop

by a factor of 2 has the equivalent effect of manually duplicating the loop

body two times and running the loop for half as many iterations.

Figure 1.6: Hardware implementation of fully unrolled loop [17]

– Pipelining: It allows new instructions to be read before the current

instruction has finished. Loop pipelining allows the execution of the loop

iterations to be overlapped, increasing the design performance by running

them in parallel. The amount of overlap is controlled by the ‘Initiation

14

Introduction

Interval (II)’. This also determines the number of pipeline stages. The

Initiation Interval (II) is how many clock cycles are taken before starting

the next loop iteration. Thus an II=1 means a new loop iteration is started

every clock cycle. The initiation interval is set on a desired loop either as

a design constraint in the HLS design environment, or alternatively can

be set using a C++ compiler pragma.

Figure 1.7: Pipelining with II=1 [17]

As shown in Figure 1.7, pipelining with II=1 results in a new iteration at

each clock cycle. This results in an increased number of adders also.

• Resources: This option shows the resources will be utilized in the RTL

composition, and the designer can choose which components to use (adder,

multiplier etc). This step can be skipped in which case Catapult automatically

15

Introduction

chooses the best components following the directives of the constraints at the

previous steps.

• Schedule: In this step, Catapult generates the whole schedule of the design

in the form of Gantt chart. The user can view the operations done in each

clock cycle and compare their execution times. For each loop, the number of

control steps (C-steps) are shown as well as the sequence of operations inside

them. Selecting a data object in the schedule window highlights the object

in all columns and displays arrows in the gantt chart to show dependencies

between the selected data object and other operations.

• RTL: This last step is used to generate the HDL code in Verilog and VHDL

both, and it is available in the ‘output’ folder. Extra information in the form

of reports is also generated like Bill of Materials (BOM) which shows the pre

and post-allocation resources along with area etc.

At the end, Catapult displays some main characteristics of the design: latency,

throughput, area and slack.

16

Chapter 2

Methodology of thesis work

The methodology adopted for this thesis work follows the following main 5 steps:

2.1 Matlab code and reference model

Concept design of the required filter is carried out in Matlab according to some

given specifications. The filter can be anyone of the following four types:

• FIR filter

• Polyphase decimation filter

• CIC decimation filter

• Filter chain

For generalization purposes, the specifications are kept generic and can be

changed later on. Based on these specifications, we get numerical output results

from the Matlab flow.

These specifications are also useful for obtaining further data / information about

the filter which can be used to devise all the input parameters while doing the

17

Methodology of thesis work

design in hardware later e.g. Matlab helps to obtain filter coefficients in case

of a FIR filter when its inbuilt function is used and provided with the required

parameters. The output frequency response can be shown as well as the list of

output results is obtained. This result acts as the golden reference model against

which result from HLS design is compared and the matching is expected to be

100%.

2.2 Algorithmic description in C++

The next step is writing the algorithmic depiction of the filter model which serves

as the base of HLS coding in C++. This model defines the core functionality of

the filter and focuses on the deployment of resources (multipliers, adders, internal

shift registers etc) in the correct order.

The idea is to write the source code in fully generic way such that it can be used

to design the specified type of filter for any input specifications as required by the

user. Writing a specific source code for some target requirements always yields

the best results, but this thesis work is aimed to generalize the implementation of

the code in such a way that it is able to provide the best implementation of any

particular filter during run time synthesis.

Subsequent to this, the framework of this working model is also developed which

consists of the top-level block, multiple sub-blocks (if required), interconnections

between the blocks and type of hierarchy (class or function based). This part of the

code does not explain the intrinsic behaviour of the filter, but rather builds up the

design interfaces with the outside world and comprises of port definitions, direction,

bit-widths and data types. By default, Catapult builds synchronous designs which

means that all outputs of the top-level design are registered to guarantee that

timing is met when connecting to another design.

18

Methodology of thesis work

2.3 Optimization

This part of the process deals with further optimizing the model in order to

obtain better results in terms of area, latency or throughput. Usually, some basic

techniques are employed like pipelining with a specific initiation interval and loop

unrolling. Area and throughput are mostly a trade-off, but the final decision

depends on the filter design and customer requirement. In case of multi-rate filters,

resource sharing can be done even without decrease in throughput, the details of

which will be discussed later in this document. The correct utilization of these

optimization techniques also depends on the hierarchical design as well as the

method of application of constraints in the correct scenario.

2.4 Testbench and functional verification

The verification flow is divided into two steps:

• Pre-synthesis validation that the C program correctly implements the required

functionality.

• Post-synthesis verification that the generated RTL code performs as expected.

This functional verification of the Device Under Test (DUT) is performed by writing

a testbench in C++. The same testbench is used to check validity of the C model

as well as the synthesized RTL which also ensures that the RTL functionality is

identical to the C source code. C++/SystemC can execute upwards of multiple

times faster than Verilog/VHDL RTL simulation, so the test coverage comes from

this high level testbench. First of all, the functional correctness of the DUT is

checked by comparing the results of the C code against the golden reference model

obtained from Matlab. This can be easily done by capturing the output values of

the DUT inside the testbench and checking its numerical correctness against the

19

Methodology of thesis work

corresponding golden value.

Secondly, the RTL code also needs to be checked. For this purpose, the ‘SCVerify’

flow is used which is an automated verification flow designed for use with Catapult.

SCVerify is set up at the beginning of the synthesis project and then the files needed

to simulate using SCVerify flow are generated at various stages of the synthesis

process. It uses the same testbench to compare the C++ design to the RTL and

check that the outputs of the RTL design match the outputs of the C++ design;

demonstrating functional equivalence between the C++ and the RTL for the test

vectors provided in the testbench.

Figure 2.1: Catapult SCVerify flow[18]

2.5 Comparison with existing products

These specifications are provided by Infineon and correspond to an IP which had

been developed by the company using RTL programming, and deployed in some

integrated circuit.

Comparisons are made between the design generated by the automated HLS

methodology and the design provided by Infineon (both of them having the same

20

Methodology of thesis work

specifications and synthesized by the same tool), and major differences are noted.

Mostly, only the area is compared along with static power consumption.

This complete methodology of a fully automated flow for designing parametric

filter structures is depicted in Figure 2.2.

Figure 2.2: Methodology

21

Chapter 3

Design of FIR filter

3.1 Architecture and frequency response

FIR filters are feedback-free digital filters with a finite impulse response, whose

output values y(n) are calculated from a stream of input signals with value x(n).

There are several key components that make up an FIR filter. One of the most

important is the impulse response, which is the filter’s response to a unit impulse.

This response can be used to characterize the filter’s behavior and to analyze its

performance. The impulse response is typically a finite sequence of samples, which

is why FIR filters are also known as finite impulse response filters. This impulse

response is defined by filter coefficients, which are the values that determine how

the filter processes the signal. The filter coefficients are typically determined by a

design algorithm that takes into account the desired frequency response and other

design constraints, such as filter order and passband ripple.

The number of filter coefficients, or taps, determines the filter’s length and com-

plexity. Longer filters can achieve sharper frequency response characteristics, but

require more processing power and memory to implement. FIR filters work by

convolving the input signal with the filter coefficients. This process essentially

22

Design of FIR filter

multiplies each sample of the input signal by a corresponding filter coefficient,

and then adds up the results to produce the output signal. The choice of filter

coefficients determines the filter’s frequency response, or how it affects different

frequencies in the signal. A FIR filter has the simple structure of a tapped delay

line, where the value in each register / delay element is multiplied by a coefficient

and the sum of them forms the output. The two variables are the number of taps

and the value of the coefficients. Such digital filters are usually determined by their

"order", which results from the number of delay elements. For example, a 2nd order

filter has two delay elements and three taps.

Figure 3.1: FIR filter of order N

FIR filters can be designed to have various frequency responses, such as low-pass,

high-pass, bandpass, or band-reject. In our case, we have chosen to implement

a low-pass filter. FIR filters can be of various types and each have their own

architecture, unique characteristics and applications. They can be further divided

into symmetric and non-symmetric impulse response filters, and the details of this

will be discussed later during the optimization phase.

3.2 Matlab code and reference model

To design a generic and parameterized filter in HLS, which could then later be

compared with the one given by Infineon, first there was a need to specify its

23

Design of FIR filter

functionality and optimize it for the best implementation. For this purpose, a

general Matlab code for a FIR filter is written with the following specifications:

• Input sine wave which is obtained by the summation of two separate pure

sine waves; one with a frequency of f1 = 500 Hz and the second with a

frequency of f2 = 3.5 kHz.

• The bit-widths of the input and output ports/channels at the hardware level

are nb = 8 so the Matlab values also have to be quantized on the same

number of bits, so that the correct frequency response can be obtained and

matched.

• The order of the filter is kept at N = 32 .

• The sampling frequency is fs = 10 kHz, according to the Nyquist rate.

• The cut-off frequency is kept at fc = 3 kHz which will filter the higher

frequency f2 and allow only f1 to pass. The normalized cut-off frequency f0 is

obtained by dividing fc by the Nyquist frequency (half of sampling frequency

fs). So f0 = 0.6.

The coefficients for this type of filter are obtained by passing the parameters

through the inbuilt fir1() function which returns the coefficient values. These

values are also quantized to the number of bits which are available at the hard-

ware. With these specifications, the frequency response of the filter (with real and

quantized values both) is obtained. The response is shown in Figure 3.2.

The output values are calculated by using the inbuilt filter function which takes

the quantized inputs and quantized coefficients as its parameters. The output is

again quantized to the required number of bits and saved to a separate file which

will be used as the golden reference model.

24

Design of FIR filter

Figure 3.2: Filter response using designed vs quantized coefficient values

At the end, the Matlab script is used to automatically edit the top.h header file

which contains all the parameters and information used by the FIR filter source

files for the design process.

3.3 Synthesizable C++ code (Algorithmic de-

scription)

Catapult asks as input an algorithm that is synthesizable. It means that the inputs

are not generated internally but are taken from the outside one at a time (from a

testbench), because they are the results of a sampling. In the first implementation,

the coefficients are passed to the filter from outside as direct inputs. To be

synthesizable, the project must include three different files; the header file (.h),

the description of the algorithm (.cpp) and the testbench (.cpp). The header file

contains declarations of the variables, constants and functions. The core .cpp file

25

Design of FIR filter

contains the synthesizable description of the FIR filter along with all the loops.

The testbench is used to read the inputs from an external file, pass the values in

the core file, receive the results, compare them and write them to an external file.

It is pertinent to mention here that the bit-accurate datatypes have been used in

the HLS design using the ac_fixed library. Instead of using ‘double’ datatype which

is 64 bits wide and requires a fair amount of hardware to implement, the use of

AC fixed-point (ac_fixed) datatype allows the designer to use less number of bits.

This allows to save resources and improve speed in the hardware implementation.

We have already quantized all the signals on 15 bits in the fractional part as per

the model; so an example declaration of input signal will be ac_fixed <16,1,true>

which translates to a total bit width of 16 bits, out of which 1 bit is used for

the integer part and rest 15 bits for the fractional part. And the value is signed.

To obtain the full accuracy inside the filter, there is a need to determine the

intermediate bit-widths of the accumulators. For this purpose, instead of manually

calculating the output widths of the multiplier and adder, we use a feature of ac

library known as derived data types. To define the smallest full-accuracy data type

which is the product of two ac_fixed operand data types, we use:

1 typede f OperandAType : : rt_T<OperandBType >: : mult ProductType ;

And to define the fixed-point type for the summation of these products, we use:

1 typede f ProductType : : rT_unary : : set<TAP_COUNT>:: sum SumType ;

Another useful way to determine the intermediate bitwidth of the signals inside

the FIR filter is to calculate it mathematically inside the source files, as a pre-

processor directive. This part of the code is not synthesized but it can be used to

calculate a number of useful and important parameters on the fly.

26

Design of FIR filter

For the above mentioned purpose, the following mathematical formula has been

utilized:

Accumulatorbitwidth = xi(n) + xc(n) + floor[log2(tap_count)] (3.1)

Where xi(n) are number of bits of input samples, xc(n) are number of bits of

coefficient samples and tap_count are number of taps of the filter (order + 1).

In the C code, this is used in the following way:

1 template <c l a s s inType , c l a s s coef fType , i n t f i l t _ o r d e r >

2 s t r u c t f ind_inter_type_f i r {

3 enum {

4 W_IN = inType : : width ,

5 I_IN = inType : : i_width ,

6 W_CF = coef fType : : width ,

7 I_CF = coef fType : : i_width ,

8 S = inType : : s ign ,

9 outF = W_IN − I_IN ,

10 // Formula to c a l c u l a t e in t e rmed ia t e b i twidth

11 // outW = f l o o r (log2 (tap_count)) + W_IN + W_CF + (! S)

12

13 outW = ac : : l og2_f loor <f i l t _ o r d e r + 1 >:: va l + W_IN + W_CF + i n t (! S

) ,

14 outI = outW − outF

15 } ;

16 typede f ac_fixed<outW, outI , true> int_type_f i r ;

17 } ;

The algorithmic C library has been utilized at line 13 to statically compute the

required bitwidth. This implementation results in a fully parameterized structure

which can be utilized inside the generic source FIR filter. For every instance of the

27

Design of FIR filter

FIR filter instantiated, there exists the option to calculate different accumulator

bitwidths, depending upon the individual filter characteristics.

This generalization feature relieves the programmer to manually calculate the

intermediate accumulator widths or even calculate it from Matlab etc and pass it as

a separate parameter to the source code. This is especially useful when generating

filter chains, which are discussed in detail in Chapter 6.

The following specifications have been used to synthesize the filter and these

will be kept the same (mostly) for the subsequent filter designs also:

• RTL Synthesis tool: Oasys RTL

• Library: Infineon technologies library

• Frequency: 100 MHz

The source code of the filter contains two loops which make up the entirety of

the whole implementation:

1. SHIFT LOOP: The SHIFT_LOOP is merely a shift register which is used

to shift all the values in the array to the next location in the array, while the

first location takes the input sample.

2. MAC LOOP: The MAC_LOOP is used to calculate the multiplication of

all the corresponding shift register values with their coefficients and add them

together.

3.4 Architectural optimizations

The result of the above synthesized filter shows and Area = 29955.33 um2 and

throughput = 68 ccs.

Figure 3.3 shows the internal architecture of MAC and SHIFT loops of such a filter

architecture.

28

Design of FIR filter

	C0

run:rlp

	C0	C1

main

	C0 	C1 	C2

SHIFT

	C0 	C1 	C2

MAC

MAC:break(MAC)

+

MAC:acc#1

*

MAC:mul#1

MAC:asn#33
IO

MAC:asn#32
IO

MAC:asn#29
IO

MAC:asn#28
IO

MAC:asn#27
IO

MAC:asn#26
IO

MAC:asn#25
IO

MAC:asn#24
IO

MAC:asn#9
IO

MAC:asn#7
IO

MAC:asn#2
IO

MAC:mux

MAC:asn#11
IO

MAC:asn#23
IO

MAC:asn#17
IO

MAC:asn#10
IO

MAC:asn#3
IO

MAC:asn#5
IO

MAC:asn#18
IO

MAC:asn#8
IO

+

MAC:acc#2

MAC:asn#15
IO

MAC:asn#20
IO

MAC:asn#12
IO

MAC:asn#4
IO

MAC:mux#1

MAC:asn#13
IO

MAC:asn#31
IO

MAC:asn#30
IO

MAC:asn#14
IO

MAC:asn#16
IO

MAC:asn#34
IO

MAC:asn#19
IO

SHIFT:break(SHIFT)

SHIFT:mux#20

SHIFT:mux#3

SHIFT:mux#2

SHIFT:mux

SHIFT:mux#26

SHIFT:mux#29

SHIFT:if:io_read(input)
IO

+

SHIFT:acc#1

SHIFT:mux#1

SHIFT:mux#30

SHIFT:mux#23

SHIFT:mux#16

+

SHIFT:else:acc#1

SHIFT:mux#6

SHIFT:mux#19

SHIFT:mux#22

SHIFT:else:mux
SHIFT:mux#10

SHIFT:mux#12

SHIFT:mux#4

SHIFT:mux#5

SHIFT:mux#31

SHIFT:mux#7

SHIFT:mux#8

SHIFT:mux#9

SHIFT:mux#11

SHIFT:mux#13

SHIFT:mux#14

SHIFT:mux#15

SHIFT:sel

SHIFT:mux#17

SHIFT:mux#18

SHIFT:mux#21

SHIFT:mux#24

SHIFT:mux#25

SHIFT:mux#27

SHIFT:mux#28

SHIFT:mux#32

io_write(output)
IO

+

MAC:acc

MAC:asn#21
IO

MAC:asn#6
IO

MAC:asn#22
IO

Figure 3.3: Internal architecture of un-optimized MAC and SHIFT loops

Because we have not set any constraints on the throughput, only 1 multiplier is

being used to calculate all the input-coefficient products, which takes 33 ccs (equal

to number of taps in the filter), colored red in the figure. Moreover, the input

samples are being shifted in the shift register in a sequential way, which further

takes 33 ccs. Further 2 ccs are being utilized extra at the input and output which

29

Design of FIR filter

results in a total throughput of 68 ccs at the end.

This throughput is impractical in a real filter, and it will be optimized later on.

However, there a number of optimizations which are carried out on this design to

enhance the overall performance.

• Loop unrolling: By default, loops are implemented in hardware as a single

loop iteration, and the same hardware is used for subsequent iterations of the

loop. This type of solution is referred to as a Rolled Loop. So if there are 10

loop iterations, it would take 10 clock cycles to calculate the result (assuming

each iteration takes 1 clock cycle to complete). A sequencer is created in the

design which keeps reusing the same hardware for each separate instance of

the loop.

If the hardware to implement a loop iteration is duplicated for as many times

as there are iterations, the loop is said to be fully unrolled. The hardware

resources are generally substantially increased but the result is calculated in a

single clock cycle as all the calculations are being done in parallel.

In my design, loop unrolling has been done for both the SHIFT_LOOP and the

MAC_LOOP. The SHIFT_LOOP can be easily and efficiently implemented

in a single clock cycle so loop unrolling makes sense here. Although this

procedure can be done by using the GUI, I have implemented this step by

introducing a design constraint in the source code.

#pragma hls_unroll yes

Only unrolling the shift loop improves the area as well as the latency, through-

put and timing slack.

The MAC_LOOP is also then fully unrolled which results in a small increase

in area. Although normally, by performing this step, the number of multipliers

increases but because we have not set any constraints on the incoming sample

30

Design of FIR filter

rate, the design still takes 35 ccs to perform the computations by using only

one multiplier. Note that the throughput has decreased by half because now,

it takes only 1 cc to shift all the samples in the shift register instead of 33.

Figure 3.4: Bill of materials after loop unrolling

As it can be seen from the BOM, only one multiplier is being used for now.

From the NCSim simulation, the throughput can be seen as coming after every

35 ccs.

31

Design of FIR filter

Figure 3.5: Simulation result after loop unrolling

• Pipelining: The throughput of the initial design was 68 ccs (680 ns) which is

the minimum number of cycles to complete the functionality of a single call

of the synthesized function. It means that the design is not reading the next

input prior to delivering the previous output i.e. it is not pipelined.

Even after unrolling the loops, the throughput does not reach 1 which means

that next inputs are not being read at every clock cycle. Also, there is some

resource sharing of the available multipliers because there are sufficient number

of clock cycles in between consecutive input samples. Different multipliers are

used at different times for different multiply operations of each unrolled loop

iteration. To utilize parallel processing of multiple inputs, the pipelining step

is implemented by introducing a design constraint in the source code.

#pragma hls_pipeline_init_interval 1

Due to this optimization, the throughput arrives to 1 which means that the

design is continuously delivering a result at each clock cycle. But the area has

increased by big amount due to extra number of mulitipliers.

The number of multipliers (33) can be seen from the BOM as indicated in

Figure 3.6.

32

Design of FIR filter

Figure 3.6: Bill of materials after unrolling and pipelining

This increase in area as well as the numerous number of multipliers can be

seen from the Design Analyzer image as indicated in Figure 3.7.

33

Design of FIR filter

	C0	C1

run:rlp

	C0 	C1 	C2

main

+

MAC:acc#34

MAC:asn#11
IO

+

MAC:acc#35

+

MAC:acc#26

MAC:asn#21
IO

+

MAC:acc#53

+

MAC:acc#46

MAC:asn#19
IO *

MAC-26:mul#1

+

MAC:acc#36MAC:asn#17
IO

MAC:asn#15
IO

MAC:asn#13
IO

+

MAC:acc#38

MAC:asn#9
IO

MAC:asn#25
IO

*

MAC-29:mul#1

MAC:asn#23
IO

MAC:asn#7
IO

*

MAC-32:mul#1

*

MAC-25:mul#1

MAC:asn#55
IO

*

MAC-30:mul#1

+

MAC:acc#41

MAC:asn#61
IO

+

MAC:acc#25

MAC:asn#39
IO

SHIFT-33:if:io_read(input)
IO

+

MAC:acc#28

*

MAC-28:mul#1

+

MAC:acc#45

+

MAC:acc#43

*

MAC-31:mul#1

*

MAC-23:mul#1

+

MAC:acc#37

MAC:asn#63
IO

+

MAC:acc#51

MAC:asn#3
IO

*

MAC-13:mul#1

*

MAC-14:mul#1

*

MAC-24:mul#1

*

MAC-33:mul#1

+

MAC:acc#40

+

MAC:acc#48

MAC:asn#5
IO

+

MAC:acc#39

+

MAC:acc#24

MAC:asn#27
IO *

MAC-22:mul#1

*

MAC-6:mul#1

MAC:asn#59
IO

*

MAC-19:mul#1

+

MAC:acc#33

MAC:asn#31
IO

+

MAC:acc#50

MAC:asn#37
IO

*

MAC-1:mul#1

MAC:asn#33
IO

+

MAC:acc#32

+

MAC:acc#31

MAC:asn#49
IO

+

MAC:acc#44

MAC:asn#35
IO

*

MAC-17:mul#1

*

MAC-15:mul#1

+

MAC:acc

io_write(output)
IO

*

MAC-18:mul#1

*

MAC-21:mul#1

MAC:asn#41
IO

*

MAC-16:mul#1

+

MAC:acc#30

MAC:asn#43
IO

MAC:asn#1
IO

MAC:asn#45
IO

+

MAC:acc#29

*

MAC-2:mul#1

*

MAC-11:mul#1

MAC:asn#47
IO *

MAC-12:mul#1

*

MAC-9:mul#1

+

MAC:acc#42

+

MAC:acc#49

*

MAC-27:mul#1

MAC:asn#51
IO

MAC:asn#53
IO +

MAC:acc#27

MAC:asn#29
IO

*

MAC-7:mul#1

*

MAC-8:mul#1

+

MAC:acc#47

MAC:asn#57
IO

*

MAC-10:mul#1

*

MAC-5:mul#1

*

MAC-4:mul#1

*

MAC-3:mul#1

*

MAC-20:mul#1

MAC:asn#64
IO

+

MAC:acc#52

+

MAC-33:acc#1

Figure 3.7: Internal architecture after unrolling and pipelining

• Storing coefficients inside memory: As mentioned previously, the coeffi-

cients are being fed from outside using wire interfaces. A further optimization

has been carried out by making use of the fact the coefficient values remain

constant in the design so they can also be stored internally in the registers.

These coefficients, when synthesized to RTL, offer great dividends in terms of

34

Design of FIR filter

area savings.

During this process, Catapult performs an automatic optimization such that

no multipliers are utilized in the design and all the computations are performed

using additions and shift operations. This is depicted graphically in the Design

Analyzer, as shown in Figure 3.8 where all the operators are just adders.

Figure 3.8: Internal architecture after storing coefficients inside registers

Because the values of coefficients are constant, this step can be performed

without affecting the results at the output port. The area is drastically reduced

to 26773.13 um2 which is almost 4x times lower than the previous step and

even smaller than the original design without any optimizations. The use of

adders can also be seen from BOM in Figure 3.9.

35

Design of FIR filter

Figure 3.9: Bill of materials after storing coefficients inside registers

• Coefficient folding: If the filter coefficients are symmetric round the center

coefficient, it is possible to benefit from this symmetry and decrease the

number of multipliers. This is possible because at any single clock cycle, two

different inputs are being multiplied with the same coefficient value, but using

two multipliers. Instead, as seen from the algebraic equation, it is better to

first add the two input samples and then multiply them with the coefficient

value. This results in a single multiplier in lieu of two, at a small cost of a

36

Design of FIR filter

low-area adder.

(x[1] ∗ coeff) + (x[2] ∗ coeff) = (x[1] + x[2]) ∗ coeff (3.2)

However, this optimization is only useful when coefficient values are being fed

from the outside. Because multipliers are being used in such a design, this

particular optimization reduces the number of multipliers by half, and is very

useful for area savings. In our particular design, this optimization process

does not yield better results.

After carrying out the above mentioned optimizations, the result of the newly

synthesized filter (showing same output values) shows has an Area = 26773.13

um2 and throughput = 1.

Figure 3.10 shows a screenshot of Catapult project in which the different versions

indicate the different optimization processes as discussed above, and how each one

of them is affecting the design performance.

Figure 3.10: Design optimizations of FIR filter

As seen from NCSim simulation of Figure 3.11, the output is arriving after each

clock cycle and this results in a throughput of 1, as desired.

37

Design of FIR filter

Figure 3.11: Simulation result after optimizations

One additional requirement of this design is the ability to select the the required

number of bits at the output (as specified in the parameters above) and most

of the time, the MSBs are needed to be kept while discarding the LSBs. This

need for selection of nb_out number of bits of the output requires manual shifting

of the decimal point, which is done easily if all the number are quantized and

represented as integer values. Hence, all the inputs, coefficients and outputs have

been quantized to integer values. The output results are on the full bit width of

the accumulator so that overflow, and hence wrong results, can be avoided.

In order to correctly define the most significant bit (and hence the starting point

of the output result), there is a need to know the total number of bits in the

accumulator (which has already been explained previously).

This accumulator bit width can be calculated in the Matlab script and then passed

as a parameter to the top.h header file where it is used by the Catapult source

file. It is used to define the ACC_TYPE data type which is further used by the

accumulator inside the filter source code so that no precision is lost due to overflow.

Or it can be calculated as a pre-processor directive inside the C++ source file.

This bit width is also useful in calculating the most significant bit of Catapult

design result and it is essential when there is the need to extract a portion of the

total bits from the result (the MSBs, in this case). In this design, this extraction of

38

Design of FIR filter

the required bits is done through a feature available in Catapult known as slicing.

It is an in-built method of the form:

slc <W> (int LSB)

where "W" specifies the width of the slice, and "LSB" indicates the starting position

of the slice. If W=3 and LSB=2, then Figure 3.12 depicts how the bits are obtained

from this slice method.

Figure 3.12: Graphical illustration of slice method[17]

Furthermore, half-bit rounding is also needed to be done at the LSB. As men-

tioned earlier, because we are not using any decimal part in the ac_fixed class here

due to conversion to integer values, so automatic rounding using the AC_RND

parameter is not possible. Hence, this is done manually by selecting nb_out + 1

number of bits, adding 1 and then right-shifting the result by 1 in order to truncate

the LSB. The code snippet for this procedure is shown below and Figure 3.13

depicts it graphically.

39

Design of FIR filter

1 intermediate_out = temp . template s l c <NO_OUT_BITS+1>(LSB_START) ;

2 intermediate_out = intermediate_out + ROUND_ADD;

3 dout = intermediate_out >> ROUND_ADD;

ROUND_ADD is the parameter which is obtained depending on the difference

between accumulator width and output port width. If the accumulator width is

more than the output width, then there is a need to slice the result and hence, half

bit rounding is required. In this case, value of ROUND_ADD = 1.

Vice versa, when the accumulator width is less than the output width, then there

is no need to slice the result and hence, half bit rounding is not required. In this

case, value of ROUND_ADD = 0.

Figure 3.13: Graphical illustration of half bit rounding

3.5 Class-based hierarchical design

Catapult allows creation of hierarchical design modules from C++ classes as well

as C++ functions, both of which provide a significant reduction in design times

for sub-systems. Addition of hierarchy means partitioning the design into several

blocks or processes.

Although both of these these methods offer the same functionality, the coding

style is totally different. Also, the class-based hierarchical approach offers some

advantages due to which it has been adopted in this thesis work.

40

Design of FIR filter

One of the biggest advantages of using this coding style is the ability to instantiate

multiple instances of the same class which results in increased flexibility. By using

the same source code, hardware blocks can be replicated with different parameters

which are defined through templates.

Also, data between different blocks can be streamed at different rates by using

ac_channels. The data flow will be managed automatically and the sub-blocks

will also be able to run in parallel. This parallel computation of the sub-blocks

is another advantageous feature of hierarchy and it becomes very easy to meet

throughput constraints.

3.5.1 Hierarchy

The project source folder contains 6 files which are used for the FIR design process:

1. top.h header file which contains the declarations of the variables, constants,

parameters and functions. This file is the only one which needs to be edited

for each new design, and this done automatically by the Matlab script.

2. top_template.h header file which defines the "top-level" module class and it

is parameterized using templates. This block is the one which is connected to

the external testbench. It only contains the channels between different classes

and hierarchy (no logic). Because it is itself a class, it consists of a constructor

(without any arguments) and a public member function run which is called

by the testbench via ac_channels. This member function is used to call /

instantiate its sub-block (the fir filter design) by passing inputs and outputs

as well as filter coefficients.

The hierarchical sub-block is declared as a private member.

3. top_template_inst.cpp file which is used to explicitly instantiate the

top-level module class.

41

Design of FIR filter

4. fir_template.h is the core file which contains the synthesizable description

of the FIR filter along with all the loops. It is also parameterized through

templates and it is instantiated by the top-level module class which also passes

the template parameters. The private data members are the static variables

whose values are needed to be retained in between function calls (e.g. input

shift register)). The class constructor is used to initialize the values of the

private data members. The public member function run is called by the

top-level class and contains the SHIFT loop which acts as a shift register to

shift the inputs at each clock cycle.

The FIR filter class contains 2 private member functions firSymmetricTaps

and firNonSymmetricTaps. As the name suggests, the first member function

is called when there is a symmetry of the coefficients round the center and the

second member function is called when there is no symmetry. This is defined

in the top.h header file with the SYMM_FILT option which can be changed

by the designer in the Matlab script. This if-else logic which determines the

function to be called, is written inside the "run" public member function.

The MAC loop is contained inside both these functions and it is fully unrolled

to give a throughput of 1. The accumulator is also instantiated inside the

functions and it is a temporary register which holds the full precision result

during summation of all the taps. At the end, it is typecasted to the output

data type.

For Catapult to infer hierarchy of the blocks / classes / functions, we use the

following pragma in the code:

hls_design [top][interface]

where the option ’top’ specifies the top level of hierarchy and ’interface’

specifies the sub-block inside the top level.

42

Design of FIR filter

5. fir_template_inst.cpp file which is used to explicitly instantiate the

fir_template.h class.

6. top_tb.cpp testbench file which is used to read the inputs from an external

file, pass the values in the top-level module class, receive the results, compare

them and declare the functional test "pass" or "fail" depending upon the

comparison.

3.5.2 Template Features

The templatization features of the top level class are explained below:

template <class b_intype, class cf_type, class b_otype, class

b_acctype, class cf_size>

where class b_intype is the user defined class initialized in the top.h file as

1 typede f ac_fixed<NO_IN_BITS,NO_IN_BITS, true> DATA_I_TYPE;

This type is used to denote the input width parameter. As explained above, the

values are converted into integers so this type has integer width as the same as

total width and it is signed.

Similarly class cf_type is the user defined class which is used to denote the coefficient

width parameter and it is initialized as

1 typede f ac_fixed<NO_COEFF_BITS,NO_COEFF_BITS, true> COEFF_TYPE;

Class b_otype is the user defined class which is used to denote the output width

parameter and it is initialized as

43

Design of FIR filter

1 typede f ac_fixed<NO_OUT_BITS,NO_OUT_BITS, true> DATA_O_TYPE;

And class b_acctype is the user defined class which is used to denote the

accumulator width parameter and it is initialized as

1 typede f ac_fixed<NO_ACC_BITS,NO_ACC_BITS, true> ACC_TYPE;

The last parameter class cf_size is used to pass down the tap count or the

number of coefficients.

The templatization features of the sublock, fir class are a little different from

the top level and they are explained below:

template <class inType, class coeffType, class outType, class accType,

class num_taps, int filt_type, const coeffType coeffs[TAP_COUNT],

int instance>

The first four parameters are the bit widths, as mentioned above and class

num_taps is the tap count.

int filt_type is equal to the parameter SYMM_FILT which was initialized in

the top.h file, and contains information about the filter symmetry. It is used as

following in the fir source code:

1 i f (f i l t _ t y p e == 0) {

2 f irNonSymmetricTaps (regs , c o e f f s , data_out) ;

3 }

4 i f (f i l t _ t y p e == 1) {

5 f i rSymmetricTaps (regs , c o e f f s , data_out) ;

6 }

44

Design of FIR filter

const coeffType coeffs[TAP_COUNT] is the parameter which allows the

optimization process related to constant coefficients to happen in a streamlined

way. This template parameter is passed down from the top.h file and due to this,

there is no need to change the source code of FIR filter, even though every different

FIR filter will have different constant coefficients stored inside them, with totally

different architectures.

Using this feature, the top level class can instantiate multiple instances of the FIR

filters with entirely different values. In previous designs, even if the coefficients

were stored in the top level class, they had to be passed as wire inputs to the

sub-block of FIR filter. And this procedure resulted in more area. But the ability

of Catapult to use template options for entire arrays causes the constant values

to be passed as pointers and the software understands the need to initialize the

coefficients inside the sub-block, where it offers maximum optimization.

Finally, the int instance parameter defines the "number of instance" incase different

instances of the same class are initialized. So the first filter will have instance=0,

second filter will have instance=1 and so on. This allows Catapult to differentiate

between the number of filters it has to synthesize.

Calculation of intermediate bitwidth

As mentioned in section 3.3, the intermediate bitwidth of the accumulator /

register bitwidth inside the FIR filter is calculated mathematically inside the source

files, as a pre-processor directive.

In the C code, a new typedef called int_type_fir has been defined whose integer

width is the same as total bitwidth and it comprises of the minimum number of

bits required inside the FIR filter to maintain full precision.

The accumulator inside the filter is defined by this new data type, which can be later

sliced according to the required number of output bits. With this implementation,

45

Design of FIR filter

the ACC_TYPE data type is no longer calculated by the Matlab script and it is

also not passed as a parameter anymore.

The calculations of this new data type requires understanding of the corresponding

values which can be read from the top.h file. Alternatively, to make it easier to

initiate multiple instances in a filter chain, it is also possible to pass all the required

values as parameters during the initialization in the top level file.

46

Chapter 4

Design of Polyphase

decimation filter

4.1 Architecture

Polyphase filters fall under the category of multi-rate filters which use different

sample rates for input and output streams. Sample rate conversion is the process

of changing the sampling rate of a given input signal. For decimation filters, this is

called ‘down-sampling’, and it is achieved by discarding a certain number of output

samples as per the decimation rate. The signal is filtered prior to down-sampling

to remove all components which would alias into the new passband. The input

is at a higher frequency while the output is taken at a lower frequency. This

difference in the sample rate can be used to achieve more area efficient designs by

reusing hardware such as adders or multipliers at the lower frequency side. The

general principle involves converting an input signal to a lower rate (known as

down-sampling), process it by using less number of hardware units and present at

the output at the required frequency.

47

Design of Polyphase decimation filter

Usually, the process of decimation involves periodically discarding output samples

to match the desired reduction in rate. A decimation by a factor of 8 is represented

by Figure 4.1.

Figure 4.1: Illustration of decimation by 8

A down-sampling rate of ’M’ means that every Mth sample is kept and the rest

are thrown away. However this method of discarding samples if highly inefficient

as it wastes a lot of resources which are otherwise not needed. This problem can

be solved by using such a structure which is “enabled” only when the output has

to be produced. This splits the filter into M phases (sub-filters) and multiplex the

incoming data such that only the relevant input is computed with its coefficient

according to the desired output at a certain time (which can be calculated by the

mathematical formula). The data arrives at a fast sampling rate, but as soon as

asserted to the sub-filter, it is processed at a slower sampling rate.

This way, resources are shared as now they have more number of clock cycles

available to process data. This polyphase decomposition originated from the work

by Bellanger et al. [19] and plays a fundamental role in multi-rate DSP applications.

In this design, the filter is split into its polyphase components such that only those

outputs are computed which are needed to be saved, and the separate polyphase

components perform their respective calculations.

These individual components receive the samples at a lower rate which is

equal to M. This enables to rearrange filtering operation computations, such

that computational load per unit time is minimized. Instead of performing a

48

Design of Polyphase decimation filter

multiplication per one unit time, now two units of time are available to do the

same operation.

Figure 4.2: Polyphase implementation of decimation filter. (a) Two polyphase
components. (b) Equivalent configuration. [20]

4.2 Matlab code and reference model

To check the functionality of a polyphase decimation filter, I have taken a sample

FIR filter (as described in the previous section) and only those results are stored

which are a multiple of the decimation factor ‘M’. This way, the output result mimics

the operation of an M-fold polyphase decimation filter. The Matlab model for the

FIR is the same as the one described above, having the exact same specifications.

4.3 Mathematical modeling and manual hard-

ware sharing

This type of filter can be implemented in Catapult two ways; adopting a high-level

algorithmic approach or a low-level manual hardware sharing approach. Using

the first option raises the abstraction level and saves the hardware designer into

going into too much detail of the underline architecture whereas the second option

requires understanding of how data moves through the tap shift register, and when

output data is produced by the filter.

49

Design of Polyphase decimation filter

Although the first approach is less time consuming, it does not necessarily provide

the best optimized results. Whereas the second approach provides the designer

with better control of the underlying architecture and how the resulting RTL will

be produced. The second approach has been adopted for this thesis work and to

understand it better, have a look at Figure 4.3.

Figure 4.3: Output equations of order 5 FIR filter

These equations represent the output of normal FIR filter with Order 5. If there

is a need to decimate the output of this filter with Rate M=3, we would get only

those results at the output which are highlighted in yellow. Adopting the low-level

approach requires that the code is written in such a way that only the relevant

outputs are calculated and since there are ‘M’ number of clock cycles in between

each output, the hardware resources can be efficiently shared.

First of all, there is a need to calculate how many MACs (Multiply and Accumulate)

are needed. The general formula is given by:

#MACs = N/M (4.1)

where N = Tap count = Order + 1 and M = Decimation rate. In this case #MACs

= 6/3 = 2. Note this is a lot less than the 6 MACs needed for an order 5 filter.

50

Design of Polyphase decimation filter

To implement it, there is a need to set some constraints and optimizations at the

beginning. These include pipelining the whole design with II = 1 (new input sample

at each clock cycle) and unrolling all the loops inside the code.

This design is divided into ‘M’ phases where each phase is a separate function call

to the hardware design (equivalent to sub-filters). There is need to understand

how the corresponding input samples are shifted inside the shift register at each

clock cycle and how their relevant positions can be used to calculate the correct

coefficient index with which the multiplication needs to be done.

Figure 4.4: Shifting of input samples inside shift register

The last input x5 comes at the last phase so it is calculated at the end, along

with x4. (2 MACs only). Similarly, x3 and x2 are calculated in Phase 1; x1 and

x0 in Phase 0. Each new phase is a clock cycle and the inputs shift to successive

registers. In the whole process, only 2 MACs are used to calculate all the corre-

sponding values. To find the coefficient index and register index as a relation of

input position in a register, decimation factor and order of the filter, take a look at

figures 4.5 and 4.6 which explain the derivation technique of the formula.

51

Design of Polyphase decimation filter

Figure 4.5: Derivation of coefficient index

Figure 4.6: Derivation of register index

The formulae derived as shown in the above figures are fully generic and will give

the most efficient architectural implementation of the polyphase decimation filter

in terms of maximum resource sharing. However, it also introduces corresponding

multiplexers which can increase the design area for lower decimation rates. Detailed

analysis of this implementation is discussed in the ’results’ section of this chapter.

4.4 Synthesizable C++ code (Algorithmic de-

scription)

The project is also a class-based design (details mentioned in the previous chapter)

and includes six different files;

1. top.h header file which contains the declarations of the variables, constants,

52

Design of Polyphase decimation filter

parameters and functions. This file is the only one which needs to be edited

for each new design, and this done automatically by the Matlab script.

2. top_poly_template.h header file which defines the "top-level" module

class and it is parameterized using templates. This block is the one which is

connected to the external testbench. It only contains the channels between

different classes and hierarchy (no logic). Because it is itself a class, it consists

of a constructor (without any arguments) and a public member function run

which is called by the testbench via ac_channels. This member function is

used to call / instantiate its sub-block (the polyphase filter design).

3. top_poly_template_inst.cpp file which is used to explicitly instantiate

the top-level module class.

4. poly_template.h is the core file which contains the synthesizable description

of the polyphase filter along with all the loops. It is also parameterized through

templates and it is instantiated by the top-level module class which also passes

the template parameters. The private data members are the static variables

whose values are needed to be retained in between function calls (e.g. input

shift register, accumulator and counter). The class constructor is used to

initialize the values of the private data members. The public member function

run is called by the top-level class and contains the MAC and SHIFT loops.

5. poly_template_inst.cpp file which is used to explicitly instantiate the

poly_template.h class.

6. top_tb.cpp testbench file which is used to read the inputs from an external

file, pass the values in the top-level module class, receive the results, compare

them and declare the functional test "pass" or "fail" depending upon the

comparison.

53

Design of Polyphase decimation filter

The testbench is used to read the inputs from an external file, pass the values in

the core file, receive the results, compare them and write them to an external file.

As compared to the FIR filter code, the major change implemented is in the MAC

loop which takes into the account the above derived formula for calculation of the

results. The temporary results after each function call are stored in an accumulator

and when the phase count reaches the decimation factor, it sends the value as the

output and resets itself back to zero. Initializing it as a static variable allows it to

retain its value in between function calls. The code snippet for this formula being

used inside the polyphase filter source code of HLS design is reported below.

1 #pragma h l s_unro l l yes

2 MAC: f o r (unsigned j =0; j<MACS; j++)

3 {

4 acc += c o e f f s _ r e g s [j + (((DEC_FACTOR−1)−cnt) ∗ MACS)] ∗

data_i_regs [j + (((DEC_FACTOR−1)−cnt) ∗ MACS) − ((DEC_FACTOR−1)−

cnt)] ;

5 }

4.5 Architectural optimizations

For this design purpose, the following optimizations have already been incorporated

in order to avoid repetition of the optimization process:

1. Pipelining.

2. Loop unrolling.

3. Use of class-based hierarchy.

However, one of the circumstances for which the previous design is not optimized

for is when tap count of the filter is not an integer multiple of decimation rate (N /

54

Design of Polyphase decimation filter

M != 0). If the combination of rate and tap count results in a sub-filter which is not

fully populated with coefficients, the reorganization of the filter coefficients results

in a change in the phase response of the filter. To avoid this problem, coefficient

padding is done in which the empty slots of the sub-filters are filled with zero

coefficients. This way, the general formula for polyphase implementation holds true

without affecting the filter response of the filter. To introduce coefficient padding,

the extra zeros are added into the design in place of extra coefficients.

The following code snippet from top.h file shows hows the number of MACs is

calculated in the polyphase design, depending on the ratio between tap count and

decimation rate. Afterwards, the total number of coefficients are again calculated

so that padding of zeroes can be done.

1 const unsigned MACS = (TAP_COUNT % DEC_FACTOR==0) ? TAP_COUNT /

DEC_FACTOR : (TAP_COUNT / DEC_FACTOR) + 1 ;

2 const unsigned TOTAL_COEFFS = DEC_FACTOR ∗ MACS;

The method of implementing the operation of coefficient padding depends on

how coefficients are used in the design. The following two ways explain the details:

1. Coefficients fed as direct inputs: The addition of extra zeros in this case

is done from the testbench. The following code in the testbench file allows

for reading of the coefficients from an external file. The coefficient values

are mapped to a "Direct Input" constraint. Doing so makes it so that the

coefficient feed is a set of wires, with no pipeline registers or handshaking

logic. The absence of pipeline registers and handshaking logic results in lower

power consumption and reduced area.

55

Design of Polyphase decimation filter

1 unsigned i ;

2 FILE ∗ fp_in ;

3 COEFF_READ_LOOP: f o r (unsigned s =0; s<NO_FILTERS; s++)

4 {

5 i =0;

6 fp_in = fopen (c o e f f i c i e n t s _ f i l e . c_str () , " r ") ;

7 f s c a n f (fp_in , "%l f " , &double_coef f_i) ;

8 COEFF_TYPE c o e f f _ i = double_coef f_i ;

// Typecast to COEFF_TYPE

9 do{

10 f i l t e r C o e f f s _ r e g [i] = c o e f f _ i ;

11 f s c a n f (fp_in , "%l f " , &double_coef f_i) ;

12 c o e f f _ i = double_coef f_i ;

13 i ++;

14 i f (i>TAP_COUNT) {

15 cout<<" −Too many c o e f f i c i e n t s found in txt f i l e .

Expected are "<<TAP_COUNT<< " va lues . "<<endl ;

16 }

17 cout<<" −Read in "<<i<< " c o e f f i c i e n t s from "<<

c o e f f i c i e n t s _ f i l e <<" "<<endl ;

18 } whi l e (! f e o f (fp_in)) ;

19 f c l o s e (fp_in) ;

20 }

21 whi le (i < TOTAL_COEFFS) {

// Adding Zero c o e f f i c i e n t s at the end o f the l i s t

22 f i l t e r C o e f f s _ r e g [i] = zero_value ;

23 i ++;

24 cout<<" −Added zero value c o e f f i c i e n t at p o s i t i o n "<<i<<

" "<<endl ;

25 }

26 cout << endl ;

56

Design of Polyphase decimation filter

The ’while’ loop at the end is responsible for adding zero values as the extra

coefficients which are introduced as a result of coefficient padding.

2. Coefficients stored inside memory: In case of design optimization where

the coefficients are stored internally in the memory, it is not possible to add

the zeros from the outside. Instead there has to be a way to initialize the

correct number of total coefficients inside the memory (actual number + extra

zeroes) and this needs to be generic, so that different specifications always

yield the correct calculations.

For this purpose, we again make the use of pre-processor directives to ’inter-

nally’ calculate the total number of coefficients required. Then, a new array

(internal registers) is initialized with a value of ’0’ in all the registers. Finally,

this array is overwritten with the values of ’N’ filter coefficients where ’N’ is

the original tap count. The remaining registers will retain the value of zero,

which is equivalent to coefficient padding implementation.

1 ac : : i n i t_ar ray <AC_VAL_0> (c o e f f s , t o ta l_coe f f s_type : : width) ;

2

3 // Automatic c o e f f i c i e n t padding by z e r o e s i n c a s e tap count

i s not a mul t ip l e o f dec imation f a c t o r

4 f o r (i n t j = 0 ; j <= f i l t _ o r d e r ; j++) {

5 c o e f f s [j] = coeffs_regs_temp [j] ;

6 }

57

Design of Polyphase decimation filter

4.6 Results

4.6.1 Order:5 , Decimation:2 & 3

Figure 4.7 shows that 2 multipliers are used inside a polyphase filter with Order =

5 and decimation rate = 3. As explained previously, this is due to the fact that six

computations are needed to be performed over the course of three clock cycles. If

one multiplier takes 1 cc to perform 1 computation, then 2 multipliers can perform

six computations in three clock cycles.

Figure 4.7: 2 multipliers used for 6 taps

Figure 4.8 shows the simulation result in which it can be seen that the output

throughput is every 3 clock cycles.

58

Design of Polyphase decimation filter

Figure 4.8: Simulation on NCSim showing output with decimation rate of 3

Figure 4.9: Result of HLS generated design as compared to Matlab results

Now, if we decrease the decimation rate of the same filter, it would mean that

59

Design of Polyphase decimation filter

the output needs to be generated at a quicker rate. And hence, more hardware

resources are needed. Figure 4.10 shows the area result of a filter with Order = 5

and decimation rate = 2. As expected, now that the output has to be delivered in

a lesser number of clock cycles, more multipliers and multiplexers are needed to

implement the functionality and there is an increase in area. Figure 4.11 shows the

simulation result in which it can be seen that the output throughput is every 2

clock cycles.

Figure 4.10: Comparison of areas for two different decimation rates

Figure 4.11: Simulation on NCSim showing output with decimation rate of 2

The number of multipliers and multiplexers are shown in the Design Analyzer

result in in Figure 4.12, which are more than those in the previous design.

60

Design of Polyphase decimation filter

Figure 4.12: 3 multipliers used for 6 taps

The results indicate that this polyphase implementation is highly effective in

resource sharing and is able to provide big dividends in area savings. Normally, the

same filter would require 6 multipliers and an area of 20017.29 um2. Increasing

the decimation rate allows the same multipliers to be re-used in between consecutive

clock cycles.

4.6.2 Order:123 , Decimation:2 & 62

A polyphase filter of bigger order (123) is compared with an RTL-coded imple-

mentation of the same specifications. To better analyze the effect of different

decimation rates on the area comparisons, two different rates are chosen (2 and

62).

Both the polyphase filter designs are the result of automated design flows which

aim to build a hardware design when provided with any set of filter specifications.

Although functionally equivalent, these two filters are different from the design im-

plementation point of view and how the datapath has been arranged inside the core.

61

Design of Polyphase decimation filter

Figure 4.13 shows the area comparisons of the two polyphase filters having

different decimation rates; for the HLS design flow and the RTL design flow.

Figure 4.13: Area comparison: Polyphase filter of order 123 designed using HLS
flow and RTL flow

As mentioned previously, our filter made with the HLS automated design flow

utilizes resource sharing for effective reuse of hardware. Each multiplier has two

multiplexers which feed the operands to it. The first multiplexer selects the input

value from the shift register and the second multiplexer selects the value from

the coefficients. For our HLS design flow, the sharing of resources and their

corresponding effect can be summarized as:

1. A smaller decimation rate means a higher number of multipliers and multi-

plexers.

2. A higher decimation rate means a smaller number of multipliers and multi-

plexers.

To understand the big difference in the areas of the filters designed by the HLS

flow using the generic algorithm, figure 4.14 and figure 4.15 show the area scores of

62

Design of Polyphase decimation filter

our two polyphase filters. Figure on the left has the smaller decimation of 2 and the

figure on the right has the larger decimation of 64. The differences in the area of the

FUNC part and MUX are clearly visible, giving clear insight to the implementa-

tion details of using a generic algorithm to design filters with different specifications.

Figure 4.14: Order 123 and Decima-
tion 2

Figure 4.15: Order 123 and Decima-
tion 62

4.6.3 Order:28 , Decimation:8

The last comparison is done against a polyphase filter provided by Infineon, of

order 28 and decimation 8. The input bitwidth is 2 and the output bitwidth is 13.

Figure 4.16 shows the graph, correlating the area and static power consumption.

The HLS design shows better results due to resource sharing. The design provided

by Infineon, although functionally equivalent, is having a different architecture and

does not utilize reuse of hardware resources. Hence, the difference in the overall

area and the power consumption.

63

Design of Polyphase decimation filter

Figure 4.16: Area comparison of order 28 and decimation 8 filter

As shown from figure 4.17, this filter reuses the hardware multipliers, which

results in a total of only 4 MULTs instead of 29.

Figure 4.17: Resource sharing inside polyphase filter

The final design of this polyphase filter was obtained after implementing one

small optimization which was able to save an area of 600 um2 as well as improve

the slack. Instead of using 16 bits for the accumulator bitwidth, we use 13 bits.

This is possible only because we know the values of the coefficients beforehand and

that can be used to calculate the maximum possible result that can be obtained.

64

Design of Polyphase decimation filter

This small difference in the final area can be seen from the Catapult synthesis flow,

as depicted in figure 4.18.

Figure 4.18: Area saving after optimization

65

Chapter 5

Design of CIC decimation

filter

5.1 Architecture and frequency response

CIC (Cascaded Integrator Comb) decimation filters also fall under the category

of multi-rate filters and are used in sample rate conversion. They fall under the

class of narrowband low-pass filters and they are highly computation-efficient[21].

Although they can be used both for the purpose of decimation (down-sampling)

and interpolation (up-sampling), this thesis work deals with only the design of CIC

decimation filter.

One of the biggest advantages of CIC filters is the absence of arithmetic multipliers

in their structure. Because they do not need any coefficients, there are no mul-

tiplication operations and this also saves area in terms of less data storage. The

arithmetic operations only consist of addition and subtraction.[22]

The feedback portion (on the left of decimator, operating a higher sample

rate) is called the ‘integrator’ section and the feedforward portion (on the right of

66

Design of CIC decimation filter

Figure 5.1: CIC decimation filter of order 1

decimator, operating at lower sample rate) is known as the ‘comb’ section. This

was one of the key features of CIC filters introduced to the world by Hogenauer

in 1981[22]. The integrator can be viewed as an accumulator whereas the comb

stage is used to subtract a delayed input sample from the current input sample.

The parameter ‘N’ is known as the ‘differential delay’ and it is typically kept at 1

or 2 (in my designs, I have kept it constant at 1).

To provide full accuracy of results, an important thing which has to be kept in mind

are the register bit widths. Because the integrator stage is accumulating results

at each stage and with new input samples, there occurs an arithmetic overflow.

However, if the following two conditions are met, this overflow is of no consequence:

• Each stage uses two’s complement arithmetic (non-saturating).[23]

• The maximum value expected at output of a stage is less than or equal to the

range of stage’s number system.

To avoid overflow, the following formula is implemented:

Register_bit_width = x(n) + ceil[M.log2(N.R)] (5.1)

Where x(n) are number of bits of input samples, M is the filter order, N is the

differential delay and R is the decimation rate. This implies that the input samples

are first sign extended to the higher number of bits before entering the integrator

67

Design of CIC decimation filter

section.

5.2 Matlab code and reference model

A sample code in a script is written in Matlab to get the results of CIC decimation

filter. The inputs are passed through a Matlab system object (dsp.CICDecimator)

which is obtained by passing the parameters of decimation rate, differential delay

and filter order. The outputs are then stored in a file. The specifications of the

filter in order to design a generic source code are given below:

• Filter order M = 8

• Number of bits at input nb_in = 12

• Number of bits at output nb_out = 12

• Decimation rate R = 4

After running the Matlab script, the results of this particular CIC filter are

obtained and stored in a file which will be used as golden reference model for the

Catapult design. It is to be noted that all the inputs and outputs have been quan-

tized to integer values. These results are on the full bit width of the accumulator

so that overflow, and hence wrong results, can be avoided.

Similar to the previous two designs, here also one of the requirements of this design

is the ability to select the required number of bits at the output (as specified in

the parameters above) and most of the time, the MSBs are needed to be kept

while discarding the LSBs. This need for selection of nb_out number of bits of the

output requires manual shifting of the decimal point, which is implemented in the

Matlab script.

In order to correctly define the most significant bit (and hence the starting point

68

Design of CIC decimation filter

of the output result), there is a need to know the total number of bits in the

accumulator. This is calculated from equation (5.1). This accumulator bit width is

then also passed as a parameter to the top.h header file where it is used by the

Catapult source file for slicing, as explained in the previous chapters.

At the end, the Matlab script is used to automatically edit the top.h header file

which contains all the parameters and information used by the CIC decimator

source files for the design process.

5.3 Algorithmic description in C++

The project is also a class-based design (details mentioned in the previous chapters)

and includes four different files:

1. top.h header file which contains the declarations of the variables, constants,

parameters and functions. This file is the only one which needs to be edited

for each new design, and this done automatically by the Matlab script.

2. top_cic_template.h header file which defines the "top-level" module class

and it is parameterized using templates. This block is the one which is

connected to the external testbench. It only contains the channels between

different classes and hierarchy (no logic). Because it is itself a class, it consists

of a constructor (without any arguments) and a public member function run

which is called by the testbench via ac_channels. This member function is

used to call / instantiate its two sub-blocks (integrator and comb classes)

which are connected via an ac_channel.

3. cic_decimator_template.h is the core file which contains the synthesizable

description of the CIC decimation filter and it further contains two classes:

• cic_integrator_stage class which contains the source code for integrator

69

Design of CIC decimation filter

part of the CIC filter. It is the high-frequency part of the filter which

accepts the input data samples at each clock cycle and consists of the

chain of adders and feed-back paths. It sends its output only when the

counter reaches the value of decimation factor.

• cic_comb_stage class which contains the source code for comb part of

the CIC filter. It is the low-frequency part of the filter which accepts the

input data samples from the integrator at slower rate (equal to decimation

rate) and consists of the chain of subtractors and feed-forward paths.

Figure 5.2: Design Analyzer view of CIC filter composed of separate sub-blocks

Both these classes are parameterized through templates and they are instanti-

ated by the top-level module class which also passes the template parameters.

The private data members are the static variables whose values are needed to

be retained in between function calls (e.g. shift registers and counter). The

class constructor is used to initialize the values of the private data members.

The public member functions run of both the classes are called by the top-level

class.

4. top_tb.cpp testbench file which is used to read the inputs from an external

file, pass the values in the top-level module class, receive the results, compare

70

Design of CIC decimation filter

them and declare the functional test "pass" or "fail" depending upon the

comparison.

The parameter "total number of bits in the accumulator" NO_ACC_BITS,

as mentioned in the previous section, is calculated by the Matlab script and passed

to the top.h header file. Here it is used to define the DATA_ACC_TYPE data

type which is further used by the accumulator inside the filter source code so that

no precision is lost due to overflow.

Similar to the FIR and polyphase filter, another useful way to determine the

intermediate bitwidth of the accumulator / register bitwidth inside the CIC filter is

to calculate it mathematically inside the source files, as a pre-processor directive.

In the C code, this is used in the following way:

1 //===

2 // Struct : power

3 // Desc r ip t i on : templat i zed s t r u c t f o r computing power o f a number

4 //−−−

5 template <i n t base , i n t expon>

6 s t r u c t power {

7 enum { value = base ∗ power<base , expon − 1 >:: va lue } ;

8 } ;

9

10 //===

11 // Struct : power

12 // Desc r ip t i on : templat i zed s t r u c t f o r computing power o f a number

with a

13 // zero component

14 //−−−

15 template <i n t base>

16 s t r u c t power<base , 0> {

17 enum { value = 1 } ;

71

Design of CIC decimation filter

18 } ;

19

20 //===

21 // Struct : f ind_inter_type_cic_dec

22 // Desc r ip t i on : prov ide s parameter ized b i tw idths to ensure a l o s s l e s s

23 // in te rmed ia te type f o r the CIC f i l t e r . W, I and S are word width ,

24 // i n t e g e r width and s i gnedne s s o f the input .

25 //−−−

26 template <c l a s s data_i_type , i n t R, i n t M, i n t N>

27 s t r u c t f ind_inter_type_cic {

28 enum {

29 W = data_i_type : : width ,

30 I = data_i_type : : i_width ,

31 S = data_i_type : : s ign ,

32 outF = W − I ,

33 outW = ac : : l og2_ce i l <power<R, N>: : va lue ∗power<M, N>: : value >: : va l

+ W + i n t (! S) , // . . . (i)

34 outI = outW − outF

35 } ;

36 typede f ac_fixed<outW, outI , true> int_type_cic ;

37 } ;

The int_type_cic datatype is the one which defines the internal registers

width. All incoming data is first sign extended to this type to avoid wrong results.

Manual slicing of the output result is also done in the source code, as with previous

designs. Furthermore, half-bit rounding is also needed to be done at the LSB.

As mentioned earlier, because we are not using any decimal part in the ac_fixed

class here, so automatic rounding using the AC_RND parameter is not possible.

Hence, this is done manually by selecting nb_out + 1 number of bits, adding 1

and then right-shifting the result by 1 in order to truncate the LSB.

Implementation details of manual slicing as well as half-bit rounding have been

72

Design of CIC decimation filter

explained in chapter 1.

5.4 Architectural optimizations

For this design purpose, the following optimizations have already been incorporated

in order to avoid repetition of the optimization process:

1. Pipelining.

2. Loop unrolling.

3. Use of class-based hierarchy.

Apart from the above 3 optimizations, 2 more optimizations have also been

incorporated, which are explained below:

1. Resource sharing in the comb part: The cic_comb_stage class takes the

decimation rate as input parameter. Firstly, by setting the initiation interval

of the pipeline design equal to decimation rate, Catapult makes use of resource

sharing by realizing the extra number of clock cycles available for computation.

Hence, same adders are re-used in between the "free" clock cycles. This is

realized by:

template <class inType, class outType, int dec, int instance>

#pragma hls_pipeline_init_interval dec

For example, normally a CIC filter with order = 8 will require 8 adders

(subtractors) in the comb part. However, with a decimation rate of 4, only 2

adders are used since both of them are working each clock cycle to produce a

total of 8 computations as originally required.

This difference in the number of adders inside the comb part of the filter can

73

Design of CIC decimation filter

be be seen from Figure 5.3 and Figure 5.4, in front of Quantity caption.

Figure 5.3: Comb part before opti-
mization

Figure 5.4: Comb part after opti-
mization

However, it must be noted that this is not true in all the cases. Mostly when

Decimation rate < Filter order, we see better results, but in the opposite

scenario, it is also possible to obtain worse area results. There are two primary

reasons for this. One is that Catapult adds extra registers in the output FIFO

queue, which are not needed. And secondly, the re-use of adders results in

introduction of some multiplexers which sometimes increases the overall area,

despite using less adders. Therefore, it is recommended to check the final area

results after making use of this resource sharing option in order to arrive to

the best possible implementation.

2. Removing the FIFO queue between integrator and comb part: As

mentioned previously, the CIC design is split into two separate classes which

are connected by ac_channel. By default, this introduces a pipe which is

basically a FIFO queue, which is not needed in this case. For better results,

this internal pipe connecting the two classes can be removed, without changing

the functionality of the filter. This step can be done in one of two ways:

• By using the GUI inside Catapult, go to "Architecture" panel from the

left, expand the interface drop down option, select the given pipe and

74

Design of CIC decimation filter

set the FIFO depth = 0. By default, the value is set to -1 which means

that there is no upper limit.

• By using a design constraint in the source code, which is the method used

here in our design. This is done by adding the following statement above

the defined ac_channel inside the file top_cic_template.h.

#pragma hls_fifo_depth 0

Figures 5.5 and figure 5.6 show the block diagram of this optimization.

Figure 5.5: Block diagram view: With
pipe

Figure 5.6: Block diagram view: No
pipe

These optimizations result in some additional area savings. The non optimized

design has Area = 54075.66 um2 and the optimized design has Area = 47603.16

um2, which can be seen from Figure 5.7.

Figure 5.7: Comparison of areas for CIC filter architectures

From Figure 5.8, it can be seen the output is still being produced after the given

decimation rate of 4, after implementing all the optimizations.

75

Design of CIC decimation filter

Figure 5.8: NCSim simulation of given CIC filter

5.5 Results

5.5.1 Order:3 , Decimation:512

For evaluation of results using the automated and generic CIC filter flow using

HLS, the complete structure, hierarchy, template, source codes and constraints

have been setup as the first step. Now it is possible to implement CIC filters of

various specifications and analyze the corresponding results.

The first CIC filter to be designed using the automated HLS flow has Order =

5 and Decimation = 512 with input bitwidth of 2 and output bitwidth of 16.

Only these four parameters are changed in the Matlab script, and the rest of the

header files are updated automatically, providing the hardware design of this filter

via Catapult HLS.

The resulting RTL netlist is then synthesized using Cadence Genus Synthesis

76

Design of CIC decimation filter

Solution at a frequency of 100 MHz to obtain an area of 28443 um2.

Figure 5.9: BOM of Order 3 CIC filter

The BOM of this filter is shown in figure 5.9. As expected, the total number

of adders are 8 in which 6 of them are used for the integrator and comb parts (3

each), 1 adder is used as counter and the remaining 1 is used for the purpose of

half bit rounding of the final result.

Out of the 6 internal adders, 5 of them are shown as:

77

Design of CIC decimation filter

mgc_add(29,0,29,0,29,7)

which means that the two operands are 29 bits each as well as the output is on

29 bits. This is the internal accumulator bitwidth which allows for full precision

and correct results, without loss of accuracy.

mgc_add(29,0,2,1,29,7) is the first adder in the integrator part as it receives a

2-bit input at the start. mgc_add(16,0,1,0,16,7) is the adder used for half bit

rounding. as it adds the final result on 16 bits with 1. And mgc_add(9,0,1,0,10,7)

is used for counting purposes (9 bits are used to represent the maximum value of

511).

This filter is compared with another filter having the same specifications and

provided by Infineon. The comparative area results are depicted in figure 5.10.

Figure 5.10: Area comparison of order 3 and decimation 512 filter

The number of flip flops in our HLS design are more than that of Infineon because

of 2 sets of extra registers i.e. the output register of 29 bits at the integrator stage

and another output register of 16 bits at the comb stage (which is also the final

78

Design of CIC decimation filter

output). Hence, the flop area of our design is greater.

On the other side, the combinational area is less because of two main reasons.

• Our design incorporates the delay registers in the straight, feedforward path

inside the integrator stage. This is done to match the results with the

Matlab algorithm which uses the same implementation. This eases the timing

constraints and hence, slower and smaller adders can be used. In contrast

to this, the design provided by Infineon incorporates these registers in the

feedback path, which leaves a single, straight combinational path, directly

from the input to the decimation block. Due to this, faster adders have to be

used in order to meet the timing constraints.

• The Infineon design has saturation logic at the end to saturate the final result

to maximum positive or maximum negative, depending on the value of first 2

MSBs. This also includes some extra logic in the design.

5.5.2 Order:4 , Decimation:8

The next CIC filter to be designed using the automated HLS flow has Order = 4

and Decimation = 8 with input bitwidth of 2 and output bitwidth of 14.

This is compared with two other implementations of the same filter; one is provided

by Infineon and the other is RTL-coded automated flow. The results are shown in

figure 5.11.

79

Design of CIC decimation filter

Figure 5.11: Area comparison of order 4 and decimation 8 filter

As evident from the results, it can be seen that the area and power results of

Catapult HLS automated flow and RTL automated flow are almost exactly the same.

For the comparison with Infineon design, the difference in the area can be at-

tributed to one major factor i.e. the total number of registers used in the design.

In our HLS flow, there are a total of 153 flip flops, whereas in the Infineon design,

there are a total of 108 flip flops. These lesser number of flip flops arise from the

architectural details inside the filter and depend solely on how the design has been

implemented. The Infineon design, being part of a bigger IP, does not have any

output register at the integrator stage and also no register with the last subtractor

in the comb part. This difference in the number of flip flops accounts for the

disparity between the results.

One should also account for some extra net area incase of extra flip flops. The

scheduling operations of this CIC filter are depicted in Figure 5.12.

80

Design of CIC decimation filter

Figure 5.12: Schedule of order 4 and decimation 8 filter

81

Chapter 6

Design of Filter Chain

The last three chapters have dealt with the architecture, algorithmic description

and the optimizations with regards to three types of filters: FIR, Polyphase and

CIC. The implementation of these filters with Catapult HLS has also been discussed

in great detail along with the results and comparison with contemporary solutions.

However, in the world of signal processing, it is often desirable to work with a chain

of digital filters where the output of one filter is directly connected to the input of

the next one. Such an implementation can be used to derive overall better results,

which would otherwise be difficult to achieve using a single filter. Using multiple

filters also lets the designer to put less constraints on the individual filters which

results in simpler architectures.

This chapter deals with the design of filter chains using the parameterized

filter structures already available. We also discuss the method to successfully

integrate all the different filters into a single top level design such that it behaves

as one entity or block, but comprising of different independent sub-blocks.

82

Design of Filter Chain

Figure 6.1: Filter chain in a hierarchical design

6.1 Architecture

Figure 6.1 depicts the general architecture of such a filter chain where the different

blocks of filters are connected together in a seamless fashion. All the parameters

are fed into the design by the user from the outside, before synthesis. Doing so

allows Catapult to generate the corresponding architectures of each filter in the

most optimized way. The incoming samples ’x’ are usually a 2-bit digital stream

coming from the Delta Sigma modulator which are fed into the 1st block which

could be a FIR filter, a polyphase filter or a CIC filter.

The 1st filter performs the filtration process and outputs its result on a specific

number of bits (specified by the user) which is then fed into the 2nd filter. This

process of filtration and feeding the next filter keeps on repeating until the whole

chain has been exhausted.

6.2 Matlab code and reference model

As with the previous filters, the filter chain also needs to be generic such that the

user has the option to customize the whole chain along with the internal filter

83

Design of Filter Chain

specifications as per his requirement.

Because we are using the available filters (FIR, CIC, polyphase), their general

parametric structure remains unchanged. For the Matlab part, two major changes

need to be incorporated which are distinct from the previous Matlab codes.

• Modification of source files: Previously, only the top.h header file was

changed / updated because it contains the parameters / variables needed

by other source files. For the filter chain, in addition to this header file, the

top_template.cpp and testbench.cpp files are also updated.

The top.h header file contains the directive to include the coefficients as

constants, and these coefficients are also automatically stored by the Matlab

code in a separate file.

• Creation of golden reference model: The previous filter designs were

easier to implement in Matlab as they only consisted of a single set of inputs

and outputs.

In the filter chain, as the output of each filter is connected to the input of

next filter, there is a need to connect the sub-blocks in the correct way. To

automate this process, we use loops whose number is defined by the number of

filters in the chain. Secondly, the "type" of filter further decides which specific

implementation to execute during that loop iteration.

1 f o r i =1:FILT_NUM

2

3 x i = y_msbs ;

4

5 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

6 % FIR f i l t e r

7 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

8 i f CHAIN_TYPE(i) == 1

84

Design of Filter Chain

9

10 f i r_no = f i r_no +1;

11 coe f f i c i ent s_f i l ename_FIR = s p r i n t f (’

coefficients_CHAIN_FIR_%d . txt ’ , f i r_no) ;

12

13 fp=fopen (coe f f i c i ent s_f i l ename_FIR , ’ r ’) ;

14 bi = f s c a n f (fp , ’%d ’) ;

15 f c l o s e (fp) ;

16

17 [l i n e _ c o e f f s] = func_write_coef f s_vec (l i n e _ c o e f f s , bi ,

f ir_no , poly_no ,CHAIN_TYPE(i)) ;

18

19 y i = f i l t e r (bi , 1 , x i) ;

20 i f i == 1

21 nb_acc (i) = c e i l (l og2 (sum(abs (b i)) ∗ 2^(nb_in−1))

) + 1 ;

22 e l s e

23 nb_acc (i) = c e i l (l og2 (sum(abs (b i)) ∗ 2^(nb_out (i −1)

−1))) + 1 ;

24 end

25

26 l s b_s ta r t = nb_acc (i) − nb_out (i) ;

27

28 i f l s b_s ta r t < 1

29 l s b_s ta r t = 0 ;

30 round_add = 0 ;

31 e l s e i f l s b_s ta r t >= 1

32 l s b_s ta r t = l sb_s ta r t − 1 ;

33 round_add = 1 ;

34 end

35

36

37 y_msb_plus_1 = f l o o r (y i /(2^(l sb_s ta r t))) ;

85

Design of Filter Chain

38 y_msb_plus_1 = y_msb_plus_1 + round_add ;

39 y_msbs = f l o o r (y_msb_plus_1/(2^(round_add))) ;

40

41

42

This code snippet is extracted from the Matlab code and shows the part where

the FIR filter implementation is carried out inside the chain (which depends

on the parameter CHAIN_TYPE.

The coefficients are extracted from a separate text file and further saved into

a new file with the correct format, which can be read by C++ files.

Then the filtration function is performed where ’bi’ are the coefficients and ’xi’

are the inputs. These inputs can be either from the external environment (if

this is the first filter) or they can be the output of some previous filter. The

number of accumulator bits are also updated in the meanwhile.

At the end, each output is half-bit rounded on the correct number of bits

before going as input to the next filter.

6.3 Algorithmic description in C++

Similar to previous individual filters, this chain of digital filters is also designed

using hierarchical C++ blocks, composed up of classes. The connection of the

different blocks into a sub-system is one of the major challenges in chip design,

which can be handled in a seamless way by following a consistent set of rules.

Adding hierarchy allows the different process or blocks to run in parallel. Another

major advantage of using hierarchy here are the different rates at which data

is being transferred between blocks. Although synchronization of the different

data rates can be a tricky process in RTL design, it is handled easily by defining

ac_channels on the data ports. These channels manage the data flow for the whole

86

Design of Filter Chain

system while taking care of the throughput requirements. During synthesis of these

channels, Catapult automatically adds the proper handshaking signals to the RTL

netlist.

Another problem of different data rates is the availability of input data at some

specific block in the chain. The rate at which a block receives data is totally depen-

dent on the output data rates of the previous blocks. During a C++ simulation, if

a block attempts to read an empty channel (because the data from the previous

block is coming at a slower rate), then the simulation crashes. To avoid this, we

make use of the available() function which checks the number of values in the

channel and returns true if are "num" values available, where "num" is the argument

to the function. The main body of the filter function block is only executed when

there is sufficient data available. This function acts as a safety check to make sure

that the C++ model does not encounter the "empty channel" assertion.

The first step is to add a scope with a while-loop around it that is not synthesized

by Catapult, similar to the concept of sensitivity list in RTL design. This while-loop

contains the "available" method so that it is only called when the function has

enough data. This while-loop makes sure that the functions running at different

rates will execute enough times to complete the simulation.

1

2 #pragma h l s _ p i p e l i n e _ i n i t _ i n t e r v a l 1

3 #pragma hls_des ign i n t e r f a c e

4 void CCS_BLOCK(intg_run) (ac_channel<inType> &input ,

5 ac_channel<outType> &output) {

6

7 inType data_ in_ in i t i a l ;

8

9 #i f n d e f __SYNTHESIS__

10 whi le (input . a v a i l a b l e (1))

87

Design of Filter Chain

11 #e n d i f

12 {

13 < des ign body >

14 }

The code snippet above shows how this available function is implemented. It

requires the input channel to have one value before the body of the design is

executed. It guarantees that enough values are in the input channel before it is

called to "read".

Moreover, all the intermediate results coming out of the individual filters as well

as the overall final result are half-bit rounded before going as input into the next

filter.

This filter chain being a class-based design, also includes different different files,

the details of which are mentioned below:

1. top.h header file which contains the declarations of the variables, constants,

parameters and functions. The user has to input the number of filters inside

the chain as well as the corresponding parameters of each filter e.g. filter

order, bitwidth, decimation rate etc. This file needs to be edited for each new

design, and this is done automatically by the Matlab script.

2. top_template.cpp is the “top-level” module class which is connected to the

external testbench and receives the input as well as sends the final output of

the DUT.

The code of this file can be further divided into multiple portions whose

explanation is given as:

(a) First, there is the need to instantiate all the individual filters inside the

chain using the templatized classes which have already been defined.

88

Design of Filter Chain

1 // I n s t a n t i a t i o n o f f i l t e r s

2

3 cic_decimator_template <data_i_type , DATA_O_TYPE_1, FB_METHOD

, DEC_FACTOR_CIC_1, FILTER_ORDER_CIC_1, 0> cic_inst_0 ;

4 cic_decimator_template <DATA_O_TYPE_1, DATA_O_TYPE_2,

FB_METHOD, DEC_FACTOR_CIC_2, FILTER_ORDER_CIC_2, 1>

cic_inst_1 ;

5 cic_decimator_template <DATA_O_TYPE_2, DATA_O_TYPE_3,

FB_METHOD, DEC_FACTOR_CIC_3, FILTER_ORDER_CIC_3, 2>

cic_inst_2 ;

6 cic_decimator_template <DATA_O_TYPE_3, DATA_O_TYPE_4,

FB_METHOD, DEC_FACTOR_CIC_4, FILTER_ORDER_CIC_4, 3>

cic_inst_3 ;

7 cic_decimator_template <DATA_O_TYPE_4, DATA_O_TYPE_5,

FB_METHOD, DEC_FACTOR_CIC_5, FILTER_ORDER_CIC_5, 4>

cic_inst_4 ;

8 f i r_template <DATA_O_TYPE_5, COEFF_TYPE, DATA_O_TYPE_6,

DATA_ACC_TYPE_6, SYMM_FILT, FILTER_ORDER_FIR_1,

coef f_array_f ir_1 , 0> f i r_ ins t_0 ;

9 poly_template <DATA_O_TYPE_6, COEFF_TYPE, data_o_type ,

DATA_ACC_TYPE_7, DEC_FACTOR_POLY_1, FILTER_ORDER_POLY_1,

coeff_array_poly_1 , 0> poly_inst_0 ;

10

The filters take their parameters from the top.h header file and this

determines the characteristics / architecture of each filter. The data type

of the first input coming from outside (data_i_type) is passed as the

input parameter to the first filter. Then the data type of the output of

this filter needs to match the data type of the input of the second filter.

This is shown from the code above where the DATA_O_TYPE_1 is

passed as output of the first filter and input of the second.

89

Design of Filter Chain

The same process is repeated for all the other filters as well. Finally, the

data type of the last filter should match the data type of the final output,

which is passed to the testbench (data_o_type in this case).

(b) Secondly, this top level module is used to define all the interconnecting

channels which connect the different sub-blocks of filters together. For

the example given above, there would be six channels. The FIFO depth

for these channels is also kept at zero.

1

2 #pragma hls_f i fo_depth 0

3 ac_channel <DATA_O_TYPE_1> channel_1 ;

4 #pragma hls_f i fo_depth 0

5 ac_channel <DATA_O_TYPE_2> channel_2 ;

6 #pragma hls_f i fo_depth 0

7 ac_channel <DATA_O_TYPE_3> channel_3 ;

8 #pragma hls_f i fo_depth 0

9 ac_channel <DATA_O_TYPE_4> channel_4 ;

10 #pragma hls_f i fo_depth 0

11 ac_channel <DATA_O_TYPE_5> channel_5 ;

12 #pragma hls_f i fo_depth 0

13 ac_channel <DATA_O_TYPE_6> channel_6 ;

14

(c) At the end, it consists of a constructor (without any arguments) and

a public member function run which is called by the testbench via

ac_channels. This member function is used to call all of the sub-blocks

(individual filters) which are connected via ac_channels.

3. cic_decimator_template.h is the core file which contains the synthesizable

description of the CIC decimation filter and it further contains two classes:

90

Design of Filter Chain

• cic_integrator_stage class which contains the source code for integrator

part of the CIC filter.

• cic_comb_stage class which contains the source code for comb part of

the CIC filter.

Both these classes are parameterized through templates and they are instanti-

ated by the cic_decimator_template.h class which also passes the template

parameters.

4. fir_template.h is the core file which contains the synthesizable description

of the FIR filter along with all the loops. It is also parameterized through

templates and it is instantiated as shown in the code above. The details of

the implementation have already been discussed in chapter 4.

5. poly_template.h is the core file which contains the synthesizable description

of the polyphase filter. It is also parameterized through templates and it is

instantiated as shown in the code above. The details of the implementation

have already been discussed in chapter 5.

6. top_tb.cpp testbench file which is used to read the inputs from an external

file, pass the values in the top-level module class, receive the results, compare

them and declare the functional test "pass" or "fail" depending upon the

comparison.

91

Design of Filter Chain

Figure 6.2: Block diagram view of the filter chain inside Catapult

6.4 Architectural optimizations

As with the previous designs, in order to avoid repetition of the explanation, the

following optimizations have already been carried out in the individual filters

contained inside the chain:

1. Pipelining.

2. Loop unrolling.

3. Use of class-based hierarchy.

4. Resource sharing in the lower frequency (comb) part of the CIC filters.

5. Removal of FIFO queue inside the CIC filters.

6. Removal of FIFO queue between the sub-blocks.

Regarding Point 4, this resource sharing in the comb part of the CIC filters

results in increased area savings in the overall filter chain. This is especially true for

this case in which the cumulative growth of the decimation rates of the individual

92

Design of Filter Chain

filters results in an overall increase in the decimation rate progressively. Hence, the

frequency of the sampling gets further reduced as you move down the chain, and

there is more possibility to share the hardware resources.

This situation is depicted in the the following two figures where Figure 6.3 shows

the scheduling operation of an unshared adder (in the comb part a CIC filter inside

the chain), and Figure 6.4 shows the scheduling operation of a shared adder.

Figure 6.3: Scheduling operation showing an un-shared adder

93

Design of Filter Chain

Figure 6.4: Scheduling operation of a shared adder over 4 ccs

6.5 Results

Figure 6.5: Block diagram view of the filter chain

Figure 6.5 is the filter chain architecture which has been implemented using the

automated HLS flow. It contains a total of 7 filters and has the specifications as

shown in table 6.1:

By putting in the required parameters inside the Matlab file and running the

script, all the files are updated accordingly, as explained in the previous sections.

94

Design of Filter Chain

Filter Type CIC CIC CIC CIC CIC FIR Polyphase
Order 4 4 5 8 14 8 122

Decimation 2 2 2 2 2 1 2
nb_in 2 6 10 15 23 18 18

nb_out 6 10 15 23 18 18 16

Table 6.1: Filter chain specifications

Then by running the Catapult script, we get the final architecture of the complete

chain as per the given specifications.

The RTL netlist, after synthesis by Cadence Genus Synthesis Solution, provides

a final area of 658996 um2 at the frequency of 100 MHz.

The area score of the chain is shown in Figure 6.6.

Figure 6.6: Area score of filter chain

This filter chain has been compared with an RTL-coded implementation of

the same specifications. As discussed in the previous chapters, both of these

implementations are the result of automated design flows.

Figure 6.7.

95

Design of Filter Chain

Figure 6.7: Area comparison of filter chain with 7 filters

As can be seen from the graph, both the design flows result in almost equivalent

area results. However, upon further scrutiny, it is shown that the area scores of

the individual filters vary in size.

The reasons for these differences have already been discussed in the previous

chapters and can be summed up as:

• The FIR and CIC filters of the HLS implementation have lesser area due to

optimizations such as resource sharing and usage of constant adders / shifters

instead of multipliers.

• The polyphase filter of the RTL implementation has lesser area because of the

smaller decimation rate of 2.

This shows that the different filter chains will result in different area comparisons

of the two implementations.

96

Chapter 7

Conclusion

This thesis which has been done in association with Infineon Technologies Austria,

offers a novel method of digital hardware design (specifically digital filter IPs). The

complete design process is not only automated but also parameterizable by using a

combination of Matlab and HLS tool Catapult.

This fusion of methodologies to create a new process yields a refined approach

which not only offers dividends in time savings but also provides the user with the

option to explore different architectures by just setting the required parameters in

a single file.

The performance results in this case study demonstrate that the use of HLS

technology combined with an automated flow can be considered as a valid design

methodology, with results at par with the classical RTL design. Because hardware

optimizations in Catapult can be achieved by properly setting constraints, the

extra amount of effort generally required for this task by writing HDL code can

be eliminated. Furthermore, the reduced time and effort for the verification flow

offers an added advantage in this process. These generic and templatized DSP

IPs can also be made part of a virtual ’toolbox’ which can serve as the basis for

architectural exploration vis-a-vis best quality of results.

97

Conclusion

In conclusion, this modus operandi can serve as a very effective medium for designing

digital structures, producing high-quality outcomes with almost zero or a little

effort on the part of the designer who can do away with the additional work of

manually coding HDL code.

98

Bibliography

[1] Yousef Iskander, Cameron Patterson, and Stephen Craven. «High-level ab-

stractions and modular debugging for FPGA design validations». In: IACM

Transactions on Reconfigurable Technology and Systems (TRETS) 7.1 (2014),

pp. 1–22.

[2] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. «An

Introduction to High-Level Synthesis». In: IEEE Design Test of Computers

26.4 (2009), pp. 8–17.

[3] T. Ogunfunmi and S. Desai. «Fast FIR filter implementation using high-level

synthesis tools». In: Proceedings of 1994 37th Midwest Symposium on Circuits

and Systems. Vol. 1. 1994, pp. 58–61.

[4] Liu Hanbo, Wang Shaojun, and Zhang Yigang. «Design of FIR filter with high

level synthesis». In: 2015 12th IEEE International Conference on Electronic

Measurement & Instruments (ICEMI). Vol. 2. 2015, pp. 1067–1071.

[5] Kazutoshi Wakabayashi, Takashi Takenaka, and Hiroaki Inoue. «Mapping

complex algorithm into FPGA with High Level Synthesis reconfigurable chips

with High Level Synthesis compared with CPU, GPGPU». In: 2014 19th

Asia and South Pacific Design Automation Conference (ASP-DAC) (2014),

pp. 282–284.

99

BIBLIOGRAPHY

[6] Affaq Qamar, Claudio Passerone, Luciano Lavagno, and Francesco Gregoretti.

«Design space exploration of a stereo vision system using high-level synthe-

sis». In: MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical

Conference. 2014, pp. 500–504.

[7] Shahzad Ahmad Butt and Luciano Lavagno. «Design space exploration and

synthesis for digital signal processing algorithms from Simulink models». In:

2013 8th IEEE Design and Test Symposium. 2014, pp. 1–6.

[8] Mohammad Amir Mansoori and Mario R. Casu. «Hardware Acceleration of

Biomedical Microwave Techniques using High Level Synthesis». In: 2022 16th

European Conference on Antennas and Propagation (EuCAP). 2022, pp. 1–5.

[9] Gordon Inggs, Shane Fleming, David Thomas, and Wayne Luk. «Is high level

synthesis ready for business? A computational finance case study». In: 2014

International Conference on Field-Programmable Technology (FPT). 2014,

pp. 12–19.

[10] Christian Fibich, Stefan Tauner, Peter Rossler, Martin Horauer, Herbert

Taucher, and Martin Matschnig. «Preliminary Evaluation of High-level Syn-

thesis Tools - Xilinx Vivado and PandA Bambu». In: 2018 IEEE 13th Inter-

national Symposium on Industrial Embedded Systems (SIES). 2018, pp. 1–

4.

[11] Christian Pilato and Fabrizio Ferrandi. «Bambu: A modular framework for

the high level synthesis of memory-intensive applicationsu». In: 2013 23rd

International Conference on Field programmable Logic and Applications. 2013,

pp. 1–4.

[12] Tero Joentakanen. «Evaluation of HLS modules for ASIC Backend». MA

thesis. Finland: Tampere University of Technology, 2016.

100

BIBLIOGRAPHY

[13] Catapult High-Level Synthesis and Verification - Design Platform Empowering

Engineers. Fact Sheet. Siemens, 2024.

[14] Siemens Digital Industries Software. url: https://eda.sw.siemens.com/

en-US/ic/catapult-high-level-synthesis/hls/c-cplus/.

[15] Working smarter, not harder: NVIDIA closes the design complexity gap with

HLS. White Paper. NVIDIA, 2016.

[16] Shawn McCloud. Catapult C Synthesis-Based Design Flow: Speeding Imple-

mentation and Increasing Flexibility. White Paper. Mentor Graphics, 2004.

[17] Siemens. Catapult Synthesis HLS Bluebook. 2023.

[18] «Customers Discuss their Real-World Use of High-Level Synthesis». In:

(2019). url: https : / / webinars . sw . siemens . com / en - US / customer

s - discuss - their - real - world - use - of - high - level - synthesis ?

bc=eyJwYWdlIjoiNG9JNGVvZnV0Sk1LUTVpa3ZFSUZtTyIsInNpdGUiOiJlZGEi

LCJsb2NhbGUiOiJlbi1VUyJ9.

[19] M. Bellanger, G. Bonnerot, and M. Coudreuse. «Digital filtering by polyphase

network:Application to sample-rate alteration and filter banks». In: IEEE

Transactions on Acoustics, Speech, and Signal Processing 24.2 (1976), pp. 109–

114.

[20] P.P. Vaidyanathan. «Multirate digital filters, filter banks, polyphase networks,

and applications: a tutorial». In: Proceedings of the IEEE 78 (1990), pp. 56–

93.

[21] Rozita Teymourzadeh and Masuri Othman. VLSI Implementation of Cascaded

Integrator comb filters for DSP applications. Tech. rep. VLSI Design Research

Group, National University of Malaysia, June 2018.

101

https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://webinars.sw.siemens.com/en-US/customers-discuss-their-real-world-use-of-high-level-synthesis?bc=eyJwYWdlIjoiNG9JNGVvZnV0Sk1LUTVpa3ZFSUZtTyIsInNpdGUiOiJlZGEiLCJsb2NhbGUiOiJlbi1VUyJ9
https://webinars.sw.siemens.com/en-US/customers-discuss-their-real-world-use-of-high-level-synthesis?bc=eyJwYWdlIjoiNG9JNGVvZnV0Sk1LUTVpa3ZFSUZtTyIsInNpdGUiOiJlZGEiLCJsb2NhbGUiOiJlbi1VUyJ9
https://webinars.sw.siemens.com/en-US/customers-discuss-their-real-world-use-of-high-level-synthesis?bc=eyJwYWdlIjoiNG9JNGVvZnV0Sk1LUTVpa3ZFSUZtTyIsInNpdGUiOiJlZGEiLCJsb2NhbGUiOiJlbi1VUyJ9
https://webinars.sw.siemens.com/en-US/customers-discuss-their-real-world-use-of-high-level-synthesis?bc=eyJwYWdlIjoiNG9JNGVvZnV0Sk1LUTVpa3ZFSUZtTyIsInNpdGUiOiJlZGEiLCJsb2NhbGUiOiJlbi1VUyJ9

BIBLIOGRAPHY

[22] E. Hogenauer. «An economical class of digital filters for decimation and inter-

polation». In: IEEE Transactions on Acoustics, Speech, and Signal Processing

29.2 (1981), pp. 155–162.

[23] Richard G. Lyons. Understanding Digital Signal Processing (2nd Edition).

Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

102

	List of Tables
	List of Figures
	Acronyms
	Introduction
	High-level Synthesis
	Definition
	Advantages of HLS
	HLS flow description

	State of the Art
	Catapult
	Catapult flow description

	Methodology of thesis work
	Matlab code and reference model
	Algorithmic description in C++
	Optimization
	Testbench and functional verification
	Comparison with existing products

	Design of FIR filter
	Architecture and frequency response
	Matlab code and reference model
	Synthesizable C++ code (Algorithmic description)
	Architectural optimizations
	Class-based hierarchical design
	Hierarchy
	Template Features

	Design of Polyphase decimation filter
	Architecture
	Matlab code and reference model
	Mathematical modeling and manual hardware sharing
	Synthesizable C++ code (Algorithmic description)
	Architectural optimizations
	Results
	Order:5 , Decimation:2 & 3
	Order:123 , Decimation:2 & 62
	Order:28 , Decimation:8

	Design of CIC decimation filter
	Architecture and frequency response
	Matlab code and reference model
	Algorithmic description in C++
	Architectural optimizations
	Results
	Order:3 , Decimation:512
	Order:4 , Decimation:8

	Design of Filter Chain
	Architecture
	Matlab code and reference model
	Algorithmic description in C++
	Architectural optimizations
	Results

	Conclusion

