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Abstract
Autonomous exploration of complex, unknown environments is a cutting-
edge task not completely solved by the scientific community. When an
agent needs to explore a maze without any a priori information about the
environment, the lack of proper destinations and explicit task objectives
make traditional navigation policies inappropriate. While the literature
presents some sporadic deterministic systems able to face the tasks, learn-
ing approaches still need to be adequately investigated, which could prove
more suitable and versatile for this purpose.
This thesis project’s main goal is to develop a path planner able to op-
timise the exploration of complex unknown environments, such as mazes.
The proposed solution exploits two cooperating modules: local and global
planners. We model the scenario as a Markov Decision Process (MDP) and
then train a Reinforcement Learning agent to solve the planning problem
locally. This agent has access to image representations of a section of the
global map, always centred in the robot reference frame, and decides the
next navigation goal to complete the local exploration. The global planner
is a deterministic system that recovers the navigation when a local solution
is unavailable.
We compared our agent with a close-to-optimal, deterministic approach.
The results obtained demonstrate the reinforcement learning agent’s effi-
ciency, reaching near-optimal levels in significantly less time.
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Chapter 1

Introduction

1.1 Objective of the thesis

Autonomous exploration of complex, unknown environments is a cutting-
edge task not completely solved by the scientific community. When an
agent needs to explore a maze without any a priori information about the
environment, the lack of proper destinations and explicit task objectives
make traditional navigation policies inappropriate. While the literature
presents some sporadic deterministic systems able to face the tasks, learn-
ing approaches still need to be adequately investigated, which could prove
more suitable and versatile for this purpose.
This thesis project’s main goal is to develop a path planner able to op-
timise the exploration of complex unknown environments, such as mazes.
The proposed solution exploits two cooperating modules: local and global
planners.
The scenario is modelled as a Markov Decision Process (MDP) having the
Local map as state and a pixel-wise action-space and rewards.
The agent is composed by a convolutional neural network trained by a
Double DQN algorithm to solve the planning problem locally. This agent
has access to image representations of a section of the global map, always
centred in the robot reference frame, and decides the next navigation goal
to complete the local exploration. The global planner uses a Greedy algo-
rithm that recovers the navigation when a local solution is unavailable.
The trained agent is compared with a close-to-optimal deterministic ap-
proach (i.e. a completely greedy agent).
The results obtained demonstrate the reinforcement learning agent’s effi-
ciency, reaching near-optimal levels in significantly less time.
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Chapter 1. Introduction

1.2 Organisation of the thesis

The thesis is composed of seven chapters, organised as follows:

• The first chapter is an introduction to the project, presenting the main
reasons and goals, and concisely explaining the concepts covered in
the following chapters.

• The second chapter is a theoretical explanation of the main search
algorithms, starting with a brief description behind these methods.
They are essential for finding a path in a map from a location to
another.

• The third chapter begins with a brief clarification of some of the
Machine Learning basis to finish explaining Deep Learning Neural
Networks in details and why their applications in other Artificial In-
telligence methods is so important.

• The fourth chapter is a theoretical introduction to Reinforcement
Learning. It exposes the basic knowledge of the topic showing some
of the basic algorithms. Then, it explains how Deep Reinforcement
Learning works, focusing on Deep Q-Learning and Double DQN: the
algorithm implemented in this project to train the agent.

• The fifth chapter presents the implementation of the code developed
to create the entire system. It shows how the main Python classes
work and how the training algorithm created with a Tensor-Flow li-
brary has been utilised.
It also explains the ideas behind the development of the agent: from
what the components of the MDP are to how the decision making is
made.

• The sixth chapter summarises the major difficulties encountered in
this thesis project, and shows the results of the main attempts.

• The seventh chapter concludes the paper, exposing how outcomes
obtained by this work can be improved presenting a series of ideas
that could enhance the training section or the project itself.

2



Chapter 2

Search Algorithms

Once the agent selects a place to go, a search algorithm is activated to find
the optimal path that lead to that point.
In order to better understand how this algorithm works, a brief excursus
on search algorithms is needed.

2.1 Search Problems

The algorithms that will be explained later are all based on Classical
Planning.
It is a form of State Space Search Problem representation.

Formal definition:

• a finite and discrete state space S

• a known initial state s0 ∈ S

• a non-empty set of goal states SG ⊆ S (or a goal test)

• set of actions/operators A(s) ∈ A applicable in each state s ∈ S

• A successor function – a deterministic state transition function f(a, s)
such that s′ = f(a, s) stands for the state resulting from applying an
applicable action a at state s

• A cost function c(a, s) associating a positive cost to applying action
a in s

3



Chapter 2. Search Algorithms

Objective:

• Find a plan, a sequence of applicable actions, that leads from the
initial state to a goal state.

• Optimality criteria - typically interested in shortest/cheapest plan
(but other considerations are possible)

Typically, it is not possible to explicitly specify the state space S.
Instead, feature set X is used to represent the state space such that a
state is described via a set of random variables X = x1, ..., xn such that
each variable takes on values in some finite domain Dom(xi) which can be
either Boolean or multi-valued.

2.2 Search space

The whole search problem can be represented differently:

• State-space graph
– Every state is represented by a node and each of them occurs

only once
– The actions are expressed as edges
– It might not be possible to hold the entire graph in memory all

the time, hence it is expanded when necessary in the search

Figure 2.1: Example of State-Space Graph [8]

4



Chapter 2. Search Algorithms

• Search Tree
– Every state is represented by a node, which now correspond to

plans that achieve those states
– The actions are expressed as edges
– The start state is the root node
– Each leaf node represents a path from start to leaf node

Figure 2.2: Example of Search Tree

For any algorithms, there are two important properties:
Resources:

• Time Complexity, which is concerned with the time the algorithm
takes to finish

• Memory Complexity, that takes into account how much memory
the algorithm needs

Quality of solution:
• Optimality, which evaluates the quality of the algorithm, in other

words, if the algorithm finds the best or at least a good path
• Completeness, that checks if the algorithms can find a solution if

one exists

2.3 Blind Search Algorithms

In Tree Search the number of nodes in the entire tree could be gigantic
or even infinite, if a loop is present in a State-Space graph.
In order to avoid time-demanding searches, there are several variants for
search algorithms for search trees, which could be expanded to graphs as
well.
The first typology is called Blind Search Algorithms, since they do

5



Chapter 2. Search Algorithms

not have any specific knowledge or information about the problem other
than the initial state and the possible actions to take, and few variants are
depicted in the following paragraphs.

2.3.1 Breadth-First Search (BFS)

The idea behind this algorithm is to expand the shallowest node first
and to use a queue for the "nodes to be expanded".

Figure 2.3: BFS scheme

• Time Complexity is O(bs) with s being the layer number of the
goal node

• Memory Consumption is the same, therefore it is equal to O(bs)
• It is complete since it will finish if the goal exists and lies at a finite

layer s ̸=∞
• If all costs are equal is optimal as it will find the shortest path
• The Goal node is selected when it is added, and not only when it is

expanded

2.3.2 Uniform Cost Search (UCS)

In case the edges do not have equal cost, BFS could be enhanced into a
UCS algorithm, which expands the nodes with the lowest cost first. It
still uses a queue, but it is ordered by the cost.

• Time Complexity is O(bC∗/ϵ) with C∗ being the the cost of the
goal node and ϵ being the minimum cost through the whole tree.
C∗/ϵ could be depicted as the "number of cost tiers until reaching
the solution"

• Memory Consumption is the same, hence it is equal to O(bC∗/ϵ)
• The algorithm is NOT complete, because there could be infinite

nodes in a wrong branch, where each node adds less and less to the
overall cost

6



Chapter 2. Search Algorithms

Figure 2.4: UCS scheme

• It is optimal
• The Goal node is only selected when it is expanded.

2.3.3 Depth-First Search (DFS)

The idea behind this algorithm is to expand the deepest node first and
to use a stack memory for the "nodes to be expanded".

Figure 2.5: DFS scheme

• Time Complexity is O(bm) with m being deepest layer
• Memory Consumption has a much better improvement, since it

just stores the b child nodes of each layer. Therefore, it is equal to
O(bm)

• If m is not infinite the algorithm is complete, m could be infinite
if there are loops in the graph

• It is NOT optimal since it might find a solution that is not the
shortest one, because there could be a better solution in a really
shallow area in another branch.

• The Goal node is selected when it is added, and not only when it is
expanded

In order to reduce the Time Complexity, the DFS algorithm can be
stopped after L layers, which causes the Time complexity to go down to
O(bL), this method is called DFS-L.

7



Chapter 2. Search Algorithms

However, it is still NOT complete since the Goal state might lies on a
deeper layer.

Iterative Deepening DFS (IDDFS)

This algorithm addresses all the issues of a simple DFS method increment-
ing the depth L of DFS-L every time the algorithm finishes its search.
Doing that, the shallow nodes will be expanded multiple times and that
will produces a higher Time Complexity, but a way lower Memory
Consumption.

• Time Complexity is O(bs) with s being the layer number of the
goal node, since only the last search is relevant and during the last
search L = S

• Memory Consumption the same as for DFS with O(bs)
• The algorithm is complete since DFS-L is complete when s lies on

the L layer
• If all costs are equal is optimal as it will find the shortest path
• Iterative Deepening is not faster than BFS, but it needs less memory

2.4 Informed Search Algorithms

Informed Search utilises data from the nodes themselves to decide on
the best next step.
A typical method to do this is by using a heuristic, which is often calcu-
lated by a heuristic function h(s) that estimates how close a state is to
a goal, e.g the Euclidean distance.

2.4.1 Greedy best-first Search (GBS)

This search algorithm expands the node that has the lowest heuristic to
the goal node and it utilises a queue ordered by the heuristics value.

• Time Complexity and Memory Consumption depend on the
heuristic

• It is NOT complete when graph is infinite, even when start and
goal node are not set in infinity, since it might explore an infinite
branch with a lower heuristic

8



Chapter 2. Search Algorithms

• The algorithm is NOT optimal, since the heuristic will most likely
be different from the real cost

2.4.2 A-star (A*)

A∗ algorithm expands the node that has the lowest f(s) value which can
be evaluated as:

f(s) = h(s) + g(s) (2.1)

where h(s) is the heuristic function and g(s) is the true cost to arrive
on that state. Hence, A∗ is a combination of UCS and Greedy.
This algorithm generates a queue ordered by the f value.

Figure 2.6: Example of a Search Tree solved with A*

In order to evaluate the optimality of an A∗ algorithm two important
heuristic function properties must be considered:

• Admissibility, a heuristic h(s) is admissible (optimistic) if:

∀x : 0 ≤ h(x) ≤ h∗(x) (2.2)

where h∗(x) is the true cost to the nearest goal.
The Admissibility ensures the optimality of an algorithm only if
it is able to move nodes back from CLOSED to OPEN

• Consistency, a heuristic function is called consistent (also called
monotonic) if:

∀s ∈ S,∀s′ ∈ SUCC(s) : h(s)− h(s′) ≤ COST (s, s′) (2.3)

Therefore, a consistent heuristic is not only globally optimistic (like
admissible heuristics) but also locally optimistic.

9



Chapter 2. Search Algorithms

The Consistency guarantees the optimality of an algorithm, even
if it does not shift nodes back from CLOSED to OPEN.

There are several enhanced versions of A* algorithm useful to change or
calibrate some of its characteristics.

Weighted A*

It is used to tune the ’greediness’ of the algorithm, giving more importance
either to g(s) or to h(s). Indeed the f(s) is obtained by the following
equation:

f(s) = (1− w) · g(s) + w · h(s) (2.4)

This brings three special cases:
• w = 1, the algorithm becomes a greedy one
• w = 0.5, the agent will perform a uniform cost search
• w = 0.5, the algorithm will act as a normal A*

Therefore, increasing w speeds up the search to the detriment of a worse
solution, but in a given bound (described by the w value). That is the
reason why this method is defined as a bounded sub-optimal algorithm.

A*-epsilon

It is a greedy approach which prefers nodes that are already closer the
goal.
In other words, instead of choosing the node with the best f -value, the
algorithm chooses the one that has the best heuristic of all nodes with a
good f -value.
This version follows these steps to select the next node:

• Obtain the node with the lowest f -value, called fmin

• Collect every node that falls in a cost range, defined by:

f(s) ≤ (1 + ϵ) · fmin (2.5)

• Select the node with the lowest heuristic value hfocal among these
nodes

• This new heuristic function is given in addition of the normal one
The effect is equal to the weighted A* as it improves the computation
time by decreasing the quality of the solution, but only in a given bound.
Therefore, increasing ϵ speeds up the search but it worsens the solution.
The cost of the found solution can’t be worse than (1+ ϵ) ·Coptimal

10



Chapter 2. Search Algorithms

Iterative Deepening A* (IDA*)

This algorithm starts with high greediness and become more uniform if it
does not find a solution.
It suspends the search when it reaches a node which is bigger than a max-
imum f -value called bound and it increments this value in every iteration.
The algorithm is explained by the following steps:

• Start with a bound that is equal to the heuristic of the start node.
Hence, it only allows greedy searches, that decrease (or don’t change)
the f -value in each step

• Detect the highest f -value encountered during the search
• Set the aforementioned f -value as the bound
• Run until a solution is found

As the name suggests, this version is more similar to an Iterative Deepening
than an A*, but it is dependent on f .
Maintaining an OPEN and CLOSED list is not necessary, therefore, it has
a better Memory Consumption and the path is still optimal.

2.4.3 Summary Table

Algorithm Complete Optimal Time Space

Blind

BFS Y Y* O(bm) O(bm)
DFS N** N O(bm) O(bm)
IDDFS Y Y O(bm) O(bm)
UCS Y*** Y*** O(bm) O(bm)

Informed
GBS N** N O(bm) O(bm)
A* Y*** ◦ Y*** ◦ O(bm) O(bm)
IDA* Y*** ◦ Y*** ◦ O(bm) O(mb)

Table 2.1: Summary Table of Search Algorithms

Legend:
*: When every edge has unitary cost
**: Swaps to Y when the graph has no cycles, hence the tree is finite
***: When costs are positive and cannot be infinitely precise
◦: When heuristic function is admissible

11



Chapter 3

Machine Learning

The concept of classification anticipates the rise of Machine Learning, trac-
ing its roots back through centuries of statistical methodologies used for
categorisation and pattern recognition. However, recent technological ad-
vancements, particularly in Deep Learning, have substantially enhanced
its effectiveness and applicability. To comprehensively understand what
a classification problem entails and why Deep Learning has emerged as a
powerful solution, it is essential to delve into the foundational principles
of machine learning.
Learning means that an agent improves its performance on future tasks
after making observations.
It is dependent on different factors:

• What component of an agent should be improved.
For example:

– Decision: Get actions from the current state.
– Observation: Get relevant properties of the world from perception

sequences.
– Prediction: Get result from a potential action.
– Evaluation: Get desirability information from the current world.

• What prior knowledge has the agent.

• Which representation is used for the data.

• Through which feedback does the agent learn?
– Unsupervised learning: Learn patterns without feedback.
– Reinforcement learning: Learn from rewards or punishments.
– Supervised learning: Learn from training data.

12



Chapter 3. Machine Learning

3.1 Supervised Learning

Supervised learning algorithms elaborate a dataset containing features as-
sociated with each example, or object, which has a label or target that the
algorithm needs to predict.
There are several types of Supervised learning algorithms, in this chapter
classification and linear regression will be analysed.

Figure 3.1: Example of classification and linear regression [7]

3.1.1 Classification

A typical sub-problem for supervised learning is classification. A classifier
is a function mapping between objects o ∈ O and classes c(o).
If there are only two classes, it is called binary classification.
The objects and the class can also be denoted as x and y respectively.
A classification is performed using an expert or learning from a set of ex-
amples:

• Given a Training set: {(x1, y1), (x2, y2), ...(xN , yN)}
• An unknown Target classifier: f : x → y that gives a mapping

between input x and output y.
• The goal is to find a function h, called hypothesis, that approximates
f .

• When h is obtained, the output related to other objects outside the
training set can be predicted. That is called generalisation.

Most of the times additional data are present and they are given by a set
of functions called features or attributes that characterise every single

13



Chapter 3. Machine Learning

object.
It is now important to identify the methods to determine if a hypothesis
is good.

First of all, a hypothesis is consistent with a training set if:

• Given a target classifier fc := O → {0, 1}
• Given some hypothesis h : O → {0, 1}
• O′ ⊆ O iff ∀o ∈ O′ [h(o) = fc(o)]

However, a consistent hypothesis is not always worth it. For example, in a
noisy training set some labels could be wrong and the hypothesis wants to
learn them anyway. This problem will be addressed later in the chapter.
Typically a test set is set aside to test the quality of the hypothesis.
Theoretical models typically assume that the training set and test set are
sampled from the same distribution.

A "good" hypothesis can be measured by two values:

Let N denote the size of the test set.

Error: False_Positive+False_Negative
N

Accuracy: True_Positive+True_Negative
N

The first one evaluates the percentage of errors of an hypothesis whilst
the latter one considers the number of correct predictions made by the
hypothesis.

3.1.2 Linear Regression

Another simple example of supervised learning is Linear regression. S the
name implies, it solves a regression problem, where the goal is to predict
a continuous scalar value y ∈ R for a given input vector x ∈ Rn. In
other words, the output variable is a real or continuous value rather than
a discrete category or class.
Therefore, the predicted model of y can be defined as:

ŷ = f(x) = θ · x
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where θ is a vector of parameters, sometimes called weight vector and
indicated by w and ŷ is the prediction of the model. Each parameter θi
influences the corresponding feature xi.
Hence, the linear regression tries to estimate the probability distribution
of y in function of x and θ,p(y|x, θ), such that:

p(y|x, θ) = f(x) = θ · x

Now, the performance of the model can be measured computing the mean
squared error on the test set:

MSE =
1

m

X
i

(ŷ − y)2i

where ŷ are the prediction on the test set, y are the true outputs and m
is the number of examples.
Therefore, since the goal is to design a model that finds the parameters
θ of the true model, it is necessary to minimise the MSE of the training
set.
This cost function can be reduced with theNormal Equation:

θ̂ = (XTX)−1Xy

where θ̂ are the predicted parameters and X is the training set itself.

Figure 3.2: Example of linear regression and optimisation of the weight [5]

It is worth noting that, an additional parameter called intercept term b
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is added to the predicted model:

ŷ = θx+ b

This term is a bias parameter which helps the linear function to not nec-
essary pass through the origin.

3.2 Overfitting and Underfitting

The primary challenge in machine learning is ensuring that an algorithm
performs effectively on new, unseen data, not just on the data it was
trained on. This capability to perform well on unfamiliar inputs is known
as generalisation.
Unlike simple optimisation problems, which minimise errors on the training
set, machine learning goes further by aiming to minimise the generalisation
error, also known as the test error. This error represents the anticipated
error on new inputs, as it considers various possible inputs drawn from the
expected distribution encountered in real-world scenarios.
The factors that determine how well a ML algorithm will perform are the
following two abilities:

• Minimise the training error
• Minimise the gap between training and test error

If the algorithm fails to ensure the first ability, underfitting occurs; whilst
overfitting happens when the second ability is not satisfied. Roughly
speaking underfitting occurs when the algorithm fails to learn how to ma-
nipulate the training data, while overfitting is present when the algorithm
fails to generalise a task; hence, it is not able to produce the same results
on a test set.
The likelihood of a model overfitting or underfitting can be managed by
adjusting its capacity. In simple terms, a model’s capacity refers to its
capability to accommodate a diverse range of functions. Models with low
capacity might find it challenging to fit the training data adequately, while
those with high capacity can suffer from overfitting, where they memorise
specific properties of the training data that may not generalise well to
unseen test data.
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Figure 3.3: Example of underfitting, overfitting and appropriate capacity

3.3 Deep Learning

Deep Learning is a sub-field of machine learning that focuses on train-
ing algorithms to learn representations of data through multiple layers of
abstraction. At the core of deep learning are neural networks, computa-
tional models inspired by the structure and function of the human brain.
Neural networks consist of interconnected nodes organised in layers. Each
node, or neuron, processes information and passes it on to the next layer.
Deep neural networks contain multiple hidden layers between the input
and output layers, enabling them to learn complex patterns and represen-
tations from raw data.
Through a process called backpropagation, neural networks adjust their
internal parameters during training to minimise the difference between
predicted and actual outputs. This enables them to generalise well to
new, unseen data, making them powerful tools for tasks such as image and
speech recognition, natural language processing, and many others.

3.3.1 Artificial Neuron

The basic computational unit of the brain is the neuron, with approxi-
mately 86 billion neurons comprising the human nervous system. These
neurons are interconnected via synapses. Neurons receive input signals
through dendrites and produce output signals along their axons. The
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strength of these connections, or synapses, influences the interaction be-
tween neurons.
In mathematical models of neurons, input signals travelling along axons in-
teract multiplicatively with dendrites based on synaptic strengths. These
strengths, represented as weights w, are adjustable and determine the
influence of one neuron on another. The summation of these signals at the
cell body determines if the neuron fires, sending a spike along its axon.
Timing of spikes is typically disregarded, and only the frequency of firing,
conveyed by the firing rate or activation function f , is considered.
The activation function helps in squashing the signal strength to a man-
ageable range.

Figure 3.4: Comparison between biological and artificial neuron [1]
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3.3.2 Architecture of Artificial Neural Networks (NN)

Grouping up artificial neurons and connecting them to each other creates
the so called Neural Network.
The neurons that compose a network are sorted by layers:

• Input Layer: it receives the input signals xi that the network will
process and manipulate

• Hidden Layers: they are composed by neurons that receive weighted
signals. Each neuron manipulates these signals with an activation
function aj producing an output signal

• Output Layer: it works similarly to the Hidden Layers but this is
the actual output of the neural network.

Each connection between two neurons is characterised by a weight wij

which decreases or boosts the numerical signal carried by that connection.
In order to improve the flexibility of a NN, sometimes a bias bj is added to
the input signal of a neuron enabling the network to model more complex
relationships in the data.

Figure 3.5: Example of neural network [21]
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3.3.3 Activation Functions

Activation functions are crucial components in artificial neural networks,
serving as mathematical operations that determine the output of a neuron.
They introduce non-linearity, enabling neural networks to learn complex
patterns and relationships within data.
Each function transforms the input data into a specific range of outputs,
facilitating the network’s ability to make predictions or classifications. Ac-
tivation functions play a pivotal role in optimising the performance of
neural networks by controlling the flow of information between layers, ul-
timately enhancing the network’s learning capabilities.
Amongst them, the most utilised are the following:

Sigmoid function

Figure 3.6: Sigmoid activation function

The sigmoid function, characterised by its distinctive S-shaped curve, is a
mathematical tool widely used across various fields due to its capability of
transforming any real number into a value between 0 and 1.
The sigmoid function is typically denoted by the Greek letter σ and defined
as

σ(z) =
1

1 + e−z

Sigmoid units are prone to the "vanishing gradient" problem, which poses
a significant challenge to learning in deep neural networks.
When input values become highly positive or negative, the sigmoid func-
tion saturates, causing it to output values very close to 0 or 1, with an
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almost flat slope in these regions. Consequently, the gradient approaches
zero, leading to minimal weight adjustments during backpropagation. This
issue is especially pronounced for neurons in the earlier layers of deep net-
works. The negligible gradients impede learning, causing it to progress
painfully slowly or even come to a halt. This phenomenon is commonly
known as the vanishing gradient problem in neural networks.

tanh function

Figure 3.7: tanh activation function

The tanh function, unlike the sigmoid function, produces output values
ranging from -1 to +1, making it more effective in handling negative values.
Its zero-centred nature, with outputs symmetrically distributed around the
origin, is often considered advantageous as it aids in faster convergence of
learning algorithms.

tanh(x) =
ez − e−z

ez + e−z

Due to its wider range and zero-centredness, the tanh function exhibits
stronger gradients compared to the sigmoid function. These stronger gra-
dients contribute to quicker learning and convergence during training, as
they are more resistant to the issue of vanishing gradients, which often
hinder learning in deep networks.
However, despite these benefits, the tanh function still encounters the van-
ishing gradient problem, particularly in deep networks with numerous lay-
ers.

21



Chapter 3. Machine Learning

ReLU function

Figure 3.8: ReLU activation function

The Rectified Linear Unit (ReLU) activation function has the form:

f(z) = max(0, z)

The Rectified Linear Unit (ReLU) function is characterised by threshold-
ing the input at zero, returning 0 for negative values and the input itself
for positive values.
For inputs greater than 0, ReLU behaves as a linear function with a gra-
dient of 1. This preserves the scale of positive inputs and ensures that
the gradient remains unchanged during backpropagation. This property is
crucial for addressing the vanishing gradient problem commonly encoun-
tered in deep neural networks.
Although ReLU exhibits linearity for half of its input space, it is consid-
ered a non-linear function due to its non-differentiable point at x=0, where
it abruptly transitions from x. This non-linearity enables neural networks
to learn intricate patterns and relationships in the data.
By outputting zero for all negative inputs, ReLU naturally induces sparse
activations. Consequently, only a subset of neurons are activated at any
given time, leading to more efficient computation.
Moreover, the computational simplicity of the ReLU function makes it
cost-effective in terms of computation. Its straightforward thresholding
operation at zero allows neural networks to scale to numerous layers with-
out significantly increasing the computational burden, unlike more complex
activation functions such as tanh or sigmoid.
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Softmax function

The softmax activation function, also known as the normalised exponen-
tial function, is highly beneficial in multi-class classification scenarios. It
operates on a vector, often called logits, which contains the raw predictions
or scores for each class computed by preceding layers of a neural network.
For an input vector x with elements x1, x2, ..., xN , the softmax function is
defined as:

f(xi) =
exiP
j e

xj

The output of softmax constitutes a probability distribution summing up
to one. Each element of the output denotes the probability that the input
belongs to a specific class.
The use of the exponential function guarantees non-negative output val-
ues, a critical requirement as probabilities cannot be negative.
Softmax accentuates disparities in the input vector. Even minor discrep-
ancies in input values can result in significant variations in output prob-
abilities, with the highest input value often prevailing in the resulting
probability distribution.
The probabilities derived from softmax can be interpreted as confidence
scores for each class, offering insights into the model’s certainty regarding
its predictions.
However, due to its ability to amplify differences, softmax may be sensitive
to outliers or extreme values. For instance, if the input vector contains
exceptionally large values, softmax may disproportionately suppress the
probabilities of other classes, leading to an overly confident model.

3.3.4 Backpropagation

Backpropagation is a technique used in artificial neural networks to train
them. It involves adjusting the weights of connections between neurons
by propagating the error backwards from the output layer to the input
layer. This adjustment helps the network learn to produce more accurate
outputs for a given input.
Roughly speaking, the neural network learns from mistakes: the network
identifies how much it has deviated from the expected outcome and adjusts
itself accordingly to minimise that deviation in future predictions.
Before delving into a deeper explanation, a definition of the error δlj must
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be given:

δlj =
∂C

∂zlj

This error refers to the jth neuron in layer l and zlj is the input of such
neuron.
C is called Cost function and evaluates how the network is adapting its
weight. Its general expression is the following:

C(w, b) =
1

2n

X
x

||y(x)− aL(x)||2

where w and b are the weight and bias of the network, n is the number
of sample used in the learning process, x is the input signal, y(x) is the
desired output, L is the number of layers and aL(x) is the vector of acti-
vation output from the network when x is input.
Backpropagation is based on four equations:

• Error in the output layer

δLj =
∂C

∂aLj
σ′(zLj )

The expression considers the influence of the jth output on the cost
function and how fast the activation function σ is changing at zLj .
The equation in a matrix-based form can be expressed using an element-
wise product:

δL = ∇aC ⊙ σ′(zL)

• Error in terms of next layer error

δl = ((wl+1)T δl+1)⊙ σ′(zl)

This step is fundamental and lies at the core of the backpropagation
principle. It involves propagating the error from one layer to the pre-
ceding one while accounting for the activation functions in between.

• Error in terms of any bias in the network

∂C

∂l
j

= δl
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• Error in terms of weights

∂C

∂wl
jk

= al−1k δlj

By the use of these equations, the objective of backpropagation is to min-
imise the Cost function.

3.3.5 Convolutional Neural Network (CNN)

Figure 3.9: CNN architecture example [12]

Convolutional Neural Networks (CNNs) are a type of artificial neural net-
work commonly used in image recognition and classification tasks. Inspired
by the human visual system, CNNs are designed to automatically and
adaptively learn spatial hierarchies of features from input images. They
employ convolutional layers to apply filters or kernels over the input data,
extracting features such as edges, textures, and patterns. Pooling lay-
ers are then used to reduce the spatial dimensions of the features while
retaining important information. Finally, fully connected layers are em-
ployed for classification or regression tasks based on the extracted features.
CNNs have become incredibly successful in various applications including
image recognition, object detection, and even natural language processing.

CNNs respect the spatial structure of the input, keeping it a matrix, where
each neuron contains the intensity of each pixel.
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Filter

Regarding the implementation of a hidden layer, instead of connecting ev-
ery input pixel with every hidden neuron, connections are established only
within small, localised regions of the input image. Each connection is as-
signed a weight, and each new hidden neuron is given a bias. By sliding
the region across the entire image, the hidden layer can be constructed.
Each neuron in a hidden layer will share the same weights and bias, im-
plying that all neurons will detect the same feature in the input image
but at different positions. This characteristic makes CNNs well-suited to
handling translation variances, as they can recognise features in the image
even if they are translated to different positions. Hence, the mapping from
the input to the hidden layer is referred to as a feature map, with the
weights and bias being termed shared weights and shared bias, respec-
tively. These shared weights and bias parameters define a matrix known
as a kernel, filter, or feature detector.

Pooling

In a CNN a pooling layer is typically inserted immediately after a convolu-
tional layer. The pooling layer serves to simplify the information contained
in the preceding convolutional layer.
Max Pooling returns the maximum value from the section of the image
covered by the kernel, whilst Average Pooling returns the average of all
the values from the section of the image covered by the Kernel.

Flattening and Fully Connected Layers

At the end of a CNN the matrix of neurons is converted in an array. This
process is called Flattening. The flattened neurons are often followed by
a couple of Fully Connected Layers, which consists in a layer where each
neuron is connected with all the neurons of the previous layer.
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Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of Machine Learning focused
on learning to map situations to actions to maximise a numerical reward
signal. Unlike supervised learning, where actions are explicitly labelled, in
RL, the learner must discover which actions yield the most reward through
trial and error. In challenging scenarios, actions may not only influence im-
mediate rewards but also impact subsequent situations and, consequently,
all future rewards. This interplay between trial-and-error search and de-
layed rewards forms the core of reinforcement learning.

4.1 Elements of Reinforcement Learning

Reinforcement Learning is characterised by several components, some of
them are necessary whilst others might be optional:

• Agent, it is the component that makes the decision of what ac-
tion to take. The agent perceives the environment through a set
of observations or sensors. These observations provide information
about the current state of the environment. Receiving them, it is
able to interact with the environment selecting an action from an
action-space domain, which can be either discrete, continuous or a
discrete-continuous hybrid.

• Environment, which is the system with which the agent interacts.
The agent analyses the environment through observations and de-
rives a set of data called state.

• State, it is what the agent receives as input data and it is a depiction
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of the current configuration of the environment. Every state is
defined in a state-space domain and it is usually made of every useful
piece of information for the agent so that it is able to make the wisest
decision.

• Policy, which defines the learning agent’s way of behaving at a given
time: π : S 7→ A. It can be either stochastic or deterministic and be
represented by a simple function whereas in other cases it may involve
extensive computation such as a search process. The aim of RL is to
obtain the optimal policy, since it would mean that the agent is able
to accumulate the highest possible reward.

• Reward function, it is a scalar value that the agent receives as
feedback from the environment after taking a particular action in
a specific state: R(s, a) = r.

• Value function, whilst the reward indicates the quality of an ac-
tion in the immediate case, the value function estimates what is
good in the long run, since a low-reward action might bring the agent
to a state closed to the goal one or create a situation where the agent
enters in a loop of positive rewards.

V π(s) = Ea∼π[Gt|st = s, at = a]

where Gt is the sum of the rewards in a given amount of actions
starting from the state st, which is also called Return:

Gt =
NX
i=0

rt+i+1

where N can be infinite. A Discount factor γ is often utilised to
deteriorate the reward after every step inducing the agent to obtain
the rewards faster. Therefore, Gt has now the following form:

Gt =
NX
i=0

γirt+i+1 γ ∈ [0, 1)

• Model (optional), which mimics the behaviour of the environment,
allowing inferences to be made about how it will behave. The model
is used for planning, since an agent tries to predict how the envi-
ronment will be in the long run deciding accordingly what the most
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appropriate action is. Methods for solving RL problems that use
models and planning are called model-based, as opposed to simpler
model-free methods, which utilises a trial-and-error learners.

4.2 Markov Decision Process (MDP)

MDPs are a mathematically idealised form of the reinforcement learning
problem. It is a method used to model a problem or a situation that
fits perfectly with RL, but first, a definition of what "Markov" means is
mandatory.
Andrey Andreyevich Markov, 1856-1922, was a Russian mathemati-
cian best known for his work on stochastic processes who devised the
Markov Chain, which describes a sequence of possible events in which
the probability of each of them depends only on the state attained in the
previous step. Indeed, "Markov" generally means that given the present
state, the future is independent of the past; therefore, for Markov decision
processes, the action outcomes depend only on the current state.
To sum up, a Markov Decision Process is a discrete-time control process
that models decision making in situations where outcomes are partly ran-
dom and partly under the control of a decision maker.

Figure 4.1: The agent–environment interaction in an MDP [16]

An MDP is defined by:

• A set of states s ∈ S, which is typically defined over a feature set
X = x1, ...,xn, where each state has a unique combination of these
values and each variable is defined by a finite domain Dom(xi)
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• A set of actions a ∈ A, as said before, the actions determine how
the agent interacts with the environment

• A transition function T(s, a, s′), which is also called the model or
the dynamics. It defines the probability that performing an action
a from a state s leads to the next state s’, i.e. P(s′|s, a)

• A reward function R(s, a, s′) ∈ R, which can be sometimes defined
as R(s, a),R(s) or R(s′)

Occasionally, it is necessary to define:

• A start state s0, where the agent starts the simulation

• A set of terminal states, wherein the agent terminates its run

• A set of goal states, which are the states the agent tries to reach
during the simulation

Since MDP is discrete, the agent interacts with the environment during
each specific time step t. At each time step t, the agent receives a tuple
(st, at, rt+1, st+1), which contains information about the state st the agent
was at time t, the action at it took, the reward rt+1 it gained reaching the
state st+1 with that action.
These tuples, also called SARS, are the bricks that make up a trajec-
tory, which is precisely a sequence of SARSs from the starting one until
the one that ends the so called episode. E.g. s0, a0, r1, s1, ..., rT , sT
It is worth noting that at each state s, all the actions might not be available
(i.e. A(s) ⊆ A where A(s) is the set of possible actions in state s)

4.2.1 Partially-Observable MDP (POMDP)

A Partially Observable Markov Decision Process (POMDP) is a mathe-
matical model used in decision-making scenarios where an agent interacts
with an environment, but the agent does not have complete information
about the state of the environment. In a POMDP, the environment is
modelled as a Markov Decision Process, but the agent receives only par-
tial and potentially noisy observations about the true state.
As an MDP, a POMDP is defined by:
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• A set of states s ∈ S
• A set of actions a ∈ A
• A transition function T(s, a, s′)
• A reward function R(s, a, s′) ∈ R
• A discount factor γ

In addition, it is also characterised by:

• A set of observations o ∈ O, when an observation occurs it af-
fects the observation probability of an event. E.g. there are two
doors and there is some noise from the left one, the probability of
encountering something in the left room is higher than the right one.

• An Observation Probability Ω(s, a,o) or O(o|s, a), which deter-
mines the probability of reaching a state given an action and an
observation

• An initial belief b0 : S→ [0,1], which is the probability of being
in different initial states

4.3 Bellman Equations

As previously said, the objective in RL and in an MDP is to find an
optimal policy π∗ (the apex * stands for optimal)and the Bellman
equation is the perfect method to exploit this optimal policy and that is
why it is present in every Reinforcement Learning literature.
The Bellman equation decomposes the value function into two parts,
the immediate reward plus the discounted future values.
This equation simplifies the computation of the value function, since, in-
stead of summing over multiple time steps, it obtains the optimal solution
of a complex problem by dividing it into simpler, recursive sub-problems
and finding their optimal solutions.
In the case of the State-value function Vπ(s), which is the expected
utility starting in s and acting according to π thereafter, the Bellman
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equation is defined as:

V π(s) = E[
∞X
t=0

γtR(St) · (π(St), St+1)]

=
X
s′

P (s′|s, π(s)) · [R(s, π(s), s′) + γV π(s′)]

where π(s) is the taken action.
Before evaluating the optimal State-Value function V∗(s), it is manda-
tory to define the value (utility) of a q-state(s,a) Qπ(s, a), which is the
expected utility starting out having taken action a from state s and acting
according to π thereafter:

Qπ(s, a) =
X
s′

P (s′|s, a) · [R(s, π(s), s′) + γV π(s′)]

Now, the optimal policy π∗(s) can be derived by the following recursive
method:

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) =
X
s′

P (s′|s, a) · [R(s, π(s), s′) + γV ∗(s′)]

V ∗(s) = max
a

X
s′

P (s′|s, a) · [R(s, π(s), s′) + γV ∗(s′)]

Therefore, value functions allow defining a partial ordering over policies
such that π ≥ π′ if V π ≥ V π′

,∀s ∈ S. Using this definition, it can be
stated that it exists an optimal policy π∗(s) for any MDP, which is
better than or equal to any other policy π∗ ≥ π,∀π and all the optimal
policies achieve the optimal state value function and the optimal action-
value function.

4.4 Dynamic Programming

Dynamic Programming (DP) is a useful mathematical optimisation tech-
nique that fits perfectly in the field of Reinforcement Learning (RL) to
solve problems where an agent makes sequential decisions over time. In-
deed, this method allows to compute an optimal policy for an MDP since
the future state depends only on the current state and action.
This approach can be used to tackle complex problems by breaking them
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into more feasible sub-problems, which can be obtained with the Bellman
equations. The, the sub-problems are solved and their solutions combined.
Dynamic programming is based on the Principle of Optimality, which
ensures that any optimal policy can be subdivided into two components

4.4.1 Value Iteration

The first DP algorithm described is called Value iteration, which aims
to determine the optimal value function. It is an iterative process that
systematically rectifies these value estimates until they converge to their
optimal values.
This algorithm follows these steps:

• Initialise the time step to zero
• Calculate the optimal values for the state wherein the agent is utilising

the Bellman optimality equation
• Increase the allowed time step
• Repeat the algorithm until the values converge to a fixed one or the

variation is smaller than a determined range
An important feature of this method is Policy Extraction, which deter-
mines how many steps are needed to obtain an optimal policy. In order to
do that, it is necessary to find the best action that maximises the q-value
in a given state.
This can be obtained by two variants:

• Search among all the q-values for a given state. The action that
belongs to the highest one is optimal:

π∗(s) = argmax
a

Q∗(s, a)

• Calculate all the q-values and find the optimal value:

π∗(s) = argmax
a

X
s′

P (s′|s, a) · [R(s, π(s), s′) + γV π(s′)]

It can be clearly seen that it is possible to make one less step if the q-values
are already known.
Another important aspect is Value Convergence since it might be impos-
sible to reach a constant state value. Therefore, terminating the algorithm
after gaining a good result is necessary to not loom into an infinite solu-
tion.
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There are two main ideas to obtain that: the first one is to stop the itera-
tion after a fixed amount of steps, which is a quite naive method since it
is impossible to know ’a priori’ how long it takes to reach a decent solu-
tion. On the contrary, the second idea can overcome this issue and it is
composed by the following steps:

• Define a discount 0 < γ < 1

• Since the Bellman equation is a contraction, i.e. a function that
brings two values ’closer’ to each other, the function will get closer
and closer after each iteration to a fixed point.
E.g. f(x) = x/2 is a contraction because:

∀a, b ∈ R : |a− b| > |f(a)− f(b)|

This function f(x) brings any number closer to the fixed point 0

• Rewrite the Bellman optimality equation to a vector equation:

Vk+1 = B · Vk

where Vk contains the values for all states at time k

• Since the distance between two vectors as the norm:

||V − V ′||

The following formula can be derived:

||B · Vk −B · V ′k|| ≤ γ · ||Vk − V ′k||

Therefore, Bellman is a contraction if γ < 1

It is worth noting that for a given error ϵ, we need at least N iterations,
which can be calculated using the biggest reward Rmax.

N = log(
2Rmax

ϵ(1− γ)
)/log(

1

γ
)

The Time Complexity for each iteration in value iteration is O(N2
states ·Nactions)

This method carries out an interesting effect: the policy might converge
much faster than the values.
The policy is optimal if the policy loss (i.e. the difference between what
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the best policy is and the current one) is zero.
The value loss can be denoted as ||Vπ −V∗||, which means that every
state counts into it.
It is interesting to note that if the value iterations is stopped at some value
Vk, there will be an error denoted as: ||Vk −V∗|| = ϵ. Hence, the policy
loss for the policy extracted is bounded by: ||Vπ −V∗|| ≤ 2ϵ.

Asynchronous Value Iteration

The original Value Iteration algorithm updates each state in every itera-
tion. However, any sequences of Bellman updates will converge if every
state is visited infinitely often: Hence, updating the states whose neigh-
bours have recently changed can decrease the computational cost of the
algorithm. In other words, the main idea is upgrading states whose value
it is expected to change, i.e. if |Vi+1(s) − Vi(s)| is high enough then the
predecessors of s will be updated.

4.4.2 Policy Iteration

Policy iteration, or approximation in the policy space, is an algorithm that
uses the special structure of infinite-horizon stationary dynamic program-
ming problems to find all optimal policies.
It is a dynamic programming technique for calculating a policy directly,
rather than calculating an optimal V (s) and extracting a policy; but one
that uses the concept of values.
This algorithm is composed by two main parts:

• Policy evaluation, which consists in choosing a random policy π.
Then it calculates the values Vπ(s) for all states for this policy, using
the Bellman Equation.
This process is similar to Value Iteration, but the maximum is not
computed since the actions are fully determined by the policy.
Policy evaluation starts initialising:

∀s ∈ S : V π
0 (s) = 0

Then it iterates until convergence:

V π
k+1(s) =

X
s′

P (s′|s, π(s)) · [R(s, π(s), s′) + γV π
k (s

′)]
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The Time Complexity for each iteration of this algorithm is O(N2
states).

• Policy Improvement, which searches for a better policy by using
policy extraction:

πi+1(s) = argmax
a

X
s′

P (s′|s, a) · [R(s, π(s), s′) + γV πi(s′)]

This formula might seem to return the original policy πi, but this is
avoid by calculating the values without maximum operation, since all
possible actions are explored.
The Time Complexity for policy improvement is O(N2

states ·Nactions).

To sum up, Policy evaluation is also called Passive RL and measures how
good is a given policy: the agent has a fixed policy and tries to learn the
utilities of states by observing the world go by. This method often serves
as a component of active learning algorithms.
On the contrary, Policy improvement, or Active RL, finds what is a good
or optimal policy: the agent tries to find an optimal policy (or at least
good policy) by acting in the world. Analogous to solving the underlying
MDP, but without first being given the MDP model.

4.5 Model-based and Model-free approaches

These active and passive RL methods can be divided into two different
type of algorithms:

4.5.1 Model-based RL

Model-based RL algorithms learn a model of the environment (i.e., the
reward and transition functions) or an approximation of the model by in-
teracting with it. Then they compute a policy using the model (e.g., using
planning).
Therefore, this model predicts the consequences of actions, enabling the
agent to plan ahead.
Initially, the agent learns or is provided with a model of the environment,
typically in the form of transition probabilities (how likely the environ-
ment will transition from one state to another given an action). After
that, with the learned model, the agent can simulate future states and
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Figure 4.2: Scheme representing the difference between Model-based and Model-free
RL [18]

rewards, allowing it to plan its actions by considering possible future out-
comes. Techniques like dynamic programming or tree search algorithms
can be used for planning.
This method has several advantages such as performing more efficient plan-
ning by leveraging the learned model to simulate future scenarios and, in
some cases, model-based approaches can require fewer interactions with
the environment to learn an optimal policy.
On the other hand, if the learned model does not accurately capture the dy-
namics of the environment, the plans made based on it can be sub-optimal
and building and maintaining an accurate model can be computationally
expensive, especially in complex environments.

4.5.2 Model-free RL

Model-free RL does not require an explicit model of the environment. In-
stead, it directly learns the optimal policy or value function through trial-
and-error interactions with the environment.
The agent estimates the value function (expected cumulative reward) di-
rectly from experience, without explicitly modelling the environment dy-
namics and, based on the estimated value function, the agent updates its
policy to maximise expected future rewards.
This type of algorithms are simpler to implement and do not require ex-
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plicit knowledge of the environment dynamics and can handle environ-
ments with complex dynamics or unknown dynamics more robustly.
However, these methods often require more interactions with the environ-
ment to learn an optimal policy compared to model-based approaches and
balancing exploration (trying new actions to discover optimal ones) and
exploitation (leveraging known actions for immediate reward) is a chal-
lenging aspect of model-free RL that will be covered later in this section.

4.6 Passive Reinforcement Learning

Passive Reinforcement Learning algorithms review an existing policy. Hence,
its aim is to determine the values for all states for a given policy π.
The idea is to execute a set of trials, or rollouts, using π. Some methods
are presented in this paper.

4.6.1 Monte Carlo Estimation

Figure 4.3: Example of how MC Estimation acts [15]

Monte Carlo Estimation, or Direct utility estimation, is a Model-
free approach that runs trials evaluating the reward-to-go (i.e. the sum
of discounted rewards from that state until a terminal state is reached) of
a state and using this value to update the estimated utility of that state.
After each trial the new estimate is updated as follows:

x̂n+1 = x̂n +
1

n+ 1
(xn+1 − x̂n)

where n is the number of samples made, x̂n is the old estimate and xn+1

is the new sample.
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Each trial (simulation) provides a sample of this quantity for each state
visited during that trial, if a state is visited multiple times in a simulation
every visit handles the samples as independent.
The problem of this method is that it ignores that the utility of a state is
determined by the reward and the expected utility of the successor states.
Thus, with direct estimation utility values do not obey the Bellman equa-
tions for a fixed policy. Typically, this means the converge very slowly to
correct utilities values. Therefore, it requires a lot of sequences.

4.6.2 Adaptive Dynamic Programming (ADP)

Figure 4.4: Example of how ADP acts

Adaptive Dynamic Programming is a Model-based approach which
follows the given policy for a while. Then, it learns the transition and
reward functions estimating models based on observations.
It firstly assumes that the reward function is deterministic, which means it
collects the reward for each transition once. Finally, it uses the estimated
model to compute utility (e.g., using value iteration).
In order to learn the model, it records how often state s′ is reached when
executing action a in state s. Then, it estimates transition model P (s′|s, a)
as the fraction of times it sees s′ after taking action a in state s.
where percept indicates the current state s′ and reward signal r, whilst
the persistent data are:

• The fixed policy π.
• An MDP with model P, rewards R, actions A and discount γ.
• A table of utilities for states initially empty U .
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Algorithm 1: Passive ADP
Data: percept
persistent data : π,mdp, U,Ns′|s,a, s, a;
if s’ is new then

U [s′]← 0;
end
if s is not null then

Ns′|s,a[s, a] + +;
R[s, a, s′]← r;
A[s].append(a);
P (·|s, a)← Normalise(Ns′|s,a[s, a]);
U ← PolicyEvaluation(π, U,mdp);
s, a← s′, π[s′];
return a

end

• A table of outcome count vectors indexed by state and action initially
zero Ns′|s,a.

• The previous state and action initially null s, a.
The model that is learned can be used for different agents with different
objectives (and reward functions).
However, the approach is limited only by its ability to learn the model
and, in its basic form, it is intractable for large spaces.

4.6.3 Temporal-difference (TD) Learning

Figure 4.5: Example of how TD acts

In order to avoid the computational expense of full DP policy evalua-
tion, another approach is to adjust the utilities of the observed states, so

40



Chapter 4. Reinforcement Learning

that they agree with the Bellman equations.
Temporal Difference Learning is a model-free approach. Hence, it does
not try to estimate the entire transition or reward function. Instead, it
calculates the local updates of utility or value function on a per-action
basis.
For each transition from s to s′, it performs the following update called
Temporal Difference equation:

V π(s) = V π(s) + α[R(s, π(s), s′) + γV π(s′)− V π(s)]

where α is the learning rate, that determines how much this equation is
affected by the updates.
TD uses bootstrapping, i.e. estimating a value based on another esti-
mation: the algorithm estimates the value of state based on the value of
its consecutive states.
This method is one of the key ideas in modern RL.
Temporal-Difference (TD) Learning is a combination of Monte Carlo meth-
ods, since it can learn from experience without knowing the model, and
Dynamic programming, as it updates an estimate based on other learned
estimates.
It is worth noting that each error is proportional to the change over time
of the prediction, that is, to the temporal differences in predictions.
R(s, π(s), s′) + γV π(s′) is a noisy sample of the utility based on the next
step: the TD term represents the error between the observed and esti-
mated values, which is important to minimise. Therefore, the TD update
is about to maintain a “mean” of (noisy) utility samples, but if the learning
rate decreases appropriately with the number of samples (e.g. 1

n), then the
utility estimates will converge to true values.

4.7 Active Reinforcement Learning

In the case it is needed to find a good or optimal policy while acting in an
uncertain environment, it is necessary to utilise an Active Reinforcement
Learning algorithm.
A very simple and naive approach would be using a random policy and
run trials based on that, then learn the transition function and the rewards
using passive reinforcement learning and finally running normal value or
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Algorithm 2: Passive TD
Data: percept
persistent data : π, s, U,Ns;
if s’ is new then

U [s′]← 0;
end
if s is not null then

Ns[s] + +;
U ← U [s] + α(Ns[s]) · (r + γU [s′]− U [s]);
s← s′;
return π[s′]

end

policy iteration to get the best policy.
However, this method may have to run random trials for a very long time
until it gets good estimates for the transition function.
Before analysing several interesting Active RL methods, it is necessary to
explain the exploration vs exploitation problem.

4.7.1 Exploration vs Exploitation

Exploitation and exploration represent two fundamental strategies that an
agent can employ to maximise its cumulative reward while interacting with
an environment.
These strategies are essential for balancing the trade-off between exploit-
ing known information to gain immediate rewards and exploring unknown
regions of the environment to discover potentially better actions. On the
one hand, Exploration involves deliberately selecting actions that may
not be optimal according to current knowledge or policy in order to gather
additional information about the environment.
On the other hand, Exploitation implies selecting actions that are be-
lieved to be the best based on current knowledge or past experiences. The
agent leverages its existing understanding of the environment to choose
actions that are expected to yield high rewards.
In order to obtain an optimal behaviour, the algorithm needs to follow
a scheme called Greedy in the Limit with Infinite Exploration
(GLIE), which can be obtained satisfying the following two properties:

• If a state is visited infinitely often, then each action in that state is
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chosen infinitely often (Exploration). No action is "forgotten".

• In the limit (as t → ∞ ), the learning policy becomes greedy with
respect to the learned model (Exploitation). "Greedy" means that it
will choose the action that maximises the q-value of the next step.
This is the base idea for policy extraction too.

If an exploration scheme is GLIE, it will eventually obtain optimal be-
haviour. Two main approaches to get a good trade-off between exploration
and exploitation are:

• ϵ-greedy: on time step t the agent selects a random action with
probability p(t) and a greedy action with probability 1− p(t).
The aim of this algorithm is to converge the probability of doing a
random action to 0 as the simulation goes on.
An example could be p(t) = 1

n .
• Boltzmann Exploration: the agent selects an action with proba-

bility:

P (a|s) = e
Q(s,a)

TP
a′∈A e

Q(s,a′)
T

where T is the “temperature”. Large T means that each action has
about the same probability. Small T leads to more greedy behaviour.
It is usual to start with large T and decrease it with time

4.7.2 ADP-based RL

It is a model-based approach that starts with a random model and it
calculates the optimal policy π∗ for this random model using value itera-
tion or policy iteration.
During the trials it firstly ignores the policy π acting randomly (explo-
ration). Then, it slowly shift towards using the policy (exploitation).
It updates the transition probabilities and rewards based on the algorithm
also used in ADP. However, the difference with the previous ADP algo-
rithm is that it does not calculate the values in the end.
The process is repeated until convergence.
This algorithm can be also performed by using Optimistic Exploration
which consists in keeping track which state-action pairs (s, a) were visited
how often in the second part of ADP-based RL. If the number is too small,
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it just replaces the value for that state with the optimal value, which is:

V max =
Rmax

1− γ

If the number is bigger than a threshold,it performs normal value iteration.

4.7.3 TD-based Active RL

Despite being inspired by the TD Learning in passive RL, this algorithm
is model-based.
It only extracts the policy in the end.
During each step it initialises all values randomly and an arbitrary model.
Then it performs policy extraction to get an action for the state wherein
it currently is.
After executing an action based on an exploration scheme, it updates the
model by using the algorithm from ADP and updates the values using the
temporal difference.

4.7.4 Q-Learning

The third and final Active RL algorithm is Q-Learning, which is a model-
free approach that extends TD-based active RL by removing the model
and it is split in single action steps.
Instead of updating the model or values, we directly update the q-values
utilising a formula similar to TD Learning:

Qπ(s, a) = Qπ(s, a) + α[R(s, a, s′) + γmax
a′

Qπ(s′, a′)−Qπ(s, a)]

It performs the updates after each action as it happens in TD.

4.8 Deep Reinforcement Learning

In the previous sections, the basics of Reinforcement Learning (RL) are
covered, including techniques like Dynamic Programming (DP), Monte
Carlo, and Temporal Difference (TD) methods. Now, as Deep Reinforce-
ment Learning (DRL) is introduced, it is important to acknowledge the
limitations of traditional tabular methods, especially in tasks with large
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Algorithm 3: Q-learning
Data: α ∈ (0, 1], ϵ
Initialise Q(s, a), ∀s ∈ S, a ∈ A(s);
for each episode do

Initialise S;
for step in episode do

Choose a from s using ϵ-greedy;
Take action a, observe r, s′;
Choose a from s′ using ϵ-greedy;
Qπ(s, a)← Qπ(s, a) + α[R(s, a, s′) + γmaxa′ Q

π(s′, a′)−Qπ(s, a)];
s← s′;
if s is terminal then

break
end

end
end

state spaces. Updating tables with data in a timely manner becomes pro-
hibitively expensive, making it impractical to find an optimal policy and
value function.
In such scenarios, encountering many new states is inevitable. The al-
gorithm must learn to generalise its knowledge from past experiences to
make effective decisions in unfamiliar situations. This challenge of gener-
alisation often translates into a function approximation problem, with the
value function being the primary target. This paper focuses on solutions
utilising artificial neural networks for function approximation.
A key departure in this new framework is the representation of value func-
tions. Instead of using tables, these functions are represented with para-
metric functional forms. This shift not only offers more efficient repre-
sentation but also enables adaptation to complex, high-dimensional state
spaces commonly encountered in real-world RL tasks.
Roughly speaking, in order to solve complex systems or train an agent to
act on environments unseen during the training, it is necessary to make
the agent able to generalise the situation wherein it is involved so that it
will be versatile.

4.8.1 Experience Replay

Experience replay, a technique widely employed in reinforcement learning,
was first examined by Lin in 1992. However, its recent resurgence can be
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Figure 4.6: Experience replay depiction [10]

largely attributed to its implementation in the Deep Q-Network (DQN)
algorithm by Mnih et al. [19] (2013), aimed at mastering ATARI games
using Deep Reinforcement Learning (DRL).
This method involves storing transition tuples (St, At, Rt+1, St+1) in a
memory buffer termed replay memory at each time step. These tuples
encapsulate the agent’s progression from one state, St, to the next, St+1,
by executing a specific action, At, and receiving a reward, Rt. Once the
replay memory accumulates sufficient transitions, mini-batches can be ran-
domly sampled, enabling the agent’s neural network to be trained using
past experiences.
Experience replay offers several benefits. Firstly, it enhances the algo-
rithm’s data efficiency by enabling the agent to update its weights mul-
tiple times using experienced events. Moreover, it alleviates the learning
process’s instability caused by temporally correlated training samples, as
reinforcement learning discourages consecutive sample use. Furthermore,
experience replay smooths the learning process by averaging behaviour
distribution across numerous previous states, thereby reducing the target
function’s reliance on current weights.
In summary, experience replay is well-suited for off-policy learning, pro-
viding a robust mechanism for training reinforcement learning agents effi-
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ciently.

4.8.2 Target Network

In addition to experience replay, another approach to mitigate algorithm
instability involves the utilisation of a secondary network termed the tar-
get network, as proposed by Mnih et al. This network serves to decouple
the target function’s dependence on the primary network’s weights, aiming
to enhance algorithm convergence, especially when employing TD-error.
The procedure entails periodically updating the parameters of the target
network with those of the primary network after a set number of training
steps. By doing so, the target network serves as a stable reference point,
aiding in smoothing out fluctuations and promoting more consistent learn-
ing.
This strategy effectively breaks the direct link between the target function
and the primary network’s weights, contributing to improved stability and
convergence in the training process.

4.8.3 Deep Q-Learning (DQN)

Deep Q-Learning is a significant type of reinforcement learning algorithm
that employs a deep neural network to estimate the Q-function, aiding
in decision-making across various domains like gaming, robotics, and au-
tonomous vehicles. This function helps determine the best action to take
in a given state, based on expected cumulative rewards.
Unlike traditional Q-Learning, which uses tables for value representation,
Deep Q-Learning utilises deep neural networks, called Deep Q-network
(DQN), to handle large state and action spaces, as well as complex inputs
like images or sensor data.

The DQN is usually trained with stochastic gradient descent (SGD), which
aims to minimise the loss function Li(θi) at each time step:

Li(θi) = Es,a∼ρ(s,a)[yi −Q(s, a, θi))
2]

where yi is the target on iteration i and ρ(s, a) is the probability distribu-
tion over states and actions also called behaviour distribution.
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((a)) Q-Learning [2]

((b)) Deep Q-Learning

However, implementing Deep Q-Learning comes with challenges. The Q-
function’s non-linear nature and numerous local minima can hinder neural
network convergence. To address this, techniques such as experience re-
play and target networks have been developed to improve stability and
convergence.
Deep Q-Learning finds application in diverse fields, including training
agents for games like Atari and Go, and controlling robots for tasks such
as grasping and navigation. Its adaptability underscores its importance in
artificial intelligence and reinforcement learning.
To sum up, DQN is a model-free method which approximates the Q-
values of each action with a Neural Network. As for the Q-Learning al-
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gorithm, it utilises an off-policy approach since it does not always select
action with the policy to be improved but it can greedly performs exploita-
tion by choosing the action with the highest Q-value. That is caused by
the ϵ-greedy approach.

Algorithm 4: Deep Q-Learning
Data: replay memory D of capacity N , number of episodes M , ϵ
Initialise approximating function Q;
Initialise D;
for each episode do

Initialise S;
for t in episode do

Choose at from st using ϵ-greedy;
Take action at, observe rt, st+1;
D.append([st, at, rt, st+1]);
[sk, ak, rk, sk+1]← D[random];
if s is terminal then

yi ← rk;
end
else

yi ← rk + γmaxa′ Q(sk+1, a
′; θ);

end
Perform a gradient descent step on loss yi −Q(s, a, θi))

2;
end

end
return Q

Double DQN

Taking the maximum overestimated values implies estimating the max-
imum value itself, leading to systematic overestimation and introducing
maximisation bias in Q-learning. As Q-learning involves bootstrapping,
where estimates are derived from existing estimates, this overestimation
poses significant challenges.
To address maximisation bias in Q-learning, using two separate Q-value
estimators is suggested. Each estimator updates the other, ensuring unbi-
ased Q-value estimates of actions chosen using the alternate estimator.
This technique called Double Q-Learning had different versions, the one
that will be shown in this paper is made by Hasselt et al. 2015, where there
are two independents model of Q. One used for action selection Q’, called
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target network, and the other for action evaluation Q, called primary
network.
Hence, the equation to evaluate the Q-value is now defined as:

Q∗(st, at) ≈ rt + γQ(st+1, argmax
a′

Q′(st, at))

The target network slowly copies the parameters of Q and it is usually
updated through Polyak averaging:

θ′ ← τθ + (1− τ)θ′

where θ′ is the target network parameter, θ is the primary network param-
eter, and τ is called rate of averaging.
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Software Implementation

In this chapter it is explained how the whole code1 has been implemented.
In this thesis, an agent is trained to explore complex unknown environ-
ments, such as mazes, represented by grid maps. It was simulated in
Python, creating the maze and agent classes from scratch. The robot
scanned the surrounding area with a simulated 2D LiDAR.
The planner is divided into two parts: a Local Planner, which makes de-
cisions observing a section of the global map wider than the agent’s field
of view and a Greedy Global Planner.
A Double DQN algorithm [3], which is an enhanced version of the DQN,
was utilised to train the Local Planner; the Markov Decision Process model
of the agent was the following: Local map as a State, a cluster of map
pixels as an Action and the Reward Function takes into account how
many new map squares are seen throughout an action, how many steps
are made and if a wrong move (an inaccessible location) is selected.
The Terminal State of the Local Planner is a dead end. It is detected
when there is nothing left to explore on the map, which means that none
of the ‘steppable’ squares has anything unknown nearby. When the agent
comes to a dead end, the Greedy Global Planner takes the next action.
The agent was compared with a completely greedy one (Greedy Local Plan-
ner and Greedy Global Planner) and the results showed that the trained
agent is much more efficient.

1https://github.com/PIC4SeRThesis/FrancescoGervino
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5.1 Maze Generation

The environment wherein the agent acts is a maze. The maze is a grid
map made of a N×N matrix. Hence, every value of the matrix cor-
responds to a square (i.e. a location) of the map and the set of indexes
correlated with that value are the set of coordinates that belong to that
square. E.g. the value of maze[3][4] defines what the square at coordinates
(3, 4) is.
Now, it is necessary to define what these values can be. Each element of
the matrix is an integer and can have the following values:

• maze[x][y] = 1, it represents a wall, the agent cannot be in that
square and see through it

• maze[x][y] = 2, it is regarded as an explorable square, i.e. an
empty space wherein the agent can step and it does not block the
agent’s view

• maze[x][y] = 3, it represents an explored square, which is an ex-
plorable square the agent has already seen. This information is
essential to detects when the agent has explored a specified percent-
age of the grid map

Since the agent’s task is to explore a complex environment, this one must
be fully explorable.
In order to do that, at the beginning the maze is just a matrix whose
elements are all equal to one, i.e. a maze entirely made of walls. Then
the algorithm ’digs’ into the map empty spaces that can be explored.
It starts from the centre of the map and continues to create explorable
squares next to the one generated before. Using this method, the ’full-
explorability’ is ensured.
Two different algorithms to generate mazes have been implemented:

• Maze(), which generates labyrinths randomly picking an empty space
and creating a small number of explorable squares in a random direc-
tion starting from that picked space. It results in a map characterised
by thicker paths, which can occasionally be considered as rooms

52



Chapter 5. Software Implementation

• Maze2(), which creates labyrinths randomly creating a small num-
ber of explorable squares in a random direction starting from the last
space created. It results in a map characterised by thinner paths, that
makes the map remind more of a typical maze

The Class Maze() was utilised firstly, but then it was decided to use
Maze2() algorithm as it depicts a maze better.
Both classes are composed by three functions:

• __init__(SIZE, ITERS), as soon as the object of class Maze is
initialised the environment is created, the global variable grid_map
represents the maze. It starts as a np.ones matrix and it is then
crafted in a for loop where, for a fixed number of iterations, a random
direction is selected by picking a random key of the dictionary moves,
which depict the possible directions to choose.
At the end, an updated version of the map is created. This variable
will be manipulated by the agent and that is useful to detect what
percentage of the map is explored.
The init receives two inputs which determine the size of the map
and the number of iterations used in the for loop to create the maze.
This second variable has been added since it cannot be the same for
every size and finding a formula to determine it it is not trivial

• print_map(), as the name suggests, this function prints the map
by using the python library matplotlib.pyplot, the colour palette is
derived by viridis. Hence, the lightness value increases monotonically
through the colourmaps, since it is used for sequential plots

• print_updated_map(), which prints the updated version of the
map, i.e. the map with the knowledge of where the agent has been
throughout the simulation. It is useful for understanding how the
training is going
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Algorithm 5: Maze
Data: size, iters
maze← ones(size, size);
empty_spaces = [];
maze[size//2, size//2]← 2;
empty_spaces.append([size//2, size//2]);
for iters do

space← pick_a_space(empy_spaces);
move← pick_random_move;
for 10 do

x, y ← space+move;
maze[x][y]← 2;
space← [x, y];
empty_spaces.append(space);

end
end

Algorithm 6: Maze2
Data: size, iters
maze← ones(size, size);
empty_spaces = [];
maze[size//2, size//2]← 2;
empty_spaces.append([size//2, size//2]);
for iters do

move← pick_random_move;
for 5 do

x, y ← space+move;
maze[x][y]← 2;
space← [x, y];
empty_spaces.append(space);

end
end
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5.2 Agent

5.2.1 Reinforcement Learning Model

RL problems are typically modelled as Markov Decision Processes as it
has been done for this system.
In this case, the MDP elements are the following:

• State: at each time instant, the agent has access to a portion of
the explored global map, namely a local map centred on the agent.
Each cell of both the global and local maps is associated with a value
indicating accessible, unknown, and occupied spaces, in addition to
the agent’s location.
It is indeed a grid map of size N×N matrix with values from 0
to 1, since it will be the input of the neural network and normalised
values are easier manageable.

• Action: the policy has to choose the next navigation goal from a
cluster of pixels on the local map. These pixels are grouped in larger
spaces in order to reduce the action space and make training and
deployment of the network more efficient.

• Reward function: this function incentives exploration based on the
number of new spaces the agent has explored during the previous
action and the number of steps it took; each step involves a penalty.
It also penalises the agent when an unfeasible action is taken (e.g.,
selecting a location containing only unknown pixels or walls).
The reward function is defined as:

R(new_squares, steps) =

(
penalty If action is not feasible

new_squares− steps otherwise

where:

– penalty is the negative reward given when the agent selects a
wrong action

– new_squares are the formerly unseen places detected by the
agent during the move

– steps are the squares the robot has been during the action
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– step_penalty is the constant value that determines the negative
rate for every step made during the move

• start state: initially, the agent is spawned at a randomly accessible
location in the maze. The whole environment is unknown to the agent
except the area reached by the simulated 2D LiDAR. The policy has
to choose a space out of the accessible, known locations on this local
grid map that constitutes the next navigation goal. When a feasible
action is selected, an A-star algorithm finds the optimal path to reach
the selected goal. In such a way, the agents explore the environment
while creating the global, explored map.

• terminal state: the agent ends its run if it encounters a dead end;
it occurs when there is nothing left to explore on the local map,
which means that none of the accessible spaces has any unknown
space nearby. In this case, the global planner is invoked. The global
planner is a deterministic system that recovers the navigation by se-
lecting the nearest accessible square with at least one unknown pixel
nearby on the global explored map. From there, the local planner
can start exploring again. Another terminal state, which terminates
both the local and the global planner, arises when a fixed percentage
of the maze has been explored.

5.2.2 Python Class

In order to create this Reinforcement Learning model, a Python class called
"Agent" has been developed.
The class is featured by a considerable number of functions and inputs.
Hence, a description of the parameters that characterise the agent is im-
portant to understand the development of the code.
As it can be clearly seen from the image, the local map is made up of
the following parameters:

• View, which is the LiDAR’s field of view. It regulates the size of the
real local map.

• Expand, that selects the number of pixels to add to the local map.
This influences the agent’s knowledge since it determines how big the
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Figure 5.1: Agent’s local map showcasing essential components

part of the global map to examine will be

• Cluster, which is the size of the square that groups up the pixels.
It is of paramount importance since it stabilises the training of the
neural network because it reduces the number of outputs.

It is worth noting that the map size created by the parameters View and
Expand has to be divisible by the number chosen for the Cluster vari-
able:

Map = 2V + 2E + 1 ∀V,E ∈N : C|Map

where Map is one size of the map and V, E and C are respectively the
values of View, Expand and Cluster.
In addition to these parameters, there are other inputs:

• maze, the agent receives the environment where it is located so that
it can interact with it.

• initial position, that is the location where the agent spawns, it is
randomly selected among all the possible empty spaces of the map.

• maze_squares, which is the number of empty spaces present in the
map. This parameter is useful to make the agent understand when it
has explored a percentage of the maze.

• percentage, which determines the percentage of the map the agent
has to explore.
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• alpha, that is the coefficient aforementioned when the reward func-
tion was explained. It is needed to stabilise the training.

• penalty, that determines the negative reward given to the agent when
it selects an unavailable action.

• step_penalty, that is the negative reward given for every step made
by the agent during an action.

Now that the input parameters are described, the functions of the agent’s
class can be explained.
During the initialisation all the dynamic parameters are set to default,
the robot position is set to the centre of the map and all agents map are
created as a matrix of zeros (i.e. unknown spaces).
It is also called a function that ’cleans’ the map of the maze’s class from the
updates done by a previous agent, this will be useful for the evaluation
part where a Greedy agent and a trained one will explore the same map.
A terminal function that detects when the agent is in a terminal state
checks if the robot is in a Dead end or it has explored all the map or a
percentage of it.

Move functions

Figure 5.2: Example on how the actions are numbered

The main functions of agent’s class are move(action), greedy_move(action)
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and local_greedy_move(action).
The first one basically receives an action and, since this value refers to a
set of pixels and these sets are ordered in rows as shown in the figure below
it converts this value into the set of coordinates it corresponds to.
This is done converting firstly the action value into the corresponding co-
ordinate set that defines that particular pixel cluster. Then the algorithm
searches the most promising pixel in the cluster to go to.
This operation is explained by the following pseudo-code.

Algorithm 7: Action search
Data: action, cols, dim
% Creating cluster coordinates;
x← action//(cols/dim);
y ← action− x · (cols/dim);
% Converting them into map’s coordinates of the first
pixel of the cluster;
X ← x · dim;
Y ← y · dim;
for i in range(X,X+dim) do

for j in range(Y,Y+dim) do
path← A_star(i, j);
if is_promising([i,j] then

break;
end

end
end
return [i, j], path

where cols and dim are respectively the number of columns of the local
map and the dimension of the cluster.
The A_star function searches the optimal path to arrive in a pixel, whilst
is_promising detects if that pixel has an unknown square in its surround-
ings, if it does, the for loop will stop as it has found a promising place to
go. It is worth noting that the search algorithm converts the coordinates
[i,j] from local to global.
After this algorithm, the move function checks if there is an available path
to reach one of the cluster’s pixels (i.e. len(path) ̸= 0).
If the action is wrong, the function returns a penalty. Otherwise, it

59



Chapter 5. Software Implementation

counts every new square detected during the action by using the function
scan_area and every step made during the movement and returns the
evaluated reward.
Algorithm 8: Move
Data: action, cols, dim
[i, j], path← Action_search(action, cols, dim);
if len(path) is 0 then

return penalty
end
mx← 0;
my ← 0;
reward← 0;
penalty ← len(path) · step_penalty;
while len(path) ̸= 0 do

step← path.pop(0);
step← step+ [mx,my];
δmx, δmxy, δrew ← scan_area(step);
mx← mx+ δmx;
my ← my + δmy;
reward← reward+ δrew;

end
return reward · α

As it can be clearly seen, the move function extrapolates every single step
that composes the path and evaluates the reward summing the contribu-
tion of each step.
The values mx and my are necessary to consider how the global map has
changed after each step, so that the coordinates of the following steps can
be updated. As said before, there are two other move function:

• greedy_move: it is the function used by the Greedy Global
Planner, which selects the closest explorable square from the Global
Map with an unknown pixel nearby by using the A_star function.
The heuristic used to define the closest place is the Euclidean dis-
tance.

• local_greedy_move: this function is necessary for the evaluation
part, since it used by the Greedy Local Planner, which selects the
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closest explorable square from the Local Map with an unknown pixel
nearby by using the A_star function.
The heuristic used to define the closest place is the Euclidean dis-
tance.

Path Planning

When an action is selected, the agent finds the optimal path to arrive in
that place with an A_star algorithm.
It is optimal because the heuristic utilised is the Euclidean distance,
which provides both admissibility and consistency since it is the min-
imum distance between two points, satisfying both equations (2.2) and
(2.3).

5.2.3 Mapping

((a)) Local Map ((b)) Global Map

Another function of paramount importance is scan_area, which is essen-
tial to update the global and local maps and count all the squares scanned
by the agent.
Agent’s maps have a wider range of values than those of the maze class.
Thus, in addition to the values described previously, there are two new
type of pixels:

• maze[x][y] = 0, it represents an unknown square, it can be either
an explorable place or a wall but the agent does not know. This type of
pixel is the key to evaluate the quality of actions for the training agent
and the quality of explorable squares for the greedy agent. Since an
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action that allows the robot to see a considerable number of unknown
pixels is decent and an explorable square with unknown pixels nearby
is a promising place to go.

• maze[x][y] = 4, it is regarded as the agent’s square. It is more of a
visual thing since the robot is always in the middle of the local map,
but it is useful to know where the agent is in the global map

It is worth noting that neither in the local nor global map pixels with the
value of 2 are present, considering that if an explorable square is seen by
the agent it automatically becomes an explored square by definition.
It is necessary to explain that the robot utilises a simulated 2D LiDAR
to examine the area. An algorithm generates 360 ’beams’ (one for each
degree); each beam has a particular angle that will determine what square
the agent is going to examine. The beam continues to scan the map until
it detects a wall (i.e. a pixel of value 1). In this case, the agent will receive
the information about the wall but the scanning performed by that beam
will not go further.
Since the agent does not have any knowledge about the size of the maze,

Figure 5.3: LiDAR 360° 2D Laser Scanner [11]

the global map changes dimensions as the robot explores the environment.
In order to do that, the algorithm will just change the size of the map’s ma-
trix if the agent goes either to the eastern or southern borders of the map,
whilst it will additionally change the coordinates of what it has already
scanned if the robot moves to the western or northern border considering
that the newly gathered knowledge is added in the first indexes of the ma-
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trix.
After the agent has finished scanning the area, it cuts a part of the global
map that surrounds its position and it uses it to update the local map.

Figure 5.4: Global to local map
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5.2.4 Decision Making

Figure 5.5: Decision Making’s Flow Chart
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Agent’s decision making is well depicted by the flowchart above.

The entire process can be described by the following steps:

• The Trained Local Planner selects the next action.

• The algorithm checks if the action is available. If it is not, the next
action is now chosen by a Greedy Local Planner and executed.

• If the action is feasible, the agent controls if new squares have been
scanned. If they have not, it saves the position and checks if this
saved position was already encountered. If this happens, it means
the robot is moving in a loop as it continues to encounter the same
maps. Hence, since it selects the action with the highest Q-value,
it will always choose the same actions. In short words: same maps
means same actions.
In order to avoid that, if a loop is detected, a Greedy Local Planner
picks the next action and the loop positions are deleted because that
particular loop has been avoided.

• Now, in the case the action is available and a loop is not detected,
the robot makes the action.

• After the robot has concluded an action, the algorithm checks if the
robot has explored enough space to call the terminal state of the
Global Planner. If it has yet to explore, it examines if it detects a
Dead End. If it does, the agent calls the Greedy Global Planner that
will decide the next move. Otherwise, the process starts again choos-
ing an action with the Trained Local Planner.

A Dead End is detected when the agent cannot see any promising place
in its Local Map. In technical words, every explorable square in the local
map (i.e. the pixels with value 3) has not an unknown square in its sur-
roundings.
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((a)) ((b))

Figure 5.6: Example of Dead ends

Algorithm 9: Dead End detection
Data: Map
for i in len(Map) do

for j in len(Map[0]) do
if ( Map[i][j] is 3 and find_zeros(i,j,Map)) then

return False
end

end
end
return True

The function find_zeros is very useful and it is indeed utilised for vari-
ous functions (from the dead end detection to the greedy algorithm) and
it simply checks if a square has an unknown pixel nearby.

5.3 Training and Evaluation

The agent is trained using a Double DQN algorithm as it is perfectly
suitable with discrete state and action spaces. Moreover, a model-free
method is necessary for this kind of problems since it is impossible to
predict what the next state will be given the complexity of the state.
Hence, it is only possible to learn what is the optimal action to perform in
a specific state.
Considering that in this MDP model a state is a matrix that represents
a map, Convolutional Neural Networks are used to manipulate the states
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Algorithm 10: find_zeros
Data: x, y, Map
for i in range(x-1,x+2) do

for j in range(y-1,y+2) do
if (i ≥ 0 and i < len(Map) and j ≥ 0 and j < len(Map[0])) then

if Map[i][j] is 0 then
return True

end
end

end
end
return False

and generalise them. Specifically, two layers of CNN with 64 filters each
of dimension 3 × 3 and stride respectively 1 and 2 have been developed.
The CNN is then flattened and linked to a final fully-connected layer that
represents the output.

5.3.1 Parameters and Hyperparameters

The purpose of the training is to find the optimal combination of param-
eters in order to obtain the best achievable performance from the agent.
The training is interspersed with phases in which the performance of the
network is evaluated for several steps. The evaluation is useful to under-
stand how the agent is learning and perhaps it helps finding after how
many steps the performance of the training saturates.
Before the actual training starts, there is a warm-up of a considerable
number of steps to familiarise the agent with the environment.
The variables that affect the training and has to be tuned are the following:

Parameters

• ALPHA: the coefficient that multiply the reward of each action. It
is useful to stabilise the training.

• CLUSTER: the size of the square that encapsulates the pixels. As
said before, it is necessary to reduce the action-space. Hence, it de-
creases the number of outputs of the neural network.

• EXPAND: it determines how many squares of the global map the
agent can see in addition to what it can already see from its sensor.
The higher is this value the more difficult the training will be.
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• PENALTY: the negative reward for choosing an unfeasible action.
• PERCENTAGE: the percentage of the maze the agent has to ex-

plore to finish its task.
• SIZE: the size of the map.
• VIEW: it determines how far the agent can see.

Hyperparameters

• batch_size: the number of experiences (or transitions) sampled
from the replay memory to update the neural network in a single
iteration. It influences the stability and efficiency of the learning pro-
cess.

• collect_steps_per_iteration: the number of steps collected in
one iteration.

• conv_layer_params: a tuple containing the parameters to create
the CNN structure.

• decay_steps: the number of steps the training needed to gradually
change epsilon from its initial value to its final.

• epsilon: a vector containing the initial and final values of epsilon
(i.e. the coefficient for performing the ϵ− greedy algorithm)

• eval_interval: it does not affect the training since it defines after
how many steps an evaluation takes place during the training.

• gamma: the discount factor of the MDP.
• initial_collect_steps: the number of steps performed by the agent

during the warm-up.
• learning_rate: the learning rate of the training to update the neural

network.
• log_interval: the number of steps between one calculation of the

loss function and another.
• number_of_iterations: the number of iterations performed dur-

ing a training.
• num_eval_episodes: the number of simulations to evaluate the

performance of the agent during an evaluation.
• replay_buffer_max_length: the dimension of replay buffer. It

is determined by the number of steps performed during the training.
• tau: the coefficient derived from the Double DQN algorithm that

determines how fast the target network is updated.
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5.3.2 TensorFlow’s library

The library used to develop the training code is TF-Agents [17]: a reliable,
scalable and easy to use TensorFlow library for Contextual Bandits and
Reinforcement Learning.
The training code has been inspired by the following tutorials from the
aforementioned GitHub repository:

• dqn tutorial, which explains how to use the library dedicated to the
DQN algorithm. It is worth noting that the DQN is actually a Double
DQN, since it is a better version independently from the task.

• environments tutorial, which is important to understand how to
create a environment wherein the policy selects an action. Especially
in this case, where the variables need to be of a specific type, com-
patible with the TF-Agents libraries.

• reinforce tutorial. This is the skeleton of the code implemented in
the training part of this thesis’ project. The type of RL algorithm
has been changed (a DQN method has been used instead).

• checkpoint policy saver tutorial, which was essential to save the
trained policy in a zip file.

5.3.3 Evaluation

After the training, the neural network is evaluated comparing its perfor-
mance with whose obtained by a completely greedy agent.
Firstly, the network is uploaded and unzipped from a zip file and then the
algorithm creates a maze which is explored by the trained agent and the
greedy one. This operation is computed for several iterations.
After that, the time spent for the simulation and the reward obtained are
compared evaluating the ratio between the trained agent and the greedy
one (i.e. RL agent

Greedy agent).
The time is evaluated using the time library from Python.
Therefore, performance is evaluated in terms of results and time consump-
tion to compute the action.
The agent has to explore the 80% of the map to conclude its task.
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Algorithm 11: evaluation
Data: maze_params, agent_params, dirname
policy ← unzip(dirname);
for _ in range(10) do

maze← Maze2(maze_params);
init_pos← maze.empty_spaces[random];
DRL_agent← Agent([agent_params, init_pos]);
start← time.time();
while not DRL_agent.explored() do

% Local Planner;
while not DRL_agent.dead_end() do

DRL_agent.move(policy);
end
if not DRL_agent.explored() then

% Global Planner;
DRL_agent.greedy_move();

end
end
end← time.time();
DRL_time.append(end-start);
DRL_reward.append(DRL_agent.total_reward);
Greedy_agent← Agent([agent_params, init_pos]);
start← time.time();
while not Greedy_agent.explored() do

% Local Planner;
while not Greedy_agent.dead_end() do

Greedy_agent.local_greedy_move();
end
if not Greedy_agent.explored() then

% Global Planner;
Greedy_agent.greedy_move();

end
end
end← time.time();
Greedy_time.append(end-start);
Greedy_reward.append(Greedy_agent.total_reward);

end
reward_ratio← mean(DRL_reward)/mean(Greedy_reward);
time_ratio← mean(DRL_time)/mean(Greedy_time);
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Results

In this chapter, the main results obtained and the failed attempts during
the development of this project are presented.
These results are mainly derived from the tuning of the parameters showed
in the previous chapter and the utilised method. Therefore, a clear expla-
nation of why some variables has been set to a fixed value is given, in
addition to some suppositions about the reasons why some parameters
affected in that particular way the training.

6.1 Global Planner (failed)

The first attempt was the most ambitious: training the agent on its global
map. In this case the robot would be really able to make decisions on the
entire map it built throughout the exploration.
However, the input was too big and complex to manipulate and the neural
network was not capable of generalising the map and learning a decent
policy.
A couple of failed attempts are shown to clarify the failure.
It is noteworthy that the training is valued on the average reward obtained
during the training’s evaluation steps, and it can be clearly seen that the
reward is always below 0.

6.2 Local Planner

As mentioned in Chapter 5, the final version of the agent is trained to
make decisions on its Local Map.
The results obtained from the first trainings were promising since the av-
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Figure 6.1: Agent’s global map

((a)) ((b))

Figure 6.2: Two failed trainings

erage return increased to an acceptable value where it saturated after ap-
proximately 500.000 iterations.

6.3 Fixed Parameters

Some of the parameters and hyperparameters shown in the previous chap-
ter have a fixed value for different reasons that will be explained later in
this section. These value are depicted by the following table.

Penalty Step
Penalty

τ γ Steps per
Iteration

Iterations

10 1 1 1 5 5 · 105

Table 6.1: Fixed Parameters and Hyperparameters
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Figure 6.3: Successful trainings with Local Planner

This variables has these specific values for the following reasons:

• Penalty. This value is able to both maintain the stability of the
training and make the agent understand to choose available actions.

• Step Penalty. A couple of attempts were made changing this value
from 1, but during every training the agent was stuck in selecting the
place it is. Probably because the penalty different from 1 is too big
and the robot thinks that the best thing to do is staying still.
The trainings show that the agent learns to do only the first actions.

• τ . It is set to 1 since the target network needs to learn quickly,
otherwise the network will take too much time to just learn to avoid
unfeasible actions.

• γ. It cannot be less than 1 or the agent will start staying still as the
step penalty gets closed to 0, since it diminishes after every step.
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Figure 6.4: Training with Step Penalty = 2

• Steps per Iteration. After several attempts, 5 steps per iteration
seems enough to make the agent understand to choose the available
actions and learn a good policy.

• Iterations. Since after the first attempts the return obtained satu-
rates after 500.000 iterations. In order to save time and memory the
number of iterations has been set to this value.

The ϵ value for the ϵ-greedy algorithm starts with 1 (the policy explores
the environment with completely random actions), then it decades to 0
after 250.000 iterations. Therefore, the policy solely exploits its learned
knowledge from half training.

6.4 Promising Trainings

The agent has been trained with different setups.
Here are reported the most successful training attempts for each map di-
mension. For all of them, the agent had to explore the entire map to
achieve its task. It is worth noting that the last two columns refer to the

α SIZE VIEW EXPAND MAP CLUSTER REWARD TIME
10−4 200 11 11 45×45 5 0.88 0.67
10−4 250 12 15 55×55 5 0.82 1.96
7 · 10−5 300 12 20 65×65 5 0.84 2.48
3 · 10−5 350 12 25 75×75 7 0.80 2.94

Table 6.2: Promising Trainings

evaluation part results, both values are the solution of the ratio between
the reinforcement learning agent’s results and the one obtained by a greedy
agent.
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As it can be clearly seen, even though these agents trained successfully,
only the first one obtained good results, as it takes less significant time to
obtain a decent reward.

6.5 Final Agent

Taking into consideration the results obtained in the previous section, var-
ious agents were trained with different hyperparameters maintaining the
same local map’s proportion and agent’s setup of the first training from
the previous table.

Table 6.3: Hyperparameters values used during the training.

Learning rate Initial
ϵ

Final ϵ ϵ decay steps τ γ Steps per Iteration

10−4 1 0 2.5 · 105 1 1 5

After numerous attempts, a trained agent was able to gain 91% of greedy’s
reward in less than half the time (44% of the time spent by the determin-
istic agent).
It is worth noting that this agent has been trained giving the task of ex-
ploring 80% of the maze.
The agent has then been trained on different maze size to verify its effi-
ciency.

Table 6.4: Performances comparison between a traditional greedy algorithm and our
RL agent. Column Maze size report the lateral dimension of the square containing
the maze, while the last two columns report the ratios between the RL agent’s and
greedy agent’s results for both the final reward and the computation time. Every time
is expressed in seconds.

Maze
size

Greedy
reward

Greedy
time

RL reward RL time Reward
ratio

Time
ratio

200 9359.0 86.94 8516.7 38.25 0.91 0.44
250 12014.1 134.42 10212.0 68.55 0.85 0.51
300 16872.6 244.41 13835.5 153.97 0.82 0.63
350 20272.5 291.14 16420.7 205.98 0.81 0.71
400 27694.7 451.2 21324.9 591.07 0.77 1.31

The tests are conducted on mazes featuring different sizes; in column Maze
size is reported the lateral dimension of the square containing the maze, in
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pixels. The last two columns report the ratios between the RL agent’s and
greedy agent’s results for both the final reward and the computation time.
As can be seen, the RL agent can reach reward values very close to the
near-optimal greedy algorithm in much less computational time. However,
performance worsens with increasing maze size; this is also because both
agents share the same greedy global planner, which needs more time when
the map is larger. Hence, as the maze becomes bigger, the computation
time is influenced more by the global planner’s decision than the local
planner’s.
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Conclusions

Results obtained can be considered acceptable as they satisfy the request
of the thesis. However, there are plenty of changes and improvements to
be implemented in this work.
First of all, to obtain more realistic results, the environment could be sim-
ulated on Gazebo and the code could be implemented on a robot, such as
a Turtlebot3.
The most important improvement would be applied in the learning process.
Training an agent with a constant set of parameters and hyperparameters
has a lot of limitations, therefore I believe utilising Curriculum Learning
algorithms would address the problem in a much better way since it fits
perfectly with this kind of environment.
The algorithms presented in Narvekar et al. (2016) [14] could be utilised
to create a dynamic training that would definitely improve agent’s perfor-
mance.
The implementation of a Markov Decision Process for the curriculum de-
sign agent (CMDP) [9] to structure the task sequence automatically is
another interesting enhancement for this project. These systems could be
trained with a recursive Monte-Carlo method or a Continuous Space Rep-
resentation [13].
In this project, the Double DQN network was made on CNNs and a flat-
ten layer which is then fully connected to the output layer of the actions.
However, utilising a global map as input would help the agent to be more
versatile and efficient since it still uses a greedy global planner. Hence,
there are two possible solutions: resize the input map to a fixed size, but it
would cause uncertainty problems, or utilise a Fully Convolutional Network
(FCN) [6] since it is appropriate for pixel-wise agents and it has already
been used in Unknown Environment Exploration by Li et al. (2020) [4],
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which created an FCQN: a Fully Connected Q Network enhanced with a
Dueling Network algorithm [20].
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