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Abstract 

Most of the modern mechatronic systems are equipped with a lot of MCUs that 
exchange a vast amount of sensitive data among themselves through serial 
connections, all in plain text and without any protection. This makes them vulnerable 
to malicious actors who could manipulate original devices and transmit unauthorized 
messages to sabotage the system.  
Therefore, there is a need to introduce protections in serial communications to avoid 
the decryption of the messages. 
To tackle this challenge, I used an STM32F401RE microcontroller as the system to 
hack and my PC equipped with a COM port connected to a USB-UART adapter as the 
hacking device. The microcontroller was programmed and configured in C language, 
while the PC runs a Python program aimed at launching various attacks and 
monitoring their computational and temporal costs. 
The initial step involves discovering the microcontroller's UART configuration 
parameters using the PC. The problem isn't simple because there are hundreds of 
configurations that need to be tested, and we have no prior information about the 
correct one. So, the only method is to test them all, starting with the most common 
ones and then moving on to the less-used ones, in order to find meaningful 
messages on the terminal. If a message is composed only of alphanumeric words, 
the associated configuration is saved in the list of potential configurations used by 
the microcontroller. 
Upon successfully compromising the system and observing the ease with which it 
was breached, it became evident that enhancing the security of microcontroller 
communications is paramount. 
To address this, I introduced the AES-128 algorithm for encrypting incoming and 
outgoing messages. This widely used algorithm in cryptography manipulates 
messages with complex mathematical operations to ensure robust encryption and 
decryption. The system uses a symmetric key for both encryption and decryption. 
While this makes it easier to implement and use as a communication system, it 
forces protection of the key from discovery by third parties. 
Analyzing the messages transmitted by the microcontroller, the smartest way to 
break the system was to use a data stream of a specific size, like 64 or 128 bytes, as 
the key and the remaining text as the encrypted message. This attack was successful, 
demonstrating that by sending the key in plain text along with the message, an 
attacker could easily recognize the communication protocol and decipher the 
message quickly. If this method did not yield meaningful results, other types of 
attacks, such as dictionary attacks and brute force, had to be adopted. These are less 
efficient due to their high computational cost but could be a good option if nothing 
smarter was available. 
Given the vulnerabilities of the AES system, I introduced an additional security layer 
called RSA, which could be combined with or used independently of the AES 
algorithm. This algorithm operates in a more complex way and bases its robustness 
on the difficulty of factoring large prime numbers, a task impractical for most 
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computers. The biggest difference from the AES algorithm is that RSA is asymmetric: 
one key is public and used by anyone to encrypt data sent to the system, while the 
other key is private and kept secret to decrypt incoming messages. Now, with this 
algorithm, only the encryption key needs to be transmitted, and even if it is leaked, it 
cannot decrypt any messages without the corresponding private key. The only 
drawback is that understanding how the communication protocol works is not as 
immediate as with AES, but the security it provides is very high for our applications. 
As I did with the AES algorithm, I repeated all the attacks on the upgraded system, 
and none of them were able to break it. Satisfied with the results, I proceeded with 
implementing the security system on various devices. 
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Introduction 

Scenario 

The Emergence of Cybercrime 

Cybersecurity is a growing concern in today's world. In the past year, thousands 
systems worldwide were hacked, with small and medium-sized enterprises being the 
primary targets. Italy has also been significantly affected, with 1,382 cyber-attacks in 
the first half of 2023, indicating a risky rising trend. [1] 

 
Considering the problem on a larger scale, cyber-attacks have increased by 61.5%. 
Italy, on the other hand, has experienced a significant territorial increase of 300%. 
 
The main objective of these attacks is to extort money or steal sensitive data for 
illicit purposes. Hackers frequently target devices remotely, making it difficult to 
trace their origin. Although cybersecurity measures in this area are highly advanced, 
leaving little room for error, one area remains underdeveloped in terms of 
cybersecurity is embedded systems implemented within IoT products. 
  
Therefore, this thesis aims to minimize the issue considering the increasing 
significance of security measures in mechatronic systems. 
 

Figure 1 - Trend of the Cyber-attacks per semester. 
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The Importance of Cybersecurity in Embedded Systems 

Security in microcontrollers encompasses several aspects, including the protection of 
firmware intellectual property, safeguarding private data within the device, and 
ensuring the execution of services.  
 
Examining all potential scenarios, we could consider a gate opening system that 
operates via authentication code number, revealing a vulnerability: intercepting the 
code could compromise the security of an entire apartment. Another similar 
example could involve duplicating the authentication key of a vehicle's ignition 
system, or, in the worst-case scenario, tampering with the trajectory of a missile. 
Hence, born the necessity to adopt a generalized approach to safeguard all types of 
integrated systems. 
 
When designing an integrated system, the first step is to protect the hardware from 
tampering, followed by securing the firmware.  
We particularly focus in this thesis on the most vulnerable part of the 
microcontroller: the communication interface with the external environment, as it 
represents the most direct path for system manipulation.  
 
An external device can intercept and analyze every communication transmitted 
between the microcontroller and external entities. This implies that each message is 
subject to interception, examination, and possible manipulation by this external 
device, without exception. While a read-only device might access sensitive data 
without authorization, a compromised input port could allow the device to replace 
the original and take control of communication, sending unchecked messages to the 
master!  
 
Therefore, securing the serial port is essential, as it could trigger a chain reaction 
affecting the entire mechatronic system in which the device is integrated.      
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Thesis Objectives 

In order to tackle this challenge effectively, my primary objective is to fortify my 
system against the most common cyber attacks. This is achieved by strategically 
implementing additional layers of security protocols that can be progressively 
activated in response to the compromise time, the computational cost, and other 
parameters that measure the witness of the system. 
 
Both roles are assumed, one as a malicious actor when breaching the system is 
intended, and the other as the victim when enhancing the protection of the target 
system is required. 
This approach allows us to have a complete understanding of the weaknesses of the 
system. 
 
As cyber defender, the objectives are as follows: 
 

• Ensuring that messages sent and received remain undetected by any 
potential snooper. 

• Keeping the communication port configuration unknown to external sources. 

• Protecting the secrecy of the encryption method employed. 

• Preventing the discovery of the decryption key. 

• Maintaining the full functionality of the system. 

• Optimizing the code for lightweight, portability, and universality. 

• Providing comprehensive and explanatory documentation. 
 
On the other hand, as a cracker, objectives involve: 
 

• Decoding the contents of transmitted messages. 

• Deciphering the encryption protocol used. 

• Understanding the configuration of the microcontroller. 

• Facilitating the discovery of the decryption key. 

• Minimizing the computational resources required for the attacks. 

• Erasing all traces of the activities. 

• Using acquired knowledge to potentially replace the receiver and take control 
of communications.               
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Thesis Overview 

Given the highly experimental nature of the thesis, a chronological order approach 
has been chosen, wherein each chapter represents a progressive step taken to 
enhance the security of the microcontroller. 
 
Specifically, the first section provides an overview of the workbench setup, 
explaining the chosen microcontroller configuration and the methods of interfacing 
with the PC.  
 
Each following subsection offers a brief theoretical background upon which the code 
implementation is founded. 
 
Subsequently, the encryption algorithms used, namely AES and RSA, are discussed. 
They are first explained theoretically and then their implementation is shown.  
This exploration is followed by an examination of the attacks employed to monitor 
the security indicators utilized. 
 
Finally, a comparative analysis of the results obtained is conducted, assessing the 
fulfillment of predetermined objectives and exploring both positive and negative 
implications arising from the findings. Additionally, potential enhancements, future 
progress, and optimizations for the analyzed system are discussed. 
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Chapter 1: Testing Setup 

Workbench Setup 

The security system implemented requires a wide range of applications, which is why 
the stm32f401re microcontroller and C programming language have been selected 
as the target device and programming language, respectively.  
 
The stm32f401re is a reprogrammable microcontroller that is well-suited for various 
applications and has the necessary features for our purposes. 
 

• Easily configurable UART port 

• HAL functions facilitating the communication management 

• Easy implementation of external libraries 

• Dedicated IDE based on Eclipse, allowing both code writing and 
debugging. 

 

 
The only drawback (which, from the perspective of a potential cracker, can be a 
disadvantage) is that it has only one USB communication channel to the computer. 
Therefore, if someone wants to read the serial port with another USB port (no 
matter if it is from the same PC or a third-party one), a USB to UART adapter is 
necessary to connect the transmission pins on the board to the PC's USB port. 

Figure 2 - NUCLEO F401RE 
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While the adapter may be affordable, finding the correct configuration at both the 
hardware and software levels can often require trial and error technique that could 
discourage the cybercriminal. Later on, a detailed discussion will be provided on this 
matter. 
 
The experiment was conducted using a Dell XPS 13 with a dual-core processor 
clocked at 2.50 GHz and 16 gigabytes of RAM. The console application used was 
entirely written in Python.  
To interface with the microcontroller, it was necessary to use a USB-UART adapter 
connected to the computer, following the guidelines written in the datasheet.  
Regarding the USB serial port, configuration was performed at the software level 
using a dedicated Python library. 
 
The advantages of using a Python application to execute attacks and evaluate 
benchmark results are as follows: 
 

• Easy configuration of the serial port 

• Python is the most widely used software worldwide on Windows, so it is 
likely to be used for attacking the system 

• Easily available and implementable external libraries 

• Unique code design simplicity and portability 

• Availability of dedicated benchmark packages. 
 
In addition, to read real-time transmitted messages, Realterm software can be used 
as a debugging terminal. Its purpose is to print exchanged messages on the screen 
based on the serial port configuration. 
 
 
 

Figure 3 - FT232-AZ USB to TTL Serial Adapter 
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Putting everything together, the system is connected as follows: 

 
The microcontroller sends and receives messages from the PC's USB port via the 
black mini-USB to USB-A cable, and the PC reads the data in real-time through 
Realterm. However, the potential hacker interferes with the transmission and 
connects to the microcontroller via the pins coming out of the board, which are 
directed to the PC's second USB port via the adapter. Here, the PC receives them and 
feeds them to the Python application.  
 

Figure 4 - Workbech setup 

Figure 5 - Workbench connections diagram 
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Microcontroller Setup 

The research begins by downloading and installing the IDE from the following link: 
[https://www.st.com/en/development-tools/stm32cubeide.html#get-software] 
 
After the installation is complete, the IDE (Integrated Development Environment) 
and the necessary drivers for debugging the board are ready for use. 
(The installation process will not be detailed here as it is straightforward.) 
 
As mentioned on the website, after selecting the preconfigured microcontroller from 
the board selection, the project is created, and initialization code is generated. At 
any point during development, the user can revisit the initialization and 
configuration of peripherals or middleware and regenerate the initialization code 
without impacting the user code. 
 

 
Figure 6 - Configuration tool of a new project in STM32CubeIDE 

 
Considering that the microcontroller is often intended for testing the security of 
serial communication, the essential functionalities to activate are the timer for 
sending periodic message and the UART port discussed in detail in the next sections. 
 

https://www.st.com/en/development-tools/stm32cubeide.html%23get-software
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The UART protocol 

The UART (Universal Asynchronous Receiver Transmitter) is a crucial communication 
tool widely used in industries. Almost every microcontroller has at least one UART, 
built right into the microprocessor. 
 
The primary function of this mechanism is to send and receive data bit by bit over a 
single line, as opposed to parallel methods where data travels over multiple lines 
simultaneously. 
 
This transition to serial transmission has effectively addressed numerous issues: 
 

• Cost: Managing lots of data lines gets expensive because it needs more parts and 
careful design. 

• Power Usage: Running multiple lines at once needs more energy, especially to 
keep the signals strong. 

• Size and Weight: More lines mean more wires, which can get heavy and take up 
space. It is tough fitting them into small circuit boards or organizing them in tight 
spaces like electrical panels. 

• Reliability: Getting the pins aligned just right is crucial for good connections. 
With parallel transmissions, there's more chance of things wearing out or 
breaking, causing connection problems. 

• Timing: Making sure all the signals line up perfectly is tricky with parallel 
transmissions. They usually end up with some delay or mismatch. 

 
Considering all these challenges, especially in mechatronic applications, employing 
serial communication emerges as the optimal choice. 
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Delving into the mechanics, when initiating communication, the UART sequentially 
places bits onto the line, respecting a predetermined order for the receiver to 
interpret the message. This message structure, known as a frame, is composed by: 
 
1. Start Bit: It tells the receiver that a new message is starting. 
2. Payload: This is the main message, starting with the least important bit and 

ending with the most important one. Sometimes, there's a special bit to check if 
the message is right. 

3. Stop Bit: It shows that the message is finished. 

[2] 
Factors such as Baud rate (data transmission speed), line sampling frequency, idle 
value, and pin mapping must also be considered during configuration. 
 
Unlike other protocols, UART enables independent transmission and reception of 
data by both devices. Therefore, although the behavior of the UART is 
straightforward, accurate manual management of message traffic is necessary. 
Detailed explanations on data transmission and reception using this protocol will 
follow in the subsequent chapters. 
 
To initialize the huart, appropriate settings must be selected from the configuration 
interface menu when starting a new project. In this case, a standard configuration 
has been chosen. 
 

• Baudrate: 115200 bits/s 

• Parity: None 

• Word length: 8 bits 

• Communication Mode: Full duplex 

• Data Direction: Transmitting and Receiving 

• Oversampling: 16 samples 
 

Figure 7 - Bit assignment of the UART message 
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Once the interrupt service routines are enabled to execute specific functions upon 
data arrival or transmission, the configuration process is complete. 

 
From the pin mapping, the pin designated for data transmission is PA2, and the one 
for reception is PA3. However, upon inspecting the signal on these pins with an 
oscilloscope, it is discovered that it is null. 
 
According to a discussion on this forum website [3], it is concluded that the board is 
configured to route the UART2 signals to the ST-Link instead of the pin connectors. 
This explains why data can be received over USB but not observed on the pins. 
  

Figure 8 - Configuration of the USART on the IDE 
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PC Setup 

Configuring everything from the computer's perspective was remarkably 
straightforward. Initially, the process involved navigating to this link, 
[https://sourceforge.net/projects/realterm/], and downloading the serial terminal, 
an essential tool for interfacing with hardware devices. RealTerm was selected for its 
reliability, robust feature set, completeness, and ease of use. 
 

Figure 9 - Interface of Realterm software 

Once the RealTerm application was successfully installed, the next step was to set up 
the integrated development environment (IDE) for coding and testing purposes. 
Among the various IDE options available, PyCharm 2023 was chosen for its 
comprehensive suite of features and reputation for being user-friendly, making it an 
ideal environment for Python development. The latest version was obtained directly 
from the official website to ensure compatibility and access to the latest 
enhancements. 

https://sourceforge.net/projects/realterm/
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Figure 10 - Interface of PyCharm 

Upon completion of the installation, PyCharm was launched, and a new project was 
created. Python 3.10.11 was selected as the interpreter version, and the project 
structure, including the main file and its corresponding virtual environment, was 
meticulously set up. 
 
The creation of the virtual environment was a fundamental step as it encapsulated 
all project dependencies and libraries essential for seamless execution and 
portability. This meticulous setup ensured that the project environment was isolated 
and well-equipped to handle any future developments or modifications. Once that's 
done, we can proceed with the configuration of the serial port. 
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The COM Port 

 
A communications port, also known as a serial port or COM port, is a hardware 
interface on a computer that allow us to connect external devices for data transfer. 
It serves as a bridge between your computer and peripherals enabling serial 
communication between them. 
 
In the older computer there was a dedicated connector called RS232 with 9 pins, 
where every one of them has its own function: 

[3] 
1. Data Carrier Detect - After a data terminal is detected, a signal is sent to the 

data set that is going to be transmitted to the terminal. 
 

2. Received Data - The data set receives the initial signal via the receive data 
line (RxD). 

 
3. Transmitted Data - The data terminal gets a signal from the data set, a 

confirmation that there is a connection between the data terminal and the 
data set. 

 
4. Data Terminal Ready - A positive voltage is applied to the data terminal ready 

(DTR) line, a sign that the data terminal is prepared for the transmission of 
data. 

 
5. Signal Ground - A return for all the signals on a single interface, the signal 

ground (SG) offers a return path for serial communications. Without SG, 
serial data cannot be transmitted between devices. 

Figure 11 - RS232 Pinout [3] 
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6. Data Set Ready - A positive voltage is applied to the data set ready (DSR) line, 

which ensures the serial communications between a data terminal and a 
data set can be completed. 

 
7. Request to Send - A positive voltage indicates the request to send (RTS) can 

be performed, which means the data set is able to send information to the 
data terminal without interference. 

 
8. Clear to Send - After a connection has been established between a data 
terminal and a distant modem, a clear to send (CS) signal ensures the data 
terminal recognizes that communications can be performed. 

 
1.    Ring Indicator - The ring indicator (RI) signal will be activated if a modem 

that operates as a data set detects low frequency. When this occurs, the data 
terminal is alerted, but the RI will not stop the flow of serial data between 
devices        

 
In our case, we don't use the traditional connector; instead, we directly utilize a USB 
connection that works as the COM port, facilitated by an internal adapter. 
 
In order to configure the UART port of the microcontroller, it is simply necessary to 
access the Device Manager and set the appropriate parameters. 
 

 
Figure 12 - Configuration of COM port in Device Manager 
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Chapter 2: Clear Message Evaluation 

Introduction 

Upon initial analysis, let's delve into the most common scenario where message 
protection is absent. There are several reasons why data transmission might lack 
security measures, among which the most common include: 

 

• Cost: Implementing security measures can be expensive, both in terms of time 
and money. This can pose a barrier for small businesses or organizations with 
limited resources. 

 

• Complexity: Depending on the complexity of the communication line, it may be 
challenging or even impossible to fully secure it. 

 

• Lack of priority: Security might not be deemed a priority for the organization, 
which may be more focused on other aspects such as functionality or cost. 

 

• Exposure to threats: The level of protection required for a communication line 
depends on the level of threat it faces. For instance, a communication line used 
to transmit sensitive information will need a higher level of protection than one 
used for transmitting non-sensitive information. 

 

• Trust: Users of the communication line may trust each other and not see the 
need to protect their communications. A concrete example is when 
communications occur between components produced by the same company 
and are not intended to be read by anyone else. 

 
Given these reasons, it is important to consider the situation where messages are 

transmitted in clear text, thus it is useful to analyze this configuration as well. 
Moreover, this can be a useful step in better structuring the tasks to be carried out 
during the process of securing a telecommunication channel and understanding 
which security benchmarks and analyses need to be successfully surpassed for a 
communication line to be deemed secure. 

 
Let's begin by configuring our microcontroller to receive and transmit messages in 

a completely transparent manner to anyone who wishes to read the message. 
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Given the wide range of applications and the significant development potential, a 
modular and generic approach has been chosen to ensure flexibility, portability, and 
code universality as much as possible. 

 
A special module containing the header file UART_Comm.h and the source file 

UART_Comm.c has been created to manage communication with the outside world. 
 
In the first file there are all the public macros, the public functions prototypes 

designed for communicating and an enum that indicates the error code 
corresponding to the return value of the module functions. 

 
The second file instead contains all the implementations of the public functions, 

private macros and global variables. As public macros there are only the activation of 
the various security levels, and therefore of portions of code present in the 
implementations. Instead, the macros used to activate the portions of code to be 
tested and the lengths of the private vectors used are present as private data. 

 
We will delve deeper into the implementation of the code when needed. 
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Message Transmission 

Communicating effectively is essential for humans to connect and be understood. 
The same is true for electronic devices.  
It is impossible to imagine a mechatronic system without considering the exchange 
of data among its components. 
There are numerous reasons why data transmission is crucial, including: 
 

• Facilitating communication between different parts of the system, enabling them 
to exchange data, instructions, and feedback. 

• Coordinating activities within the system to ensure various parts work together 
harmoniously and efficiently. 

• Providing important data and details that can be used to make informed 
decisions within the system. 

• Monitoring and controlling operations within the system, allowing for corrections 
or adjustments as needed. 

• Using transmitted information for learning and continuous improvement of the 
system, enabling it to adapt to new conditions. 

 
Given these factors, it is important to have a robust and efficient transmission 
management system. 
 
At the implementation level, the HAL functions of the microcontroller are used to 
ensure the necessary security and stability, and to simplify the implementation. 
The first fundamental step is to initialize all module data. To achieve this, there is a 
dedicated public function that must be called during the microcontroller 
configuration phase. Inside this function, all module values are initialized, and upon 
completion, it returns a return value to ensure proper execution. 
 
UART_COM UART_COM_Init (UART_HandleTypeDef *huart) 
{ 
 if(huart!= NULL) 
 { 
  pmyhuart = huart; 
 
  for(uint8_t i=0; i<TX_BUF_SIZE; i++) 
  { 
   abyTXBuf[i]=0; 
   abyRXBuf[i]=0; 
  } 
 
#ifdef AES_CONF 
 
  for(uint8_t i=0; i<KEY_SIZE; i++) 
  { 
 
 #ifdef CLEAR_PSW 
 
   if(i<sizeof(testPSW)) 
   { 
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    abyKeyEn[i] = testPSW[i]; 
   } 
   else 
   { 
    abyKeyEn[i] = 0; 
   } 
 
 #else 
    abyKeyEn[i]=rand()%UINT8_MAX; 
 #endif 
 
   mx_decripted[i]=0; 
   mx_encripted[i]=0; 
  } 
 
#endif 
#ifdef RSA_CONF 
 
  if(MicroRSA_GenerateKeys (7, 11, 17)) 
   return UART_COM_OK; 
  else 
   return UART_COM_PAR_ERR ; 
 
#endif 
 
 } 
 else 
 { 
  return UART_COM_PAR_ERR ; 
 } 
} 

 
Code block 1 - Implementation of UART_COM_Init 

 
Once the initialization is completed, the system is ready to transmit data. 
 
For simplicity, the transmission is scheduled by a timer that sends a new message to 
the PC every second. When the timer triggers an interrupt service routine (ISR) every 
second from the previous transmission, the transmission function is executed within 
the ISR. This function is a public function of the UART_Comm module, which 
internally calls the HAL function responsible for the interrupt transmission of a data 
bus. It takes only two parameters as input: a pointer to the data bus to be 
transmitted and its size. 
 
UART_COM UART_COM_Send (uint8_t *pbyTXBuf, uint16_t wdBufSize); 

 

Code block 2 - Prototype of UART_COM_Send function 

Checks are performed on both parameters at the beginning and if something goes 
wrong return the id of the error. 
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Regarding the message content, since our system is purely simulative and does not 
involve any specific functionality other than testing serial communication, it was 
decided to write the following message to the buffer: 
 

"SECURITY_TESTN" 
 
The last digit is a number between 0 and 9, indicating the test instance number and 
illustrating how the transmission buffer changes over time. There is a line of code in 
the ISR to do the character update. 
 
void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) 
{  
 
UART_COM_Send(abyTest,sizeof(abyTest)); 
  
//Updating of the last printable character with an increasing digit from 
0 to 9 
abyTest[sizeof(abyTest)-2] = (abyTest[sizeof(abyTest)-2] -'0'+1) % 10 
+'0'; 
} 

 
Code block 3 - Implementation of HAL_TIM_OC_DelayElapsedCallback 

Before incrementing, the offset relative to the ASCII character '0' is subtracted from 
the penultimate character (including the end-of-string character). This simplifies 
subsequent mathematical operations. Once this is done, it is incremented by one, 
advancing the previous digit by one step. To limit the value between 0 and 9, a 
common technique in the embedded domain is used: comparing the result of the 
operation with the maximum reachable value and saving only the remainder. To 
better understand the mechanism, here's a numerical example: 
 

(0+1)%4=1 (1/4=0 with remainder 1) 
(1+1)%4=2 (2/4=0 with remainder 2) 
(2+1)%4=3 (3/4=0 with remainder 3) 
(3+1)%4=0 (the value returns to zero here because 4/4=1 with remainder 0) 
(0+1)%4=1 (It starts over because 1/4=0 with remainder 1) 

Table 1 - Numerical example of the mathematical operations per step 

After updating the digit, the offset that was removed at the beginning is added back 
to represent the ASCII value of that character. 
 
To ensure functionality, the code was compiled and uploaded to the board. After 
confirming the absence of errors, the serial monitor was opened and it was noted 
with satisfaction that the transmission was successful, delivering the correct 
message on time. 
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Figure 13 - Test of the reception functionality 

 
Satisfied with the results obtained, the receiving module is then implemented. 
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Message Receiving 

After the design and successful testing of message transmission, attention now turns 
to describing and implementing message reception within the system. 
 
As mentioned in the previous section, communication in mechatronic systems is 
fundamental. Just as sending messages is important, receiving them is equally 
crucial, as they may contain vital and essential information necessary for anomaly 
detection within our system and fundamental data required from the receiver to 
perform specific actions. 
 
To implement this functionality, a function similar to the transmission has been 
developed within the UART_Comm module. This function internally calls the HAL 
receive function for a specific data buffer. Unlike transmission, which is synchronized 
with a timer, reception is asynchronous. Therefore upon the arrival of a new 
message, the Interrupt Service Routine (ISR) is immediately triggered to initiate the 
read and analysis process, ensuring full compliance with the established protocol. 
 
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) 
{ 
  UART_COM_Receive(abyRXBuf,sizeof(abyRXBuf)); 
} 

Code block 4 - Implementation of HAL_UART_RxCpltCallback 

Regarding security, it is important to carefully control incoming messages. Imagine if 
every message read was flagged as correct; what would happen if incorrect or 
harmful data were inserted into it? Since we have no control over incoming data, a 
potential hacker could read outgoing messages, impersonate a listener, understand 
our communication protocol, and respond on its behalf, taking control of the 
communication. It is necessary to at least partially mitigate this issue by checking if 
the received message is in the list of valid ones. To implement this check, I compare 
the data buffer byte by byte with my reference buffer. If the message is valid, I turn 
on a notification LED on the microcontroller board. 
 
In terms of security, it is crucial to carefully control incoming messages. It is 
important to verify every received message for accuracy and safety to prevent 
potential security breaches caused by incorrect or harmful data. If incoming data is 
not controlled, there is a risk of interception by a hacker who could impersonate a 
listener, decode the communication protocol, and respond on its behalf, essentially 
taking control of the communication. 
 To address this issue, it is necessary to verify if the received message is among the 
list of valid ones. This verification involves comparing the data buffer byte by byte 
with a reference buffer. If the message is considered valid, the microcontroller board 
activates a notification LED to indicate its validity. 
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#ifdef CLEARTEXT_CONF 
  for (uint16_t i = 0; (i < wdBufSize) && (RxMexCheck == true); 
i++) 
  { 
   if (i < (wdRefMexLen-1))//check if the alphabetic part 
is correct 
   { 
    if (abyRXBuf[i] == abyReferenceRxMex[i]) 
    { 
     RxMexCheck = true; 
    } 
    else 
    { 
     RxMexCheck = false; 
    } 
   } 
   else if (i == (wdRefMexLen-1) )//check if the numeric 
part is correct 
      { 
    if ((abyRXBuf[i] >= '0') && (abyRXBuf[i] <= '9')) 
    { 
     RxMexCheck = true; 
    } 
    else 
    { 
     RxMexCheck = false; 
    } 
      } 
   else 
   {} 
   pbyRXBuf=(pbyRXBuf-wdBufSize); 
 
   if(RxMexCheck==true)//if the message is correct 
   { 
    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, 
GPIO_PIN_SET);  
    return UART_COM_OK; 
   } 
   else 
   { 
    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, 
GPIO_PIN_RESET) 
    return UART_COM_INVALID_RX; 
   } 
 
  } 
 
#endif 

 
Code block 5 - Implementation of the Transmission using cleartext configuration 

To verify the functionality, the code was compiled and uploaded to the board. Upon 
successful compilation without errors, the serial monitor was opened to send the 
designated message from the dedicated interface. The correctness of the message 
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was visually confirmed. Subsequently, various incorrect messages were sent for 
testing purposes: 
 
1) SECURITY_TEST 
2) SECURITY_TESTT 
3) SECURITYTEST0 
 
All tests have yielded positive results, indicating readiness for security analysis. 

 
 

Figure 15 - Nucleo board when the message is correct 

Figure 14 - Nucleo board when the message is wrong 
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Attack: Finding the Configuration 

 
Now it is time to test the security of our system by simulating a hacker's attempt to 
breach it and evaluate its robustness and resistance to attacks. 
 
As a premise, access to information is limited to the microcontroller's user manual 
[4]. This document explains in detail how the UART works and all the configuration 
parameters it can assume, along with pin mapping, where a potential wiretapping 
device could spy on external communications. With this information, the only way 
for a hacker to read messages exchanged between the microcontroller and the 
outside world is to try all possible configurations of the UART port and check if the 
readed message makes sense or not. 
 
To configure the COM port, a special Python package was installed to handle the PC's 
serial port efficiently and simply. As the hacker, the selected USB port is the one that 
is connected to the adapter to read the messages. The installation process was 
straightforward, requiring only the execution of this line of code on the Python 
command line. 
pip install pyserial 

Code block 6 - Installation command of the pyserial package 

To initialize all parameters, one can refer to available documentation found on the 
web. [5] 
 
To complete this task, a Python script was developed to systematically test all 
feasible configurations of the microcontroller's UART port.  
After initialization and settingof the port, the script evaluates all possible 
configurations of a UART port by iterating through different baud rates, byte sizes, 
and parity options. It initializes a serial connection, then loops through each 
combination of settings, reads data from the serial port, and checks if the received 
data is valid. As a criterion for determining message validity, each character was 
analyzed to determine its printability. If any character is found to be unprintable, the 
configuration is ignored. Conversely, if all characters are printable, the configuration 
is included in the list of potential configurations.  
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The following Python code outlines the algorithm employed for this purpose: 
 

# Lists of typical UART configurations. 

typ_baud_rate = [9600, 19200, 38400, 57600, 115200, 2400] 

typ_byte_size = [serial.EIGHTBITS, serial.SEVENBITS] 

typ_stop_bits = [serial.STOPBITS_ONE, serial.STOPBITS_ONE_POINT_FIVE, 

serial.STOPBITS_TWO] 

typ_parity = [serial.PARITY_NONE, serial.PARITY_ODD, 

serial.PARITY_EVEN, serial.PARITY_MARK, serial.PARITY_SPACE] 

 

try: # Initialize serial connection ser = serial.Serial() ser.port = 

com_port ser.timeout = 10 count = 0 founded = [] 

    # Iterate through baud rates, byte sizes, and parity options for 

i_baudrate in typ_baud_rate: ser.baudrate = i_baudrate for i_bytesize 

in typ_byte_size: ser.bytesize = i_bytesize for i_parity in 

typ_parity: ser.parity = i_parity ser.open()  

count += 1 x = ser.read(ser.bytesize) 

                # Check if received data is valid if len(x) != 0: 

datavalid = True  

for i_scanbit in x: if datavalid: if 32 > i_scanbit or i_scanbit > 

126: datavalid = False  

if datavalid: founded.append(FoundedConf(ser.baudrate, ser.parity, 

ser.bytesize)) 

                else: datavalid = False ser.close() 

    # Print founded configurations if len(founded) != 0: 

print("Possible configurations of the UART port:") for i_founded in 

founded: print("Number of bits:", i_founded.nbits, "Baudrate:", 

i_founded.baudrate, "Parity:", i_founded.parity) else: print("No 

possible configuration was found") 

 

except serial.SerialException as e: print(f "Error opening COM port: 

{e}") 

 

Code block 7 - Python code of the configuration brute-force attack 
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Once the attack is complete, all possible configurations with their respective 
captured messages are displayed on the screen.  
 
Possible configurations of the UART port: 

Number of bits: 7 Baudrate: 19200 Parity: M 

Number of bits: 8 Baudrate: 115200 Parity: N 

Number of bits: 7 Baudrate: 115200 Parity: N 

Number of bits: 7 Baudrate: 115200 Parity: O 

Number of bits: 7 Baudrate: 115200 Parity: E 

Number of bits: 7 Baudrate: 115200 Parity: M 

Number of bits: 7 Baudrate: 115200 Parity: S 
Code block 8 - Results of the attack 

The one with the most information is likely the one actually used. 
 
This comprehensive approach allows us to rigorously test the security of our 
communications system and assess its resilience to potential attacks. 

Analysis of Timing and Computational Cost 

After discovering that this method easily breaks the system, we proceeded to 
analyze the compromise time. 
 To do this, we used the time library included in Python. At the beginning of the 
code, we set the initial time and then printed the elapsed time. Based on our 
analysis, we can conclude that the compromise time in this workbench condition is: 
 

𝑇𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 = 257.24 𝑠 

 
The value is relatively low, indicating that our system is highly susceptible to 
compromise. Anyone could wait for such a short period of time to hack into the 
system. 
 
If the focus shifts on the computational cost, here is a breakdown of costs in the 
code: 
 
Dominant Costs: 
 

• Nested loops for configuration testing: 
1. Outermost loop iterates over baud rates (6 iterations): O(N1) 
2. Middle loop iterates over byte sizes (2 iterations): O(N2) 
3. Innermost loop iterates over parity settings (5 iterations): O(N3) 
4. Overall cost within these loops: O(N1 * N2 * N3) 

• Reading and validating data within the innermost loop: 
1. Reading data: O(N1 * N2 * N3) 
2. Data validation loop: O(N1 * N2 * N3 * N4), where N4 is typically small 

(number of bytes read) 
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Other Costs: 
 

1. Initialization and setup: O(5) for constant-time operations 
2. Exception handling: O(1) if no exception occurs; O(E) for exception 

handling, where E depends on the specific exception 
3. Printing results: O(1) for simple messages; O(2 + 2 * (N1 + N2 * N3)) in the 

worst case when all configurations are printed 
 

 
Worst-case theoretical time complexity: O(N1 * N2 * N3 * N4) 

 
 
In summary, the time complexity is heavily influenced by the number of valid 
configurations found, which affects nested loop iterations and printing, as well as the 
time required for serial port operations such as `ser.open()`, `ser.read()`, and 
`ser.close()`.   
 
The conclusion is that the computational cost of the process is manageable on 
modern personal computers. However, this manageability also makes it vulnerable 
to potential attacks from enemies. 
 
Therefore, there is an urgent need for significant enhancements in security measures 
to fortify against these emerging threats. This addition is necessary to ensure the 
system's robustness and integrity against potential malicious exploits. 
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Chapter 3: AES  

Introduction 

The UART serial communication system previously operated without any encryption 
or data protection, making messages vulnerable to interception and reading by 
potential attackers. Specifically, attackers could easily expose plaintext messages 
through brute force attacks on the UART port configuration, thus risking the secrecy 
of transmitted data. 
 
In communication security, using cryptographic algorithms is vital for protecting 
sensitive data from unauthorized access. Among these algorithms, the Advanced 
Encryption Standard (AES) stands out for its well-known robustness and efficiency in 
preserving data confidentiality. 
 
To enhance the security of the UART serial communication system, the AES 
algorithm was implemented for message encryption before transmission and 
decryption upon reception. AES proves to be an ideal choice for this purpose due to 
its ability to find a good balance between security and efficiency. 
 
The implementation of AES involves several key phases: 
 
1. Initialization: During this phase, a cryptographic key and any necessary 

initialization vectors for AES are generated. It is crucial to keep the key 
confidential, limiting its access solely to authorized parties within the system. 

 
2. Encryption: When transmitting messages via UART communication, they 

undergo encryption using the AES algorithm and the designated key. The 
resulting ciphertext replaces the plaintext and is then transmitted through the 
channel. 

 
3. Decryption: Upon receiving the ciphertext message, the intended recipient uses 

the same cryptographic key to decrypt it, thereby restoring the original plaintext. 
Ensuring that only authorized recipients possess access to the key is fundamental 
for maintaining communication security. 

 
Integrating AES into the UART serial communication system is an effective measure 
to safeguard sensitive data from unauthorized access. This robust cryptographic 
algorithm ensures the confidentiality and integrity of transmitted messages, 
significantly enhancing the system's overall security. 
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AES Algorithm 

AES-128/192/256 algorithm operates on plain data blocks of 128 bits and produces 
cipher data blocks of the same length. It utilizes cipher keys of 128/192/256 bits. The 
fundamental unit of AES operation is a two-dimensional array comprising 16 bytes, 
referred to as "states," with a mapping relation depicted in the figure below. 
[6] 

 
Figure 16 - Status and Input arrays [6] 

The encryption process involves five main stages: KeyExpansion, SubBytes, 
ShiftRows, MixColumns, and AddRoundKey. 
 
KeyExpansion generates 11/13/15 round keys from the original cipher key, aligning 
with the structure of the 2-D array as states. 
 
The AES encryption begins by performing an XOR operation, adding the input plain 
data blocks with the first round key. Subsequently, AES-128/192/256 encryption 

Figure 17 - Algorithm flux diagram [6] 
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executes 10/12/14 rounds of processing with the remaining round keys, one at a 
time. Each round sequentially executes SubBytes, ShiftRows, MixColumns, and 
AddRoundKey operations. 
 
During SubBytes, each byte of the states undergoes transformation by utilizing a 
lookup table known as the S-box, using their respective values as addresses. 

 
ShiftRows involves cyclically shifting the last three rows of states over a different 
number of bytes based on the row number. 

 

Figure 18 - SubBytes diagram [6] 

Figure 19 - ShiftRows diagram [6] 
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MixColumns operates on each column of the states. It utilizes matrix multiplication 
to transform each column, with the transformation matrix being fixed. The 
calculation treats each byte as a polynomial with coefficients in GF(2^8), modulo x^4 
+ 1. 

 
 
AddRoundKey involves XORing the states with the round key of the current round. 

  

Figure 20 - MicColumns diagram [6] 

Figure 21 - AddRoundKey diagram [6] 
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AES Implementation 

Now that the theory behind the algorithm is in hand, it's time to implement it on the 
system. 
 
The microcontroller benefits from a library available on GitHub 
[https://github.com/kokke/tiny-AES-c?tab=readme-ov-file] [7] 
 that offers a compact and portable implementation of the AES ECB, CTR, and CBC 
encryption algorithms in C. 
 
In this scenario, for the sake of simplicity, the AES algorithm with a key size of 128 
bits and 10 rounds of encryption is employed. 
 
The encryption method used is ECB (Electronic Codebook). In this mode, each 
plaintext block is encrypted individually and autonomously, resulting in identical 
plaintext blocks being encrypted in the same way. This can potentially make the 
system vulnerable to pattern repetition in the ciphertext data. 
 
In this case, there is no need to complicate the algorithm by using additional 
encryption methods. The algorithm is already strong and robust with just ECB and a 
minimal key size. 
 
Focusing on the code, a new segment of code was incorporated into the dedicated 
function within the UART_Comm module for encrypting the data to be transmitted. 
This functionality can be activated using the AES_CONFIG macro. 
The first step is to save the buffer designated for encryption into a dedicated buffer 
space. After initializing the algorithm with a randomly generated key, the message is 
encrypted using the appropriate function provided by the AES library. 
Finally, the microcontroller's HAL function is used to send a message, which consists 
of two parts: the first half contains the encrypted message, and the second half 
contains the decryption key. 
 
 
#ifdef AES_CONF 
 
  //save data to encrypt 
 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
   if(i<wdBufSize) 
   { 
    mx_encripted[i]=pbyTXBuf[i]; 
   } 
   else 
   { 
    mx_encripted[i]=0; 
   } 
  } 
 

https://github.com/kokke/tiny-AES-c?tab=readme-ov-file
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  AES_init_ctx(&ctx, abyKeyEn); 
 
  AES_ECB_encrypt(&ctx, mx_encripted); 
 
#ifdef TEST_AES_TX 
 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
   mx_decripted[i]=mx_encripted[i]; 
  } 
  AES_ECB_decrypt(&ctx, mx_decrypted); 
#endif 
  //fill buffer to send 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
#ifdef TEST_AES_TX 
   abyTXBuf[i] = mx_decripted[i]; 
#else 
   abyTXBuf[i] = mx_encripted[i]; 
#endif 
   abyTXBuf[i+KEY_SIZE] = abyKeyEn[i]; 
  } 
 
  HAL_UART_Transmit_IT(pmyhuart,abyTXBuf,TX_BUF_SIZE); 
#ifndef CLEAR_PSW 
  for(uint8_t i=0; i<KEY_SIZE;i++) 
  { 
   abyKeyEn[i]=rand()%UINT8_MAX; 
  } 
#endif 
  return UART_COM_OK; 
#endif 

 
Code block 9 - Implementation of the AES transmission in UART_COM_Send 

To test the algorithm's effectiveness, the corresponding macro is activated to enable 
the relevant section of the code. Upon activation, the encrypted message is 
decrypted using the same key, and verification is conducted via the serial monitor to 
ensure alignment between the decrypted message and the original message. 
 
#ifdef AES_CONF 
 
  //save data to encrypt 
 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
   if(i<wdBufSize) 
   { 
    mx_encripted[i]=pbyTXBuf[i]; 
   } 
   else 
   { 
    mx_encripted[i]=0; 
   } 
  } 
 
  AES_init_ctx(&ctx, abyKeyEn); 
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  AES_ECB_encrypt(&ctx, mx_encripted); 
 
#ifdef TEST_AES_TX 
 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
   mx_decripted[i]=mx_encripted[i]; 
  } 
  AES_ECB_decrypt(&ctx, mx_decrypted); 
#endif 
  //fill buffer to send 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
#ifdef TEST_AES_TX 
   abyTXBuf[i] = mx_decripted[i]; 
#else 
   abyTXBuf[i] = mx_encripted[i]; 
#endif 
   abyTXBuf[i+KEY_SIZE] = abyKeyEn[i]; 
  } 
 
  HAL_UART_Transmit_IT(pmyhuart,abyTXBuf,TX_BUF_SIZE); 
#ifndef CLEAR_PSW 
  for(uint8_t i=0; i<KEY_SIZE;i++) 
  { 
   abyKeyEn[i]=rand()%UINT8_MAX; 
  } 
#endif 
  return UART_COM_OK; 
#endif 

Code block 10 - Implementation of the test of AES transmission in UART_COM_Send 

 
Code block 11 - Serial monitor of the AES transmission test 
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The results are satisfactory, so decryption will be implemented on the receiving 
module. 
 
Similar to transmission, the received message and its key are stored in a specific 
buffer. Following this, the algorithm is initialized, and decryption is performed using 
the dedicated function. 
 
#ifdef AES_CONF 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
   abyKeyDe[i] = pbyRXBuf[i+KEY_SIZE]; 
   mx_decripted[i] = pbyRXBuf[i]; 
  } 
 
  AES_init_ctx(&ctx, abyKeyEn); 
 
  AES_ECB_decrypt(&ctx, mx_decrypted); 
 #ifdef TEST_AES_RX 
  HAL_UART_Transmit_IT(pmyhuart,mx_decripted,KEY_SIZE); 
 #endif 
#endif 

Code block 12 - Implementation of the AES reception in UART_COM_Receive 

To verify the functionality of decryption, the decrypted message received is sent 
back to the sender, and its match with the original message is examined. This 
verification process is facilitated using the serial monitor, as done previously. 
The message to send to the microcontroller is derived from the previously received 
messages. 
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Brute-Force Attack 

To test the robustness of a new system, we will simulate a hacker and attempt to 
break it. 
 
The attack strategy will begin with the Brute-Force method. This approach involves 
systematically testing every possible combination of characters for the encryption 
key, exhausting all potential permutations to uncover the original message. 
 
For python there is a special library, called pycriptodome, in which there are 
everything we need to go and encrypt our messages. 
 
After installing the package via terminal, it is imported into the project. Assuming 
that the correct configuration of the UART port has already been determined, the 
port is initialized with the parameters considered most likely, and communication is 
initiated. Since the length of the message is unknown, the most common 
configurations are tested: 64, 32 and 16 bytes. This allows for testing cases where a 
single message is sent followed by the key, as well as cases where a message 
consisting of half key and half data is sent. It is important to note that this is only an 
assumption about message formatting; the key and message could also be 
alternated, with one byte of the encrypted message followed by one byte of the key, 
and so on until the end. Another clever idea is to use a predefined mask or multiple 
masks to identify in advance which bytes correspond to the message and which to 
the key. Message formatting is flexible, and it is advisable to make it as complicated 
as possible in order to make it difficult for anyone to guess. 
 
Regarding the possible characters that the password can assume, it was decided to 
limit ourselves only to alphanumeric characters in order to evaluate the 
effectiveness of the algorithm. These characters are divided into 10 numeric digits, 
26 uppercase letters, and 26 lowercase letters. 
 
Considering that the minimum key length is 16 characters, our program must 
evaluate a total of 6216 keys or even more if the size of key increase. This yields a 
staggering number: 4,767,525,381,634,189,126,649,103,360. This number is so 
immense that it surpasses the computing power of any existing computer in the 
world. The computational complexity involved in processing such a vast number of 
keys is beyond the capabilities of current technology. This underscores the 
robustness and security of AES encryption, as it poses an insurmountable challenge 
to brute-force attacks due to the astronomical number of possible key combinations. 
 
A list is created with all these combinations. Each combination is then checked to 
decrypt the message and find text made only of letters and numbers. If found, the 
process stops, and the password is shown on the screen. 
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import serial 

import time 

from Crypto.Cipher import AES 

import itertools 

 

class FoundedConf: def __init__(self, baudrate, parity, nbits): 

self.baudrate = baudrate self.parity = parity self.nbits = nbits 

 

 

start_time = time.time() 

com_port = 'COM5' 

typ_baud_rate = [9600, 19200, 38400, 57600, 115200, 2400] 

typ_byte_size = [serial.EIGHTBITS, serial.SEVENBITS] 

typ_stop_bits = [serial.STOPBITS_ONE,  

serial.STOPBITS_ONE_POINT_FIVE, serial.STOPBITS_TWO] 

typ_parity = [serial.PARITY_NONE,  

serial.PARITY_ODD,  

serial.PARITY_EVEN,  

serial.PARITY_MARK, serial.PARITY_SPACE] #5 operations at constant 

time O(5) 

 

ser = serial.Serial() 

ser.port = com_port 

ser.timeout = 10 

ser.baudrate = typ_baud_rate[4] 

ser.parity = typ_parity[0] 

ser.bytesize = typ_byte_size[0] 

ser.open() 

 

 match = False 

swapen = True 

LenPack = [64, 32, 16] 

i = 0 

 

TestNumber = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] 

TestLowCase = ['a','b','c','d','e','f','g','h','i' 

'l','m','n','o','p','q','r','t','u','v','x','z'] 

TestUpperCase = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'L', 

'M', 'N', 'O', 'P', 'Q', 'R', 'T', 'U', 'V', 'X', 'Z'] 

 

if __name__ == "__main__": 

 

    x = ser.read(LenPack[i]) if swapen:  

msg = x[int(LenPack[i]/2):]  

key = x[:int(LenPack[i]/2)] else:  

msg = x[:int(LenPack[i]/2)]  

key = x[int(LenPack[i]/2):] if i<len(LenPack): i=i+1 swapen = not 

swapen 

    PossibleCharacters = TestNumber+TestLowCase+TestUpperCase  

combinations = list(itertools.permutations(PossibleCharacters, 

len(key))) 

 

    for i_KeyBF in combinations:  

cipher = AES.new(i_KeyBF, AES.MODE_CBC, msg) decrypted_message = 

cipher.decrypt(encrypted_message) unpadded_message = 

unpad(decrypted_message, AES.block_size) 

        for i_cryp_msg in unpadded_message: if 33 <= i_cryp_msg < 

126:  

match = True  

else: if match is True and i_cryp_msg == 0: break  

else:  
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match = False  

break 

    end_time = time.time() compromise_time = end_time - start_time 

if not match: print("Nothing founded") else: print("Matched 

Password:", key.decode("utf-8")) print("Compromise time:", 

compromise_time, "seconds") 

 
Code block 13 - Python code of the AES brute-force attack 

 
As expected, the program needs to use a significant amount of computer RAM, 
exceeding the 16 GB capacity of this PC. Consequently, this leads to crashing the 
program and causing this error: 
 
C:\Users\antop\PycharmProjects\Scripts\python.exe 

C:\Users\antop\PycharmProjects\PythonProject\AES_BF.py  

Traceback (most recent call last): 

  File 

"C:\Users\antop\PycharmProjects\pythonProject\AES_BF.py"

, line 68, in <module>. 

    combinations = 

list(itertools.permutations(PossibleCharacters, 

len(key))) 

MemoryError 

 

Process finished with exit code 1 
Code block 14 - error message of AES brute-force attack 

Surprisingly, this can actually make the program more secure against brute-force 
attacks. Trying to guess the time it would take to crack the system becomes nearly 
impossible due to the added complexity. 
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Analysis of Timing and Computational Cost 

Now focusing on the computational cost, the dominant factor in the code's 
computational complexity is the nested loop iterating over possible key 
combinations using itertools.permutations.  
This loop has a time complexity of O(n!) where n is the length of the key. 
 
Analyzing the code reveals that the overall cost of the program is composed as 
follows: 
 

• Initialization (including FoundedConf class and variable assignments): O(1) - 
Constant time 

• Serial port setup (opening ser): O(1) - Constant time (assuming negligible 
overhead) 

• Reading data from serial port (single read call): O(1) - Constant time (for a 
single read) 

• String manipulation (slicing for msg and key): O(n) - Linear time with respect 
to the length of the read data (n) 

• Checking characters (inner loop): O(n) - Linear time with respect to the length 
of the decrypted message (n) 

• Printing results: O(1) - Constant time 
 
Moving on to the compromise time, the worst-case execution time for compromising 
the system is calculated under the assumption that the correct password is 
positioned at the end of the list of combinations. Since the program encountered an 
error due to the high computational cost, it was not possible to determine an 
experimental execution time. However, by conducting a theoretical calculation 
based on the available data, we can conclude that: 

 

𝑇𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 =
𝑁

𝑓𝑐𝑙𝑜𝑐𝑘
=

6216

2.5 𝐺ℎ𝑧
=

6216

2.5 ∗ 109
≈  8.8 × 1011    ≈ 27.86 𝑦𝑒𝑎𝑟𝑠. 

 
This benchmark reassures us since no computer, even the most powerful, could wait 
that long to detect a single message password. It would certainly not be worth it. But 
if we want to be even more protected, we can see that the compromise time is 
proportional to the key length, so if the key length increases, the compromise time 
also increases. By introducing a key length of 32 bits, the 𝑇𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 becomes 

3.504 × 1034𝑦𝑒𝑎𝑟𝑠, an astronomical number that could be approximated to infinity. 
 
With this satisfactory result, the next step is the testing of another type of attack, 
characterized by greater intelligence and efficiency. 
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Dictionary Attack 

The Dictionary Attack is a technique commonly used in computer hacking to uncover 
an account's password. It involves using a predefined list of words or character 
combinations to exploit the tendency of many individuals to use weak or easily 
guessable passwords. The fundamental principle underlying the Dictionary Attack is 
to systematically test each word or character combination in the dictionary against 
the target account until a matching password is discovered. 
 
In implementing a Dictionary Attack, it is necessary to first compile a dictionary 
containing a wide range of common words, character combinations, names, and 
other possible passwords used by users. This dictionary can be created manually or 
downloaded from web as in our case. [8] 
 
The files of the dictionary used in our experiment specifically contain about: 
 

• 11000 Italian words with proper names 

• 38000 Italian surnames 

• 400 compound words 

• 33500 verb conjugations 
 
So many more could be added,  but given the experimental purpose of the research 
it can be limited to these. 
 
Once the dictionary is obtained, the attack process involves iterating through each 
entry in the dictionary and attempting to access the account with that password.  
 
In our case we set as sample password: 
 

Auto-assemblaggio 
 

and write it on the bottom of the list, in order to test the maximum compromise 
time. 
 
In this case, there is a specific package called pandas, which need to be installed. This 
package allows us to read from a txt file all the possible wors and save it as object. 
 
The code for this attack is similar to the previous one, with the only difference being 
that the key used to decrypt the message is now in the dictionary instead of the list 
of possible combinations as before. 
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import serial 

import pandas as pd 

from Crypto.Cipher import AES 

 

class FoundedConf: def __init__(self, baudrate, parity, nbits): 

self.baudrate = baudrate self.parity = parity self.nbits = nbits 

 

 dictionary = pd.read_csv("password_dictionary.txt", 

names=['passwords']) 

 

com_port = 'COM4' 

typ_baud_rate = [2400, 9600, 19200, 38400, 115200, 57600] 

typ_byte_size = [serial.SEVENBITS, serial.EIGHTBITS] 

typ_stop_bits = [serial.STOPBITS_ONE,  

serial.STOPBITS_ONE_POINT_FIVE, serial.STOPBITS_TWO] 

typ_parity = [serial.PARITY_NONE,  

serial.PARITY_ODD,  

serial.PARITY_EVEN, serial.PARITY_MARK, serial.PARITY_SPACE] 

 

 

 ser = serial.Serial() 

ser.port = com_port 

ser.timeout = 10 

ser.baudrate = typ_baud_rate[4] 

ser.parity = typ_parity[0] 

ser.bytesize = typ_byte_size[1] 

ser.open() 

 

 valid = False 

match = False 

swapen = True 

LenPack = [64, 32] 

i = 0 

 

while not valid:  

valid = False x = ser.read(LenPack[i]) if swapen:  

msg = x[int(LenPack[i]/2):]  

key = x[:int(LenPack[i]/2)] else:  

msg = x[:int(LenPack[i]/2)]  

key = x[int(LenPack[i]/2):] if i<len(LenPack): i=i+1 swapen = not 

swapen 

    for i_KeyDICT in dictionary["passwords"]:  

cipher = AES.new(i_KeyDICT, AES.MODE_CBC, msg) decrypted_message = 

cipher.decrypt(encrypted_message) unpadded_message = 

unpad(decrypted_message, AES.block_size) 

        for i_cryp_msg in unpadded_message: if 33 <= i_cryp_msg < 

126: 

                match = True  

else: if match is True and i_cryp_msg == 0: break  

else:  

match = False  

break 

    end_time = time.time() compromise_time = end_time - start_time 

if not match: print("Nothing founded") else: print("Matched 

Password:", key.decode("utf-8")) 

Code block 15 - Python code of the AES dictionary attack 
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Analysis of Timing and Computational Cost 

Considering a dictionary containing 490738 words and all possible combinations of 
segments from a message format are being explored, the estimated computational 
cost can be determined by evaluating the number of "for" loops required to assess 
all dictionary combinations. 
 
Given the dictionary's 4,812,915 words and the examination of all possible 
combinations for each message segment, the total iterations can be calculated as 
follows: 
 

𝐿𝑒𝑡  𝑊  𝑏𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (4812915), 
 𝑎𝑛𝑑 ( 𝑆 ) 𝑏𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (4). 

 
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑎𝑠: 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  𝑊  
 

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠: 
𝑇𝑜𝑡𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∗ 
                                        𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 

 𝑊 × 𝑆 =  4812915 × 4 = 19251660  
 
 
This results in approximately 19251660  iterations in the "for" loops. However, for a 
more precise computation cost, additional factors such as the complexity of the 
algorithm used for word comparison in the dictionary and the time required for 
other operations within the loop must also be considered. 
 
In terms of compromise time, the worst-case execution time can be calculated when 
the correct password is located at the end of the list. Using this assumption, the 
tested time is determined to be: 

𝑇𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 = 257,24 𝑠 

 
This is perfectly achievable by any type of computer even in a reasonable amount of 
time. However, this bad news informs us that the system can be breached in a short 
time, necessitating an increase in the level of security. 
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Chapter 4: RSA 

Introduction 

In response to the vulnerabilities identified within the AES system, an additional 
security layer has been integrated. 
Unlike AES, RSA offers a unique approach to encryption by utilizing large prime 
numbers, which enhances its robustness.  
This makes factoring impractical for most computing systems. 
 Its strength is also based on the different visibility of the keys:  
In contrast to AES, where the encryption and decryption keys are the same and 
public, RSA operates asymmetrically by using a public-private key pair.  
The public key is can be read from anyone and utilized for encrypting data 
transmitted to the system, while the private key remains confidential to the receiver, 
enabling decryption of incoming messages.  
 
This architecture simplifies communication by transmitting only the encryption key, 
reducing a lot he risk since, if the key is compromised, decryption requires the 
corresponding private key. 
 
While AES may be more immediately intuitive than RSA in terms of operational 
complexity, the latter offers substantially elevated security, making it an ideal choice 
for safeguarding sensitive data within our applications. 
 
Furthermore, in this thesis, a comprehensive assessment of the upgraded system has 
been conducted, subjecting it to the same attacks previously applied to the AES 
system. Remarkably, all attempted attacks were unsuccessful, underscoring the 
robustness and effectiveness of the enhanced security measures in the system. 
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RSA Algorithm 

To gain a better understanding of the RSA algorithm, a practical example can 
effectively illustrate its steps. 
Consider the following scenario in which Bob wishes to send a message to Alice. 
The following steps must be followed: 
 
1. Key Generation: 
   - Alice selects two prime numbers, 𝑝 = 11 and 𝑞 = 13. 
   - She calculates the modulus, 𝑛 = 𝑝 × 𝑞 = 143, and the function 𝜙(𝑛) =
(𝑝 − 1) × (𝑞 − 1) = 120. 
   - Alice chooses her RSA public key, 𝑒 = 7, ensuring 1 < 𝑒 < 𝜙(𝑛) and the greatest 

common divider is gcd(𝑒, 𝜙(𝑛)) = 1. 

   - Using the Extended Euclidean algorithm, she computes her RSA private key, 𝑑 =
103. 
 
2. Encryption by Bob: 
   - Bob obtains Alice's RSA public key (n, e), i.e., (143, 7). 
   - His plaintext message, M, is the number 9. 
   - Bob encrypts M into ciphertext, C, using the RSA encryption formula: 
  

𝐶 ≡ 𝑀𝑒 𝑚𝑜𝑑 𝑛 
 
   - So, 𝑀𝑒𝑚𝑜𝑑 𝑛 =  97𝑚𝑜𝑑 143 =  48 ≡ 𝐶. 
 
3. Decryption by Alice: 
   - Alice receives Bob's ciphertext, C. 
   - She decrypts it using her RSA private key (d, n) with the formula: 

𝑀 ≡ 𝐶𝑑  𝑚𝑜𝑑 𝑛 
   - Thus, 𝐶𝑑𝑚𝑜𝑑 𝑛 =  48103𝑚𝑜𝑑 143 =  9 ≡  𝑀 
 
Consequently, Alice can reply to Bob following the same steps. 
 
This encryption method can also guarantee the origin of a message.  
Considering the situation where Alice, before encrypting the message with Bob's 
public key, encrypts it with her private key and then encrypts it again with Bob's 
public key. When Bob receives the message and decrypts it with his private key, he 
receives a message that is still encrypted. Decrypting this message requires Alice's 
public key, which confirms that the message was sent by Alice alone, since she alone 
has the private key that was used to encrypt the message in the first place. 
 
In other words, by using this double encryption method, Alice can send messages to 
anyone while guaranteeing their origin. In fact, by encrypting the message with her 
private key, anyone can read it by decrypting it with her public key, thus ensuring 
that the sender is indeed Alice. [9] 
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RSA Implementation 

The microcontroller being used lacks a dedicated cryptography library, necessitating 
the creation of a custom one.   The library found at the provided 
link[https://github.com/kevhou/RSA/blob/master/RSA.c] [10] will serve as a starting 
point, which will then be modified to function on the microcontroller and interface 
with the UART communication library. 
 
This provides a console application that uses the algorithm steps discussed in the 
previous section and integrates with the Windows terminal. 
 
Examining the code, firstly, the two prime numbers and the public exponent are 
requested to generate the keys. Subsequently, the parameters are checked, and the 
appropriate function is called to perform the necessary mathematical operations to 
return both the public and private keys. 
After entering the parameters, a printout is made of the generated keys and entered 
parameters. 
 
For encryption and decryption, the user is only prompted to input the encrypted and 
decrypted messages, respectively. These are then processed by the appropriate 
function, which applies the correct mathematical formula to obtain the message in 
the desired configuration. 
 
Our current task is to tailor this library to suit our needs. The changes to be made 
primarily concern the interface. 
The main difference lies in the fact that the microcontroller lacks an interactive shell. 
The messages to encrypt and decrypt are data received from external sources 
through a dedicated function, and once received, they are allocated in memory. 
 
The new library has been named MicroRSA and includes the following public 
functions: 
MICRO_RSA MicroRSA_GenerateKeys(uint8_t p, uint8_t q, uint8_t e); 
 
MICRO_RSA MicroRSA_Encrypt(uint8_t* abyEnBuf, size_t LenEnBuf); 
 
MICRO_RSA MicroRSA_Decrypt(uint8_t* abyDeBuf, size_t LenDeBuf); 
 
struct PubKey MicroRSA_GetPubKey(void); 

Code block 16 - Prototypes of the public functions of MicroRSA module 

The names are very self-explanatory: the first one takes the two prime numbers and 
the public exponent as parameters, checks them to ensure they meet the necessary 
criteria, generates the public and private keys, and saves them in two privately 
allocated structures. The encryption and decryption functions simply apply the 
formula to the buffer passed by reference. The last one have the only purpose to call 
the public key structure from other modules. 
To send an encrypted message, the only action to do is enabling the RSA_CONF 
macro at the beginning of the UART_Comm.c file. 

https://github.com/kevhou/RSA/blob/master/RSA.c
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Let's focus for a moment on the implementation of functions. 
The first function, named `MicroRSA_GenerateKeys`, has the purpose to generate 
both the public and private keys, which are used for encrypting and decrypting 
messages. 
 
Initially, three parameters are passed: p, q, and e, representing two prime numbers 
and a public exponent, respectively. Firstly, the function verifies whether both 
numbers p and q are prime through the check_prime function. If both numbers are 
prime, the modulo of the public key N is calculated by multiplying the two prime 
numbers p and q. 
 
Subsequently, the value of Euler's Phi (dwPhi) is calculated as the product of (p - 1) 
and (q - 1). This value is crucial for calculating the private exponent. 
 
After checking the validity of the public exponent e using the check_e function, the 
public exponent is assigned to the public key EnKey.PubE, while the private exponent 
d is calculated using the modular inverse of e with respect to dwPhi. 
 
Finally, if all conditions are met and the keys are successfully generated, the function 
returns MICRO_RSA_OK. Otherwise, if any of the checks fail, MICRO_RSA_PAR_ERR 
is returned, indicating an error in the input parameters. 
 
// Function to generate RSA keys 
MICRO_RSA MicroRSA_GenerateKeys(uint16_t p, uint16_t q, uint16_t e) 
{ 
    uint16_t dwPhi; 
 
    if ((check_prime(p) == true) && ((check_prime(q) == true))) 
    { 
        EnKey.PubN = p * q; 
        DeKey.PrivN = EnKey.PubN; 
 
        dwPhi = (p - 1) * (q - 1); 
 
        if (check_e(e, dwPhi)) 
        { 
            EnKey.PubE = e; 
            DeKey.PrivD = mod_inverse(e, dwPhi); 
            return MICRO_RSA_OK; 
        } 
        else 
        { 
            return MICRO_RSA_PAR_ERR; 
        } 
    } 
    else 
    { 
        return MICRO_RSA_PAR_ERR; 
    } 
} 

Code block 17 - Implementation of MicroRSA_GenerateKeys function 
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The second function is designed to encrypt data using the RSA algorithm. It takes as 
input a pointer to an array of unsigned 16-bit integers (uint16_t *abyEnBuf) and the 
size of the array (size_t LenEnBuf), representing the length of the data to be 
encrypted. 
 
The function begins by checking if the pointer to the data array (abyEnBuf) is not 
NULL, ensuring that the data array is not empty. If the pointer is not NULL, the 
function proceeds through a for loop that iterates over all elements of the array. 
 
For each element, the data array is encrypted using the public exponent and 
modulus of the public key (EnKey.PubE and EnKey.PubN) through the MEA function. 
The result of the encryption overwrites the data array itself. 
 
Once all elements of the array have been successfully encrypted, the function 
returns MICRO_RSA_OK, indicating that the encryption operation has been 
completed successfully. If the pointer to the data array is NULL, the function returns 
MICRO_RSA_PAR_ERR, indicating an error in the input parameters. 
 
In summary, This function accepts an array of data and encrypts it using the RSA 
algorithm with the specified public key. If the encryption operation succeeds, it 
returns a success signal; otherwise, it signals an error in the input parameters. 
 
// Function to encrypt data using RSA 
MICRO_RSA MicroRSA_Encrypt(uint16_t *abyEnBuf, size_t LenEnBuf) 
{ 
    if (abyEnBuf != NULL) 
    { 
        for (uint16_t i = 0; i < LenEnBuf; i++) 
        { 
            abyEnBuf[i] = MEA(abyEnBuf[i], EnKey.PubE, EnKey.PubN); 
        } 
        return MICRO_RSA_OK; 
    } 
    else 
    { 
        return MICRO_RSA_PAR_ERR; 
    } 
} 

Code block 18 - Implementation of MicroRSA_Encrypt  function 

The third function, MicroRSA_Decrypt, mirrors the structure of MicroRSA_Encrypt, 
with the primary distinction being its role in decrypting data. It accepts a pointer to 
an array of 8-bit unsigned integers (uint8_t *abyDeBuf) and the size of the array 
(size_t LenDeBuf), which denotes the length of the data to be decrypted. 
 
Similar to MicroRSA_Encrypt, MicroRSA_Decrypt begins by validating the pointer to 
the data array (abyDeBuf) to ensure it is not NULL. If the pointer is valid, the function 
proceeds to iterate through each element of the array. 
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For each element, the function decrypts the data using the private exponent and 
modulus of the private key (DeKey.PrivD and DeKey.PrivN) via the MEA function. The 
decrypted result overwrites the original data array, preserving its structure. 
 
Upon successful decryption of all elements, the function returns MICRO_RSA_OK, 
indicating that the decryption operation has been completed successfully. In the 
event that the pointer to the data array is NULL, MICRO_RSA_PAR_ERR is returned, 
signaling an error in the input parameters. 
 
 
// Function to decrypt data using RSA 
MICRO_RSA MicroRSA_Decrypt(uint8_t *abyDeBuf, size_t LenDeBuf) 
{ 
    if (abyDeBuf != NULL) 
    { 
        for (uint8_t i = 0; i < LenDeBuf; i++) 
        { 
            abyDeBuf[i] = MEA(abyDeBuf[i], DeKey.PrivD, DeKey.PrivN); 
        } 
        return MICRO_RSA_OK; 
    } 
    else 
    { 
        return MICRO_RSA_PAR_ERR; 
    } 
} 

Code block 19 - Implementation of MicroRSA_Decrypt function 

The last function, MicroRSA_GetPubKey, simply returns a structure containing the 
modulus and the public exponent of the public key. 
 
As done with the other configurations, a macro is created to activate the feature 
related to RSA transmission within the UART_Comm.c file. If the RSA_CONFIG macro 
is activated, the UART_Send function first saves the message to be sent in a 
dedicated buffer, intended solely to be modified for encryption. The 
MicroRSA_Encrypt function is then called, passing this buffer by reference along with 
its size. 
 
Now, the formatting of the output message needs to be decided. The simplest 
approach is to append the values of the public exponent and the modulus of the 
decryption key to the encrypted message. To implement this, a temporary buffer 
with two additional bytes is created, and it is filled with the encrypted message up to 
the second-to-last position. The value of the public exponent is then stored in the 
penultimate position, while the modulus is appended at the end. 
 
Subsequently, the buffer is transmitted externally through the appropriate function 
of the operating system. 
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#ifdef RSA_CONF 
  for(uint16_t i=0;i<KEY_SIZE; i++) 
  { 
   if(i<wdBufSize) 
   { 
    mx_encripted[i]=pbyTXBuf[i]; 
   } 
   else 
   { 
    mx_encripted[i]=0; 
   } 
  } 
  if(MicroRSA_Encrypt (mx_encripted, wdBufSize)) 
  { 
   uint16_t rsa_mx_to_send[wdBufSize+2]; 
   for(uint16_t i=0;i<(wdBufSize+2); i++) 
   { 
    if(i<wdBufSize) 
    { 
     rsa_mx_to_send[i]=mx_encripted[i]; 
    } 
    else if(i==wdBufSize) 
    { 
    
 rsa_mx_to_send[i]=MicroRSA_GetPubKey().PubE; 
    } 
    else 
    { 
    
 rsa_mx_to_send[i]=MicroRSA_GetPubKey().PubN; 
    } 
   } 
  
 HAL_UART_Transmit_IT(pmyhuart,(uint8_t*)rsa_mx_to_send,sizeof(rsa_
mx_to_send)); 
 
   return UART_COM_OK; 
  } 
  else 
  { 
   return UART_COM_LL_ERROR; 
  } 
#endif 

Code block 20 - Implementation of the RSA transmission in UART_COM_Send 
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To test if the function works, the message is first encrypted and then decrypted. The 
serial monitor is checked to confirm that it matches the original message. 
 

 
Code block 21 - Serial monitor of the RSA transmission test 

 

Satisfied with the achieved results, the implementation of the decryption at the 
receiving end goes smoothly. 
 
As with transmission, the received message is stored in a dedicated buffer. However, 
there's no need to store the public key, as it's solely utilized for encryption. 
Therefore, when saving the vector, I stop two bytes before the end of the buffer. 
 
Decryption is performed using a dedicated function, which applies the mathematical 
formula to the message using the internally allocated private key in memory. 
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#ifdef RSA_CONF 
 
  HAL_UART_Receive_IT (pmyhuart,pbyRXBuf,wdBufSize); 
 
  for(uint16_t i=0;i<(wdBufSize-2); i++) 
  { 
   mx_decripted[i]=pbyRXBuf[i]; 
  } 
  if(MicroRSA_Decrypt(mx_decripted,(wdBufSize-2)) == 
UART_COM_OK) 
  { 
  
 HAL_UART_Transmit_IT(pmyhuart,mx_decripted,(wdBufSize-2)); 
   return UART_COM_OK; 
  } 
  else 
  { 
   return MICRO_RSA_LL_ERROR; 
  } 
 
#endif 
 

Code block 22- - Implementation of the RSA reception in UART_COM_Receive 

In testing the decryption process, the decrypted message is resent to the sender for 
verification. This involves comparing the decrypted message with the original one to 
ensure they match. 
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Brute-Force Attack 

Following the methodology used in the previous section to assess the robustness of 
an RSA system, a simulated attack will be conducted to evaluate its security. 
 
The initial attack to be attempted is the Brute-Force attack, which entails 
systematically testing all conceivable combinations of the key in an attempt to 
uncover the original message. 
 
Given the previous discovery of the port configuration and the use of RSA encryption 
for serial messages, the identical library used on the microcontroller is adapted to 
the Python code. This adaptation process is relatively straightforward, facilitated by 
Python's own shell, and requires only syntax changes compared to C. 
 
Once the port is configured and opened, as long as the key is not found, the program 
receives the message and extracts the encoded message, the modulus, and the 
public exponent. However, since the decryption key consists of the modulus and the 
private exponent, the only value to be found is the latter. 
 
Knowing that the exponent is a uint8_t data, with values ranging from 0 to 255, a for 
loop is instantiated to iterate over all these values. For each value, the program 
attempts to decrypt the message and analyzes it to see if it is composed of 
alphanumeric characters. If the key is found, the program prints the decryption key 
and the decrypted message on the screen. 
 
while not valid: 

    valid = False 

    RxMsg = ser.read(LenPack[i]) 

    n = RxMsg[LenPack[i]-1] 

    e = RxMsg[LenPack[i]-2] 

    EnMsg = RxMsg[0:(LenPack[i]-2)] 

    i=(i+1)%2 

    values = range(256) 

    # Find all combinations of n and e 

    n=34 

    for test_d in range(2**8): 

        DeKey.PrivD = test_d 

        DeKey.PrivN = n 

        DeMsg = MicroRSA_Decrypt(EnMsg, DeKey) 

 

        for i_cryp_msg in DeMsg: 

            if 33 <= i_cryp_msg < 126: # printable range 

                valid = True 

            else: 

                if valid is True and i_cryp_msg == 0: 

                    break 

                else: 

                    valid = False 

                    break 

    end_time = time.time() 

    compromise_time = end_time - start_time 

    print("Compromise time:", compromise_time, "seconds") 
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    if valid: 

            print("Decription key:","n  =", DeKey.PrivN,"d 

=",DeKey.PrivD, ) 

            ascii_string = ''.join(chr(num) for num in DeMsg) 

            print("Cleartext msg:", ascii_string) 

            print("Compromise time:", compromise_time, "seconds") 

            break 

 
Code block 23 - Python code snippet of the RSA brute-force attack 

Analysis of Timing and Computational Cost 

Following the discovery that this method easily compromises the system, especially 
when using a data type with a limited range of representation, such as a byte, an 
analysis of compromise time was undertaken. To accomplish this, the time library 
included in Python was utilized. 
 
The code sets the initial time at the beginning and then prints the elapsed time on 
screen.  
On the basis of our experiment, our conclusion is that the worst-case scenario is that 
the compromise time is: 

𝑇𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 =  0.475 𝑠 

 
The low value indicates that our system is highly susceptible to compromise. The 
short period suggests that anyone could exploit it to hack into the system. This 
vulnerability is due to the use of excessively small numbers. For example, 
transitioning to a number that can be represented on 16 bits results in an 
exponential increase in the compromise time. With only 20 bits, the compromise 
time extends to 195 seconds, significantly accelerating the system's vulnerability. 
 
Typically, a large number of at least 617 digits is employed to ensure the required 
level of security. In this case, a small number is used merely as an illustrative 
example due to the limited computing power of the microcontroller. It is important 
to note that this encryption is only one layer of security among others. 
 
The dominant factor influencing its computational cost arises from the nested loop 
structure. The inner loop iterates through all possible values of the private key 
exponent (d), resulting in exponential complexity (O(2^d)). This exhaustive search, 
while effective for small key sizes, becomes computationally infeasible as the key 
size (d) increases. The analysis assumes constant time for other operations within 
the loop, such as reading data and the decryption function (MicroRSA_Decrypt). 
However, the complexity of the decryption function, if not constant, would further 
contribute to the overall cost.  
 
The conclusion is that to enhance protection, the RSA key must be sufficiently large 
to make computational cost and compromise time unachievable. 



62 
 

Dictionary Attack 

 
In this scenario, the dictionary consists only of number combinations representing 
'd', the range of which, of course, depends on the size of the chosen prime number.  
The level of security increases with the complexity of the 'd' value, making it more 
resistant to decryption attempts.  
Therefore, a dictionary search becomes a meticulous brute-force attack strategy. The 
decryption process involves systematically iterating through a file to exhaustively 
test every possible combination of 'd'. The goal is to uncover the decrypted message 
while ensuring that it retains meaningful content despite the encryption. This 
exhaustive approach underscores the intensive computational effort required for 
decryption. 
 
Taking a look at the code, the first step to take is to save us the encrypted message 
and the n form placed in the penultimate position. A for loop that runs through all 
the words in the dictionary changes the decryption key and tries to decrypt the 
message looking for a message consisting of only printable characters. When found, 
the loop stops and prints the decryption key and the decrypted message. 
 
valid = False 

RxMsg = ser.read(LenPack) 

n = RxMsg[LenPack-1] 

e = RxMsg[LenPack-2] 

EnMsg = RxMsg[0:(LenPack-2)] 

i=(i+1)%2 

values = range(256) 

# Find all combinations of n and e 

combinations = itertools.combinations(values, 2) 

for test_d in dictionary["passwords"]: #only numbers between 0 and 

255 

    DeKey.PrivD = test_d 

    DeKey.PrivN = n 

    DeMsg = MicroRSA_Decrypt(EnMsg, DeKey) 

    for i_cryp_msg in DeMsg: 

        if 33 <= i_cryp_msg < 126: 

            valid = True 

        else: 

            if valid is True and i_cryp_msg == 0: 

                break 

            else: 

                valid = False 

                break 

end_time = time.time() 

compromise_time = end_time - start_time 

if valid: 

    print("Decription key:","n  =", DeKey.PrivN,"d =",DeKey.PrivD, 

) 

    ascii_string = ''.join(chr(num) for num in DeMsg) 

    print("Cleartext msg:", ascii_string) 

 
Code block 24 - Python code snippet of the dictionary attack on RSA system 
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Analysis of Timing and Computational Cost 

The computational cost of this algorithm depends heavily on the size and complexity 
of the dictionary it uses. As the number of words in the dictionary grows, the 
algorithm needs to perform comparisons against each entry, leading to a significant 
increase in time and resources required. This complexity is typically measured in Big 
O notation, and for certain algorithms, it might be proportional to the product of 
dictionary size (n) and word length (w). 
 
However, techniques like hashing can help mitigate this by improving search 
efficiency. Ultimately, considering this relationship between dictionary size, word 
length, and computational cost is essential for selecting the most suitable algorithm 
for a specific task. For instance, if real-time performance is a priority, a smaller 
dictionary with shorter words might be a better choice. 
 
In our case, if the length of d is a byte, the computational cost is: 
 

𝑂(𝑛) = 28 = 256 
 

Figure 22 - Trend of computational cost respect to the key length 

Analyzing the program's execution times when the for loop completes reveals an 
exponential trend. This is a critical observation in understanding how key length 
impacts security. An exponential increase in execution time signifies a dramatic rise 
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in the effort required to crack the code. The attacks, which systematically try every 
possible key combination, become significantly slower and computationally 
expensive as the key length increases. 
 
 

 
For today's systems, RSA recommends using at least a 1024-bit key to maintain 
document security through 2010, and upgrading to a 2048-bit key for security 
through 2030. For documents requiring security beyond 2030, a 3072-bit key is 
recommended.  

Figure 23 - Trend of compromise time respect to key length 
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Conclusions 

In conclusion, our research has highlighted the vulnerabilities present in serial 
communication for mechatronic systems and the critical need for enhanced security 
measures. The initial exploration revealed how easily the system could be 
compromised without any protection, underscoring the importance of implementing 
robust encryption algorithms. 
 
The introduction of the AES encryption algorithm significantly improved the system's 
security, demonstrating resilience against brute force attacks and offering 
substantial protection. However, it showed some susceptibility to dictionary attacks, 
particularly when using commonly used keys. 
 
Furthermore, the integration of the RSA algorithm provided an additional layer of 
security, especially against dictionary and brute force attacks when employing 
sufficiently large key sizes. Combining RSA and AES to create a double encryption of 
the message enhances the overall security posture of the system, making it 
significantly more challenging for malicious actors to decrypt intercepted messages. 
 
Moreover, considering the lightweight nature of the software implementations, the 
potential applications of these security measures are vast and varied. From industrial 
automation to IoT devices, the ability to secure serial communication opens up a 
multitude of possibilities for safeguarding sensitive data and protecting critical 
systems. 
 
In summary, by implementing advanced encryption algorithms such as AES and RSA 
and exploring the potential synergies between them, it is possible to significantly 
enhance the security of serial communication in mechatronic systems, ensuring the 
integrity and confidentiality of transmitted data across various applications and 
environments. 
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