
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Development of System Verification
Methods for Aircraft Electronic Systems

Supervisors

Prof. Mario Roberto CASU

Eng. Riccardo STICCA

Candidate

Lucia VENCATO

April 2024

Abstract

In aviation industry, it is essential to guarantee the safety and reliability of aircraft
equipment since hardware failures can have disastrous effects. As a consequence, the
verification process is indispensable, providing a methodical and rigorous approach
to ensure that hardware components meet specified requirements and adhere to
stringent safety guidelines. This thesis work was conducted in Leonardo Electronics
in the context of hardware verification. The primary objective of this research
is to study and explore the Universal Verification Methodology (UVM), with
the goal of developing a comprehensive testbench for a Universal Asynchronous
Receiver/Transmitter (UART) transmitter device. UVM relies on System Verilog
language, which exploits Object-Oriented Programming constructs, and includes a
set of pre-defined classes and methods that allow to create scalable, reusable, and
maintainable verification environments. Initially, the primary UVM components
were chosen, and the testbench infrastructure was developed using Siemens EDA’s
UVM Framework (UVMF) code generator. UVMF requires configuration files,
written in yaml language, to create the testbench. Therefore, each component was
correctly described following yaml guidelines. After obtaining the basic testbench,
further modifications were implemented to customize the behavior of individual
components in order to meet the specific requirements of the Device Under Test
(DUT). The developed testbench includes different UVM components: an agent
responsible for transmitting input data to the DUT, a second agent tasked with
collecting output data from the DUT, a predictor utilized for calculating the golden
output values, and a scoreboard utilized to verify the correspondence between the
golden values and the actual outputs. Simulations were conducted to verify the
correct behaviour of the developed testbench and to test the uart transmitter device
under various configurations. QuestaSim and Visualizer, provided by Siemens EDA,
were the software tools used to run simulations.

i

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 DO-254 Standard . 1
1.2 Goal of the thesis . 3

1.2.1 Software tools . 3

2 Background 4
2.1 SystemVerilog . 4
2.2 Universal Verification Methodology 4

2.2.1 UVM Testbench . 6
2.2.2 UVM Phases . 7
2.2.3 Transaction Level Modeling 8
2.2.4 Testbench configuration . 9
2.2.5 UVM Messaging . 9

2.3 UVM Framework . 10
2.3.1 YAML . 12

2.4 UART . 13

3 UVM Verification Environment 15
3.1 Device Under Test . 15
3.2 Development Flow . 16

3.2.1 Verification blocks design . 17
3.2.2 Design to YAML translation 17
3.2.3 Verification blocks generation and code simulation 18
3.2.4 Custom code addition . 19

3.3 UART Top Level Testbench . 20
3.3.1 UART Test Top . 20
3.3.2 UART Transactions . 21

ii

3.3.3 UART Sequences . 22
3.4 UART Environment . 24

3.4.1 UART In Agent . 25
3.4.2 UART Out Agent . 28
3.4.3 UART Predictor . 31
3.4.4 UART Scoreboard . 35

4 Results 38

5 Conclusion 43

Bibliography 45

iii

List of Tables

1.1 DO-254 Design Assurance Levels 2

2.1 UVM Phases description . 7
2.2 UVM Messages . 9

3.1 UART configuration variables . 18
3.2 UART In Transaction . 21
3.3 UART Out Transaction . 21

4.1 UART configuration (e8) register details 38

iv

List of Figures

1.1 DO-254 Flow . 2

2.1 UVM Verification Environment . 5
2.2 TLM interfaces . 8
2.3 TLM interfaces . 9
2.4 UVMF agent architecture . 11
2.5 UVMF environment architecture 11
2.6 UART data frame [11] . 13

3.1 UART transmitter . 15
3.2 UART Environment Block Diagram 17
3.3 UART environment schematic from Visualizer 25
3.4 UART Agent In from Visualizer . 26
3.5 UART Agent Out from Visualizer 29
3.6 UART Predictor from Visualizer . 31
3.7 UART Scoreboard from Visualizer 35
3.8 scoreboard_output.log example . 37
3.9 test_output.txt example . 37

4.1 UART In Agent waveform uart_config = e8 39
4.2 UART Out Agent Single transaction uart_config = e8 40
4.3 UART Out Agent First transaction uart_config = e8 40
4.4 UART Out Agent Second transaction uart_config = e8 40
4.5 UART Out Agent Last transaction uart_config = e8 41

v

Chapter 1

Introduction

In aviation, where hardware failures can have catastrophic consequences, it is
critical to ensure the safety and reliability of airborne equipment. Therefore, the
verification process is essential, acting as a methodical and thorough means of
verifying that hardware components fulfill requirements and conform to strict safety
standards.
In hardware verification, Universal Verification Methodology (UVM) emerges as
a powerful and standardized framework which offers a methodology for creating
efficient and reusable verification environments, allowing engineers to streamline
the verification process and increase productivity.
This thesis project was conducted in Leonardo Electronics Caselle Plant, which is
involved into the design and production of Avionic Systems since 1950. In particular,
their main focus is on Hardware Safety Critical products, and consequently RTCA
DO-254 standard is a key point in the verification flow.

1.1 DO-254 Standard
DO-254, "Design Assurance Guidance for Airborne Electronic Hardware," is a
standard developed by RTCA (Radio Technical Commission for Aeronautics) and
it defines a comprehensive set of guidelines for the development and verification of
electronic hardware in airborne systems [1].
Key aspects of DO-254 are:

• Life Cycle Approach: it covers the complete life cycle of airborne electronic
hardware, from design to development, verification, and then production.

• Verification Process: it confirms that the hardware component developed
meets the requirements. It includes conducting reviews throughout the design
process.

1

Introduction

• Tool Qualification: it specifies guidelines for ensuring that the tools used do
not introduce errors or uncertainties.

DO-254 standard introduces five levels of classification, know as Design Assurance
Levels (DAL), used to define the accuracy that should be applied to the design
and verification processes. DALs are shown in Table 1.1.

Level Failure Conditions Effect of anomaly Example
A Catastrophic Prevent continued safe flight and land-

ing
Fly-by-wire

B Hazardous/Severe Serious or potentially fatal injuries to
a small number of occupants

Fuel management

C Major Discomfort to occupants, possibly in-
cluding injuries

Pilot/ATC communi-
cation

D Minor Some inconvenience to occupants Flight data recorder
E Not Relevant No effect on aircraft operational capa-

bility or pilot workload
Entertainment system

Table 1.1: DO-254 Design Assurance Levels

Since in Leonardo Caselle Plant Hardware Safety Critical products are developed,
they must be compliant with DAL A. DO-254 flow is shown in Figure 1.1.

Figure 1.1: DO-254 Flow

2

Introduction

1.2 Goal of the thesis
According to the DO-254 flow, this thesis project is situated within the phase
denoted as "Verification - Phase in Simulation".
The objective is to research and construct a UVM (Universal Verification Method-
ology) verification environment for a UART transmitter device. Furthermore, the
purpose of this research is to determine whether UVM methodology provides any
advantages over the company’s current VHDL-based testbench development.

1.2.1 Software tools
For the simulation of developed testbench two software were used, both provided
by Siemens EDA:

• QuestaSim: it is used for simulation of hardware description languages, and it
offers advanced debugging capabilities.

• Visualizer: it can be considered a QuestaSim upgrade, which also includes
some UVM specific debug features.

Furthermore, material for studying SystemVerilog and UVM methodology was
provided by the Verification Academy [2], an online platform by Siemes EDA which
offers learning resources and a community ready to answer to any verification
related question.

3

Chapter 2

Background

2.1 SystemVerilog
SystemVerilog is a unified hardware design and verification language. It is an
extension of the Verilog hardware description language, and it was developed to
address the increasing complexity of modern digital designs [3].
SystemVerilog introduces features such as:

• Extended data types: it adds some new data types such as bit, byte, shortint,
int, longint, real, and others, providing more flexibility in data representation.

• Interfaces: used to encapsulate functionality between blocks.

• Object-Oriented Programming (OOP): it allows the use of classes, inheritance,
and polymorphism, enabling the development of more modular, reusable, and
maintainable code during both design and verification.

• Constrained Random Generation: it introduces the rand keyword and con-
straints can be applied to control the distribution of random values.

• Assertions: used to specify formal properties that must hold true during
simulation.

• Functional coverage: a measure of how well the design has been verified with
respect to specific features.

2.2 Universal Verification Methodology
Universal Verification Methodology (UVM) is a standard methodology used to
verify digital designs and System-on-Chip (SoC). Developed by Accellera in 2011,

4

Background

it offers a systematic and scalable approach to verification, promoting reusability,
maintainability, and collaboration within the design and verification community
[4].
UVM is derived from previous verification standards: OVM, VMM and eRM.
OVM (Open Verification Methodology) was introduced in 2008 and it is an open-
source verification methodology based on SystemVerilog. VMM (Verification
Methodology Manual) is the SystemVerilog based verification methodology created
by Synopsis. eRM (e Reuse Methodology) is an aspect-oriented language that was
developed by Verisity. Each of these earlier standards contributed to a universal
best-way to simulate and verify a wide range of integrated circuit designs [5][6].
UVM is built on SystemVerilog’s object-oriented programming constructs and
includes a set of pre-defined classes and methods that allow users to create scalable,
reusable, and maintainable testbench structures.
UVM verification topology is divided in two parts:

• Tests and Stimulus: they can be constantly created during the project

• Testbench: it changes slowly over the project

A generic view of a UVM verification environment can be seen in Figure 2.1.

Figure 2.1: UVM Verification Environment

5

Background

2.2.1 UVM Testbench
Building blocks of a UVM testbench are class-based. These are called UVM Com-
ponents, and they are component objects extended from the uvm_component base
class [5].

Transaction: also known as Sequence Item. It is a high-level data set with
standard methods and collects information that is transferred between components.

Sequence: it is a constrained random stimulus generator that creates trans-
actions.

Sequencer: it is responsible for routing transactions to a driver using built-
in arbitration algorithms.

Driver: it receives transactions from the sequencer and drives them to the DUT
(Device Under Test) through methods in a virtual interface. Most drivers have
their Bus Functional Model (BFM) which converts transactions in signal activity.

Monitor: it is a passive component that samples DUT signals through inter-
face methods. It is responsible of observing pins wiggle on a bus and converting
them back into transactions.

Agent: it encapsulates and configures a sequencer, driver, monitor, coverage
collector. It has two operating modes:

• Active: it provides stimulus to the DUT and monitor signal activity.

• Passive: it monitors signal activity, so it only observes transfers between RTL
and broadcasts the observed transfers.

Scoreboard: it is an analysis component which collects transactions sent by a
monitor and perform specific analysis computations to determine whether or not
the design is functioning as expected. It is often split into two parts:

• Predictor: it receives the same stimulus transactions as the DUT and it
implements a model of the DUT (also known as Golden Reference Model) to
compute the expected values.

• Evaluator: the actual scoreboard, which performs the check on the expected
values received by the predictor and the actual ones received by the monitor.

Coverage Collector: it is an analysis component that samples observed trans-
actions and activity into SystemVerilog functional coverage groups. The coverage

6

Background

data collected from each test is stored into a shared coverage database used to
determine overall verification progress.

Environment: it encapsulates and configures one or more agents and analy-
sis component.

An important feature of UVM is the Factory mechanism [5]. It improves flexibility
since it allows a class object to be replaced with another one of a derived type,
without changing code or structure of the testbench.

2.2.2 UVM Phases

UVM phases are needed to structure the simulation flow and provide synchroniza-
tion for the components of the testbench. Each component follows a predefined set
of phases and cannot proceed to the next phase until all components have com-
pleted their execution in the current one. The introduction of the object-oriented
programming feature in SystemVerilog requires phases: Classes can be reused and
created whenever it is required and, without a synchronization mechanism, it is
possible that a component is called even if it has not been initialized yet, resulting
in incorrect testbench outputs [7][5].
There are three groups of phases, which are reported in Table 2.1:

Phase Category UVM phase

Build
build

connect
end_of_elaboration

Run start_of_simulation
run

Cleanup

extract
check
report
final

Table 2.1: UVM Phases description

• Build phases: executed at the start of the simulation. Their objective is to
construct, configure and connect the testbench component hierarchy. All build
phases methods are functions and therefore they execute in zero simulation
time. The build phase works top to bottom, so each component of a layer is
constructed by the level above.

7

Background

• Run phases: follow the build phases. During this phases time is consumed
in running the testcase on the testbench

• Clean-up phases: results of the testcase are collected and reported. These
phases extract information from scoreboards and functional coverage monitors
and are implemented as functions (so zero time to execute). They work from
the bottom to the top of the component hierarchy.

2.2.3 Transaction Level Modeling
Transaction-Level Modeling (TLM) is a methodology that allows different com-
ponents of the testbench to communicate and exchange information at a higher
level of abstraction than signal-level interactions. In TLM data are represented
as transactions, which flow in and out components through ports called TLM
interfaces:[7]

• port: object that define the set of methods available (API) to do the commu-
nication (such as calling get()).

• export: object that contains the implementation of the port’s method (such
as get() body).

• analysis port: used for broadcasting transactions

"port" must be connected to exactly one "export" (Figure 2.2), while "analysis port"
can be connected to any number of "analysis export" (Figure 2.3) [6].
TLM increases reusability and flexibility, because it allows to replace a component
with another as long as it has the same TLM interface.

Figure 2.2: TLM interfaces

8

Background

Figure 2.3: TLM interfaces

2.2.4 Testbench configuration

A testbench needs to be configured: there are some values that must be shared
between different components and that can be set at run time. These values
can be represented as SystemVerilog variables and can be organized into objects.
Specifically, UVM includes a Configuration Object which is an efficient, reusable
means for organizing configuration variables.

2.2.5 UVM Messaging

UVM provides an infrastructure for printing messages in a testbench, which is
included in all UVM components. There are four message types supported, reported
in Table 2.2 [5]:

Type Usage
UVM_INFO Informative messages
UVM_WARNING Warning message
UVM_ERROR Error message
UVM_FATAL Error message that results in an exit from simulation

Table 2.2: UVM Messages

UVM messages can have associated actions, allowing control over where they are
sent, and whether they stop or finish the simulation. As a result, they are an
effective tool for managing testbench simulations.

9

Background

2.3 UVM Framework
Siemens EDA offers an open-source package, UVM Framework (UVMF), that
provides a reusable UVM methodology and a code generator for easier testbench
creation [8]. It provides benefits such as [9]:

• Schedule reduction: for beginners learning UVM can be challenging because
of its extensive features and concepts, in fact a lot must be learned before
a production environment is operational. UVMF provides a starting point
to learn UVM and create UVM verification environment. In fact, it auto-
mates the development of the infrastructure and interconnections for interface
and environment package and project benches. Thanks to this, verification
engineers can immediately work on implement design-specific functionalities.

• Reuse methodology: it supports component level verification reuse across
projects and environment reuse from block through chip to system level
simulation.

• Consistency: it decreases integration effort when reusing verification compo-
nents.

In order to use UVMF, YAML (see subsection 2.3.1) configuration files for interface
packages, environment packages and project benches have to be created.
After the main component of the verification environment have been characterized,
they are sent as input to a python script that generates the relative UVM testbench.
Once the infrastructure is generated, it is possible to manually change the code,
in order to add the connection to the DUT and all the needed design-specific
functionality.
UVMF split the environment in two parts:

• HDL: the HDL (Hardware Design Language) side is written as synthesizable
modules or interfaces, it is timed (synchronizes with DUT) and drives (or
monitors) the pins of the DUT.

• HVL: the HVL (Hardware Verification Language) side is written in object-
oriented UVM code, it is untimed (does not have delays), it passes transactions
into interface methods and it does not directly assign to DUT’s ports.

Due to this separation, driver and monitor inside an agent are respectively divided
in two components:

• Monitor proxy and Driver proxy: UVM components, they are class-based
objects and perform transaction level operations.

10

Background

• Monitor BFM and Driver BFM: SV interfaces or modules, they communicate
with the DUT and perform signal to transaction conversion (Monitor BFM)
and transaction to signal conversion (Driver BFM).

A generic agent architecture can be seen in Figure 2.4.

Figure 2.4: UVMF agent architecture

A generic UVMF environment architecture can be seen in Figure 2.5.

Figure 2.5: UVMF environment architecture

11

Background

2.3.1 YAML
YAML is a human friendly data serialization standard used for configuration files
and the name stands for "YAML Ain’t Markup Language". It is used in the
generation of a UVMF verification environment due to its ease of translation of
data structures describing UVMF hierarchy and attributes [10].
All UVMF YAML has to be presented as part of a specific top-level format, shown
in the following code taken from UVMF YAML Reference Manual [10].

uvmf:
interfaces:

"<interface_nameA>"
<properties>
"<interface_nameB"

util_components:
"<util_componentA>"
<properties>

environments:
"<env_nameA>"
<properties>
"<env_nameB>"
<properties>

benches:
"<bench_nameA>"
<properties>
"<bench_nameB>"
<properties>

gloabal:
<properties>

Each named subsection represents a YAML data structure, with the following
content:

• interfaces: information about an interface’s name, transaction data, ports
and configuration. It creates classes (agent, driver, monitor, transaction,
interface level sequences), package, BFMs and compilation files.

• util_component: it is used to repesent UVMF predictor, scoreboard and
coverage components.

• environments: information about an environment’s name, instantiated com-
ponents, TLM connections and configuration. It creates classes (environment,
predictors, environment level sequences, coverage components), package and
compilation files.

12

Background

• benches: information about a bench’s name, top-level environment, pas-
sive/active settings for BFMs and data for driving reset and clock. It creates
classes (top level test and top level virtual sequence) package, modules (hdl,
hvl) and compilation files.

• global: it is used to provide information that can be applied to all other
objects.

2.4 UART
Since the DUT analyzed in the developed testbench is a UART device, fundamentals
of this protocol are discussed.
UART, Universal Asynchronous Receiver Transmitter, is a serial communication
protocol used in embedded systems, microcontrollers, and other electronic devices
for transmitting data between devices. It allows two devices to communicate with
each other serially over two wires, one for transmitting data (TX) and one for
receiving data (RX). It operates asynchronously, so there is no clock signal shared
[11].
UART uses character-based transmission, so each transfer consists of a frame. A
frame has a defined format, as shown in Figure 2.6:

• START BIT (1 bit) : it is always a logic 0. It is used to indicate the start of
a transmission.

• Character (n bits) : bits of a character to be sent. Common values are: 6, 7,
8, 9 bits. Character bits are transmitted LSB (least significant bit) first.

• PARITY BIT (0 or 1 bit) : it is present if parity is enabled for the transmission.
If parity is present, it could be even or odd. If it is EVEN, the total number
of bits equal to 1 (including the parity bit) should be even, while if it is ODD
the total number of bits set at 1 should be odd.

• STOP BIT (1 or 2 bits) : it is always a logic 1. It is used to indicate the end
of a transmission and it can be configure as 1 bit or 2 bits.

Figure 2.6: UART data frame [11]

Clock synchronization can be done at the beginning of a frame since the START
BIT of a new frame always triggers a 1 to 0 transition, either during an idle time

13

Background

or after the previous phase.
Transmitter and receiver should agree on different parameters: baud rate (bits per
second (bps)), that specifies the speed at which data is transmitted and received,
number of bits in a character, presence and kind of parity and number of stop bits.

14

Chapter 3

UVM Verification
Environment

The objective of the presented thesis work is to develop a UVM verification
environment for testing a UART transmitter device. UVM Framework was used to
build the initial infrastructure, since it helps instantiating classes and connections
between them.

3.1 Device Under Test
The Device Under Test (DUT) for the developed testbench is a UART transmitter
device. Its diagram is shown in Figure 3.1.

Figure 3.1: UART transmitter

15

UVM Verification Environment

UART tx receives parallel data (4 bytes word) on the input port tx_buffer_data
and serializes them on the output port uart_tx_dout. Once data are received on
the input port, they are stored in a memory at a specified address, waiting to be
sent. UART transmitter interface provides a set of registers, the ones involved in
the developed testbench are the following:

• tx_num: 8-bit register used to start a UART transmission. It stores the number
of bytes to be sent. If it is not equal to zero, then it starts a transmission.

• tx_busy_flag: 1-bit flag, it remains at 1 when a transmission is in progress.

• start_tx: 1-bit register, it goes high for one clock cycle to indicate that a
transmission has started.

• tx_buffer_addr: 8-bit register, it represents the memory address where data
are written.

• tx_buffer_data: 32-bit register, it stores input data to be sent over the uart.

• tx_buffer_en_wr: 4-bit register, it is used to mask bytes that are not sent
over the uart.

• uart_tx_ctrl_reg: 8-bit register, it contains uart configuration. It is divided
in sub-fields that allows to: enable a parity, select the parity (odd or even),
set the number of stop bits and select a baud rate.

• uart_tx_dout: 1-bit register, it outputs the data received serializing it.

• tx_en: 1-bit register, it is equal to 1 when UART is transmitting.

Once the right behavior of the DUT was carefully analyzed, it was possible to
begin developing the testbench.

3.2 Development Flow
The flow for developing a UVM testbench, using the UVM Framework, can be
divided into four steps:

1. Design the verification blocks to be generated

2. Translate the design into yaml

3. Generate the verification blocks using UVMF and simulate the generated code

4. Add custom code to the generated one

These steps are discussed in the following subsections.

16

UVM Verification Environment

3.2.1 Verification blocks design
The starting point is designing the verification blocks required for the testbench.
First, it was necessary to identify how many interfaces there were for the UART tx,
from which the number of agents is decided. Consequently two agents were needed
in the environment. One is used for the UART input interface (UART IN_AGENT)
and the other for the UART output interface (UART OUT_AGENT). A predictor and a
scoreboard were also instantiated as main components: UART PREDICTOR is used as
Golden Model to produce expected values, while UART SCOREBOARD receives actual
values from (UART OUT_AGENT) and compares them.
Figure 3.2 illustrates the general block diagram for the UART transmitter device.

Figure 3.2: UART Environment Block Diagram

After the design was completed, the blocks must be accurately translated into the
YAML language in order, for the generator, to properly build the environment.

3.2.2 Design to YAML translation
Each of the designed components were translated in YAML language following
guidelines in the reference manual [10]. The following files were created:

• UART_bench.yaml: configuration file used to generate the UVMF top level
testbench. It declares the name of the top level environment to instantiate
and specifies agents (declaring them as ACTIVE or PASSIVE). It also defines
period and phase offset of the clock and the duration of the reset.

• UART_environment.yaml: configuration file used to generate the environ-
ment level classes. It defines agents, predictor and scoreboard that need to be
instantiated. It declares TLM connections between components (connection 0,

17

UVM Verification Environment

connection 1, connection 2 in Figure 3.2). It also specifies environment level
configuration variables and parameters for the environment class.

• UART_in_interface.yaml: configuration files that captures pin informa-
tion and transaction information for the interface UART_IN_AGENT. It defines in-
terface ports (signal names, directions and widths), configuration variables and
parameters for the agent. It also includes variables to be used by the transac-
tion class. For UART_IN_AGENT the transaction variables are: tx_buffer_addr,
tx_buffer_data, tx_buffer_en_rd, tx_buffer_en_wr, tx_num.

• UART_out_interface.yaml: it is the same as UART_in_interface.yaml,
but contains information for the UART_OUT_AGENT. For this class there is just
one transaction variable: uart_tx_dout.

• UART_util_comp_predictor.yaml: configuration file for describing the
predictor to be used in the environment. It defines analysis port and analysis
exports for the component.

UVMF generator used these files to build the infrastructure, from which further
custom functions were added.
Since all the components in the testbench need to know the configuration of the
UART transmitter device, configuration variables were declared in the files de-
scribing the UART_environment, UART_in_interface and UART_out_interface.
They are listed in Table 3.1:

Configuration Variables
uart_config 7-bit, it contains UART configuration
stopBit 2-bit, it ccontains the number of stop bit for the data frame
parity_enabled 1-bit, it is equal to 1 if parity is enabled
parityBit 1-bit, it represents the parity (odd or even)
baudRate integer, it contains the baud rate in bit per seconds (bps)
bit_transmission_cc integer, it is the number of clock cycle needed for transmitting a single bit
startBit 1-bit, it is always equal to 0
data_bits 8-bits, it contains the number of bits to be transmitted
data_frame_length 12-bit, it represents the maximum size of a data frame

Table 3.1: UART configuration variables

3.2.3 Verification blocks generation and code simulation
In order to generate testbench, environment and interface code a python file was
executed. The file used is yaml2uvmf.py, which is provided by UVM Framework.
This files receives in inputs all the yaml configuration files needed. In order to
automate the process a batch file (run_yaml_uvmf_scripts.bat) was written: it

18

UVM Verification Environment

sets environment variable for the installation path of UVM Framework and calls
python on the configuration files.
If code generation returned with zero errors a new directory is created. It is named
uvmf_template_output and it is divided into two sub-directories:

• project_benches: it contains top level UVMF testbench files plus scripts for
compiling and running simulations.

• verification_ip: it contains two directories: environment_packages and
interface_packages. Each of them includes files and directories for respec-
tively environment and interfaces classes.

Before making any manual code modifications to the generated one, a first simulation
was run. This allows for potential issues to be fixed by making changes to the yaml
files and then regenerating the code.

3.2.4 Custom code addition
Once the code was successfully generated, DUT functionalities were added manually.
The UVM Framework adds some labeled comments (UVMF_CHANGE_ME) to the
generated code to help identify areas that require additional coding.
The initial modification consisted in instantiating the DUT and connecting it up
to the agent BFMs, clock and reset. hdl_top.sv is the file to be changed, since it
contains: Monitor and Driver BFMs for the UART, clock and reset generators and
the DUT. UART instance was added and ports were wired up to the corresponding
agent interface. In the following, code for connecting DUT to the correct components
is reported. It brings attention to the way the signals were organized, since it is
noticeable which signal was connected to the UART IN AGENT and which one to
the UART OUT AGENT interface.

Listing 3.1: DUT connection
1 uart_tx_top DUT(
2 . c l k (UART_in_agent_bus . c l k) ,
3 . r s t (UART_in_agent_bus . r s t) ,
4 . ext_sync_start (UART_in_agent_bus . ext_sync_start) ,
5 . s tart_tx (UART_in_agent_bus . s tart_tx) ,
6 . tx_buffer_addr (UART_in_agent_bus . tx_buffer_addr) ,
7 . tx_buffer_data (UART_in_agent_bus . tx_buffer_data) ,
8 . tx_buffer_en_rd (UART_in_agent_bus . tx_buffer_en_rd) ,
9 . tx_buffer_en_wr (UART_in_agent_bus . tx_buffer_en_wr) ,

10 . tx_num (UART_in_agent_bus . tx_num) ,
11 . tx_busy_flag (UART_out_agent_bus . tx_busy_flag) ,
12 . uart_tx_ctrl_reg (UART_in_agent_bus . uart_tx_ctrl_reg) ,
13 . tx_byte_out (UART_out_agent_bus . tx_byte_out) ,
14 . tx_data (UART_out_agent_bus . tx_data) ,

19

UVM Verification Environment

15 . tx_data_we (UART_out_agent_bus . tx_data_we) ,
16 . tx_en (UART_in_agent_bus . tx_en) ,
17 . tx_buffer_data_read (UART_out_agent_bus . tx_buffer_data_read) ,
18 . uart_tx_dout (UART_out_agent_bus . uart_tx_dout) ,
19 . i n t f _ c l k (UART_in_agent_bus . c l k)
20) ;

Subsequent changes included: addition of protocol specific information to driver
and monitor BFMs for both agents, addition of DUT specific behavior to the
predictor and modification to the scoreboard in order to obtain custom report
messages. Furthermore, sequences and test were modified and extended in order to
exercise DUT functionality.
Modifications to each UVM component and file are described in details in the next
sections.

3.3 UART Top Level Testbench
Top level testbench is responsible for instantiating the UART environment, allowing
for top-down configuration of the UART environment, which then configures UART
agents. It provides a default sequence along with a default test to run. The code is
generated from the bench configuration file UART_bench.yaml, and it is specific
to the DUT being tested, thus it is not reusable.
UVM components that characterize test behavior are detailed in the following
subsections. These components include the type of transactions used, the test run,
and the sequences used to generate desired stimulus.

3.3.1 UART Test Top
UVMF generates base tests for simulations, therefore the file test_top.svh was
edited to customize the test and specify the setup for the UART environment.
This file instantiate the class test_top (extending uvmf_test_base) which contains
the top level configuration and top level environment for the project. Function
build_phase of this class is used to construct the configuration and environment
classes. After their creation, the following operation are performed: Monitor and
driver BFMs virtual interface handles are passed into agents and then active or
passive state for each agent are set.
This function was modified specifically to configure the UART Environment and
UART Agents’ configuration variables correctly. Among the configuration variables
listed in Table 3.1, the one which can be configured by the user for running the test
is: uart_config. UART transmitter configuration is stored in this vector variable,
where each bit denotes a parameter:

20

UVM Verification Environment

• uart_config[7]: UART transmitter enable.

• uart_config[6]: UART transmitter parity selector.

• uart_config[5]: UART transmitter parity enable.

• uart_config[4]: UART transmitter stop bit selector.

• uart_config[3:0]: UART transmitter baud rate selector.

The desired value for this variable is read from a text file: the user can edit the
custom file uart_configuration.txt, in order to change the value of the uart_config.
All other defined configuration variables are set correctly based on this value.
The UART Environment build_phase begins when the one of this class concludes,
enabling the building of UART Agents.

3.3.2 UART Transactions
A transaction is used for gathering data that are communicated between UVM
components. The developed testbench includes two type of transactions, one for
each UART interface: UART_in_transaction, which collects signal of the UART
input interface (UART_in_agent), and UART_out_transaction, that collects signal
of the UART output interface (UART_out_agent).
Transaction variables of the two classes are shown in Table 3.2 and Table 3.3.

UART In Transaction
tx_buffer_addr
tx_buffer_data

tx_buffer_en_rd
tx_buffer_en_wr

tx_num

Table 3.2: UART In Transaction

UART Out Transaction
uart_tx_dout

Table 3.3: UART Out Transaction

In UART_in_transaction, the only variable that can be randomized (since it is
declared as rand) is tx_buffer_data, in order to generate random data input for
the DUT.
For these components, UVMF generates the files UART_in_transaction.svh and
UART_out_transaction.svh. In both of them, the respective class is instantiated
and it is extended from the uvmf_transaction_base. The class contains the
corresponding variables and several methods for printing, comparing, copying,
displaying variables in the waveform viewer of QuestaSim.
A transaction of type UART_in_transaction is utilized as a sequence item in the

21

UVM Verification Environment

interface sequences and is also provided to the UART Predictor to compute golden
values.
On the other hand, a transaction of type UART_out_transaction is used for
collecting actual data from the DUT and sending them the UART Scoreboard for
comparison and verification.

3.3.3 UART Sequences
UART Sequences are used to generate stimuli to test the correct behavior of the
UART transmitter device. UVMF generates base sequences for agents, environment,
and bench, that can be modified as wanted to implement desired stimuli.
For this project, sequences of UART In Agent and the top level sequence used by
test_top were modified. As a result, the test sequences created are of two types:

• Interface sequences: UART_in_fill_sequence, UART_start_tx_sequence

• Bench sequence: UART_bench_sequence_base

Interface sequences transmit a sequence_item to the driver, which requires four
steps:

1. Creation: transaction of the correct type has to be constructed.

2. Ready: function start_item() is called with the transaction as argument.
It blocks until the sequencer gives the sequence and sequence_item access to
the driver.

3. Set: transaction is ready to be used. Its variable can be randomized (if
specified as random) or set explicitly.

4. Go: function finish_item() is called with the transaction as argument.
It blocks until the driver completes its side of the transfer protocol for the
sequence_item.

Bench sequence is used by the top level test to run sequences, which consists of
two steps:

1. Sequence creation: sequence of the proper type is constructed.

2. Sequence starting: sequence’s start() method is called, having as argument
the pointer to the sequencer that send the sequence_item to the driver. It
calls the body() task of the sequence. Once this task completes, start()
method returns.

22

UVM Verification Environment

UART In Fill Sequence
It is an interface sequence generated in the UART In Agent. It loads data into a
memory for sending them to the DUT, as a consequence the transaction variable
tx_num is set to logic 0.
File UART_in_fill_sequence.svh defines UART_in_fill_sequence, which extends
the UART_in_sequence_base generated by UVMF. It contains a task body(),
which is executed when the sequencer starts this sequence, and main code is
reported below.

Listing 3.2: UART In Fill Sequence body() task
1 task body () ;
2 req=UART_in_transaction#() : : type_id : : c r e a t e (" req ") ;
3 start_item (req) ;
4 req . randomize () ;
5 req . tx_num = 12 ’ h000 ;
6 req . tx_buffer_addr = 8 ’ b00000000 ;
7 req . tx_buffer_en_wr = 4 ’ b1111 ;
8 f i n i sh_i tem (req) ;
9 end task

This task constructs a transaction of the proper type. The transaction is then
randomized; however, only the variables defined as random can be randomized; a
constant value is assigned to the other ones. So, for a UART_in_transaction, only
tx_buffer_data can be randomized. All transaction variables are defined and
provided to the UART_in_driver_bfm using the sequencer and UART_in_driver.

UART In Start Tx Sequence
In this sequence, transaction variable tx_num has a value different from 0, thus it
begins transmitting the loaded input data through the UART tx.
File UART_in_start_tx_sequence.svh defines UART_in_start_tx_sequence, and,
as already stated for UART_in_fill_sequence, it contains a task body(). Main
code is reported below.

Listing 3.3: UART In Start Tx Sequence body() task
1 task body () ;
2 req=UART_in_transaction#() : : type_id : : c r e a t e (" req ") ;
3 start_item (req) ;
4 req . randomize () ;
5 req . tx_num = 12 ’h00C ;
6 req . tx_buffer_addr = 8 ’ b00000010 ;
7 req . tx_buffer_en_wr = 4 ’ b1111 ;
8 f i n i sh_i tem (req) ;
9 end task

23

UVM Verification Environment

Considering that it is an interface sequence created in the UART In Agent, as the
UART_in_fill_sequence, the code is the same except for the variable values. In
this sequence tx_num is equal to the hexadecimal value C, thus 12 bytes are sent
to the DUT, tx_buffer_addr is set to decimal value 2, so the input data is written
in a different memory address, and tx_buffer_data is still a random value. Thus,
input data are written to memory and then a transmission begins.

UART Bench Sequence
It is a bench sequence that is used by test_top to start interface sequences
described above.
File UART_bench_sequence_base.svh defines the UART_bench_sequence_base
class, which extends uvmf_sequence_base. It instantiates sequences that are run,
and it includes a body() task, whose code is reported in the following:

Listing 3.4: UART Bench Sequence body() task
1 v i r t u a l task body () ;
2 UART_in_agent_fill_seq = UART_in_agent_fill_seq_t : : type_id : : c r e a t e

(" UART_in_agent_fill_seq ") ;
3 UART_in_agent_start_tx_seq = UART_in_agent_start_tx_seq_t : : type_id

: : c r e a t e (" UART_in_agent_start_tx_seq ") ;
4

5 UART_in_agent_fill_seq . s t a r t (UART_in_agent_sequencer) ;
6 UART_in_agent_start_tx_seq . s t a r t (UART_in_agent_sequencer) ;
7 endtask

It first constructs desired sequences, in this case UART_in_fill_sequence and
UART_in_start_tx_sequence. Then it starts both of them on the right sequencer,
calling function start(), passing as argument the UART_in_agent_sequencer.
The two sequences are sent to the sequencer serially: UART_in_agent_fill_seq
starts, and only when start() call returns, UART_in_agent_start_tx_seq can
be transmitted.

3.4 UART Environment
UART Environment is the component responsible for configuring and connecting
UART Agents, UART predictor and UART Scoreboard.
UVMF generated the file UART_environment.svh, which instantiate the class for
this component (extending it from the uvmf_env_base). Functions build_phase
and connect_phase are used to respectively build and connect components in
the UART Environment. Connections are established via the analysis ports and
exports of the various UVM components.

24

UVM Verification Environment

A more detailed schematic of the developed UVM environment could be seen in Fig-
ure 3.3, which was generated in Visulizer. In fact this software tool provides some
UVM features, one of which is the possibility to examine a testbench schematic of
the test that was run.

Figure 3.3: UART environment schematic from Visualizer

From Figure 3.3 it is possible to check if all the components, and connections
between them, were instantiated correctly. Blocks in the picture represent the com-
ponents that were changed to allow for testbench customization. Each instantiated
component extends the corresponding UVMF base library.

3.4.1 UART In Agent
UART In Agent is the component that sends input data to both the DUT and the
UART Predictor. It performs input protocol operations.
It is an ACTIVE agent, so it sends stimulus to the DUT as well as monitors signal
activity. As a consequence, it is composed of both a Driver and a Monitor. Its
internal components are shwons in Figure 3.4.

25

UVM Verification Environment

Figure 3.4: UART Agent In from Visualizer

Since it is an active agent it is composed of the following components, that were
created and connected by the generator:

• Sequencer: no adjustments were made to this component because it is
only used to send test sequences to the driver. It transmits sequences,
which in turn constructs transactions of type UART_in_transactions, to
the UART_in_agent_driver.

• Driver: driver BFM was changed in order to correctly perform protocol
activities.

• Monitor: monitor BFM was updated to accurately capture data provided to
the DUT.

This agent has a built-in analysis port named monitored_ap, which is the one re-
sponsible for sending transaction of type UART_in_transaction() to the predictor.
As a result, "golden" output values can be calculated using the same transactions
given as input to the DUT.

UART In Agent Driver
Due to the dual top architecture, which divides the testbench into an HDL and an
HVL side, the Driver consists of two components: a driver class and a driver BFM
interface. UVMF generator creates two different files: UART_in_driver.svh and

26

UVM Verification Environment

UART_in_driver_bfm.sv.

UART_in_driver.svh: it defines the class UART_in_driver, which is the one
that passes transactions from the sequencer to the BFM driver interface. This class
contains functions to set an handle to the Driver BFM and configure it, and a task
that allows transactions to be passed to the Driver BFM.

UART_in_driver_bfm.sv: it defines the sv interface UART_in_driver_bfm, that
performs the UART_in signal driving. Modifications were made to properly drive
signals through the bus port connection.

Listing 3.5: modified task in UART in driver bfm
1 i n t e r f a c e UART_in_driver_bfm #() ;
2 task in i t iate_and_get_response (
3 input UART_in_initiator_s UART_in_initiator_struct ,
4 output UART_in_responder_s UART_in_responder_struct
5) ;
6

7 ext_sync_start_o <= ext_sync_start_i ;
8 uart_tx_ctrl_reg_o <= uart_conf ig ;
9 whi le (tx_en_i == 1 ’ b1) @(posedge c lk_i) ;

10 start_tx_o <= 1 ’ b1 ;
11 tx_buffer_addr_o <= UART_in_initiator_struct . tx_buffer_addr ;
12 tx_buffer_en_rd_o <= UART_in_initiator_struct . tx_buffer_en_rd ;
13 tx_buffer_en_wr_o <= UART_in_initiator_struct . tx_buffer_en_wr ;
14 tx_num_o <= UART_in_initiator_struct . tx_num ;
15 tx_buffer_data_o <= UART_in_initiator_struct . tx_buffer_data ;

16 @(posedge c lk_i) ;
17 start_tx_o <= 1 ’ b0 ;
18 repeat (2) @(posedge c lk_i) ;
19

20 responder_struct = UART_in_responder_struct ;
21 endtask
22 e n d i n t e r f a c e

The sv task reported above, initiate_and_get_response(), is used to initiate a
transfer. It drives transactions received by the driver to the DUT, connecting each
variable to a DUT port.
Timing for correctly sends data to the DUT were obtained by analyzing a UART
simulation. When tx_en is equal to logic 0, it is possible to raise start_tx at logic
1 and set pin connection. At the following rising edge of the clock start_tx goes
to 0, and then two clock cycles are waited, so that the monitor can sample correct
data on the UART Agent In bus.

27

UVM Verification Environment

UART In Agent Monitor

As the driver, also the monitor is split in two components: monitor class and
monitor BFM interface. These files are produced: UART_in_monitor.svh and
UART_in_monitor_bfm.sv.

UART_in_monitor.svh: it defines the class UART_in_monitor, which broadcasts
UART_in transactions via the agent’s analysis port after receiving by the UART_in
monitor BFM. It also records transactions for observing them in the waveform
viewer of the simulator. It defines functions and task to configure and set the
handle to the monitor BFM, and to be accessed by the interface.

UART_in_monitor_bfm.sv: it defines the sv interface UART_in_monitor_bfm,
that performs the UART_in signal monitoring. Task do_monitor was modified to
correctly sample signals on the bus, and the code is reported in the following:

Listing 3.6: modified task in UART in monitor bfm
1 i n t e r f a c e UART_in_monitor_bfm #() (UART_in_if bus) ;
2 task do_monitor (output UART_in_monitor_s UART_in_monitor_struct) ;
3

4 whi le (start_tx_i == 1 ’ b0) @(posedge c lk_i) ;
5 UART_in_monitor_struct . tx_num = tx_num_i ;
6 UART_in_monitor_struct . tx_buffer_addr = tx_buffer_addr_i ;
7 UART_in_monitor_struct . tx_buffer_data = tx_buffer_data_i ;
8 UART_in_monitor_struct . tx_buffer_en_rd = tx_buffer_en_rd_i ;
9 UART_in_monitor_struct . tx_buffer_en_wr = tx_buffer_en_wr_i ;

10

11 endtask
12 e n d i n t e r f a c e

The signal monitoring implemented consisted in waiting for start_tx to go to
logic 1. Once the transition happens, it is possible to read the signal on the bus in
order to sample the correct transaction values.

3.4.2 UART Out Agent

UART Out Agent is the component that collects DUT output values. Since it does
not drive any signal, it is a PASSIVE agent. Therefore it only has a monitor and
no driver. Its internal components are shown in Figure 3.5.
This component only contains a monitor and a built-in analysis port named
monitored_ap, which is the one responsible for broadcasting transactions of type
UART_out_transaction() to the scoreboard. In this way, scoreboard collects
actual values for comparing them to the expect ones.

28

UVM Verification Environment

Figure 3.5: UART Agent Out from Visualizer

UART Out Agent Monitor
Since there is a dual top architecture, also the UART out agent monitor is divided
in two components: a monitor class and the respective monitor BFM interface. Gen-
erator outputs the files: UART_out_monitor.svh and UART_out_monitor_bfm.sv.

UART_out_monitor.svh: it defines the class UART_out_monitor, which receives
UART_out transactions observed by the UART_monitor BFM and broadcasts
them through the analysis port on the agent. As mentioned for the UART in
monitor, it defines functions and task to configure and set the handle to the monitor
BFM and it captures transactions for viewing them in the waveform viewer.

UART_out_monitor_bfm.svh: it defines the sv interface UART_out_monitor_bfm,
which performs the UART_out signal monitoring. Task do_monitor, is the one
that implement protocol monitoring so it is the one that was modified.

Listing 3.7: modified task in UART out monitor bfm
1 i n t e r f a c e UART_out_monitor_bfm #() (UART_out_if bus) ;
2 task do_monitor (output UART_out_monitor_s UART_out_monitor_struct) ;
3 i f (tx_busy_flag_i == 1 ’ b0) begin
4 f l a g _ f i r s t _ t r a n s m i s s i o n = 1 ’ b1 ;
5 end
6 i f (f l ag_last_byte == 1 ’ b0) begin
7 whi le (tx_busy_flag_i == 1 ’ b0) @(posedge c lk_i) ;
8 i f (f l a g _ f i r s t _ t r a n s m i s s i o n == 1 ’ b1) begin
9 repeat (3) @(posedge c lk_i) ;

10 UART_out_monitor_struct . uart_tx_dout = uart_tx_dout_i ;
11 repeat (bit_transmiss ion_cc −1) @(posedge c lk_i) ;
12 f l a g _ f i r s t _ t r a n s m i s s i o n = 1 ’ b0 ;
13 end

29

UVM Verification Environment

14 e l s e begin
15 UART_out_monitor_struct . uart_tx_dout = uart_tx_dout_i ;
16 repeat (bit_transmiss ion_cc −1) @(posedge c lk_i) ;
17 end
18 i f (tx_busy_flag_i == 1 ’ b0) begin
19 f l ag_last_byte = 1 ’ b1 ;
20 n_bits = 0 ;
21 end
22 end
23 e l s e begin
24 // data_frame_length = s t a r t + data + par i t y + stop ;
25 i f (n_bits < data_frame_length − 1) begin
26 UART_out_monitor_struct . uart_tx_dout = uart_tx_dout_i ;
27 repeat (bit_transmiss ion_cc −1) @(posedge c lk_i) ;
28 n_bits = n_bits +1;
29 i f (n_bits == data_frame_length − 1) begin
30 f l ag_last_byte = 1 ’ b0 ;
31 n_bits = 0 ;
32 end
33 end
34 end
35 endtask
36 e n d i n t e r f a c e

Comparing it to the one developed for the UART In Monitor, this task was more
complex to implement, since it has to capture DUT output values. Due to the
fact that the DUT is a UART transmitter, it receives input values, adds start bit,
parity and stop bit depending on the configuration, and then outputs value one
bit at a time. For this reason, the number of clock cycles required to transmit a
single bit had to be calculated in order to implement the proper protocol timing.
This variable is contained in bit_transmission_cc, which was obtained using the
following formula:

bit_transmission_cc = ClockFrequency[Hz]
BaudRate[bps]

where Clock Frequency is the frequency of the clock, and Baud Rate is the value of
baud rate for the UART, that can be configured in the test.
When UART tx transmits input data, it uses tx_busy_flag to indicate that the
transmission line is busy. This signal raises to logic 1 when a transmission starts,
and it goes back to logic 0 when the second last byte of the word is transferred; last
byte is still transmitted even if the busy signal is at 0. Therefore, tx_busy_flag is
utilized as a flag to indicate whether it is the first byte to be sent or the last, as
well as a signal to determine when to sample values.
If it is not the final byte to be transmitted, then monitor waits for tx_busy_flag to
go at 1 . The bit must be fully transferred, which takes bit_transmission_cc clock

30

UVM Verification Environment

cycles, before the new value can be sampled. Due to this a repeat() @(posedge
clk) is used, since it allows to wait for the desired number of rising edge of the
clock.
On the other hand, if it is the last byte to be sent and tx_busy_flag is at 0, a
check on the number of bits to be transferred is required. For this reason, the
configuration variable data_frame_length is used. It indicates the number of bits
sent in a transmission (start bit + data bits + parity + stop bit), and whenever a
bit is transferred, a counter advances its value up to data_frame_length.
This approach allowed to appropriately gather UART DUT outputs and show the
UART Out Transaction in the waveform viewer.

3.4.3 UART Predictor
UART Predictor is an analysis component which implements a golden reference
model of the DUT. It provides the UART Scoreboard with expected values so that
they can be compared to the actual ones. It contains analysis exports for receiving
data and analysis ports for sending data, as shown in Figure 3.6:

• UART_sb_ap: analysis port.
It broadcasts transactions of type UART_out_transaction() to the UART
Scoreboard.

• UART_in_agent_ae: analysis export.
It receives transactions of type UART_in_transaction() from UART In Agent.

Figure 3.6: UART Predictor from Visualizer

UVMF generator creates the file UART_predictor.svh which defines the class
UART_Predictor. The function that was modified in order to implement the

31

UVM Verification Environment

UART tx behavior was write_UART_in_agent_ae().

Listing 3.8: modified function in UART predictor
1 c l a s s UART_predictor #() extends BASE_T;
2 v i r t u a l f unc t i on void write_UART_in_agent_ae (UART_in_transaction () t) ;
3 i f (t . tx_num == 0) begin
4 f i l l_memory (t) ;
5 end
6 e l s e begin
7 f i l l_memory (t) ;
8 f o r (i = 0 ; i < t . tx_num ; i++) begin
9 i f (mem[i] == 0) begin

10 empty_mem_data_frame(i) ;
11 end
12 end
13 // s t a r t t r ansmi t t ing
14 f o r (i = 0 ; i < t . tx_num ; i++) begin
15 f o r (j = 0 ; j < data_transmitted ; j++) begin
16 UART_sb_ap_output_transaction =

UART_sb_ap_output_transaction_t : : type_id : : c r e a t e ("
UART_sb_ap_output_transaction ") ;

17 UART_sb_ap_output_transaction . uart_tx_dout = mem[i] [j] ;
18 UART_sb_ap. wr i t e (UART_sb_ap_output_transaction) ;
19 end
20 end
21 end
22 endfunct ion
23 end c l a s s

This function predicts DUT output values based on DUT input, configuration, and
state. It is executed when a transaction is received through UART_in_agent_ae.
Since tx_num is the transaction variable that starts a transmission, different opera-
tions were carried out based on whether or not its value was equal to zero:

• tx_num = 0 → input data contained in the received transaction are collected.
This operation is performed by the function fill_memory().

• tx_num != 0 → input data contained in the received transaction are still
collected. Next, the memory content is checked. If there are more bytes
to send compared to what is written in the memory, then start, stop, and
parity bits are added, according to the UART configuration, for the mem-
ory locations that contain only zeros. This operation is performed by the
function empty_mem_data_frame(). After that, transmission of stored values
is performed and output values have to be broadcast to the UART Score-
board. Steps involved to accomplish this were: first, create a transaction of
type UART_out_transaction; next, fill it with the appropriate value to be

32

UVM Verification Environment

sent; and finally, write the UART_out_trasnaction in the analysis port of the
scoreboard by calling the write() function.

In order to store input data of UART_in_transaction received, a memory element
was instantiated. It was implemented as a 64x12 static matrix. Thus, each of the 64
memory locations includes a vector with a maximum of twelve bits. The maximum
dimension of the vector was determined by the UART setup: as UART can send
eight data bits, two stop bits, a start bit, and a parity bit, the maximum bit count
is twelve. In fact, each vector contains the byte that needs to be transferred along
with the start, stop, and parity bits, and it represents the data that will be sent
over the UART channel.
The next piece of code reports the additional custom function fill_memory(),
which accomplishes the task of filling the memory with the right data to be
communicated over the UART.

Listing 3.9: function fill_memory in UART predictor
1 f unc t i on void fi l l_memory (UART_in_transaction #() t) ;
2 wr_en = 0 ;
3 i_mem = t . tx_buffer_addr ∗ 4 ;
4 f o r (i = 0 ; i < (n_bits_word − n_bits_data + 1) ; i++) begin
5 mem[i_mem] [0] = 0 ; // s e t the s t a r t b i t , i t i s always = 0 in UART
6 j_mem = 1 ;
7 even =0;
8 i f (t . tx_buffer_en_wr [wr_en] == 1) begin
9 f o r (j = i ; j < (n_bits_data + i) ; j++) begin

10 mem[i_mem] [j_mem] = t . tx_buffer_data [j] ;
11 j_mem++;
12 i f (t . tx_buffer_data [j] == 1) begin
13 even++;
14 end
15 end
16 end
17 e l s e begin
18 f o r (j = i ; j < (n_bits_data + i) ; j++) begin
19 mem[i_mem] [j_mem] = 0 ;
20 j_mem++;
21 end
22 end
23 wr_en++;
24 i f (parity_en == 1) begin
25 i f (pa r i t y_se l == 1) begin // ODD PARITY
26 i f (even % 2 == 0) begin
27 par i t y = 1 ;
28 end
29 e l s e begin
30 par i t y = 0 ;
31 end

33

UVM Verification Environment

32 end
33 e l s e begin
34 i f (even % 2 == 0) begin // EVEN PARITY
35 par i t y = 0 ;
36 end
37 e l s e begin
38 par i t y = 1 ;
39 end
40 end
41 mem[i_mem] [j_mem] = par i t y ; //add par i t y b i t
42 j_mem++;
43 end
44 i f (stop_bit == 1) begin //add stop bit , depending on the

c o n f i g u r a t i o n
45 mem[i_mem] [j_mem] = 1 ;
46 end
47 i f (stop_bit == 2) begin
48 mem[i_mem] [j_mem] = 1 ;
49 j_mem++;
50 mem[i_mem] [j_mem] = 1 ;
51 end
52 i = j − 1 ;
53 i_mem++;
54 end
55 endfunct ion

fill_memory() receives as input a UART_in_transaction. First, it retrieves
configuration variables (not reported in the code above), then it implements the
algorithm to fill the memory. As this function reads UART_in_transaction, which
comprises input data, it executes operations to load the appropriate data frame
into memory for transmission over the UART:

1. Correct memory index is calculated, based on tx_buffer_addr.

2. Word of 32 bits is divided into bytes.

3. Start bit is added.

4. If tx_buffer_en_wr for the current byte is set at 1, then memory vector is
filled with input data received from the transaction and the number of bits at
logic 1 is determined, to compute parity. Otherwise, zeros are inserted.

5. When parity is enabled, the choice of parity bit is made based on whether
parity is odd or even. Otherwise, parity bit is not included.

6. Lastly stop bits are added, depending on UART configuration.

Steps 3, 4, 5, 6 are repeated for each byte.

34

UVM Verification Environment

3.4.4 UART Scoreboard
UART Scoreboard is an analysis component which verifies that the DUT is per-
forming as expected. As shown in Figure 3.7, it contains two analysis exports:

• expected_analysis_export: accessed through write_expected function. It
receives transactions from the UART Predictor.

• actual_analysis_export: accessed through write_actual function. It re-
ceives transactions from the UART Out Agent.

Figure 3.7: UART Scoreboard from Visualizer

UART Scoreboard operates on transactions of type UART_out_Transaction, and
it compares them assuming an in-order arrival: expected and actual values arrive
in the same order. For this reason, its class type in the UART_environment.yaml
configuration file is declared as uvmf_in_order_scoreboard, which is a UVMF
base library component.
uvmf_in_order_scoreboard is a class that defines an in-order scoreboard and
extends the uvmf_scoreboard_base class. It includes functions for accessing the
analysis ports:

• write_expected: it queues transactions received from UART predictor to
wait for the actual ones.

• write_actual: it compares the transaction received from the UART Out
Agent to the next transaction in the queue that contains the expected values.
It displays two messages: MATCH, if expected and actual transaction are
the same, MISMATCH otherwise.

35

UVM Verification Environment

When MATCH/MISMATCH are printed, the expected and actual transaction
content is included as well to help the user to detect possible errors.
UART_Scoreboard class, which extends uvmf_in_order_scoreboard class, was im-
plemented to add some custom functions to the base scoreboard generated by
UVMF. Added functions are reported in the following code.

Listing 3.10: UART Scoreboard custom functions
1 c l a s s UART_scoreboard #(type T = uvmf_transaction_base , type BASE_T =

uvmf_in_order_scoreboard#(T)) extends BASE_T;
2 v i r t u a l task run_phase (uvm_phase phase) ;
3 UVM_FILE scoreboard_log_fh = $fopen (" scoreboard_output . l og ") ;
4 super . run_phase (phase) ;
5 set_report_id_act ion ("SCBD" , UVM_LOG | UVM_DISPLAY) ;
6 s e t_repor t_ id_f i l e ("SCBD" , scoreboard_log_fh) ;
7 endtask
8

9 v i r t u a l f unc t i on void report_phase (uvm_phase phase) ;
10 UVM_FILE scoreboard_log_fh = $fopen (" scoreboard_output . l og ") ;
11 super . report_phase (phase) ;
12 i f (mismatch_count == 0) begin
13 ‘uvm_info ("SCBD" , $ s fo rmat f ("TEST PASSED") , UVM_LOW)
14 end
15 e l s e begin
16 ‘uvm_error ("SCBD" , $ s fo rmat f ("TEST FAILED"))
17 end
18 $ f c l o s e (scoreboard_log_fh) ;
19 endfunct ion
20 endc l a s s

The uvmf_scoreboard_base class already included the functions run_phase and
report_phase, which are defined for each UVM component. However, exploiting
the object-oriented programming potential, they were overridden in the class
UART_Scoreboard to provide additional operations.

• run_phase: opening of a file is included. UART Scoreboard must also print
results of the comparison to an output file, in addition to showing them in
the QuestaSim console. For this reason, the types of messages that have to be
printed in the log file are also specified, using the id type. Since all messages
from the scoreboard have to be printed the id type is set to "SCBD".

• report_phase: it is used to gather results at the end of the comparison. In
this instance, UART scoreboard writes TEST PASSED if it detected zero
mismatch, and TEST FAILED otherwise. This messages are printed both
on the console and on the output file. At the end of this function, the file is
correctly closed.

36

UVM Verification Environment

Two types of UVM messages were used for this testbench: uvm_info for displaying
’MATCH’ and ’TEST PASSED’, and uvm_error for printing ’MISMATCH’ and
’TEST FAILED’.
The output file was named scoreboard_output.log, and it shows all the messages
with the identifier SCBD, which represent all the messages printed by the UART
Scoreboard class.
Since uvm messages include also the path of the file and the simulation time in
which the message is printed, these details were also printed in the output file.
For this reason, a python script (modify_output_file.py) was implemented in
order to modify scoreboard_output.log and remove the additional information. The
resulting output file was named test_output.txt and reports only messages about a
MATCH/MISMATCH, the number of predicted transactions and the string "TEST
PASSED" (or "TEST FAILED").
Last lines of these two files are reported in Figure 3.8 and Figure 3.9, as example:

Figure 3.8: scoreboard_output.log example

Figure 3.9: test_output.txt example

It can be seen that the output messages printed in scoreboard_output.log file are
not easily readable since there is a lot of information, which is not required. On
the other hand, test_output.txt file reports only important information about the
test, so: if a transaction produces a match/mismatch, a final count and the string
TEST PASSED.

37

Chapter 4

Results

Following the proper development of the UVM testbench for the UART transmitter,
tests were run to verify that the testbench worked as expected.
Tests were run using the sequences outlined in the previous section, and changing
only the UART configuration to check different combinations of baud rate, parity,
and stop bits. test_top class receives the UART configuration from a text file,
where the user can enter the desired value in a binary format.
An example of simulation to show that the testbench functioned as expected is
reported below. All the waveform images were taken from the simulation run in
QuestaSim.
Finally, advantages and disadvantages of developing a testbench following a UVM
approach are discussed.

Test example: UART configuration = 11101000
Selecting a configuration of "11101000" (hex = e8) indicates that the testbench
variable uart_configuration has been configured with the values reported in
Table 4.1:

Bit Value Description
7 1 UART transmitter enabled.
6 1 Parity odd
5 1 Parity enabled.
4 0 One stop bit
3:0 1000 Baud rate = 460 Kb/s.

Table 4.1: UART configuration (e8) register details

With this input configuration a data frame of eleven bits is transmitted: 1 start
bit, 8 data bits, 1 parity bit and 1 stop bit.

38

Results

In the following, UART_in_agent and UART_out_agent waveform are shown, in
order to see the correct testbench development.

UART_in_agent waveform: they are showed in Figure 4.1.

Figure 4.1: UART In Agent waveform uart_config = e8

Firstly, UART in transactions are showed:

• First transaction: tx_num is equal to ’0’, so it only load this data in the memory.
tx_buffer_data contains a random value that is written in tx_buffer_addr
= 0 memory address.

• Second transaction: tx_num is equal to ’0’, so it only load this data in
the memory. tx_buffer_data contains a random value that is written in
tx_buffer_addr = 1 memory address.

• Last transaction: tx_num is equal to ’1’, so it load this data in the memory
and start a transmission. tx_buffer_data contains a random value that is
written in tx_buffer_addr = 2 memory address.

First two transactions are created by the UART_in_fill_sequence class, while the
last one is created by UART_in_start_tx_sequence. For all these transactions,
tx_en_wr is equal to "1111", so all bytes are transmitted over the UART and the
variable tx_buffer_data contains a random value.
After the last transaction, collected data are transmitted to the DUT, and this can
be checked by looking at the tx_en signal that changes its value to logic ’1’.
So, UART In Agent behaves as expected.

UART_out_agent waveform: in the next figures, several screenshots of wave-
form are reported, due to the fact that the UART_out_transaction represents a
single output bit. As there are many transactions, they have been split for easier
viewing.
Figure 4.2 shows how a single output transaction appears in the simulation viewer.
It lasts bit_transmission_cc clock cycles, that are the time needed to correctly
transmit the bit over the uart with the selected configuration.

39

Results

Figure 4.2: UART Out Agent Single transaction uart_config = e8

Figure 4.3 shows the output transaction corresponding to the first input trans-
action that was sent. The data transmitted is tx_buffer_data = fc4da592, and
it is transmitted over the UART one byte at a time. Output transactions must be
evaluated in 11-bit groups, with each representing a byte plus the start, stop, and
parity bits. By comparing the first transactions group with the first byte (expressed
in hexadecimal) displayed by tx_byte_out, it is possible to verify that the output
transactions are collecting the correct DUT output values.
Same consideration can be done for the other three bytes transmitted, to complete
the transfer of the first input transaction.

Figure 4.3: UART Out Agent First transaction uart_config = e8

Figure 4.4 and Figure 4.5 shows transactions corresponding to the second and the
third input transactions. By examining their waveform, it is possible to determine
whether or not each byte was transmitted correctly, as it was done for the first
output transaction.

Figure 4.4: UART Out Agent Second transaction uart_config = e8

40

Results

Figure 4.5: UART Out Agent Last transaction uart_config = e8

UVM messages printed in QuestaSim console, also helped to identify if the
output transaction, which collect actual DUT outputs, matched the golden output
value. In fact scoreboard prints all the transaction it has received and print
MATCH/MISMATCH accordingly.
In conclusion, these images along with the printed UVM messages, show that each
UVM component operates in the correct way. In the following UVM messages for
the last two output transactions and end of test messages are showed:

1 UVM_INFO @ 282271.000 ns : uvm_test_top . environment .UART_sb [SCBD]
MATCH! − EXPECTED: uart_tx_dout : 0 x1 ACTUAL: uart_tx_dout : 0 x1

2 UVM_INFO @ 282271.000 ns : uvm_test_top . environment . UART_out_agent .
UART_out_agent_monitor [MON] uart_tx_dout : 0 x1

3

4 UVM_INFO @ 284421.000 ns : uvm_test_top . environment .UART_sb [SCBD]
MATCH! − EXPECTED: uart_tx_dout : 0 x1 ACTUAL: uart_tx_dout : 0 x1

5 UVM_INFO @ 284421.000 ns : uvm_test_top . environment . UART_out_agent .
UART_out_agent_monitor [MON] uart_tx_dout : 0 x1

6

7 UVM_INFO @ 32500271.000 ns : r e p o r t e r [TEST_DONE] ’ run ’ phase i s ready
to proceed to the ’ ext ract ’ phase

8 UVM_INFO @ 32500271.000 ns : uvm_test_top . environment .UART_sb [SCBD]
SCOREBOARD_RESULTS: PREDICTED_TRANSACTIONS=132 MATCHES=132
MISMATCHES=0

9 UVM_INFO @ 32500271.000 ns : uvm_test_top . environment .UART_sb [SCBD]
TEST PASSED

Additional tests were run to verify different UART configurations, and each of
them was successful.

Evaluations
The developed UVM environment for testing the UART transmitter device per-
formed a punctual test of the DUT, meaning that every bit of the serial line was
tested. Since there is not a VHDL-based testbench that was previously created and
run the same test, it is not possible to have performance parameters to compare.

41

Results

However, studying and developing a UVM testbench allows for some consideration
about potential benefits and drawbacks of this approach in the context of hardware
verification conducted in Leonardo Electronics.
Advantages that a UVM approach could bring are:

• High abstraction level: UVM uses a higher abstraction level if compared to
a VHDL-based testbench. As a result, the code is simpler to understand and
maintain, allowing a test engineering to concentrate more on the functionalities
and behavior of the design rather than on the low level details.

• Hierarchical structure: UVM provides hierarchical structure that makes
easier to manage and organize the testbench complexities.

• OOP features: OOP allows for the creation of modular and reusable UVM
components. In fact, OOP allows to create base classes, that defines common
functionalities, and these can be extended to create specific instances for
different interfaces. As a result, child classes can inherit methods and properties
from parent classes through inheritance. Additionally, objects of different
classes can be considered as objects of a single common class thanks to
polymorphism, which is helpful when developing generic test sequences that
can run on various interfaces or configurations.

Furthermore, the use of UVM Framework speeds up testbench development by
automating component instantiation and connection. This process makes it easier
to understand how UVM works and allows engineers to focus on adding DUT
specific functionalities.
On the other hand, one of the drawbacks that was brought to light throughout this
procedure is that not all the UVM components in the testbench can be synthesized,
but only the BFMs. This is a flaw in the Leonardo Electronics testing process
since it is crucial that the electronic device correctly works in both actual hardware
and simulation. In fact, in the current company verification flow, the developed
VHDL-based testbench can be used as it is both in simulation and in real hardware.
Since a UVM-based testbench cannot be used in the same way, research into how
to include it into emulation is necessary.

42

Chapter 5

Conclusion

This thesis work conducted an extensive study and exploration of the Universal
Verification Methodology (UVM) in order to investigate the potential of this
verification approach. After some preliminary study, a UVM testbench was carefully
developed for a UART transmitter device.
First the necessary UVM components were selected, and then configuration files
were produced using the YAML language to describe them. These files were
needed as input for the UVMF code generator. This methodical approach, allowed
the start of development within the UVMF framework, creating a solid basis for
subsequent changes. Particularly, the UVMF code generator eased the instantiation
and interconnection of required UVM components, which sped up the development
process. Starting from the UVMF-generated testbench, it was possible to begin
characterizing each UVM component in order to meet DUT functional requirements.
The developed UVM Environment included two agents, one for the input interface
and the other for the output interface, a predictor, and a scoreboard. The agents’
monitor and driver BFMs were customized to ensure proper communication with
the DUT. The predictor reproduces the DUT behaviour in order to compute the
golden reference value to compare to the actual DUT outputs, for this reason a
proper analysis of the UART transmitter behavior was performed. The scoreboard
compares the actual values with the golden ones and outputs messages to the console
and an output file. Sequences and transactions were also customized to provide
stimulus to the environment: three sequences were added to perform correct testing.
Simulations run in QuestaSim were fundamental to prove the proper development
of each component. Correct UVM components characterization was challenging,
however it proved essential in improving understanding of UVM functionalities.
Finally, the completed development of a comprehensive testbench represented a
significant achievement, making it possible to examine the potential advantages of
the UVM verification process over the VHDL-based testbench. Higher abstraction
layer and modular architecture of UVM simplifies the testbench development

43

Conclusion

process, allowing test engineering to focus on behavioral functionalities rather than
complicated low level ones.
The architecture for the developed UVM environment provides a starting point for
future improvements, which may include the addition of new test sequences or the
improvement and extension of components, such as a more customized scoreboard.
Furthermore, the extension of this testbench enables testing of a DUT made of both
a UART transmitter and the equivalent UART receiver, increasing its applicability.
Future studies will also focus on integrating Siemens EDA’s Questa Verification
IP (QVIP) into a UVM testbench. In fact, QVIP is a library of verification IP
solutions that supports several industry-standard protocols and ensures flexibility
for design verification.
In conclusion, this thesis activity provided hands-on experience with verification
frameworks, resulting in excellent learning opportunities. In particular, it provided
an opportunity for gaining competence in System Verilog, a hardware verification
language, and also becoming familiar with UVM, a widely used methodology in
the verification context.

44

Bibliography

[1] National Instruments. What is DO-254? url: https://www.ni.com/en/
solutions/aerospace-defense/what-is-do-254-.html (cit. on p. 1).

[2] Siemens EDA. Verification Academy. url: https://verificationacademy.
com/ (cit. on p. 3).

[3] Slides Siemend EDA. SystemVerilog for Verification, Student Workbook (cit.
on p. 4).

[4] A. Fiergolski. «Simulation environment based on the Universal Verification
Methodology». In: (Jan. 2017) (cit. on p. 5).

[5] Siemens EDA Verification academy. UVM Cookbook (cit. on pp. 5–7, 9).
[6] Slides Siemens EDA. SystemVerilog UVM, Student Workbook (cit. on pp. 5,

8).
[7] Chip Veirify. UVM Tutorial. url: https://www.chipverify.com/uvm/uvm-

tutorial (cit. on pp. 7, 8).
[8] Verification Academy. UVM Framework. url: https://verificationacad

emy.com/topics/uvm-universal-verification-methodology/uvmf/uvm-
framework/ (cit. on p. 10).

[9] Siemens EDA. UVM Framework Users Guide. Version 2023.3 (cit. on p. 10).
[10] Siemens EDA. UVMF YAML Reference Manual. Version 2023.3 (cit. on

pp. 12, 17).
[11] Mary Grace Legaspi Eric Peña. «UART: A Hardware Communication Protocol

Understanding Universal Asynchronous Receiver/Transmitter». In: (Dec.
2020) (cit. on p. 13).

45

https://www.ni.com/en/solutions/aerospace-defense/what-is-do-254-.html
https://www.ni.com/en/solutions/aerospace-defense/what-is-do-254-.html
https://verificationacademy.com/
https://verificationacademy.com/
https://www.chipverify.com/uvm/uvm-tutorial
https://www.chipverify.com/uvm/uvm-tutorial
https://verificationacademy.com/topics/uvm-universal-verification-methodology/uvmf/uvm-framework/
https://verificationacademy.com/topics/uvm-universal-verification-methodology/uvmf/uvm-framework/
https://verificationacademy.com/topics/uvm-universal-verification-methodology/uvmf/uvm-framework/

	List of Tables
	List of Figures
	Introduction
	DO-254 Standard
	Goal of the thesis
	Software tools

	Background
	SystemVerilog
	Universal Verification Methodology
	UVM Testbench
	UVM Phases
	Transaction Level Modeling
	Testbench configuration
	UVM Messaging

	UVM Framework
	YAML

	UART

	UVM Verification Environment
	Device Under Test
	Development Flow
	Verification blocks design
	Design to YAML translation
	Verification blocks generation and code simulation
	Custom code addition

	UART Top Level Testbench
	UART Test Top
	UART Transactions
	UART Sequences

	UART Environment
	UART In Agent
	UART Out Agent
	UART Predictor
	UART Scoreboard

	Results
	Conclusion
	Bibliography

