POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Analysis and Contributions to a
Post-Quantum Cryptography Library
written in Rust for a ARM Cortex-M4
board

Supervisors C andidate

Prof. ANTONIO JOSE’ DI SCALA
Francesco MEDINA

Dott. Guido BERTONI
Dott. Maria Chiara MOLTENI

April 2024

Abstract

Nowadays, there is a rapid proliferation of IoT systems motivated by the fact that
these devices have a large field of applicability. Embedded systems are often used
in IoT devices in order to process, collect, exchange data over the Internet and
intercommunicate. These devices introduce new security challenges due to their
hardware limitations. At the same time, the research into quantum computing
is growing and becoming a tangible reality for the coming decades. As the main
consequence, the world is starting to prepare to deal, in terms of cybersecurity, with
quantum computers by introducing Post Quantum Cryptography (PQC) which
is the set of cryptographic algorithms and protocols designed to allow systems to
remain secure even in the presence of quantum computers. This work provides
a comprehensive overview of the fundamental mathematical aspects of PQC and
presents an efficient and practical solution for ARM Cortex M4 microcontrollers
which are widely used for embedded systems and IoT applications for their known
performance, versatility and efficiency. In particular, this study is focused on
the CRYSTALS-KYBER KEM. In this study, a specific Kyber library written in
Rust is selected, and the analysis pays close attention to aspects related to secure
programming. For this purpose, we chose Rust system programming language
for the programming part for its emphasis on safety at design phase in order to
enhance the reliability and security. The objective of this study is to analyze these
two technologies and determine their feasibility and efficiency when integrated
with ARM Cortex M4 microcontrollers in order to make it secure in the face of
a quantum threat. Finally, this work brings improvements for the library and
contributions in terms of quality and code maturity.

Summary

By 2023, Internet of Things (IoT) connections will represent 14.8 billion which
means nearly half of all global connected devices and connections, according to
Cisco Annual Internet Report (2018-2023) [1]. IoT devices have a wide range
of applicability in industry and for personal use. These devices introduce new
security challenges due to their limitations in terms of energy consumption and
computational resources. Embedded systems are often used in IoT industry and
unlike ordinary computers they require greater focus on error prevention aspects.
In parallel, research into quantum computing is increasing and becoming a tangible
reality for the coming decade. Quantum computers will introduce potential risks
to our traditional cryptographic systems as demonstrated in 1994 by the Shor’s
quantum algorithm. Shor’s algorithm efficiently solves the problem of integer
factorization. Hence, once this algorithm will be consistently executed by a quantum
computer, it will break the security of widely-used cryptographic schemes which
rely on the complexity of integer factorization problems for their security (i.e.,
RSA).

As the main consequence, the world is starting to prepare to deal, in terms
of cybersecurity, with quantum computers by introducing the Post Quantum
Cryptography (PQC) which is the set of cryptographic algorithms and protocols
designed to allow systems to remain secure even in the presence of quantum threats.

Given this context, we established some requirements: on one hand, a solution to
mitigate weaknesses that may arise when developing with embedded systems, and
on the other hand, a solution to integrate a PQC algorithm into embedded devices
to maintain confidentiality, integrity, and authenticity against both "classical" and
quantum attacks (as depicted in figure 1).

For this case study, we chose to use a PQC library written in Rust which is a
system programming language that pays close attention on safety at design phase.
Rust enhances reliability and security on embedded systems programming. In
particular, this language introduces its own ownership model in order to mitigate
common weaknesses such as memory leaks, null pointer dereferences, and data
races. More in detail, we considered the CRYSTALS-KYBER Key Encapsulation
Mechanism which is one of the finalists in Round 3 in the NIST PQC Standardization

11

Quantum
Attack

N \
0101010111101010 4
<)
Classicéig

Attack

Figure 1: PQC must ensure protection for both Classical or Quantum Attacks
methods

process. This scheme can be considered as a great candidate because of its
robustness, resilience and interoperability with legacy systems. Kyber’s resilience,
unlike some traditional cryptographic systems which are vulnerable to Shor’s
algorithm, derives mainly from difficulty of solving lattice-based mathematical
module learning with errors problems, even for quantum computers.

Then, we analyzed the interaction between ARM Cortex M4 boards and the
selected library.

During the course of this study, we have devoted particular attention to the
Random Number Generation (RNG) module. It can be implemented in software
or hardware, and plays a critical role in cryptography, particularly in generating
session keys, or cryptographic numbers used once (called nonces). A weak random
number generator can compromise the security of any cryptographic protocol (i.e,
by using predictive attacks). Since Kyber algorithms used nonces, we observed that
the library do not correctly handle potential errors or malfunctions of the RNG
peripheral. This scenario represents a non-negligible issue, because IoT devices are
specially designed to be intensively used, leading to a higher probability of failure
and service disruption.

To address this problem we realized tests and implement software contributions,
accepted and released by the library community, which brings robustness, failure
recovery, security and better code quality.

II1

v

Acknowledgements

I would like to express my sincere gratitude to my parents, grandparents, and my
brother for their trust and tremendous support throughout this academic journey.

A special thanks to Prof. Antonio José Di Scala for his professionalism, avail-
ability, and for the positive experience I perceived while working on this thesis.

[am deeply grateful to Dr. Maria Chiara Molteni for her exquisite patience and
expertise, which have supported me greatly during this work.

Lastly, I would like to express my gratitude to Dr. Guido Bertoni for his
availability and for providing me with the opportunity to carry out this thesis.

“The measure of intelligence
is the ability to change”
Albert Einstein

“La misura dell’intelligenza ¢ data
dalla capacita di cambiare

quando € necessario”

Albert Finstein

Table of Contents

List of Tables X
List of Figures XI
Acronyms XV
1 Introduction 1
1.1 Thesis objectiveso 2
1.2 Thesis structure 2

2 Post-Quantum Cryptography 4
2.1 Nowadays Security 4
2.1.1 Security Problems and Constraints)

2.2 Post Quantum Cryptography (PQC) 5
2.3 Lattices 6
2.3.1 Preliminaries L 6

2.3.2 Definition of Lattice 7

2.3.3 Definition of Basis of the lattice 7

2.3.4 Properties of the Lattice 9

2.3.5 Lattice-based Hard Problems 10

2.3.6 Lattice-based Cryptosystem 13

2.4 LWE - Learning With Errors 15
2.4.1 Definition 15

2.5 Public-Key Cryptography using LWE 18
2.5.1 Key Generation L0 18

2.5.2 Encryption 19

2.5.3 Decryption 21

2.5.4 NIST Standardization Competition 23

3 The Number Theoretic Transform (NTT) and its inverse (INTT) 26
3.1 NTT . oo 26

3.1.1 Definitions

3.1.2 NTT-based Polynomial Multiplication
3.1.3 FFT Trick for Negacyclic-based NTT € Z,(z)/(z" +1) . . .
4 Kyber
4.1 Preliminarieso
4.1.1 Oracle
4.1.2 Security Goals
4.1.3 IND-CPA
4.1.4 IND-CCA
4.1.5 TImplications
4.2 CRYSTALS
4.2.1 Functions and Parameters Employed
4.2.2 Kyber’s Polynomials and Coefficients
4.3 Security Approach
4.4 Kyber.CPAPKE
4.4.1 Key Generation 0o
4.4.2 Decryptiono
4.5 Kyber.CCAKEM
4.5.1 Key Generation
4.5.2 Encapsulation (Client — Server)
4.5.3 Decapsulation (Server — Client)
Rust Programming Language
5.1 Imtroduction
5.2 Preliminaries Lo
5.2.1 Vulnerabilityo
5.2.2 Weakness
5.3 CVE for Linux Kernel
54 CWE for Clanguage,
5.5 Rust Overview
5.5.1 Safety - Pointers and Memory
5.5.2 Syntax
5.5.3 Ownership
5.5.4 Borrowing Lo
5.5.0 Mutability o
5.5.6 Lifetimeso
5.5.7 Polymorphismo oo
5.6 The no std environment
5.7 Motivation of adopting Rust for the project

VIII

35
35
35
36
36
37
37
38
38
39
39
40
40
43
44
44
45
45

6 Kyber library written in Rust on a ARM Cortex-M4
6.1 The STM32F303VCT6 Board
6.1.1 Development environment for STM32
6.1.2 Ourselection
6.1.3 Limitations of the board
6.2 State of Art of Kyber on a ARM Cortex-M4
6.2.1 PQClean
6.22 pamd.
6.3 Selected Rust Kyber Library for the board
6.4 Performance Evaluation
6.4.1 Clock Cycles
6.4.2 Clock Cycles Measurement Method
6.5 Code Coverage analysis
6.5.1 Code Coverage
6.5.2 Code Coverage Criteria
6.5.3 Test Coverage

7 Random Number Generator
7.0.1 FIPS 140-2
7.1 The STM32F407VGT6 Board
7.1.1 TRNG Functional Description
7.1.2 TRNG Workflow
7.1.3 TRNG Error Management
7.2 Randomness Tests
7.2.1 Test Description
722 Results.

8 Contributions to the library
8.1 Performance Tests for STM32F4 Board
8.1.1 Results for STM32F4
8.2 Performance Results for STM32F3 board
8.3 Code Coverage Results
8.4 Contributions to the library
8.4.1 Solution for the Unhandled RNG exceptions
8.4.2 Solution advantages
8.4.3 Contributions to enhance Code Quality

9 Conclusions
A Boundary Value Coverage Observations
Bibliography

IX

65
65
65
65
67
67
67
68
68
68
68
69
74
74
74
1)

77
7
78
78
78
79
81
81
81

83
83
84
38
92
93
93
94
98

103

104

107

List of Tables

2.1

2.2

2.3

4.1
4.2
4.3

5.1
5.2

8.1

8.2

In the first round the total lattice-based candidates account for 26
out of 64. Candidates "HILA5" and "Round2" were withdrawn and

merged in "Round5" candidate. 24
Second round was announced on January 30, 2019. This time the
lattice-based candidates accounted for 12 out of 26 24

Third round announced on July 22 2020, NIST included two new
candidates (*) for the lattice-based type to be considered in the
fourth round, they were "FrodoKEM" and "NTRU Prime". So now

lattice-based accounted 7out of 15 25
Kyber Parameters oo 39
Kyber Functions oo 39
Secret and Public key size depend on chosen Kyber’s version 40

Overflow and Memory Corruption vulnerabilities for the year 2022 . 50
Weaknesses in Software Written in C, submission date 2008-04-11
[24]. Some of them are highlighted in gray and are prevented at
compile-time by the Rust compiler 53

Speed comparison at 24MHz for the STM32F407VGT6 board based
on the language and method used. The average, minimum and
maximum value of each algorithms are reported for each KEM method 84
Speed comparison at 24MHz based on the language and method
used. The average, minimum and maximum value of each algorithms
are reported for each KEM method 88

List of Figures

2.1
2.2

2.3

24

2.5

2.6
2.7

2.8
2.9
2.10
2.11
2.12

3.1

3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

PQC must ensure protection for both Classical or Quantum Attacks

methods iii
Basis represented by the vectors bl and b2 8
Integer linear combination of the basis with the vector s, generates

thepoint ¢ 9

Vectors by and bg are the 2 linearly independent vectors contained
in the ball with radius Ay (successive minima) centered at the origin. 10
In this Decision variant (SVP), vector v € L is the shortest vector

to origin, in the lattice £ generated by basis by and by 11
Vector v € L is the closest to vector w € Q" in the lattice £

generated by basis by and byo 13
Alice’s secret key on the left. Alice’s public key on the right 14
Key Generation Function (computed by Alice) where k corresponds

totherankdandm=n L. 19
Encryption Function (computed by Bob) 20
Formula to compute v (computed by Bob) 21
Formula to compute u (computed by Bob) 21
Rounding according to Ding’s technique. Probability of failure is 2710 22
Decryption Function (computed by Alice) 23
Binary Tree representing the Chinese Remainder Theorem map of

FFT Trick over Z,[z|/(z"+1) 31
Cooley-Tukey (CT) butterfly 32
Gentleman-Sande (GS) butterfly 33
Example of an Encryption Oracle 35
Kyber.CPAPKE.KeyGen() [18] 41
Pseudocode of the Parse [18] function 41
Pseudocode of the centered binomial distribution (CBD) [18] 42
Kyber.CPAPKE. Enc(pk, m, r) [18] 43
Kyber.CPAPKE.Dec(sk, ¢) [18] 44

XI

4.7 Fujisaki-Okamoto Transform (FO) for IND-CCA2-secure Decapsulation 44

4.8
4.9
4.10

5.1

6.1
6.2

7.1
7.2
7.3
7.4

7.5

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

Kyber. CCAKEM.KeyGen() [18]
Kyber. CCAKEM.Enc(pk) [18]
Kyber. CCAKEM.Dec(c, sk) [18]

The list of all CVE recorded from 1999 to 2023. [23]

STM32f303VCT6 Layout (top view) [28]
List of known flaws. On Each flaw it is specified which tests might
have detected them, from [30]

Front view of the STM32F407VGT6 board from [35]
RNG Block Diagram from [36]
RNG Schema from [37]
Bar chart depicting the probability distribution of each integer from

0 to 32000 considering 40 billion draws
Enlarged surface of the previous graph

Kyber-512 KEM functions measured on STM32F407VGT6 board
using DWT methodo
Kyber-768 KEM functions measured on STM32F407VGT6 board
using DWT method 00
Kyber-1024 KEM functions measured on STM32F407VGT6 board
using DWT method oo
Kyber-512 KEM functions measured on STM32F407VGT6 board
using SysTick method
Kyber-768 KEM functions measured on STM32F407VGT6 board
using SysTick method
Kyber-1024 KEM functions measured on STM32F407VGT6 board
using SysTick method
Kyber-512 KEM functions measured on STM32F303VCT6 board
using SysTick approacho
Kyber-768 KEM functions measured on STM32F303VCT6 board
using SysTick approach oo
Kyber-1024 KEM functions measured on STM32F303VCT6 board
using SysTick approacho
Kyber-512 KEM functions measured on STM32F303VCT6 board
using DWT approach
Kyber-768 KEM functions measured on STM32F303VCT6 board
using SysTick approach 0oL
Kyber-1024 KEM functions measured on STM32F303VCT6 board
using SysTick approach 0L

45

8.13 Coverage results for Kyber project root folder 92
8.14 Coverage results for src folder 92
8.15 Coverage results for src/reference folder 93
8.16 Added a new error enum called RandomBytesGenerator 94
8.17 Modified the randombytes() function in order to use the try_fill_bytes()
method and handle the error case 94
8.18 IND-CCA Key Generation RNGissue. 95
8.19 Our IND-CCA Key Generation RNG solution 96
8.20 IND-CCA Encapsulation RNG issue 97
8.21 Our IND-CCA Encapsulation RNG solution 98
8.22 Merged pull request https://github.com/Argyle-Software/kyber/
commit/5e931d6d8ca536a98308c2faalb505£3e2c9949%b 99
8.23 Merged pull request https://github.com/Argyle-Software/kyber/
commit/5e931d6d8cab36a98308c2faalb505£3e2c9949%b 100
8.24 Merged pull request https://github.com/Argyle-Software/kyber/
commit/5e931d6d8cab36a98308c2faadb505£3e2¢c9949b 100

XIII

https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b

Acronyms

DLP

Discrete Logarithm Problem

ECDLP

Elliptic-curve Discrete Logarithm Problem

LWE
Learning With Errors

M-LWE
Module-based Learning With Errors

NIST
National Institute of Standards and Technology

PQC
Post Quantum Cryptography

CWE

Common Weakness Enumeration

CVE

Common Vulnerabilities and Exposures

NTT

Number Theoretic Transform

INTT

Inverse Number Theoretic Transform

XV

FIPS

Federal Information Processing Standards Publication
IND-CPA

Indistinguishability under Chosen Plaintext Attack
IND-CCA1

Indistinguishability under non-adaptive chosen ciphertext attack

IND-CCA2

Indistinguishability under adaptive chosen ciphertext attack

XVI

Chapter 1
Introduction

The proverbial phrase "Prevention is better than cure" (cit. Desiderius Erasmus
~1500) means it is preferable and relatively simple to stop problems in the first
place rather than repairing the damage after it occurs. This proverb, often applied
in healthcare, emphasizes the importance of taking preventive measures to avoid
potential issues, rather than realizing solutions to resolve the problems once they
arise.

Similarly, in a cybersecurity context, prevention is highly important because
taking proactive measures can help mitigate risks and prevent negative outcomes.
Nowadays, the principle of prioritizing security above all else is well-known. Security
by design refers to the integration of a concrete solution designed and implemented
from the initial stages of a computer product’s lifecycle.

In this work we adopted this principle by selecting two technologies specifically
designed to provide preventive mechanisms against future attacks, damages, errors,
and other types of issues. These two elements are:

e Post Quantum Cryptography: which is the set of cryptographic algorithms
and protocols designed to allow systems to remain secure even in the presence
of quantum threats. In this context, we take in consideration the CRYSTALS-
KYBER KEM for our analysis.

e Rust Embedded: this system programming language can help developers to
mainly focus on aspects regarding safety. IoT devices introduce new security
challenges due to their hardware limitations. Embedded systems, unlike
commercial computers, are very raw in terms of management and require a
greater focus on prevention aspects, which Rust natively offers.

We merged these two elements by integrating them on ARM-Cortex M4
boards and observing how they behave providing some contributions.

1

Introduction

1.1 Thesis objectives

Overall, the objective of this study is to analyze and determine the feasibility and
efficiency of a Kyber library written in Rust when integrated with ARM Cortex M4
microcontrollers. In parallel, bring improvements for the library and contributions
in terms of code quality.

1.2 Thesis structure

o Chapter 2: provides the mathematical background necessary to understand
the Kyber schema. Section 2.3 presents the definition, properties and problems
of Lattices. Section 2.4 describes the Learning With Errors and its variants.
Section 2.5 provides an example of Public-Key Cryptosystem using LWE and
Results of the NIST Standardization Competition

e Chapter 3: is a theoretical overview of the Number Theoretic Transform
(NTT) and its Inverse (INTT)

o Chapter 4: presents Kyber. This chapter starts providing some preliminaries
about current security goals. Section 4.3 explains the Kyber’s security approach
which employs a dual-phase methodology described in section 4.4 and 4.5.

o Chapter 5: is the introduction to the Rust language. This chapter starts
explaining the importance of being aware of the impacts generated by weak-
nesses within a software, by collecting in section 5.3 and 5.4 some relevant real
cases and statistics of CVEs and CWEs. Then, the overview of the language is
presented in section 5.5 and 5.6. Section 5.7 motivates the use of the language
in our work.

o Chapter 6: presents the state of the art of Kyber on the ARM Cortex-
M4 microcontrollers and the selected Kyber library for this work (section
6.1 6.2 and 6.3). Section 6.4 and 6.5 provide an explanation of sampling
and measurement techniques used to perform the speed tests and coverage
evaluation.

o Chapter 7: briefly describe the relevance of a Random Number Generator.
Section 7.1 presents the selected board for such analysis, and section 7.2
provides the corresponding randomness Tests realized with an explanation of
results as well.

o Chapter 8: is the presentation of findings of the computed performance tests,
including the interpretation of results (section 8.1 and 8.2). Section 8.3,

2

Introduction

explains the code coverage results computed. Contributions to the library are
presented in section 8.4.

o Chapter 9: contains the final considerations and the summary of key findings
and recommendations for future research about this thesis work.

Chapter 2

Post-Quantum
Cryptography

2.1 Nowadays Security

Presently, we feel secure knowing that our encrypted data is safe because in order to
decrypt the information, most of the time it would take the attacker a considerable
amount of time. One of the important goal of security mechanisms and protocols,
is to establish a secure channel of communication. The solutions adopted in
standardized technologies take advantage of well-known mathematical problems
that have a high complexity of resolution for the nowadays technology knowledge,
they are:

1. Integer Factorization Problem
2. Discrete Logarithm Problem (DLP)
3. Elliptic-curve Discrete Logarithm Problem (ECDLP)

Algorithms are divided according to the type of function they perform within a
security mechanism and whether they are symmetrical or asymmetrical:

Symmetric:

 Hash function (e.g. SHA-2, SHA-3)
 Block or stream cipher (e.g. AES, ChaCha20)
o Authenticator (e.g. HMAC, GMAC, Poly1305)

Asymmetric:

o Public-key Encryption (PKE) (e.g. RSA, Diffie-Hellman, ECDH)
 Signatures (e.g. RSA, DSA, ECDSA)

4

Post-Quantum Cryptography

2.1.1 Security Problems and Constraints

As time passes, the phenomenon of quantum computers takes hold. In 1994
the American mathematician Peter W. Shor demonstrates [2] that if a quantum
computer uses Shor’s algorithm in order to find the prime factors of an integer,
it can be able to efficiently solve this problem in a polynomial time. Therefore,
this algorithm is able to break schemes based on the concept that factoring large
integers is computationally hard. The victims will be the previous mention PKE
schemes like RSA (that will be insecure by 2030 [3]), Diffie-Hellman, ECDH. More
in detail, the complexity class of this decision problem is called bounded-error
quantum polynomial time (BQP) because it can be solved in polynomial time with
an error probability < £ for all instances [4].

Therefore, is very important to prevent these future attacks through mechanisms
that not only guarantees security in a quantum era but also being interoperable
with the current infrastructures present all over the world and being compatible
with most of the current technologies considering not only ordinary computers but
also embedded systems that has less resources in terms of energy and memory
space.

2.2 Post Quantum Cryptography (PQC)

Post Quantum Cryptography (PQC) is the set of cryptographic algorithms designed
with the purpose of being able to preserve security in a context of quantum
supremacy which means the era where quantum computers will be a reality in
the world and will be capable of breaking the security of current cryptographic
standards by making them no longer secure. More precisely, PQC is an asymmetric
cryptography that is not based on factoring or discrete logarithm problems and
is able to resist classical and quantum computers. The main requirement is
to ensure integration of PQC into existing security protocols, such as TLS for
secure communication over the internet and maintain confidentiality, integrity, and
authenticity against both "classical" or quantum attacks.

Among all available families of post-quantum cryptography, only the lattice-
based is the most promising one due to its performance, communication bandwidth
and efficiency compared with the other schemes. Another important point to
consider is that the most common cryptographic primitives (PKE, KEM, digital
signature, key exchange, etc.) can be implemented using lattices (explained on the
next paragraphs).

For the purposes of studying CRYSTALS-KYBER we focus on the study of the
lattice-based approach. Some post-quantum cryptographic schemes:

5

Post-Quantum Cryptography

1. the lattice-based

2. the isogeny-based

w

the hash-based

e~

the code-based
5. the multivariable-based

6. the rank-based

2.3 Lattices

Since 18th century lattices have been used in mathematics. The use of lattices in
the design of cryptographic schemes started in the late 90s.

2.3.1 Preliminaries

Subgroup Let consider the group R", a nonempty subset S C R" is called
(additive) subgroup if both conditions are satisfied:

vweS=v+weS
veS=-ves

In other words, the subgroup § is closed under addition, so the sum (or sub-
traction) between two points of the subgroup S generates another point inside
S.

The previous two conditions implies the existence of the identity element 0 € S
because v+ (—v) =0 € S.

Discrete subgroup Let define the subgroup S, a subgroup is called discrete if
exists a constant € > 0 such that

VWweS|v+#0

Vil = ¢

or an equivalent definition, if any two distinct points of the subgroup v £ w € §
are at least spaced out
[x—yll>e

Post-Quantum Cryptography

Unimodular matrix An integer matrix U € Z"*" is called unimodular matrix
if
det(U) = £+1

2.3.2 Definition of Lattice

An n-dimensional lattice £ is defined as a subset of R"” that satisfy the condition
of being a discrete additive subgroup.

Geometrically speaking a lattice is an n-dimensional space populated by points
with a periodic pattern.

2.3.3 Definition of Basis of the lattice

A basis B = {by,...,b,} C R" of a lattice £ is a set of linearly independent
vectors whose integer linear combinations generate the lattice:

L=L(B):= {gzibi 12 € Z}

If we denote B € R™" a nonsingular matrix whose (ordered) columns are
by,...,b,, then another equivalent way to describe a lattice can be:

L=B-Z"={Bz:zecZ"}

The above definition describe an equivalent definition in which a lattice £ can
be obtained by applying some nonsingular linear transformation to the integer
lattice Z™.

Two bases By, By generate the same lattice £ if and only if there exists a
unimodular U € Z™*" such that B; = B,U

Proof Let suppose £(B1) = £(B3), then each column of B, is an integer combi-
nation of the columns of By and vice-versa. That means, exist U,V € Z"*" such
that B; = BoU and By = B;V = BoUV and since Bs is nonsingular (invertible)
it holds

B;'B, = B;'B,UV
I=UV

where I is the identity matrix and must occur that det(U) - det(V) = 1, therefore
both det(U) = det(V) =1 or det(U) = det(V) = —

In conclusion, the same lattice can be generated by different basis (if
B! B; is unimodular) and not by a unique one. It is precisely on this
intrinsic mathematical feature that makes lattice-based cryptography
possible.

Post-Quantum Cryptography

Example Let define the lattice £ generated by the following basis points repre-
sented by matrix A and depicted in figure 2.1

Let t € £ be the point generated by the linear combination with the vector
s = [2,1] € Z?* depicted by figure 2.2

Figure 2.1: Basis represented by the vectors b1 and b2

8

Post-Quantum Cryptography

L e
F- - @& - -7 - - = & - e e |
o WAANCE
I e e
1 1 1 1 1 t=2b1+bo
| | | ()l\ | | |
e A e
e o e

Figure 2.2: Integer linear combination of the basis with the vector s, generates
the point ¢

2.3.4 Properties of the Lattice
Rank

The rank k of a lattice £ C R" is the dimension of its linear span.
k = dim(span(L))

When k£ = n, the lattice is said to be full-rank.

Volume

Let denote B as the set of basis of £. The volume of a lattice £ is defined as:

vol = det(L) = | det(B)|

Minimum distance

The minimum distance of £ is the smallest distance between any two lattice points.
Can be also interpreted as the length of the shortest nonzero lattice vector v € L
(minimum length under the Euclidean norm):

ML) = o Vil = min _llx =yl

9

Post-Quantum Cryptography

Successive minima

Let n € N be the lattice dimension and let i € N such that i < n and X\;(£)
be the smallest radius such that the closed ball B(0,r) of radius r > 0 centered
at the origin contains at least ¢ linearly independent vectors of length at most
r. The definition of successive minima generalize the previous minimum distance
concept in which A = A\; so that the following sequence of parameters are called
the successive minima of the lattice L:

M A<,
Example of Successive Minima The successive minima), is the radius of

the smallest ball containing 2 linearly independent lattice vectors (b; and by) as
depicted in figure 2.3.

by

Figure 2.3: Vectors b; and by are the 2 linearly independent vectors contained
in the ball with radius Ay (successive minima) centered at the origin.

2.3.5 Lattice-based Hard Problems

Using the concept of minimum distance and successive minima, several NP-hard
problems have been studied. The most relevant problems are discussed in the next
paragraphs.

SVP - Shortest Vector Problem

There are two versions of the shortest vector problem and each of these versions
contains 3 variants.

10

Post-Quantum Cryptography

Figure 2.4: In this Decision variant (SVP), vector v € L is the shortest vector to
origin, in the lattice £ generated by basis b; and b,

SV P - Exact Form
Let denote with B the lattice basis and d € R™ | d > 0. There are the 3 variants:

e Decision the goal of this variant is to differentiate the following two cases:
M(L£(B)) <d
M(L(B)) >d

e Calculation the purpose of this version is to find the minimum distance

A (L(B))

e Search the goal is to find a nonzero v € £(B) such that:
[vll = A (L£(B))

Figure 2.4 depicts this problem.

SV P, - Approximate Form

Let denote with B the lattice basis, d € R" | d > 0 and the approximation factor
v =7(n) > 1 that is a function of the dimension n. These are the 3 variants:

e Decision (GapSV P,) distinguish between the cases
A (£(B)) < d
M(L(B)) >~y -d
11

Post-Quantum Cryptography

e Estimation (EstSV P,) compute A\ (£(B)) up to a v factor, i.e., output some
d € M (L(B)),7- M (L(B))]

e Search (SV P,) search a (nonzero) v € £(B) such that

0 <[lvlf <7-A(L(B))

Considering v = 1 all variants corresponds to the previous described Exact
Form problem variants. The problems can become easier as v increases. Formally,
the hardness of GapSV P,y < GapSV P., for any 7' > . In general, being able to
solve SVP,, implies being able to solve EstSVP.,, which implies being able to solve
GapSVP, as indicated as follow:

GaupSVP7 < EstSVP, < SVP,

SIVP - Shortest Independent Vectors Problem

Using the concept of successive minima is possible to generalize the task without
necessarily finding the shortest vector in the lattice as in SVP. Let denote with B
the lattice basis. All variants are in the Approximate Form.

e Shortest Independent Vectors Problem (SIV P,) The goal in this problem
is to find linearly independent vectors vy, ..., v, € L such that

mazi||vil| < v - A (L(B))

e Decision (GapSIV P,) Let be d a positive real, the purpose of this variant is
to determine if
M(L(B)) <dor \(L(B)) >~-d

e Successive Minima Problem (SM P) search linearly independent vectors
Vi, ..., Vn € L such that
Vil <~ - A(L(B))

for all ¢

CVP - Closest Vector Problem

The closest vector problem is a generalization of the previous shortest vector
problem. Let define w € Q" therefore an arbitrary point not within the lattice L.
The CVP problem consists in finding a vector v € £ that minimizes the distance
[w — vl

12

Post-Quantum Cryptography

2.3.6 Lattice-based Cryptosystem

On December 1996 Oded Goldreich, Shafi Goldwasser and Shai Halevi published
the GGH [5] encryption cryptosystem based on lattices, in particular it exploits the
hard problem concept of the closest vector problem (CVP) and uses the concept of
the lattice reduction as a trapdoor one-way function that means a function which is
easy to compute in one direction and difficult to compute in the opposite direction
without knowing additional information called the "trapdoor".

Lattice reduction as Trapdoor one-way function

Let consider basis almost parallel called "bad basis" and other basis called "good
basis" that are vectors nearly orthogonal as depicted in figure 2.6. Giving as an
input only bad basis, the goal of the lattice reduction is to find a basis with short
and close to be perpendicular vectors, in other words reduce the bad basis into a
good basis.

bl

Figure 2.5: Vector v € L is the closest to vector w € Q™ in the lattice £ generated
by basis b; and by

13

Post-Quantum Cryptography

’ ° ° °
° ° ° ° ° ‘
* 5 ° ° ‘
’ ° °
° ° ° ° ° .
° * 5 ° «
’ °
° ° ° ° ° ‘
° ° ° ‘
’ ° ° ° - - -
(a) "good basis" are almost 90° (b) "bad basis" are almost
degrees parallel

Figure 2.6: Alice’s secret key on the left. Alice’s public key on the right

The implementation of this concept can be used for define a trapdoor one-way

function. In order to explain the GGH PKE system, let consider the classic informal
example of a person (Bob) who wants to send a message to another person (Alice).
They have to execute the following steps:

1. Alice sets up a lattice with good basis and bad basis that both generates the
same lattice. She uses good basis as a secret and shares her bad basis to Bob
as a public key. Since an eavesdropper needs to find the closes lattice point
(CVP) using only the bad basis, it’s much harder to solve because finding the
closest lattice point may come from trying to add and subtract many many
vectors.

. Bob uses Alice’s bad basis to embed the message he wants to send. Bob
picks a point on the lattice which represents his message and then add a
noise. Therefore the new point is slightly moving away from the original point
(positioned outside the lattice domain). He sends to Alice the coordinates of
this new lattice point.

. Alice can use her good basis to find the closest lattice point in order to recover
the Bob’s message.

This encryption was broken in 1999 [6], therefore it is necessary to find something

even safer.

14

Post-Quantum Cryptography

2.4 LWE - Learning With Errors

In 2005 the theoretical computer scientist Oded Regev introduced [7] the Learning
With Errors (LWE) problem which the task, informally speaking is to learn a secret
n-dimensional vector s € Z; given random independent samples of polynomial
integers containing a small noise. This problem has been proved [7] to be as hard to
solve as several worst-case lattice problems such as GapSVP (the decision version of
the shortest vector problem) and SIVP (the shortest independent vectors problem)
already discussed. Unlike the GGH, the LWE problem will be used to be able to
encrypt one bit at a time. Given its great importance 13 years later Regev won
the prestigious Godel Prize.

2.4.1 Definition

Let define the natural positive integers n > 1,q > 2, m > n where ¢ is prime and
corresponds to the modulo, m is the number of equations and n is the number of
variables that corresponds to the ring dimension since we will consider only the
case Zy ~ Zg[x]/(x" + 1). Let assign the module rank with d a positive integer
and with U() the uniform distribution over the set passed as a input parameter
of this function. Let x7z44() be the discrete Gaussian distribution on Z of center
q with parameter a € |0,1[. We will consider only the case of a discrete LWE
distribution. Formally, the discrete LWE distribution A, on Zj X Z, is the
probability distribution obtained by choosing:

o A U(Zp™™)
oS U(qu‘)
® e < Xzm o small compared to ¢

and outputting
(A,b=As+e modq)

Search LWE: the problem of finding s, given (A,b = As+e mod q)
Decision LWE: the problem of distinguishing from (A, b) with b uniform.

ap0 Qo1 .- QAop—1 So €o to
a1,0 S1 N €1 t1
Am-1,0 -+ o OQm-1n—1 Sm—1 €m—1 tim—1

15

Post-Quantum Cryptography

Informal LWE Hardness Concept

The hardness proof is formally documented in [7] and informally it’s based on the
concept of reduction that is an approach that very informally says

"if we can find an algorithm to solve the LWE problem then we have found an
algorithm able to solve the Approx GapSVP problem for any instances that we
already know is a very hard problem’.

If a quantum computer is needed to solve a problem, in order to solve the other
problem there is the need to use a quantum computer as well.

LWE over unstructured lattices This case requires a O(n?) space complexity
and O(n?) of computation complexity.

In order to reduce LWE space complexity (i.e public key size) and improve
the performance of the calculations, it was really comfortable to work introducing
structured lattices which has many advantages in terms of efficiency and perfor-
mance, especially an efficient and faster multiplication between integer polynomials
bounded by a modulo some quotient ring (i.e (z™ + 1)). So that it is necessary
to replace Z set by the ring of integers R of some number field K. The ring R is
isomorphic to Z". For instance:

R=1Z[z]/ (" + 1) (2.1)
K = Q[z]/ (z" + 1) with n = 2° (2.2)

At this point, after this modification the multiplication of two integers becomes
a-be R, mod (2" + 1), whereas without structured lattices it was a - b € Z,.

Moreover, structured matrices allows to compute polynomials multiplications
modulo quotient ring using the rotation operator rot() so that informally

a(z)-b(x) mod (2" + 1) = rot(a)matriz - Dvector

The explicit form of rot(a) depends on the particular field K. In the case where K
is a cyclotomic power-of-two field, i.e. K = Q[z]/ (" + 1) for power-of-two n, we
have the following negacyclic matrix:

Qo —Ap—1 —Ag_2 ... e —Qy
ay Qo —Qp—1 - . —ag
rot(a) = | : e (2.3)
Ap—1 Ap—2 ao

16

Post-Quantum Cryptography

Example Considering n = 4 and a ring of integers R = Z[x]/(z* +1). Let define
a=313+T2? —4xr +5and s = —2% — 22 4+ 22 + 3, both a,s € R. The result of
the multiplication of them can be easily reduced modulo quotient ring considering
that 2 = —1, 2" = —x etc. because n is power of 2 so that z* +1 = 0.

a-s=—32% —102° + 32* + 2223 + 822 — 22 + 15
= —3(—x?) — 10(—x) + 3(—1) +222% + 8% — 22 + 15
= 2223 + 1122 + 8z + 12

Using structured matrices is possible to compute the previous equation with an
equivalent way that uses the rot() operator in order to reduce modulo quotient
ring. In this example the same structure of 2.3 is applied because the field K is a
cyclotomic power-of-two field for power-of-two n = 4 (where n = 22):

5 =3 =7 4 3 12
a-s=rot(a)-s= I Bl IO N (O
7T -4 5 =3 —1 11
3 7 -4 5 -1 22

Ring-LWE This LWE variant uses structured lattices where R is a cyclotomic
ring which elements are polynomials of degree less than n. Therefore, using a
cyclotomic power-of-two field is possible to compute As using the previous 2.3
rot(A), therefore the space complexity is decreased to O(n) and the computation
complexity this time is O(nlog(n)) achieved using NTT algorithms to reduce
multiplication complexity of A - s because each columns of the first matrix A are
dependent each other so they can be simplified with some tricky methods.

In this structure, in order to increase the security level it requires to increase the
size of matrix A. In the below equation, for the first matrix we will apply only one
rotation because m = 1 and the rank d = 1, therefore rot(a; 1) € Z;™".

ap,0 —0Gnp-10 —Ap-2p0 .- 410
1.0 Qo,0 —Qp—1,0 So eo to
az,0 a1,0 0,0 : 81 e1 t
a1,0
(p—2,0 Sp—1 €n—1 tn—1
a/TL—l,O : a070

Module-LWE LWE over modules has been considered to be a tradeoff between
LWE and R-LWE problems. In particular, it is a generalization of the Ring-LWE

17

Post-Quantum Cryptography

problem since working with the special case Module-LWE,;_; corresponds to work
with Ring-LWE. Module-LWE guarantees a flexible and scalable level of security
(based on tuning a single parameter that is the rank d) compared to Ring-LWE
and better computation cost of O(nd) compared to the unstructured lattice version
of LWE which has a O(n?) complexity. Module-LWE use this parameters:

o A+ U(RZ”Xd)
e s U(RY)
e e € R small compared to ¢

In the bellow equation since the rank is d > 1 and m can be bigger than 1, each
element of the first matrix can be consider as multiple rotated matrices of Ring-
LWE’s A matrix structure in which rot(a;;) € Zg*™ i=12,.,m j=12,...d

rot(a;1) --- rot(aza) S1 el t

rot(amai) - - rot(ama) Sm Cm t

2.5 Public-Key Cryptography using LWE

2.5.1 Key Generation

The Key Generation is a function that returns a public key and a secret key and

can be more formally defined as following.
uniform uniform

Let defines <— Z7, A <— Z!"™ e« x"

KeyGen (1") : (pk = (A, t = As+e),sk =s)

e s represents the secret key or sk

e the concatenation of (A,t) is the public key or pk
18

Post-Quantum Cryptography

public private public

n A S| + |©] = |t
1 ! —
n k k

Figure 2.7: Key Generation Function (computed by Alice) where k corresponds
to the rank d and m =n

Example [fn=4,¢g=89and d=1:

8 53 10 53\ /1 1 5
15 37 24 31| |0 0| |39
81 51 3 61| [1|T]| 1] s
12 26 29 15/ \o 1 40

2.5.2 Encryption

Once the public-key is shared, the goal of this step is to produce a ciphertext that
is the concatenation of v and u computed with the function below. The parameter

1 represents the single bit input message.
upiform

Let define r <— {0,1}" and the message bit u € {0,1}. Finally, let denote with
e; and ey the error polynomial vectors.

Encpp(p) - (u =rA+e,v=rt+er+u BJ)

u is in bold because is a vector of polynomials and v is only a polynomial.

Example Let considering to send only one bit (0 or 1) message and continuing
with the same values as in the previous example. Notice that the same procedure is
repeated if we have to encrypt a buffer of bits such as the letter "C" that corresponds
to the ASCII code 67 that is in binary 01000011.

19

Post-Quantum Cryptography

85

u:rA+e1:(0 11 1)(33?
12

53 10
37 24
ol 3
26 29

93
31
61
15

)+(0 1 -1 -1)

=(19 25 56 18)+(0 1 -1 -1)

:(19 2 55 17)

5

= (1) + () + ()
=120
=31 mod ¢
kI pri - pu public
n A t
k
+ €2
+ m
= }{ u v

n

t i
k

Figure 2.8: Encryption Function (computed by Bob)

20

Post-Quantum Cryptography

v - r + € + m
t
- r + e + m
A S + | e
= T + + m
A S

€1

Figure 2.10: Formula to compute u (computed by Bob)

2.5.3 Decryption

The goal of this method is to recover back the original message without any error.
It is defined as:

21

Post-Quantum Cryptography

1 if v—us modqge [%, %}
Decg (u,v) =
0 if v—us modq otherwise

where

v—us:rt+e2+u{gJ—us

Reconciliation mechanism The error reconciliation is a mechanism used by
two parties (i.e Alice and Bob) to concur on a secret bit, where they only share
a common value up to an approximation factor. We will consider the Ding’s [§]
error reconciliation as a method to reconcile a message called m because was the
first method proposed with basic rounding and has a good failure probability
(that means obtaining a wrong output mae # mpe) of 2719, There are other
reconciliation mechanisms such as Peikert’s error reconciliation [9] that has a smaller
failure probability (2716384).

Round to 0

RN

Round to 1

Figure 2.11: Rounding according to Ding’s technique. Probability of failure is
2—10

Example Considering the context of the previous example (the encryption com-
puting by Bob), this time Alice uses u and v sent by Bob and her secret key s in
order to decrypt the Bob’s message:

22

Post-Quantum Cryptography

v—us:rt+e2+uBJ—us

:31—(19 2 55 17)-

S = O =

=31-"T74
= —43
= 46 mod ¢

round
1

g 3
Z<46<Zq

Figure 2.12: Decryption Function (computed by Alice)

2.5.4 NIST Standardization Competition

In order to evaluate and then standardize PQC schemes, on December 2016 the
US National Institute of Standards and Technology (NIST) organized a formal call
for PQC scheme proposals [10]. This agency in the same way standardized the
algorithms SHA-1 in 1995 (already weakened in 2005) and SHA-2 in 2001.

On November 2017 (deadline for proposals) 69 submissions were accepted as
complete and proper to participate. Most of the candidates were lattice-based and
2/3 were KEM/PKE and only 1/3 were signatures.

In six years of candidate analysis there were in total 3 rounds. The following tables
show the three round lattice-based scheme candidates.

Table 2.1 shows the first round, table 2.2 corresponds to the second round and the
third round is represented in the 2.3 table.

Winners of Round 3 After 6 years of competition, on July 5 2022, NIST an-
nounced the winners. For the lattice-based scheme type the winners are CRYSTALS-
Kyber for the KEM/PKE. Instead, CRYSTALS-Dilithium and FALCON for the
Signature system.

23

Post-Quantum Cryptography

Table 2.1: In the first round the total lattice-based candidates account for 26 out
of 64. Candidates "HILA5" and "Round2" were withdrawn and merged in "Round5"
candidate.

PKE/KEM Signature
- Compact LWE
- CRYSTALS-Kyber
- Ding Key Exchange
- EMBLEM and R.EMBLEM
- FrodoKEM
- KCL
- KINDI
- LAC
- LIMA
- Lizard
- LOTUS
- NewHope
- NTRUEncrypt
- NTRU-HRSS-KEM
- NTRU Prime
- Odd Manhattan
- Roundb
- SABER
- Three Bears
- Titanium

- CRYSTALS-Dilithium
- DRS

- FALCON

- pqNTRUSign

- qTESLA

Table 2.2: Second round was announced on January 30, 2019. This time the
lattice-based candidates accounted for 12 out of 26

PKE/KEM Signature
- CRYSTALS-Kyber
- FrodoKEM
- LAC
- NewHope - CRYSTALS-Dilithium
- NTRU - FALCON
- NTRU Prime - qTESLA
- Roundb
- SABER
- Three Bears

24

Post-Quantum Cryptography

Table 2.3: Third round announced on July 22 2020, NIST included two new
candidates (*) for the lattice-based type to be considered in the fourth round, they
were "FrodoKEM" and "NTRU Prime". So now lattice-based accounted 7 out of 15

PKE/KEM Signature
- CRYSTALS-Kyber
- NTRU - CRYSTALS-Dilithium
- SABER FALCON
- FrodoKEM* _

- NTRU Prime*

25

Chapter 3

The Number Theoretic
Transform (NTT) and its
inverse (INTT)

3.1 NTT

The Number Theoretic Transform (NTT) is a special case of Discrete Fourier
Transform (DFT) over a finite field [11, 12] that permit to perform more efficiently
polynomial multiplication of high degree on integers sequences over a ring. This
transform guarantees full precision because all computations are performed with
integers. In contrast, classical FF'T performed over the complex field might yield
errors about rounding precision due to the use of floating points. NTT has a
quasilinear complexity O(nlogn) (reached using some tricks explained later in this
chapter) where n is the length of polynomials so is faster than classic methods
such as schoolbook algorithm that is the most simplest with quadratic complexity
O(n?) or Karatsuba algorithm that uses the "divide-and-conquer" design paradigm
with O(n'*®) complexity or Toom-Cook algorithm that has a O(n") cost where
r = logp(2k — 1).

For these particular features, NTT can be used for post-quantum cryptography.

3.1.1 Definitions

k-th primitive root of unity ({)

Let k be a positive integer, q a prime number so that Z, is a finite field. Denote
(€ Z, the k-th primitive root of unity is a number ¢ which holds both conditions:

=1 and (¢"#1wherei=12,...k—1
26

The Number Theoretic Transform (NTT) and its inverse (INTT)

Monic Polynomial

A polynomial in a single variable (i.e) that its leading coefficient (the coefficient
of highest degree) is equal to 1. For example:

"+ Cpo1 2™ 4 x? + ez + o

with n > 0.

Irreducible Polynomial

Let ¢(x) be a monic polynomial in the field Z. It is called irreducible if it doesn’t
have nontrivial factors over Z[z].

Cyclotomic Polynomial

Let d be a positive integer, the d-th cyclotomic polynomial is an irreducicle
polynomial defined over the field Z[z] that divides 2% — 1 but not z* — 1 where
1 <d.

Representations of the polynomial rings Z,[z]

Let Z,[x] be the polynomial ring over Z, with quotient rings <i"(f)]>. The ¢(x) is

a cyclotomic polynomial [13]. In particular, if deg ¢(z) = n is true, the element
a € Z,[x]/ < ¢(x) >, can be represented both in the form of

n—1)
a= Z a; "
i=0

or

a = (ap,ay,...,a,_1)

where a; € Z,.

The Chinese Remainder Theorem (CRT)

Let mq,mo, ..., m, be integers > 1 with r > 2, that are pairwise coprime, which
means (m;,m;) = 1fori # j. Thenif a1, ..., a; are integers such that 0 < a;, < m,
for every r, the Chinese Remainder Theorem asserts that the following congruences

r=a; modmy, x=aymodmsy, ..., x=a, modm,,

has a unique solution £ mod N, where N =my - mo---m,.

27

The Number Theoretic Transform (NTT) and its inverse (INTT)

Example: The congruences
r =3 mod 11

z = 21 mod 23

are satisfied when z = 113 mod 253 and no other x. N is obtained as 253 = 11 - 23.
To obtain each a; value knowing x, just need to calculate:

113 mod 11 =3
113 mod 23 = 21

Polynomial Multiplication and Convolution

If we consider two sequences with period ¢, their sequence numbers can be also
interpreted as the coefficient of the polynomials a,b € Z,[X|/¢(x), then computing
the cyclic convolution (¢(z) = 2™ — 1) or computing the negacyclic convolution
(p(x) = 2™ + 1) of those sequences is the same as computing the polynomial
multiplication a - b [14].

Therefore, depending on which reduction polynomial we use for the ring, there
are mainly 2 types of convolution which are used in the context of lattice-based

cryptography:

e Cyclic (or Circular) convolution: This convolution uses the 2™ — 1 reduction
polynomial so the cyclic convolution ¢ is

c=a-beZjz]/(a" - 1)

then
n—1
C = Z Ck(Ek
k=0
where
k n—1
L = Zaibk,i + Z a;bgin_imodq k=0]1,....n—1
i=0 i=k+1

e Negacyclic (or Negative wrapped) convolution: Basically is very similar
to cyclic convolution, but here the reduction polynomial is 2™ + 1. So the
negacyclic convolution c is defined as

c=a-beZjx]/(z" +1)
28

The Number Theoretic Transform (NTT) and its inverse (INTT)

then
n—1
c= Z cpr
k=0
where
k n—1
L = Zaibk,i — Z aibyin_;modqg k=01,...,.n—1
i=0 i=k+1

The Z,[z]/ (™ — 1) and Z,[x]/ (™ + 1) are mainly used in lattice-based schemes.
For the purpose of studying the Kyber scheme we will only focus to describe the
last one (Negative wrapped convolution).

3.1.2 NTT-based Polynomial Multiplication

Remembering that NTT is a transformation and not an algorithm, there are many
variants in which the NTT can be implemented. Only the Negacyclic Convolution-
based NTT will be described because is relevant for Kyber scheme. The most
important concept is that NTT can be used to compute negacyclic (or linear, or
cyclic) convolutions [15] that corresponds to compute a polynomial multiplication.

Negacyclic convolution-based NTT

Let ¢ a prime number that satisfies ¢ = 1 mod 2n such that exist a 2n-th root of
unity (o, in Z,. The zeta vector is defined as follow:

C = (17C2mc22n7"'7 37;1)

= (GGG)

The pointwise multiplication (that means the product of each element of vector a
by the corresponding element of the zeta vector ¢) is denoted with the symbol o, so

a=Coa wherea; = a;
a=C_"'oa wherea; = () a
Then the trasformation is denoted as follow
a=NTT¢(a) = NTT({ o a)

a=INTTS (&) = ¢ o INTT(a)
29

The Number Theoretic Transform (NTT) and its inverse (INTT)

considering w, = (3., the single j-th element in @ can be expanded as

n—1
a; = Zaignwzj modg 7=01,...,n—1
=0

and the inverse can be written as:
a; = n_lg_nz Z aw,”modgqg =0,1,...,n—1
§=0
At this point, there are two important properties:

Property 1:)
a=1INTT¢" (NTT(a))

Property 2:
NTT¢(¢) = NTT(a) o NTT*(b)

Therefore, in order to compute the negacyclic convolution ¢ = a-b € Z,[x]/ (2" + 1)
we can use the combination of the previous two properties so that ¢ is obtained as
follow:

c=INTT¢ (NTT(a) o NTT¢(b)) (3.1)

Computing formula 3.1 without any ¢rick has a O (n?) complexity, so until now
no improvements in terms of performance are obtained compared to using classic
algorithms to compute polynomial multiplications.

3.1.3 FFT Trick for Negacyclic-based NTT € Z,(z)/(z" + 1)

The Fast Fourier transform (FFT) is an algorithm to compute in a fast way the
discrete fourier transform (or its inverse) of a sequence. As mention in the previous
paragraph, NTT needs a "trick" in order to perform better than O (n?).

In this section I will describe the case of FFT Trick suited for Negacyclic-based
NTT € Z,(z)/(«™ + 1) because is relevant for Kyber scheme.

The Trick

If n is a power of 2, ¢ is a prime number and ¢ = 1 (mod 2n), exists an efficient way
to easily compute NTT¢ and INTT® according to the work [16]. Considering the
Chinese Remainder Theorem in ring form [17], for polynomial rings Z,[z]/(z™ + 1)
exist the following isomorphism:

©:Z,jal) (" +) 2Zfa)f (oF -) xZfal/ (vF+h) 632
30

The Number Theoretic Transform (NTT) and its inverse (INTT)

because (5, = —1 mod ¢ so the following equality holds and can be used in 3.2:

(@™ +1) = (2" — &) = (2% — (&) (2% + (2

If we keep repeating recursively down this polynomial decomposition until reach
a degree-0 polynomial, we can express the CRT isomorphism 3.2 as:

Z,[a)/ (e +1) = H Zofo)/ (2 — QPO+

where the operator brv,, (i) is the bit reversal of the unsigned n-bit integer i, and
this ordering is used in order to be compatible with AVX instructions [18]. The
Figure 3.1 represents a general binary tree of such polynomial decomposition that
contains 0 < k < log(n) levels.

(* = G3,) : : (@ + %)
T~ — T
(z = Con) (2 + Con) (x =) @+

Figure 3.1: Binary Tree representing the Chinese Remainder Theorem map of
FFT Trick over Z,[z]/(z" + 1)

Let a € Z,[z]/ (2™ + 1), the forward transform & (a) for each binary decom-
position is computed as following:

L]

e 1
o <z:1 ai:vi> = (ar,ag) = (Z (ai +C7 - &i+g) z, (ai —(z. ai+%) :Bl)
=0

=0 =0

In the previous equation, the addend (a; 4 (% - a;z) of the summation from
term ay, is obtained thanks to the fact that we can collect as a common factor the
terms having the same degree because

|3

X%:g
31

The Number Theoretic Transform (NTT) and its inverse (INTT)

such that
X' =aC2X""2

then we can collect as a common factor the terms having the same degree. For
example, for i = 130 the terms ay X? and a130¢?8 X 1307128 can be collected by X?2.
For instance, in the first layer of the NTT algorithm £ = 128, so the corresponding
decomposition is:

a(Ll) = (CLQ + Clzsalzg) + (a1 + <128(L129) X+ (CLQ + C128a130> X2 + ...

The same is for the ap because

n

X2 =—(2

so to reduce modulo this polynomial we have to multiply with —(z. So, again if

n

5 = 128 the corresponding decomposition is:

ay = (ao — C128a128> + (al - C128a129> X+ (02 - C128a130> X? 4.

Since such multiplication between a; and (2 appears in both a;, and ag, we can
multiply only once and therefore saving machine cycles for that computation. The
Cooley-Tukey (CT) butterfly [19] is an efficient method which takes advantage of
this feature, figure 3.2 shows that process.

ag D ag + Cay

a1 —&) O— a0 — Cm
¢
Figure 3.2: Cooley-Tukey (CT) butterfly

The inverse transform ®'(ay,ap) for each binary decomposition is defined
as:

The Number Theoretic Transform (NTT) and its inverse (INTT)

Qo JAR) QAo —+ aq

@ E5—R— ((ap — a1)
¢

Figure 3.3: Gentleman-Sande (GS) butterfly

In order to explain the formula, considering again the first layer in which § = 128
and the first iteration (i = 0):
() 128
a —aL70—ao—|—C 128
a = a%,)o = G — C128a128
To find a that is the inverse of (ar,ar), we can consider these observations and
then obtain the final formulas:

a% + ag,)o = ag + (Paizs + ag — (Paizs
2a0 = ail} + ajpy,

a0 = 5 (alfh +alf))

a% - ag,)o = g¢ + ("Pais — gg + (Paiss

2<1286L128 = agz] — ag)

0
I 1) 1)
a128 = 5(12 (a(L,O - ag%,o)

Since division by 2 that appears for every iteration, it can be accumulated as
27% where the k represents the number of layers, so it can be easily computed at
the end (or at the beginning) for skipping useless divisions.

This way of computing the inverse transform is known as Gentlemen-Sande
butterfly (GS) [20], the figure 3.3 depicts these operations.

Both algorithms (CT and GS) are called "butterfly" because if we used segments
to represent the phases in which addition, subtraction and multiplication are
performed, these draw the wings of a butterfly.

Complexity At this point, the transformation of the polynomials in the NTT
domain (using the FFT Trick) requires the recursion along the binary tree (gener-
ated by the application of the CRT) which has a number of levels equal to loga(n)

33

The Number Theoretic Transform (NTT) and its inverse (INTT)

of which each perform n multiplications with the corresponding zeta coefficient
for that level. Once the transformation is finished, that is, when the last level of
this tree is reached, the operations can be performed in a "pointwise" way that is
component by component of the two transformed polynomials and finally compute
the inverse transformation (INTT) to get the complete polynomial multiplica-
tion. Consequently, the recursion of the binary tree to obtain the complete NTT
transformation of the a and b vectors implies a complexity equal to O(nlog(n)),
then the pointwise operations implies a O(n) complexity and finally the inverse
transformation (INTT) requires again O(nlog(n)), therefore, considering the worst
complexity, the final complexity of computing ¢ = a - b € Z,[z]/ (2™ + 1) with
NTT considering this trick is equal to O(nlog(n)).

34

Chapter 4

Kyber

In this chapter we will describe the specifications and mode of operation of
CRYSTALS-KYBER.

4.1 Preliminaries

Before discussing Kyber, it’s important to introduce some terminology that we use
in this chapter, and methods for evaluating the level of security of cryptographic
systems as well.

4.1.1 Oracle

In general, an oracle can be conceptualized as a black box capable of solving
specific problems. For our purposes, an oracle is an abstract entity that provides
encryption/decryption capabilities to an adversary. For instance, an encryption
oracle can accept plaintexts as input and return the corresponding ciphertexts. A
decryption oracle, instead, accepts as input parameter ciphertexts, and returns the

corresponding plaintexts
Input Encryption Output
Oracle

Figure 4.1: Example of an Encryption Oracle

35

Kyber

4.1.2 Security Goals

Indistinguishability (IND) is a cryptographic property where an attacker cannot
distinguish between two different encrypted data even if he has access to certain
information or perform multiple operations on data. Hence, indistinguishability
plays a crucial role in preserving the confidentiality of encrypted communications.

Nowadays, we aim for the highest level of security assurance, therefore it’s very
important to classify the security level of a scheme in terms of indistinguishability.

We can establish the level of security by assessing how an adversary can win a
game against a challenger. For the sake of simplicity, a schema is considered secure
if the adversary’s advantage is negligible. An adversary has a negligible advantage
if he cannot perform significantly better than random guessing. Among all types of
security goals, only two will be described because they are used within the Kyber
scheme.

4.1.3 IND-CPA

A security goal which ensures Indistinguishability under Chosen Plaintext Attack
(IND-CPA) guarantees the confidentiality of encrypted data even when an adversary
has access to an encryption oracle. This goal can be described with the following
game:

1. The challenger creates a key pair (PK, SK) using a security parameter k (e.g.,
a key size in bits) and shares only the PK with the adversary.

2. The adversary could carry out a limited number of encryption operations or
other actions within a polynomial time frame

3. The adversary chooses two plaintexts (mg,m;) and sends them to the chal-
lenger.

4. The challenger randomly chooses a bit, b & {0,1}, and then transmits the
challenge ciphertext ¢* <— Enc (k, m}) to the adversary.

5. The adversary can freely conduct as many extra computations or encryptions
as they desire. Finally, he outputs ¢’, a guess for the value of b. If b = ¥, the
adversary wins.

Considering this game, a cryptosystem is considered IND-CPA secure if any adver-
sary, operating within probabilistic polynomial time, possesses only a negligible
advantage over random guessing. An adversary is said to have a negligible advantage
if it wins the above game with probability

1
5 + E(k‘)

36

Kyber

where €() is a negligible function and k the security parameter. Although the
original definition is tailored for asymmetric key cryptosystems, it can be modified
for symmetric key scenarios by substituting the public key encryption function
with an encryption oracle.

4.1.4 IND-CCA

In this scenario, the adversary has access to both encryption and decryption oracle.
They can use the encryption oracle to encrypt messages with the public key and the
decryption oracle to decrypt any given ciphertext, revealing the original plaintext.
This goal can be described with the following game:

1. The challenger creates a key pair (PK, SK) using a security parameter k (e.g.,
a key size in bits) and shares only the PK with the adversary.

2. The adversary can execute any number of calls to the encryption and decryption
oracle using arbitrary ciphertexts, as well as conduct other operations as desired

3. The adversary chooses two plaintexts (mg,m;) and sends them to the chal-
lenger.

4. The challenger randomly chooses a bit b & {0,1} and then transmits the
challenge ciphertext ¢* <— Enc (k, m}) to the adversary.

5. The adversary can freely conduct as many extra computations or encryptions
as they desire. At this point, there are two variants to take in consideration:

(a) The non-adaptive case (IND-CCA1): the adversary cannot perform addi-
tional calls to the decryption oracle.

(b) The adaptive case (IND-CCAZ2): is allowed to continue making calls to
the decryption oracle, but may not submit the challenge ciphertext c*.

Finally, he outputs ', a guess for the value of b. If b = ¥, the adversary wins.

A schema is considered IND-CPA secure if any adversary, operating within
probabilistic polynomial time, possesses only a negligible advantage over random
guessing.

4.1.5 Implications

IND-CCAZ2 is the more stringent security criterion. For instance, if we consider a
IND-CCA2 secure scheme, it also guarantees IND-CCA1 and IND-CPA security.

IND-CCA2 = IND-CCA1 = IND-CPA
37

Kyber

4.2 CRYSTALS

CRYSTALS [18] is the acronym for Cryptographic Suite for Algebraic Lattices. This
suite was supported by the European Commission programs, the Swiss National
Science Foundation, the Netherlands Organization for Scientific Research and
the German Research Foundation (DFG). This suite contains two cryptographic
schemes which rely on hard problems over module lattices:

o Kyber: a IND-CCA2 secure Key Encapsulation Mechanism (KEM)
 Dilithium: a digital signature algorithm

For the purposes of this work we will only study and describe CRYSTALS-
KYBER which uses the key encapsulation mechanism as a cryptographic technique
in order to establish a secure communication. This mechanism is similar to the
Public Key Encryption (PKE) because requires the generation of public and private
keys, but KEM is mainly intended for distributing secret keys between parties.
More in detail, KEM mechanism encapsulates a randomly generated secret key
within a ciphertext, which is then sent to the receiver, so he can then decrypt the
ciphertext to obtain the secret key for then use in symmetric-key encryption.

4.2.1 Functions and Parameters Employed

Kyber offers the option to adjust different security levels by selecting one of 3
parameters: Kyber-512;, Kyber-768 and Kyber-1024 listed in table 4.1. These 3
names come from the multiplication between n and ¢ (e.g., Kyber-768 = 256 - 3).
Varying these levels of security, users can select the most a suitable configuration
based on their specific requirements. The parameter k, instead, indicates the size
of the lattice.

The notation B* used in the next Kyber’s algorithms, represents the set of byte
arrays of length k£ where each element is an integer of 8-bit so in the set of 0, ...,255.

The expression (a||b) denotes the concatenation of two arrays, a and b.

In table 4.2 are listed all the cryptographic functions that Kyber uses in its
algorithms. In particular, H and G are hash functions, XOF is the Extendable
Output Function which generates a random array with an arbitrary length, and
KDF that means Key Derivation Function which generates secret keys from a
master key and an input string.

There is also a variant of Kyber called "90s" which uses instead symmetric
primitives (AES and SHA-256) that are standardized by NIST and accelerated in
hardware across a broad spectrum of platforms (e.g., recent Intel, AMD, and ARM
processors).

38

Kyber

Table 4.1: Kyber Parameters

n k q m 72 du dv 5
KYBER-512 [256 |2 (3329 3 | 2 |10]| 4 | 271
KYBER-768 [256 | 33329 | 2 | 2|10 | 4 | 27164
KYBER-1024 | 256 | 4 (3329 | 2 | 2 [11| 5 | 271"
Table 4.2: Kyber Functions
Modern 90 variant
XOF SHAKE-128 AES-256 in CTR mode
H SHA3-256 SHA-256
G SHA3-512 SHA-512
PRF(s,b) | SHAKE-256(s||b) | AES-256 in CTR mode
KDF SHAKE-256 SHAKE-256

4.2.2 Kyber’s Polynomials and Coefficients

In Kyber, rings Z[X]/(X" + 1) and Z,[X]/(X™ + 1) are respectively denoted by R
and R, and considering n = 256, n=9, and ¢ = 3329 such that X" + 1 is the 2°th
cyclotomic polynomial.

Kyber mainly uses the range {— [%W +1,..., {%J } which is congruent to 0, ..., ¢ —]4
as a representative set of Z,

Elements in R or IR, are expressed in regular font letters. Vectors with coefficients
in R or R, are denoted as letters in bold lower-case. Bold upper-case letters are
used to indicate matrices. For instance, v is a vector and A is a matrix and the
notation v (or AT) represents their transpose.

4.3 Security Approach

Kyber is an IND-CCA2-secure key-encapsulation mechanism (KEM). The security
of Kyber is based on the hardness of solving the learning-with-errors problem in

module lattices and this is called Module-Learning With Errors (MLWE). Kyber’s
security approach employs a dual-phase methodology.

o Kyber.CPAPKE

o Kyber. CCAKEM

This approach guarantees efficiency and the security against both classical and
quantum attacks.

39

Kyber

4.4 Kyber.CPAPKE

Overall, this technique consists on encrypting fixed length messages of 32-bytes
using the INDCPA-secure public-key encryption scheme.

This phase cannot be used as a standalone encryption solution as it does not
guarantee all the necessary standard security requirements. The output of this
function is then used as input for the Kyber. CCAKEM.

4.4.1 Key Generation

The Key Generation algorithm in figure 4.2 has no input arguments, but it’s
internally parameterized by the parameters n, k, q, 91, 12, d,, d,. It returns the
secret and public key. The length of each key depends on the chosen Kyber version
as indicated in the table 4.3.

Table 4.3: Secret and Public key size depend on chosen Kyber’s version

Secret-key Bytes Public-key Bytes

KYBER-512 | 12-k-n/8 =768 | 12-k-n/8+ 32 = 800
KYBER-768 | 12-k-n/8 =1152 | 12-k-n/8+ 32 = 1184
KYBER-1024 | 12-k-n/8 =1536 | 12k -n/8 + 32 = 1568

From line 4 to 8 of the depicted pseudocode there is a double loop that populate
the A matrix of polynomials of dimension £ x k. Each polynomial is represented by
a vector of 256 coefficients, because the degree of the polynomial is 256, and they
are defined in Z,, then each coefficient can fit in a 16-byte integer data type. On
line 6, the XOF function uses Keccak mechanism that generates a pseudo-random
byte-stream of arbitrary length for each iteration. Then, to obtain an output in
the R} domain, it is necessary to apply the Kyber’s Parse 4.3 function where each
iteration produces a single coefficient of the array of size 256.

The Centered Binomial Distribution function 4.4 and PRF are used for the
random generation of the secret s and the error e vector of k polynomials (lines 10
and 14).

Vectors s and e are transformed in the NTT domain (lines 17 and 18) in order
to have a fast pointwise multiplication (line 19) between matrix A and s. On lines
20 and 21(, slt)arting from the most inner operation, £ and § are reduced in order to

q— g=1

be in {_T7 e T} congruent to a mod ¢ using the Barret’s Reduction function.

Only for £, the previous output is then concatenated with the public-seed which
was previously used in order to generate matrix A.

Finally, both partial outcomes are encoded to an array of 384 bytes (32 -1 where
[=12).

40

Kyber

Algorithm 4 KYBER.CPAPKE.KeyGen(): key generation

Output: Secret key sk € B12+n/8
Output: Public key pk € B12+n/8+32

1: d+ B*

2: (p,0) = G(d)

3: N:=0

4: for i from 0 to k — 1 do > Generate matrix A € R¥** in NTT domain
5: for j from 0 to k — 1 do

6: Ali][j] :== Parse(XOF(p, j,1%))

7: end for

8: end for

9: for i from 0 to k¥ —1 do > Sample s € RY from By,
10: s[i] == CBD,, (PRF(c, N))

11: N=N+1

12: end for

13: for i from 0 to k — 1 do > Sample e € R from B,
14: e[i] :== CBD,, (PRF(o, N))

15: N=N+1

16: end for

17: § = NTT(s)

18: €:=NTT(e)

19: t:=Aos+é
20: pk := (Encode;s(t mod™*q)|p) >pk=As+e
21: sk := Encode;5(8 mod™q)

N
N

: return (pk, sk)

Figure 4.2: Kyber. CPAPKE.KeyGen() [18]

Algorithm 1 Parse: B* — Ry

Input: Byte stream B = bg, by, by € B*
OQutput: NTT-representation ¢ € R; of a € R,
1:=0
i=0
while j < n do
dy = b; + 256 - (b1 modT16)
dp = [bi41/16] + 16 - by
if d1 < g then

&j::dl
j=j+1
end if
if d2 < g and j < n then
&j::dg
j=3+1
end if
i:=1i+3
end while

return ag + @, X + -+ dy_ X1

Figure 4.3: Pseudocode of the Parse [18] function

Encryption

Encryption algorithm in figure 4.5 requires three inputs:

41

Kyber

Algorithm 2 CBD,: B%7 — R,

Input: Byte array B = (by, by, .- -, bﬁ4n—1) € Biin
Output: Polynomial f € R,
(Bos---» B512q—1) = BytesToBits(B)
for i from 0 to 255 do
4= Z;’:é Bain+j
b= Z?;; Bain+n+i
fi=a—b
end for
return fﬁ +f1X + f2X2 + - +f255X255

Figure 4.4: Pseudocode of the centered binomial distribution (CBD) [18§]

« pk the public key sent from the user which executed the KeyGen()
e m the messagge

e 7 random coins

The structure of this function is quite similar to the previous one, but in this case

it retrieves the parameters £ (line 2) and A" (line 6) transmitted within the public
key. Hence, a decode function is implied to obtain £ from pk (line 2). Subsequently,
r (line 10), e; (line 14), and e, are created in the same manner as A and s were
created in the KeyGen() function, but in this case the seed, required to generate
them, corresponds to the random coin passed as a parameter to this function.
Vector r is transformed in the NTT domain (line 18). At this point, two inverse
NTT transformation are performed to extract u (line 19) and v (line 20). More
in detail, since message m is 256 bits (32 bytes), the Decode function on line 20
deserializes it into a polynomial. After this decoding phase, the algorithm executes
the Decompress function to create error tolerance gaps in the M-LWE scheme:

Decompress, (7, d) = Kqu w)J (4.1)

Finally, ¢l and ¢2 (lines 21 and 22) are obtained by applying the Compress function
which balances the effect of the previous Decompression function:

d
Compress, (z,d) = {(2 : :E)J mod 2¢ (4.2)
q

The Encode() function is used to serialize the polynomials to arrays of (32 - d,,) or
(32 - d,) bytes. Finally, the output ciphertext corresponds to the concatenation of
cl and c2.

42

Kyber

Algorithm 5 KYBER.CPAPKE.Enc(pk, m,r): encryption

Input: Public key pk € B12+n/8+32
Input: Message m € B2
Input: Random coins r € B2
Output: Ciphertext ¢ € Bdukn/8+dvn/8
: N:==0
: t := Decode;2(pk)
: p::pk+12~k~n/8
: for i from 0 to k — 1 do > Generate matrix A € R¥** in NTT domain
for j from 0 to k — 1 do
AT[i]j] = Parse(XOF (s, ,))
end for
: end for
: for i from 0 to k —1 do > Sample r € R from By,
r[i] :== CBD,, (PRF(r, N))
N=N+1
: end for
: for i from 0 to K — 1 do > Sample e; € R’,; from B,,
e4[i] :== CBD,, (PRF(r, N))
N=N+1
: end for
: ey := CBD,, (PRF(r, N)) > Sample e; € R, from B,),
: F:=NTT(r)
s u=NTTY(ATof) +e; >u=ATr+e
: v:=NTT ({7 o £) + e; + Decompress, (Decode; (m), 1) > v = tTr + e; + Decompress (m, 1)
: ¢1 = Encodeg, (Compress, (u,d.))
: ¢z = Encodey, (Compress, (v, d,))
: return ¢ = (c1|¢2) > ¢ := (Compress,(u,d,), Compress, (v, d,))

© XN DG AW

RN N R e R R e e e e
I I R R R BRI T N T T S)

Figure 4.5: Kyber. CPAPKE.Enc(pk, m, r) [18]

4.4.2 Decryption

The Decryption function in figure 4.6 takes as arguments the secret key and the
ciphertext, and it returns the decrypted message. Vectors u and v (lines 1 and 2)
are recovered from the ciphertext and § (line 3) from the secret key. The recovering
process involves an initial decoding operation followed by a decompression process
(line 4). At this point, let denote d variable as the Compress argument, this variable
is obtained applying the following formula:

d=v—s-u

1 (4.3)
d=v— NTT '(s" o NTT(u))

Therefore, Compress(d,1) function is used in line 4 to decrypt each coefficient of
the result of the previous equation to:

o 0:if |2] <

N

o 1:if |z] >

PN

43

Kyber

Algorithm 6 KYBER.CPAPKE.Dec(sk, c): decryption

Input: Secret key sk € B2kn/8
Input: Ciphertext ¢ € Blukn/8+dvn/8
Output: Message m € B3?
1: u := Decompress, (Decodeq, (c), dv)
2: v = Decompress,(Decodey, (c +d,, - k - n/8),d,)
3: § := Decode;z(sk)
4: m == Encode; (Compress (v — NTT~'(87 o NTT(u)), 1)) > m := Compress, (v —sTu, 1))
5: return m

Figure 4.6: Kyber. CPAPKE.Dec(sk, c) [18]

4.5 Kyber.CCAKEM

Kyber uses a variant of the Fujisaki-Okamoto (FO) transform [18] as depicted in
figure 4.7 to level up the algorithm from INDCPA-secure to IND-CCA2-secure which
is more secure than the previous one. The FO transform enables the creation of a
KEM scheme with IND-CCA2 security starting from the previous IND-CPA-secure
Kyber-PKE scheme.

The level of IND-CCAZ2 is suitable for real world application contexts. We will
now see in more detail the three cryptographic algorithms present in this phase.

Ciphertext
c1

Ciphertaxt

—> Decrypt co

Re-Encrypt

Y

Fujisaki-Okamoto Transform (FO) |

Reject

Figure 4.7: Fujisaki-Okamoto Transform (FO) for IND-CCA2-secure Decapsula-
tion

4.5.1 Key Generation

The KeyGen() algorithm in figure 4.8 concatenates sk, pk, retrieved from the
already described Kyber-CPAPKE.KeyGen(), with the output of the Hash function
using pk as input, and with an additional secret z (line 3), which comes into play
in case of rejection during the Decapsulation phase which we will explain shortly.

44

Kyber

Algorithm 7 KYBER.CCAKEM.KeyGen()

Output: Public key pk € B2 Fkn/8+32
Output: Secret key sk € B24Fn/8+96
1. z+ B*?
2. (pk, sk') = KYBER.CPAPKE.KeyGen()
3 sk = (sk"||pk|H(pk)| 2)
4: return (pk, sk)

Figure 4.8: Kyber. CCAKEM.KeyGen() [18]

4.5.2 Encapsulation (Client — Server)

In this algorithm depicted in figure 4.9 the input is the public key. Hash functions
H and G (line 3) are involved in order to obtain: K which is the variable from
which its computed the shared key K using the KDF, and r which is the random
coin for the generation of the errors in the Kyber. CPAPKE encryption (line 4).

Algorithm 8 KyBER.CCAKEM.Enc(pk)

Input: Public key pk € B12*n/8+32

Output: Ciphertext ¢ € B kn/8+don/8

Output: Shared key K € B*

s m 4 B32

- m + H(m) > Do not send output of system RNG
: (K, 1) = G(m|/H(pk))

: ¢ = KYBER.CPAPKE.Enc(pk,m,7)

. K = KDF(K|H(c))

: return (c, K)

L= I

Figure 4.9: Kyber. CCAKEM.Enc(pk) [18]

4.5.3 Decapsulation (Server — Client)

The Decapsulation function in figure 4.10 requires as input both the ciphertext
and secret key. From secret key it is possible to extract pk, h and z (lines 1,2 and
3). In particular, for achieving the property of being indistinguishability under
adaptive chosen ciphertext attack, the FO transformation is used in this algorithm.
Once a ciphertext is decrypted, the corresponding plaintext is re-encrypted and
compared with the received one. The purpose of Fujisaki-Okamoto is to add a level
of information validation. More in detail, if the comparison between ¢’ and ¢ (line
7) yields a positive result, then the correct shared key K is derived and sent (line
8); otherwise, the ciphertext is deemed invalid and rejected by a random key which
is generated from the previously sampled secret z (line 10). In this scenario, both
parties possess distinct cryptographic keys, and any discrepancy is only detected
in a subsequent communication phase, a concept referred to as implicit rejection.
This strategy is designed to enhance resilience against misuse (e.g., absence of
decapsulation outcome verification).

45

Kyber

Algorithm 9 KyBER.CCAKEM Dec(c, sk)

Input: Ciphertext ¢ € Bdwkn/8+dvn/8
Input: Secret key sk € B24kn/6+96
Output: Shared key K € B”
cpki=sk+12-k-n/8
chi=sk+24 .k -n/8+32 ¢ B3
cz=sk+24-k-n/8+64

m' ;== KYBER.CPAPKE.Dec(sk, c)

: (K’ 7') = G(m'||h)

¢’ := KYBER.CPAPKE.Enc(pk, m', ")
: if ¢ = ¢/ then

return K = KDF(K'||H(c))

: else

return K := KDF(z|H(c))

: end if

: return K

=R B A

e
[~

Figure 4.10: Kyber. CCAKEM.Dec(c, sk) [18]

46

Chapter 5

Rust Programming
Language

5.1 Introduction

The chapter starts with a quick explanation of the main weaknesses and vulnera-
bilities of a software written in C language because it mainly adopted for system
programming and for embedded systems that is our case of study. The main reason
for adopting this structure is to have an exhaustive picture of which are the points
that have to be prevented. In C/C++ the correct security implementation and
management is solely left as the responsibility of the programmer. In order to be
able to face these limits of the language, the Rust model intervenes.

5.2 Preliminaries

Before moving on to explain Rust, we will introduce the main definitions that we
will use in this chapter.

5.2.1 Vulnerability

The International Organization for Standardization (ISO) published the ISOIEC
27005 2008 [21] which is a standard document that provides guidelines for informa-
tion security risk management. The ISOIEC 27005:2008 defines vulnerability as
"A weakness of an asset or group of assets that can be exploited by one or more
threats, where an asset is anything that has value to the organization, its business
operations, and their continuity, including information resources that support the
organization’s mission”

In order to enhance the ability of the organizations to recognize and respond to

47

Rust Programming Language

cyber threats and vulnerabilities, the United States’ National Cybersecurity (NFC)
Federally Funded Research and Development Center (FFRDC) operated by the
MITRE corporation publishes a list of Common Vulnerabilities and Exposures
(CVE) [22].

5.2.2 Weakness

Weakness generally refers to a condition in a software or hardware that, could
lead to the introduction of vulnerabilities; generally these conditions are errors (in
software code, errors are also known as bugs), because one or more weaknesses can
be exploited by an attacker to perform a malicious action. Errors are typically
introduced by developers during development phase of the product. As in the
vulnerability case, once again the MITRE corporation publishes a list of Common
Weakness Enumeration (CWE).

5.3 CVE for Linux Kernel

We will study the case of the kernel of Linux to understand the importance of the
responsibility of the programmer to don’t introduce weaknesses into a software.
Linux kernel is written in a special C programming language compatible with GCC
compiler. In particular, C89 and C11 (since Linux 5.18 version) and assembly
language were used in order to program the kernel. Figure 5.1 shows the number
of vulnerabilities per year, recorded since 1999 for the Linux kernel.

As we can see, over about 24 years, the most common vulnerability types were:

44.1% of the total vulnerabilities were due to Denial of Service (DoS)

13.7% of the total, deriving from Overflow errors

4.8% due to Memory Corruption.

37.4% others.

Thus, about 20% of the known vulnerabilities are due to overflow and memory
corruption circumstances, on the next chapter we will see that most of them can
be completely prevented by the Rust compiler.

Table 5.1 shows the CVEs recorded for the year 2022 and filters only by vulner-
abilities resulting from overflow errors and memory corruption. In this table, each
vulnerability is associated with a CVE-ID and a CWE-ID, in particular this last
parameter will be useful for us to better to understand the why of each mechanisms
and concepts adopted by Rust programming language.

48

Rust Programming Language

Year o Of, . DoS Codg Overflow Memmty Asql. XSS Directory Re:::::se Bypas? Gain N 'G‘ain CSRF F“e. # of
Vulnerabilities Execution Corruption Injection Traversal Splitting something Information Privileges Inclusion exploits

1999 19 7 1 2

2000 5 3 1

2001 23 7 4 3

2002 15 3 1 1 1

2003 19 8 2 1 3 4

2004 50 20 5 12 3 u

2005 133 20 19 19 1 6 5 A

2006 89 60 5 7 7 2 5 3 3

2007 59 39 2 8 3 A 6

2008 69 42 3 16 3 4 A 10

2009 104 66 2 21 z 8 10 22 4
2010 118 62 3 16 A 8 31 14 5
2011 80 60 1 21 el 1 21 9 1
2012 114 83 3 24 10 6 19 11

2013 186 29 6 38 13 11 57 25 A
2014 128 87 6 18 10 10 29 19 10
2015 79 52 5 13 4 10 10 14

2016 215 153 5 36 18 12 34 51 1
2017 451 147 169 50 26 17 89 36

2018 180 84 3 29 10 4 20 3

2019 291 105 10 29 7 1 5 18 1

2020 127 25 5 12 E 1 A A 3

2021 162 21 11 17 5 2 7 17 4

2022 307 47 8 33 5 8 29 15

2023 131 21 A 8 4 2 11 1

Total 3154 1391 278 433 151 6 141 433 275 28
% Of All 44.1 8.8 S/ 4.8 0.0 0.0 0.2 0.0 4.5 13.7 8.7 0.0 0.0

Figure 5.1: The list of all CVE recorded from 1999 to 2023. [23]

5.4 CWE for C language

Software developers use CWE for reporting weakness in software and discussing
how to eliminate and/or mitigate them.

Table 5.2 submitted on 2008 and continuously updated, reports known weakness
for a software written in C programming language. Using the CWE-IDs of the
previous table 5.1, we can observe that 8/11 that means 73% of the overflow and
memory corruption vulnerabilities that had been found in the Linux kernel derive
from a well-known weakness for C programming language. The CWE-IDs 119, 120,
121, 362, 416, 476, 787 and 843 from table 5.1 are found on table 5.2 and some of
them are listed below because are relevant in order to understand the importance
of some Rust concepts and rules.

The main observation of the C language is that the responsibility of not introducing
weaknesses to the code is left entirely to the programmer.

e Use after free (CWE-416): Referencing memory after it has been deallocated
can lead to program crashes or unintended code execution

49

Rust Programming Language

Table 5.1: Overflow and Memory Corruption vulnerabilities for the year 2022

CVE ID CWE ID Vulnerability Type(s) Publish Date Update Date Score
CVE-2022-0435 787 Overflow 2022-03-25 2023-02-14 9.0
CVE-2021-4157 119 Overflow 2022-03-25 2023-01-17 74
CVE-2022-0500 119 Overflow 2022-03-25 2023-03-01 7.2
CVE-2022-0185 190 Overflow 2022-02-11 2023-02-12 7.2
CVE-2022-0998 190 Overflow 2022-03-30 2023-03-01 7.2
CVE-2022-1116 190 Overflow Mem. Corr. 2022-05-17 2022-10-19 7.2
CVE-2022-1116 190 Overflow Mem. Corr. 2022-05-17 2022-10-19 7.2
CVE-2022-34918 843 Overflow 2022-07-04 2023-05-16 7.2
CVE-2021-3428 190 DoS Overflow 2022-03-04 2022-03-11 4.9
CVE-2022-25258 476 Mem. Corr. 2022-02-16 2022-12-07 4.9
CVE-2022-26490 120 Overflow 2022-03-06 2023-01-20 4.6
CVE-2022-32981 120 Overflow 2022-06-10 2022-06-27 4.6
CVE-2022-27666 787 Overflow 2022-03-23 2023-02-01 4.6
CVE-2022-2078 121 DoS Overflow 2022-06-30 2022-10-26 21
CVE-2022-2964 119 Overflow 2022-09-09 2023-01-20 0.0
CVE-2022-3435 119 Overflow 2022-10-08 2023-03-01 0.0
CVE-2022-3541 119 Overflow 2022-10-17 2023-02-02 0.0
CVE-2022-3545 119 Overflow 2022-10-17 2023-05-12 0.0
CVE-2022-3564 119 Overflow 2022-10-17 2023-02-23 0.0
CVE-2022-3565 119 Overflow 2022-10-17 2023-02-06 0.0
CVE-2022-3625 119 Overflow 2022-10-21 2023-02-10 0.0
CVE-2022-3635 119 Overflow 2022-10-21 2023-05-26 0.0
CVE-2022-3636 119 Overflow 2022-10-21 2023-02-23 0.0
CVE-2022-3640 119 Overflow 2022-10-21 2023-04-11 0.0
CVE-2022-3649 119 Overflow 2022-10-21 2023-05-26 0.0
CVE-2022-3077 120 Overflow 2022-09-09 2022-09-15 0.0
CVE-2022-36402 190 DoS Overflow +Priv 2022-09-16 2022-09-20 0.0
CVE-2022-39842 190 Overflow Bypass 2022-09-05 2023-03-01 0.0
CVE-2022-45869 362 DoS Mem. Corr. 2022-11-30 2022-12-05 0.0
CVE-2021-3759 400 DoS Overflow 2022-08-23 2023-03-01 0.0
CVE-2022-1976 416 Mem. Corr. 2022-08-31 2023-02-14 0.0
CVE-2022-2938 416 Mem. Corr. 2022-08-23 2023-01-20 0.0
CVE-2022-43945 770 Overflow 2022-11-04 2023-03-08 0.0
CVE-2022-2991 787 Exec Code Overflow 2022-08-25 2022-08-30 0.0
CVE-2022-41674 787 Overflow 2022-10-14 2023-03-01 0.0
CVE-2022-47518 787 Overflow 2022-12-18 2023-05-12 0.0
CVE-2022-47521 787 Overflow 2022-12-18 2023-04-11 0.0
CVE-2022-47942 787 Overflow 2022-12-23 2023-05-16 0.0

1 #include <stdio.h>

2 #include <unistd.h>

3 #define BUFSIZER1 512

4 #define BUFSIZER2 ((BUFSIZER1/2) - 8)

50

Rust Programming Language

10

11

12

13

14

15

16

17

18

19

20

int main(int argc, char **argv) {

char *bufilR1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

bufiR1 = (char *) malloc(BUFSIZER1);
buf2R1 = (char *) malloc(BUFSIZER1);
free(buf2R1) ;

buf2R2 (char *) malloc(BUFSIZER2);
buf3R2 (char *) malloc(BUFSIZER2);
strncpy (buf2R1, argv([1], BUFSIZER1-1);
free(bufiRl);

free (buf2R2) ;

free(buf3R2) ;

e Double free (CWE-415): The product invokes free() twice on the same

memory address, which can result in unintended modifications to memory
locations

char* ptr = (char*)malloc (SIZE);
if (abrt) {
free(ptr);

}

free(ptr);

e Missing Release of Memory after Effective Lifetime (CWE-401): The product

does not sufficiently track and release allocated memory after it has been used,
which slowly consumes remaining memory.

char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if ('buf) {
return NULL;
}
if (read(fd, buf, BLOCK_SIZE) '= BLOCK_SIZE) {

51

Rust Programming Language

10

11

return NULL;
}

return buf;

e NULL Pointer Dereference (CWE-476): A NULL pointer dereference happens
when the application attempts to access or use a pointer that it assumes is
valid, but it is actually NULL, typically causing a crash or exit.

void host_lookup(char *user_supplied_addr){

10

11

12

13

14

struct hostent x*hp;
in_addr_t *addr;
char hostname[64];

in_addr_t inet_addr(const char *cp);

/*routine that ensures user_supplied_addr

is in the right format for conversion */

validate_addr_form(user_supplied_addr) ;
addr = inet_addr (user_supplied_addr) ;
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);

strcpy (hostname, hp->h_name) ;

52

Rust Programming Language

Table 5.2: Weaknesses in Software Written in C, submission date 2008-04-11 [24].
Some of them are highlighted in gray and are prevented at compile-time by the
Rust compiler

CWE

Weakness

ID Name Abstraction Status

14 Compiler Removal of Code to Clear Buffers Variant Draft
Improper Restriction of Operations within the

119 Bounds of a Memory Buffer Class Stable
Buffer Copy without Checking Size

120 of Input ('Classic Buffer Overflow’) Base Incomplete

121 Stack-based Buffer Overflow Variant Draft

122 Heap-based Buffer Overflow Variant Draft

123 Write-what-where Condition Base Draft

124 Buffer Underwrite ('Buffer Underflow’) Base Incomplete

125 Out-of-bounds Read Base Draft

126 Buffer Over-read Variant Draft

127 Buffer Under-read Variant Draft

128 Wrap-around Error Base Incomplete

129 Improper Validation of Array Index Variant Draft

130 Improper Handling of Length Parameter Inconsistency Base Incomplete

131 Incorrect Calculation of Buffer Size Base Draft

134 Use of Externally-Controlled Format String Base Draft

135 Incorrect Calculation of Multi-Byte String Length Base Draft

170 Improper Null Termination Base Incomplete

188 Reliance on Data/Memory Layout Base Draft

191 Integer Underflow (Wrap or Wraparound) Base Draft

192 Integer Coercion Error Variant Incomplete

194 Unexpected Sign Extension Variant Incomplete

195 Signed to Unsigned Conversion Error Variant Draft

196 Unsigned to Signed Conversion Error Variant Draft

197 Numeric Truncation Error Base Incomplete

242 Use of Inherently Dangerous Function Base Draft

9243 Creatlion of. chroot Jail Without Changing Variant Draft
Working Directory
Improper Clearing of Heap Memory .

244 Before Release ("Heap Inspection’) plase Dt
Concurrent Execution using Shared Resource with

362 Improper Synchronization ('Race Condition’) Class Draft

364 Signal Handler Race Condition Base Incomplete

366 Race Condition within a Thread Base Draft

374 Passing Mutable Objects to an Untrusted Method Base Draft

375 Returning a Mutable Object to an Untrusted Caller Base Draft

401 Missing Release of Memory after Effective Lifetime Variant Draft

415 Double Free Variant Draft

416 Use After Free Variant Stable

457 Use of Uninitialized Variable Variant Draft

460 Improper Cleanup on Thrown Exceptidn Base Draft

Rust Programming Language

CWE

Weakness

ID Name Abstraction Status

462 Duplicate Key in Associative List (Alist) Variant Incomplete

463 Deletion of Data Structure Sentinel Base Incomplete

464 Addition of Data Structure Sentinel Base Incomplete

466 Return of Pointer Value Outside of Expected Range Base Draft

467 Use of sizeof() on a Pointer Type Variant Draft

468 Incorrect Pointer Scaling Base Incomplete

469 Use of Pointer Subtraction to Determine Size Base Draft

474 Use of Function with Inconsistent Implementations Base Draft

476 NULL Pointer Dereference Base Stable

478 Missir}g Default Cz'xse in Multiple Base Draft
Condition Expression

479 Signal Handler Use of a Non-reentrant Function Variant Draft

480 Use of Incorrect Operator Base Draft

481 Assigning instead of Comparing Variant Draft

482 Comparing instead of Assigning Variant Draft

483 Incorrect Block Delimitation Base Draft

484 Omitted Break Statement in Switch Base Draft
Private Data Structure Returned From A .

495 Public Method Variant Draft

496 Public Data Assigned to Private Array-Typed Field Variant Incomplete

558 Use of getlogin() in Multithreaded Application Variant Draft

560 Use of umask() with chmod-style Argument Variant Draft

562 Return of Stack Variable Address Base Draft

587 Assignment of a Fixed Address to a Pointer Variant Draft

676 Use of Potentially Dangerous Function Base Draft

685 Function Call With Incorrect Number of Arguments Variant Draft

688 Function Call With Incorrect Variable or Variant Draft
Reference as Argument

689 Permission Race Condition During Resource Copy Compound Draft

690 Unchecked Return Value to NULL Pointer Dereference Compound Draft

704 Incorrect Type Conversion or Cast Class Incomplete

733 Compilc.r Op‘ﬁir'rlization Removal or Modification Base Incomplete
of Security-critical Code

762 Mismatched Memory Management Routines Variant Incomplete
Improper Address Validation in IOCTL with .

81 METHOD NEITHER 1/O Control Code Variant Draft

782 Exposed IOCTL with Insufficient Access Control Variant Draft

783 Operator Precedence Logic Error Base Draft

735 Use 9f Path'Manipulation Function without Variant Incomplete
Maximum-sized Buffer

787 Out-of-bounds Write Base Draft

o4

Rust Programming Language

CWE Weakness

ID Name Abstraction Status

789 Memory Allocation with Excessive Size Value Variant Draft

805 Buffer Access with Incorrect Length Value Base Incomplete

806 Buffer Access Using Size of Source Buffer Variant Incomplete

839 Numeric Range Comparison Without Minimum Check Base Incomplete

843 A7(:cess of Reso.urcie Using Incompatible Type Base Incomplete
("Type Confusion’)

910 Use of Expired File Descriptor Base Incomplete

911 Improper Update of Reference Count Base Incomplete

1325 Improperly Controlled Sequential Memory Allocation Base Incomplete

1335 Incorrect Bitwise Shift of Integer Base Draft

1341 Multiple Releases of Same Resource or Handle Base Incomplete

5.5 Rust Overview

Rust is a multi-paradigm programming language focuses on two main aspects.

o Safety: 70% of the security issues that the Microsoft Security Response Center
(MSRC) assigns a CVE to are memory safety issues [25]. As already described,
about 20% of the Linux Kernel vulnerabilities are due to overflow and memory
corruption cases. The Rust’s Ownership model guarantees memory safety
and thread-safety through the control that the Borrow Checker carries out;
therefore, a lot of security issues can be eliminated at compile-time.

o Performance: Rust has not a garbage collector so it do not requires additional
cpu cycles to handle this function. Can be used on embedded systems and
can be integrated with other languages (i.e C).

It was developed as a personal project by Graydon Hoare, a Mozilla researcher
employee. On 2009, the company expressed interest and announced the language
in the Mozilla Summit 2010. The Rust compiler was initially written in OCaml,
but the project shifted to a self-hosting compiler based on LLVM written in Rust.
In 2015 was released the 1.0 version of the language.

5.5.1 Safety - Pointers and Memory

Rust enforces Resource Acquisition Is Initialization (RAII) that is a programmatic
idiom that describes very useful behaviors with important benefits. This technique
allows whenever an object goes out of scope (even in case of errors) to be correctly
released with the destruction of the resources acquired.

59

10

11

12

13

14

15

16

Rust Programming Language

Borrow Checker

The Borrow Checker is a compiler module whose function is to verify that all
references respect the single writer or multiple readers rule. In the example
below, two common cases are explained: the not allowed re-assign and the forbidden
immutable borrow (the original variable is currently borrowed as mutable).

fn borrow() {
let mut a = 5;
let b = &a;
println! ("{}", *b);
a = a+l; // Cannot assign to “a’ because it ©s borrowed
println! ("{}", *b);

fn mutable_borrow() {
let mut a = 7;
let b = &mut a;
println! ("{}", a); // cannot borrow ‘a’ as immutable
// because it is also borrowed as mutable
*b = *b+1;
println! ("{}", *b);

References in Rust can never be NULL or point to addresses whose value has
already been released or has never been initialized, in order to avoid a potential
NULL pointer dereference (CWE-476). This is a significant difference from classic
pointers in C/C++.

Unsafe block

The compiler always checks the ownership and lifetime of the variables, and ensures
that accesses that are legitimate. If the programmer finds himself in a condition
that does not satisfy these criteria, he must be forced to use an unsafe{...} block
that surrounds the unsafe code block.

5.5.2 Syntax
Variables and types

The Rust primitive types of the language are:
56

Rust Programming Language

« the unit, that means a tuple with no elements inside (corresponding to void
in C/C++): ()

o unsigned integers: u8, u32, u64, ul28, usize
o signed integers: i8, i32, i64, i128, isize

o floating point numbers: u32, f64

» booleans: bool

o characters: char

o strings: String, &str

For the sake of synthesis, we prefer to just mention that there exist other impor-
tant Rust data types and structures: Collections, Iterators, Smart-Pointers (very
important for thread-safety context therefore not relevant for our case) etc..

Rust preferred to use let for the immutable assignment of a value to a variable.
The programmer is therefore forced to understand if in the future he will need
to mutate the value, so declaring it as mutable with the mut label. The type
can be declared by the programmer when declaring the variable or automatically
inferred by the type inference engine. The variable is statically associated with
the declared or inferred type, and this means that the variable will have only that
type for the entire duration of the program.

fn main() {
let a: u32 = 17;
// a = 3 => error
let mut b = a; // b will have the same type as a
// and the value of b can be reassigned
b = 3;

5.5.3 Ownership

Rust’s Ownership concept means that any data introduced into the program
is owned by exactly one variable (called the owner) that owns also the resource
and is responsible for the correct deallocation. This is the reason why there isn’t a
garbage collector. The concept of possession implies responsibility for releasing the
variable allocated memory. This mechanism occurs when the owner goes out of
its syntactic scope or when it is directly assigned a new value to it. Applying this

57

10

Rust Programming Language

rules ensures the removal of many undefined behaviors caused by having pointers
pointing to no longer valid address spaces. Therefore, Rust’s idea of ownership
prevents the programmer to create dangling pointers on the program.

fn main() {

let mut a = Vec::new();

a.push(1);

a.push(2);
}
/*at this point, the array a goes out of its syntactic scope
(after exziting of the previous function), the wariable a is
responsible of releasing the resources it owns, that %s the

dynamic array allocated on the heap. */

It is possible to change the ownership through the mechanism of movement,
that means changing the owner of the data. This mechanism is the default behavior
in Rust.

fn main() {
let mut a = String::from("Test");
// use of the varible a
let b = a;
/*variable a is still alive but its internal value is marked
as no longer accesstible and consequently the ex owner cannot Tead

it because it has been moved (has changed owner) to wvariable b*/

//use of the variable b

The movement action occurs even if we pass a data as a parameter of a function as
showed below. We are therefore transferring the property and the original owner
will no longer own the property.

fn main() {
let mut a = vec![1,2,3];
handle(a);
// vartable a is mo longer usable here because was moved
// in the previous function

println! ("{:?}", a); //compile error

58

7

8

9

10

11

Rust Programming Language

}

fn handle(a) {
println! ("{:?}", a); // a is correctly displayed
}

5.5.4 Borrowing

In order to pass a value as an input parameter to a function without losing ownership
(due to the default movement mechanism) we can pass the reference to the value
owned by the original variable. A simple reference, therefore, is a read-only pointer
to a block of memory held by another variable that allows you to access a value
without transferring ownership. It is necessary to indicate that primitives types
(i.e integer,float..) and other types that implement the Clone trait can be moved
to other functions without loosing the ownership because they are copied and not
moved.

As long as the reference is accessible, it is not possible to change the value either
by the reference or by the variable (the real owner) that owns the value, but it is
possible to create further simple references from the original data or from other
references to it.

fn main() {
let v = vec![10,20,30];
print_vector (&v) ;
println! ("{}", v[01);

fn print_vector(x: &Vec<i32>) {
println! ("{}", x);

5.5.5 Mutability

When there is a need to obtain a mutable borrow, because we need to modify the
referenced value, we can use mutable references. In particular, from a mutable
variable that currently owns a value, only one mutable reference can be declared at
a time, and there can be no simple references to the original variable.

59

Rust Programming Language

fn add_two(r: &mut i32) {

*r += 2;

fn main() {
let mut a = 5;
add_two (&mut a);
println! ("{}", a);

5.5.6 Lifetimes

In order to avoid the phenomenon of "Use After Free' (CWE-416), the Borrow
Checker uses Lifetimes to keep track of how long references are valid for. In
particular, this check consists in verifying that each reference access takes place
in a time interval included in the value lifetime. To be legitimate, the reference
must last less than the lifetime of the pointed variable. The C/C++ compiler does
not do this check and consequently fails to detect the presence of any dangling
pointers.

Lifetimes annotation syntax

The notation of a lifetime parameter starts with an apostrophe .

&i32 /* simple read-only reference */
&'a i32 /* reference with an explicit lifetime */
&'a mut i32 /* mutable reference with an explicit lifetime */
&'static str /* reference with lifetime walid for the entire
duration of the program since the character sequence
ts allocated by the compiler in the constants section

and therefore is never released */

In cases where there is no ambiguity and therefore the compiler can understand the
lifetime, and it is not necessary to make it explicit. Indeed, there is a procedure
called lifetime inference in which the compiler adds to each borrow an interval
of time, which represents the duration between starting point of the borrow and its
last use. Therefore, in the below example, the lifetime inference process computed
by the compiler proceeds to add an interval of existence for the variable b (from
line 5 to 7) and an interval of validity for variable a (from line 5 to 10).

60

10

11

Rust Programming Language

fn main() {

let a;
{
let b = 2; // —+— 'b —+—— 'a
a = &b; /7 lany reference to b cannot exceed this pertod
/7] /
} /) —+ /b is dropped after exit the scope here
/7 /
println! ("{}", a); // [borrowed value (€%) does not live enough
} /) —mmmm——- +

Lifetimes in function signatures

If a function receives as input only one reference, the compiler, in case of non-
ambiguity, automatically translates the signature of the function into the one that
can be observed below. This process is called lifetime elision.

fn handle() { ... } => lifetime elision => fn handle<'a>(i: &'a i64) { ... }

If a function receives more than one reference and the compiler finds itself within
a situation of ambiguity, it may be necessary to indicate whether the lifetime is
constrained to the shortest of all parameters (line 1) or if they are completely
disjoint (line 2).

fn handle<'a>(il: &'a i64, i2: &'a i64) { ... }
fn handle<'a, 'b>(il: &'a i64, i2: &'b i64) { ... }

A typical case of ambiguity occurs when the compiler fails automatically to figure
out the correct lifetime of functions that return a reference to one of the function’s
input parameters as showed below. To resolve this ambiguity it is necessary that
the returned reference (&’b i32) arises in some way from the second parameter
(from which it derives its life span) so that the result also has the same duration.

fn handle<'a, 'b>(il: &'a i64, i2: &'b i64) -> &'b i32 { return &i2.x; }

61

Rust Programming Language

5.5.7 Polymorphism

Polymorphism let us to have the idea that a variable can take multiple forms, and
it occurs when we have many classes that are related to each other by inheritance.
The main disadvantage of polymorphism in many programming languages is that
the system has to determine which process or variable need to be invoked and this
decision is taken at run time, and therefore the performance of the program can
decrease.

Rust doesn’t have the concept of inheritance because types are not organized
in a hierarchical model. Something similar to the polymorphism concept can be
achieved using generic types and traits explained below.

Generics

Rust generics equivalent to template programming in C+-+ use the concept of meta-
programming whereby a generic data type can be expressed through the use of a
meta-variable (i.e T). The parametric polymorphism approach allows programmers
to write functions leaving a variable type to be partially specified (Generic) in
order to allow the same function to be applied to different variable types reducing
duplicate code sections. To handle the case of generic types many languages like
Java only know the true data type at run-time. This has a performance impact.

Rust, instead, uses the monomorphization process in order to know the
concrete type of all generic types used by the program, and this process is done at
compile-time so before the code is executed. To do this, the compiler generates
several copies of each concrete type that the program actually needs. For example,
if both Vec<i8> and Vec<ul28> types are used in the code then the generated
binary will contain two different copies of Vec, one for the case Vec<i8> and the
other for the case Vec<ul28>. This process has the disadvantage of having a
longer compilation time since multiple copies must be generated, so more quantity
of code, which leads to a greater size of the compiled binary file but the great
advantage is that this process allows of having no runtime costs in order to use the
correct concrete type, therefore better performance.

fn handle<T,R>(il: &Data, i2: T, i3: R) —-> Results
where T: Serialize + Deserialize
R: Read

62

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Rust Programming Language

Traits

In order to achieve a similar behavior of Java/C+# interfaces or pure abstract classes
in C++, we can use Traits. The trait is used to allow a data type to have certain
behaviors (functionalities). In the example below, we see that the two data types
(Candidate and Finalist) can both perform the math actions of summing items
and calculating the average. Moreover, if we don’t have dynamic references (&dyn)
we can invoke a trait-related methods on a value without incurring any additional
costs in terms of CPU cycles. However, this does not happen in C4++ or Java
where a penalty must be paid in order to use interface methods.

trait Math {
fn sum() -> i32;
fn average() -> £32;

struct Candidate;

struct Finalist;

impl Math for Candidate {
fn sum() -> i32 {
// compute and return the sum
}
fn average() -> £32 {

// compute and return the average

impl Math for Finalist {
fn sum() —-> i32 {
// compute and return the sum
}
fn average() -> £32 {

// compute and return the average

63

Rust Programming Language

5.6 The no_ std environment

When we are dealing with embedded programming, is very important to classify
two different environments:

 std: the standard library can be used in general or special (hosted) purpose
systems. In these environments exist an interface that exposes primitives
which allow the interaction with many components like peripherals, networking,
memory management, threads, file system, etc.

e no_ std: This is the environment that we will use for our analisys, because it
can be used for bare metal environments (i.e microcontroller units), in which
there is no OS that can provide a software layer to interact with kernel calls.
This crate-level attribute prevent Rust from loading components that use the
standard library, and will link only to the core-crate instead of the std-crate.

5.7 Motivation of adopting Rust for the project

e NIST included [26] Rust in its list of safer languages, and declares: Rust has
an ownership model that guarantees both memory safety and thread safety, at
compile-time, without requiring a garbage collector. This allows users to write
high-performance code while eliminating many bug classes. Though Rust does
have an unsafe mode, its use is explicit, and only a narrow scope of actions is

allowed. (14 Mar 2023)

e In December 2022 after the release of Linux 6.1, it became the second high-level
language to be supported in the development of the Linux kernel.

e [t is very fast compared to other system programming languages and for being
a trade-off between performance and safety.

64

Chapter 6

Kyber library written in
Rust on a ARM Cortex-M4

6.1 The STM32F303VCT6 Board

6.1.1 Development environment for STM32

The STM manufacturers guarantee a complete support for the development lifecycle
of a STM32 microcontroller that uses C/C++ languages for developing. The STM
team provides software tools such as:

o STM32CubelDE: that is a integrated development environment
o STM32CubeMonitor: a monitoring tool to test at run-time

o Arm Keil MDK: a ¢/c++ compiler, debugger and IDE for stm32
o Other tools from other suppliers

This is not the case for Rust programming language, which only has a
growing but still young community of developers that try to create a compatible
environment. See chapter 5.1 for more details on Rust language.

6.1.2 Our selection

To keep up with the progress made by the Rust community that guarantees

and documents the compatibility of hardware and to avoid encountering un-

known errors, we preferred to use the STM32F303VCT6 board (also known as

STM32F3DISCOVERY). Indeed, it have been chosen by the community, and then

its usage is so very well documented in the manual called Rust Embedded Book [27].
This microcontroller has the following main features:

65

Kyber library written in Rust on a ARM Cortex-M4

LD2 (redigreen LED)
comM

1 | I
] ; =
LD (red LED) ' a ol = . _l_;l_ S—— USB USER
PWR — = =
| T® o kel l4|||| [E
! JL
CN3 J i ‘
SWD connectar — 1 == __ === =] @
i @ o, S ol ey
' = |||||||||||| N B
' < =2 _ Ch4
7@ E = ;‘in ST-LINK/
= = = | STM3ZFIDISCOVES
i -:- ﬂ = = =
1 = = w
P _ﬁ I |
measuremenr?l _I'_;(_ 2 _ == i’_‘!! ____________________ (— LSM303DLHC
ww.st.com/stm32f3discovery wm
RX —
v |7 R A HECe o) o8 -
supply ——=3 @ EAT |E| - — ‘JLI
Ingnatfcaripan GND : pRST IE : =. .|= |== =| S inpulioutput
=1 bco
Z=ml I ¥ "
pa1 @ @2
[TER(I v
pre | @ @ STM32ZF303VCTS
pas (@@
pa7 @ @as
pes @ @eca
pa1 @ @e0
rer | @enz
reas | @ees — L3cDzo
B1 user-button — — oz o
peL: | @2 - — 52 res
(red LED) LD3 pr-|-. @ ®:1: B § -
PB11 FB10 .) -
(tse LED) LD4 — s — — . (erange LED) LDS
pa1s | @ea1a PAL
PDg PDE et — 6
(green LED) LDS e T 1] [T] | (green LED) LOT
ro11 @ @eoio PALL
rors| @ @012 PALL
(orange LED) LD8 2015 R0l = . (blue LED) LD9
pos | @ecr & 4 = — PLE ed LED) LD10
sno | @ @ fop GND

Figure 6.1: STM32f303VCT6 Layout (top view) [28]

Arm Cortex M4 32bit Single-core CPU (maximum clock frequency of 72 MHz)

40 KB of SRAM with HW parity check implemented on the first 16KB and
8KB of Core-Coupled-Memory (CCM) with HW parity check.

256 KB of Flash memory
Single-cycle multiplication
MPU (Memory Protection Unit)

4 to 32MHz crystal oscillator, 32kHz oscillator for RTC with calibration,
internal SMHZ RC with 16 PLL option, internal 40kHz oscillator

87 1/Os mappable on external interrupt vectors
A variety of integrated peripherals such as timers, 12C, SPI and USART.

12-channel DMA controller
66

Kyber library written in Rust on a ARM Cortex-M4

e 4 ADCs

6.1.3 Limitations of the board

The board doesn’t provide a random number generator unit in order to produce a
non-deterministic random numbers.

For the tests we will use a function that is a pseudo-random number generation
algorithm since it does not use physical phenomena to generate entropy. We will
dedicate an entire chapter to discuss aspects related to randomness (see Chapter
7). In order to guarantee security to the users of the library, an external RNG
peripheral should be adopted, and it should satisfy the NIST’s Recommendation
for Random Bit Generator (RBG) Constructions document [29].

6.2 State of Art of Kyber on a ARM Cortex-M4

6.2.1 PQClean

Apart from the official C reference code of Kyber, the PQClean project [30] is another
widely used library, because satisfies a number of basic code quality requirements
and contains a collection of highly-tested and high-confidence implementations
of 17 NIST finalist post-quantum schemes. The strength of this project is the
environment created through the use of automatic tests. These tests are run
periodically on the master branch and on each commit and pull requests, and they
are tested on different systems architectures and operating systems.

Flaw KEMs Sigs | Flaw KEMs Sigs || Test
Memory safety ¢ 3 4 Endianness assumptions 7 2 * Compilation test
Signed integer overflow x, o, T 3 1 Platform-specific behavior &, +, T, T 4 0 & Makefile checks
Alignment assumptions x, ¢, ¢ 4 4 Variable-Length Arrays x 4 1 & Functional tests
Other Undefined Behavior «, & 1 1 Compiler extensions 5 2 t Test vectors
Dead code %, # 3 4 Integer sizes ¢, *, T 6 3 o Sanitizers
Global state 2 1 Non-constant time = 4 0 + Signedness of char
Licensing unclear © 3 1 = Timing-suspicious ops.
t clang-tidy
© License file

Figure 6.2: List of known flaws. On Each flaw it is specified which tests might
have detected them, from [30]

As we can see in figure 6.2, there are known flaws reported by PQClean project
regarding memory safety, signed integer overflow, undefined behaviors, variable-
length arrays, etc. These problems are dangerous in order to preserve security
and can be avoided by using the Rust model as also PQClean declares [30]: "Rust
could perhaps have stood in as a lowlevel language that simply does not allow
most of the problems that our testing system was designed to catch'. Moreover,

67

Kyber library written in Rust on a ARM Cortex-M4

contributors wonder whether is the right decision to adopt C as the principal
project programming language: "More controversially, we question if C'is a suitable
programming language for reference implementations, especially if the main goal is
clarity of the implementation. While as of now there seems to be no consensus on
which alternative should be used, standardization entities should revisit this on a
reqular basis" [30].

6.2.2 pqm4

The pgm/ [31] is a project specifically suited for the ARM Cortex-M4 embedded
systems. This project defines as clean type a code version that integrates the
PQClean’s repo. There is also an implementation optimized for the Cortex-M4
which is called m4 which is specially adapted to work with the default micro-
controller STM32F4DISCOVERY. We only considered benchmarks of the pqm4’s
clean version.

6.3 Selected Rust Kyber Library for the board

We decide to analize the open source https://github.com/Argyle-Software/
kyber library (Apache 2.0 - MIT). This library is the translation of the official
reference code of Kyber library from C to Rust language. Then, this library takes
the Rust language advantages such as performance and memory safety.

This library doesn’t contain any type of binding with the C counterpart and no
unsafe blocks are written. This is very useful in order to avoid any kind of potential
exposures.

Finally, is suitable for our scope because it is intended to be compatible with
embedded systems (since it is no_std compatible).

6.4 Performance Evaluation

Performance tests were carried out following the same configurations adopted by
the pgm4 framework to create benchmarks [32]. In particular, pgm4 uses the
STM32F407DISCOVERY [33] board (196 KB of memory and 1 MB flash ROM)
and all clock cycles were measured at 24MHz of core frequency, to avoid wait cycles
due to the speed of the memory controller [31].

6.4.1 Clock Cycles

A clock cycle (or clock tick) is the time between two pulses. Pulses are rising edges
of a repetitive clock signal. From clock cycles is possible to determine the speed of

68

https://github.com/Argyle-Software/kyber
https://github.com/Argyle-Software/kyber

10

11

12

13

14

15

Kyber library written in Rust on a ARM Cortex-M4

a CPU. This metric is called clock frequency and is measured in Hz,

where T, is the number of clock cycles. The more pulses per second, the faster the
computer processor can process information (i.e fetch, execute instructions).

6.4.2 Clock Cycles Measurement Method

Two approaches have been used to measure the clock cycles elapsed to complete the
execution of a KEM method. Moreover, a comparison between these two measure
methods and the pqm4 benchmarks are discussed on chapter 8.

SysTick

SysTick is a CPU’s peripheral system timer that is used to measure elapsed cycle
counts. This count is accurate up to a 24-bit maximum number of clock cycles. We
choose as reload value (is the seed value when the timer expires) to be 24000000 / 2
= 12000000. We have decided this value so that it can be represented by the 24-bit
SYST RVR register available. When peripheral counts down from the reload value
to zero it reloads to this value chosen and repeat the entire process again. This is
the cpu and timer configuration:

let mut dp = pac::Peripherals::take().unwrap();
let mut flash = dp.FLASH.constrain();
let mut rcc = dp.RCC.constrain();
let clocks = rcc

.cfgr

.use_hse(8.MHz())

.sysclk(24 .MHz())

.freeze(&mut flash.acr);
let core_periphs = cortex_m::Peripherals::take() .unwrap();
let mut syst = core_periphs.SYST;
syst.set_clock_source(SystClkSource: :Core) ;
syst.set_reload(clocks.sysclk().0 / fraction - 1);
syst.clear_current();
syst.enable_counter();

syst.enable_interrupt() ;

For obtained a rng variable we create a CustomRng structure that implements the
RngCore and CryptoRng traits to be compliant with the library constraints. In

69

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Kyber library written in Rust on a ARM Cortex-M4

particular, we use the fill_bytes() function in order to fill random bytes in a fast

way.

#[derive(Clone, Debug)]

use rand_core::{RngCore, CryptoRng, Error,impls};

pub struct CustomRng(u64);

impl RngCore for CustomRng {
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32

fn next_u64(&mut self) -> u6d {
self.0 += 1;
self.0

fn £fill_bytes(&mut self, dest: &mut [u8]) {
impls::fill_bytes_via_next(self, dest)

fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {

Ok(self.fill_bytes(dest))

impl CryptoRng for CustomRng {}

let mut rng = CustomRng(76187368 as u64);

The block below is used on each measurement and shows the logic to:

1. define the number of ticks starting from the initial and final instants read
from the SYST CVR register

2. how the minimum, maximum and sum are obtained (the last one is useful for
averaging at the end)

1 let ticks = if instO > instl {

2 instO - instl - 2

70

10

11

12

Kyber library written in

Rust on a ARM Cortex-M4

}else {
inst0 + (12000000 - inst1)
Irg
if min >= ticks {
min = ticks;
}
if max <= ticks {
max = ticks;
}

sum += ticks;

In the next code sections, we show how the initial and final clock cycles of the
main kem functions are read.

/// KeyPair

let mut pk = [Ou8; KYBER_PUBLICKEYBYTES];

let mut sk = [0u8; KYBER_SECRETKEYBYTES];

let bufs = Some(([1u8; 32].as_slice(), [255u8; 32].as_slice()));
let instO = syst.cvr.read();

crypto_kem_keypair(&mut pk, &mut sk, &mut rng, bufs) ;

let instl = syst.cvr.read();

For the sake of simplicity, pk (public key), ct (ciphertext) and ss (shared secret)
vectors are mocked and obtained from the output of the KAT. We place this long
vectors on the Appendix.

/// Encapsulate

let mut ct = [Ou8; KYBER_CIPHERTEXTBYTES];

let mut ss = [0u8; KYBER_SSBYTES];

let encap_buf = Some([255u8; 32].as_slice());

let instO = syst.cvr.read();

crypto_kem_enc(&mut ct, &mut ss, &pk, &mut rng, encap_buf);

let instl = syst.cvr.read();

/// Decapsulate
let mut ss = [0u8; KYBER_SSBYTES];
let inst0 = syst.cvr.read();

res = match crypto_kem_dec(&mut ss, &ct, &sk) {

71

10

11

1

10

11

Kyber library written in Rust on a ARM Cortex-M4

0k(_) => ss,
Err(_) => [0u8;32]
Irg

let instl = syst.cvr.read();

Data Watchpoint and Trace (DWT) Unit

The DWT unit counts the execution cycles. This unit contains 4 counters. In
particular, for our work is relevant the read-only clock cycle counter register called
CYCCNT. This register increments on each clock cycle when the processor is not
halted in debug state. The code section below show the CPU configuration and
the counter setup.

let mut dp = pac::Peripherals::take() .unwrap();
let mut flash = dp.FLASH.constrain();
let mut rcc = dp.RCC.constrain();
rcc
.cfgr
.use_hse(8.MHz())
.sysclk(24.MHz())
.freeze(&mut flash.acr);

let mut peripherals = Peripherals::take() .unwrap();

peripherals.DWT.enable_cycle_counter();

The op__cycent_diff() macro below was written in order to restricts the kinds of
memory re-ordering that the compiler normally does.

macro_rules! op_cyccnt_diff {
($($z:expr)*) => {
{
compiler_fence(Ordering: :Acquire);
let before = DWT::cycle_count();
$(
$z ;
) *
let after = DWT::cycle_count();
compiler_fence(Ordering: :Release);
let diff =

72

12

13

14

15

16

17

18

19

20

Kyber library written in

Rust on a ARM Cortex-M4

if after >= before {
after - before
} else {
after + (u32::MAX
T
diff

- before)

To get minimum, maximum and sum variables we used the same procedure as in
SysTick.

/// KeyPair

let mut pk [0u8; KYBER_PUBLICKEYBYTES] ;

let mut sk [0u8; KYBER_SECRETKEYBYTES] ;

let bufs = Some(([1u8; 32].as_slice(), [255u8; 32].as_slice()));
let ticks = op_cyccnt_diff!(

crypto_kem_keypair(&mut pk, &mut sk, &mut rng, bufs)
)

/// Encapsulate
let mut ct = [Ou8; KYBER_CIPHERTEXTBYTES];
let mut ss = [0u8; KYBER_SSBYTES];

let encap_buf = Some([255u8; 32].as_slice());
let ticks = op_cyccnt_diff!(

crypto_kem_enc(&mut ct, &mut ss, &pk, &mut rng, encap_buf)
)s

/// Decapsulate
let mut ss = [Ou8; KYBER_SSBYTES];
let ticks = op_cyccnt_diff! (crypto_kem_dec(&mut ss, &ct, &sk));

73

Kyber library written in Rust on a ARM Cortex-M4

6.5 Code Coverage analysis

To ensure security and avoid weaknesses or bugs within the software, it is essential
to have a measure that is able to evaluate the degree of both code coverage and test
coverage of the application. One useful mechanism that measures and evaluates
coverage in Rust is Source-based Code Coverage. To have correct reliability we
need a test suite that can execute and verify the correctness) of every single line of
code in the program.

6.5.1 Code Coverage

Code Coverage is a metric that evaluates the amount of lines of code effectively
executed during the launch of a test suite and is very useful to understand how
deeply the software code has been tested. So this process can be considered as
a white-box testing approach, since it examines the the internal structures. In
order to correctly execute a code coverage measurement, it is necessary to develop
exhaustive test cases. This metric is expressed in percentage with the following
formula:

Number of component’s code lines effectively tested

Code Coverage % = 100

Total number of component’s code lines

This metric is useful to identify specific areas on the program that are never reached
by a set of test cases or eventually to delete needless test cases. In particular, it is
useful to detect and resolve errors at early stages of a development cycle. Indeed,
executing exhaustive tests to ensure confidence in the code base increases the
software reliability. In the other hand, the code coverage metric is not an indication
of flaws absence and code quality, it just measures the effectively execution of code
and cannot measure the quality of tests launched.

6.5.2 Code Coverage Criteria

There are several levels of coverage differentiated according to the analysis criterion.
The following list shows the main types.

e Function coverage: indicates how many functions of the component have
been called at least once.

o Statement coverage: determine the number of lines of code within the
component that have been executed.

e Branch coverage: inside a component flow can be present one of more paths
(i.e if blocks introduces an alternative path based on the result of its condition).

74

Kyber library written in Rust on a ARM Cortex-M4

This criteria determines whether all branch present in the component are
exhaustively covered.

o Condition coverage: also known as predicate or expression coverage. This
coverage checks if each condition is evaluated true or false at least once.

e Loop coverage: loop is covered

— if in at least one test the body was executed 0 times
— if in some test the body was executed exactly once

— if in some test the body was executed more than once

6.5.3 Test Coverage

Test Coverage is a software qualitative measure process that is used to understand
if all possible scenarios have been considered, and so if all software features are
covered by the developed test cases. Therefore, test coverage is a subjective
evaluation of how many tests are able to correctly cover the potential software risks
and the business specifications, i.e the three important I'T documents: Functional
Requirements Specifications (FRS), Software Requirements Specifications (SRS),
User Requirements Specifications (URS). It uses a black-box methodology
because it checks the application behavior from an external point of view, without
considering internal logic. For this thesis purpose, we apply a test coverage to
check the robustness of the library in case of a CCPA attack scenario. Since test
coverage verifies the software operability, it can enhance the software quality. It
also reduces the probability of introducing new weakness on the software. There
are different types of test coverage differentiated according to the analysis criterion.
The following list shows the various types.

» Requirement coverage: identifies whether all user requirements are correctly
covered and met hence satisfy.

e Product coverage: check if the entire product works properly also in extreme
conditions.

« Risk coverage: identifies potential software risks and ensures that adequate
tests have been performed to mitigate these risks.

e« Boundary value coverage: verifies the reaction of the component for
boundary values as input (called test vectors).

In order to perform a correct test coverage, these elements must be executed:

75

Kyber library written in Rust on a ARM Cortex-M4

Unit Testing: tests to the smallest self-contained components of software
that can be run in isolation and have no dependencies on any external factor
(i.e queries to a database)

Functional Testing: tests made on purpose to be able to guarantee the func-
tionality of each point declared by the Functional Requirements Specification
document.

Integration Testing: in this phase each individual software modules (already
tested using unit test) are combined and tested as a group.

Acceptance Testing: this is the final phase of a testing procedure and is
used to know whether a software product is ready to be released to public or
not.

76

Chapter 7
Random Number Generator

Random numbers play a critical role in cryptography, particularly in generating
session keys, initialization vectors (IVs), or cryptographic nonces. A cryptographic
"number used once" is called "nonce', it is a random number that is used just once
in a cryptographic communication. Kyber algorithms used nonces. A weak random
number generator can compromise the security of any cryptographic protocol. In a
software attack, adversaries attempt to exploit hidden periodicities or structures
within a random sequence to guess the secret key and breach communication
confidentiality. There are two primary classes of random number generators:

1. Deterministic RNG or Pseudo-RNG (PRNG): utilizes an algorithm to gen-
erate a sequence of bits from an initial value known as a seed. To ensure
unpredictability, caution must be exercised in selecting seeds. The output of
a PRNG is entirely predictable if both the seed and the generation algorithm
are known. Since the generation algorithm is often publicly available, secrecy
of the seed is crucial and it should be generated from a True RNG (TRNG).

2. Non-deterministic RNG or True RNG (TRNG): produces randomness based
on an unpredictable physical source, known as the entropy source, which is
beyond human control.

Therefore, there is a need for a standard certificate capable of certifying that
hardware components like RNGs can be secure. For this purpose, the FIPS 140-2
standard has been introduced.

7.0.1 FIPS 140-2

Federal Information Processing Standard 140-2 (FIPS 140-2) [34] specifies the
security requirements that will be satisfied by a cryptographic module.

7

Random Number Generator

7.1 The STM32F407VGT6 Board

The STM32F303VCT6 board adopted in this work does not provide RNG periph-
eral, so theoretical is necessary to assign the task of generating random numbers
to an external hardware peripheral, that might be subject to interruptions or
malfunctions.

For this reason, it was necessary to switch to the STM32F407VGT6 DISCOVERY
model to conduct tests on a real integrated RNG component which provides a
TRNG capability. The STM32F407VGT6 DISCOVERY board offers the following

main hardware features:
1. Arm Cortex-M4 core
2. 1 MB Flash memory
3. 192 KB RAM
4. a TRNG peripheral

7.1.1 TRNG Functional Description

The board’s RNG processor uses the continuous analog noise as a source for
generating random numbers. It furnishes a random 32-bit value to the host when
accessed. This component generates two consecutive random numbers every 40
periods of the RNG CLK clock signal and monitors the RNG entropy in order
to produce more stable sequence of values. The most important thing is that this
board RNG component successfully completed the FIPS PUB 140-2 tests with a
99% success rate [36]. The NIST’s FIPS PUB 140-2 verification is based either on
the NIST statistical test suite:

1. NIST SP 800-22revla (April 2010): consists of 15 tests designed to assess
the randomness of a binary sequence. These tests target different forms of
non-randomness that may be present within the sequence.

2. NIST SP 800-90b (January 2018): to assess the quality of random generators
intended for cryptographic applications using standardized methods to evaluate
the reliability of an entropy source

7.1.2 TRNG Workflow

The RNG block diagram in figure 7.2 depicts from the bottom the analog circuit
which comprises multiple ring oscillators whose outputs are combined using XOR
operations to generate the seeds. The RNG__LFSR operates using a dedicated

78

Random Number Generator

| ST-LINK/V2
LD1 (red/green LED) :

1
1
1
com 1'/ LD2 (red LED)
N2 ™ PWR
SWD connector ! . - !
:] | coN3
! e ;_@MBQQ?D |~ ST-LINK/DISCOVERY
: . i . selector
I \
| 1
5V power
JP1 \f’/ supply input/output

pD Measurement —| |~ 3V power

supply output

STM32F407VGT6 3 | SB1(B2-RESET)

o | — LD3
(orange LED)

B1 user button

85 L D5 (red LED)

—— B2 reset button
(green LED)LD4— |

(blue LED) LD6 — |

(green LED) LD7 oy — LD8 (red LED)

Figure 7.1: Front view of the STM32F407VGT6 board from [35]

clock (RNG_CLK) at a fixed frequency, ensuring that the randomness of the
generated number remains consistent regardless of the system’s primary clock
frequency (HCLK). Once a sufficient number of seeds have been inputted into the
RNG__LFSR, its contents are transferred to the data register (RNG_DR).

7.1.3 TRNG Error Management

There are two kind of errors that the module can detect and stored in a bit register:

« Clock error interrupt status (CELS): If the bit is read as '1’ it means that the
RNG_ CLK clock is not operating correctly

» Seed error interrupt status (SEIS): If the bit is read as 1’ a detected fault
indicates one of the following erroneous sequences:

1. More than 64 consecutive bits of the same value (0 or 1)

2. More than 32 consecutive alternations between 0 and 1 (0101010101...01)
79

Random Number Generator

< 32-bit AHB bus >
@ ﬁ data register

Control register | RNG_DR I
| rvG CR ﬁ
RNG_CLK * LFSR
Status register l A feed a Linear Feedback
Clock checker & | Shift Register
I RNG_SR I‘i fault detector R
Analog seed

Figure 7.2: RNG Block Diagram from [36]

True RNG

rng_it -+ Conditioning logic

Banked Registers _——CONDRST—»{
control RNG_CR :

data |RNG_DR ! <
N AHB status |RNG_SR |
interface L |

FIFO

|~ 4x32-bit

=]
=3
5
o
=
©
©
5
@
I

32-bit AHB bus
|
|
|
|
|
|
|

Fault detection
Clock checker

rng_hclk AHB clock domain Health tests —+ 1-bit
rng_clk > | Post-processling (optional) i
a
[Sampling (x N) + XOR |

RNG clock domain ,I:

| |
I {Analog ||Analog | [Analog ||
. I' [noise g || noisetigh | | noisetgd| !
rng_itamp_out <& —en_ose— |source 1|[source 2| [source N :

Analog noise source

Figure 7.3: RNG Schema from [37]

Simultaneously, the analog seed and the dedicated RNG__ CLK clock are moni-
tored. Status bits within the RNG__ SR register indicate any abnormalities detected
in the seed sequence or if the RNG_CLK clock frequency falls below a specified
threshold. In the event of an error, an interrupt can be triggered to notify the

system.

80

Random Number Generator

7.2 Randomness Tests

We subjected the board to a test to verify if indeed each number has an equal
probability of being selected. This is not an exhaustive test, the main purpose of
this quick simple experiment is to verify and confirm what the manufacturer of the
TRNG hardware component has already declared.

7.2.1 Test Description

The test consisted of:

generating 40°000°000’000 random numbers

each number must be within the range of 0 to 32000 (to avoid device stack
overflow)

each number will have a counter of how many times it was generated

counters are represented on a vector of Rust’s unsigned 32 bit (u32) of 32000
elements (each number is 4 Bytes in size)

the whole test was repeated 5 times

7.2.2 Results

The observed results were:

the range of repetitions for each number spans from a minimum of 1’245’954
to a maximum of 1'254’804.

all counts were represented on a bar graph in figure 7.4, where each value is
declared in x-axis and the number of repetitions is placed on the y-axis

it can be observed from the shape of the graph that they are distributed
evenly, forming a straight line. There are no numbers with a significantly lower
or higher probability of being selected compared to other values. We have
realized that attempting to make the enlarged line more uniform in Figure 7.5
would require a significantly longer time, considering that this test is solely for
the purpose of verifying and confirming what the manufacturer of the TRNG
hardware component has already declared.

no anomalies or instability of the module were detected during the test.

it can be concluded that the module, as explicitly stated by the manufacturer,
exhibits excellent randomness

Svg

81

Random Number Generator

Number Probability Distribution

Figure 7.4: Bar chart depicting the probability distribution of each integer from
0 to 32000 considering 40 billion draws

Number Probability Distribution

1500000

Ao A0t s b

Figure 7.5: Enlarged surface of the previous graph

82

Chapter 8

Contributions to the library

8.1 Performance Tests for STM32F4 Board

Performance Tests were conducted following the approach used by pqm4 for its
performance tests on Kyber written in C. We used the STM32F407VG board,
which is the same board pqm4 used for their measurements as well.

It was observed that pqm4 utilized the open-source library LibOpenCM3, which
provides a useful Hardware Abstraction Layer (HAL) for conducting these types of
tests on ARM-Cortex M4 MCU.

In particular, we used the same configurations adopted by LibOpenCMa3:

1. HSE (High-Speed External) clock = 8 MHz
2. PLL (Phase-Locked Loop) clock = 24 MHz

3. PLL48CLK = 48 MHz (required for the TRNG module)

Since Rust does not have a no_std library similar to LibOpenCM3, we utilized
our custom SysTick and DWT methods explained in Chapter 6.4.2 for these
measurements.

In Table 8.1, the results of the clock cycle measurements are presented for each
KEM algorithm (KeyGen, Encapsulation, and Decapsulation).

In addition, we also performed the same experiment for the STM32F3 board,
which does not have the TRNG peripheral. Therefore, we simulated a Pseudo
Random Function for that purpose.

The results obtained have been represented on bar charts to make them easier
to visualize and compare the numerical outputs.

83

Contributions to the library

Key Key Key Encaps Encaps Encaps Decaps Decaps Decaps

Kyber Measure Lan Gen Gen Gen [cycles] [cycles] [cycles] [cycles] [cycles] [cycles]
Ver. Method g [cycles] [cycles] [cycles] (n};ean) (n};in) (n};ax) (n};ean) (n};in) (n}ilax)
(mean) (min) (max)

512 pqm4 Slean 636181 635670 648917 843945 843433 856680 940320 939808 953055

768 pqm4 Sle‘l,n 1059876 1057827 1071809 1352934 1350884 1364866 1471055 1469005 1482987

1024 pqm4 Sle‘ln 1649604 1646417 1686328 2016366 2013177 2053070 2159906 2156716 2196609
SysTick

512 timer Rust 782915 782912 782968 1075512 1075505 1075566 1037024 1037020 1037077

768 tsl‘;z;l;mk Rust 1271579 1271574 1271630 1572956 1572949 1573007 1466918 1466912 1466965

1024 zzieT;Ck Rust 1782451 1782444 1782497 2327229 2327220 2327277 2193613 2193604 2193659
DWT

512 it Rust 784455 784455 784456 1077356 1077356 1077356 1042176 1042176 1042177

768 EIY:ET Rust 1278644 1278644 1278644 1571206 1571206 1571208 1468604 1468604 1468604

1024 bwi Rust 1772551 1772551 1772551 2330897 2330896 2330898 2187373 2187373 2187374

unit

Table 8.1: Speed comparison at 24MHz for the STM32F407VGT6 board based
on the language and method used. The average, minimum and maximum value of
each algorithms are reported for each KEM method

8.1.1 Results for STM32F4

In the graphs depicted in figure 8.1, 8.2 and 8.3, lower values indicates better
performance. We noted that the C version is significantly faster for KeyGen and
Encapsulation algorithms. For the Decapsulation function in the Kyber-768 and
Kyber-1024 version, the Rust version is nearly as fast as the C version.

It is also important to emphasize that many performance improvements have
been made to the C library, and the community has a larger group of developers
compared to the Rust one. On the other hand, the Rust library is relatively young
(currently at version 0.7.1) and requires further improvements. For being a new
library written in Rust, it is very satisfying and promising according the results
obtained. Considering all the advantages that Rust offers over C, it can be seen as
a good trade-off between increasing security and maintaining a good performance.
This is important, because often implementing stricter security measures implies
the reduction in performance.

84

Contributions to the library

Kyber-512 STM32F407VGT6

B Cc B Rust
1250000

1000000
750000
500000

250000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.1: Kyber-512 KEM functions measured on STM32F407VGT6 board
using DW'T method

Kyber-768 STM32F407VGT6

B Cc B Rust
2000000

1500000
1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.2: Kyber-768 KEM functions measured on STM32F407VGT6 board
using DW'T method

85

Contributions to the library

Kyber-1024 STM32F407VGT6

B Cc B Rust
2500000

2000000
1500000
1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.3: Kyber-1024 KEM functions measured on STM32F407VGT6 board
using DW'T method

Kyber-512 STM32F407VGT6

B Cc B Rust
1250000

1000000
750000
500000

250000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.4: Kyber-512 KEM functions measured on STM32F407VGT6 board
using SysTick method

86

Contributions to the library

Kyber-768 STM32F407VGT6

B Cc B Rust
2000000

1500000

1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.5: Kyber-768 KEM functions measured on STM32F407VGT6 board
using SysTick method

Kyber-1024 STM32F407VGT6

B Cc B Rust
2500000

2000000
1500000
1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.6: Kyber-1024 KEM functions measured on STM32F407VGT6 board
using SysTick method

87

Contributions to the library

8.2 Performance Results for STM32F3 board

As already anticipated, the board examined for the analysis STM32F303VCT6
does not include the TRNG module. Hence, we used a custom pseudo-random
function. The results were very similar to those obtained for the STM32F407VGT6
board presented in the previous paragraph.

Key Key Key Encaps Encaps Encaps Decaps Decaps Decaps

Kyber Measure Lan Gen Gen Gen [cycles] [cycles] [cycles] [cycles] [cycles] [cycles]
Ver. Method g [cycles] [cycles] [cycles] (n};ean) (n);in) (n};ax) (n);ean) (n?l,in) (n};ax)
(mean) (min) (max)

512 pqm4 Sle‘ln 636181 635670 648917 843945 843433 856680 940320 939808 953055

768 pqm4 Sle‘ln 1059876 1057827 1071809 1352934 1350884 1364866 1471055 1469005 1482987

1024 pqm4 S]ean 1649604 1646417 1686328 2016366 2013177 2053070 2159906 2156716 2196609
SysTick

512 timer Rust 676581 676579 676632 941811 941808 941860 921019 921016 921066

768 tsi‘\;ieT;Ck Rust 1089819 1089815 1089866 1458933 1458927 1458979 1413732 1413727 1413780

1024 tsfﬁg;_mk Rust 1717910 1717903 1717956 2179686 2179677 2179729 2121991 2121983 2122037
DWT Ny e N

512 it Rust 676340 676340 676340 941908 941908 941908 921112 921112 921112

768 E:ftT Rust 1091611 1091611 1091611 1461910 1461910 1461910 1413656 1413656 1413656

1024 bwr Rust 1717095 1717095 1717096 2182045 2182045 2182045 2122381 2122381 2122381

unit

Table 8.2: Speed comparison at 24MHz based on the language and method used.
The average, minimum and maximum value of each algorithms are reported for

each KEM method

88

Contributions to the library

Kyber-512
Lower values indicate better performance

B Cc B Rust
1000000
750000

500000

250000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.7: Kyber-512 KEM functions measured on STM32F303VCT6 board
using SysTick approach

Kyber-768
Lower values indicate better performance

B Cc B Rust
1500000

1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.8: Kyber-768 KEM functions measured on STM32F303VCT6 board
using SysTick approach

89

Contributions to the library

Kyber-1024

Lawer values indicates better performance
B Cc B Rust
2500000

2000000
1500000
1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.9: Kyber-1024 KEM functions measured on STM32F303VCT6 board
using SysTick approach

Kyber-512
Lower values indicate better performance

B c B Rust

1000000

750000

500000

250000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.10: Kyber-512 KEM functions measured on STM32F303VCT6 board
using DW'T approach

90

Contributions to the library

Kyber-768
Lower values indicate better performance
B c B Rust
1500000
1000000
500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.11: Kyber-768 KEM functions measured on STM32F303VCT6 board
using SysTick approach

Kyber-1024

Lawer values indicate better perfarmance
B c B Rust
2500000

2000000
1500000
1000000

500000

KeyGen (cycles) Encaps (cycles) Decaps (cycles)

Figure 8.12: Kyber-1024 KEM functions measured on STM32F303VCT6 board
using SysTick approach

91

Contributions to the library

8.3 Code Coverage Results

In order to measure the code coverage of the Kyber library we used the grcov tool,
which is a Source-Code Coverage Tool developed by Mozilla. The results of the
coverage analysis are shown in figures 8.13, 8.14 and 8.15. In general, the library
gets a high coverage for most files.

There are functions (in red) with low functional coverage, these cases are false
negatives provided by grcov because functions are included in the final binary file
depending on the selected Kyber version specified in the Cargo.toml file.

LINES FUNCTIONS BRANCHES
91.4% 36.:18.% 100.%
Directory Line Coverage Functions Branches

Figure 8.13: Coverage results for Kyber project root folder

src/reference l

tests |

LINES FUNCTIONS BRANCHES

28.93.% 100 %

File
api.rs
error.rs
kem.rs
kex.rs
lib.rs
rng.rs

symmetric.rs

Figure 8.14: Coverage results for src folder

92

Contributions to the library

LINES FUNCTIONS BRANCHES
90.97.% 29.41% 100.%

File Line Coverage Functions Branches

v | SR v o

v om e SN v on

Figure 8.15: Coverage results for src/reference folder

8.4 Contributions to the library

The following two paragraphs described our contributions to the library during our
study. All these contributions have been officially released in the library.

Procedure Our changes have been reviewed by the library authors which basically
use pipelines in order to execute automated tests (i.e., for verifying the compatibility
on the main environments such as linux, Mac OS, Windows, etc.). After this check,
our pull request can be finally merged to the master branch.

8.4.1 Solution for the Unhandled RNG exceptions

The library function randombytes() is responsible for filling a vector with bytes of
random numbers. This function, internally, calls the fill_bytes() method (from the
RngCore trait).

Our solution consists of using method try_ fill__bytes() (coming from RngCore
trait as the previous) because this function is declared to be safer than the previous
one because it is capable of reporting the type of error without terminating the
process. Therefore, function try_ fill _bytes() ensures a proper error handling
(returns Resut<(), Error> on failure) so it is specially designed for devices which
RNG peripheral can fail.

Lastly, to be consistent and follow the error pattern adopted by the library, we

93

Contributions to the library

added a new type that we called RandomBytesGenerator (as in figure 8.16 and
8.17) to the set of KyberErrors. We also made sure that in case this exception
occurs, the error is propagated up to the caller function as Decapsulation and
InvalidInput errors were also handled within the library. The pull request of this
proposal was accepted and released.

src/error.rs

/// The ciph unable to be authenticated

/// The share s not decapsulated.

Decapsulation,

/// Error trying to fill random bytes (i.e external (hardware) RNG modules can fail).

RandomBytesGeneration,

impl core::fmt::Display for KyberError {
fn fmt(&self, f: &mut core::fmt::Formatter) —> core::fmt::Result {
match kself {
KyberError::InvalidInput => write!(f, "Function input is of incorrect length")
KyberError::Decapsulation => write!(f, "Decapsulation Failure, unable to obtain shared secret from ciphertext"),
KyberError: :RandomBytesGeneration => write!(f, "Random bytes generation function failed"),

Figure 8.16: Added a new error enum called RandomBytesGenerator

src/rng.rs

use rand_core: :k;
+ use crate::KyberError;

// Fills buffer x with len bytes, RNG must satisfy the
// RngCore trait and CryptoRng marker trait requirements
- pub fn randombytes<R>(x: &mut [u8], len: usize, rng: &mut R)

+ pub fn randombytes<R>(x: &mut [uB], len: usize, rng: &mut R) —-> Result<(), KyberError>
where R: RngCore + CryptoRng,
{
rng. fill_bytes(&mut x[..lenl);
match rng.try_fill_bytes(&mut x[..lenl) {
0k(_) => 0k(()),
Err(_) => Err(KyberError::RandomBytesGeneration)

+ o+ o+ o+

-

-

Figure 8.17: Modified the randombytes() function in order to use the
try_fill_bytes() method and handle the error case

8.4.2 Solution advantages

Figure 7.12 depicts the IND-CCA scheme for the key generation. This scenario rep-
resents the worst-case scenario because the failure of the TRNG module occurs after

the execution of the most computationally intensive functions (IND _CPA_ KeyPair
and SHA3-256).

94

Contributions to the library

More in detail, the processed data is progressively stored in the stack as it is
generated and processed. At this point, when the second call for getting random
numbers (TRNG) fails, it throws a panic event which is responsible for freeing
the stack and abort the process. This scenario represents a non-negligible issue,
because IoT devices are specially designed to be used intensively, leading to a
higher probability of failure with service disruption.

This solution depicted in figure 8.19, brings these advantages to the library:

1. Security: TRNG peripheral (as declared on the reference manual [36]) can
generate unstable outputs that can be exploited for predictive attacks.

2. Failure Recovery: it allows the library to recover from failures without losing
the already processed and stored data, by giving a second chance to the TRNG
or trying an alternative software path or fallback mechanisms

3. Robustness: it guarantees that unexpected errors do not abort the whole
process

4. Error Reporting and Debugging: meaningful and readable error messages or
logging information can be generated, simplifying the debugging process and
accelerating bug resolution

The same type of solution can be applied throughout the library wherever there
is a need for random numbers generation, such as Encapsulation: issue as in figure
8.20 and solution shown in figure 8.21.

> >
IND-CPA IEI IEI ADD

KEY » HASH > RANDOM
GENERATION NUMBERS

IND-CCA KEY GENERATION
ABORT

Figure 8.18: IND-CCA Key Generation RNG issue

95

Contributions to the library

IND-CPA
KEY

GENERATION

IND-CCA KEY GENERATION

HASH

ADD
RANDOM

NUMBERS

............

A
|
L

HANDLING
EXCEPTION

--» (pk, sk)

Figure 8.19: Our IND-CCA Key Generation RNG solution

96

Contributions to the library

ABORT

GET RANDOM r
NUMBER

IND-CCA ENCAPSULATE

Figure 8.20: IND-CCA Encapsulation RNG issue

97

Contributions to the library

RECOVER &
HANDLING
EXCEPTION

TRNG 2

A
! GET RANDOM r
NUMBER > H

IND-CCA ENCAPSULATE

Figure 8.21: Our IND-CCA Encapsulation RNG solution

8.4.3 Contributions to enhance Code Quality

We notice that the store6/() function was created to store a 64-bit integer as a byte

array in little-endian order. In order to have a single point of responsibility
and failure for a certain type of functionality, an enhanced code reuse and a

more readable algorithm we proposed to use store6/() instead of using a custom

logic as in figure 8.22.

98

Contributions to the library

[[[] src/reference/fips202.rs

pos = 0

}

let mut i = pos;

let mut w = i/8;

while i < r && i < pos+outlen {
out[idx] = (s[i/8] >> 8%(i%8)) as
i+=1;
idx += 1;
store64(&mut out[idx..], slwl);
i+= 8;
w += 1;
idx += 8;

}

outlen -= i-pos;

pos = 1i;

Figure 8.22: Merged pull request https://github.com/Argyle-Software/
kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b

Branch Coverage

During the code coverage analysis process, some areas were not covered by the
library’s test suite available before March 16, 2023. In particular, the most
important was the absence of tests that covered a branch concerning the validation
of the public key vector dimension, which is input to the KEM’s encapsulate
function, and the private key, which is input to the decapsulate function. Our
proposed solution consisted in very basic tests as shown in figure 8.23, but of
significant importance. Another minor contribution was the correction of the

library’s README as in figure 8.24.
99

https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b

Contributions to the library

EEEEE tests/kem.rs

assert!(decapsulate(&ct, &keys.secret).is_err());

+ #[test]
+ fn keypair_encap_pk_wrong_size() {

+ let mut rng = rand::thread_rng();
let pk: [u8; KYBER_PUBLICKEYBYTES + 3] = [1u8; KYBER _PUBLICKEYBYTES + 3];
assert! (encapsulate(&pk, &mut rng).is_err(});

#[test]

fn keypair_decap_ct_wrong_size() {
let ct: [u8; KYBER_CIPHERTEXTBYTES + 3] = [1u8; KYBER_CIPHERTEXTBYTES + 3];
let sk: [uB8; KYBER_SECRETKEYBYTES] = [1u8; KYBER_SECRETKEYBYTES];
assert! (decapsulate(&ct, &sk).is_err());

+ o+ + 4+ o+ o+

#[test]

fn keypair_decap_sk _wrong_size() {
let ct: [u8; KYBER_CIPHERTEXTBYTES] = [1u8; KYBER_CIPHERTEXTBYTES];
let sk: [u8; KYBER_SECRETKEYBYTES + 3] = [1u8; KYBER_SECRETKEYBYTES + 3];
assert! (decapsulate(&ct, &sk).is_err());

+ o+ + 4+ o+ o+

Figure 8.23: Merged pull request https://github.com/Argyle-Software/
kyber/commit/5e931d6d8cab536a98308c2faa0b505f3e2c9949b

tests/readme.md

To run the known answer tests you will need to enable "kyber_kat® in "RUSTFLAGS . To check different Kyber 1¢
to include those flags also. eg:
" “bash

- RUSTFLAGS=' ——cfg kyber-kat' cargo test ——features "kyber1024 90s"
14 + RUSTFLAGS=' —-cfg kyber_kat' cargo test ——features "kyber1024 90s"

For applicible x86 architectures you must export the avx2 RUSTFLAGS if you don't want to test on the referend

Figure 8.24: Merged pull request https://github.com/Argyle-Software/
kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b

100

https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b
https://github.com/Argyle-Software/kyber/commit/5e931d6d8ca536a98308c2faa0b505f3e2c9949b

Contributions to the library

Boundary Value Coverage Observations

The library’s ntt() is not considered an autonomous function because its correct
processing depends on the input values passed as a parameter vector, therefore it
depends on external factors. In particular, although it accepts as input a mutable
vector of i16 (that means values from -32768 to 32767), we must take into account
that in order to correctly execute the ntt() in a Kyber context we must only consider
a vector of elements of Z,:

0<r<qg-1

or equivalently
—q/2<r<gq/2

where ¢ is equal to 3329.

Hence, not all integers in the i16 type range can be considered valid
input values.

We tested all possible input values, an overflow occurs when trying to add at
line 17 when we test the ntt() with a sample test vector (reported in Appendix
A), populated with random values. In particular, in our example the range is
—31300 < r < 7213 for which elements are still contained within the i16 type range.
Same reaction can be obtained with other set of random elements.

There is no range validity check inside the function, because it is assumed that the
input values respects that theoretical range (=2 <7 <). The same assumption
is adopted for the montgomery_reduce(), poly__compress() and barrett_reduce()
function: they are declared to accept integers with a certain range (i.e 132 for the
first function and i16 for the other functions), but not all values are the effective
inputs. Consequently, when tested in a Kyber context they don’t give any kind
of errors, but when run without the theoretical Kyber constraints they trigger
overflow errors.

Although it’s not absolutely necessary, it could be interesting and useful to define
an input range validity check, in order to prevent overflow cases and thus make the
function safe and completely independent of the external parameters.

All tests made are reported in Appendix A.

pub fn ntt(r: &mut[i16])
{
let mut j;
let mut k = lusize;
let mut len = 128;
let (mut t, mut zeta);

101

Contributions to the library

8 while len >= 2 {

9 let mut start = 0;

10 while start < 256 {

11 zeta = ZETAS[k];

12 k += 1;

13 j = start;

14 while j < (start + len) {
15 t = fqmul(zeta, r[j + lenl);
16 r[j + len] = r[jl - t;
17 r(j] += t;

18 g = i

19 }

20 start = j + len;

21 }

22 len >>= 1;

23 }

24 }

102

Chapter 9

Conclusions

To thoroughly understand how the CRYSTALS-KYBER library works, it was
crucial to dedicate a careful study to the mathematical aspects of the Post Quantum
Cryptography. The experiments conducted with the boards required meticulous
documentation of the used hardware components, an analysis of the Rust language
and its effects when adopted within embedded systems.

In conclusion, our way of working allowed us to realize solutions that improve the
software quality and maturity of the library. Among our contributions, probably
the most significant one was related to enhance prevention and management of
errors or malfunctions of the RNG peripheral.

Every single solution has been accepted by the library community.

An effort was made to provide tests regarding the impacts of adopting the Rust
language for this PQC library (compared to the tests conducted in the C version),
which are particularly new to the current state of the art.

Technology continues to evolve, and two significant developments are currently
unfolding and warrant attention as possible future work:

o The Rust community is continuously growing, as is the adaptation of the lan-
guage for embedded systems. This strengthens support from more developers,
so faster language improvements

o In August 2023, the NIST presented the first draft of FIPS 203 concerning
the Module-Lattice-based Key-Encapsulation (ML-KEM). This basically cor-
responds to the Kyber library studied in this thesis but with modifications to
make it more secure.

These elements are crucial for the continuation of research regarding aspects of
our work.

103

Appendix A

Boundary Value Coverage
Observations

test_ vector_ 0 = [-21371, 843, -19833, -2213, -20636, 4004, -23020, 1026, -18979,
3760, -20413, 3228, -18618, 2781, -18186, 403, -20153, -1048, -17895, 2208, -17776,
856, -17064, 1116, -19321, -953, -20035, -2851, -21259, -3473, -21697, -743, -20172,
1835, -23106, 3161, -25347, -1455, -22727, 587, -20590, 529, -20898, -1577, -21529,
1165, 19679, 3219, -21803, -1935, -19169, -4397, -17704, -874, -17216, 438, -21326,
-3238, -19556, -236, -19556, 1087, -20662, 443, 18150, 784, -18154, -794, -20483,
814, -20813, -2668, -22937, -1092, -21109, -4168, 19738, -2044, -19512, -500, -18081,
2730, -14921, -500, -18412, 3547, -19338, 4411, -21684, 1430, -19832, 850, -18139,
-843, -17673, 1431, -20373, 643, -22793, -1957, -20567, -308, -21219, 2210, -22084,
_2782, -20250, -1718, -19992, 533, -18250, -2813, -22432, -381, 23164, -983, -22799,
2753, -22105, 317, -23205, -414, -23537, 1872, -24616, 2191, -26038, 3911, -19965,
485, -19639, -3721, -21280, -4350, 22828, -3236, -20392, 2087, -20610, -817, -21168,
“1161, -18454, -1837, -23320, 5611, -24960, 2491, -20434, -83, -21674, 1761, -20192,
_863, -23372, 591, -17922, -761, -19230, 1157, -23144, 2402, -22486, 2, -20100, 610,
21166, 1354, -21660, 974, -18734, 562, -22566, 949, -23632, -589, -22349, 2897,
-23745, 2711, -22132, -452, -19122, -80, -20258, 7213, -22534, 5119, -22240, 1592,
24452, 4720, -23673, 69, -24617, 211, -28033, -1977, -26597, -2071, -27027, -4698,
126273, -1414, -23736, -5232, -27020, -4152, -25794, 419, -26306, -939, -28749, -2033,
-26207, -4907, -27645, 2055, -29259, 3957, -31300, -410, -29683, 3255, -26245, -1236,
_5374, 4176, -22983, -4304, -2648, 1122, -21719, -654, -4911, 5995, -23909, -4114,
7847, 2435, -26645, -1817, 1713, -2366, -23591, -3543, -807, 540, -23486, -6346,
-1553, 2366, -23198, -5598, -3293, 3140]

104

z1ee1=(z/b)g (5 +2(1B) (51 + 2/1b))- 2(1-D) 2/(1b)- LIN ANI
y9L=e/b 2/ > [> z/b- (z/b)g > [l > (z/b)g- noueg
1866=be (z/b)z > & > (z/b)z- LV0L8'L > X > Ly0L.8 L~ AKiswobjuop
691~ 691 991~ Vool 6z8e=b (zb)g > I > (zb)g- b > (Il > gjb- LIN
uin Xep u Xep ndino Induj uonouny
SUGHING8X8 00001 LLANIIndIno SUGNo8X8 00001 LLANIIndul Sienei|
9061~ 8061 [zes0e821- oLvLi6LL I 88veL- 66vC) 2ovel- Lozt
26 ﬁ%,mww. ,%wwf wwﬂ [1zel ‘ses- '€89 8ED - Ivel ‘se8 v Ivs ‘8921 [1zoL- ‘90L- 085~ 0LpL mmm_mmw“ febel ‘€69
| GES L8 66T 9801 LIV L 181 Bl 2861~ ‘VBEL- 268 28TV 1oy rcopy oLl ‘Lol ¢ ‘08€L *281 ‘GOEL ‘€6LL- 2811~ "6LE- ‘GLL- 'plG- gy oC OLPL- BLSY 6LV)19 6001 ‘SEVL- ‘BYL ‘066"
1221129 ‘266 1091 '6v9 ., LE FELKT V8L €L cBEL PBEL 168 281 g 16-gop1 ‘6oLl 'LeL 'BESL L oce} L8l SO | GBLL BLE S vis 90 '598- ‘LILL- ‘22z ‘58zl Lo E00L SEVLT BhL
| JLeb L2 T6E L09) BVO - jqz) “hu) “621- “196- ‘96E: 8591 ‘L08- ‘0651 456~ SLc. SO7L B9 TIEL 6 vl ‘0671~ L61L- ‘2621 ‘LYE €001 ‘1501~ ‘620 9L 998 V11" TCC STV gag “J91- ‘606- ‘99€- ‘6Y
496 %06 L& Seol geet L9 "7Or- '5001- ‘581 byl 'Gocl- ‘pRl-'segl- Cor 698 OLL- Y69 1L "Lyl '6G.- '€88 '97€ '8ELL- '¥6LL- ‘2001~ ‘LIOL ‘0LS 825, £01- BI8" EET 195" g, p1 ‘gaL- ‘998 ‘S6e- ‘8L
‘2051 ‘VZE VBTV 'St 'SOZh g, *rmmr iy oG egmee : ‘6851~ ‘8611 'PEL- ‘SLEL- oo A el IR LA o A - o) 9121~ ‘8051~ ‘98€- ‘BETL o eel o
L051 VCE 18CL 5V S9CL g0, “izp)- ‘g1s ‘0gs) ‘L28 1678821 615" ‘eav- Tue ook SOK VELT 'S 9801 '}9E - ‘029- ‘SYS ‘918 ‘EE9L- 'GL0) ‘OLY- V6L ‘86 ookele e0gL 98 708 ‘0351 ‘0291~ “FLLL
¢ee bicl 06 016, 029 '999- ‘epbL- ‘2L~ 'S0 pE9L- /6L ‘622 ‘616 160, ooc 0¢e 190L 0 GES) 'Gv6 'S1L- 182 'S0€ 'S29- 262 '18 'LGEL- ‘Sevl ‘6E- 596 9901- 612 596 BE0L 1q¢ ‘zg- 'g0g ‘206 429k
900 VELL- ‘BOPL-"OLEL s oun. e e LOa SCe s, “PBLL 'LL0L- €294~ 295 IR A RNt ‘0EG) ‘PEVL ‘955 ‘80GOSl oo Cepers el
09 yeLL- 8O- Se€) ‘22z)- ‘ve6- ‘28zh- 6661 06z} '289- ‘06zh- rorh KHOL €COLT 1957 662- '98- '88VL ‘COEL ‘'GOG}- 686 '0EE 6TV} ‘SLIL LGl JevL 955 805 905- ‘SZ51- "L81- VeVl
Ocl- veel 8vLL 287L g i0/1) ‘eepL- vELL- ‘0011 ‘606~ ‘LY~ ‘9ppL- ErEL LLE 10ct 86el ‘621- 208 1671 'LOL L9ZL- ‘ZyLL ‘TL9- L9GI- ‘9LTL- 6Lyl: L€} 878 €16 1761 "'€9v1- LELL '889
‘29v1- V22 ‘5091 ‘L9EL ‘161 D Bfded o SO B S 202 ‘LpL- 156~ ‘2LS S T L eael. fefislneidhordd VEEL ‘18LL- LLp ‘9gg)- . LCEE EOL AEL 889
€5 ‘001~ ‘€12} "L621 vopL- ‘129 ‘S6ei- ‘Sey- ., Coc, WYV 196 182 298 ‘SEEL 216 'S0Z) 0L ‘06~ ‘GEEL- ‘pS9L (g OEk VU LAY 99EL pge1-gog|- ‘g6yL ‘G5Ol
08y 612 2LL U8B BV gogy-py0) spe-'6l2L ‘9ge1- ‘616 ‘9951 ‘68 ‘z6g- TOCL L88 98Ch ‘G9v SroL 296 ‘SVE- '92L 'POL '€GLL- ‘€19 ‘08L- ‘65~ ‘0P ‘peSL- 698 '5€91- 869 19€} oL ‘€461~ '095- ‘228 ‘Z2vL
VEOL- ‘BY 0Gh V8L 'BI6 g gt yao) ¢ ek o asah B8, ‘621~ ‘S8EL ‘BLL- LVE- '65 S8, T X oo LY 'ShY LBV 966 VGL-LLOb (o, ian) aag o ©
o e yadS 99811161 '89% 'bGeL 1121005 "p6v- 161 'sEL o SN S8EL BaL SVE O 61 ‘€121 ‘1201 ‘6L LS}~ 909- ‘96€ 1 ‘E0T} ‘P~ o oo Ve L9% '66L71991 '60L ‘¥TL 189"
e T “eze- sveLs 2ig- OeL uo "HL9L 0801 Lig- 'vEZ 'Lve . o7e 8T FSET REE SO8L ‘9801~ '9L 2201 ‘PS¥L '€ "POpL- LGTL ‘61 'G/8- 878" 98 ‘e o ez e ae. 009 'E€EL /001~ ‘B12)-
95z 02Ok 1Tl VYT gy¢-'Gog) 189 “LLL ‘LOVE ‘¥8L- ‘018 ‘29¢- ‘18- ‘0L~ Cror BLEL €96~ IEL 0L ‘918 ‘LEV- '08G1- ‘62Y ‘PLOL- ‘28 ‘Thvl ‘SvLL '§ThL ‘908 208 BL 639 96T 151 05 g q-'gey)- ‘evs- ‘eoe ‘288)
£501- 905k 092 629" | g5,-"6g 21G piL- oL~ ‘2v91- ‘G- 'ply- ‘280 SLCh, VEE 90} CEEL 90 208 ‘L1 ‘998 '95- '¥2G- '68SL- ‘ZLL '22TL- ‘0881~ SEV LEOV G18- VT T8V 174 "q09- ‘295 ‘zu6- ‘g6E-
265- ‘pei 6oy ‘6Ll . rooy OF CLS VAL VoL POV e VPS80V ghi-Luzl '665 ‘LS. ‘0Dl S D e | ien ot ot © ‘9v9 ‘6221 ‘v29 ‘Thy ‘gonh- v 905 C8S G SOE
oo 00 TELL 6O ¥ ‘L2 ‘0L 'VEL- 'LTLL 6611- ‘9.6~ ‘06~ ‘005 otk HECh 669 LSL LLL V89" ‘€411 ‘525 ‘ST ‘66 ‘098 “L601- 'L9Z '8L0L Ov9 ee veo Tl e 661- ‘€68 ‘0LLL ‘9 209
€6E1 689 165V 1965 SLSL " gpp)-s1p1-"oppl ‘196 'Se€L ‘92 ‘981 "9~ ‘6L~ .o Lot VEE, 98E 9€L '0E9l ‘L0LL- ‘2121 ‘06E- ‘966 ‘E0Z ‘L9Z) ‘9L¥ ‘109 €801~ ‘1Z5h 026 92y 0Lyl STV 119 gyq)- ‘071 ‘0201 ‘902
2251 'B8TL ‘L TGE- 6EY sgr et o g 9 '599 ‘Zvb ‘5001 ‘¥8- ‘2951~ DT by k09 Rk ‘8LyL- ‘609 ‘06- 'L69-‘99L O1 .
i 3 ey 62 ‘58 ‘0251 '9b- 0801 ‘ov1 ‘9021 ‘5801 ‘2501 ‘019 9, 599, T 9001 Ve €381 LLLL 998 “LG €221 'B0LL 1001 ‘8¥G1- ‘69 ‘€12 DA N - T T
et B iz cel sl 96T 29t 0027 '4v91- 5191 ‘822 06,2 1¥ 550V, BE ELOV 1% ‘62yh- ‘0L LbT-"99EL '8SL- ‘LY~ ‘POS- LTl ‘LTL oot SHL %8 "wls- 0L 668 ‘6101 ‘5061~
oo 00 BEL 0CC BTV 1)y zap1 "ovol "og8 ‘Logi- ‘02z ‘22 'e801- ‘185 'L9g- OOV, L39%, 088 ECvh E8S) '8 '2911- ‘284 'SE9L- 209 '9E0L 20}~ 'LGL- ‘970~ o, 207 6921 CSL G99 g171- “0zg ‘6zl ‘vLOL “pEEl
0891 ‘689 ‘90~ ‘prg- ‘Lgg +4Y COV) 9¥OL 988 1981 g Ces £80L 189 98 662 LG9 ‘¥hS1- ‘€2 oo L9V 8L SE9L° [09) - 9EQ) 2OSb VoL 9 €Lb-'99.- ‘08 ‘61" 181 g8 Bek Ok |
ey ehosy,,. 9L 20666 '128- 820 916- Lb1- ‘8801 2001~ . o SoCr I TVSH BT €0pL- ‘0 ‘208~ ‘.8 ‘050L- ‘TL- '60€ ‘E9L ‘BT~ ‘LY e S 052 '601) ‘9E€L- ‘22 Lh
b L 668 ‘0LLL ‘p19L 'LEVL TLO ‘2001 '2€G "LILL ‘89 '10G *p9v- '621- ‘92v1- ‘2221~ ‘9Z5) ‘OvEL- '19G- '88Z- ‘18- ., JasL voek 16k ‘626 '998- ‘08vL- ‘252 '5v9
6821 "1EL TV6 'BOTCESH e g e e e “1SL '652- ‘b “LLEV LLSh A Ao It h A A i 128 '65 'v68 ‘L9 ‘EVGL- o o OSPLT IRC
ek VBV 6 89C €C8L ygg)- zgoL- sce- ‘908 991- ‘569 ‘811 ‘656~ 121" b 801 ‘6071~ L87L L¥O 12Ol ‘LE'LOL ‘LIEL ‘St Lesr 69L ve8 bi9 '€ 680} ‘0E4L ‘Y6~ ‘0.8 'HLOL
gLoL Scey 0oph 95Tk '965- ‘8E- ‘ZL0L- 'L8G) ‘L2 ‘22z '9L1 ‘Lig- 06LL- | OVE, 996 181128y '88ZL ‘182 'LOE- ‘PGEL ‘691 ‘Erbl- 'S8~ ‘9p0L- ‘LIE 'EHT ‘ELL- Oce c6" 9Lcl” VLTSl) 1g- - ‘0g ‘SizL ‘ool
'G05 '96L ‘STE Th- LT 1) s et ey ag ¢ el et 8 '566- '6G.- “LO0VL ‘SEE- L8Vl S e St | oal v e s ¢ ‘BEY 'DLGL ‘BLTL 0BT gy o OO oo SeCE]
08 98L ETE €L 116~ ‘66Y1- ‘€L9- ‘86~ 129} V851 ‘89€} L0ZL ‘EVTL- LYSh ‘YOLL 188 “LLS- 'BESL ‘TOE} 'SY6- 226 'SVTh- LS9 oyl T LSk ELCL 9BCL gpa-pi01- ‘0c0L ‘e2e ‘BbY-
8 SLL 9LL 5051 €8Tt 200+ LE L1~ "L2LL '66L- 892 'L50L- ‘08 L= Lzg- 80Ok EGE" BOLL- 18 €E6 2601 ‘81 €11 606 '182- LLE- ‘LG 'LZ8- 'LGL- 'PREL OroL- 995k 6VLL €€V L€ ioge1- 117 'g0g- ‘BLyL- ‘9L
‘822 ‘g2h- 'S0k~ “L0LL ., OO0 LT ALH S i Tvb“LLGH- 992k 'LOSH- ‘1L g P IR A ol ‘€V51 ‘950~ ‘09~ '628 ‘9L o Nt
See felt G0 L0 20, ‘6vg ‘05) ‘8¥SL- ‘009 1S '€5E ‘1901~ ‘916- ‘9Lo)- | CIV bL3L- 992k L0SL Ll 88E4- ‘96VL- 082} ‘LS. 'LEV ‘BYLL- ‘SLY L0S) 'LLT " POE ‘LLL- ‘0B ‘PL6 ‘209)-
Lo5 9801 €T WSLL- ooy “gpel- ‘eeLL ‘22s)- '8L1- 266 Z0pL ‘GLL- ‘gerL VYL 499 BlTl 801 €Ty ‘5091 '09Z- '92G1- ‘6901 '€0EL- ‘ZLEL "60L- ShrL €6 LI€1- ‘589 'Y ‘Ot 06 ‘LIGL- "2GEL- 'P0ZL-
'G5y ‘1801 ‘0% ‘LG~ '98G i) e okt g bo, covl B B! ‘Lzz1- ‘019 '§7. ‘88z 091 09T FEBL BV e, CLEL BOFL @ €261 911885 UBEL g, ¢ o STV
o O e %S vzg-'lL- €95l ‘9LEL- BT 9061~ 8061 SLEl- BLOL ‘Sbl v oo SEOV OV €ELBRC pegoggs- oupiseL 9ZrL- ‘119 ‘LYl 'Sh2- ‘S6YL ‘G2 'L8SL- ‘962 L0V 88VTL- 667l CTEL. ol S8SL BOEL 'Gug 1961~ 6yl 18KL ‘VOE 20VEL- 1p9Z) [2/(1-6)"Z/(1-b)] 0000000}
seqle aee vey 60ty 61 "L~ ‘9L '95ZL ‘LT ‘0221 '129- ‘298 ‘0L ‘901 COF O¥El"'C6L 6SEL ‘0921206~ 'ZVE ‘0L ‘681 '8E2- 'E0EL 'L66 '69G ZZOL- . 061001 '8291- '$L9- 'S0¢- ‘085~ 'S6L
1- ‘5121~ ‘08 ‘2501 ‘Bogl- . O Ferk 9L 95Ch 022 ‘89 ‘LvS1- ‘09~ ‘066 oack, 00 055 990~ '629 'L '6LL- ‘GgLL- o0V, PL9, SO0ET 055",
- Skek 108 €50k 60EL")0y “1sz1- “Lov- “6ve “L0Ek- ‘Pv9- ‘pv9 ‘9ET ‘66C- 'veL . Ock 8L9 LVS 049 ‘565 ‘507 ‘9SEL- ‘Ehb- ‘08Y SZ91- 'SL2h V8Tl Lv9 999" £T9 WV BLL SBYL poo1- 661 ‘2uG- LivL 'LbL-
601° 45T eyl L62) 2% T ez 0pLL ‘0g9L- ‘96YL '928 '699- ‘612 ‘00g ‘L1, Che 838" 99€ 29Tl 909 ‘9. '68L ‘€96 '8¥SL '00Z)- '9ES- ‘98 ‘8951~ '82h 'LOL- 06 CEL LBOL- 98" L€ || '6gg gogL- ‘0EL ‘pRZL
'9G8- ‘€8~ 90y T8T- 'STE | g Oy Caak) | o e o, ‘9001 ‘9€Z) ‘096 '¥ZE- ‘LEEL oE B8l Bev ooy v ‘9811- ‘00p1- ‘9 ‘opel Ul 209 SIEL, OFL PBCY
o 0y G TS 128 lushL-1a 'eeL L 626 ‘9201 ‘825 ‘088 'yhob S0, JECh 199 VeE uEe ‘826 ‘862 ‘VE9 ‘PLIL- 69T 'L26- ‘T22- '€8E ‘S89- ‘2L8 o S O 'szoL- LELL €66 'E90L
w02 SLak 1OV TUSEL cqq)- ‘gpg- ‘6LL ‘069- ‘9611 ‘6651~ .5~ ‘L6 ‘956~ L8} - g ‘528 ‘5071 ‘16168 00ZL ‘699 ‘€19 ‘9F |- ‘68E | ‘86E- (BLE ML 95" LS 96 e “gog- ‘60L- ‘00T L- ‘LSEL
S0EL-'998- 1919 05 967" pop1- ‘61 ‘sggl- 'LEL ‘ZhTl- ‘691268 'LOEL ‘68 ‘hzoL- , OSEV OV8; 022l 98- 096 ‘265 ‘8LLL ‘99CL- 'BEV- ‘966 086 ‘2 '6Y9 'L66 ‘151~ £61° 928" WEel LCE) 86Y ng6-ye)-"gpL ‘60~ ‘tTh
'808 '16.- ‘088 ‘vzl “Lgg 'Ovr, Bk SSEL VEL Cf 1 o8 1081, B8 VIOV q0g1 ‘svzl ‘ozl '99c 26l S 8Ll 9 SeT 86|, e o, 85 6F8, 166 158 'pGZL ‘091-'186 '£05L ‘BS0L oo, B FBYL 169" Beh
oop gk 088 YTL KT iy ‘w18 ‘uzel 0L ugl 1291~ ‘8Y9- ‘981~ ‘118 et L o Lo WyLb-“LLE- LSTL- ‘0EG)- 796 ‘88L ‘BLEL- ‘BIEL- ‘509 oo g0, 405k, BS0) 995182}~ '88vL- 61~ 189
98" 198" '€6C 9.2k 999 gop1-"g6 ‘Goe- 169 (0951 '$901 ‘086~ ‘L12- ‘186~ ‘06zl . BLCL, YOOk L9686 '99€ 00- '62- 'Ly '295- ‘02L 'G9G- 'SYEL ‘808 ‘161~ '8LS oo L0 B BSLLLYSE 0,8 96, "L0g 1 ‘L0g- ‘2L
61- '9L9- ‘0.6 '¥6LL 'LEG- o6 e 1oe 09l 0L, 088" T 186 016 ‘08 ‘0.2- 'SZhL- ‘€91 356 09 ¢ v, 095" QoL o9g SYEL 808 161, SegL pLe- ‘6Lpl Loz ‘oLp- Ceo 984 LOEL VOF O
o o oo Yo e 08¢~ ‘28E} ‘876~ ‘0% G891 ‘988~ 9811 496" ‘GveL 48 V8 OLT EvL EOL 597 ‘082 ‘96€ ‘6611~ ‘19 1561092} 2451 €19 et '6l9- 9851 ‘6L~ 1€ ‘956
095 '90€ 9211 569 € ‘epLL ‘Zrl- L1 ‘568" ‘ZLEL ‘6201 ‘2671 ‘zve ‘si- ‘ggzt OLF raL ‘9Lt '6G7 ‘G/€ 'S08 '€62- ‘866 '86G ‘1ZG 29~ ‘9851 1o 151 88T CSPL CCLL gqp tggg- 011 "ol peb
16Y1- '816 'G¥T '00S ‘9EEL g . ‘ .). E ¢ f e _ '0ZLl ‘9g.- '859L-LOS ‘L9 . ccg- - ‘ . e o . 9/1- ‘TEL- L6~ LY 'PE6- f g g it
o oy 'S8€'608 /851 185l ‘8L 2811 "269 ‘6ool-"srel- 00 SEE TV 198 L3S 6504698 'LLGh- L0} ‘SOVL- ‘L8EL- ‘LSPL- ‘0501 b o e 109 LpL1="18 2096
T80k, 96 o ‘G501~ ‘898 ‘2911~ ‘2201 '902- ‘€01- ‘669 ‘9z1- ‘6eL v MG 082 028 € ‘0EY '0991- ‘949 ‘9LE ‘GLGL- ‘EEY 'PEQ- ‘29z ‘169~ LLEL- . 8891 ‘6vLL- 12y ‘09 'S LE8-
OVEL-'LGTL VZEL-OVE o ooe opi- o6 S O D e ek ULy ‘€Y ‘869 ‘9504 T8L oEv, D90l 919 DIE SV BEY Fe9 29z Lovr LiEL V0L~ ‘9981 ‘Szg) 'pag- o SY L Y 09L SL L€8°
ok kaeh veel: Ove VEE- ‘9891 ‘OVLL- ‘L28 2Ll ‘g 'U6e ‘8ve- ‘e rvY, EVC 869 9901 9Ll ‘LYS) ‘0511~ ‘€88~ ‘G16 S8Y}- ‘126 ‘8yl- ‘08Yl oy POk, 99} ST8L 69¢- 'S5 ‘602 ‘6L~ ‘00)
S91-2ast; Vsl 180 2901 ‘ol ‘apL- ‘956 ‘08Y ‘PrLL- ‘98 ‘v6L ‘26y 'g@yL . OOk VEV LCF €Ok 1€ ‘8¢9 '98E- ‘66~ 'PLE 028 '£96- ‘9911 ‘8021 '€9€- SL6°09€ 9001 461" OFEL % 95- "go01- “1991- ‘9001
2651- 20t '9z) 'vg9 ‘L- Sk AL8 ATL 986 | opht 95 VoL GO B8TL 99y ‘6.8 'e5) ‘seel- ‘ove- o S 0o o g et ‘YSHL ‘8801 '9EL- ‘SS)- ‘Se- e
e e e oS e 16967556 ‘968 ZELL- 119 62el- 692l eg-zok 30 48 T SEELLONC 6ES1- ‘1191~ 'SLEL ‘866 '808- ‘08" ‘016 'LLL- ‘889 o oy e 289 '¥81L- ‘€451 ‘128
S 816 ves ek ‘966 1Ly ‘261 ‘8191 2951~ ‘6G€1- '69L- ‘pLE ‘0g ‘ges- +OC 699 BLLL €0E, ‘6601 'Lv9L '68EL- 'LSTL- 'PE- '89L ‘LT '€9C- ‘b6 IANENAEH /819~ '91- ‘vS8- '8EV- ‘688~
961 '801- ‘€6G1- ‘1G1L- o0, LoV COL BLOb b TiE e 189- ‘€20~ ‘€201~ ‘VGEl s gt SBEE WL e S LEL B8 9VE 688 'S601- ‘€98 'LLO" 'LELL
0 ez e oo akr. WSS '€E2L- 1002 ‘251" 665 155'92 ‘9201 "6v9L- 8% ., 18 BEV SOV HEY V1YL '9p9L- L2y ‘601 ‘222 '€ST LSHL ‘916 PO) €5 T o g et
e o, VoYL 295" 12 ‘¥92- ‘2801~ vegl 052 'e12 ‘oge- oLyl 205k B8CL AV VERL LETh ‘0GEL- ‘p6L- 'L98- '€0VL ‘ALY~ 'L6Z- '¥BGL- '659- ‘PLG e S Cn 498 (0591~ 206 Y6 '69E
oy Lo BOE L egel 11 "auy e oL 286+ ‘2651 ‘BvYL ‘9LTL I et oy ‘995 ‘6VGl ‘LLC- ‘66EL- ‘988 ‘28 V96 ‘L8 'SLGL 'G9Th g e SR g0z 2191 ‘sgsL-OleL
o ooy 'GELL ‘89 41 @yl 18- ‘962 ‘9zyl- 989l pisL o L8 0BTV CEL ST 'VEZL 'PE 128169 100~ '90G ‘022 ‘209 ‘€01 '¥e- e oo e '99 '609L" V19" 6v0L- VL1
ks BOV SE9L. 08L /0101~ 'E1- 626~ 619 ‘916 2pL ‘€11 169- oy E0L 99T B O8FL, BT ‘€151 ‘589~ ‘pLYL ‘0051~ ‘88GL 'ELG" ‘SE ‘EEGL- ‘£SGL- e oo SO oz "1951 "25vL'959- ‘268
(08 oy el ek S oLyl LybL 'Su€ "esL 208" €5 L0y 886 s1zk Lot T 0T 3 DL ‘Vep- ‘82- L9081 'L6L 'LEOL- ‘GOLL ‘SOL ‘86E- 126 ‘6L e S B 285 au ey ‘ege geu-
e e ey €BL L0k ‘8101 L85} '69v1 ‘25~ ‘222 ‘oS ‘saeL 349 CLS L0 SAvh CC8 ‘L11-'9LL ‘LLEL- ‘€L PLb- ‘Op0L- ‘EE0L- ‘208 ‘09EL ey EoMi sol "res 18- ‘6001~ ‘975~ ‘LEb-
oy or DOV BES vog- 2ae- e~ 856 L68- ‘EpLL '196 968" ‘BVE}- ‘985" e ot e e ‘60 ‘8671~ 1G5 ‘67T 'Ly "6V ‘8L ‘508 '6E0} 012}~ oo e LY LSH VEEege- gL~ 202 ‘011
oo a oot gy (808" 08LL 902 "129 '096- ‘0801 "vgyL 001k 'Bv9 2he o IERY EE8 B8 05T '0LG- ‘9LLL- ‘0¥ L 'ELSL ‘091" ‘bBYL '6Y9 1L ‘69YL iz boe. ee Saa '59v. ‘8Z€L ‘59t~ ‘958
o o oC ok SC0L “19sL 26l 5y ‘622 2L ‘L2 ‘428~ L88) "8LL1- ‘69 et o Ll 1k ‘L1~ 159} ‘9¥C ‘9291~ ‘089~ ‘539 ‘626~ '8¥9- ‘9601 e ok SO 75 1501~ 9961 “LI9L 146
G o, Sk "60LL ‘5191 ‘B8 088" 8167 1951 ‘2951 ‘286 'SLLL ‘1187 ‘6vL 6221 ‘0291~ ‘Lvv] '6v9 ‘Thy ‘Thy ‘68L ‘8851 B o o LTy 2ok 296 '89sL- 18 12911
2z v201- 6951 ‘258~ ‘21818 ‘001~ 266 ‘8811~ ‘25~ 022] 0681~ 9881 20Z1 "L~ 2991~ '¥6€ ‘090113 'LGh 'SL9L 12y "LL6- 9801 BESTEVLL- OPL9ZELL 161 "1v8 0161 "8651- 62911 £~ LOEI- ‘6VEL- 'PSI- 'LIGH] 29021~ arezt 961~ ‘618 ‘9291 ‘0081~ 98] 021 026 '60G}- ‘FOE- 8591 L00ZL- vz [2/(15)Z/(1D)] 0000001
‘pryl ‘6151 ‘912 ‘59 '15S1] '229)- ‘994 126 ‘148 ‘sr0L-] sl 1881 '89¢- ‘9851 ‘6991~ ‘0L€L ‘008] LL11- 'S8YL- '00)- ‘VEE ‘9L5] BOLGEVOL- BELOBLOL 85.- ‘265~ '60L- ‘£9vL- ‘8171 8EL- ‘96 “LYOL- ‘VOZL- 'L69}] Z68IL- 1612 | ‘ves- ‘oL ‘99p ‘9951~ ‘cepi-l 9v9L ‘6L9- ‘6LL- ‘9391 ‘BrLi-] 0LLLL- craL [2/(15)"2/(1D)] 000001
[ve "8re- "vzv 'L19L- ‘876 ‘228 95l 'SEZL 6v0L- 005k ‘23] 698L- orsl ZvG ‘€151~ '69€- 'PP8- 06519y~ ‘6L~ 18yL- L26- €vZ1] OVL66/SL- 096VZZ9L 21 "s8z1 ‘0881 "9l 'PpSI vEL ‘0081 ‘9601 ZL2k 18z LIZil- oLelL € 70Z) ‘925 2= ‘5861 0vZ b~ vLE- '62L- '80L 08 ZvvHl 01101 96111 [2/(15)Z/(1D)] 0000}
0681~ s881 [ovzereol- [696£609% I [seen- veeLl gL corll
‘e-'z-'2'T 0 Mz L -T2 e e e 0 2 068l 8881 €-'2-'2'z 'z 'z 0'e 'z e 'L -2 e e ‘e 0 ‘2] 8eeszeol- 656€6091 '2'e- 2 -0e k-2 el L - -0 0 e 2L e e sLel- zeelL l-0'e el e e e) - -0 2 - e 0 e paeLL- £8vLl [e¢] 000000001
0z 0c e 2eeed L LT ee -2 e 0 188l Z881 27012 6 bl 2 k- 11'€ 1= 2 0 k- 6 '€ L '2 '€ '€) OvZereal- S90//851 “Zee e e L e el €02 e 00%¢e L T Igei- vectL T -0 2 e 02 1L ee T b e 2 S0z Jrm e 0000000}
0'1'1-"e-"ge e e - e -0 e e 2 Y0 "2 L e Yol 2ssl- sl81 -'e-'zl0'e e -z e 2t e e 20 'e- 0 2 el e8eveesh- 5151065k e e el e e e 2 e e e e T Lvoul- 62011 -'2'2'0'-"z 2’0’0z "zl gz "e- e -0 e 0 '0 '2- "L 9L011- 00zLb [ee 000000
2z 02tz etz elb e bbb L e L e L gl 298l (€692 075 L2214 '1-2- 0 k- 1= 'L '€ 2 1= 11§ '€~ 2 '€~ 06 'L 2 'L & 0] 096/66¥L- 0912551 102280 b B 22 b gL 0 € 0 2 6] pedol €520} 220802 0°L22] 0 e 01z} e 6v90L- €5901 e 000001
Fzerieereeel Ue L e e) 2 9g8L- (6v5€ 0215 Z1L1{'€- "4 '€ b= £ 0 1= ¢ 0 b1 ¢ 1= T b= '€ 0'F 'L ‘2] BLOVZvYL- VBZLEERL el 2 e ¢ ¢ ele e b b2 L b bl ol 15504 1-2e 0 e T L e 0101 T L e L b€ L 8l 29601 99,01 e 0000}
ez e 0'z-2'e'0 2 ell-'t 1-0'€ 2- 2 0 ¢ € ¢l 208l (995¢ 0715 8691 F- '2- '€ '€ '1-'0'2'0°0 '€ ‘2] '0'1-'0°2 € '1-'Z 0°C € ‘€] GZ5062€L- 00920FFL f0z'ez 0z L 'e- 2 1- 012 'L '€ e L't e €T L 2] 9856 L1501 L e e L e e e e b 1 89660 9066 el 000F
I 1oy nduy i X 10} ndul i xen Ui 103 nduy e 05 ndu| [o XeW i 103 nduy i Xew 105 ndul [w e i 10) nduy e 10} ndul [o Xen
sonpai” AiswoBjuop indino @onpai” AiswoBjuol ynduy Inwby Jeye [us] + 1 Inwby saye [[4 abuey syeod uopelayl
(oes 10} 51800
wopue: yum

suopN98X3 N

Boundary Value Coverage Observations

106

Bibliography

Cisco. Cisco Visual Networking Index: Forecast and Trends, 2018 2023. h
ttps://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.pdf
(cit. on p. ii).

Peter W. Shor. «Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computery. In: SIAM Journal on Com-
puting 26.5 (Oct. 1997), pp. 1484-1509. DOI: 10.1137/50097539795293172.
URL: https://epubs.siam.org/doi/10.1137/S0097539795293172 (cit. on
p. 5).

Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. «NIST Released NISTIR 8105, Report on
Post-Quantum Cryptography». In: (2016) (cit. on p. 5).

Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum
Information. Cambridge: Cambridge University Press, 2000. 1SBN: 0-521—
635039 (cit. on p. 5).

Public-key Cryptosystems, Oded Goldreich, Shafi Goldwasser, and Shai Halevi.
«Public-Key Cryptosystems from Lattice Reduction Problemsy. In: (Dec. 1996)
(cit. on p. 13).

Phong Q. Nguyen. «Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryp-
tosystem from Crypto '97». In: Advances in Cryptology - CRYPTO 99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings. Vol. 1666. Lecture Notes in Computer Sci-
ence. Springer, 1999, pp. 288-304. DOI: 10.1007/3-540-48405-1_18 (cit. on
p. 14).

Oded Regev. «On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography». In: vol. 56. Jan. 2005, pp. 84-93. DOI: 10.1145/1568318.
1568324 (cit. on pp. 15, 16).

107

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://doi.org/10.1137/s0097539795293172
https://epubs.siam.org/doi/10.1137/S0097539795293172
https://doi.org/10.1007/3-540-48405-1_18
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324

BIBLIOGRAPHY

[9]

[10]
[11]

[12]

[19]

[20]

Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably Secure Key
Exchange Scheme Based on the Learning with Errors Problem. Cryptology
ePrint Archive, Paper 2012/688. https://eprint . iacr.org/2012/688.
2012. URL: https://eprint.iacr.org/2012/688 (cit. on p. 22).

Chris Peikert. Lattice Cryptography for the Internet. Cryptology ePrint
Archive, Paper 2014/070. https://eprint . iacr.org/2014/070. 2014.
URL: https://eprint.iacr.org/2014/070 (cit. on p. 22).

«NIST Asks Public to Help Future-Proof Electronic Information». In: (2016)
(cit. on p. 23).

John M Pollard. «The fast Fourier transform in a finite field». In: Mathematics
of computation 25.114 (1971), pp. 365-374 (cit. on p. 26).

Ramesh Agarwal and Sidney Burrus. « Number theoretic transforms to im-
plement fast digital convolution». In: Proceedings of the IEEE 63.4 (1975),
pp. 550-560 (cit. on p. 26).

Lawrence C. Washington. Introduction to cyclotomic fields. Graduate Texts
in Mathematics 83, Springer-Verlag, 1997 (cit. on p. 27).

Zhichuang Liang and Yunlei Zhao. Number Theoretic Transform and Its
Applications in Lattice-based Cryptosystems: A Survey. 2022. arXiv: 2211 .
13546 [cs.CR] (cit. on p. 28).

Franz Winkler. Polynomial algorithms in computer algebra. Wien: Springer-
Verlag, 1996. 1SBN: 3-211-82759-5 (cit. on p. 29).

Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. Cryptology ePrint Archive, Paper 2018/039. https :
//eprint.iacr.org/2018/039. 2018. URL: https://eprint.iacr.org/
2018/039 (cit. on p. 30).

Daniel J. Bernstein. Multidigit multiplication for mathematicians. http :
//cr.yp.to/papers.html#m3. 2001 (cit. on p. 30).

Roberto Avanzi et al. CRYSTALS-Kyber (version 3.02) — Submission to round
3 of the NIST post-quantum project. https://pq-crystals.org/kyber/
data/kyber-specification-round3-20210804.pdf. 2021 (cit. on pp. 31,
38, 41-46).

James W Cooley and John W Tukey. «An algorithm for the machine calcula-
tion of complex Fourier series». In: Mathematics of computation 19.90 (1965),
pp. 297-301 (cit. on p. 32).

W. Morven Gentleman and G. Sande. «Fast Fourier Transforms: for fun and
profity. In: AFIPS ’66. Vol. 29. 1966, pp. 563-578 (cit. on p. 33).

108

https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2014/070
https://eprint.iacr.org/2014/070
https://arxiv.org/abs/2211.13546
https://arxiv.org/abs/2211.13546
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#m3
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

BIBLIOGRAPHY

[30]

ISO. ISO/IEC 27005 2008. Information technology Security techniques-
Information security risk management" ISO/IEC FIDIS 27005 2008 (cit.
on p. 47).

MITRE. Mitre. https : //www . mitre . org/our - impact /rd - centers/
national-cybersecurity-ffrdc (cit. on p. 48).

MITRE. CVE List since 1999. https://cve.mitre.org/ (cit. on p. 49).

MITRE. Weaknesses in Software Written in C. https://cwe.mitre.org/
data/definitions/658.html (cit. on p. 53).

Microsoft. Why Rust for safe systems programming. https://msrc.micr
osoft.com/blog/2019/07/why-rust-for-safe-systems-programming/
(cit. on p. 55).

NIST. Safer Languages. https ://www.nist .gov/itl/ssd/software-
quality-group/safer-languages (cit. on p. 64).

Rust’s Community. Rust Embedded Book. https://docs.rust-embedded.
org/book/intro/hardware.html (cit. on p. 65).

ST. Datasheet STM32F305xB STM32F303xC. https://www.st.com/resou
rce/en/datasheet/stm32£303cb.pdf (cit. on p. 66).

Elaine Barker (NIST), John Kelsey (NIST), Kerry McKay (NIST), Allen
Roginsky (NIST), and Meltem Sénmez Turan (NIST). Recommendation for
Random Bit Generator (RBG) Constructions (3rd Draft). https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90C. 3pd.pdf
(cit. on p. 67).

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
«Improving Software Quality in Cryptography Standardization Projects». In:
IEEE FEuropean Symposium on Security and Privacy, EuroS&P 2022 -
Workshops, Genoa, Italy, June 6-10, 2022. Los Alamitos, CA, USA: IEEE
Computer Society, 2022, pp. 19-30. DOI: 10. 1109/ EuroSPW55150 . 2022 .
00010. URL: https://eprint.iacr.org/2022/337 (cit. on pp. 67, 68).

Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoftelen. PQM/: Post-quantum crypto library for the ARM Cortex-M}.
https://github.com/mupq/pgmé (cit. on p. 68).

PQM4. Benchmarks. https://github . com/mupq/pgmé /blob/master/
benchmarks.csv (cit. on p. 68).

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pgmy: Testing and Benchmarking NIST PQC on ARM Cortex-M/. https:
//csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-
Conference/documents/accepted-papers/kannwischer-pqmé . pdf (cit.

on p. 68).
109

https://www.mitre.org/our-impact/rd-centers/national-cybersecurity-ffrdc
https://www.mitre.org/our-impact/rd-centers/national-cybersecurity-ffrdc
https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/
https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/
https://www.nist.gov/itl/ssd/software-quality-group/safer-languages
https://www.nist.gov/itl/ssd/software-quality-group/safer-languages
https://docs.rust-embedded.org/book/intro/hardware.html
https://docs.rust-embedded.org/book/intro/hardware.html
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90C.3pd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90C.3pd.pdf
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://eprint.iacr.org/2022/337
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4/blob/master/benchmarks.csv
https://github.com/mupq/pqm4/blob/master/benchmarks.csv
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf

BIBLIOGRAPHY

[34]

[37]

National Institute of Standards and Technology. FIPS PUB 140-2 SECURITY
REQUIREMENTS FOR CRYPTOGRAPHIC MODULES. https://nvlpub
s.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf. May 25, 2001 (cit. on
p. 77).

ST. UM1472 User manual - Discovery kit with STM32F,07VG MCU. https:
//www.st.com/resource/en/user_manual/uml472-discovery-kit-with-
stm32f407vg-mcu-stmicroelectronics.pdf (cit. on p. 79).

ST. RM0090 Reference manual. https ://www . st . com/resource/en/
reference manual /dm00031020-stm32f405-415-stm32f407-417 - stm3
2f427-437-and-stm32£429-439-advanced-arm-based-32-bit-mcus-
stmicroelectronics.pdf (cit. on pp. 78, 80, 95).

ST. AN4230 Introduction to random number generation validation using the
NIST statistical test suite for STM32 MCUs and MPUs. https://wuw.st.
com/resource/en/application_note/an4230-introduction-to-random-
number-generation-validation-using-the-nist-statistical-test-
suite-for-stm32-mcus - and - mpus - stmicroelectronics . pdf (cit. on

p. 80).

110

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://www.st.com/resource/en/user_manual/um1472-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1472-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1472-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4230-introduction-to-random-number-generation-validation-using-the-nist-statistical-test-suite-for-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4230-introduction-to-random-number-generation-validation-using-the-nist-statistical-test-suite-for-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4230-introduction-to-random-number-generation-validation-using-the-nist-statistical-test-suite-for-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4230-introduction-to-random-number-generation-validation-using-the-nist-statistical-test-suite-for-stm32-mcus-and-mpus-stmicroelectronics.pdf

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis objectives
	Thesis structure

	Post-Quantum Cryptography
	Nowadays Security
	Security Problems and Constraints

	Post Quantum Cryptography (PQC)
	Lattices
	Preliminaries
	Definition of Lattice
	Definition of Basis of the lattice
	Properties of the Lattice
	Lattice-based Hard Problems
	Lattice-based Cryptosystem

	LWE - Learning With Errors
	Definition

	Public-Key Cryptography using LWE
	Key Generation
	Encryption
	Decryption
	NIST Standardization Competition

	The Number Theoretic Transform (NTT) and its inverse (INTT)
	NTT
	Definitions
	NTT-based Polynomial Multiplication
	FFT Trick for Negacyclic-based NTT Zq(x)/(xn+1)

	Kyber
	Preliminaries
	Oracle
	Security Goals
	IND-CPA
	IND-CCA
	Implications

	CRYSTALS
	Functions and Parameters Employed
	Kyber's Polynomials and Coefficients

	Security Approach
	Kyber.CPAPKE
	Key Generation
	Decryption

	Kyber.CCAKEM
	Key Generation
	Encapsulation (Client → Server)
	Decapsulation (Server → Client)

	Rust Programming Language
	Introduction
	Preliminaries
	Vulnerability
	Weakness

	CVE for Linux Kernel
	CWE for C language
	Rust Overview
	Safety - Pointers and Memory
	Syntax
	Ownership
	Borrowing
	Mutability
	Lifetimes
	Polymorphism

	The no_std environment
	Motivation of adopting Rust for the project

	Kyber library written in Rust on a ARM Cortex-M4
	The STM32F303VCT6 Board
	Development environment for STM32
	Our selection
	Limitations of the board

	State of Art of Kyber on a ARM Cortex-M4
	PQClean
	pqm4

	Selected Rust Kyber Library for the board
	Performance Evaluation
	Clock Cycles
	Clock Cycles Measurement Method

	Code Coverage analysis
	Code Coverage
	Code Coverage Criteria
	Test Coverage

	Random Number Generator
	FIPS 140-2
	The STM32F407VGT6 Board
	TRNG Functional Description
	TRNG Workflow
	TRNG Error Management

	Randomness Tests
	Test Description
	Results

	Contributions to the library
	Performance Tests for STM32F4 Board
	Results for STM32F4

	Performance Results for STM32F3 board
	Code Coverage Results
	Contributions to the library
	Solution for the Unhandled RNG exceptions
	Solution advantages
	Contributions to enhance Code Quality

	Conclusions
	Boundary Value Coverage Observations
	Bibliography

