
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Development of a Decentralized Social
Media

Supervisors

Prof. Antonio J. DI SCALA

Company Supervisors

Fabrizio MAIOCCO

Ismail NASRY

Candidate

SeyedHossein JAVADIZAVIEH

Academic Year 2022-2023

Acknowledgements

I am deeply grateful to everyone who has been by my side throughout this journey.
First and foremost, I extend my heartfelt thanks to my family for their unwavering
encouragement, even during the most challenging times when solutions seemed
elusive. I am also indebted to Professor Di Scala for his constant availability and
valuable clarifications, as well as Professor Bazzanella for instilling belief in me.
Without their trust and support over the past two years, this work would not have
been possible.

The BitPolito team has been an extraordinary source of inspiration and mo-
tivation throughout my journey at Politecnico! Their unwavering belief in our
mission as a student team has propelled us to create one of the most remarkable
and defining experiences of my time here. Their dedication and support have
exceeded my wildest expectations, instilling in me a newfound sense of purpose
and determination. I am deeply grateful for their trust and commitment, as it has
enabled us to achieve feats I could have never imagined before. BitPolito’s impact
on my life and the Politecnico community is immeasurable, and for that, I am truly
thankful.

I would like to express my sincere appreciation to CGM Consulting S.r.l., par-
ticularly Fabrizio Maiocco and Ismail Nasry, for providing me with the opportunity
to work on the practical aspect of this thesis. Their introduction to the world of
Blockchain and its pragmatic applications has been enlightening and instrumental
in my academic growth.

To my friends, I am immensely thankful for making my time in Turin joyful and
memorable. These years have been nothing short of wonderful, and I cherish the
memories we have created together. To my entire family, your understanding and
unwavering support have meant the world to me. Thank you for standing by me
and supporting every decision I have made in life. And to MohammadMahdi, you
have been the driving force behind my constant pursuit of self-improvement over
the past two years. Your presence has revolutionized my life, and I am profoundly
grateful for your encouragement.

2

Summary

During my enriching internship at CGM Consulting S.r.l., I delved deep into the
evolving world of Web3 technology, focusing particularly on the NEAR Protocol.
This experience was a part of my thesis for my Master’s Degree, where I extensively
explored the development of decentralized applications (dApps) in the Web3
ecosystem.

My primary responsibilities included developing and integrating various cutting-
edge functionalities within dApps. One of the key areas I worked on was the
integration of Non-Fungible Tokens (NFTs). This involved creating smart contracts
that facilitated the minting, transferring, and managing of NFTs, using Rust
programming language. These contracts were essential for handling digital assets
securely and efficiently on the blockchain.

Another significant aspect of my internship was incorporating AI Image Genera-
tion into the dApp. This innovative feature allowed users to generate unique images
based on specific inputs, enhancing the user experience and adding a creative
dimension to the application.

Furthermore, I explored the implementation of oracle data, particularly fo-
cusing on Chainlink oracles. These oracles acted as crucial connectors between
the blockchain and external data sources. My involvement was centered around
integrating weather forecast data, showcasing how real-world information can be
effectively used in smart contracts and dApps. This integration not only expanded
the functionality of our dApps but also demonstrated the practical applications of
blockchain technology in accessing and utilizing real-world data.

Overall, my internship at CGM Consulting S.r.l. was a deeply informative and
transformative experience. It provided me with a comprehensive understanding of
blockchain technology, smart contract development, and the practical implementa-
tion of innovative features in dApps. The skills and knowledge gained during this
period significantly contributed to my thesis and have equipped me with valuable
insights into the potential and application of blockchain technology in various
domains.

4

Development of a Decentralized
Social Media

List of Figures 9

Acronyms 13

1 Introduction 1

2 Blockchain Fundamentals 5
2.1 Decentralization in Web Development 7

2.1.1 Centralized Internet . 7
2.1.2 File Sharing Protocol & P2P Communication 7

2.2 Blockchain basics . 8
2.2.1 Concepts of Blockchain & Smart Contracts 8
2.2.2 Consensus Mechanism . 9
2.2.3 Blockchain Nodes . 9
2.2.4 Smart Contract’s Unique Attributes 10
2.2.5 Backend Structure of a dApp 10
2.2.6 dApp User’s Authentication 11
2.2.7 Financial Dynamics . 12

2.3 Dominant Consensus Mechanisms in Modern Blockchain 14
2.4 Selecting the Ideal Blockchain to implement dApps 15

3 NEAR Protocol & Smart Contracts 17
3.1 Accounts & Transactions . 18

3.1.1 Transaction (Action) Types 18
3.1.2 Smart Contract Invocation Methods 19

3.2 Nodes & Validators . 19
3.2.1 Types of Nodes . 19
3.2.2 Validators & Network Security 20
3.2.3 Economy of Validators . 20

5

3.2.4 Overview of Validators . 21
3.3 Gas & Storage . 22

3.3.1 Gas and Its Implications . 22
3.3.2 Cost Storage & Mechanism 22
3.3.3 Gas as a Developer Incentive 23
3.3.4 The Concept of Free Transactions 24
3.3.5 Understanding Gas Units & Gas Price 24
3.3.6 Correlating Gas to Computational Resources 24
3.3.7 1S Block Production & Associated Costs 24

3.4 Clients Integration . 26
3.4.1 Access Keys . 26

3.5 Cross-Contracts Calls . 28
3.6 Data Management . 30

3.6.1 Data Structures . 30
3.6.2 Relational Databases using Indexers 30
3.6.3 NEAR Data Flow . 31
3.6.4 Event Logging . 33
3.6.5 Introduction to Blockchain Indexers 34
3.6.6 Interaction with NEAR Network 35
3.6.7 Account Management . 35
3.6.8 NEAR Explorer . 35

3.7 Contract Upgrades . 38
3.7.1 Contract Upgrades in Local Development 38
3.7.2 Upgrades in Stable Environments: Code and State 38
3.7.3 Programmatic Updates: Decentralizing the Upgrade Process 38

4 The Economics of Web 3.0: NFTs, FTs, DeFi and DEX 39
4.1 NEAR Tokens . 39

4.1.1 Non-Fungible Tokens (NFTs) 42
4.1.2 Fungible Tokens (FTs) . 44
4.1.3 Decentralized Finance (DeFi) & Decentralized Exchanges

(DEX) . 45
4.2 Integrating NFTs in Web 2 Applications 45

4.2.1 Blockchain-Enabled Application Architecture 46
4.2.2 NFTs in Web 2 Applications 51
4.2.3 Blockchain Onboarding . 65
4.2.4 NFT Marketplace . 67
4.2.5 Implementing Components 71

4.3 Non-Functional Concerns . 75
4.3.1 Security . 75
4.3.2 Scalability and Availability 76

6

4.3.3 Costs . 76

5 Setting Up the Development Environment 78
5.1 Foundations of NEAR Protocol Development 78
5.2 Prerequisites for NEAR dApp Development 79
5.3 Rust and WebAssembly Toolchain Installation 79
5.4 NEAR CLI and near-api-js Library 79
5.5 Starting Development with NEAR 80
5.6 Environment Configuration and API Integration 80

5.6.1 INDEXER.XYZ API for NEAR 81
5.6.2 NFT.STORAGE API for Decentralized Storage 81
5.6.3 Google Maps API for Geolocation Services 81
5.6.4 OpenAI API for Generative Models 81
5.6.5 AccuWeather API for Weather Data 81

5.7 Managing Dependencies . 82
5.8 Creating and Managing a NEAR Account 83
5.9 Deploying Smart Contracts . 83
5.10 Handling Errors and Debugging . 83

6 Integrating NFTs in Web Apps and User Interaction Flows 84
6.1 Smart Contract Interaction . 84

6.1.1 JavaScript Functions for Smart Contract Methods 84
6.1.2 Frontend Integration with Smart Contracts 86

6.2 Frontend User Interaction Flow . 87
6.2.1 Login Page . 87
6.2.2 Interactive Main Interface 88
6.2.3 Minting NFT Pop-ups . 89
6.2.4 NFT Details Popup . 90
6.2.5 Market Page . 91
6.2.6 Collection Page . 91
6.2.7 User Profile . 92

6.3 Conclusion . 92
6.3.1 Reflecting on the Internship Journey 92
6.3.2 Future Updates and Enhancements 92
6.3.3 Encouragement and Community Engagement 93
6.3.4 Final Reflections . 93

7

8

List of Figures

2.1 The integrity of transactions on a chain 9
2.2 Connected Node to the P2P Blockchain network 9
2.3 Execute the code through the Node (Read & Put states) 11
2.4 Client-Side of dApps and User Identity 12
2.5 Web 2.0 Cost Dynamics . 12
2.6 Web 3.0 Cost Dynamics . 13
2.7 Service Costs in Blockchain Transactions 13

3.1 Covering Computational Costs . 22
3.2 Login Flow for Obtaining a Functional Call Key 26
3.3 Combined Usage of Functional Call Key and Wallet Redirection . . 27
3.4 Generating a Full Access Key . 28
3.5 Cross-Contracts General Flow . 28
3.6 Unspent Refunded Gas Flow . 29
3.7 Rollback Code Refunds Flow . 29
3.8 Indexer Pertinent Data Flow . 31
3.9 Chain of Blocks . 31
3.10 Visualization of Shards and Chunks 32
3.11 Data Flow of Transaction Execution 32
3.12 Cross-Shard Receipt Execution . 33
3.13 Account Details UI . 35
3.14 Transaction Overview . 36
3.15 Transaction Actions . 36
3.16 Transaction Execution Plan . 37

4.1 Direct Storage Mechanism for NFTs 43
4.2 Off-Chain Storage for NFTs . 43
4.3 On-Chain Metadata and Hash Storage for NFTs 44
4.4 Structure of Fungible Tokens in Smart Contracts 45
4.5 Traditional Web 2 Application Architecture 46
4.6 dApp Architecture with Blockchain Integration 47

9

4.7 Client as a Junction Point in Hybrid Architectures 48
4.8 Dual-Client Architecture for Mobile App Integration 49
4.9 Using Indexers for Enhanced Data Querying 50
4.10 Basic NFT Authorization Flow . 51
4.11 Typical request with authentication 52
4.12 Authentication Data Flow in Web 2 Applications 53
4.13 Hybrid Authentication Model . 54
4.14 NEAR Account Connection Process 55
4.15 Simplified Login Flow with ’Login with Wallet’ Feature 56
4.16 Smart Contract Authorization Check 57
4.17 Web 2 and Web 3 Hybrid Application Flow 58
4.18 Rust predecessor example . 59
4.19 NFT Data Storage Model Options 60
4.20 On-Chain Storage Interaction Diagram 61
4.21 Off-Chain Storage Interaction Diagram 62
4.22 In-Application Storage Interaction Diagram 62
4.23 Rust nft_mint example . 64
4.24 Custodial Wallet Concept . 65
4.25 Simple Marketplace Integration Flow 67
4.26 Storage Reservation Process in NFT Sales 69
4.27 Indexing and Data Retrieval in NFT Marketplaces 70
4.28 Proxy Server for Blockchain Interactions 72
4.29 Mintbase Suite for NFT Integration 72
4.30 Integration with Third-Party Marketplaces 73
4.31 Components of an Indexing Service in NFT Marketplaces 74
4.32 RPC Nodes and IPFS Integration 76

6.1 JavaScript function for nft_mint 84
6.2 JavaScript function for create_series 85
6.3 JavaScript function for nft_transfer 85
6.4 JavaScript function for nft_payout 86
6.5 JavaScript function for nft_transfer_payout 86
6.6 Showcasing the authentication options 87
6.7 Interactive mood visualization and search functionality on the dApp’s

main interface . 88
6.8 Integrated weather forecast feature showing current conditions and

predictions . 89
6.9 Generate an image using Generative AI model, NFT title and select

a collection and Sending data to nft.storage, approving the minting
process . 90

6.10 NFT details popup, highlights the off-chain stored attributes 90

10

6.11 Showcasing the marketplace functionality and available NFTs . . . 91
6.12 User’s collection page, displays the variety of NFTs owned by the user 91
6.13 User profile page, demonstrates the features available to the user

regarding their NFT interactions 92

11

Acronyms

AI
Artificial Intelligence

dApp
Decentralized Application

API
Application Programming Interface

NFT
Non-Fungible Token

DeFi
Decentralized Finance

DEX
Decentralized Exchange

DAO
Decentralized Autonomous Organization

NEP
NEAR Enhancement Proposals

ERC-20
Ethereum Request for Comments 20

EVM
Ethereum Virtual Machine

13

HTTP
Hypertext Transfer Protocol

HTML
HyperText Markup Language

FTP
File Transfer Protocol

SMTP
Simple Mail Transfer Protocol

AWS
Amazon Web Services

GCP
Google Cloud Platform

IPFS
InterPlanetary File System

P2P
Peer-to-Peer

KYC
Know Your Customer

ICO
Initial Coin Offerings

PoW
Proof-of-Work

PoS
Proof-of-Stake

14

JWT
JSON Web Token

CLI
Command Line Interface

NLP
Natural Language Processing

Wasm
WebAssembly

15

Development of a Decentralized
Social Media

Chapter 1

Introduction

The rapid advancement of blockchain technology has revolutionized various in-
dustries, offering decentralized, transparent, and secure solutions to long-standing
challenges. This Master’s Degree Thesis aims to provide an in-depth exploration
of the development of a decentralized social media, the combination of NEAR
Protocol [1], Non-Fungible Tokens, Artificial Intelligence and Chainlink Oracles.
By exploring these topics in detail, I hope to contribute to the advancement of
blockchain technology and its transformative impact on various sectors.

To seamlessly bridge the gap between the transformative impact of blockchain
technology on various sectors and the introduction to NEAR Protocol, it’s essential
to highlight the pioneering role of Bitcoin and its underlying blockchain technology.

Bitcoin, introduced in a 2008 whitepaper by an entity known as Satoshi
Nakamoto, revolutionized the concept of digital currency by introducing a de-
centralized blockchain network. This network is notable for its robustness, which
is partially attributed to its network difficulty—a mechanism that adjusts the
complexity of the mathematical problems solved by miners. This adjustment,
which occurs approximately every two weeks, ensures consistent block generation
times despite fluctuating mining power [2].

Furthermore, Bitcoin undergoes a process known as "halving" approximately
every four years. This event reduces the reward for mining new blocks by half,
thereby diminishing the rate at which new bitcoins are created and mimicking
the scarcity of precious resources like gold. This feature is critical in controlling
inflation and contributing to Bitcoin’s value [3].

The inception of Bitcoin’s network dates back to January 3, 2009, when the
first node started running. This marked the beginning of a new era in digital
currency and decentralized finance. The decentralized nature of Bitcoin means that
it operates on a peer-to-peer network, where each node, or computer, participates
in the validation and relay of transactions. This structure ensures that no single
entity, including dictators or centralized institutions, can shut down the network

1

Introduction

or control the blockchain. This resilience against centralized control is a defining
feature of blockchain technology and is crucial in understanding the evolution
towards more advanced platforms like NEAR Protocol [4].

Bitcoin’s blockchain has set the foundation for subsequent blockchain develop-
ments, showcasing the potential for a wide array of applications beyond just financial
transactions [5]. Its impact is evident in the emergence of various blockchain plat-
forms, each bringing unique features and improvements. The adaptability and
robustness of Bitcoin’s blockchain have inspired many innovations in the blockchain
sphere, laying the groundwork for advanced platforms like NEAR Protocol, which
further enhance the capabilities and efficiency of blockchain technology [6].

NEAR is a layer number one blockchain. Super secure and infinitely scalable! It
uses a consensus protocol called "NightShade" [7]. It is a sharded proof-of-stake [8]
consensus protocol that enables high throughput and low latency of transactions
processing on the network. Faster, Cheaper and more securely. Validators secure
the network by locking up NEAR tokens and earning rewards as a result. If the
validators try to cheap the system, they lose their stake or the community votes
them out. Users can delegate their tokens to a validator to earn rewards too. A
more Eco-friendly platform. To make NEAR supper fast, it uses a technology
called sharding. Ethereum developers can take advantages of NEAR’s capabilities
without having to leave the Ethereum Network (Rainbow bridge [9] and Aurora [10]).
Octopus Network [11] allows anyone to build their own version of an application
specific blockchain and connect it to NEAR’s mainnet for speed, scalability and
security.

The NEAR platform is also great for users, it simple wallet allows anyone to
get started within seconds with minimal fuss no pop-ups, no switching networks,
no crypto jargon, just a wallet that is effortless to use. Underneath the slick and
simple exterior lies a ton of features that let developers create a seameless user
experience, whenever they interact with the NEAR ecosystem. Also it is possible
to register a NEAR wallet with a YOURNAME.near (Vanity Address). A vanity
address allows you to have a more personalized public address, which can be handy
for branding, recognition, or aesthetic purposes.

From NEAR wallets, you are able to manage your tokens and digital collectibles
and explore DeFi apps, games, NFTs and more. The wallet is also the gateway
to NEAR staking system which allows you to stake your NEAR coins with your
validator of choice. By staking, you will not only earn a generous yield on your
stake balance but you’ll also be helping to secure and grow the NEAR network.
After submitting the stake, the rewards will be distributed every 12 hours.

Most blockchains require every node or person stores all the information ON-
CHAIN and process all transactions. while it makes the network secure, it also
makes it slow. It takes time for every node to keep itself up to date! Sharding

2

Introduction

however doesn’t have the same problems. it allows the blockcain to be secure, fast
and scalable. Sharding is a way of partiotioning a database into smaller pieces or
Shards and store it on different machines.

In the case of blockchain, nodes are devided into smaller groups responsible for
one part of the chain’s data. These individual groups can process transactions at
the same time. Instead of one person verifying the transactions in one block, they
are verified in multiple blocks by several people.

The more shards, the faster network goes. In NEAR’s case it means it can
process 100,000 transactions per second and beyond. Its unique design means that
there is no limit to how many transactions it can process.

NEAR’s approach to sharding is called "NightShade". It differs from the
traditional approach to sharding where each shard produces its own batch of data
called a chunk which will be added to other chunks to create a single block. A
single validation produces each block by assembling all the created chunks into a
block. While other sharded networks are harder to take part, in NEAR is making
itself more decentralized.

Chunk only produces a lot of people with fewer NEAR and non-specialized
computer have easy access to help keep NEAR secure. Dynamic re-sharding will
adjust their number of shards based on user demand. This will allow the network
to only pay for the infrastructure and scale at any given time.

NEAR needs a way to easily and securely exchange information and value with
other blockchains. It achieves this through the Rainbow Bridge. The Rainbow
Bridge allows users and developers to easily move their assets between NEAR and
other platforms be a tokens or NFTs. This achieves two main things:

• It allows other chains users to avoid the congestion and high fees suffered
by other blockchains by migrating their assets to NEAR. useful for users to
access and move tokens between chains when needed.

• Provides developers with a tool that can be used to migrate users from
Ethereum to NEAR through an easy to deploy bridge for their project’s
Token.

Currently, the Rainbow Bridge can be used for transferring between NEAR
and Ethereum and supporting a huge range of ERC-20 tokens [12] including
public Stable coins, Wrapped Tokens, DEX Tokens, Utility Tokens and more. The
Rainbow Bridge will lock your tokens in a smart contract on the origin chain before
transferring the same amount on the destination chain. This process takes just 7
minutes to move tokens from Ethereum to NEAR. It is permissionless and trustless.

More than 100 billions dollars worth of digital assets held by popular DeFi
protocols. The problem lies within these project operating on the Ethereum

3

Introduction

blockchain which currently suffers from extreme congestion and exorbitantly high
fees posing major road blocks to further adoption. Aurora is NEAR’s answer to this
problem as an ultra efficient EVM deployed on NEAR protocol. Aurora provides
a platform, developers and users can use to operate their applications in a fully
Ethereum compatible environments without compromise. Developers can deploy
their code on Aurora with zero changes and benefit from NEAR’s speed, security
and scalability.

4

Chapter 2

Blockchain Fundamentals

Blockchain technology, as a cornerstone of the digital revolution, has gained
immense popularity due to its distributed, decentralized, and immutable ledger
system. This system records transactions across a network of computers, with each
transaction securely linked to the previous one, thus forming an unbroken chain of
blocks. This framework ensures transparency, security, and trust among network
participants and negates the need for a centralized authority for validation and
ledger maintenance [13].

A notable implementation of blockchain technology is Bitcoin, which transcends
its role as a digital currency. While often associated with trading and investment,
Bitcoin’s design and philosophy offer much more. It serves as an educational tool for
enthusiasts to understand economic principles, enabling transactions ranging from
purchasing everyday items like medicine and housing to paying application fees.
The conception of Bitcoin is rooted in the principle of financial freedom, advocating
for a system that is accessible and understandable to all, thereby democratizing
economic participation [2].

Furthermore, Bitcoin has paved the way for the emergence of various alterna-
tive cryptocurrencies (altcoins), each designed with specific use cases and target
audiences. These altcoins aim to facilitate everyday transactions for people glob-
ally, effectively covering the living costs and daily expenses of individuals. This
expansion signifies the adaptability of blockchain technology to meet diverse needs
and preferences.

Bitcoin’s multifaceted nature extends to trading and education, reflecting its
significance in financial markets. Its design principles, emphasizing decentralization
and user autonomy, have significantly impacted financial marketing, challenging
traditional paradigms and offering new avenues for economic engagement. The
influence of Bitcoin thus exemplifies a broader trend in blockchain technology,
which has evolved from its initial financial applications to a robust, versatile tool
for various global industries, including supply chain management, healthcare, and

5

Blockchain Fundamentals

voting systems [3].
This evolution of blockchain, spearheaded by Bitcoin, underscores its potential

to transform not only the financial landscape but also to educate and empower
individuals in their economic decisions, thus fostering a more inclusive and informed
society. The principles of decentralization, transparency, and user empowerment
inherent in blockchain technology are not only pivotal in the financial domain but
also serve as the foundational elements of the next phase of the World Wide Web,
known as Web 3.0.

Web 3.0 represents a paradigm shift in how we interact with the internet,
championing the values of decentralization and user sovereignty. As we transition
from the blockchain’s influence on specific industries to its integration within
the broader fabric of the internet, it becomes evident how these technologies are
converging to redefine digital interaction and ownership. This convergence is at
the heart of Web 3.0, which aims to leverage the decentralized, trustless nature
of blockchain to create a more equitable and user-centric online experience. In
the following sections, we explore the evolution of the Web and how blockchain
technology is a driving force behind the transformative vision of Web 3.0. Before
delving into its specifics, it’s essential to understand its background. The World
Wide Web has progressed through three distinct phases:

• Web 1.0 (1991-2004): This was the Web’s initial phase. During this
period, internet access was slow, costly, and dominated by static pages. The
majority of users were passive consumers, with only a select few producing
content. Key features of this era included limited use of JavaScript, scarce
media content, and the absence of social media. Despite its limitations, this
generation was marked by its decentralized nature. Users either ran their
own servers or relied on various hosting providers. Open protocols, such as
HTTP, HTML, FTP, and SMTP, were foundational.

• Web 2.0 (2004-present): This era witnessed a substantial shift in internet
usage. As the internet became more accessible and affordable, its reach
extended to the average person. This influx of users prompted businesses
to offer a plethora of online services, from shopping to payments. The
web content grew richer and more interactive. A significant shift was users
transitioning from mere content consumers to active content creators. The
rise of social media, the invention of smartphones, and the web’s expansive
growth characterized this period. However, this growth also led to increased
centralization. This centralization presented challenges, such as issues with
digital ownership. Users found that they didn’t truly own their digital assets,
as centralized entities retained control. This era also saw a compromise in
user privacy, as personal data became a currency for many online platforms.

6

Blockchain Fundamentals

• Web 3.0 (Future): This is the forthcoming phase of the Web. It’s still
nascent, and its exact trajectory remains uncertain. However, some defining
characteristics are beginning to emerge:

– Emphasis on decentralization and privacy.
– Transition of digital ownership from corporations to individual users.
– Trustless and permissionless operations.
– Community-driven governance and tokenomics.

In this dissertation, we shall elucidate how these fundamental tenets of Web
3.0 manifest in practical terms, demonstrating how to construct an application
wherein digital assets are decentralized and unequivocally owned by the end users.

2.1 Decentralization in Web Development

2.1.1 Centralized Internet
The present-day Internet is largely centralized, predominantly relying on client-
server architecture [14] hosted on major cloud platforms like AWS, Azure, and
GCP. Remarkably, 90% of mobile traffic is directed to these cloud services [15],
signifying a concentration of control within a few corporations.

2.1.2 File Sharing Protocol & P2P Communication
Decentralization first made its mark with file sharing through the introduction
of the BitTorrent protocol. This peer-to-peer (p2p) system promotes genuine
decentralization by allowing distributed data storage without central oversight.
While it sparked controversies, its principles paved the way for contemporary
decentralized storage systems such as IPFS and FileCoin.

The concept of decentralized, cryptographic control of digital data was notably
advanced by Stuart Haber and W. Scott Stornetta in their seminal work "How To
Time-Stamp a Digital Document" [13]. They proposed a system for time-stamping
digital documents, forming a chain of cryptographic proofs that laid the groundwork
for blockchain technology. This concept of chaining blocks of data is a foundational
element in understanding blockchain’s immutability and integrity.

Further improvements in digital time-stamping were proposed by Dave Bayer,
Stuart Haber, and W. Scott Stornetta, as outlined in "Improving the Efficiency and
Reliability of Digital Time-Stamping" [16]. Their work enhanced the practicality
and efficiency of the cryptographic process, contributing to the robustness of
blockchain technology.

7

Blockchain Fundamentals

Adam Back’s "Hashcash - A Denial of Service Counter-Measure" [17] introduced
the proof-of-work system to combat spam emails, which later became integral to
Bitcoin’s transaction verification process. This system requires a certain amount of
computational work, deterring frivolous or malicious uses of computing power, and
is a cornerstone in the functionality of decentralized networks.

Historically, monetary transactions were overseen by central entities like banks.
This paradigm shifted with Bitcoin, the pioneering cryptocurrency. Drawing from
the principles of BitTorrent and the aforementioned foundational works, Bitcoin
utilizes p2p communication for its transaction ledger, preserved in a blockchain.
Mainly, the blockchain’s architecture solves the double spending problem. By using
the proof-of-work consensus mechanism, Bitcoin solves in one shot the double
spending problem and minting of coins in a process called "mining".

Building on Bitcoin’s success, numerous cryptocurrencies emerged, with Ethereum
standing out. Ethereum expanded the blockchain concept to house diverse data
types [18], including code. With data and code stored in a decentralized manner,
Ethereum introduced the capability to execute this code, leading to the creation of
Smart Contracts. We’ll delve deeper into blockchains, smart contracts, and their
potential for crafting dApps.

2.2 Blockchain basics
To establish a foundational understanding, let us provide a concise overview of the
fundamental concepts of blockchain and smart contracts.

2.2.1 Concepts of Blockchain & Smart Contracts
In traditional Web 2.0 applications, the backend framework is fundamentally
anchored on two cornerstones: a database for data preservation and a server for
executing code. When transitioning to Web 3.0, these foundational elements persist
but metamorphose in their characteristics. The conventional database is supplanted
by a blockchain, and where we once relied on standard servers, we now leverage
the capabilities of smart contracts.

The underlying architecture of a blockchain can be visualized as a connected
sequence, or chain, of transactional records. For efficiency, transactions are clustered
into blocks. A pivotal aspect of this design is the cryptographic linkage between
blocks: each block encapsulates the cryptographic signature of its predecessor. This
configuration imparts a crucial trait to the blockchain - any attempt to alter a
transaction mandates a change in its cryptographic signature, thereby rendering
subsequent transactions in the chain invalid. This inherent tamper-resistance

8

Blockchain Fundamentals

renders the blockchain ideal for decentralized data storage, ensuring easy validation
of transactional integrity by any party.

Figure 2.1: The integrity of transactions on a chain

2.2.2 Consensus Mechanism
Blockchain, resembling a decentralized transaction log, continuously grows by
adding new transactions only [19]. It can be thought of as a distributed form of
the event sourcing pattern, where each transaction represents a distinct event [20].
Operating without a central server, blockchain relies on a consensus mechanism for
block creation, data synchronization, and network participation [21]. We’ll explore
various consensus protocols in more detail in subsection 3.6.4. Notably, blockchain
transactions are transparent, necessitating the encryption of sensitive information
before its inclusion.
2.2.3 Blockchain Nodes
So, what’s the mechanism for appending transactions to the blockchain? This
responsibility rests with the Blockchain Node. Individuals can set up their own
nodes, join the blockchain’s peer-to-peer network, and propose new transactions.
Furthermore, this node grants access to the existing blockchain data.

Figure 2.2: Connected Node to the P2P Blockchain network

9

Blockchain Fundamentals

Blockchain transactions can vary widely, their nature being dependent on the
specific blockchain network in question. For instance, Bitcoin, the pioneering
blockchain system, primarily managed a ledger of transactions. Its transactions
were simple, denoting transfers of funds between entities. Though this design was
revolutionary and follows the original goals of Bitcoin creators it is not adapt well
to more modern applications to Decentralized Finance (DeFi) Applications. This
is where smart contracts step in.

2.2.4 Smart Contract’s Unique Attributes
To those familiar with the Web 2.0 framework, think of smart contracts as analogous
to serverless functions. Instead of operating on standard cloud servers, they run on
blockchain nodes. Yet, smart contracts have unique attributes:

• Pure Operation: They act as pure functions, taking in the current state
(recorded on the blockchain) and arguments from the caller, and then out-
putting an altered state: F(state, args) -> state. This implies no off-blockchain
calls, like API requests, are allowed. This design choice ensures decentral-
ized consistency, where various network nodes can run the contract and
consistently achieve the same outcomes.

• Transparency: Smart contracts are inherently open-source, granting anyone
the ability to review the code and validate its operations.

• Permanence: Post-deployment, the code of a smart contract becomes a
permanent fixture on the blockchain, resisting any modifications. While there
are methods to update them, such techniques are specific to individual chains.

2.2.5 Backend Structure of a dApp
Drawing a real-world parallel, smart contracts are akin to legal contracts: they’re
permanent, behave predictably, and are open to all involved parties. In essence,
smart contracts are digital renditions of these legal agreements, but coded.

A lingering question remains: If we’re restricted to initiating transactions,
how do we deploy and run smart contracts? There are two primary transaction
categories that enable this:

1. Deployment Transaction: Through this, the smart contract’s code is deployed,
making it a permanent part of the blockchain’s data.

2. Function Call Transaction: Triggered with certain arguments, this transaction
type activates a smart contract, yielding an updated state.

10

Blockchain Fundamentals

When a node receives a Function Call transaction, it fetches the contract’s code
and state from the blockchain, runs the code, and then logs the updated state back
onto the blockchain as a new transaction.

Figure 2.3: Execute the code through the Node (Read & Put states)

While we’ve delved into the backend structure of a dApp, the client-side remains
to be addressed. Using an API interface, dApps can communicate with diverse
clients, mirroring the Web 2.0 model, which includes web, mobile, desktop, and
even other server platforms. However, user identity in dApps differs significantly
from traditional setups.

In standard Web 2.0 systems, servers control and own user identities, dictating
access to their services. Conversely, blockchain operates without such centralized
controls, allowing open interactions (excluding certain private blockchains which
we’ll not discuss here).

2.2.6 dApp User’s Authentication
A natural question arises: Without a conventional login or registration, how do
dApps authenticate users? The answer lies in public key cryptography. In this
system, a public key represents a user’s identity, akin to a username, while a
private key functions similarly to a password. However, instead of typical login
methods where servers verify credentials and issue access tokens, users in dApps
sign transactions using their private key. Consequently, traditional identifiers like
usernames or emails are absent, a crucial aspect for developers to note, especially
for applications necessitating Know Your Customer (KYC) processes [22].

11

Blockchain Fundamentals

Furthermore, due to the complexity of private/public key pairs, they aren’t as
easily remembered as standard usernames or passwords. To address this, specialized
software called wallets are employed. These wallets safeguard users’ key pairs,
facilitate transaction signatures, and can share keys with other applications when
needed.

Figure 2.4: Client-Side of dApps and User Identity

2.2.7 Financial Dynamics
In the Web 2.0 paradigm, the financial dynamics are straightforward: users compen-
sate the service providers either directly through monetary payments or indirectly
by offering access to their data, sometimes both. Service providers, in turn, bear
the costs of the infrastructure.

Figure 2.5: Web 2.0 Cost Dynamics

However, the Web 3.0 model revolutionizes this dynamic. Here, users transact
directly with infrastructure providers, i.e., the nodes operating on the blockchain,
sidelining the traditional service providers.

12

Blockchain Fundamentals

Figure 2.6: Web 3.0 Cost Dynamics

Such a shift brings about profound implications:
• Endurance of Services: Since applications are anchored on the blockchain,

service providers lose the authority to terminate or limit their services. The
apps, in essence, achieve immortality, persisting as long as the blockchain
network thrives.

• Redefining Monetization: Given that users aren’t directly compensating the
service providers, a novel monetization approach is necessitated. For instance,
specific fees might be embedded within smart contracts for certain operations.

• No Hidden Costs: While Web 2.0 services often appeared free, they weren’t
transparent about costs. In the Web 3.0 realm, though service providers
might subsidize initial costs to ease user onboarding, the onus eventually falls
on the users to settle the bills.

But how do these payments transpire? Traditional payment mechanisms,
like credit cards, don’t align with the decentralized ethos of blockchains. The
alternative? Cryptocurrencies. Each blockchain network introduces its proprietary
digital currency facilitating intra-network transactions.

Consequently, whenever a user triggers an action on the blockchain, say by
invoking a smart contract, they must cover both the infrastructural costs and
potentially an additional service fee to the provider.

Figure 2.7: Service Costs in Blockchain Transactions

This infrastructure fee, commonly termed as "gas", encompasses two main
components:

1. Computational Cost: This pertains to the computational resources expended
to incorporate a transaction into the blockchain.

2. Storage Cost: This relates to the additional storage requisites essential for
every transaction.

13

Blockchain Fundamentals

The lingering conundrum is: How do users procure these cryptocurrency tokens
to begin with? One viable route is purchasing from existing token holders using
conventional currency or another cryptocurrency. Platforms like Binance facilitate
such exchanges. However, this mechanism is contingent on a pre-existing pool of
circulating tokens.

Generating and augmenting this token supply hinges on the blockchain’s consen-
sus protocol. As highlighted earlier, this protocol serves to incentivize participation
within the blockchain network. But how does it operationalize this? Each node
engaged in transaction processing is duly rewarded:

reward = infrastructureCostReward + coinbaseReward

Here:
• infrastructureCostReward represents the portion of the infrastructure

cost remunerated by users for transactions.

• coinbaseReward denotes newly minted cryptocurrency tokens, expressly
designed to reward transaction-processing nodes.

Effectively, with every processed transaction, a minuscule volume of cryptocur-
rency is birthed, causing a gradual increment in circulating cryptocurrency over
time. Naturally, an initial token volume is essential to jumpstart the network, often
achieved via methods like Initial Coin Offerings (ICO) [23], This will be discussed
in greater detail in Chapter 3.

2.3 Dominant Consensus Mechanisms in Modern
Blockchain

Currently, two primary consensus mechanisms dominate the blockchain landscape:
• Proof-of-Work (PoW) [24]: This is the pioneer consensus model, adopted

by trailblazers like Bitcoin. However as we mentioned this consensus was not
projected for dApps.

• Proof-of-Stake (PoS) [8]: Emerging as a contemporary alternative, PoS
operates without the need for intense computational efforts, sparing graphic
cards in the process. Here, transaction processing is often termed "validation".
Modern blockchains, such as NEAR, have embraced PoS. Even Ethereum is
in the midst of transitioning to this model. A significant advantage of PoS is
its cost-effectiveness, coupled with swifter transaction processing.

Armed with this foundational understanding, we’re poised to delve into the
subsequent segment.

14

Blockchain Fundamentals

2.4 Selecting the Ideal Blockchain to implement
dApps

The blockchain landscape is vast and varied, making the task of pinpointing the
perfect fit for specific requirements a daunting one. To streamline this process,
let’s identify key criteria essential for a blockchain:

1. Consensus Algorithm: Proof-of-Stake (PoS) emerges as a more efficient
alternative for dApps, with other novel algorithms being comparatively less
tested.

2. Transaction/Storage Cost: A lower cost directly translates to user benefits,
given that users foot these bills.

3. Transaction Speed: Quicker transaction times lead to enhanced user experi-
ences.

4. Scalability: A network’s ability to handle a burgeoning transaction volume is
vital. Otherwise, transaction speed and cost might spiral uncontrollably.

5. Development Experience: This pertains to the choice of programming lan-
guage for crafting smart contracts. While Ethereum championed Solidity
[25], newer chains like NEAR have gravitated towards Rust, a seasoned
general-purpose language.

Historically, Ethereum blazed the trail by pioneering smart contracts. Yet, as
its user base swelled, transaction costs and speeds became prohibitive, revealing its
limitations. This gave rise to scaling solutions [26] like layer 2 chains [27], sidechains
[28], and plasma chains [29]. Each, however, came with its own set of challenges.
Ethereum’s switch to a PoS consensus, intended to rectify core issues, remains a
work in progress without a definitive completion date.

This backdrop paved the way for next-gen blockchains, engineered to be nimble,
affordable, and scalable, having gleaned insights from Ethereum’s challenges. Se-
lecting the best among them is intricate. For our purposes, the NEAR blockchain
[1] emerges as the front-runner, attributed to its:

• Cost-effective and rapid transactions.

• Inherent design for extensive scalability, ensuring consistent transaction cost
and speed.

• Adoption of the PoS consensus mechanism, eliminating the need for resource-
intensive mining.

15

Blockchain Fundamentals

• Preference for Rust as the chief programming language [30], a widely-accepted
and cherished language [31], simplifying the recruitment of adept developers.

Subsequent sections will delve deeper into NEAR as the foundational blockchain.
Prior to immersing ourselves in the nuances of Web 3.0 transition, a comprehensive
examination of NEAR is imperative.

16

Chapter 3

NEAR Protocol & Smart
Contracts

The NEAR Protocol, a significant player in the blockchain space, was launched
with a vision to improve upon the scalability and usability issues prevalent in
earlier blockchain systems. The project was founded by Alex Skidanov and Illia
Polosukhin, who brought together their extensive experience in programming and
blockchain technology. The protocol mainnet went live and produced its first block,
called the genesis block, on April 22, 2020. Although its validators were run entirely
by the NEAR Foundation through Proof of Authority early in the blockchain’s
life, the “training wheels” were removed in September 2020. According to the
developers, this allowed the Foundation to work out issues with the platform before
allowing the community to take over as validators to drive decentralization. [32]

Since its inception, NEAR has raised funding through multiple mechanisms to
support its development. In August 2020 the team raised over $33 million through
an initial coin offering (ICO), and in the first half of 2022 the team raised $500
million from VC firms such as FTX Ventures and a16z. [32]

In terms of network difficulty, NEAR Protocol employs a unique consensus
mechanism known as ’Nightshade,’ designed to enhance scalability and reduce
transaction costs. Unlike Bitcoin, NEAR does not follow a halving schedule. Instead,
it utilizes a different approach to control token supply, involving a process known
as ’token burning.’ In this system, a portion of transaction fees is permanently
removed (’burned’) from circulation, which helps in regulating the total supply of
NEAR tokens over time.

The NEAR Protocol documentation [33] serves as a robust guide for newcomers.
This chapter intends to elucidate fundamental concepts, ensuring the subsequent
sections are comprehensible even without prior familiarity with NEAR.

17

NEAR Protocol & Smart Contracts

3.1 Accounts & Transactions
NEAR’s account system stands distinct from contemporaries like Bitcoin or
Ethereum. Rather than solely relying on public/private key pairs for user identifi-
cation, NEAR elevates accounts [34] to primary entities, leading to:

• User-Friendly Identification: Instead of public keys, users employ intuitive
account names.

• Enhanced Security: Multiple key pairs with varied permissions [35] can be
associated with an account. This ensures that losing a single key pair doesn’t
jeopardize the entire account.

• Organized Account Structure: NEAR supports hierarchical account structures,
facilitating the management of multiple smart contracts under a singular
parent account.

• Transaction-Based Creation: Accounts and public keys materialize through
transactions, as they are blockchain-stored entities.

3.1.1 Transaction (Action) Types
Transactions drive the NEAR Protocol. Though NEAR features a singular trans-
action type [36], it can encapsulate diverse actions. Typically, a transaction
encompasses a single action, and for brevity, we’ll use "action" and "transaction"
interchangeably henceforth. Each transaction is associated with a sender and a
recipient. Supported transaction (action) types include:

• CreateAccount/DeleteAccount, AddKey/DeleteKey: Accounts and
key management transactions.

• Transfer: Basic operations facilitating NEAR token transfers between ac-
counts.

• Stake: Essential for validators in a Proof-of-Stake blockchain. This topic is
expanded upon separately [37].

• DeployContract: The DeployContract action deploys smart contracts. Each
account can host one contract, uniquely identifiable by its account name.
Contract updates are initiated if the DeployContract action targets an account
with an existing contract.

• FunctionCall: The FunctionCall action, critical to the blockchain, facilitates
smart contract function invocation.

18

NEAR Protocol & Smart Contracts

3.1.2 Smart Contract Invocation Methods

Smart contracts in NEAR are crafted in Rust or JavaScript and are translated
into WebAssembly (Wasm) [38]. These contracts encompass methods that can be
invoked using the FunctionCall transaction. Each method call comprises the target
account id, method name, and relevant arguments.

There exist two mechanisms to call a smart contract method:

1. Initiating a FunctionCall Transaction: This creates a new blockchain transac-
tion, potentially altering the contract’s state.

2. Executing a Smart Contract View Call: NEAR’s RPC nodes [39] offer an
API enabling the execution of state-unchanging (readonly) methods.

The latter is preferable due to its cost-efficiency, especially when leveraging
public nodes that are free. Moreover, view calls don’t necessitate an account,
proving advantageous for client-side application development.

3.2 Nodes & Validators

3.2.1 Types of Nodes

In the NEAR network, nodes play an integral role in ensuring the smooth operation
and security of the blockchain. There are primarily three types of nodes:

• Validator Node: These nodes are fundamental to the operation of the
NEAR blockchain. They are responsible for participating in the consensus
mechanism, producing blocks and chunks. The health of the network heavily
relies on the Validator nodes. A real-time overview of these nodes can be
viewed on the NEAR Explorer [40].

• RPC Node: RPC nodes offer RPC services and are vital for developers.
While the NEAR Foundation provides a public RPC endpoint that is freely
accessible, participants are also encouraged to set up their own RPC nodes.

• Archival Node: These nodes retain the complete blockchain data, con-
structing archives of historical states. They are particularly valuable for
infrastructure providers, chain analysis, and block explorers.

19

NEAR Protocol & Smart Contracts

3.2.2 Validators & Network Security
Role of Decentralization

The decentralized nature of the NEAR network ensures its safety through col-
laboration amongst multiple validators. Validators guarantee that all network
transactions are legitimate, thereby preventing malicious activities like money
theft.

Consensus Mechanism - Thresholded Proof of Stake

The network operates using a variant of the Proof-of-Stake consensus mechanism,
known as Thresholded Proof of Stake [41].

Trust & Staking

In the Proof-of-Stake model, users indicate their trust in specific network validators
by delegating NEAR tokens to them, a process termed as "staking". The premise is
that a validator with a significant amount of tokens delegated to them is considered
trustworthy by the community.

Validators have two primary roles:

1. Ensure the validation and execution of transactions, subsequently grouping
them into blocks.

2. Monitor other validators to prevent the generation of invalid blocks or the
creation of alternative chains aiming at double-spending.

Consequences of Misconduct

Misconduct by a validator leads to "slashing", where a portion or all of their staked
tokens are burned. Any malicious attempt to manipulate the chain would necessitate
controlling a majority of the validators simultaneously, which is financially risky
due to the potential of slashed tokens.

3.2.3 Economy of Validators
Compensation Structure

Validators are compensated for their services to the network. They receive a
predetermined amount of NEAR tokens every epoch. This amount is set so that
it corresponds to 4.5% of the total supply on an annual basis. Additionally, all
transaction fees collected within an epoch, excluding the portion allocated for
contract rebates, are burned. Regardless of the fees collected or burned, validators
receive their inflationary reward at a constant rate.

20

NEAR Protocol & Smart Contracts

Epochs Defined

An epoch represents a fixed duration during which the validators of a network
remain unchanged and is quantified in terms of blocks. On both the testnet and
mainnet, an epoch spans 43,200 blocks. Although the target duration for an epoch
is approximately 12 hours, based on the one-second block creation rate, practical
scenarios may see a slightly prolonged duration. This epoch-related information
can be accessed via the protocol_config RPC endpoint [42] under the parameter

’epoch_length’.

Block Retention & Archival Nodes

It’s crucial to note that, by design, nodes discard blocks post the completion of 5
epochs, roughly equating to 2.5 days, unless they function as archival nodes [39].

3.2.4 Overview of Validators
Validators [43] shoulder the responsibility of block production and network security.

Hardware Prerequisites

Owing to their role in validating all shards, there are high prerequisites for run-
ning a validator node, including an 8-Core CPU, 16GB RAM, and 1 TB SSD
storage. The estimated monthly cost for hosting a block-producing validator node
is approximately $330.

Active Validators & Seat Price

The current active validators can be accessed on the NEAR Explorer [40]. The
minimum seat price for a block-producing validator is based on the 300th proposal.
However, if there are more than 300 proposals, the threshold becomes the stake of
the 300th proposal, provided it surpasses the minimum threshold of 25,500 $NEAR.
The live seat price updates are available on the NEAR Explorer, and any validator
nodes staking an amount higher than the seat price can become part of the active
validator set.

Future Computational Considerations

Regarding the computational resources, as of now, the NEAR network primarily
relies on CPU computations. The consideration of incorporating GPU compute
capabilities for validator nodes remains a topic for future discussions.

Chunk-Only Producers

Chunk-Only Producers [43] are a novel addition to the NEAR Ecosystem, designed
to promote increased participation and decentralization. These producers focus

21

NEAR Protocol & Smart Contracts

solely on generating chunks—specific [7] portions of a block from a shard [44].
The design behind Chunk-Only Producers acknowledges the fact that not every
participant may have the hardware capabilities to validate the entire network,
hence they can operate with an 8-Core CPU, 16GB RAM, and a 500 GB SSD.
Economically, they are poised to receive at least 4.5% annual rewards, with potential
for more based on the staking percentage of the network’s tokens. For comprehensive
information about Validators and Nodes, the Dedicated Validator Documentation
Site is available [45].

Ensuring Security & Smart Contract Updates

Importantly, the NEAR protocol ensures that validators are insulated from risks
associated with vulnerable or malicious dApps. While the onus of securing dApps
rests with their developers, the NEAR platform uniquely facilitates smooth updates
to smart contracts, ensuring rapid response to any vulnerabilities.

3.3 Gas & Storage

3.3.1 Gas and Its Implications
The computational expense associated with each transaction in the blockchain
world is termed "Gas", quantified in gas units [46]. When a transaction is initiated,
it carries a specific gas amount to defray its cost. Simple transactions enable pre-
determined gas calculations, but for FunctionCall transactions, an overestimation
is customary, with any surplus refunded.

Figure 3.1: Covering Computational Costs

Rather than directly using NEAR tokens, separate gas units are employed to
adapt to the fluctuating infrastructure costs. As the network matures, the gas
unit’s value might shift, yet the gas quantity for a transaction remains consistent.

3.3.2 Cost Storage & Mechanism
Distinct Storage and Gas Systems

In addition to computational costs, many smart contracts demand storage. NEAR’s
storage system is distinct from its gas mechanism. While gas is relatively affordable,
storage incurs a hefty price. This necessitates prudent storage budgeting, with only
essential data reserved on the blockchain and supplementary data stored off-chain.

22

NEAR Protocol & Smart Contracts

The Staking Model

Contrary to purchasing storage, NEAR adopts a leasing model, termed "staking".
When a smart contract necessitates data storage, the corresponding NEAR token
amount is "locked". Upon data removal, these tokens are released. It’s vital to
note that these tokens are retained in the smart contract’s account, exempting the
user from direct payment.

FunctionCall Transactions and Deposits

To facilitate users in bearing storage expenses or any contract-associated fees,
NEAR permits token transfers through FunctionCall transactions. This feature,
known as a deposit, ensures that smart contracts verify the attached token amount,
either authorizing actions or reimbursing excessive tokens.

Benefits of Gas Fees and Deposit Attachments

Leveraging gas fees and deposit attachments, contracts can be designed to incur
zero developer costs, enduring indefinitely on the blockchain. Intriguingly, 30% of
the gas fees expended on contract execution are credited to the contract’s account
[43]. Though this primarily benefits high-demand contracts, it’s a valuable feature.

DeployContract Transactions

Lastly, it’s essential to recognize that DeployContract transactions, responsible
for storing smart contract codes on the blockchain, also incur storage fees.

Given the potential size of smart contracts, their optimization is crucial. Some
recommendations include:

• Avoid Rust code compilation on Windows due to its large output. Opt for
WSL or other operating systems.

• Prioritize smart contract code size optimization [47].

For a comprehensive understanding of the storage model, the official documen-
tation is recommended [48].

3.3.3 Gas as a Developer Incentive
Unique to NEAR, the gas is not solely utilized for compensating validators. When
a transaction calls a contract, the incurred gas fee is divided in a specific manner:
30% is allocated to the smart contract, and the remaining 70% is annihilated.
This arrangement provides an incentive for developers to actively participate and
innovate within the NEAR ecosystem.

23

NEAR Protocol & Smart Contracts

3.3.4 The Concept of Free Transactions
NEAR introduces an unparalleled feature that facilitates the invocation of read-
only methods in smart contracts without any associated costs. This mechanism is
especially advantageous as users do not require a NEAR account for this operation.
In such transactions, the validators bear the gas costs, emphasizing the user-friendly
nature of the NEAR platform.

3.3.5 Understanding Gas Units & Gas Price
Transactions on the NEAR platform incur a nominal fee in $NEAR, payable upfront.
However, this fee isn’t directly assessed in $NEAR. Internally, the platform utilizes
gas units, which are deterministic in nature. This ensures that a specific operation
consistently incurs the same gas cost. The actual transaction fee in $NEAR is
ascertained by multiplying the aggregated gas from all operations by a dynamic gas
price. This price is recalibrated after each block, contingent on network demand.
If the preceding block exceeds half its capacity, the price escalates; otherwise, it
diminishes, with a cap on its fluctuation set at 1% per block. The lowest bound
for the gas price is currently set at 100 million yocto NEAR.

3.3.6 Correlating Gas to Computational Resources
The determination of gas units has been meticulously executed, resulting in:

• 1 TGas (1012 gas units) approximating to 1 millisecond of computational
time.

• This represents 0.1 milliNEAR (considering the minimum gas price).

This approximation, albeit rough, offers a useful metric. It’s imperative to
acknowledge that gas units represent not just computational time but also account
for bandwidth and storage. System parameters could undergo modifications in the
future, potentially altering the correlation between TGas and computational time.

3.3.7 1S Block Production & Associated Costs
To maintain the network’s efficiency, NEAR enforces a maximum gas cap per block,
ensuring that a block is produced approximately every second. A table showcasing
the cost of prevalent actions in TGas and milliNEAR (considering the minimum
gas price) has been provided, elucidating the estimated costs. Transaction types
like AddKey, DeleteKey, and FunctionCall inherently possess higher gas costs,
necessitating strategic consideration.

24

NEAR Protocol & Smart Contracts

Operation TGas fee (mN) fee (N)
Create Account 0.42 0.042 4.2 × 10−5

Send Funds 0.45 0.045 4.5 × 10−5

Stake 0.50 0.050 5.0 × 10−5

Add Full Access Key 0.42 0.042 4.2 × 10−5

Delete Key 0.41 0.041 4.1 × 10−5

Table 3.1: Transaction Costs in NEAR

How to buy Gas?

Gas on the NEAR platform functions differently than some might expect from
experiences with platforms like Ethereum. Instead of purchasing gas directly, users
attach tokens to transactions. Unlike Ethereum, where users can pay extra to
expedite their transaction processing, NEAR’s gas costs are fixed. Basic operations,
such as transfers, have predictable gas amounts that are automatically attached.
However, Function Calls are more intricate, necessitating users to specify the gas
amount, with a cap currently set at 300 Tgas. Notably, this cap is flexible and can
be determined via the protocol_config RPC endpoint.

Attach extra gas; get refunded!

The actual token cost for these gas units varies. If a user overestimates and
attaches more tokens than required for the gas, the excess is refunded. This refund
mechanism also applies to basic operations, ensuring users only pay for the gas
they use.

Prepaid Gas

To enhance user onboarding, NEAR offers a form of "prepaid gas". Develop-
ers can set up their applications so that newcomers can pull gas funds from a
developer-controlled account. Once familiarized, these users can then fund their
own transactions. This system allows developers to essentially pay for their users’
gas fees. By utilizing Function Calls and setting up specific access keys, developers
can onboard users without them needing to go through a traditional wallet setup.
However, it’s crucial to note that while NEAR doesn’t limit the use of developer
funds for this purpose, developers can set allowances on these access keys, ensuring
controlled spending.

25

NEAR Protocol & Smart Contracts

3.4 Clients Integration

While we’ve delved into the client-agnostic execution of smart contracts, real-
world applications necessitate Client-Side interactions, be it through web, mobile,
or desktop platforms. The NEAR Wallet [49], currently the sole official wallet,
facilitates this via HTTP redirects, which is straightforward for web applications
(JavaScript SDK is available) but can demand intricate approaches like deep linking
for other platforms.

3.4.1 Access Keys

Standard Transaction Flow

Whenever a user wants to post a transaction, the client redirects them to a wallet.
Here, the transaction is approved, and the wallet then returns a signed transaction
back to the client through a redirect. This method ensures the private key remains
hidden from the client, bolstering security.

Figure 3.2: Login Flow for Obtaining a Functional Call Key

26

NEAR Protocol & Smart Contracts

Challenges

The constant redirection can become cumbersome for users. This is particularly
true for transactions that only require minimal gas fees, like calling smart contract
functions.

Introduction to Access Keys

To address the above challenge, NEAR introduced two types of Access Keys [35].
Full Access Keys: These keys are versatile and can be employed to sign any

kind of transaction. As the name suggests, they provide complete access.
Functional Call Keys: Tailored to enhance user experience, these keys:

• Are specific to a particular contract.
• Possess a dedicated budget for gas fees.
• Cannot be utilized for transactions that transfer NEAR tokens (i.e., payable

transactions).
• Are solely designed to cover gas fees, making them less security-sensitive. As

a result, they can be securely stored on the client side.

Simplified Signing Flow

Owing to the Functional Call Keys’ design, NEAR can offer a streamlined signing
process for non-payable transactions. This process begins with a login flow to
obtain a Functional Call key.

Figure 3.3: Combined Usage of Functional Call Key and Wallet Redirection

27

NEAR Protocol & Smart Contracts

The client generates a new key pair and asks a wallet to add it as a Functional
Call Key for a given contract. After this, a login session is established and considered
alive until the client has the generated key pair. To provide the best user experience
usage of both keys is combined - type of signing is determined based on a transaction
type (payable or non-payable). In case of a payable transaction, flow with wallet
redirection is used, otherwise simplified local signing flow (using a stored Function
Call Key) is applied:

Figure 3.4: Generating a Full Access Key

It’s important to note that it’s possible to generate a Full Access key using the
same key addition flow as for the Functional Call key, but this is very dangerous
since compromise of such key will give full control over an account. Applications
that want to work with Full Key directly should be designed with extreme care,
especially in the matters of security.

3.5 Cross-Contracts Calls
The true power is achieved when smart contracts are working in concert and
communicating with each other. To achieve this, NEAR provides cross-contract
calls functionality, which allows one contract to call methods from another contract.
The general flow looks like this:

Figure 3.5: Cross-Contracts General Flow

28

NEAR Protocol & Smart Contracts

However, certain intricacies arise:

• In order to provide a call status (success or failure) and a return value to
the calling contract, a callback method should be called, so there’s no single
activation of ContractA. Instead, an entry method is called first by the user,
and then a callback is invoked in response to cross-contract call completion.

• Transaction status is determined by the success or failure of a first method
call. For example, if a ContractB.methodB or ContractA.methodACb
call fails, the transaction will still be considered successful. This means that
to ensure proper rollbacks in case of expected failures, custom rollback code
must be written in the ContractA.methodACb, and the callback method
itself must not fail at all. Otherwise, smart contract state might be left
inconsistent.

• Cross-contract calls must have gas attached by the calling contract. Total
available gas is attached to a transaction by a calling user, and distributed
inside the call chain by contracts. For example, if 15TGas are attached
by the user, ContractA may reserve 5TGas for itself and pass the rest to
ContractB. All unspent gas will be refunded back to the user.

Figure 3.6: Unspent Refunded Gas Flow

• NEAR tokens can also be attached to cross contract calls, but they work
differently from the gas. Attached deposit is taken directly from the pre-
decessor account. It means even if a user hasn’t attached any deposit, a
contract still can attach tokens, which will be taken from its account. Also,
since cross-contract call failure doesn’t mean transaction failure, there are no
automatic refunds. All refunds should be done explicitly in the rollback code.

Figure 3.7: Rollback Code Refunds Flow

29

NEAR Protocol & Smart Contracts

A few notes on failure modes - since smart contracts run on a decentralized
environment, which means they are executed on multiple machines and there is no
single point of failure, they won’t fail because of environment issues (e.g. because
a machine suddenly lost power or network connectivity). The only possible failures
come from the code itself, so they can be predicted and proper failover code added.

In general, cross-contract call graphs can be quite complex (one contract may
call multiple contracts and even perform some conditional calls selection). The only
limiting factor is the amount of gas attached, and there is a hard cap defined by
the network of how many gas transactions may have (this is necessary to prevent
any kind of DoS attacks on the Network and keep contracts complexity within
reasonable bounds).

3.6 Data Management
3.6.1 Data Structures
Delving deeper into NEAR’s storage paradigm, I find that the foundational storage
mechanism for NEAR smart contracts is a key-value pair system. While this serves
basic applications, more complex applications necessitate advanced data structures.
The NEAR SDK [50] equips developers with enhanced data structures like vectors,
sets, and maps [51]. However, there are several considerations:

• Ultimately, they are stored as binary values, which means it takes some gas
to serialize and deserialize them. Also, different operations cost different
amounts of gas (complexity table [52]). Because of this, careful choice of data
structures is very important. Moving to a different data structure later will
not be easy and would probably require data migration.

• While very useful, vectors, maps and sets won’t match the flexibility and power
of classical relational databases. Even implementations of simple filtering
and searching might be quite complex and require a lot of gas to execute,
especially if multiple entities with relations between them are involved.

• They are limited to a single contract. If data from multiple contracts is
required, aggregation should be performed using cross-contract calls or on a
client side, which is quite expensive in terms of gas and time.

3.6.2 Relational Databases using Indexers
To support more complex data retrieval needs, data from smart contracts can be
transitioned to relational databases using Indexers [53]. Essentially, an Indexer is a
specialized blockchain node that processes incoming transactions and puts relevant
data into a database. Collected data can be exposed to a client using a simple API
server (e.g. REST or GraphQL).

30

NEAR Protocol & Smart Contracts

Figure 3.8: Indexer Pertinent Data Flow

To streamline Indexer creation, the NEAR Indexer Framework [54] was in-
troduced. Besides, NEAR Lake Framework [55] is a lightweight alternative to
NEAR Indexer Framework that is recommended for use when centralization can
be tolerated.

3.6.3 NEAR Data Flow
Understanding the NEAR Protocol blockchain data flow is crucial for developers
and users. At a glance, it may seem intricate, but it adheres to clear principles.
The blockchain flow can be visualized as an infinite timeline that starts but doesn’t
end. On this timeline, blocks appear at regular intervals, each referencing the
previous block, forming a chain.

Figure 3.9: Chain of Blocks

A unique aspect of the NEAR Protocol is its sharded architecture. There are
multiple parallel networks, termed Shards, active simultaneously. Each Shard
produces a portion of a block, referred to as a Chunk. When combined, these
Chunks from all Shards constitute a Block in the NEAR Blockchain.

To further understand the data flow, imagine a series of tracks similar to those
in audio/video editing applications. Each Shard has its own set of tracks, with
the top track representing Chunks. These Chunks appear at regular intervals,
regardless of any activity on the blockchain.

31

NEAR Protocol & Smart Contracts

Figure 3.10: Visualization of Shards and Chunks

When activity occurs, it often involves sending a Transaction with change
instructions. Once executed, the immediate outcome of a transaction isn’t the final
result but an internal execution request known as a Receipt. This Receipt can even
traverse Shards, making it a powerful asset in the NEAR Protocol.

Figure 3.11: Data Flow of Transaction Execution

Let’s consider a scenario: two accounts, alice.near and bob.near, residing on
different Shards. If alice.near initiates a transaction to send tokens to bob.near,

32

NEAR Protocol & Smart Contracts

the transaction is swiftly executed, producing a Receipt. However, since bob.near
is on a different Shard, the Receipt moves to bob.near’s Shard for execution. This
system ensures data integrity and flow consistency across Shards.

Figure 3.12: Cross-Shard Receipt Execution

It’s essential to note that the process might involve more Receipts and Exe-
cutionOutcomes for complex transactions, especially those with cross-contract
calls. Additionally, every transaction may include a refund due to the gas mecha-
nism in NEAR Protocol. For instance, if a user attaches more gas than required,
they receive a refund.

3.6.4 Event Logging
Extracting transaction data remains challenging due to the unique data structure of
each smart contract. To simplify this process, smart contracts can write structured
information about outcome into the logs (e.g. in the JSON format). Each smart
contract can use its own format for such logs, but the general format has been
standardized as Events [56].

This setup bears a resemblance to Event Sourcing [20]: the blockchain archives
events (transactions) which are then transferred to a relational database through
an Indexer. However, challenges such as potential indexing delays, which could last
seconds, must be factored into client designs.

For those seeking an alternative to crafting their own Indexer, The Graph [57]
offers a solution. With NEAR support currently in beta [58], it operates on the
Indexer-as-a-Service model and even boasts a decentralized indexing approach.

33

NEAR Protocol & Smart Contracts

3.6.5 Introduction to Blockchain Indexers
The Role and Challenge of Indexers

Indexers are pivotal in simplifying the complexities of querying data across multiple
blocks in blockchain systems. A blockchain’s deterministic nature, structured
around serialized writes of blocks, is tailored for "narrow" queries, which target
specific blocks or accounts. However, aggregating data from multiple blocks, termed
"wide" queries, becomes challenging due to the need to accumulate results from
individual block queries.

Limitations of Smart Contracts

While the inherent nature of blockchains and smart contracts offers a decentralized
mode of operations, it’s essential to note that smart contracts aren’t a direct
substitute for backends. Their deterministic structure and lack of interaction with
off-chain variables mean they can’t access external APIs or conduct tasks common
in conventional systems, such as user notifications or third-party integrations.

Practical Examples

To illustrate, consider a dApp selling e-books. The actual act of emailing the
purchased e-book to a user can’t be executed by a smart contract on the blockchain.
A solution involves using an off-chain helper that detects a successful "buy an
e-book" transaction and triggers the email dispatch. The NEAR blockchain, for
instance, employs a JSON-RPC endpoint [39] allowing external entities to
interact with it, providing both smart contract calls and data retrieval. This "pull
model" has its drawbacks, including possible inefficiencies and unavailability of
certain data like Local Receipts.

Advantages of Indexers

Enter indexers, which embody the "push model". Instead of constantly querying or
pulling data, an indexer passively receives data, facilitating quicker analysis and
actions. They’re particularly beneficial for "wide" queries. For instance, the NEAR
Indexer for Explorer captures data streams and stores them in a database, enabling
more efficient querying, even for tasks as intricate as recovering multiple accounts
linked to a single seed phrase – a feat unattainable with only JSON-RPC.

Indexers enhance the interoperability and efficiency of blockchain systems,
especially for "wide" queries. While this overview provides foundational knowledge,
delving into specific projects like the Lake Indexer and other third-party tools, such
as The Graph, Pagoda, Pipespeak, and SubQuery, offers practical insights into
building and utilizing indexers effectively.

34

NEAR Protocol & Smart Contracts

3.6.6 Interaction with NEAR Network
Once we’ve chosen a network to use, we need a way to interact with it. Of course,
transactions can be constructed manually and posted into node’s API [42]. But
this is tedious [59] and isn’t fun at all. That’s why, NEAR provides a CLI [60]
which automates all of the necessary actions. It can be used locally for development
purposes or on build machines for CI/CD scenarios.

3.6.7 Account Management
In order to manage accounts on the NEAR network, Wallet [61] can be used. It
can show an effective account balance and active keys.

Figure 3.13: Account Details UI

On the image above, “Reserved for storage” are tokens locked by a smart
contract to cover current storage requirements, and “Reserved for transactions”
represents the amount of tokens locked to cover gas cost by Functional Call keys.

3.6.8 NEAR Explorer
Last, but not least, blockchain transactions can be viewed using NEAR Explorer
[40]. It provides insights into transaction execution and outcome. Let’s look at
one example [62]. First of all, we can see general transaction information - sender,
receiver, status. After this, we can see gas usage information:

35

NEAR Protocol & Smart Contracts

• Attached Gas: Total gas provided for the transaction.
• Gas Used: Actual gas spend.
• Transaction Fee: Gas used multiplied to current gas price, shows an actual

cost of a transaction in NEAR tokens. Also, Deposit Value shows the amount
of NEAR tokens transferred from sender to receiver.

Figure 3.14: Transaction Overview

Below this, we can inspect transaction actions (recall, that transactions may
have multiple actions). In this case, we have a single FunctionCall action with
arguments:

Figure 3.15: Transaction Actions

At the end, transaction execution details, including token transfers, logs, cross-
contract calls and gas refunds are provided. One thing that we haven’t covered yet is
receipts [63]. For most practical purposes they are just a transaction implementation
detail. They are quite useful in a transaction explorer to understand how a
transaction was executed, but aren’t really relevant outside of it.

36

NEAR Protocol & Smart Contracts

A Receipt is the only actionable object in the system. Therefore, when we talk
about "processing a transaction" on the NEAR platform, this eventually means
"applying receipts" at some point. A good mental model is to think of a Receipt as
a paid message to be executed at the destination (receiver). And a Transaction is
an externally issued request to create the Receipt (there is a 1-to-1 relationship).
There are several ways of creating Receipts:

• Issuing a Transaction

• Returning a promise (related to cross-contract calls)

• Issuing a Refund

Figure 3.16: Transaction Execution Plan

37

NEAR Protocol & Smart Contracts

3.7 Contract Upgrades
During the development, and sometimes even in production, updates to a contract’s
code (or even data) are needed. That’s why different contract upgrades mechanisms
have been created.

3.7.1 Contract Upgrades in Local Development
During the local development, we can just recreate a smart contract’s account each
time we deploy a contract (dev-deploy [64] command in NEAR CLI exists for
this). With such an approach, contract data will be purged each time a contract is
redeployed [65].

3.7.2 Upgrades in Stable Environments: Code and State
However, once we move to a more stable environment, like testing or production,
more sophisticated methods are needed. Redeployment of code is quite simple: we
just issue another DeployContract transaction, and NEAR will handle the rest.
The biggest challenge is to migrate contract state - several approaches are possible
[66], but all of them involve some kind of migration code.

3.7.3 Programmatic Updates: Decentralizing the Upgrade
Process

But it can take the upgrade strategy one step further. In the previous strategies,
developers are fully in control of code upgrades. This is fine for many applications,
but it requires some level of trust between users and developers, since malicious
changes could be made at any moment and without the user’s consent. To solve
this, a contract update process itself can also be decentralized - this is called
Programmatic Updates [67]. The exact strategy may vary, but the basic idea is
that the contract update code is implemented in a smart contract itself, and a Full
Access key to the contract account is removed from a blockchain (via DeleteKey
transaction). In this way, an update strategy is transparent to everyone and
cannot be changed by developers at will.

38

Chapter 4

The Economics of Web 3.0: NFTs,
FTs, DeFi and DEX

4.1 NEAR Tokens
The Web 3.0 era marks a significant shift not just in technology but also in
economics, pivoting on three primary elements: Non-Fungible Tokens (NFTs),
Fungible Tokens (FTs), Decentralized Finance (DeFi) and Decentralized Exchange
(DEX).

NEAR Enhancement Proposals Each blockchain has its own set of standards,
and NEAR Protocol ecosystem is defined by a set of standards known as NEAR
Enhancement Proposals (NEP) [68], each outlining specific functionalities and
guidelines for the network. These standards range from token standards to storage
management and more. Below is a brief overview of some of these standards:

NEP-0001 This is the foundational NEP, establishing the purpose and guide-
lines for all subsequent NEPs. It sets the framework for how NEPs are proposed,
reviewed, and implemented.

NEP-0021 A standard interface for fungible tokens allowing for ownership,
escrow and transfer, specifically targeting third-party marketplace integration.

NEP-0141 A standard interface for fungible tokens that allows for a normal
transfer as well as a transfer and method call in a single transaction. The storage
standard addresses the needs (and security) of storage staking. The fungible token
metadata standard provides the fields needed for ergonomics across dApps and
marketplaces.

39

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

NEP-0145 NEAR uses storage staking which means that a contract account
must have sufficient balance to cover all storage added over time. This standard
provides a uniform way to pass storage costs onto users.

NEP-0148 An interface for a fungible token’s metadata. The goal is to keep
the metadata future-proof as well as lightweight. This will be important to dApps
needing additional information about an FT’s properties, and broadly compatible
with other tokens standards such that the NEAR Rainbow Bridge can move tokens
between chains.

NEP-171 Known as the "Non-Fungible Token Standard", establishes a stan-
dard interface for NFTs on NEAR. It introduces functionalities like nft_transfer,
nft_transfer_call, and nft_token, providing a comprehensive framework for NFT
interactions. This standard also includes extensions for Approval Management
and Metadata, enhancing the flexibility and utility of NFTs within the NEAR
ecosystem.

NEP-177 Titled "Non-Fungible Token Metadata", focuses on providing a
lightweight and future-proof metadata structure for NFTs on NEAR. This standard
is crucial for dApps that require detailed information about an NFT’s properties,
ensuring broad compatibility with various token standards. The metadata standard
addresses both the contract level and the individual token level, detailing attributes
like title, description, media, and more.

NEP-0178 A system for allowing a set of users or contracts to transfer specific
Non-Fungible Tokens on behalf of an owner. Similar to approval management
systems in standards like ERC-721.

NEP-0181 Standard interfaces for counting & fetching tokens, for an entire
NFT contract or for a given owner.

NEP-0199 Both focus on Non-Fungible Token Royalties and Payouts, provid-
ing standards for handling royalties and payouts associated with NFT transactions.

NEP-0245 A standard interface for a multi token standard that supports
fungible, semi-fungible, non-fungible, and tokens of any type, allowing for ownership,
transfer, and batch transfer of tokens regardless of specific type.

40

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

NEP-0264 This proposal is to introduce a new host function on the NEAR
runtime that allows for scheduling cross-contract function calls using a ipercent-
age/weight of the remaining gas in addition to the statically defined amount. This
will enable async promise execution to use the remaining gas more efficiently by
utilizing unspent gas from the current transaction.

NEP-0297 Events format is a standard interface for tracking contract activity.

NEP-0330 The contract source metadata is a standard interface that allows
auditing and viewing source code for a deployed smart contract. Implementation of
this standard is purely optional but is recommended for developers whose contracts
are open source.

NEP-0364 This NEP introduces the request of adding into the NEAR runtime
a pre-compiled function used to verify signatures that can help IBC compatible
light clients run on-chain.

NEP-0366 In-protocol meta transactions allow third-party accounts to initi-
ate and pay transaction fees on behalf of the account.

NEP-0393 Soulbound Token (SBT) is a form of a non-fungible token
which represents an aspect of an account: soul. Transferability is limited only
to a case of recoverability or a soul transfer. The latter must coordinate with a
registry to transfer all SBTs from one account to another, and banning the source
account. SBTs are well suited for carrying proof-of-attendance, proof-of-unique-
human "stamps" and other similar credibility-carriers.

NEP-0399 This NEP proposes the idea of Flat Storage, which stores a
flattened map of key/value pairs of the current blockchain state on disk. Note that
original Trie (persistent merkelized trie) is not removed, but Flat Storage allows
to make storage reads faster, make storage fees more predictable and potentially
decrease them.

NEP-0413 A standardized Wallet API method, namely signMessage, that
allows users to sign a message for a specific recipient using their NEAR account.

NEP-0418 This proposal is to switch the behavior of the attached_deposit
host function on the runtime from panicking in view contexts to returning 0. This
results in a better devX because instead of having to configure an assertion that

41

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

there was no attached deposit to a function call only for transactions and not view
calls, which is impossible because you can send a transaction to any method, you
could just apply this assertion without the runtime aborting in view contexts.

NEP-0448 A major blocker to a good new user onboarding experience is
that users have to acquire NEAR tokens to pay for their account. With the
implementation of NEP-366, users don’t necessarily have to first acquire NEAR
tokens in order to pay transaction fees, but they still have to pay for the storage of
their account. To address this problem, NEAR proposes allowing each account to
have free storage for the account itself and up to four keys and account for the cost
of storage in the gas cost of create account transaction.

NEP-0455 Introduce compute costs decoupled from gas costs for individual
parameters to safely limit the compute time it takes to process the chunk while
avoiding adding breaking changes for contracts.

NEP-0492 This proposal aims to restrict the creation of top level accounts
(other than implicit accounts) on NEAR to both prevent loss of funds due to
careless user behaviors and scams and create possibilities for future interopability
solutions.

NEP-0514 This proposal aims to adjust the number of block producer seats
on testnet in order to ensure a positive number of chunk-only producers present in
testnet at all times.

Each NEP plays a critical role in shaping the functionalities, standards, and
governance of the NEAR Protocol, contributing to the overall robustness and
versatility of the ecosystem. NEP-177 and NEP-171 are two significant standards
and I applied these two on our dApp metadata structure.

4.1.1 Non-Fungible Tokens (NFTs)
At the heart of the new Web 3 economy lies Non-Fungible token (NFT) [69]. In a
nutshell, it’s a way to represent digital ownership in a decentralized way. From a
technical perspective, it’s just a piece of data on a blockchain. The simplest case of
such data is just a (token_id, account_id) tuple, where token_id uniquely identifies
an asset, and account_id identifies an owner. A smart contract that owns this
data defines a set of allowed operations - like creation of a new token (minting)
or transfer of a token to another account. An exact set of allowed operations is
defined in an NFT standard.

42

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Because NFTs are tied to a specific contract, they mostly make sense only in
scope of this contract, and subsequently they are tied to a specific dApp. It’s
possible to implement transfer of NFTs between contracts, but there’s no standard
way to do this.

What digital asset is hiding behind a token_id is up to the smart contract to
decide. There are few common ways how to handle this:

• Store an asset itself in a smart contract alongside the ownership information.
This is the most straightforward way, but often is not feasible since storage
cost is quite high and many types of digital assets, especially media, are quite
big.

Figure 4.1: Direct Storage Mechanism for NFTs

• Store token data off-chain. Such an approach solves storage cost problems,
but requires some level of trust to guarantee that data in the off-chain storage
won’t be changed or removed.

Figure 4.2: Off-Chain Storage for NFTs

• Store asset’s metadata and hash on chain, and an asset itself on some off-chain
storage. Storing an asset’s hash on a chain guarantees data integrity and
immutability. On-chain metadata usually includes basic token information,
like title, description and media url. It’s required to quickly identify an asset
without downloading it from the storage. This is the most popular approach
to handle NFT’s since it combines the best of 2 previous approaches - token
is immutable and storage cost is cheap (exact cost depends on the storage

43

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

solution, but it usually several orders of magnitude cheaper than an on-chain
storage)

Figure 4.3: On-Chain Metadata and Hash Storage for NFTs

Choosing the right off-chain storage also can be a challenge, in general they can
be divided into 2 buckets:

• Centralized storages - traditional Web 2 storage solutions, like relational
databases or blob storages. While suitable for some applications, this means
NFTs can be destroyed if a central server goes offline, so they aren’t the most
popular in the Web 3 world.

• Decentralized storages. As we already mentioned, BitTorrent protocol is one
of the first examples of such decentralized storage solutions, but in recent years
more advanced solutions have appeared - like IPFS, FileCoin and Arweawe.
Such solutions are a preferred method to store digital assets, since they are
cheap and decentralized, so no-one can destroy or alter NFT assets.

In addition to the NFT standard, NEAR also provides its implementation [70],
which can be used by Smart Contract developers to implement NFTs in their smart
contract. Implementation itself doesn’t dictate assets storage model, so it’s up to a
developer to decide how and where it will be stored.

4.1.2 Fungible Tokens (FTs)
NFTs changed digital assets ownership model, but by itself they are not enough to
build a full digital economy. In the simplest model, NFTs can be sold and bought
using main blockchain currency (e.g. NEAR tokens), but this is quite limiting since
circulation and price of such tokens is dictated by the blockchain itself. What if,
instead of relying on blockchain currency, applications could create their own? For
exactly this reason, Fungible Tokens (FT) have been created.

Similarly to NFTs, fungible tokens are also just a piece of data stored in a smart
contract, but instead of storing unique token ids, an amount of tokens held by an
account is stored.

44

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Figure 4.4: Structure of Fungible Tokens in Smart Contracts

Smart Contracts can define allowed operations - like transfer or payment using
this token. NEAR defines a standard [71] for fungible tokens and provides a default
implementation [70].

Since an application is fully in control over emission and circulation of such
tokens, a full fledged application economy can be created. For example, users
can earn FTs for performing actions, and spend them to buy or mint new NFTs.
Another exciting option is creation of Decentralized Autonomous Organizations
(DAOs) [72], in which FTs can be used as a membership (or governance) tool. In
such scenarios, tokens are awarded to members and can be used to vote on decisions
or participate in community events.
4.1.3 Decentralized Finance (DeFi) & Decentralized Ex-

changes (DEX)
DeFi [73] stands as a transformative element in Web 3.0, offering an alternative
to traditional financial systems. DeFi’s core concept revolves around creating
financial services, including borrowing, lending, and trading, in a decentralized
setup. This is achieved through various platforms and protocols, with Decentralized
Exchanges (DEX) [74] being a critical component for trading fungible tokens for
other cryptocurrencies or stablecoins. DeFi’s integration with both NFTs and FTs
demonstrates the extensive economic potential of Web 3.0, blending finance with
the new digital asset paradigm. We won’t go into details here, but at the core
a liquidity pool [75] for a Fungible Token can be created on DEX, which allows
trades of this token for other tokens or stablecoins [76]. This opens the door for a
new gaming model - Play-to-Earn [77], where players can earn real-life money just
by playing a game.

4.2 Integrating NFTs in Web 2 Applications
The transformation into Web 3 begins with decentralizing digital assets ownership
through Non-Fungible Tokens (NFTs). This step paves the way for a user-owned
economy, where digital assets exchange hands without developer interference. NFTs
in Web 3 represent any digital asset, like game characters or skins, existing on the
blockchain but require integration with traditional server-based applications.

45

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

4.2.1 Blockchain-Enabled Application Architecture
First of all, let’s outline a typical architecture of a Web 2 application. In most
cases, a classic client-server model is used:

Figure 4.5: Traditional Web 2 Application Architecture

In such architecture, we usually have 3 layers:

• Database - stores application’s data. This can be a single database, or several
databases of different types, but this is mostly an implementation detail - for
our purposes we can view it as a single logical database.

• Server - a centralized web-server. It may be implemented using different
architecture patterns (monolithic, microservices, serverless) and technologies,
but again, we can consider it as a single logical server.

46

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

• Client - client side application user directly interacts with. Different client
types are possible: web, mobile or desktop. There is a difference between
these clients in regards to blockchain integration, which we’ll discuss later.

Now, let’s compare it to a dApp architecture:

Figure 4.6: dApp Architecture with Blockchain Integration

We can notice that there is a common component in these architectures - the
client application. This means we can use it as a junction point to connect them
together.

47

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Figure 4.7: Client as a Junction Point in Hybrid Architectures

A keen reader may notice an additional connection between the Server and
RPC Node. This is required because in a client-server architecture clients cannot
be trusted. That’s why every action performed from the client should be validated
by a backend server. But in this case everything is complicated by the fact that
they essentially have two backends: Web 2 server and a smart contract, so two
possible validation flows are possible:

• Client performs an action on a server, which involves blockchain data. In
this case the server should talk to the blockchain and verify that valid data
is provided.

• Client performs an action on a smart contract, which involves server-owned
data. Since the smart contract can’t talk to the server directly to verify
it, we should use a different way to verify the authenticity of the data. In
blockchain terminology, such a server is called an Oracle [78]. We’ll explore
how to implement both of these approaches later.

48

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

By now, we’ve reached the point where the type of the client begins to mat-
ter. Specifically, problems arise from the dApps payment model - user’s pay for
the blockchain infrastructure using gas, so money goes directly to infrastructure
providers. Also, users make payments directly on the blockchain, without using
any intermediaries, like banks or payment services. This approach is at odds
with mobile app stores (Google Play Store and Apple App Store) - they
don’t allow any payments on their respective mobile platforms without their cut.
Although some shifts in policy are starting to happen (e.g. Apple vs Epic Games
duel [79]), at the time of this writing getting blockchain-enabled applications into
the stores will probably get vetoed by reviewers. There are some ways to bypass
these limitations, e.g. by not using Play Store on Android, but all of these ways
are either sub-par in terms of usability or involve some risk of getting banned by
stores. That’s why for mobile applications an alternative approach is needed.

Sometimes, to move forward we need to take a step back. In this case, to
solve a problem with mobile clients NEAR can return to its initial concept of
having two clients - one for blockchain integration, and another one for Web 2
server. Blockchain client can be a usual web application, which isn’t subject to any
constraints from stores. It can also serve as a connection point between blockchain
and their existing application.

Figure 4.8: Dual-Client Architecture for Mobile App Integration

49

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

In this architecture the mobile client is still allowed to talk to the blockchain, but
only in a read-only way, which doesn’t require wallet connection or any payments.
All actions on the blockchain happen on the Web Client instead. Further in this
guide we’ll use such dual-client architecture, since simpler architecture with a single
client can be directly derived from it by merging two clients together.

At this point, NEAR architecture covers almost everything we need to start
building our application. However, since we want to build a user-owned economy, we
need a marketplace where it’ll happen. An obvious choice is to put this marketplace
into the web client, but there’s one gotcha. If we recall the smart contract’s storage
model, it’s not suitable to serve complex data queries, so an indexer should be used
to aggregate data from blockchain into a proper database.

Figure 4.9: Using Indexers for Enhanced Data Querying

By now, every building-block is in place and we can start exploring how to
implement this architecture in practice.

50

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

4.2.2 NFTs in Web 2 Applications
In order to implement a fully functional application using a hybrid Web 2 -
Web 3 architecture, a lot of technological challenges have to be addressed, like
authentication and authorization, seamless NFTs usage in client and server, and
proper NFT storage model. In the following sections we’ll take a closer look at this
and describe common patterns and approaches.

Authentication and Authorization

Since our digital assets are represented as NFTs on blockchain, in order to use
them in our Web 2 application, a server needs a way to authorize their usage. The
basic idea is pretty simple - it can just read data from blockchain by calling a smart
contract method and check an owner’s account id. For such flow, we have 3 actors:

• Client that wants to use some digital asset (NFT).

• Smart Contract for NFTs should be implemented according to NEAR NFT
standards 4.1.

• Server that verifies ownership of NFT and uses it in its internal logic.

A general flow looks like this:

Figure 4.10: Basic NFT Authorization Flow

51

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

However, such an authorization process cannot be performed without authenti-
cation, so the server also needs a way to authenticate a user.

Recall that the user’s identity on a blockchain is represented by a key pair.
However, since in NEAR a user may have multiple key pairs and an account is a
separate entity, the authentication procedure is a bit more complicated.

To authenticate our requests, we can use public-key cryptography - a client can
sign a request using a user’s private key, and then a server can verify the signature
and key ownership. A typical request with authentication may look like this:

Figure 4.11: Typical request with authentication

where:

• accountId – user’s account id on NEAR.

• publicKey - public key of the key pair used for signature, must be either
Functional or Full access key for the provided account.

• timestamp - current datetime, must be verified on server. It’s needed to
prevent replay attacks [80]. Alternative to timestamps is usage of nonce [81],
but it’s more complicated.

• signature - signature of the request payload and other fields. Usually, a
payload is hashed beforehand.

Depending on the implementation, request body, headers, or other side channels
can be used to transfer authentication data - exact implementation depends on
used technologies and protocols.

52

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Server can use this data to authenticate a request using the following approach:

Figure 4.12: Authentication Data Flow in Web 2 Applications

3 authentication steps are performed on the server:

1. Signature verification - if the signature is correct, we are sure that the client
really has the private key for the provided public key. Also, this proves that
request data hasn’t been modified in transit.

2. Timestamp verification - prevents replay attacks. Server can verify that the
request’s timestamp is not too old (e.g. has been created no more than 10
seconds ago).

3. Public key ownership verification - by calling view_access_key method [82],
we can make sure that the provided public key is really associated with the
provided account.

Such authentication approach is the simplest one, but has a few major draw-
backs:

• Performing a REST API call to RPC Node is quite expensive to do each
time from the performance perspective.

53

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

• It can’t sign requests from the mobile client, since it usually should be
disconnected from the blockchain due to store policies, and hence doesn’t
have a key pair.

• A NEAR account is required in order to start using the application, which
complicates the onboarding process.

To solve the first problem, NEAR can simply issue a JSON Web Token
(JWT) token or authenticate connection in some other way after a successful
NEAR account authentication, so the it will serve as “login” of sorts:

Figure 4.13: Hybrid Authentication Model

54

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

While this may be enough for some applications, it doesn’t address the last
2 problems. In order to solve all of them, NEAR uses a hybrid authentication
approach with 2 accounts:

1. “Classic” Web 2 account - all clients can use this account to call a server.
For example, this can be a simple username/password or OAuth 2 login
with a JWT token.

2. NEAR account - can be used from non-mobile clients only. Instead of
performing NEAR account auth each time it needs to use it, it can do it a
single time in order to “connect” this account to a primary Web 2 account
and store Classic-NEAR account connection in a server database. In this
way NEAR solve all problems - server doesn’t need to authenticate NEAR
account each time it wants to perform an authorization, instead it can read
an associated NEAR account from its own database.

With such hybrid approach, different authentication methods are used for
blockchain and server:

Figure 4.14: NEAR Account Connection Process

55

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

NEAR account connection sequence can be implemented in a very similar way
to the already described NEAR authentication method, where at the end is stores
an authenticated account in a database:

Figure 4.15: Simplified Login Flow with ’Login with Wallet’ Feature

56

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

There’s one more improvement it can make to this flow. Since a Web Client
uses both accounts, a user is forced to login using both Web 2 login method (e.g.
login/password) and NEAR Wallet. This is not ideal from the UX perspective, so
NEAR can simplify it by introducing a “Login with Wallet” method to a server,
which would work when a user already has a wallet connected. It can do this in a
similar way to the account connection flow:

Figure 4.16: Smart Contract Authorization Check

57

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Now, as we’ve discussed possible approaches for authentication, let’s summarize
it as an overall login flow for our clients:

Figure 4.17: Web 2 and Web 3 Hybrid Application Flow

Of course, this is just one possible flow, and a different solution can be assembled
from described building blocks. The most important considerations for choosing
right authentication flow are following:

• Type of your client - for web/desktop clients, or sideloaded Android clients,
it’s possible to use Wallet as a single authentication method. For mobile
clients installed from a store, a hybrid approach with multiple auth methods
should be used.

• Target audience - if you target regular users that are not familiar with
blockchain technologies, having a hybrid auth method to simplify onboarding
might be better than forcing users to learn blockchain before trying your
application.

Blockchain Auth & Auth So far, we’ve discussed authentication and autho-
rization on the Web 2 server’s side. But what about Web 3 smart contracts?
Everything is much more straightforward in this case.

Since everything is public data on the blockchain, we don’t need any authen-
tication for read calls. For transactions, each is signed by an account’s private

58

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

key, and authentication is performed by the network. More details on transaction
signing can be found in this documentation [36].

Authorization, on the other hand, must be performed on a smart contract itself,
the simplest way is just to check whether caller is allowed to perform an action:

Figure 4.18: Rust predecessor example
NFT usage

After we’ve learned how to authenticate users and how to authorize NFTs usage,
let’s find out how we can actually use them in our application.

Since they essentially have two backends in their application - server and smart
contract(s), they both can use NFTs for different purposes:

• Server usually uses NFTs for actual functional purposes, e.g. by treating
NFT as an in-game character, it can read its properties and stats and apply
them using some logic.

• Smart contract is responsible for NFTs ownership, as well as NFTs creation,
modification and burning (destruction).

This is the point where the NFT data storage model comes into place. Let’s
recall, that there are 3 possible options:

1. Store data in a smart-contract (on-chain).
2. Store data in an off-chain decentralized storage [83], like IPFS (off-chain).
3. Store data in an application itself (in-application).

First 2 approaches provide good decentralization, but make NFT harder to
work with, especially if we need to modify its properties. Let’s consider usage
options depending on a storage model used:

1. On-chain storage:

• Server can read data from the blockchain by making an API call. Server
can’t directly modify data, it should make a smart contract call instead
(by issuing a transaction).

• Smart contract can directly read/modify NFT data.
• Clients can read all data directly from the blockchain.

59

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

2. Off-chain storage:

• Server can read data from storage by making an API call. Data on the
off-chain storage is usually immutable, so no modifications are possible.

• Smart contract cannot read data directly, an Oracle should be used.
Data cannot be modified from it.

• Clients should read data from both blockchain and off-chain storage.

3. In-application storage:

• Server can read/modify data from its own database.
• Smart contract cannot read data directly, an Oracle should be used.

Data cannot be modified from it.
• Clients should read data from both blockchain and server.

Depending on a particular use case, any approach, or combination of them, can
be used. The simplest case is when we don’t have any dynamic NFT data, and we
can easily divide data by domains:

• Data that is used by smart contracts is stored on-chain.
• Other data is stored either off-chain or in-application.

Figure 4.19: NFT Data Storage Model Options

60

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

In this approach the server needs to read data from the smart contract, and,
optionally, from an off-chain storage (like IPFS or Database).

This will work well for simple use cases, but everything becomes more compli-
cated if we need to have some dynamic data associated with NFTs. E.g we may
want to have experience points associated with our game character. Such data can
be stored either on-chain or in-application (off-chain storage is also possible, but
it’s more involved, so we won’t discuss it here).

In case of in-application storage, data can be modified by a server without any
problems, but there are few drawbacks:

• In order to read this data, clients should make an API call to the server.
This adds a centralized point for our NFT, and may not be suitable for all
applications.

• If a smart contract requires this data, a server should serve as a Blockchain
Oracle [78], which complicates things.

If we want our server to serve as an oracle for our smart contract, the easiest
way is to cryptographically sign server’s data and verify it on the contract’s side
(server’s public key that was used for signing should be stored in a contract in this
case).

In order to prevent replay attacks, signed data should include a timestamp, which
should also be verified. However, there’s one trick to this - smart contracts can’t
access current time, since it would make them non-deterministic. Instead, transac-
tion signature time can be used - it can be accessed using env::block_timestamp()
function.

Figure 4.20: On-Chain Storage Interaction Diagram

61

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

In order to avoid all these complications, we can instead store dynamic data
on-chain, and use smart contract calls to update it.

Figure 4.21: Off-Chain Storage Interaction Diagram

Such an approach has one drawback - in order to call a smart contract’s method,
a transaction should be created by the server, and in order to create a transaction
it must be signed using an account’s key. That’s why a separate NEAR account
should be created to be used by the server. Actions on the smart contract can be
configured to authorize only this account, so regular users will be disallowed from
modifying such data.

Yet another option is to store data on the server-side, but a smart contract
can authorize only a server account for calls that rely on this data. As with the
previous scenario, the server must have its own NEAR account.

Figure 4.22: In-Application Storage Interaction Diagram

62

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

In general, the approach of storing dynamic data on the Smart Contract side is
much easier, but an important constraint should be considered - storing data on
the blockchain is not cheap, so an appropriate method can be chosen depending on
a scenario.

By now, we’ve covered methods to store and interact with NFTs from our appli-
cation, an exact strategy should be chosen depending on use cases and constraints.
A few things to remember:

• Storing NFTs data in a centralized storage (like an application’s database)
goes against Web 3 philosophy, and should be used sparingly and with care.

• Storage on the blockchain is not cheap, so decentralized off-chain storages
can be used to store large data.

• Storing and using dynamic NFT data is quite tricky, and should be carefully
designed. If such dynamic data is needed by smart contracts, it’s better to
store it inside this contract if possible.

NFT minting

So far, we’ve discussed only how to use NFTs in the application, but how do they
get created?

In the blockchain world, creation of new NFTs is usually called minting. And
as with traditional digital assets, there are few ways how to create them:

• Users can mint them directly. This can be done by either allowing creation
of NFTs from scratch, or by using more complex processes, like breeding
or upgrading. The most famous example of such process is breeding in
CrytoKitties game [84] - new NFTs are created by combining existing ones.
With this approach users usually have to pay to cover the storage and gas
cost of NFTs creation.

• NFTs can be distributed by the developer to a set of users - it is usually
called NFTs airdrop [85]. Most often this is used as a marketing strategy
to kickstart NFTs usage in applications. Storage and gas costs in this case
are covered by developers.

• NFTs can be bought on a market or obtained from the lootbox. Depending
on an exact strategy, costs can either be paid by a user or by developer. Also,
in this case NFTs sometimes can be minted on-demand, to avoid paying
upfront costs.

63

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

An exact strategy used for NFTs minting depends on application use cases.
However, almost always there’ll be an nft_mint_function defined in a smart
contract, which will handle creation of new tokens. This function itself isn’t defined
in the standard [86] and is up to the application to implement, but the standard
library provides a core implementation for it - mint_internal [87]. On top of this
function an additional logic, e.g. for authorization, can be added:

Figure 4.23: Rust nft_mint example

This approach is quite simple, but everything becomes a bit complicated if we
want to provide some on-demand minting functionality to avoid paying upfront
costs. For example, we may want to create a lootbox with a set of predefined items
appearing with some probability.

One approach is to handle this logic on a server side, in this case the server will
call nft_mint function with computed parameters. However, in this case developers
will have to pay the cost of minting. If we want to avoid this, lootbox logic can be
moved into the smart contract itself. If users want to open a lootbox, they can call
a smart contract function and pay for this action (e.g. by using NEAR or Fungible
Tokens). Developers would only need to pay for a lootbox configuration costs, like
possible items and their probabilities.

64

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

4.2.3 Blockchain Onboarding
Before designing an onboarding strategy, the target audience should be carefully
analyzed. As we briefly mentioned before, users can be divided into two broad
buckets:

1. Users that are already familiar with blockchain, have their own wallets and
understand cryptocurrency basics.

2. “Casual” users that aren’t familiar with blockchain and don’t know much
about it.

If only the first category is targeted, then everything is quite simple - users
are already familiar with main concepts, and will have no problem connecting
their own wallet or creating a new one. However, if we want to target the second
category of users as well, a strategy has to be developed to make onboarding into
the blockchain world as smooth as possible. While a lot relies on proper UX and
is very application-specific, a few architectural patterns and technologies exist to
simplify this process: custodial wallets, NEAR drops, Prepaid Gas and Implicit
Accounts.

Custodial Wallet [88] is a wallet which is managed by a third party. In
this case, a wallet can be created and stored on a server side, and all blockchain
operations could be done using the server as a proxy.

Figure 4.24: Custodial Wallet Concept

65

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

In this way, users can remain unaware about the intricacies of blockchain until
they are comfortable enough to claim ownership of this account. Once they are
ready, the server can transfer the account’s ownership and remove it from the
server. However, despite simplifying UX for the users, such approach has a few
significant drawbacks:

• Users should trust NEAR application to manage their accounts.

• Accounts creation is not free, so unless developers want to pay for it, funds
should be transferred from a user to cover this cost. Traditional payment
methods can be used, like PayPal or Apple/Google Pay. However, such an
approach should be used with care for mobile applications due to app stores
policies. Alternatively, NEAR Implicit Accounts can be used to avoid paying
for account creation.

• Unless they want to leave a custodial wallet as the only supported wallet type,
they need to support both types of wallets (custodial and non-custodial) in
application. This will increase implementations complexity, since they need
to support 2 transaction types:

– Server-signed transactions in case of custodial wallet.
– Client-signed transactions in case of non-custodial wallet.

As we mentioned above, Implicit Accounts [89] can be used to avoid paying
account creation costs. This is especially useful for custodial wallets, since it
allows us to create a NEAR Account free of charge. Basically, they work like an
Ethereum/Bitcoin-style account by using a public key as an account id, and later
can be converted to a full NEAR account. However, they have drawbacks as well.
First of all, human-readable account names cannot be used. Also, if you want to
convert it to a proper NEAR account, which can support Functional Call keys, the
account creation fee still has to be paid.

While being very powerful, custodial accounts are quite complex and tricky
to implement. An alternative approach to ease users onboarding is to simplify
creation of a wallet itself. In NEAR, you can do this using NEAR Drops [90].
It allows us to generate a link that guides users through a quick wallet creation
process. However, the same problem as for the custodial accounts applies - creation
of an account is not free. That’s why, such a link has NEAR tokens attached to it
to cover account creation cost and to serve as an initial balance for a newly created
wallet. And as with custodial accounts, funds should be transferred from a user to
cover this cost using traditional payment channels.

Another option to simplify onboarding is usage of the Prepaid Gas concept
[91]. For example, you can issue a Functional Call key that allows users to interact

66

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

with blockchain without having an account created. In this case funds will be
drawn from the developer’s account. This can be used for demo purposes, or to
allow users without a NEAR account to perform some smart contract actions.

4.2.4 NFT Marketplace
At this point, we’ve covered in detail how to integrate NFTs into our Web 2
application, but we’ve stayed away from the economy part. The essential part for
having a functioning economy is a marketplace where users can freely trade and
exchange their NFTs. Such a marketplace usually consists of a smart contract and
a client application. This smart contract is closely integrated with a NFT’s smart
contract using the cross-contract calls. The reason for having a separate smart
contract is two-fold:

• This provides a better separation of concerns - we can modify and upgrade
our marketplace independently from the NFT contract.

• Multiple marketplaces can be used - e.g. we can have an internal marketplace,
and in addition to it users can list their NFTs on external marketplaces. This
is possible because a common NFT standard exists that all marketplaces can
rely on.

General flow of a simple marketplace integration can look like this:

Figure 4.25: Simple Marketplace Integration Flow

67

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

1. Client calls the nft_approve method [92] on the NFT smart contract. This
will approve Marketplace Smart Contract to sell this NFT.

2. After approving an account, NFT smart contract issues a cross-contract call to
the Marketplace to create a sale object. Arguments for this call are provided
as part of the nft_approve call.

3. Another user wants to buy the NFT on sale, so he issues a call to the
marketplace contract offering to buy it. An exact call signature for such
action is not standardized and depends on marketplace implementation.

4. If an offer to buy a NFT is valid, Marketplace issues an nft_transfer_payout
[93] call to transfer the NFT and return payout information. This informa-
tion is used by the Marketplace to distribute profits from the sale between
recipients. In the simplest case, all profits go to a seller.

Such flow looks relatively simple, but a few important details are missing. First
of all, in order to create a sale, storage needs to be paid for. Usually, the seller is
the one who needs to pay for it, but other models are possible - e.g. marketplace
or application developers could cover the cost. If we want users to pay for a sale,
an approach with storage reservation can be used:

• Before approving NFT for sale, a user should reserve storage on the Market-
place contract to cover sale storage requirements.

• After the NFT is bought or delisted, the user can withdraw storage reservation
(remember, that in NEAR storage staking model is used, so data can be
deleted and locked tokens refunded).

68

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

While this model is relatively straightforward, it’s not ideal from the UX
perspective - users must make a separate action to reserve storage if they want to
sell their NFTs. To improve this, we can combine nft_approve call with storage
reservation, and automatically refund back the storage cost after the sale is removed.

Figure 4.26: Storage Reservation Process in NFT Sales

69

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Another missing thing is how a client can read data about available sales. Of
course, sales information can be read directly from a smart contract, but available
data structures are not optimized for searching or filtering. Also, we would have to
join data from the NFT and Marketplace contracts on the client side, which isn’t
efficient. In order to solve these problems, an indexer can be used to aggregate data
into a suitable database, where data can be stored in a way optimal for retrieval
(e.g. a relational database or an ElasticSearch index can be used).

Figure 4.27: Indexing and Data Retrieval in NFT Marketplaces

This is just one example of how a marketplace can be designed, but with it
we’ve covered all basic concepts and problems. Most important points to remember:

• It’s better to implement a marketplace as a separate contract.

• Storage management should be carefully designed, with UX in mind.

• In order to implement a proper searching/filtering functionality, a separate
indexing service is needed.

A more sophisticated marketplace may allow purchases with Fungible Tokens
as payment.

70

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

4.2.5 Implementing Components
Now, let’s explore NEAR choice of libraries, frameworks and third-party solutions
that can be used to implement their architecture.

Client & Server

First of all, how can they interact with blockchain from their clients? If they
need read-level access only, they can simply use the REST API [42], so it can
be integrated into any language and technology without any problems. But
everything becomes more complicated if they need to post transactions from a
client. Remember, that transaction should be signed with a private key which is
stored in a wallet:

• In case of a Functional Call key, it can be obtained from the wallet and
used directly by the client.

• In case of a Full Access key, the user should be redirected to the wallet to
approve a transaction.

A JavaScript API [94] exists to cover all of these scenarios. It has all of the
necessary functionality to integrate Web/Node.JS applications with blockchain.
This SDK is a perfect choice for the Web-based clients, but it’s not suitable for
desktop or mobile based clients. Other libraries can be used for them:

.NET Client [95] - suitable for Unity or Xamarin. Swift [96], textbfPython
[97] and Unity [98].

Same SDKs and libraries can be used for servers. The only difference is that a
server cannot interact with a Wallet, so it must have access to a Full Access key,
which should be stored and accessed in a secure way. Also, another solution is
available if a server uses a technology that doesn’t have NEAR SDK available for -
we can create a separate (micro)service using the Node.js, which would handle all
blockchain interactions:

Contracts

As we discovered in a previous section, for our application we need two smart
contracts: for NFT and for Marketplace. There are two options on how to get them
- use in-house implementation or some third-party/SAAS solution. Both options
are viable and have different pros/cons.

If we want to create our own contract, we are fully in control and can implement
anything we want. An obvious drawback, of course, is that it will take time and
money to build it. Third-party solutions, on the other hand, are limited in their
functionality and often cannot be easily extended. Also, they usually have some
upfront costs and/or usage fees.

71

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Figure 4.28: Proxy Server for Blockchain Interactions

For an in-house NFT contract implementation a few resources can be used as
a starting point. First of all, a Rust library [99] is available which implements
most of the standard. Another option is to build an entire contract from scratch, a
good guide on how to do this is available by this link.

Implementing an own Marketplace contract is more involved since there is no
standard implementation.

As for third-party solutions, the most complete one is Mintibase [100], which
provides a full suite of components for NFTs integration - including contracts,
indexer, API and a web client:

Figure 4.29: Mintbase Suite for NFT Integration

72

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Another option is to roll-out an own NFT contract and integrate with one of
the third-party marketplaces, e.g. with Paras [101].

Figure 4.30: Integration with Third-Party Marketplaces

The major advantage of an external marketplace is the fact that they usually
run their own indexer and expose collected data via an API, so we don’t have to
implement these components. However, they usually have their fee for providing
them, so a cost-benefit analysis should be conducted before using them.

Off-chain storages

Previously, we’ve discussed that storage on the blockchain is not cheap, so in
most cases some decentralized storage solution should be used. A few options are
available:

• IPFS [102] - one of the first decentralized storage solutions, which is widely
used in the blockchain world. However, in order to make sure that data is
preserved on the network, an IPFS node(s) should be maintained.

• Arweawe [103] - blockchain-based decentralized storage.

• Filecoin [104] - another blockchain-based storage.

73

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

• nft.storage [105] - a free service built on top of the IPFS and Filecoin. In
our case, we have decided to use nft.storage for our dApp, more details can
be found in chapter 5.6.2.

A more in-depth overview of such solutions is available in the docs. In general,
there’s no “silver bullet”, so different solutions should be evaluated and the most
suitable chosen. The main concerns while choosing a solution are availability
guarantees, and cost.

Indexer

As we already determined, an indexing service is needed in order to support
marketplace functionality. It usually consists of 3 components:

• Indexer - processes transactions from a NEAR network and puts extracted
data into a database.

• Database - database of choice to store extracted data.

• Indexer API - an API layer on top of the database.

Figure 4.31: Components of an Indexing Service in NFT Marketplaces

While any technology of choice can be used to implement Database and API,
an indexer itself is usually implemented using Rust, since a framework is available
[106] for this language. Guide how to implement your own indexer can be found
here [53].

74

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

Usually, an indexer works by extracting data from Events [56], which are
basically just structured log messages written during contract execution.

The Graph [57] is an alternative to building an indexer from scratch. This is
an Indexer-as-a-Service solution, which simplifies their creation and deployment.

Automated Testing

Automated testing of the code is one of the pillars of modern software development.
But how do we test our dApp?

Recall that a smart contract is a pure function, which can be easily tested using
Unit Tests. Guide on how to write them is available here [107]. Another important
kind of tests that is supported by NEAR are E2E tests, they can be executed either
deploying contract code to either the local network environment (more info here
[108]), or directly to testnet (more info here [109]).

Having both types of tests is equally important to ensure continuous quality of
smart contracts, especially since contract upgrades usually aren’t easy to perform
(remember, that in DAOs upgrade itself might be governed by a community vote).

4.3 Non-Functional Concerns

Last, but not least, let’s cover important non-functional concerns for our architec-
ture.

4.3.1 Security

The most important thing to remember during the entire development is security,
and especially the security of smart contracts. Since their code is public and an
upgrade procedure is not trivial, it should be carefully audited for security issues
and logical exploits.

Another important thing that should be kept secure is a user’s private key. In
most cases, only Functional Call keys should be directly accessed from a client,
and Full Access keys should be kept in a wallet. However, in some cases a Full
Access key might have to be used directly (e.g. in case of server transaction signing
scenarios). In such a case, it must be kept in a secure location and treated as a
most sensitive secret, since its compromise might lead to a full account takeover.

In general, before deploying an application to the NEAR mainnet, it’s a good
idea to conduct a full security audit.

75

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

4.3.2 Scalability and Availability
Another concern is scalability and availability of a solution. There are a lot of ways
to scale traditional servers, but how do we scale NEAR blockchain and make sure
it’s always available?

Since blockchain is decentralized, it provides us with high-availability by design,
and NEAR provides a great scalability by employing Proof-of-Stake consensus and
sharding. However, in order to interact with a network, it needs an RPC Node.
NEAR maintains publicly available nodes for its networks (listed here [110]), but
it doesn’t provide any performance or availability guarantees for them. So, in order
to make sure their architecture is scalable and fault tolerant, NEAR maintains
their own cluster of RPC nodes, typically behind a load balancer.

Figure 4.32: RPC Nodes and IPFS Integration

Information on how to set up an RPC node is available here [111].
Also, to guarantee availability and scalability of a whole system, all used third-

party services should be reviewed as well. For example, if IPFS is used as a storage
for NFTs, pinning nodes and IPFS gateway should be scalable and fault tolerant.

4.3.3 Costs
When building a Web 3 application, it’s important to remember that cost calculation
is somewhat different from Web 2 applications. Additional costs can be broken
down into several categories:

1. Smart Contracts deployment costs. While deploying on NEAR testnet or
local environment, it’s essentially free of charge. However, when deploying

76

The Economics of Web 3.0: NFTs, FTs, DeFi and DEX

into the mainnet, developers will be charged for storage and gas cost. Gas cost
for a contract deployment transaction is relatively small (around 0.04$ at the
time of writing). On the other hand, storage costs can be quite substantial,
e.g. a 150KB contract (compiled) will cost around 20$.

2. Smart Contracts usage cost. In Web 3, users pay for smart contract calls, so
in order to make sure users aren’t discouraged to interact with a contract
due to a high cost, it should be optimized to incur the lowest cost possible.
This is especially important for storage costs, since gas is relatively cheap.

3. If we want to use a privately hosted RPC node for better availability, its
operational costs should be taken into account as well. Cost breakdown can
be found here [112], a rough estimation is about 290$ per node per month
(and remember that it needs at least 2 nodes for redundancy).

4. Cost of a privately hosted indexer (if it’s used). More information can be
found here [54], a rough estimation for the costs is about 100$ per month.

5. Third party services costs.

77

Chapter 5

Setting Up the Development
Environment

This chapter focuses on the comprehensive setup required for our dApp. Our dApp
is designed to create unique NFTs that reflect userMood, userQuotes, userCity, and
userWeather. It also facilitates user authentication and manages a marketplace.
To achieve this, the dApp harnesses the power of NEAR wallets for blockchain
operations, supplemented by external APIs.

In the development of our NEAR Protocol-based dApp, we strategically employ
a variety of APIs to enhance functionality and user experience. This integration is
critical for realizing the full potential of our application. Indexer, NFT.STORAGE,
Google Map, OpenAI and AccuWeather APIs are instrumental in providing essential
real-time data integration for incorporating into NFT attributes.

These APIs, in conjunction with the NEAR Protocol, form a powerful com-
bination that allows for the creation of a sophisticated, feature-rich dApp. They
facilitate a broad range of functionalities, from blockchain interactions and data
storage to creative media generation and real-time data incorporation, thereby
enriching the overall user experience and expanding the capabilities of our dApp
beyond the conventional blockchain framework.

5.1 Foundations of NEAR Protocol Development

Developing on the NEAR Protocol encompasses understanding the use of ReactJS
for frontend JavaScript library for building user interfaces based on components,
Rust for smart contract development, and various APIs for extended functionality.
The setup process equips developers with a suite of tools to write, test, and deploy
smart contracts and create interactive user interfaces for dApps.

78

Setting Up the Development Environment

5.2 Prerequisites for NEAR dApp Development
The development journey begins with the installation of Node.js and npm, foun-
dational tools for JavaScript execution and package management. Using the apt
package manager, the installation commands are executed, followed by verification
steps to ensure successful setup.

Node.js and npm setup commands:
sudo apt update
sudo apt install nodejs npm
Check the installation with node -v and npm -v.
For improved package management and developer experience, Yarn and Node-

mon are installed globally. Yarn offers efficient dependency management, while
Nodemon provides a live development server that watches for file changes.

Yarn and Nodemon installation commands:
sudo npm install -g yarn nodemon

5.3 Rust and WebAssembly Toolchain Installa-
tion

Rust is favored for smart contract development due to its emphasis on safety and
performance. The rustup tool facilitates Rust installation and management. After
installation, the wasm32-unknown-unknown target is added to compile Rust into
Wasm, enabling smart contracts to run on the NEAR Protocol.

Rust installation commands:
curl –proto ’=https’ –tlsv1.2 https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env
rustup target add wasm32-unknown-unknown

5.4 NEAR CLI and near-api-js Library
The NEAR Command Line Interface (CLI) is indispensable for direct interaction
with the NEAR network. Alongside, the near-api-js library provides a JavaScript
interface to connect with NEAR nodes.

NEAR CLI and near-api-js installation commands globally:
sudo npm install -g near-cli
sudo npm install -g near-api-js

79

Setting Up the Development Environment

5.5 Starting Development with NEAR

Two pathways for initiating NEAR development are presented: creating a new
project using create-near-app for a "Hello World" example, or cloning the nft-
tutorial-frontend repository for a pre-configured NFT project with wallet login
functionality.

Commands for the "Hello World" NEAR application setup:
npx create-near-app your-awesome-project
cd your-awesome-project
yarn install
yarn dev
This sets up a local server, and developers can start editing the contract/sr-

c/lib.rs file to write smart contracts in Rust or the src/ directory for frontend
changes in ReactJS.

Commands for cloning and setting up a more complex starting point, clone
the nft-tutorial-frontend repository, which provides a simple NEAR login with
wallet functionality:

git clone https://github.com/near-examples/nft-tutorial-frontend.git
cd nft-tutorial-frontend
yarn install
yarn dev
The repository provides a structured template to build NFT applications on

NEAR, complete with login mechanisms and contract interactions. Also this sets
up a local server, and developers can start editing the contract/src/lib.rs file
to write smart contracts in Rust or the src/ directory for frontend changes in
ReactJS.

5.6 Environment Configuration and API Integra-
tion

The .env.local file is recommended for managing environment variables securely.
API credentials for services like Indexer, NFT.STORAGE, Google Map, OpenAI
and AccuWeather are added to the file, enabling seamless interaction within the
dApp.

APIs play a crucial role in the development of a dApp, extending its capabilities
beyond the blockchain. This section guides through the setup and integration of
various APIs within the NEAR dApp environment.

80

Setting Up the Development Environment

5.6.1 INDEXER.XYZ API for NEAR
The Indexer API, typically used for querying blockchain data efficiently, is vital
for fetching information about transactions, accounts, and smart contracts. Also
we use the Indexer API to populate the marketplace with current NFT data and
transaction history.

To set up, we obtain an API user and key from a service like indexer.xyz for
Explorer.

5.6.2 NFT.STORAGE API for Decentralized Storage
nft.storage API facilitates the decentralized storage of NFT assets on IPFS, ensuring
that the data persists immutably. We use this API to store and retrieve NFT
metadata, media, and other associated content.

We sign up at nft.storage and generate an API key.

5.6.3 Google Maps API for Geolocation Services
Google Maps API integrates mapping and location-based services, allowing users
to visualize geographical data within the dApp. We obtain an API key from the
Google Cloud Platform. In the dApp, we use this API to display minted NFT in
each city by targeting the userMoods on a map or to show a city’s weather forecast.

5.6.4 OpenAI API for Generative Models
The OpenAI API connects to powerful AI models capable of generating images,
text, or other data based on inputs, moderated to ensure compliance with content
policies. We create an account at OpenAI and receive your API key. We also create
a new moderation to prevent the acceptance of names of famous people, names of
cities and historical monuments.

We leverage this API to create images from user-provided moods and quotes,
forming a unique aspect of the minted NFTs.

In future releases, we will try to build a Natural Language Processing (NLP)
model and adjust it like an endpoint to safely prevent NFT media generation
according to our policies.

5.6.5 AccuWeather API for Weather Data
AccuWeather’s API provides accurate and timely weather forecasts, essential for
incorporating real-time weather conditions into NFT attributes. We register for
the AccuWeather API and obtain our key.

81

Setting Up the Development Environment

We use the AccuWeather API to fetch weather data for a given location,
enhancing the user experience by offering personalized NFTs that reflect current
meteorological conditions.

5.7 Managing Dependencies
The package.json file details a comprehensive suite of dependencies integral to the
development and functionality of our dApp. Among these, a significant focus is on
the NEAR Protocol and Web3 technologies, facilitated through various packages.

Key NEAR Protocol dependencies include @near-wallet-selector/core and
@near-wallet-selector/wallet-utils. These packages are pivotal in integrating
NEAR wallet functionalities into the dApp, allowing for seamless user authentication
and transaction signing. The wallet selector modules enable users to choose their
preferred wallet interface, enhancing the user experience.

The Web3 technology stack, particularly through the web3.js package, plays
a vital role in our dApp’s blockchain interactions. This package provides the
necessary tools for interacting with the Ethereum blockchain, including sending
transactions, interacting with smart contracts, and handling blockchain-related
data. A notable use case in our application is converting cryptocurrency values
from Wei to more readable formats, such as Mether . For instance, we employ
Web3.utils.fromWei(nft.price_str, ’mether’) to display NFT prices in a
user-friendly format, especially when fetching data from indexers like indexre.xyz,
where prices are often listed in Wei [113].

Additionally, we utilize the openai package, a key element for integrating AI-
driven features from OpenAI into our dApp. This package is primarily employed
to generate images using OpenAI’s DALL-E, a state-of-the-art image generation
model. By incorporating this capability, our dApp is able to produce unique, AI-
generated visuals based on user inputs or specific data points. This integration not
only enriches the user experience but also demonstrates the potential of combining
blockchain technology with advanced AI applications in creative ways.

The mathematical precision in our dApp is maintained by two important
libraries: bignumber.js and bn.js. bignumber.js is utilized for precise arithmetic
operations, especially crucial in financial applications where accuracy is paramount.
bn.js is another library that aids in handling big numbers, especially when dealing
with blockchain-related calculations where standard JavaScript number precision is
insufficient.

Together, these packages form the backbone of our dApp, ensuring robust
functionality, user-friendly interactions, and precise operations essential in the
blockchain and AI-driven landscape.

82

Setting Up the Development Environment

5.8 Creating and Managing a NEAR Account
Developers require a NEAR account to deploy contracts and perform transactions.
The account creation process is facilitated through the NEAR Wallet website [114].
Additionally, developers can create sub-accounts using the CLI with the following
command:

To log in to your NEAR account, use the command below and follow the
in-browser steps:

near login
It is important to note that while smart contracts can be deployed on master

accounts, there are scenarios where creating additional testing accounts is beneficial
to test specific functionalities. In such cases, it is preferable to deploy contracts
on a sub-account. It’s vital to understand that each account or sub-account can
maintain only one smart contract at a time:

near create-account <sub-account.your-testnet-account>.testnet –
masterAccount <your-testnet-account>.testnet

5.9 Deploying Smart Contracts
After account setup, smart contracts can be compiled to Wasm and deployed on
the NEAR network using the NEAR CLI with commands tailored to the project’s
specific contract and account details.

near deploy –wasmFile <path-to-contract>.wasm –accountId <sub-
account.your-testnet-account>.testnet

5.10 Handling Errors and Debugging
In case of deployment errors, use tools like env-cmd help manage environment vari-
ables during runtime and parcel-bundler to manage environment configurations and
bundle applications, respectively. Keep Node.js updated for the best compatibility
using:

sudo npm cache clean -f
sudo npm install -g n
sudo n stable
This chapter serves to document the technical environment and toolchain

setup in the creation of the NEAR dApp, providing insights into the integration
of blockchain technology with external APIs to deliver a comprehensive user
experience.

83

Chapter 6

Integrating NFTs in Web Apps
and User Interaction Flows
6.1 Smart Contract Interaction
Developing dApps on NEAR protocol involves a seamless integration of smart
contracts with a user-friendly frontend. The smart contracts written in Rust provide
the immutable logic and rules that govern the behavior of the dApp. On the other
hand, the frontend allows users to interact with the smart contracts through a
graphical user interface.

6.1.1 JavaScript Functions for Smart Contract Methods
The smart contract’s capabilities are made accessible on the frontend through
JavaScript functions, which communicate with the contract’s methods. Here are
the JavaScript counterparts for the Rust functions:

Figure 6.1: JavaScript function for nft_mint

84

Integrating NFTs in Web Apps and User Interaction Flows

• nft_mint: This function allows approved users to create new NFTs within a
series. Each NFT inherits metadata and royalty information from the series
it belongs to. The function enforces any limits on the number of copies and
handles financial transactions necessary for minting.

Figure 6.2: JavaScript function for create_series

• create_series: Approved creators can use this function to establish new
NFT series, setting metadata, royalty, and pricing information. The function
ensures uniqueness of series and manages storage costs.

Figure 6.3: JavaScript function for nft_transfer

• nft_transfer: It enables the transfer of NFT ownership from one user to
another, ensuring that only authorized accounts can initiate the transfer.

85

Integrating NFTs in Web Apps and User Interaction Flows

Figure 6.4: JavaScript function for nft_payout

• nft_payout: This function calculates the payout distribution for an NFT
based on its royalty information when a sale occurs.

Figure 6.5: JavaScript function for nft_transfer_payout

• nft_transfer_payout: Similar to nft_transfer, this function not only
transfers the NFT but also returns a payout object detailing the royalty
distribution.

6.1.2 Frontend Integration with Smart Contracts
The frontend of our dApp is built using JavaScript and interacts with the smart
contract through NEAR’s API. The following are some of the methods used in the
frontend to communicate with the smart contract:

86

Integrating NFTs in Web Apps and User Interaction Flows

• View Methods: These are read-only calls to the blockchain that do not
modify the state and typically do not require gas. Examples include:

– get_series: Retrieves details of a specific NFT series.
– get_series_details: Fetches metadata of a series.
– nft_tokens: Lists NFT tokens available in the contract.
– nft_tokens_for_owner: Lists all NFTs owned by a specific account.

• Change Methods: These methods can alter the state on the blockchain,
such as transferring tokens or minting new ones. These operations require
gas to perform. Examples include:

– nft_mint: Mints a new NFT.
– create_series: Creates a new series for NFTs.

6.2 Frontend User Interaction Flow
The following subsections will guide through the frontend application’s key pages,
detailing the user interaction flow and integration with the smart contracts.

6.2.1 Login Page
The dApp begins with a login page accessible to all, including new users. Here,
users can authenticate using their Gmail or Facebook account, also NEAR wallet
login which connects them to the NEAR blockchain and enables interaction with
the smart contracts. Notably, even without signing in, new users can view the
main page, market page and user profiles but cannot mint or transfer NFTs.

Figure 6.6: Showcasing the authentication options

87

Integrating NFTs in Web Apps and User Interaction Flows

6.2.2 Interactive Main Interface

Upon visiting the main interface of the dApp, even non-registered visitors are
greeted with a dynamic and interactive overview. Central to this page is the
ability to search for cities, allowing users to immediately gauge the collective
mood of a selected location. The mood data is represented as a percentage,
visualizing the emotional climate of the city through expressive icons and color-
coding. Additionally, users are treated to an integrated weather forecast feature,
sourcing its data from AccuWeather to provide accurate and current meteorological
conditions alongside the mood representation.

Figure 6.7: Interactive mood visualization and search functionality on the dApp’s
main interface

This seamless integration of mood metrics and weather forecasts offers users an
immersive snapshot of the city’s current atmosphere, combining both emotional
and environmental data. The main page serves as a gateway, offering insights into
the latest NFT collections, enabling direct transactions within the marketplace,
and fostering a sense of community through shared sentiments.

88

Integrating NFTs in Web Apps and User Interaction Flows

Figure 6.8: Integrated weather forecast feature showing current conditions and
predictions

6.2.3 Minting NFT Pop-ups
The user interaction flow on the frontend is designed to provide a smooth and
intuitive experience. Users can perform actions such as creating new NFT series,
minting NFTs, transferring ownership, and viewing their NFT collection. Here’s a
typical flow for a user:

1. The user logs in to the dApp using their NEAR wallet and the first step
allows users to generate an image using OpenAI, based on their mood and a
text prompt.

2. In the second step, users provide an NFT title and select an existing collection
or create a new one with specified metadata and royalty details.

3. The final step involves sending data to NFT.storage, approving the minting
process.

4. Viewing the newly minted NFT on the main page. Explore the tx here [115].

89

Integrating NFTs in Web Apps and User Interaction Flows

Figure 6.9: Generate an image using Generative AI model, NFT title and select
a collection and Sending data to nft.storage, approving the minting process

6.2.4 NFT Details Popup
Clicking on an NFT triggers a popup that displays detailed attributes such as user
mood, quote, city, and weather — all stored off-chain on nft.storage.

Figure 6.10: NFT details popup, highlights the off-chain stored attributes

90

Integrating NFTs in Web Apps and User Interaction Flows

6.2.5 Market Page
The market page serves as the central hub for economic interactions within the
dApp. Here, users can browse, purchase, or place bids on NFTs offered by others.
The page is designed to facilitate easy navigation and interaction with the diverse
range of NFTs available.

Figure 6.11: Showcasing the marketplace functionality and available NFTs

6.2.6 Collection Page
Each user can visit their collection page to view the NFTs they’ve created or
acquired. This page acts as a personal gallery within the dApp.

Figure 6.12: User’s collection page, displays the variety of NFTs owned by the
user

91

Integrating NFTs in Web Apps and User Interaction Flows

6.2.7 User Profile
The user profile page offers a detailed overview of an individual’s engagements
within the dApp. It includes their NFT holdings, transaction history, and allows for
the transfer of NFT ownership. This page is personalized and reflects the unique
activity and preferences of the user.

Figure 6.13: User profile page, demonstrates the features available to the user
regarding their NFT interactions

6.3 Conclusion
6.3.1 Reflecting on the Internship Journey
As this thesis reaches its conclusion, it’s crucial to reflect on the journey that led
to the development of our dApp, a fusion of blockchain technology and creative
expression. The internship period was marked by rigorous learning, innovative
problem-solving, and the successful integration of NEAR protocol smart contracts
with a dynamic, user-centric frontend. Our endeavor to streamline the NFT
creation and management process has not only been a technical challenge but also
an insightful experience into the evolving world of blockchain technology.

6.3.2 Future Updates and Enhancements
Looking ahead, our team is committed to continual improvement and innovation.
Key areas we aim to focus on in upcoming updates include:

92

Integrating NFTs in Web Apps and User Interaction Flows

1. Migration Method for Smart Contracts: We will develop robust methods
for smart contract migration, ensuring our dApp remains adaptable and up-
to-date with blockchain advancements.

2. Dynamic NFTs: Our plan includes designing dynamic NFTs (dNFTs) that
represent real-time weather conditions, starting with Italian cities. This
innovative approach will add a unique, interactive dimension to the NFTs.

3. Advancing Content Moderation with NLP: Our next phase involves im-
proving content moderation by developing an advanced moderation endpoint
with a custom Natural Language Processing (NLP) machine learning model.
This model aims to more effectively filter out prohibited content, particularly
excluding famous personalities’ names and notable city monuments in image
generation, to prevent copyright infringements and better adhere to content
policies.

4. Optimization: Continuous efforts will be made to optimize the smart
contract’s efficiency and reduce the frontend’s footprint, aiming for a leaner,
more performant application.

5. Enhancing User Experience: We intend to revamp the frontend, focusing
on intuitive navigation, aesthetic appeal, and responsive design, to elevate
the overall user experience.

6.3.3 Encouragement and Community Engagement
As we embark on these exciting developments, we immensely value the blockchain
community’s support and feedback. The enthusiasm and insights from users and
enthusiasts have been instrumental in shaping our roadmap. We invite everyone
to continue their support and engagement, as it is the driving force behind our
innovation and dedication to enhancing the NFT landscape.

6.3.4 Final Reflections
This internship has been a transformative journey, blending learning and application
in the ever-evolving blockchain space. The insights gained and the progress made
have set a strong foundation for future endeavors. As we look forward to the
next chapter, our commitment to innovation, user engagement, and pushing the
boundaries of blockchain technology remains stronger than ever. We are excited
about the future of our dApp and its potential to continue evolving and inspiring
the blockchain community.

93

Bibliography

[1] NEAR protocol. url: https://near.org/ (cit. on pp. 1, 15).
[2] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. url:

https://bitcoin.org/bitcoin.pdf (cit. on pp. 1, 5).
[3] A. M. Antonopoulos. «Unlocking Digital Cryptocurrencies. O’Reilly Media».

In: Mastering Bitcoin. 2014 (cit. on pp. 1, 6).
[4] Narayanan A. Bonneau J. Felten E. Miller A. Goldfeder S. «A Comprehensive

Introduction». In: Bitcoin and Cryptocurrency Technologies. 2016 (cit. on
p. 2).

[5] Casey M. J. Vigna P. «How Bitcoin and the Blockchain Are Challenging
the Global Economic Order». In: The Age of Cryptocurrency. 2015 (cit. on
p. 2).

[6] Tapscott A. Tapscott D. «How the Technology Behind Bitcoin Is Changing
Money, Business, and the World». In: Blockchain Revolution. 2016 (cit. on
p. 2).

[7] NightShade. url: https://pages.near.org/papers/nightshade/#night
shade/ (cit. on pp. 2, 22).

[8] Proof-of-stake - Newer Consensus Mechanism. url: https://www.investo
pedia.com/terms/p/proof-stake-pos.asp (cit. on pp. 2, 14).

[9] Rainbow Bridge. url: https://rainbowbridge.app/about/ (cit. on p. 2).
[10] Aurora Pass. url: https://doc.aurora.dev/ (cit. on p. 2).
[11] Octopus Network. url: https://oct.network/ (cit. on p. 2).
[12] ERC-20 Token Standard. url: https://ethereum.org/en/developers/

docs/standards/tokens/erc-20/ (cit. on p. 3).
[13] W.S. Stornetta S. Haber. «How to time-stamp a digital document». In:

Journal of Cryptology, vol 3, no 2, pages 99-111. 1991 (cit. on pp. 5, 7).
[14] Client-Server Architecture. url: https : / / en . wikipedia . org / wiki /

Client%E2%80%93server_model (cit. on p. 7).

94

https://near.org/
https://bitcoin.org/bitcoin.pdf
https://pages.near.org/papers/nightshade/#nightshade/
https://pages.near.org/papers/nightshade/#nightshade/
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://rainbowbridge.app/about/
https://doc.aurora.dev/
https://oct.network/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

BIBLIOGRAPHY

[15] Distribution of global cloud. url: https://www.statista.com/statis
tics/292840/distribution-global-cloud-and-non-cloud-traffic/
(cit. on p. 7).

[16] Stuart Haber Dave Bayer and W. Scott Stornetta. «Improving the Efficiency
and Reliability of Digital Time-Stamping». In: 1992 (cit. on p. 7).

[17] Adam Back. (2002). Hashcash - A Denial of Service Counter-Measure. url:
http://www.hashcash.org/papers/hashcash.pdf (cit. on p. 8).

[18] Buterin, V. (2013). Ethereum White Paper: A Next-Generation Smart
Contract & Decentralized Application Platform. url: https://ethereum.
org/en/whitepaper (cit. on p. 8).

[19] Transaction log. url: https://en.wikipedia.org/wiki/Transaction_
log (cit. on p. 9).

[20] Event Sourcing pattern. url: https://learn.microsoft.com/en-us/
azure/architecture/patterns/event-sourcing (cit. on pp. 9, 33).

[21] Consensus Mechanisms in Blockchain. url: https://www.investopedia.
com/terms/c/consensus-mechanism-cryptocurrency.asp (cit. on p. 9).

[22] Know Your Customer. url: https://en.wikipedia.org/wiki/Know_
your_customer (cit. on p. 11).

[23] Initial Coin Offerings. url: https://www.investopedia.com/terms/i/
initial-coin-offering-ico.asp (cit. on p. 14).

[24] Proof-of-work - Original Consensus Mechanism. url: https://www.inves
topedia.com/terms/p/proof-work.asp (cit. on p. 14).

[25] Solidity. url: https://docs.soliditylang.org/en/v0.8.12/ (cit. on
p. 15).

[26] Scaling Solutions. url: https://ethereum.org/en/developers/docs/
scaling/ (cit. on p. 15).

[27] Layer 2 Scaling. url: https://ethereum.org/en/developers/docs/
scaling/#layer-2-scaling/ (cit. on p. 15).

[28] Sidechains. url: https://ethereum.org/en/developers/docs/scaling/
sidechains/ (cit. on p. 15).

[29] Plasma chains. url: https://ethereum.org/en/developers/docs/
scaling/plasma/ (cit. on p. 15).

[30] Most Commonly used Programming Language. url: https://insights.sta
ckoverflow.com/survey/2021#most-popular-technologies-language-
prof (cit. on p. 16).

95

https://www.statista.com/statistics/292840/distribution-global-cloud-and-non-cloud-traffic/
https://www.statista.com/statistics/292840/distribution-global-cloud-and-non-cloud-traffic/
http://www.hashcash.org/papers/hashcash.pdf
https://ethereum.org/en/whitepaper
https://ethereum.org/en/whitepaper
https://en.wikipedia.org/wiki/Transaction_log
https://en.wikipedia.org/wiki/Transaction_log
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp
https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp
https://en.wikipedia.org/wiki/Know_your_customer
https://en.wikipedia.org/wiki/Know_your_customer
https://www.investopedia.com/terms/i/initial-coin-offering-ico.asp
https://www.investopedia.com/terms/i/initial-coin-offering-ico.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://docs.soliditylang.org/en/v0.8.12/
https://ethereum.org/en/developers/docs/scaling/
https://ethereum.org/en/developers/docs/scaling/
https://ethereum.org/en/developers/docs/scaling/#layer-2-scaling/
https://ethereum.org/en/developers/docs/scaling/#layer-2-scaling/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/plasma/
https://ethereum.org/en/developers/docs/scaling/plasma/
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof

BIBLIOGRAPHY

[31] Rust is the most loved language. url: https://insights.stackoverflow.
com/survey/2021#most-loved-dreaded-and-wanted-language-love-
dread (cit. on p. 16).

[32] NEAR Bitstamp Learn Center. url: https://www.bitstamp.net/learn/
cryptocurrency-guide/what-is-near-protocol-near/ (cit. on p. 17).

[33] NEAR Protocol documentation. url: https://docs.near.org/concepts/
welcome (cit. on p. 17).

[34] Account Model. url: https://docs.near.org/concepts/basics/accoun
ts/model (cit. on p. 18).

[35] Access Keys. url: https://docs.near.org/concepts/basics/accounts/
access-keys (cit. on pp. 18, 27).

[36] Transactions. url: https://docs.near.org/concepts/basics/transac
tions/overview (cit. on pp. 18, 59).

[37] Staking on NEAR. url: https://near-nodes.io/validator/staking-
and-delegation (cit. on p. 18).

[38] WebAssembly. url: https://developer.mozilla.org/en- US/docs/
WebAssembly (cit. on p. 19).

[39] Node Types. url: https://near-nodes.io/intro/node-types#rpc-node
(cit. on pp. 19, 21, 34).

[40] NEAR Explorer Selector. url: https://explorer.near.org/nodes/
validators (cit. on pp. 19, 21, 35).

[41] Thresholded Proof Of Stake. url: https://near.org/blog/thresholded-
proof-of-stake (cit. on p. 20).

[42] Node Setup. url: https://docs.near.org/api/rpc/setup (cit. on pp. 21,
35, 71).

[43] NEAR Protocol’s Economics. url: https://near.org/blog/near-protoc
ol-economics (cit. on pp. 21, 23).

[44] Sharding Design: Nightshade. url: https://pages.near.org/papers/
nightshade/ (cit. on p. 22).

[45] Intro to NEAR Protocol’s Economics. url: https://near.org/blog/near-
protocol-economics (cit. on p. 22).

[46] Gas. url: https://docs.near.org/concepts/basics/transactions/
gas (cit. on p. 22).

[47] Reducing a contract’s size. url: https://docs.near.org/sdk/rust/
contract-size (cit. on p. 23).

96

https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-language-love-dread
https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-language-love-dread
https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-language-love-dread
https://www.bitstamp.net/learn/cryptocurrency-guide/what-is-near-protocol-near/
https://www.bitstamp.net/learn/cryptocurrency-guide/what-is-near-protocol-near/
https://docs.near.org/concepts/welcome
https://docs.near.org/concepts/welcome
https://docs.near.org/concepts/basics/accounts/model
https://docs.near.org/concepts/basics/accounts/model
https://docs.near.org/concepts/basics/accounts/access-keys
https://docs.near.org/concepts/basics/accounts/access-keys
https://docs.near.org/concepts/basics/transactions/overview
https://docs.near.org/concepts/basics/transactions/overview
https://near-nodes.io/validator/staking-and-delegation
https://near-nodes.io/validator/staking-and-delegation
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://near-nodes.io/intro/node-types#rpc-node
https://explorer.near.org/nodes/validators
https://explorer.near.org/nodes/validators
https://near.org/blog/thresholded-proof-of-stake
https://near.org/blog/thresholded-proof-of-stake
https://docs.near.org/api/rpc/setup
https://near.org/blog/near-protocol-economics
https://near.org/blog/near-protocol-economics
https://pages.near.org/papers/nightshade/
https://pages.near.org/papers/nightshade/
https://near.org/blog/near-protocol-economics
https://near.org/blog/near-protocol-economics
https://docs.near.org/concepts/basics/transactions/gas
https://docs.near.org/concepts/basics/transactions/gas
https://docs.near.org/sdk/rust/contract-size
https://docs.near.org/sdk/rust/contract-size

BIBLIOGRAPHY

[48] Storage Staking. url: https://docs.near.org/concepts/storage/
storage-staking (cit. on p. 23).

[49] NEAR Wallet. url: https://wallet.near.org/ (cit. on p. 26).
[50] SDK for smart contracts. url: https://github.com/near/near-sdk-rs

(cit. on p. 30).
[51] Rust Collection Types. url: https://docs.near.org/concepts/storage/

data-storage#rust-collection-types (cit. on p. 30).
[52] Big-O Notation. url: https://docs.near.org/concepts/storage/data-

storage#big-o-notation-1 (cit. on p. 30).
[53] Indexer for Explorer. url: https://docs.near.org/tools/indexer-for-

explorer (cit. on pp. 30, 74).
[54] NEAR Indexer Framework. url: https://docs.near.org/concepts/

advanced/near-indexer-framework (cit. on pp. 31, 77).
[55] NEAR Lake Framework. url: https://docs.near.org/concepts/advanc

ed/near-lake-framework (cit. on p. 31).
[56] Events Format. url: https://nomicon.io/Standards/EventsFormat

(cit. on pp. 33, 75).
[57] The Graph Website. url: https://thegraph.com (cit. on pp. 33, 75).
[58] Building Subgraphs on NEAR. url: https://thegraph.com/docs/en/

cookbook/near/ (cit. on p. 33).
[59] Constructing transactions on NEAR. url: https://github.com/near-

examples/transaction-examples (cit. on p. 35).
[60] NEAR CLI. url: https://docs.near.org/tools/near- cli (cit. on

p. 35).
[61] Creating a NEAR Wallet. url: https://wiki.near.org/overview/

tokenomics/creating-a-near-wallet (cit. on p. 35).
[62] Explorer Example. url: https://explorer.testnet.near.org/transact

ions/ABh4zQ5aZ3CGhpQzstL16TAB8TvqPbiirJG1uTPJVxTt (cit. on p. 35).
[63] Transaction Receipt. url: https://docs.near.org/concepts/basics/

transactions/overview#receipt-receipt (cit. on p. 36).
[64] Deploy Testnet Smart Contract. url: https://docs.near.org/tools/

near-cli#near-dev-deploy (cit. on p. 38).
[65] Rapid Prototyping. url: https://docs.near.org/sdk/rust/building/

prototyping (cit. on p. 38).

97

https://docs.near.org/concepts/storage/storage-staking
https://docs.near.org/concepts/storage/storage-staking
https://wallet.near.org/
https://github.com/near/near-sdk-rs
https://docs.near.org/concepts/storage/data-storage#rust-collection-types
https://docs.near.org/concepts/storage/data-storage#rust-collection-types
https://docs.near.org/concepts/storage/data-storage#big-o-notation-1
https://docs.near.org/concepts/storage/data-storage#big-o-notation-1
https://docs.near.org/tools/indexer-for-explorer
https://docs.near.org/tools/indexer-for-explorer
https://docs.near.org/concepts/advanced/near-indexer-framework
https://docs.near.org/concepts/advanced/near-indexer-framework
https://docs.near.org/concepts/advanced/near-lake-framework
https://docs.near.org/concepts/advanced/near-lake-framework
https://nomicon.io/Standards/EventsFormat
https://thegraph.com
https://thegraph.com/docs/en/cookbook/near/
https://thegraph.com/docs/en/cookbook/near/
https://github.com/near-examples/transaction-examples
https://github.com/near-examples/transaction-examples
https://docs.near.org/tools/near-cli
https://wiki.near.org/overview/tokenomics/creating-a-near-wallet
https://wiki.near.org/overview/tokenomics/creating-a-near-wallet
https://explorer.testnet.near.org/transactions/ABh4zQ5aZ3CGhpQzstL16TAB8TvqPbiirJG1uTPJVxTt
https://explorer.testnet.near.org/transactions/ABh4zQ5aZ3CGhpQzstL16TAB8TvqPbiirJG1uTPJVxTt
https://docs.near.org/concepts/basics/transactions/overview#receipt-receipt
https://docs.near.org/concepts/basics/transactions/overview#receipt-receipt
https://docs.near.org/tools/near-cli#near-dev-deploy
https://docs.near.org/tools/near-cli#near-dev-deploy
https://docs.near.org/sdk/rust/building/prototyping
https://docs.near.org/sdk/rust/building/prototyping

BIBLIOGRAPHY

[66] Migrating the State. url: https://docs.near.org/develop/upgrade#
migrating-the-state (cit. on p. 38).

[67] Programmatic Update. url: https://docs.near.org/develop/upgrade#
programmatic-update (cit. on p. 38).

[68] NEAR NFT Standard. url: https://nomicon.io/Standards/NonFungib
leToken/ (cit. on p. 39).

[69] Non-Fungible Tokens. url: https : / / en . wikipedia . org / wiki / Non -
fungible_token (cit. on p. 42).

[70] Module nearcontractstandardsforFTs. url: https :/ / docs . rs/ near -
contract- standards/latest/near_contract_standards/fungible_
token/index.html (cit. on pp. 44, 45).

[71] Fungible Token Core. url: https://nomicon.io/Standards/FungibleTo
ken/Core (cit. on p. 45).

[72] Decentralized Autonomous Organizations. url: https://near.org/use-
cases/dao/ (cit. on p. 45).

[73] Decentralized Finance. url: https://www.investopedia.com/decentral
ized-finance-defi-5113835 (cit. on p. 45).

[74] Decentralized Exchanges. url: https://en.wikipedia.org/wiki/Decent
ralized_exchange (cit. on p. 45).

[75] Liquidity Pools. url: https://academy.binance.com/en/articles/what-
are-liquidity-pools-in-defi (cit. on p. 45).

[76] Stablecoin. url: https://en.wikipedia.org/wiki/Stablecoin (cit. on
p. 45).

[77] Blockchain game. url: https://en.wikipedia.org/wiki/Blockchain_
game (cit. on p. 45).

[78] Blockchain oracle. url: https://en.wikipedia.org/wiki/Blockchain_
oracle (cit. on pp. 48, 61).

[79] Epic Games v. Apple. url: https://en.wikipedia.org/wiki/Epic_
Games_v._Apple (cit. on p. 49).

[80] Replay Attack. url: https://en.wikipedia.org/wiki/Replay_attack
(cit. on p. 52).

[81] Cryptographic nonce. url: https://en.wikipedia.org/wiki/Cryptogra
phic_nonce (cit. on p. 52).

[82] Access Keys. url: https://docs.near.org/api/rpc/access-keys (cit.
on p. 53).

98

https://docs.near.org/develop/upgrade#migrating-the-state
https://docs.near.org/develop/upgrade#migrating-the-state
https://docs.near.org/develop/upgrade#programmatic-update
https://docs.near.org/develop/upgrade#programmatic-update
https://nomicon.io/Standards/NonFungibleToken/
https://nomicon.io/Standards/NonFungibleToken/
https://en.wikipedia.org/wiki/Non-fungible_token
https://en.wikipedia.org/wiki/Non-fungible_token
https://docs.rs/near-contract-standards/latest/near_contract_standards/fungible_token/index.html
https://docs.rs/near-contract-standards/latest/near_contract_standards/fungible_token/index.html
https://docs.rs/near-contract-standards/latest/near_contract_standards/fungible_token/index.html
https://nomicon.io/Standards/FungibleToken/Core
https://nomicon.io/Standards/FungibleToken/Core
https://near.org/use-cases/dao/
https://near.org/use-cases/dao/
https://www.investopedia.com/decentralized-finance-defi-5113835
https://www.investopedia.com/decentralized-finance-defi-5113835
https://en.wikipedia.org/wiki/Decentralized_exchange
https://en.wikipedia.org/wiki/Decentralized_exchange
https://academy.binance.com/en/articles/what-are-liquidity-pools-in-defi
https://academy.binance.com/en/articles/what-are-liquidity-pools-in-defi
https://en.wikipedia.org/wiki/Stablecoin
https://en.wikipedia.org/wiki/Blockchain_game
https://en.wikipedia.org/wiki/Blockchain_game
https://en.wikipedia.org/wiki/Blockchain_oracle
https://en.wikipedia.org/wiki/Blockchain_oracle
https://en.wikipedia.org/wiki/Epic_Games_v._Apple
https://en.wikipedia.org/wiki/Epic_Games_v._Apple
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://docs.near.org/api/rpc/access-keys

BIBLIOGRAPHY

[83] Decentralized Storage Solutions. url: https://docs.near.org/concepts/
storage/storage-solutions (cit. on p. 59).

[84] CryptoKitties. url: https://www.cryptokitties.co/ (cit. on p. 63).
[85] NFTs airdrop. url: https://www.investopedia.com/terms/a/airdrop-

cryptocurrency.asp (cit. on p. 63).
[86] Non-Fungible Tokens. url: https://nomicon.io/Standards/Tokens/

NonFungibleToken/ (cit. on p. 64).
[87] internalmintwithrefundmethod. url: https://docs.rs/near-contract-

standards/latest/near_contract_standards/non_fungible_token/
core/struct.NonFungibleToken.html#method.internal_mint (cit. on
p. 64).

[88] Custodial Wallets. url: https://www.coindesk.com/learn/custodial-
wallets-vs-non-custodial-crypto-wallets/ (cit. on p. 65).

[89] Implicit Accounts. url: https://docs.near.org/concepts/basics/
accounts/account-id#implicit-accounts-implicit-accounts (cit. on
p. 66).

[90] NEAR Drops. url: https://near.org/blog/send-near-to-anyone-
with-near-drops (cit. on p. 66).

[91] Prepaid Gas. url: https://docs.near.org/concepts/basics/transact
ions/gas#what-about-prepaid-gas-what-about-prepaid-gas (cit. on
p. 66).

[92] Approval with cross-contract call. url: https://nomicon.io/Standards/
Tokens / NonFungibleToken / ApprovalManagement # 2 - approval - with -
cross-contract-call (cit. on p. 68).

[93] Royalties and Payouts. url: https://nomicon.io/Standards/Tokens/
NonFungibleToken/Payout (cit. on p. 68).

[94] NEAR JavaScript API. url: https://docs.near.org/tools/near-api-
js/quick-reference (cit. on p. 71).

[95] NearClient. url: https://github.com/good1101/NearClientApi/tree/
master/NearClient (cit. on p. 71).

[96] near-api-swift. url: https://github.com/near/near-api-swift (cit. on
p. 71).

[97] near-api-py. url: https://github.com/near/near-api-py (cit. on p. 71).
[98] near-api-unity. url: https://github.com/near/near-api-unity (cit. on

p. 71).

99

https://docs.near.org/concepts/storage/storage-solutions
https://docs.near.org/concepts/storage/storage-solutions
https://www.cryptokitties.co/
https://www.investopedia.com/terms/a/airdrop-cryptocurrency.asp
https://www.investopedia.com/terms/a/airdrop-cryptocurrency.asp
https://nomicon.io/Standards/Tokens/NonFungibleToken/
https://nomicon.io/Standards/Tokens/NonFungibleToken/
https://docs.rs/near-contract-standards/latest/near_contract_standards/non_fungible_token/core/struct.NonFungibleToken.html#method.internal_mint
https://docs.rs/near-contract-standards/latest/near_contract_standards/non_fungible_token/core/struct.NonFungibleToken.html#method.internal_mint
https://docs.rs/near-contract-standards/latest/near_contract_standards/non_fungible_token/core/struct.NonFungibleToken.html#method.internal_mint
https://www.coindesk.com/learn/custodial-wallets-vs-non-custodial-crypto-wallets/
https://www.coindesk.com/learn/custodial-wallets-vs-non-custodial-crypto-wallets/
https://docs.near.org/concepts/basics/accounts/account-id#implicit-accounts-implicit-accounts
https://docs.near.org/concepts/basics/accounts/account-id#implicit-accounts-implicit-accounts
https://near.org/blog/send-near-to-anyone-with-near-drops
https://near.org/blog/send-near-to-anyone-with-near-drops
https://docs.near.org/concepts/basics/transactions/gas#what-about-prepaid-gas-what-about-prepaid-gas
https://docs.near.org/concepts/basics/transactions/gas#what-about-prepaid-gas-what-about-prepaid-gas
https://nomicon.io/Standards/Tokens/NonFungibleToken/ApprovalManagement#2-approval-with-cross-contract-call
https://nomicon.io/Standards/Tokens/NonFungibleToken/ApprovalManagement#2-approval-with-cross-contract-call
https://nomicon.io/Standards/Tokens/NonFungibleToken/ApprovalManagement#2-approval-with-cross-contract-call
https://nomicon.io/Standards/Tokens/NonFungibleToken/Payout
https://nomicon.io/Standards/Tokens/NonFungibleToken/Payout
https://docs.near.org/tools/near-api-js/quick-reference
https://docs.near.org/tools/near-api-js/quick-reference
https://github.com/good1101/NearClientApi/tree/master/NearClient
https://github.com/good1101/NearClientApi/tree/master/NearClient
https://github.com/near/near-api-swift
https://github.com/near/near-api-py
https://github.com/near/near-api-unity

BIBLIOGRAPHY

[99] Rust Crate nearcontractstandards. url: https://docs.rs/near-contra
ct-standards/latest/near_contract_standards/index.html (cit. on
p. 72).

[100] Mintbase, NEAR NFT Launchpad. url: https://www.mintbase.xyz/
(cit. on p. 72).

[101] Paras Social NFT Marketplace. url: https://paras.id/ (cit. on p. 73).
[102] IPFS Website. url: https://ipfs.io/ (cit. on p. 73).
[103] Arweawe Website. url: https://www.arweave.org/ (cit. on p. 73).
[104] Filecoin Website. url: ipns://filecoin.io/ (cit. on p. 73).
[105] NFT STORAGE Website. url: https://nft.storage/ (cit. on p. 74).
[106] NEAR Indexer. url: https://github.com/near/nearcore/tree/master

/chain/indexer (cit. on p. 74).
[107] Unit Testing. url: https://docs.near.org/develop/testing/unit-

test (cit. on p. 75).
[108] Setting Up Testing. url: https://docs.near.org/develop/testing/

introduction (cit. on p. 75).
[109] Integration Test. url: https : / / docs . near . org / develop / testing /

integration-test (cit. on p. 75).
[110] NEAR Mainnet RPC Status. url: https://rpc.mainnet.near.org/

status (cit. on p. 76).
[111] RPC Nodes. url: https://near-nodes.io/rpc (cit. on p. 76).
[112] Hardware Requirements for RPC Node. url: https://near-nodes.io/

rpc/hardware-rpc (cit. on p. 77).
[113] Wei. url: https://academy.binance.com/en/glossary/wei (cit. on

p. 82).
[114] NEAR Testnet Wallet. url: https://wallet.testnet.near.org/ (cit. on

p. 83).
[115] NEAR Testnet Minted Transaction. url: https://explorer.testnet.

near.org/transactions/2LeFqiUFXmqV8Sc8E9XW947RikCpcwjkdW4fVUN
DpwYm/ (cit. on p. 89).

100

https://docs.rs/near-contract-standards/latest/near_contract_standards/index.html
https://docs.rs/near-contract-standards/latest/near_contract_standards/index.html
https://www.mintbase.xyz/
https://paras.id/
https://ipfs.io/
https://www.arweave.org/
ipns://filecoin.io/
https://nft.storage/
https://github.com/near/nearcore/tree/master/chain/indexer
https://github.com/near/nearcore/tree/master/chain/indexer
https://docs.near.org/develop/testing/unit-test
https://docs.near.org/develop/testing/unit-test
https://docs.near.org/develop/testing/introduction
https://docs.near.org/develop/testing/introduction
https://docs.near.org/develop/testing/integration-test
https://docs.near.org/develop/testing/integration-test
https://rpc.mainnet.near.org/status
https://rpc.mainnet.near.org/status
https://near-nodes.io/rpc
https://near-nodes.io/rpc/hardware-rpc
https://near-nodes.io/rpc/hardware-rpc
https://academy.binance.com/en/glossary/wei
https://wallet.testnet.near.org/
https://explorer.testnet.near.org/transactions/2LeFqiUFXmqV8Sc8E9XW947RikCpcwjkdW4fVUNDpwYm/
https://explorer.testnet.near.org/transactions/2LeFqiUFXmqV8Sc8E9XW947RikCpcwjkdW4fVUNDpwYm/
https://explorer.testnet.near.org/transactions/2LeFqiUFXmqV8Sc8E9XW947RikCpcwjkdW4fVUNDpwYm/

	List of Figures
	Acronyms
	Introduction
	Blockchain Fundamentals
	Decentralization in Web Development
	Centralized Internet
	File Sharing Protocol & P2P Communication

	Blockchain basics
	Concepts of Blockchain & Smart Contracts
	Consensus Mechanism
	Blockchain Nodes
	Smart Contract's Unique Attributes
	Backend Structure of a dApp
	dApp User's Authentication
	Financial Dynamics

	Dominant Consensus Mechanisms in Modern Blockchain
	Selecting the Ideal Blockchain to implement dApps

	NEAR Protocol & Smart Contracts
	Accounts & Transactions
	Transaction (Action) Types
	Smart Contract Invocation Methods

	Nodes & Validators
	Types of Nodes
	Validators & Network Security
	Economy of Validators
	Overview of Validators

	Gas & Storage
	Gas and Its Implications
	Cost Storage & Mechanism
	Gas as a Developer Incentive
	The Concept of Free Transactions
	Understanding Gas Units & Gas Price
	Correlating Gas to Computational Resources
	1S Block Production & Associated Costs

	Clients Integration
	Access Keys

	Cross-Contracts Calls
	Data Management
	Data Structures
	Relational Databases using Indexers
	NEAR Data Flow
	Event Logging
	Introduction to Blockchain Indexers
	Interaction with NEAR Network
	Account Management
	NEAR Explorer

	Contract Upgrades
	Contract Upgrades in Local Development
	Upgrades in Stable Environments: Code and State
	Programmatic Updates: Decentralizing the Upgrade Process

	The Economics of Web 3.0: NFTs, FTs, DeFi and DEX
	NEAR Tokens
	Non-Fungible Tokens (NFTs)
	Fungible Tokens (FTs)
	Decentralized Finance (DeFi) & Decentralized Exchanges (DEX)

	Integrating NFTs in Web 2 Applications
	Blockchain-Enabled Application Architecture
	NFTs in Web 2 Applications
	Blockchain Onboarding
	NFT Marketplace
	Implementing Components

	Non-Functional Concerns
	Security
	Scalability and Availability
	Costs

	Setting Up the Development Environment
	Foundations of NEAR Protocol Development
	Prerequisites for NEAR dApp Development
	Rust and WebAssembly Toolchain Installation
	NEAR CLI and near-api-js Library
	Starting Development with NEAR
	Environment Configuration and API Integration
	INDEXER.XYZ API for NEAR
	NFT.STORAGE API for Decentralized Storage
	Google Maps API for Geolocation Services
	OpenAI API for Generative Models
	AccuWeather API for Weather Data

	Managing Dependencies
	Creating and Managing a NEAR Account
	Deploying Smart Contracts
	Handling Errors and Debugging

	Integrating NFTs in Web Apps and User Interaction Flows
	Smart Contract Interaction
	JavaScript Functions for Smart Contract Methods
	Frontend Integration with Smart Contracts

	Frontend User Interaction Flow
	Login Page
	Interactive Main Interface
	Minting NFT Pop-ups
	NFT Details Popup
	Market Page
	Collection Page
	User Profile

	Conclusion
	Reflecting on the Internship Journey
	Future Updates and Enhancements
	Encouragement and Community Engagement
	Final Reflections

