
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Develop a UVM Metric Driven
Verification Environment for Mixed

Signal Simulation

Supervisors

Prof. Maurizio MARTINA

Internship Tutors

Engr. Giacomo CAPPELLIN

Engr. Martino ZERBINI

Candidate

Roman ALI

April 2024

Summary

This thesis discusses the development of a Universal Verification Method-
ology (UVM) based Metric-Driven Verification (MDV) environment to
efficiently and effectively verify Mixed-Signal Designs. The UVM pro-
vides a standardized framework for developing portable, reusable, and
easy-to-maintain simulation environments. The thesis explains the struc-
ture of mixed signal environment, the challenges faced in the simulation
of mixed-signal environment and the use of tools such as Xcelium, Spec-
tre, and Virtuoso in the simulation process. The integration of UVM
testbenches and MDV techniques with simulation tools is discussed,
along with the importance of assertions and auto checks for analog and
digital signals. The text also explores the use of modeling techniques
such as Real Number Modeling (RNM) to create models for analog
signal generators to reduce simulation times.

First part of the thesis involves the setup of a mixed signal simulation
environment for Analog Mixed Signal (AMS) designs, which contains
both analog and digital components. The Cadence tool Virtuoso is
used to build the mixed signal simulation environment, which handles
all the analog schematics, digital design files, and testbench files. The
environment includes separate simulators for analog and digital parts of
the design, and the simulation is run according to the mixed signal con-
figurations chosen during the setup in the tool. The passages also discuss
the structure of the mixed simulation environment and the settings that
can be configured through the GUI tool. These settings include selecting
simulator options, specifying connect modules, and including digital
design files, libraries, and testbench files in the simulation environment.
The steps involved in starting the netlisting and simulation process for
the mixed signal simulation environment are also described, including
setting up the transient analysis time and selecting interactive or batch
mode for simulation. During the netlisting process, a unified netlist
of all the analog and digital parts of the design is created, along with

ii

scripts for all the settings and configurations selected. The simulation
log window opens once the simulation starts, and the waveforms can be
viewed in the VIVA waveform window at the end of the simulation.

The next step involves development of a command line-based environ-
ment for launching multiple simulations in a mixed simulation environ-
ment. The "runams" command is used to extract the unified netlist
and simulation scripts required for simulation. The simulation scripts
extracted by "runams" contain the settings and configurations chosen in
the ADE explorer for the mixed simulation environment, which can be
modified for distinct multiple simulations from the command line. The
"runSimulation" script present in the netlist folder of all the multiple
simulation directories is used to run the simulation by invoking XRUN
with the "xrunArgs" arguments. The simulations are run in batch mode
without GUI, and the progress and results of the simulations can be
viewed in the "xrun.log" and "psf" folder, respectively. This approach
streamlines the process and makes it faster to launch multiple simulations
without invoking the GUI.

Secondly, the concept of analog assertions in SystemVerilog is discussed,
which are used to check the correctness of a design by verifying that
certain properties always hold true. We also discussed the two types of
assertions, immediate and concurrent, and their applications in mixed-
signal designs. We then focused on the complexities of checking the
integrity of analog signals in a mixed simulation environment and the
features that need to be checked to verify the correctness of the signal.
We then discussed the implementation of several assertion checkers
for analog signals, including the frequency checker, amplitude checker,
high/low time checker, and rise/fall time checker. We also discussed the
benefits of using analog assertions, such as providing an automatic way
to verify the features of analog signals, being built in modules that can
be reused multiple times in the same testbench for signals with similar
features. By leveraging these analog assertion checkers, verification
engineers can improve the efficiency and effectiveness of the verification
process for analog circuits.

Third part of thesis discusses the implementation of signal generators
using real number modeling (RNM). Signal generators are electronic
devices that produce electrical waveforms at various frequencies and
amplitudes. RNM is a mathematical technique used to represent and
analyze physical systems using real numbers. The signal generators can

iii

be used to provide input stimulus for analog systems when being verified.
The generators include sine wave, triangular wave, and square wave, with
various features such as frequency range, amplitude control, duty cycle
control, rise/fall time control, and differential output. The generators
are controlled by a virtual interface, and the testbench stimulus provided
in the test class.

Lastly, the thesis discusses the methodology of metric driven verification
(MDV) for verifying the functionality of an AMS design. MDV involves,
firstly, defining a verification plan, based on specifications of the device,
where all the features that need to be covered by assertions/covergroups
are listed. Secondly, MDV involves defining set of metrics to measure
the quality and completeness of the verification process, such as code
coverage, functional coverage, and performance metrics based on the
verification plan. The goal of MDV is to ensure that the design meets the
required specifications and reduce the risk of design errors. The merging
of metrics is also discussed, which involves combining multiple metrics
to gain a more comprehensive results for the desired verification goals.
Multiple simulations with distinct configurations are run in parallel to
collect these metrics for verifying the DUT using randomized input
stimuli. The coverages related to covergroups and analog assertions are
discussed, and the multiple metrics from simulation runs are merged to
achieve the desired coverages.

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Martino Zerbini
and Giacomo Cappellin for their invaluable guidance, support, and encouragement
throughout my thesis. Their insightful comments, constructive feedback, and
unwavering commitment have been instrumental in shaping this thesis. I am also
grateful to them for providing me with the opportunity to conduct my thesis at
STMicroelectronics.

I am also grateful to my unversity supervisor, Maurizio Martina, for his assis-
tance and support in various aspects of my thesis. His contributions have been
invaluable and has helped me to complete this thesis successfully.

I would like to extend my heartfelt thanks to my family for their unwavering
support, love, and encouragement. Their constant support and motivation have
kept me going during the challenging times.

Finally, I would like to thank all the participants who took part in my thesis
and shared their valuable insights and experiences. Without their cooperation, this
thesis would not have been possible.

Once again, I express my sincere gratitude to all those who have helped and
supported me throughout my thesis journey.

v

Table of Contents

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Background . 1
1.2 Motivation and Scope . 2
1.3 Training . 4

2 Mixed Signal Simulation Environment 5
2.1 Mixed Simulation through GUI . 6
2.2 Mixed Simulation through Command Line 9

2.2.1 Extracting Simulation Scripts through Command Line . . . 10
2.2.2 Multiple Simulation Setup 13
2.2.3 Running the Simulation . 16

2.3 Mixed Simulation Setup: The Other Way 16

3 Assertions for Analog and Mixed Signals 18
3.1 Types of Assertions . 18
3.2 Features of Analog Signals . 19
3.3 Assertion Checkers for Analog Signals 21

3.3.1 Frequency Checker . 21
3.3.2 Amplitude Checker . 24
3.3.3 High/Low Time Checker . 26
3.3.4 Rise/Fall Time Checker . 28

3.4 Benefits of Analog Assertions . 30

4 Signal Generators Modelling 32
4.1 Specification and Features . 33
4.2 Implementation of Signal Generators 33

4.2.1 Sine Wave generator . 34

vii

4.2.2 Triangular Wave Generator 37
4.2.3 Square Wave Generator . 40

5 Metric-Driven Verification 44
5.1 Randomized Stimulus Coverage . 45
5.2 Assertion based Functional Coverage 48

6 Conclusion 50

A Training 52
A.1 Course: SystemVerilog for Design and Verification 52
A.2 Course: Essential SystemVerilog for UVM 52
A.3 Course: SystemVerilog Assertions 53
A.4 Course: Real Modeling with SystemVerilog 53
A.5 Course: Mixed-Signal Simulations Using Spectre AMS Designer . . 53
A.6 Course: Command-Line-Based Mixed-Signal Simulations with the

Xcelium™ Use Model . 54
A.7 Course: Design Checks and Asserts 54
A.8 Course: Foundations of Metric Driven Verification 54

viii

List of Figures

2.1 Mixed Signal Simulation Environment 6
2.2 AMS Simulator Options (Image is courtesy of Cadence Design Systems) 7
2.3 Connect Modules/IE Setup (Image is courtesy of Cadence Design

Systems) . 8
2.4 Connect Modules Example . 8
2.5 Including Digital Files (Image is courtesy of Cadence Design Systems) 9
2.6 Extracting Simulation Scripts from command line 11
2.7 Directory Structure of Mixed Simulation 12
2.8 Probe.tcl File . 14
2.9 amsControlSpectre.scs File . 14
2.10 xrunArgs File . 15
2.11 Running the Simulation . 16

3.1 Frequency calculation of a Signal 22
3.2 Frequency Assertion Example . 24
3.3 Amplitude Assertion Example . 26
3.4 High Time of a signal . 27
3.5 High Time Assertion Example . 28
3.6 Rise Time Assertion Example . 30

4.1 Phase Waveform . 34
4.2 Sine Waveform . 36
4.3 Differential Sine Waveform . 36
4.4 Triangular Waveform . 39
4.5 Square Waveform . 43

5.1 Covergroup Coverage for Single Simulation Run 47
5.2 Covergroup Coverage for Five Simulation Runs 47
5.3 Assertion Coverage Result for Single Run 48
5.4 Assertion Coverage Result by Merging Metrics From Multiple Runs 49

ix

Listings

2.1 Runams Command and its Arguments 11
3.1 Immediate Assertion Example . 18
3.2 Concurrent Assertion Example . 19
3.3 $cds_get_analog_value Example 20
3.4 Frequency Checker Assert Block . 21
3.5 Realtime Frequency Calculation Block 23
3.6 $sserton $assertoff Implementation 24
3.7 Amplitude Checker Assert Block . 25
3.8 Amplitude Assertion Enable Block 25
3.9 High Time Calculation Block . 26
3.10 High Time Assertion Block . 27
3.11 Rise Time calculation Block . 28
3.12 Rise Time Assertion Block . 30
4.1 Phase Calculation . 34
4.2 Sine Wave Function . 35
4.3 Sine Wave Interface and Stimulus 35
4.4 Differential Sine Wave Code . 36
4.5 Triangular Wave Initializer . 37
4.6 Triangular Wave Generation Block 38
4.7 Triangular Wave Interface and Stimulus 38
4.8 Square Wave Initializing Block . 40
4.9 Square Wave Generation Block . 41
4.10 Square Wave Interface and Stimulus 42
5.1 Covergroup Configuration . 46

x

Acronyms

MDV
Metric-Driven Verification

UVM
Universal Verification Methodology

SV
SystemVerilog

SVA
SystemVerilog Assertion

PSL
Property Specification Language

RNM
Real-Number Modeling

AMS
Analog and Mixed Signal

GUI
Graphical User Interface

ASIC
Application-Specific Integrated Circuit

DUT
Design Under Test

xii

RTL
Register Transfer Level

xiii

Chapter 1

Introduction

1.1 Background
Verification is a critical step in the development of any silicon chip or system,
ensuring that it meets its functional requirements and specifications. The process
involves testing and verifying the design at various stages of development, from
the initial design phase to the final production stage. Silicon chips have increased
in complexity over time, and traditional waveform checks have become obsolete.
Therefore, there is a need to find new ways to verify these complex silicon chips as
fast as possible efficiently and effectively.

The verification of digital systems has been widespread in the silicon industry for
some time. It has become efficient and more automated in the industry. The goal of
digital verification is to ensure that the design meets the functional and performance
requirements specified by the design team. Verification is a time-consuming and
resource-intensive process that often accounts for a significant portion of the overall
design cycle.

On the other side of the scope, the verification process for analog chips typi-
cally involves a combination of simulation and testing. The simulation process
uses software tools to model the behavior of the analog circuitry and predict its
performance. Simulation tools can be used to verify the functionality of the circuit,
analyze its performance under different operating conditions, and optimize the
design for performance and power consumption.

The silicon chips in the industry are not always digital-only or analog-only.
Many of the complex chips designed nowadays are Mixed Signal Integrated Circuits,
which contains both analog and digital components. The design process is complex

1

Introduction

and requires expertise in both analog and digital designs, as well as consideration
of the interactions between the two types of circuitries. The design must ensure
that the analog and digital signals interact but do not interfere with each other
and that the circuit performs reliably and accurately.

The verification of analog-only circuits and verification of digital-only circuits is
common in industry and there has been a lot of research to make them efficient
reliable and fast. When it comes to mixed signal verification, it is a relatively
new concept, and not a lot of work is done to find methodologies to verify the
functionality of these mixed signal devices efficiently and reliably. The verification
is not complete by just testing the analog components separately using analog-only
methods and digital components separately by digital only methods. On the scope
of whole device, the analog and digital components interact with each other and
there should be a verification system which can handle both analog and digital
components and the whole device as one unit.

Mixed Signal Environment with Metric-Driven Verification(MDV) provides an
automated and systematic approach to verification of these mixed signal designs,
allowing designers to quickly identify and fix errors in their designs.

1.2 Motivation and Scope
A Universal Verification Methodology (UVM) based MDV environment for mixed
signal is the answer for this complex problem. The UVM methodology is widely
used in digital verification and provides a standardized framework for developing
verification environments. UVM provides a framework for creating simulation
environment that is portable, reusable, and easy to maintain. By extending the
UVM methodology to mixed-signal simulation, we aim to provide a more efficient
and effective approach to verifying mixed-signal designs.

Mixed signal verification is a complex process, as it involves testing both analog
and digital components of the system. Digital components are tested using digital
simulation tools. In this project Cadence tools are used so Xcelium is being used as
digital simulator, while the analog components are tested using analog simulation
tools, which is Spectre in this project. The interaction between the analog and
digital components is also tested using mixed signal simulation tools. This task is
performed by another cadence tool Virtuoso. This tool act as a cockpit, handling
the schematics, digital design files, simulator settings and simulations. Understand-
ing how these tools run in collaboration is the key to ensure the correct behavior

2

Introduction

of analog and digital simulations and their correct interaction with each other.

This mixed signal simulation environment is extensively studied in this thesis.
We will discuss, how the UVM testbenches and MDV techniques are integrated with
the simulation tools to verify the features and specifications of analog and digital
components. The features of the tools used in the simulation will be discussed as
well. We will also discuss, how we can use this environment to efficiently run the
mixed signal simulation.

MDV involves running the simulation multiple times with different configu-
rations and test classes to verify the mixed signal designs and then collecting
the functional and covergroup coverages from these regression runs to ensure the
correct behavior of these designs. The simulation environment should be robust
modular and customizable to make user select between multiple configurations
and testclasses as well as the number of simulations to run on the go. This is
done by writing some scripts and integrating them with the UVM testbench and
simulation tools which make user eligible to run multiple simulations with different
specifications from command line making the concept of MDV realizable.

Assertions and autochecks for analog and digital signals are important com-
ponents of this project to ensure correct behavior of mixed signal device. These
assertions and design autochecks are also integrated in the mixed signal simulation
environment and ensure the verification of the analog as well as digital signal in
the whole device. Coverages from these assertions or covergroups are collected for
multiple simulations using the coverage collector tool, IMC for this project. These
coverages from multiple simulations are then merged together, using the same tool,
to receive a more robust and complete verification of the device.

A mixed signal simulation even with UVM based environment takes significantly
more time than a digital simulation. Modelling of the analog blocks in the design is
the solution for this problem. Multiple modelling techniques are available to develop
different levels of efficiency and accuracy compared to the original analog design.
Real Number Modeling (RNM) in SystemVerilog(SV) and Modeling in Verilog-AMS
are some examples. The analog blocks in the design can be replaced by the modeled
counterparts to significantly reduce the simulation times. Some models for config-
urable signal generators are developed in RNM to explore this concept in this thesis.

This thesis aims to demonstrate the effectiveness of a UVM-based MDV envi-
ronment for mixed-signal simulation in improving the quality and efficiency of the
verification process incorporating the effectiveness of using modelling techniques
for analog blocks in the simulation. By providing a standardized framework and

3

Introduction

quantitative approach to verification, we can help designers identify and fix errors
in their mixed-signal designs more quickly and accurately, ultimately leading to
better quality products.

All the techniques described above are extensively studied in this thesis. The
design choices made, the methodologies used, and the results obtained are reported
as well.

1.3 Training
The first step involved getting familiar with the framework and the tools required
for the project. Mixed signal verification is a complex topic, and a number of
courses were taken to gather the fundamental concepts of the topics involved in
the thesis. Cadence offers a range of online courses and training programs to help
engineers and designers develop the skills they need to use Cadence tools effectively.
The project is built on Cadence tools. The initial courses involve getting familiar
with SV, UVM and Assertions and Auto checks. Then some courses were taken to
get familiar with Mixed signal simulation platforms and MDV techniques. Some
courses were also taken to get familiar with modelling techniques mainly RNM.
The list of all the course taken during the thesis are listed in the appendix.

4

Chapter 2

Mixed Signal Simulation
Environment

The Analog Mixed signal (AMS) designs are very complex, involving both analog
and digital components working together in a single device. Simulation of these
mixed signal designs is also very complex as we require separate simulators for
analog and digital parts of the design. In this chapter we will discuss how the mixed
signal verification environment is set up for simulation. Virtuoso is a Cadence
GUI based tool which is used to build the analog only or mixed signal simulation
environment. This tool is responsible for handling all the schematics and digital
design files as well as testbench files. When Simulation is run, the tool invokes the
simulators for analog and digital part of the simulation.

Figure 2.1 shows the general structure of the mixed simulation environment.
Cadence tool Virtuoso has library, Cell and view configured by the user. Here we
add all the analog schematics and libraries to the maestro view along with the
testbench tb_top which drives these schematics. In the tool settings we provide the
list of all the digital testbench files present. This includes testbench files, assertions
files, UVM configuration files etc. The integration of UVM based testbench is not
general. There are many mixed simulation environments built without UVM. The
goal here is to integrate the digital UVM approach to a mixed signal design. In
the digital testbench files we again see the tb_top. This tb_top is same as the one
present in maestro view. The tb_top of the testbench is purely digital RTL, and it
instantiates also the analog schematics. This way we can access both analog and
digital signals from the mixed simulator. Along with digital testbench files we also
provide the list of all the digital design files as well.

In the tool, there are a number of settings to configure the mixed simulation,

5

Mixed Signal Simulation Environment

Figure 2.1: Mixed Signal Simulation Environment

which we will discuss shortly. Once the mixed simulation environment is configured,
the GUI tool is commanded to start the netlisting and simulation routine. When
the simulation is started, firstly, the unified netlist of digital and analog portions of
the device is created. The tool also generates the scripts which contain the mixed
simulation configurations we selected. All these files are passed to the XRUN
command to start the simulation. This XRUN command invokes Xcelium and
Spectre, the simulators for digital and analog parts of the device respectively. The
simulation is run as per the mixed signal configurations/settings chosen during the
setup in the tool.

The mixed simulation settings in the GUI and its overall structure are explained
in detail in the next sections.

2.1 Mixed Simulation through GUI
The Mixed signal simulation for this project is built on Virtuoso tool. The Schemat-
ics of the design can be added to the hierarchy editor of the tool. Tool libraries and
all the libraries required for the design are also added in the hierarchy editor. Hier-
archy Editor consists of a Library which have Cells and these cells can have multiple
View setups. These views may contain top level schematics, testbench for schemat-
ics or any other sublevel schematics. We can open a view i.e., Maestro view, and
an ADE explorer window opens from where we can configure the simulation settings.

In the ADE explorer window, there is a list of all the signals which are chosen
to be probed. Signals to be probed can be added or removed in this window. From
ADE explorer window if we go to Setup→High Performance Simulation, we open a
window where simulator options can be selected as shown in the Figure 2.2. Here
we have option to choose between different Spectre simulator modes. We can also
select multi-threading option and the number of threads to choose. The accuracy

6

Mixed Signal Simulation Environment

of the simulator can also be selected for the whole design as well as for sub-blocks
of the design schematics in the locally scoped section.

Figure 2.2: AMS Simulator Options (Image is courtesy of Cadence Design
Systems)

From the ADE explorer, if we go to Setup→Connect Rules/IE setup, we open a
window as shown in Figure 2.3. Here we can list all the instances in our design
where digital signals are directly connected to an analog node or vice versa. These
connect modules give the AMS simulator knowledge of how it must tackle this
problem. Let’s consider we have a clock signal in digital domain. It will operate
between 1 and 0. But if we connect it directly to an analog node, the simulator
must consider that clock signal as an analog signal, it will work the same way, but
now it will have a voltage. In the connect modules we can specify the value of
voltage it will be allotted when it is converted to an analog signal. This concept
can be understood with this example in Figure 2.4. Here the clock is a digital
signal but in analog domain. As we have defined the connect module rule for global
as 1.8V, the clock is also allotted 1.8V. Specific rule can be defined for a particular
area of the project or even a single node. Having this feature in the simulation, we
can connect signals from different domains with each other, let it be digital, real,
or analog, without worrying about the simulator giving errors.

7

Mixed Signal Simulation Environment

Figure 2.3: Connect Modules/IE Setup (Image is courtesy of Cadence Design
Systems)

Figure 2.4: Connect Modules Example

From the ADE explorer, if we go to Simulation→options→AMS_simulator, we
open a window as shown in Figure 2.5. Here in the Include Option Settings, we
can include list of all the digital design files, digital libraries and all the digital
testbench files to the Simulation environment. We can add timescale options in
this tab as well which should be concurrent with timescale options in SV files. In
the UVM tab we can specify which test class will be used for the simulation.

In the ADE explorer window, we can set up the transient analysis time of
the simulation. It is the time of the analog part of the simulation. The digital
simulation time is configured in the test class. This transient analysis time is
essentially the simulation run time. The digital simulation will run according to the
configuration in the test class, but it will stop as well once the transient analysis
time finishes even if the digital simulation time is larger than transient analysis
time. From the ADE window, going to Simulation→netlist and run options, open
the simulation options window where we can select if the simulation should run in
interactive mode or batch mode. Here flex matrix mode for simulation can also be
selected to activate advance optimization for mixed simulation.

Once all the settings are configured, netlist and simulation can be started from
ADE explorer. During the netlisting, the GUI creates a unified netlist of all the
analog as well as digital parts of the design. It also creates scripts for all the settings
selected and configurations done. All the scripts required for the simulation to

8

Mixed Signal Simulation Environment

Figure 2.5: Including Digital Files (Image is courtesy of Cadence Design Systems)

run are also created and then Simulation is started. The simulation log window
opens once the simulation starts and at the end of the simulation, we can view
the waveforms in the VIVA waveform window as well. It has to be noted that the
digital and analog design files are compiled when the unified netlist is created. The
digital testbench files are only compiled once the simulation starts. This approach,
of running the simulation with some pre-compiled RTL files (Digital Design files)
and some RTL files (testbench files) which will be compiled after the simulation
starts, is quite new in the industry.

To get a detailed understanding of how virtuoso is used to build mixed simulation
environment, the cadence course “Mixed-Signal Simulations Using Spectre AMS
Designer — AVUM” is very beneficial. A short overview of the course is present in
Appendix A.5.

2.2 Mixed Simulation through Command Line
We have discussed in the section 2.1, how the mixed simulation environment is
built using the ADE. This is not sufficient for the Metric Driven Verification(MDV)

9

Mixed Signal Simulation Environment

approach we want to use for this project. We want to introduce MDV in this project
by running multiple simulations with different configurations and test classes and
then collecting coverage and cover group metrics and merging the results. ADE
provides the ability to run multiple simulations for analog only projects. But ADE
does not provide the ability to run multiple simulations for the project where we
have UVM incorporated mixed simulation environment and want to run multiple
simulations with different configurations. We want to bypass the ADE explorer
(GUI) to run these simulations without GUI mode through command line to stream-
line the process and make it faster to launch multiple simulations.

We have built a process through which the GUI based mixed simulation en-
vironment can be converted to command line-based environment where multiple
simulations can be launched at once. For this, we have written some scripts which
can extract the unified netlist and simulation scripts. These scripts are normally
generated by the tool when we start "netlist and simulation" from ADE explorer.
But now we will not invoke ADE and generate these scripts from command line.

Figure 2.6 illustrates how the command line scripts are using the same Virtuoso
Lib, cell, and view, used to configure the mixed simulation, to extract the unified
netlist and other simulation scripts. After the netlisting and scripts extraction
is done, the XRUN can also be invoked directly from command line by calling
the runSimulation script, which was generated with all the other simulation files.
So essentially, the GUI is not getting invoked. It does not do the netlisting and
simulation. All of this is being done from command line without invoking the GUI.

2.2.1 Extracting Simulation Scripts through Command
Line

“Runams” command provides support for netlisting and running an AMS simulation
from the UNIX command line with the unified netlist-based flow. “Runams” is
command-line equivalent to running the “create netlist” or “netlist and run simula-
tion” on ADE GUI. “Runams” can also create netlist standalone from command line
as well. When “runams” is invoked, it creates the “netlist.vams” file as well as all the
AMS configuration files required for simulation, including “amsControlSpectre.scs”,
“Probe.tcl”, “xrunArgs”, “runSimulation” to name a few, inside the netlist directory.

"Runams" script streamlines the netlist and simulation process of mixed environ-
ment as it bypasses the GUI. Here "runams" is the command which dumps netlist
and simulation scripts from the GUI Maestro View. The "cdslib" and "cdsinit" files
are directly linked in the folder where runams script is present. This is done so that

10

Mixed Signal Simulation Environment

Figure 2.6: Extracting Simulation Scripts from command line

the scripts can be run from anywhere and not necessarily from the directory where
mixed simulation environment is present. Furthermore, the GUI library, cell, and
view, using which, the netlist and simulation scripts are extracted, are provided
as arguments to runams command. Argument -savescripts is used to save all the
scripts required for AMS simulation, and -rundir provides the directory where all
the scripts will be stored. We can make this script and the scripts mentioned in the
next section configurable and portable by creating a script with variables for these
scripts. In this way only the script with variables can be modified without changing
anything in the main scripts. Runams command and some of its arguments are
mentioned in Listing 2.1:

Listing 2.1: Runams Command and its Arguments
1 #! / bin / sh
2 runams \
3 −c d s l i b ${ c d s l i b } \
4 −l i b ${ l i b r a r y } \
5 −c e l l ${ c e l l } \
6 −view ${view} \
7 −n e t l i s t a l l \
8 −s a v e s c r i p t s \
9 −rundi r ${ n e t l i s t d i r } \

11

Mixed Signal Simulation Environment

10 −log ${ n e t l i s t d i r }/runams . l og
11

The runams command creates two subdirectories inside the directory mentioned
in -rundir argument. These two subdirectories are “netlist” which contains the
generated unified netlist and all the scripts for simulation and “psf” which contains
the log files and results once the simulation is launch. Inside “netlist” directory
there should be “netlist.vams” file which was created by "runams". Along with this
file, there are scripts and auxiliary files to run the AMS simulation using XRUN
i.e., “xrunArgs” file and “runSimulation” script. In the “psf” directory, there are
log files which can be used to see the progress of the simulation if the simulation
is not interactive. There are other results which include profiler log, waveforms
dump, coverage reports etc. Figure 2.7 explains the directory structure after the
netlist and simulation scripts extraction.

Figure 2.7: Directory Structure of Mixed Simulation

It should be noted that here we are just doing the netlisting part of the sim-
ulation using the runams command. Runams can perform the netlisting as well
as simulation, essentially everything which can be done from the ADE explorer.
But here we are only creating netlist and simulation scripts while not starting the
simulation yet. The reason is that we want to make multiple copies of these netlist
and simulation scripts, make changes to the scripts and run simulations from these
multiple directories simultaneously.

12

Mixed Signal Simulation Environment

2.2.2 Multiple Simulation Setup
Once we have extracted the unified netlist and simulation scripts from the command
line using "runams" and have placed them in the directory mentioned by -rundir,
we will consider this as parent directory. We can make a configurable number of
multiple directories with the same “netlist” and “psf” subdirectories setup. Copy
all the files from the netlist folder of the parent directory to the netlist folder of the
newly created directories. We can make, in the new directories, soft links (instead
of copying) of all the simulation files which we don’t need to change, to save up
space in the server. The structure of the newly built directories is same as the
structure of the base directory shown in Figure 2.7

Now we must see what is present inside these simulation scripts to understand
how to make changes in the scripts for distinct multiple simulations. We have
already discussed in the previous section that we are using the same mixed sim-
ulation environment which was set up in the ADE explorer. So, the simulation
scripts, extracted by runams, contains the settings and configurations we chose and
configured in the GUI while setting up the mixed simulation i.e., iecards, Simulator
options, probe signals etc. When we ask ADE to netlist and run the simulation, it
creates simulation scripts for all the settings and configurations we performed so
that when simulation is running the simulator can understand the configurations
through these scripts. In this case when the scripts are extracted using runams
we still have all these scripts containing simulation settings/configurations we chose.

If we open these scripts, we will be able to see the configurations from the ADE
reflected in them. We will look at some of these scripts and see what we can change
in them to help our goal of multiple distinct simulations from command line. Listed
below are some scripts created from the ADE explorer after configuring it, which
is discussed in Section 2.1.

Probe.tcl

Probe.tcl is generated in the netlist folder after the extraction of scripts. In Section
2.1 we discussed that signals can be added in the ADE explorer window for probing
and waveform dump. All those signals are present in this probe.tcl file. The
simulator looks at this file and probes the corresponding signals before starting the
simulation so that waveforms can be created for them. We can change these signals
depending on the situation of multiple simulations. If we are targeting different
area of the project in these distinct multiple simulations, the signals for only those
respective area of the project can be added in probe.tcl and all other signals maybe
removed to make the simulations run faster.

13

Mixed Signal Simulation Environment

Figure 2.8 shows a typical probe.tcl file created after extracting the netlist and
simulation scripts from command line. The probed signal can be voltage, current,
real, digital or assertion etc. The full hierarchical path from the tb_top to the
signal must be provided. In case of current signals -flow must be added before the
signal path as well.

Figure 2.8: Probe.tcl File

amsControlSpectre.scs

amsControlSpectre.scs file contains settings and configurations for Spectre(Simulator
for analog part of the device). Figure 2.9 show the typical amsControlSpectre file
extracted using runams. Here the analog simulation time can be changed mentioned
as tran stop=6m, which was originally being configured from the ADE explorer
window. We can also provide SimulatorOptions for Spectre from this file and set
simulator preset for the subsections of the analog parts of the device (fxsimOpt1
etc.). These presets change the accuracy of the simulator for the specific part of
the device making the simulation faster or slower.

Figure 2.9: amsControlSpectre.scs File

14

Mixed Signal Simulation Environment

xrunArgs

This file contains all the argument provided to XRUN command which starts the
simulation. This file has a lot of arguments configuring the mixed simulation. Only
some of these arguments are mentioned in the Figure 2.10. We can see the -profile
option present which enables the profiler, providing details about the Performance
of the digital blocks in terms of how much time in percentage they are taking from
the overall simulation. We can change the UVM test class for the simulation from
here as well. Coverage arguments are also added to the xrun arguments to enable
coverage for tb_top.

The files cds_globals, netlist.vams, probe.tcl, amsControlSpectre.scs etc. are
added as well to xrun arguments. Argument -run -exit means that the simulation
will be in batch mode and not interactive. To make the simulation interactive these
arguments can be replaced with -gui. Spectre arguments are also present reflecting
the settings we configured as per Figure 2.2. The settings can be changed from
here now, instead of opening the window from ADE explorer. There are also many
other arguments present in this file; the list of all the digital design and testbench
files and the path addresses to look for them, the list of digital and analog libraries
to add to the simulation, timescale settings etc.

Figure 2.10: xrunArgs File

It can be said that if the mixed simulation environment is configured once in GUI
and if the unified netlist and simulation scripts are extracted using runams from
command line setup, we can then reconfigure the environment directly from these
scripts in the command line and completely skip the GUI mode for reconfigurations.

15

Mixed Signal Simulation Environment

2.2.3 Running the Simulation
After the unified netlist and simulation scripts for mixed simulation are extracted
and multiple simulations directories are set up, we can proceed to running the
simulation by invoking XRUN. runSimulation is present in the netlist folder of
all the multiple simulation directories. This script can be invoked to run the
simulation. In this script, XRUN is called with the arguments present in xrunArgs.
The figure 2.11 explains this. Here simdir are the multiple directories. A small
bash script can go into each directory and invoke runSimulation for all the directo-
ries. In case of multiple simulations, they are always run in batch mode without gui.

Once the simulations start running, the progress of the simulations can be
viewed in xrun.log from their respective "psf" folder. All the simulation results
are also present here including coverage results, profiler results, waveform dumps etc.

Figure 2.11: Running the Simulation

2.3 Mixed Simulation Setup: The Other Way
The Sections 2.1 and 2.2 explain how Mixed Simulation Environment is set up
in GUI, and how we found a way to convert it to run multiple simulations and
change the settings and configurations of the mixed signal environment on the go
from command line. We had to follow this approach because we had the mixed
simulation environment already built on GUI and then decided to transfer it to the
command line-based environment. Also, the analog part of the device is present in
schematics format and attached to GUI already.

There is a way to build the mixed simulation environment directly from command
line and completely bypassing the GUI. As the analog part of the device is present
in schematics form, it is not possible to use the approach for this project. The

16

Mixed Signal Simulation Environment

approach only works if the analog parts of the project are present in spice files.
The approach is explained in the course “Command-Line-Based Mixed-Signal
Simulations with the Xcelium™ Use Model”. A short introduction to the course in
present in the Appendix A.6.

17

Chapter 3

Assertions for Analog and
Mixed Signals

Assertions in SystemVerilog are a verification technique used to check the correct-
ness of a design by verifying that certain properties always hold true. Assertions
are used in silicon verification to detect errors, bugs, and other design issues early
in the verification process, which helps to reduce the time and cost of verification.

SystemVerilog Assertion (SVA) is a language extension to SystemVerilog that
provides a powerful and flexible way to write assertions. SVA allows designers to
specify complex properties and constraints that must hold true in the design. SVA
supports both immediate and concurrent assertions, which can be used to check for
a wide range of properties, such as data integrity, timing constraints, and protocol
compliance.

3.1 Types of Assertions
There are two types of assertions based on how they are used in the testbench.
Immediate assertions and concurrent assertions. Immediate assertions are evaluated
at the point where they are encountered in the code. They are typically used
to check the value of a signal or variable at a specific point in time. Immedi-
ate assertions can be used with any type of simulation, including event-driven
and cycle-based simulations. Immediate assertions can be written using the as-
sert statement. If the expression evaluates to false, the assertion will trigger an error.

Listing 3.1: Immediate Assertion Example

18

Assertions for Analog and Mixed Signals

1 always@ (event) begin
2 a s s e r t (sig_A > 1 . 5) e l s e
3 $e r r o r (" sig_A i s not g r e a t e r than 1 .5 ") ;
4 end
5

This assertion will check that real signal sig_A is greater than 1.5 (If it is not,
it will trigger an error) at the point where it is encountered in the code. This type
of assertions is put inside an always/procedural block to make them get triggered
based on an event in the code.

On the other hand, Concurrent assertions are continuously evaluated while
the simulation is running. They are typically used to check the relationship be-
tween signals or variables over time. Concurrent assertions can only be used with
clock-driven simulations. Concurrent assertions are written using SystemVerilog
Assertion (SVA) or Property Specification Language (PSL), which allows you to
specify complex temporal relationships between signals to check the integrity and
relationship of signals over multiple clock cycles.

Listing 3.2: Concurrent Assertion Example
1 property my_property ;
2 @(posedge c l k) (sig_A) |=> (sig_B) ;
3 endproperty
4

5 a s s e r t property (my_property) ;
6

This assertion will continuously check at each positive clock edge that whenever
sig_A goes high, sig_B also goes high at the next clock edge. If this relationship
is ever violated, the assertion will trigger an error.

3.2 Features of Analog Signals
In the mixed simulation environment, we have signals in digital, analog, and real
domain. Checking the integrity of signals in analog domain is a lot more complex
in terms of writing assertions as analog signals are represented by continuous values
that can vary over time, than the digital signals where there are only two main
states 0 and 1. Analog signals can have many features which need to be checked to
verify the correctness of the signal. Below are listed some features:

• Frequency of an analog signal (voltage/current).

19

Assertions for Analog and Mixed Signals

• Amplitude of a signal (voltage/current) in a particular range.

• Peak-Peak amplitude.

• High/low time of a signal.

• Rise or Fall time of a signal.

Apart from these features there can be dependencies of analog signals on each
other as well, just like we have in digital signals as shown in the listing 3.2. This
type of dependency can be present in analog signals as well i.e. if sig_a goes above
a certain amplitude, only then check the frequency of sig_b. We are going to use
immediate assertions as there is no clock synchronicity present in analog domain.
Because of this lack of synchronicity, incorporating these types of dependencies is
a complex task as well.

While we are working with analog signals, there are two states of signals present
on a particular node i.e. Voltage or Current. When we want to look at an analog
signal, we usually look for its node in hierarchy from tb_top. While calling that
node in mixed signal testbench, we need to identify whether we want to check the
current property of the signal or the voltage property of the signal.

This problem is countered by the $cds_get_analog_value, a SV function
provided by Cadence that allows to retrieve the analog value of a signal at
a specific point in time during a mixed-signal simulation. The syntax of the
$cds_get_analog_value is listed below:

Listing 3.3: $cds_get_analog_value Example
1 r e a l V_real ;
2 always #(10) begin
3 V_real = $cds_get_analog_value (" hierarchical_path_to_node " ,

" p o t e n t i a l ") ;
4 end

In this example, the function is used to retrieve the voltage signal at node
mentioned in first argument. The code samples the retrieved value in V_real
variable of type real. The function is triggered every 10 time unit. The first
argument is the hierarchical path to the node under consideration. The object
referred to by hierarchical path must be owned by the analog solver. The second
argument provides the state of the analog signal which needs to be retrieved. The
fetch process can be customized to access any of the following quantities associated
with an analog signal: “potential”, “flow”, “power”, “parameter”. Once the analog
value is retrieved in a real variable, it can then be passed to an assertion module

20

Assertions for Analog and Mixed Signals

for verification.

It’s important to note that $cds_get_analog_value is a Cadence-specific func-
tion and may not be available in other simulation tools. Additionally, the function
can only be used in a mixed-signal simulation, where you have both analog and
digital signals in your design and an analog solver is present. If you are working
with a purely digital design or a different simulator, you would use other methods
to retrieve the value of analog signals.

3.3 Assertion Checkers for Analog Signals
We have discussed some features of analog signals in the previous section, which
will be kept in mind while designing the assertions checkers for them. If we can
cover these features in assertion checkers, we ensure to verify the integrity of analog
signals in every way possible. The assertion checkers must provide an automatic
way to verify the features of analog signals. They should be reusable modules
for signals with similar features. Now we will discuss how assertions checkers are
implemented to answer the above-mentioned questions.

3.3.1 Frequency Checker
The complexity of verifying the frequency of an analog signal comes with the
fact that the value of frequency is not inherently present in the signal, unlike the
amplitude which is the direct property of the signal. We need some extra block
of code to calculate the realtime frequency of the analog signal. Figure 3.1 shows
the approach used to calculate the frequency of the signal. The time is calculated
from the midpoint upward crossing to the next midpoint upward crossing. The SV
implemented of this approach is discussed later in this section.

To verify the frequency of an analog signal, an immediate assertion can be used
which can compare the realtime calculated frequency with the frequency provided
by the specification. This type of assertion is mentioned in the listing 3.4.

Listing 3.4: Frequency Checker Assert Block
1 ‘ t i m e s c a l e 1ns /1 ps
2 module frequency_checker (in) ;
3

4 input var r e a l in ; // input r e a l va lue s i g n a l
5

21

Assertions for Analog and Mixed Signals

Figure 3.1: Frequency calculation of a Signal

6 parameter r e a l f i n =20e6 ; // Frequency provided
by the s p e c i f i c a t i o n in Hz

7 parameter r e a l Vhi =0.8 ; // Voltage high
amplitude o f the input s i g n a l

8 parameter r e a l Vlo=0; // Voltage low amplitude
o f input s i g n a l

9 parameter r e a l f req_to l_hi =0.5 e6 ; // f r e q
t o l e r a n c e parameter at h igher end in Hz

10 parameter r e a l f r eq_to l_lo =0.5 e6 ; // f r eq_to l e r ance
parameter at lower end in Hz

11

12
13

14 always_comb begin
15 f req_check : a s s e r t ((out_freq <= (f i n+freq_to l_hi)) && (

out_freq>= (f in −freq_to l_lo)))
16 e l s e $warning (" f requency %f i s out o f range at time

%f " , out_freq , $ r ea l t ime) ;
17 end
18

19 endmodule

Here the parameters of the specification are provided along with the input
signal “in”. Here the frequency checker verifies whether the frequency of the
input signal is 20 MHz. The assertion checks if the "out_freq", which is the re-
altime calculated frequency, is according to the specification. If the frequency of
the input signal is not according to the specification the assertion produces an error.

We are also incorporating tolerance in this assertion because analog signals
always have some amount of noise or overshoots and incorporating these tolerances
are important to make sure how much uncertainty or noise can the device withstand.
These tolerances are also included in assertions to make sure we don’t have any
false negative assertion failures, because the analog signals can have noise, and

22

Assertions for Analog and Mixed Signals

they can oscillate above or below the actual value mentioned in specification. The
tolerances specify how much noise can be tolerated for the signal. The tolerances
of +/-0.5MHz is provided in the parameters for this purpose.

Calculating the realtime frequency of analog signal takes some additional block
of code which is mentioned in listing 3.5. The mid-point (upward zero crossing)
of the amplitude of signal is determined, and the time period is calculated from
this event to the next occurrence of this event. The value of time period is flushed
again to calculate the time period for the next cycle. This time period is then
divided over 1 to calculate the realtime "out_freq". Timescale is taken into consid-
eration while calculating the realtime frequency. Once the "out_freq" is determined,
it can be used by assert to verify if this calculated frequency meets the specification.

Listing 3.5: Realtime Frequency Calculation Block
1 i n i t i a l begin
2 Vth=((Vhi+Vlo) /2 . 0) ; // Ca l cu l a t ing the cente r vo l t age to

use as a the r sho ld .
3 end
4

5 // Frequency c a l c u l a t i o n block s t a r t s here .
6

7 always @(in) begin
8 i f ($ r ea l t ime==T0) V0=in ; //

value updated in zero time
9 e l s e begin

10 i f (V0<Vth && in>=Vth) begin //
upward c r o s s i n g detec ted

11 Tnew = T0 + ($rea l t ime −T0) ∗(Vth−V0) /(in−V0) ; //
i n t e rp c r o s s i n g time

12 i f (Tup>0) Per = Tnew−Tup ;
13 Tup = Tnew ;
14 end
15 T0=$rea l t ime ;
16 V0=in ;
17 end
18 end
19 // repor t f r e q when per iod a v a i l a b l e :
20 a s s i gn out_freq = (Per==0)? 0 .0 : 1/(Per∗1e−9) ; //

Calcu lated output f requency .

We will look at various types of dependencies of one signal to another. Type of
dependencies are implemented based of specification of signals in different type of
assertion checkers. But the concept can be interchanged on any of the implemented
assertions. To implement the dependency of one signal on another, the enabling
or disabling assertions technique in SV can be used which involve $asserton and

23

Assertions for Analog and Mixed Signals

$assertoff. The example is mentioned in listing 3.6. Here the assertion freq_check
is off from start and will turn on after #5000 unit time which is 5us. This type of
dependency involves the case where we know that the signal will only be mature
after a certain time has passed in the simulation. In this way the assertion will
only turn on when the signal is usable by the device to save simulation time.

Listing 3.6: $sserton $assertoff Implementation
1 $ a s s e r t o f f (0 , freq_check) ;
2 #5000
3 $as s e r ton (1 , freq_check) ;

The $asserton and $assertoff functions have two arguments. The first one signi-
fies the level at which the function should be performed. For ’0’, the function is
applied to the assertions in that module and all the assertions of same name in the
modules called inside it. For ’1’, the function is applied to only the assertions of
that module. The second argument specifies the name of assertion for which the
function in applied.

Figure 3.2 shows the waveform of frequency assertion implementation. Here,
the assertion is off for the first 5us. And once the assertion starts, it is verifying
the frequency of the signal. The green portion in the assertion waveform represents
assertions pass.

Figure 3.2: Frequency Assertion Example

3.3.2 Amplitude Checker
Amplitude checker includes assertion which checks if the voltage/current level of
the signal is within range mentioned in the specification. The amplitude checker is
much easier to implement than the frequency checker because the signal inherently
contains the amplitude property and signal amplitude can directly be compared
to the amplitude of specification. This assertion can be used in a very broad
application. Apart from range checking, the assertion, once enabled, can also check
if the signal always remains above or below a certain amplitude level. These types
of application can be extended by slightly modifying the assertion.

24

Assertions for Analog and Mixed Signals

An immediate assertion is used for the verification of amplitude of analog signals
written in an always_comb block. It is mentioned is listing 3.7. The assertion
checks that the input signal ’in’ should be within range of the amplitudes provided
as the parameters to the assertion module. If it is not within range the assertion
produces an error message. Tolerance of +/-1% is also given in the parameters and
implemented in the assertion as per the specification.

Listing 3.7: Amplitude Checker Assert Block
1 parameter r e a l range_tol = 0 . 0 1 ;
2 parameter r e a l Vhi =0.4 ; // Voltage high amplitude o f

the input s i g n a l
3 parameter r e a l Vlo=−0.4; // Voltage low amplitude o f

input s i g n a l
4

5 . . .
6

7 always_comb begin // a s s e r t i o n check block
8 range_check : a s s e r t ((in <= Vhi ∗(1 + range_tol)) && (in >=

Vlo ∗ (1 − range_tol)))
9 e l s e i f (in > Vhi) $warning ("FAIL , s i g n a l i s too

high : %f " , in) ;
10 e l s e $warning ("FAIL , s i g n a l i s too low : %f " , in) ;
11 end

Like previous assertion, here as well, the dependencies of one signal on another
is involved. The assertion should wait for some event to happen before starting.
When an enabling signal goes high, wait for a time delay, and then start the
assertions. This type of dependency was a requirement of the specification for this
signal, but it can be implemented with any other type of assertion.

Listing 3.8: Amplitude Assertion Enable Block
1 parameter r e a l Vsig_high = 1 . 8 ;
2 parameter r e a l tran_delay = 100000;
3 i n t count =1;
4

5 i n i t i a l begin
6 $ a s s e r t o f f (0 , range_check) ;
7 end
8

9 always@ (enable_s ig) begin // a s s e r t i o n enable b lock
10 i f (enable_sig>=Vsig_high ∗0 .99 && count == 1) begin
11 #(tran_delay)
12 $as s e r ton (1 , range_check) ;
13 count = 0 ;
14 end

25

Assertions for Analog and Mixed Signals

15 end

Listing 3.8 shows the implementation of this dependency. Here the parameters
for enabling signal and time delay are passed to the module. Assertion enable block
turns the assertion on, once the enabling signal goes high.

Figure 3.3 shows the waveform of Amplitude assertion implementation. Here,
the assertion is off till the enable_sig goes high. Once the enable_sig is high, the
assertion waits for tran_delay time of 100us and then turns on. The assertion
checks if the signal_in is within the range mentioned in the specification. Here the
assertion is passed, after it gets enabled, for the whole simulation time.

Figure 3.3: Amplitude Assertion Example

3.3.3 High/Low Time Checker
This assertion checks if the high time of the signal is as per the specification.
Similar to Frequency checker, the realtime calculation of high time of the signal
is required. Extra block of code is required to calculate this time before writing
assertion. High time is calculated from the point when the signal goes higher than
the midpoint of the amplitude, to the point when the signal drops back to below
the midpoint of the amplitude. This assumption can be modified based on what
amplitude should be considered as a high signal. Figure 3.4 has the waveform
showcasing this approach.

Listing 3.9 shows the SV implementation of this approach. Here the start time is
sampled when the signal goes above the midpoint and finish time is sampled when
the signal goes back below the midpoint. Here a token system is also introduced
which lets the code sample the upward and downward time only once per clock
cycle. This approach can also be modified to calculate the Low time of the signal
instead of the high time. This block is triggered whenever there is a change in the
input signal. Once the high time is calculated, it is assigned to out_time.

Listing 3.9: High Time Calculation Block

26

Assertions for Analog and Mixed Signals

Figure 3.4: High Time of a signal

1 i n i t i a l begin
2 Vth=((Vhi+Vlo) /2 . 0) ; // Ca l cu l a t ing the cente r vo l t age to

use as a the r sho ld .
3 end
4 //High time c a l c u l a t i o n block s t a r t s here .
5 always @(in) begin
6 i f (up == 0 && in>=Vth) begin //

upward c r o s s i n g detec ted
7 Tup = $rea l t ime ; // sample the s t a r t time
8 down = 0 ;
9 up = 1 ;

10 end
11 i f (down ==0 && in<=Vth) begin //downward c r o s s i n g

detec ted
12 Tdown = ($rea l t ime − Tup) ; // sample the f i n i s h

time and c a l c u l a t e
13 down = 1 ;
14 up = 0 ;
15 end
16 end
17 // repor t time when a v a i l a b l e :
18 a s s i gn out_time = Tdown ; // Calcu lated t o t a l high time .

Once the High time is calculated, a simple assertion can check if the high time
of the signal is less than the value mentioned in the specification. Listing 3.10
shows the assertion. Here the parameter Tcheck represents the high time 1.5us
from the specification. The assertion should verify that the high time of the signal
does not go higher than this value. For this, Tcheck is compared with the out_time
calculated from the input signal. Assertion produces an error message if the high
time of signal goes higher than the specification.

Listing 3.10: High Time Assertion Block

27

Assertions for Analog and Mixed Signals

1

2 parameter r e a l Tcheck =1500;
3

4 . . .
5

6 // Asse r t i on module block s t a r t s here
7 always_comb begin
8 hightime_check : a s s e r t (out_time <= (Tcheck ∗1 . 01))
9 e l s e $warning (" High time %f i s not c o r r e c t at time

%f " , out_time , $ r ea l t ime) ;
10 end

Figure 3.5 shows the waveform of High time assertion implementation. Here,
the assertion is on from start and checking if the high time of the signal is less
than 1.4us, what’s mentioned in the specification. Here the assertion is passed for
the whole simulation time.

Figure 3.5: High Time Assertion Example

3.3.4 Rise/Fall Time Checker
This assertion checks if the rise or fall time of a signal is as per the specification.
Here again, we need some extra block of code to calculate the real-time rise and fall
time of the signal and then verify it by comparing it to the specification. Calculating
rise/fall time of the signal in realtime is the most complex part of all the assertions
implemented. While the signal is low, the start time of for the rise time calculation
is keep on updating, we sample the start time once the signal starts rising. Once
the signal reaches its high value the final time is sampled. The difference of the
two times is defined as the rise time of the signal. The listing 3.11 describes the
implementation of realtime rise time calculation.

Listing 3.11: Rise Time calculation Block
1

2 r e a l Tf , Ti , r i se_t ime_calc ;
3 r e a l Vhi_lo_per , Vhi_hi_per ;
4 r e a l vamp_tol = 0 . 0 1 ;
5 r e a l count , count1 ;
6 r e a l tsam =0.02;

28

Assertions for Analog and Mixed Signals

7

8 i n i t i a l begin
9 Vhi_lo_per= Vlo − vamp_tol∗Vlo ;

10 Vhi_hi_per= Vhi − vamp_tol∗Vhi ;
11 end
12

13 . . .
14

15 always #(tsam) begin
16 // f o r r i s e t i m e ;
17 i f ((in>=Vlo) && (in<=Vhi_lo_per)) begin
18 count = 1 ;
19 end
20

21 e l s e i f (count == 1) begin
22 Ti = $rea l t ime ;
23 count = 2 ;
24 end
25

26 i f ((in<=Vhi) && (in>=Vhi_hi_per) && (count == 2)) begin
27 Tf = $rea l t ime ;
28 count = 0 ;
29 r i se_t ime_calc = (Tf − Ti) ∗ 1e −9;
30 end
31 end

The tsam is the frequency at which the signal will be monitored. The signal
is monitored to check its status, whether the signal is high, low, or rising. If the
signal is low, nothing happens. Once the signal starts rising the initial time is
sampled. When the signal reaches high value, the final time is sampled. The
rise time is calculated by taking the difference of the two times. Tsam can be
decreased to increase the accuracy of the rise time calculation and can be increased
to decrease the simulation time at the cost of less accuracy. Vhi_lo_per is the
value of the minimum change in the signal which is significant by taking the tol-
erance of the signal into account. This value is essential to find the point where
the signal is just starting to rise and when the signal is just going to be at high value.

Fall time can also be calculated similarly by swapping the high and low voltage
values. In that case the calculation will start from the high value and end at the
low value of the signal.

Once the rise time is calculated, a simple assertion can check if the rise time
of the signal is equal to the value mentioned in the specification. Listing 3.12
shows the implementation of this assertion. Here the parameter rise_time_user_in
represents the rise time from the specification. The assertion should verify that the

29

Assertions for Analog and Mixed Signals

calculated rise time of the signal is equal to this value. For this, rise_time_user_in
is compared with the rise_time_calc calculated from the input signal. Assertion
produces an error if the high time of signal goes higher than the specification.

Listing 3.12: Rise Time Assertion Block
1

2 parameter r e a l r ise_time_user_in=5e −9; // User supp l i ed r i s e
time input parameter to be used aga in s t the c a l c u l a t e d value in
seconds (s ec)

3 parameter r e a l r i se_t ime_to l =0.01; // Tolerance value over
c a l c u l a t e d r i s e time . 0 .01 r ep r e s en t 1% t o l e r a n c e .

4

5 . . .
6

7 always_comb begin // Rise time a s s e r t i o n check
8

9 r ise_time_check : a s s e r t ((r i se_t ime_calc >= (
rise_time_user_in ∗(1− r i se_t ime_to l))) && (r i se_t ime_calc <= (
rise_time_user_in ∗(1+ r i se_t ime_to l))))

10

11 end

Figure 3.6 shows the waveform of Rise assertion implementation. Here, the
assertion is on from start and checking if the rise time of the signal is equal to
what’s mentioned in the specification. Here the assertion is passed for the whole
simulation time.

Figure 3.6: Rise Time Assertion Example

3.4 Benefits of Analog Assertions
Looking at waveforms to verify if the signal is working correctly for long simulation
runs is very tedious and time-consuming. The assertions are not very complex to
design and provide an automatic way to verify the features of analog signals. One
of the main benefits of these assertions is that they are built on SV basic functions
and can be used in any simulator or any type of environment. We just need to take
care of extracting the current or voltage properties from the analog node as this is
done differently in each simulator. Another benefit of the assertions is that they

30

Assertions for Analog and Mixed Signals

are built in modules and can be reused multiple times in the same testbench for
signals with similar features.

While discussing the assertions in the previous section, waveforms are attached
to visualize the working of the assertions. This is not required at all, as the
assertions do not require waveform dumping to work. They work independently of
waveform probing. The benefit it brings is that, if the sole purpose of storing the
waveform was to visualize the assertions, then it can be skipped in favor of much
faster simulation runs.

31

Chapter 4

Signal Generators Modelling

Signal generators are electronic devices that produce electrical waveforms, such as
sine waves, square waves, and triangle waves, at various frequencies and amplitudes.
Signal generators can be either analog or digital, and they typically have various
features such as variable duty cycle, voltage offset, differential output etc. Analog
Signal generators are complex systems. To simulate complex circuits, the software
program must perform a very extensive set of calculations. These circuits can be
difficult and time-consuming to simulate without models.

Real Number Modelling (RNM) is a mathematical technique used to repre-
sent and analyze physical systems using real numbers. In the context of signal
generators, real number modelling is used to represent the electrical waveforms
produced by the generator using mathematical functions that are defined using real
numbers. The signal generator models when built using RNM offer a simplified
circuit representation of these analog circuits that may be simulated much faster
compared to analog counterparts.

These signal generators can be used to provide input stimulus for analog systems
when these systems are being verified standalone or as combined. This way we do
not need to use the complex analog signal generators which take a lot of simulation
time, instead we use the models of signal generators for this purpose to speed up
the simulation time as much as possible. We used the ramp generator to check the
output signal of a linear driver.

In this section we will discuss the techniques used to build these signal generators
with RNM and the specifications and features required for these signal generators
to have. Triangular, sine and square wave generators are modelled in this thesis
with variety of features.

32

Signal Generators Modelling

4.1 Specification and Features
The signal generators should produce these types of waves: sine wave, square wave,
and differential sine and triangle waves. Signal Generators should have configurable
parameters such as these:

• Frequency range: Signal generators should allow users to adjust the frequency
of the wave, ranging from a few Hertz to several MHz

• Amplitude control: Signal generators should allow users to adjust the amplitude
of the output waveform to a desired level.

• Amplitude offset control: Signal generators should allow users to adjust the
amplitude offset of the output waveform.

• Duty Cycle Control: Signal generators should allow users to adjust the duty
cycle of the waveform. Except for sine waves.

• Rise/Fall time control: Signal generator should allow user to adjust the rise
fall time of the waveform in case of square wave generator.

• Differential Output: The signal generators should provide differential output
in case of sine wave and triangular wave.

All the signal generators are built with the same name scheme for input and
outputs so that they can be reused and replaced with one another whenever re-
quired. Input signals include "fin" for frequency, "voff" for offset voltage, "vpp" for
peak-to-peak voltage, "duty" for duty cycle input and "trf" for rise/fall time. The
output signal is "vout" for all modules but is "voutn" and "voutp" for differential
sine wave and triangular wave generator.

The signal generators are controlled by a virtual interface which is instantiated
and configured through the testbench. Input stimulus for the signal generators is
controlled by the testbench is a test class.

4.2 Implementation of Signal Generators
Now we will discuss the technique and approach used for the implementation of
signal generators using RNM.

33

Signal Generators Modelling

4.2.1 Sine Wave generator
Sine wave generator is one of the easiest generators to implement in SV real-number
modelling. As SV supports sine function, we can really understand complexity
difference of designing the sine generator in completely analog environment to
designing sine wave generator in RNM where everything can be done by just one
mathematical function. We just have to incorporate the voltage offset variable
to the equation and, then we get the fully customizable sine wave as per the
specification described above.

Before looking at the sine function, we will discuss listing 4.1 first. Here a "phase"
is being calculated based on the "tsam" and frequency input to the module. Time
"tsam" is the sampling time in the modelling technique. This time should be very,
very small compared to the maximum frequency we are going to achieve in using
the model. If the "tsam" is very close to the maximum frequency, the accuracy
of the signal generator will be compromised. This way for each frequency cycle
the "phase" start from 0 and increments a small amount after every "tsam" and
when the frequency cycle reaches its end the "phase" also approaches 1. When the
new frequency cycle arrives, the "phase" is reset to zero as well. If "tsam" is 1000
times smaller than the maximum frequency then at maximum frequency "phase"
will take 1000 steps to reach from 0→1, making the "phase" steps smoother.

Listing 4.1: Phase Calculation
1 always #(tsam) begin
2 phase = phase + f r e q ∗1000000∗(tsam∗1e−9) ;
3 i f (phase >1) phase = phase − 1 ;
4 end

This approach of calculating "phase" helps in determining where in the frequency
cycle we are actually present i.e., if the "phase" is 0.5 this means we are in the
midpoint of a frequency cycle. This helps when changing duty cycles and when
designing some peculiar waveforms like triangular waves which do not have a
built-in function in SV. The "phase" is visualized in Figure 4.1. Here, as the input
frequency changed midway, the "phase" calculation has modified itself as well.

Figure 4.1: Phase Waveform

Once the phase is calculated, it can be given as argument to sin function along

34

Signal Generators Modelling

with other design variables. Here voltage offset is added to the sin function and
phase multiplied with 2*pi is applied as its argument. Voltage peak to peak is also
multiplied with the sin function. The sine function implementation is mentioned in
listing 4.2.

Listing 4.2: Sine Wave Function
1 ‘ t i m e s c a l e 1ns /1 ps
2 ‘ d e f i n e M_TWO_PI 6.28318530718
3 // get s i n e func t i on from C math l i b r a r y :
4 import "DPI" pure func t i on r e a l s i n (input r e a l rTheta) ;
5 module vco_sin (s i n _ i f . sin_mod d i f) ;
6

7 . . .
8

9 a s s i gn d i f . vout = d i f . v o f f + d i f . vpp/2∗ $s in (‘M_TWO_PI∗ phase) ;
10

11 endmodule

The sine wave generator module is controlled through a virtual interface. The
testbench stimulus provided in the test class and the interface are mentioned in
listing 4.3.

Listing 4.3: Sine Wave Interface and Stimulus
1 i n t e r f a c e :
2

3 ‘ t i m e s c a l e 1ns /1 ps
4 i n t e r f a c e s i n _ i f ;
5 r e a l f i n , vo f f , vpp , vout ;
6

7 modport sin_mod (output vout ,
8 input f in , vo f f , vpp) ;
9 e n d i n t e r f a c e : s i n _ i f

10 .
11 t e s t c l a s s :
12 c l a s s test_base extends uvm_test ;
13

14 v i r t u a l s i n _ i f s i n_v i f ;
15

16
17

18 s i n_v i f . v o f f = 0 . 2 ;
19 s i n_v i f . vpp = 0 . 8 ;
20 s i n_v i f . f i n = 22 ; #500 // f r e q in MHz
21 s i n_v i f . f i n = 37 ; #400
22 s i n_v i f . vpp = 0 . 6 ;

35

Signal Generators Modelling

23 s i n_v i f . f i n = 7 ; #600
24
25

26 endc l a s s

The waveform generated can be seen in Figure 4.2. The waveform is working
in accordance with the input stimulus applied. Initially, the frequency is 22 MHz,
"vpp" is 0.8V and "Voff" is 0.2V. Then, frequency is increased to 37 MHz and then
again it is decreased to 7 MHz along with decrease in "vpp" to 0.6V.

Figure 4.2: Sine Waveform

In the case of differential output of sine wave, there is only a slight change in
the overall approach. We can generate two waveforms of half the voltages opposite
to each other. For this, two "sin" functions can be use as mentioned in listing
4.4. Similarly, interface is changed as well and after providing similar stimulus for
differential wave, we get the result as shown in the figure 4.3.

Listing 4.4: Differential Sine Wave Code
1

2 a s s i gn d i f d . voutp = d i f d . v o f f + d i f d . vpp/4∗ $s in (‘M_TWO_PI∗ phase) ;
3 a s s i gn d i f d . voutn = d i f d . v o f f − d i f d . vpp/4∗ $s in (‘M_TWO_PI∗ phase) ;
4

5

Figure 4.3: Differential Sine Waveform

36

Signal Generators Modelling

4.2.2 Triangular Wave Generator
The triangular waveform has a linear rise and fall time, with the peak voltage
occurring at the midpoint of the waveform. The triangular wave generator we
designed has a variable frequency, variable voltage peak-peak, variable voltage offset
and variable duty cycle. The output of the wave generator is a differential two pin
output. Variable duty cycle and differential output are the two new parameters
for triangular wave generator compared to sine wave generator. We are still using
the same approach of first calculating the "phase" of the signal from the input
frequency. This way we can figure out where exactly should the peak of the wave
be, based on variable duty cycle.

Listing 4.5 shows the first step for the implementation of triangular wave gener-
ator. Here the always block is sensitive to all the input variables. Whenever any
of the variable changes this always block will get triggered. Here the "freq", "dt",
"vtp", "vtn" are updated whenever any variable change essentially reinitializing all
of them with the new values. The "phase" gets reinitialized as well. The "vtp" and
"vtn" are also both initialized with the peak negative and positive amplitude values,
respectively, whenever this always block is triggered.

Listing 4.5: Triangular Wave Initializer
1

2 always @(d i f . f i n , d i f . duty , d i f . vpp , d i f . v o f f) begin
3 f r e q <= d i f . f i n ;
4 dt <= d i f . duty ;
5 vtp <= −d i f . vpp/4 + d i f . v o f f ;
6 vtn <= d i f . vpp/4 + d i f . v o f f ;
7 phase = 0 ;
8 end

Listing 4.4 shows the second part of the implementation of the triangular wave
generator. Here the always block is triggered every "tsam" time. This is the
sampling time which can be set in the module and should be at least 1000 times
smaller than the maximum frequency required to be achieved. This will cause
the module to always work accurately. The "phase" is calculated in the same way
as explained in the previous section. The "phase" goes from 0→1 linearly in one
frequency cycle time. We can use this "phase" to change the duty cycle of the wave
as well.

As shown in the listing, when the "phase" is below the duty cycle, the "vtp" is
minimum and is incremented a small amount. The increment amount is calculated
based on the total voltage peak-peak, "tsam" and the frequency. This increment is

37

Signal Generators Modelling

calculated with the concept that if the signal starts from zero it should reach the
maximum value coinciding with the "phase" reaching the duty cycle time. Once the
"phase" is above the duty cycle time, the "vtp" is now decreased a small amount
each time the block is triggered. This small amount is also calculated based on the
fact that the signal should go back to zero as the "phase" reaches 1 and the next
cycle has to start. This way signal goes from minimum to maximum in the duty
cycle time and goes back to minimum in the other time in once frequency cycle.
The same case is true for "vtn" but with opposite concept as the signal should go
from maximum to minimum and then back to maximum in the same frequency cycle.

Listing 4.6: Triangular Wave Generation Block
1 always #(tsam) begin
2 phase = phase + f r e q ∗1000000∗(tsam∗1e−9) ;
3 i f (phase >1)
4 phase = phase − 1 ;
5

6 i f (phase < dt) begin
7 vtp <= vtp + (d i f . vpp/2 ∗ f r e q ∗1000000∗(tsam∗1e−9) /dt) ;
8 vtn <= vtn − (d i f . vpp/2 ∗ f r e q ∗1000000∗(tsam∗1e−9) /dt) ;
9 end

10

11 e l s e begin
12 vtp <= vtp − (d i f . vpp/2 ∗ f r e q ∗1000000∗(tsam∗1e−9) /(1−dt)) ;
13 vtn <= vtn + (d i f . vpp/2 ∗ f r e q ∗1000000∗(tsam∗1e−9) /(1−dt)) ;
14 end
15

16 end
17

18 a s s i gn d i f . voutp = vtp ;
19 a s s i gn d i f . voutn = vtn ;

The triangular wave generator module is controlled through a virtual interface.
The testbench stimulus provided in the test class and the interface are mentioned
in listing 4.7.

Listing 4.7: Triangular Wave Interface and Stimulus
1 i n t e r f a c e :
2

3 ‘ t i m e s c a l e 1ns /1 ps
4 I n t e r f a c e t r i _ i f ;
5 r e a l f i n , vo f f , vpp , voutn , voutp , duty ;
6

7 modport tri_mod (output voutn , voutp ,
8 input f in , vo f f , vpp , duty) ;

38

Signal Generators Modelling

9 e n d i n t e r f a c e : t r i _ i f
10 .
11 t e s t c l a s s :
12 c l a s s test_base extends uvm_test ;
13

14 v i r t u a l t r i _ i f t r i _ v i f ;
15

16
17

18 t r i _ v i f . f i n = 10 ; // f r e q in MHz
19 t r i _ v i f . v o f f = 0 . 2 ;
20 t r i _ v i f . vpp = 0 . 8 ;
21 t r i _ v i f . duty = 0 . 2 5 ;
22 #500
23 t r i _ v i f . f i n = 22 ;
24 #400
25 t r i _ v i f . f i n = 37 ;
26 t r i _ v i f . duty = 0 . 7 ;
27 #600
28 t r i _ v i f . f i n = 7 ;
29 t r i _ v i f . duty = 0 . 5 ;
30
31

32 endc l a s s

The waveform generated can be seen in Figure 4.4. The effect of change in the
duty cycle, and frequency can be seen. Voltage peak to peak is 0.8V for whole
simulation. Voltage offset of 0.2V is also applied. The differential output triangular
waveforms are represented by "voutn", "voutp".

Figure 4.4: Triangular Waveform

39

Signal Generators Modelling

4.2.3 Square Wave Generator
A square wave is a type of waveform that alternates between two voltage levels,
typically a high voltage level and a low voltage level, with a fixed period and duty
cycle. We want to model the square wave generator with features such as, variable
duty cycle, variable frequency, variable voltage peak-peak, variable voltage offset
and variable rise and fall time of square wave. Incorporating variable rise and fall
time in the square wave generator is the most complex task here.

We are using the same approach as the triangular wave generator. Initializing
the variables with respect to change in input parameters and then modifying the
output based on triggering another block after every sampling time. Listing 4.8
shows the initialization block of the module. The initial block initializes the "v"
to a specific value. When any of the inputs change, the always block is triggered
because of the sensitivities. The new value of "inc" is calculated based on any
change in the input values. The value of frequency and duty cycle is updated as
well. The "inc" variable is the unit step increase or decrease in voltage for the rise
and fall of the signal. This "inc" is calculated based on the frequency of the signal,
sampling time "tsam" chosen in the module, rise and fall time "trf" given as input
parameter and voltage peak-peak given as the input. This "inc" is calculated in
a way to make sure that the signal reaches from minimum to maximum value at
exactly rise time specified in the input parameters. Similarly, the fall time of the
signal will also hold true to this parameter.

Listing 4.8: Square Wave Initializing Block
1 i n i t i a l begin
2 v = −d i f . vpp/2 + d i f . v o f f ;
3 end
4

5 always @(d i f . f i n , d i f . duty , d i f . vpp , d i f . vo f f , d i f . t r f) begin
// when input changes

6 f r e q = d i f . f i n ;
7 dt = d i f . duty ;
8 i n c = ((d i f . vpp) ∗ d i f . f i n ∗1000000∗(tsam∗1e−9) /(d i f . t r f ∗ 1e−9 ∗

d i f . f i n ∗1000000)) ;
9 end

Once the initialization of variables is done, we can proceed to the signal genera-
tion block of the module. Listing 4.9 represents the generation block of the square
wave generator module. Here the always block is triggered every "tsam" time. This
is the local variable of the module and sampling time chosen should be 1000 times
smaller than the highest frequency expected to be achieved by this module to make
sure the accuracy of the wave generation is not compromised.

40

Signal Generators Modelling

The "phase" is calculated in the same way as mentioned in the previous sec-
tions. The "phase" is used to make the duty cycle of the waveform variable. We
initialized the signal, in the initial block, to be at a minimum value when we start
the generator. When the "phase" is below the duty cycle, the signal is checked if
it is at the minimum level or not. If the signal is already at the minimum value
nothing happens. When the "phase" goes above the duty cycle, the signal is checked
whether it is below the maximum level or not. In this case, it is, because at the
moment the signal is at the minimum. The if statement holds true, and the signal
gets incremented every sampling time. It is determined already that the "inc" is
added in a way that the signal will reach its maximum value exactly at the rise
time mentioned in the input parameter. Once the signal reaches maximum, the if
statement now holds false and the signal stops getting further incrementation.

When the cycle ends and the "phase" goes back to zero, now again, the "phase"
is less than duty cycle. Now, the voltage is at the maximum, so the if statement
holds true and the signal is the decrement the "inc" amount every sampling time
and signal reaches the minimum value in exactly the fall time mentioned in the
input. In this module, the rise and fall time of the signal is same and there is only
one variable for both times.

At the end the variable "v" is assigned to the output variable vout.

Listing 4.9: Square Wave Generation Block
1 always #(tsam) begin
2 phase = phase + f r e q ∗1000000∗(tsam∗1e−9) ;
3 i f (phase >1) phase = phase − 1 ;
4

5 i f (phase < dt) begin
6 i f (v > (−(d i f . vpp /2) + d i f . v o f f + inc)) begin
7 v <= v − inc ;
8 end
9 end

10

11 i f (phase >= (1−dt)) begin
12 i f (v < ((d i f . vpp /2) + d i f . v o f f − inc)) begin
13 v <= v + inc ;
14 end
15 end
16 end
17

18 a s s i gn d i f . vout = v ;
19

41

Signal Generators Modelling

The virtual interface for the square wave generator and the input stimulus is
mentioned in the listing 4.10. The generator is controlled by input stimulus from a
test class by instantiating the virtual interface there. Initial frequency is 10 MHz,
rise and fall time is 5ns, voltage offset is 0.2V, voltage peak-peak is 0.8V and the
duty cycle is 0.4.

Listing 4.10: Square Wave Interface and Stimulus
1 i n t e r f a c e :
2

3 ‘ t i m e s c a l e 1ns /1 ps
4 i n t e r f a c e sq_i f ;
5 r e a l f i n , vo f f , vpp , vout , duty , t r f ;
6 modport sq_mod (output vout ,
7 input f in , vo f f , vpp , duty , t r f) ;
8 e n d i n t e r f a c e : sq_i f
9 .

10 t e s t c l a s s :
11 c l a s s test_base extends uvm_test ;
12

13 v i r t u a l sq_i f sq_vi f ;
14

15
16

17 sq_vi f . f i n = 10 ; // f r e q in MHz
18 sq_vi f . t r f = 5 ; // time in ns
19 sq_vi f . v o f f = 0 . 2 ; // vo l tage in V
20 sq_vi f . vpp = 0 . 8 ;
21 sq_vi f . duty = 0 . 4 ;
22 #300
23 sq_vi f . f i n = 22 ;
24 sq_vi f . vpp = 0 . 6 ; #300
25 #300
26 sq_vi f . f i n = 15 ;
27 sq_vi f . duty = 0 . 7 5 ;
28 #600
29 sq_vi f . f i n = 7 ;
30 sq_vi f . vpp = 0 . 8 ;
31 sq_vi f . duty = 0 . 5 ;
32
33

34 endc l a s s
35

The waveform generated by the square wave generator can be seen in Figure 4.5.
The effect of change in the duty cycle, the frequency and the peak-peak voltage
can be seen. Voltage peak to peak is initially 0.8V, then 0.6V, and then again 0.8V
for whole simulation. Rise and fall time of 5ns is applied. Voltage offset of 0.2V is

42

Signal Generators Modelling

also applied. The output square waveform is represented by "vout".

Figure 4.5: Square Waveform

43

Chapter 5

Metric-Driven Verification

Metric-driven verification (MDV) for Application-Specific Integrated Circuit (ASIC)
is a methodology used to verify the functionality and performance of an ASIC
design. It involves defining a set of metrics or parameters that are used to measure
the quality and completeness of the verification process.

The metrics can include things like code coverage, functional coverage, perfor-
mance metrics, covergroups coverage, and other parameters that are relevant to
the design. These metrics are tracked and analyzed throughout the verification
process to ensure that the design meets the required specifications.

The goal of MDV is to ensure that the design is thoroughly tested and meets all
the required specifications before it is released for production. This approach helps
to reduce the risk of design errors and ensures that the ASIC meets the required
performance and power consumption targets.

Merging of metrics in MDV is the process of combining multiple metrics to gain
a more comprehensive understanding of the verification process. This can be done
by combining different types of metrics, such as code coverage, functional coverage,
and performance metrics, to get a more complete picture of the verification process.

We have discussed in the previous sections that mixed signal designs are complex.
It requires several internal registers and inputs of the device to be configured before
the simulation can start. This configuration of internal registers is done using UVM
backdoor configuration. UVM backdoor configuration is a technique used in verifi-
cation to access and modify internal signals and registers of a Design Under Test
(DUT) directly, bypassing the normal interface of the DUT. This technique is used
to test and debug the DUT more efficiently and effectively. Once the device is config-
ured for one stimulus, it runs with same configuration for the whole simulation time.

44

Metric-Driven Verification

When we want to verify the DUT for multiple configurations and stimulus, we
need to run multiple simulations with these distinct configurations. This is the
reason we configured the command-line simulation environment, so that multiple
simulations with distinct configurations can be run in parallel. We collect metrics
from these distinct simulations. The assertions provide functional coverage metrics
and randomized configuration stimuli provide covergroup coverage metrics. Once
these metrics from the multiple simulations are acquired, they can be merged to
achieve the required verification goals.

The merging of these metrics is an important concept in mixed signal simulation.
In digital verification, the DUT is synchronous to the clock and randomized stimu-
lus can be provided at each clock edge. This results in a single functional coverage
containing the result of thousands of randomized stimuli. But in case of mixed
simulation environment, we generate a random stimulus for the configuration and
then run the whole simulation with that one configuration. So, many simulation
runs are required for verifying the device with multiple randomized configurations
to get the desired result of verifying the DUT for multiple randomized input stimuli.
We randomized the configuration only once at the start for simulation because the
device settings have too many dependencies. But for another devices it’s possible
to randomize more stimulus per run and then merge all the runs to increase coverage.

In the next section, we will discuss coverages related to randomized input stimuli
and the coverages related to assertions. For the first case, we will randomize some
internal registers and collect their coverages by writing some covergroups. For the
second case, we need to use the assertions discussed in the previous chapter and
implement them for some analog signals of the DUT and collect the functional
coverages using them. We will then merge the multiple metrics from the simulation
runs for both cases.

5.1 Randomized Stimulus Coverage
This step involves randomizing internal registers of the device before the start
of the simulation and observing the effect on the output based on that. We are
targeting a specific part of the device for this implementation. Two configuration
registers were chosen to be randomized. Both registers are 3 bits.

The steps involve initializing the registers with "rand" for randomization, writing

45

Metric-Driven Verification

covergroups for the two registers and their corresponding constraints and instanti-
ating the covergroup inside the configuration class. For this project, the covergroup
is placed inside the configuration class. The object of this class is used to store
the register’s values. The covergroup can be placed in a separate class as well and
that class maybe called in the configuration class or the test class. The listing 5.1
shows the implementation of covergroup.

Listing 5.1: Covergroup Configuration
1 c l a s s test_base_cfg extends uvm_object ;
2

3 . . .
4

5 c o n s t r a i n t reg_2_cnst {reg_2 >0; reg_2 <7;};
6

7 covergroup thes i s_covergroup ;
8 opt ion . per_instance = 1 ;
9 clk_div_cp : coverpo int reg_1 ;

10 duty_prog_cp : coverpo int reg_2
11 {
12 bins range [1]= {1 , 2 , 3 , 4 , 5 , 6} ; }
13 endgroup
14

15 f unc t i on new(s t r i n g name = " ") ;
16 super . new(name) ;
17 thes i s_covergroup =new () ;
18 endfunct ion
19

20 f unc t i on void post_randomize () ;
21 $d i sp l ay (" post randomizat ion done ") ;
22

23 thes i s_covergroup . sample () ;
24

25 endfunct ion : post_randomize
26 endc l a s s
27

Here the names of these registers are changed for secrecy. The constraint rep-
resents that the register 2 only has values from 1 to 6. Its corresponding "bins"
are also mentioned. The "bins" are constructs which allow every value inside to
have its separate bin and coverage profile. The object of this class is instantiated
and randomized in the test class using "randomize()" function of the SV. Once the
"randomize()" is called and the randomization is done, the post_randomize() is
also called and the coverage of the covergroup is collected.

Figure 5.1 shows the overall coverage collected from only one simulation run.

46

Metric-Driven Verification

The covergroup coverage for register 1 can be seen below. The randomized stimulus
generated for register 1 in this simulation run is 3. Register 2 has a constraint and
multiple bins, so the coverage for it is 100%.

Figure 5.1: Covergroup Coverage for Single Simulation Run

Figure 5.2 shows the combined coverage collected by merging the results of five
simulation runs. The covergroup coverage for register 1 has increased representing
all the values which has been tested. In the five simulation runs, 4 values have
been randomnly generated for inputs with one being generated twice. With more
simulation runs we can generate all the possible input stimulus and achieve 100%
covergroup coverage.

Figure 5.2: Covergroup Coverage for Five Simulation Runs

47

Metric-Driven Verification

5.2 Assertion based Functional Coverage
The analog assertions discussed in the previous chapter are used to verify some
signals of a specific part the device. The assertion modules are called in the tb_top
module. The analog signals are converted to real signals using "cds_get_analog_value()"
function. And the real values are passed to assertions as inputs. The Assertions
can be placed in another module as well which can take all the signals as input.
That other module can act as a wrapper around the assertions so that the tb_top
module can be as clean as possible.

The analog assertions are used for 9 signals, and some assertions are used
multiple times emphasizing the reusability of the modules. A variety of features of
analog signals are verified including frequency of the signal, current and voltage
levels range of the signals, high time of the signal etc.

Figure 5.3 shows the functional and code coverage metrics collected from a
single run. Here some signal names are not shown for secrecy reasons. The type
of assertion checkers used for each signal are also shown. The dark green bars in
the figure show that all assertions are hitting 100% functional coverage and the
light green bars show that the combined functional and code coverages of some
assertions are not 100%. The data on the right side of the figure represent the
coverage of overall testbench including some other assertions not shown here.

Figure 5.3: Assertion Coverage Result for Single Run

Now if we merge the metrics results of multiple simulation runs, we will be able
to get a better coverage result. Figure 5.4 shows the functional and code coverages
collected by merging metrics results from 3 simulation runs. Here, the overall
coverage of the testbench mentioned on the right side of the figure has improved
and the code coverage of some assertions has gone to 100% as well, which was not
the case in the previous figure. By combining the metrics of just 3 simulation runs
we can increase the overall coverage of the device.

48

Metric-Driven Verification

Figure 5.4: Assertion Coverage Result by Merging Metrics From Multiple Runs

The mixed signal simulations take a long time to complete. If we want to increase
the code coverage with just one simulation, we will have to run the simulation
for a longer time. And it will take a large amount of real-world time in terms of
weeks for it to complete. But by running multiple short simulation runs in parallel
we can achieve the same code coverage results in the real-world time of just one
short simulation. This shows the benefit and importance of MDV and the metrics
merge feature. Running hundreds of simulations in parallel and merging their
metrics together can increase the efficiency and speed with which we can achieve
the verification goals.

Summarizing the whole verification process of the mixed signal designs, we
started from a short specification of a particular part of the device, we wrote a
validation plan, where we identified the list of all the features of that part of the
device to verify. Then, we wrote assertions and functional covergroups according
to the validation plan, implemented MDV concepts in the environment, in order to
check if we verified completely all the features of the validation plan.

49

Chapter 6

Conclusion

In conclusion, this thesis presents a comprehensive approach to efficiently
and effectively verify mixed-signal designs using a Universal Verification
Methodology (UVM) based Metric-Driven Verification (MDV) envi-
ronment which includes analog assertions, and real number modeling
(RNM) for signal generators.

The thesis discusses the challenges faced in simulation of mixed-signal
environments and the use of Cadence tools such as Xcelium, Spectre,
and Virtuoso in the configuration and simulation process of mixed signal
designs. The integration of UVM testbenches and MDV techniques with
simulation tools is also explored.

Furthermore, the thesis discusses the implementation of several assertion
checkers for analog signals, including the frequency checker, amplitude
checker, high/low time checker, and rise/fall time checker, and the
benefits of using analog assertions. The thesis also presents the imple-
mentation of signal generators using RNM, which can provide input
stimulus for analog systems during verification.

Lastly, the methodology of MDV is discussed, which involves defining a
set of metrics to measure the quality and completeness of the verification
process, and the merging of metrics to achieve the desired coverages.
By leveraging these techniques, verification engineers can improve the
efficiency and effectiveness of the verification process for mixed-signal
designs and reduce the risk of design errors.

50

Conclusion

Overall, this thesis provides valuable insights into the development of
efficient and effective verification environments for mixed-signal designs.

51

Appendix A

Training

The list and description of courses taken during the thesis.

A.1 Course: SystemVerilog for Design and Veri-
fication

The course provides a comprehensive introduction to SystemVerilog, is flexible and
self-paced, and is taught by experienced instructors. By completing this course,
learners will be well-equipped to create effective digital designs and verification
environments for their projects. The modules include an introduction to Sys-
temVerilog, data types and operators, control structures, functions and tasks, and
object-oriented programming. The course also covers advanced topics such as
constrained random testing, coverage-driven verification, and assertions.

A.2 Course: Essential SystemVerilog for UVM

The course covers the basics of SystemVerilog, a hardware description and ver-
ification language, and how it can be used in conjunction with UVM to create
effective verification environments. One of the key benefits of the Essential Sys-
temVerilog for UVM course is that it provides a comprehensive introduction to
both SystemVerilog and UVM, making it ideal for engineers and designers who are
new to these technologies. The course is also designed to be flexible and self-paced,
allowing learners to study at their own pace and on their own schedule.

52

Training

A.3 Course: SystemVerilog Assertions
The course offered by Cadence is designed to provide engineers and designers with
the knowledge and skills they need to effectively use SystemVerilog Assertions (SVA)
in their digital design and verification projects. SystemVerilog Assertions (SVA)
Course covers Basic and advanced SVA constructs including sequences, properties,
assertions, temporal operators, quantifiers, and hierarchical references. It explains
how to use these constructs to specify complex behavior and to reuse SVA code.
The course also covers how to use SVA in simulation to verify the behavior of a
digital circuit. It explains how to write SVA code in a testbench, how to enable
SVA in simulation, and how to debug SVA errors.

A.4 Course: Real Modeling with SystemVerilog
Real Modeling with SystemVerilog (RM-SV) course provides a comprehensive
introduction to SystemVerilog modeling, making it ideal for engineers and designers
who are new to this technology. The course provides an overview of RM-SV and
its capabilities. It covers the syntax and semantics of RM-SV, and how it can be
used to model real-world systems. It covers the data types and arrays in RM-SV,
including integers, reals, and strings; the tasks and functions in RM-SV, including
input/output tasks, blocking and non-blocking assignments, and delays; the classes
and objects in RM-SV, including inheritance, polymorphism, and encapsulation; the
randomization features in RM-SV, including random variables, distributions, and
constraints. Overall, the Real Modeling with SystemVerilog course is an excellent
resource for engineers and designers who want to develop their skills in digital
modeling using SystemVerilog.

A.5 Course: Mixed-Signal Simulations Using Spec-
tre AMS Designer

The course offered by Cadence is designed to provide engineers and designers with
the knowledge and skills they need to effectively use Spectre AMS Designer for
mixed-signal simulations. The course covers the basics of Spectre AMS Designer, a
simulation tool used for mixed-signal designs. The course provides an overview of
Spectre AMS Designer and its capabilities. It covers the features of Spectre AMS
Designer, and how it can be used to simulate mixed-signal circuits. The course
covers the topics such as, building a mixed-signal simulation, analog simulation,
digital simulation, mixed-signal simulation, advanced simulation techniques, The
course also covers advanced topics such as noise analysis, Monte Carlo simulations,
and statistical analysis.

53

Training

A.6 Course: Command-Line-Based Mixed-Signal
Simulations with the Xcelium™ Use Model

The course covers the basics of the Xcelium™ Use Model, a simulation tool used
for mixed-signal designs, and how it can be used to create effective mixed-signal
simulations. The modules include an introduction to the Xcelium™ Use Model,
mixed-signal simulation basics, analog behavioral modeling, and digital behavioral
modeling. The course also covers advanced topics such as noise analysis, Monte
Carlo simulations, and statistical analysis. This course covers everything explained
by the previous course but using command-line based simulation with Xcelium™
use Model.

A.7 Course: Design Checks and Asserts
The course provides an overview of design checks and asserts and their role in the
design process. It covers the types of checks and asserts that can be performed,
and how they can be used to improve the quality of the design. The course covers
how to set up design checks and asserts in vSPECTRE. It explains how to create
design rules, how to set up the rule checks, and how to run the checks on the
design. It also covers how to analyze the results of design checks in vSPECTRE.
Furthermore, it explains how to interpret the results, how to identify design issues,
and how to fix the issues.

A.8 Course: Foundations of Metric Driven Veri-
fication

The Course provides an overview of metric-driven verification and its role in the
verification process. It covers the benefits of metric-driven verification, and how it
can be used to improve the quality of the verification process. The course covers
how to set up metrics in the verification environment. It explains how to define
metrics, how to collect data, and how to analyze the data. It also covers how
to analyze the results of metrics in the verification environment. Furthermore, it
explains how to interpret the results, how to identify verification issues, and how
to fix the issues. It gives an overview of coverage and its role in the verification
process. It covers the types of coverage that can be used, how they can be used to
improve the quality of the verification process and how to write coverage models in
the verification environment. Furthermore, it explains the syntax and semantics of
coverage models, and how to use them to check the behavior of the design. The
last section covers how to debug coverage issues in the verification environment. It

54

Training

explains how to identify coverage gaps, how to isolate the cause of the gap, and
how to fix the issue.

55

	List of Figures
	Acronyms
	Introduction
	Background
	Motivation and Scope
	Training

	Mixed Signal Simulation Environment
	Mixed Simulation through GUI
	Mixed Simulation through Command Line
	Extracting Simulation Scripts through Command Line
	Multiple Simulation Setup
	Running the Simulation

	Mixed Simulation Setup: The Other Way

	Assertions for Analog and Mixed Signals
	Types of Assertions
	Features of Analog Signals
	Assertion Checkers for Analog Signals
	Frequency Checker
	Amplitude Checker
	High/Low Time Checker
	Rise/Fall Time Checker

	Benefits of Analog Assertions

	Signal Generators Modelling
	Specification and Features
	Implementation of Signal Generators
	Sine Wave generator
	Triangular Wave Generator
	Square Wave Generator

	Metric-Driven Verification
	Randomized Stimulus Coverage
	Assertion based Functional Coverage

	Conclusion
	Training
	Course: SystemVerilog for Design and Verification
	Course: Essential SystemVerilog for UVM
	Course: SystemVerilog Assertions
	Course: Real Modeling with SystemVerilog
	Course: Mixed-Signal Simulations Using Spectre AMS Designer
	Course: Command-Line-Based Mixed-Signal Simulations with the Xcelium™ Use Model
	Course: Design Checks and Asserts
	Course: Foundations of Metric Driven Verification

