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Abstract—This work concerns the control of nonlinear systems.
For this purpose we identify the nonlinear system using PieceWise
affine models (PWA). This choice is due to their ability to
represent nonlinear systems with precision. Then, we proceed to
design the one-step-ahead predictive control using the identified
models. The proposed strategy exploit the same principle of the
multimodel adaptive control with switching. For this strategy, a
regulator is synthesized for each submodel using one of linear
systems control approaches. The obtained results of the proposed
control approache are satisfying.

Index Terms—PWA systems, Modeling, Clustering approach,
One-Step-Ahead predictive Control.

I. INTRODUCTION

Piecewise Affine PWA models represent the most important
class of hybrid systems. They can represent many nonlinear
processes such as embedded systems, chemical process,
telecommunication networks, air traffic management systems,
etc [1], [2], [3], [4]. These systems involve continuous and
discrete dynamics interacting with each other. The continuous
dynamic is the feature of any physical system although
the discrete dynamic is obtained by switches, transitions,
operating phases, etc.
The most successfully used control strategy for piecewise
affine systems is the Hybrid Model Predictive Control (HMPC)
[5]–[8]. It is a technique of optimal control methodology,
since the control sequence is computed from minimization of
a criterion to maintain the system output closest to the desired
reference trajectory. The receding and the anticipatory action
features distinguish it from other optimal control strategies
[9]. Nevertheless, the HMPC approach has some limitaions.
In fact, the arbitrary choice of the tuning parameters can
affect the results because the PWA systems have arbitrary
switch phenomenon. Indeed, switching from one sub-model
to another need to redefine the tuning parameters to keep the
desired performance. Some methods exist in the literature
for the parameters adjustement of the generalized predictive
control such as the parametric identification algorithms using
fuzzy logic [10], the multi-objective optimization algorithms
[11], the fuzzy supervisor [12].

In this paper, the proposed approach for PWARX systems
control is inspired from the principles of the adaptive open

loop control or switching multimodel control. This approach
proceed to synthesis a controller to every sub-model ensuring
the desired performances and then in developing a supervisor
which allows selecting the best controller at every instant
based on the minimization of a performance index. The
precision of the control depends on the efficiency of the
performance index. However, the synthesis parameters used
by this index, such as the forgetting factors are set empirically.
Consequently, they must be properly chosen in order to avoid
instability of the system control. The use of the PWA models
allows to overcome this problem since the suitable controller
is selected automatically based on the actual regressor which
designates the corresponding region and then generates the
active sub-model. In this work, we suggest the synthesis of
predictive control for PWA systems based on linear techniques.
The organization of this paper is as follows. In section 2, the
mathematical modeling and problem formulation are given.
Section 3 presents the proposed predictive control strategy
for PWA systems. In section 4, we present the results of the
proposed control approach.

II. MATHEMATICAL MODELING AND PROBLEM
FORMULATION

A. Hybrid systems representation
Dynamic hybrid systems are heterogeneous dynamical sys-

tems which gather continuous and event phenomena. These
systems offer a solution that is both simple and rigorous
for the representation of complex systems since the hybrid
behavior occurs in most industrial processes. Indeed, there
exist numerous representation of these systems. Among them,
we distinguish the PieceWise Auto-Regressive eXogenous
models (PWARX) which are obtained by the decomposition of
the regression domain into convex polyhedral regions, and the
association of an affine model to each region. These models
are considered as universal approximators. This property gives
the possibility to exploit linear systems analysis techniques if
the local models are linear. The input-output representation of
a PWA system can be formulated as follows:

y(k) =


θT1 φ̄(k) + e(k) if φ(k) ∈ H1

...
θTs φ̄(k) + e(k) if φ(k) ∈ Hs

(1)
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φ(k) =



y(k − 1)
...

y(k − na)
u(k − 1)

...
u(k − nb)


θi =



ai,1
...

ai,na

bi,1
...

bi,nb

gi


(2)

φ̄ =
[
φT 1

]T
. (3)

where
• y(k) ∈ R, u(k) ∈ R, e(k) ∈ R, s ∈ N are respectively

the output, the input, the additive noise and the number
of sub-models.

• θi ∈ Rna+nb+1 is the parameter vector of the ith sub-
model having na and nb as orders.

• ai,j and bi,j represent the coefficients of the ith sub-
model while gi represents an independent affine parame-
ter of the ith sub-model.

• φ(k) ∈ Rna+nb is the regressor vector.
• Hi ∈ Rna+nb is the polyhedral partition of the ith sub-

model. The polyhedral partitions Hi, i = 1, .., s must
verify the following assumptions:

s⋃
i=1

Hi = H

Hi

⋂
Hj = ∅ ∀i ̸= j

(4)

B. Hybrid systems identification

System identification is the construction of mathematical
models from the input-output measurements of the system.
This approach is the most used in the field of system control
design because it ensures a good compromise between
simplicity and precision of the model and is distinguished
by its easy of implementation. Moreover, it is generally
applicable to all physical systems. We can formulate the
identification problem of a PWA system as follows:
Using the input-output measurements, estimate the number of
submodels, the parameters vectors and the coefficients of the
affine hyperplanes that define the regions.

It is easy to deduce that PWARX systems identification is
one of the most difficult problems. For many approach, the or-
ders of the sub-models must be defined in order to alleviate the
complexity. Despite the consideration of these hypotheses, the
subject still remains difficult because it requires the resolution
of two problems which are the identification of the parameters
of the sub-models and the estimation of the coefficients of
the hyperplanes delimiting the regression domain. There exist
a plenty of methods for PWARX systems identification: the
algebraic method [13], the classification method [14], the
Bayesian method [15], the bounded error method, and so forth.
Only the classification approach is considered in this work
because of its simplicity and its good performances in many
real-time examples.

C. Identification of PWA models based on clustering approach

The main steps that caracterize the clustering based
approach are: data classification, parameters vectors estimation
and regions definition.

1) Constructing local data sets: Constructing the local
set Ck to each pair of data {φ(k), y(k)}Nk=1. Every set Ck

containing the regressor vectors and a finite number of nearest
neighbors [14].

The number of neighbors nρ is a random parameter. It has
an important role in the algorithm. So, it must be properly
chosen in order to ameliorate the identification result. For
the obtained local sets {Ck}Nk=1, we identify the parameters
vectors {θk}Nk=1 using least square method or any standard
linear regression techniques.

θk = (ϕT
k ϕk)

−1ϕT
k Yk. (5)

ϕk =
[
φ̄(t1k)...φ̄(t

nρ

k )
]T

Yk =
[
y(t1k)...y(t

nρ

k )
]T (6)

{
t1k, · · · , t

nρ

k

}
are the indices of the elements of sets Ck.

2) Data clustering and parameters’ estimation: The
objective of this step is to classify the parameters vectors
{θk}Nk=1 into s clusters and determine the sub-models
parameters vectors {θi}si=1.

The efficiency of the classification technique has an
important role in obtaining good estimation of sub-models
parameters and hyperplane parameters. Several techniques of
classification can be found in the literature. For example, in
[14] the data classification step is achieved by the k-means
algorithm which is sensitive to additive noise and it can not
deal with outliers. Moreover, it assumes that the number
of classes is known a priori. These problems lead to a
degradation of the estimation quality of the parameters
of the sub-models as well as of the coefficients of the
hyperplanes. Therefore, we have proposed to replace the
existing classification technique by other ones. Among them,
we cite the DBSCAN approach (Density-Based Spatial
Clustering of Applications with Noise) [16]. This algorithm
allows assigning the data into distinct classes while being
based on certain density conditions, i.e. the classes are
considered as dense regions which are separated by low
density regions. This method is also able to eliminate outliers
during the partitioning process. In addition, it can determine
the number of classes.
This algorithm was tested on simulated examples and on
real measurements where it provided the best results by
comparison with existing method like k-means. Indeed, the
problems of convergence towards local minima and the
divergence of the algorithm does not exist because we don’t
need any initialization. Moreover, it automatically generates
the number of sub-models.
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1 teta per ogni coppia di dati (N) e poi li raggruppo in s clusters



The main principle of the DBSCAN algorithm is that the
neighborhood of the object of any cluster ϵ must hold in a
minimum number MinPts of objects with a chosen radius.
ϵ and (MinPts) represent the input parameters of the
algorithm. Therefore, they must be properly chosen in order
to guarantee a good classification of the data.

Given ϵ and MinPts as input and a data set S = {θk}Nk=1,
the ϵ-neighborhood of an object θk is:

Nε(θk) = {θj ∈ S; ∥θk − θj∥ ≤ ε}

Clusters are constructed by reviewing the ϵ-neighborhood of
all the elements. So, a step of differentiation of points nature
is necessary. Then, the point is considered as:

• core, when the cardinality of his neighborhood is higher
or equal to MinPts.

• border, when the cardinality of his neighborhood is less
than MinPts and it is within the neighborhood of any core
point.

• noise, for the other points that are not core nor border.

The first cluster is formed by the first core point and its
neighbors then all the other core points are evaluated. If the
considered object isn’t assigned to a cluster, another cluster
will be created. In [16], the DBSCAN algorithm is more
detailed.

3) Region reconstruction: The region reconstruction prob-
lem consists in determining the different partitions {Hi}si=1.
Since the polyhedral regions are defined by hyperplanes,
estimating the regions amounts to separate the groups of points
using linear classifiers (hyperplanes). Separating the points in
Hi from Hj , i ̸= j with an hyperplane without errors is a
fabulous task because the sets Hi and Hj have intersecting
convex hulls. Therefore, we just have to find the hyperplane
that minimizes some misclassification index. For the s sets
Hi,...,Hs, two types of linear separation can be handled:

• Binary classification: for each pair (Hi, Hj), with i ̸= j,
a linear classifier is constructed.

• Multi-class classification: a piecewise linear classifier
is determining having as object the discrimination of s
classes.

The separation task can be accomplished by resorting to the
support-vector machine (SVM) approach [17], [18].

III. PROPOSED ONE-STEP-AHEAD PREDICTIVE CONTROL
STRATEGY FOR PWA SYSTEMS

After describing the nonlinear behaviour of the system with
a PWA model based on the proposed clustering identification
approach, we can proceed with the design of a system control
law. The one-step predictive control is a convenient control
approach which can emphasize the accuracy of the model.
Indeed, in order to design the predictive control for PWARX
systems, we propose a solution that exploit the principle of

multimodel adaptive control with switching [5].
This approach is based on the estimation of the sub-models
and the design of the supervisors that used to select the
suitable sub-mode representing the process at every sampling
time. After that, the suitable controller output is chosen.

For the multimodel adaptive control approach, the
supervisor consists in solving a criterion based on the error of
the output of the process and the outputs of the sub-models.
To achieve this goal, many criteria can be found in the
literature [19], [10].
However, the proposed supervisor uses the regression vector to
decide about the active sub-model. The convenient controller
is then determined by the SVM approach. Therefore, we can
avoid the arbitrary choice of the ponderations of the existing
approach.
Since the system is defined by a PWA model, the control
structure is then simplified as shown in Figure 1(a) and 1(b).

 

Process 
u(k) y(k) 

Sub-model  1 

Sub-model 2 

Sub-model s 

Controller 1 

Controller 2 

Controller s 

Supervisor 

yc(k) 

+-

Switching indicator 

Multimodels 

Multi-controllers 

us(k) 

u2(k) 

u1(k) 

(a) Proposed PWARX control strategy

 

Process 
u(k) y(k) 

Controller 1 

Controller 2 

Controller s 

PWARX 

Supervisor 

yc(k) 

+-

Switching indicator 

us(k) 

u2(k) 

u1(k) 

(b) Multimodel adaptive control strategy

Fig. 1. Control design.

Results of linear system control can be applied to the
PWA model. In fact, we propose the one-step-ahead predictive
control. This method is broadly used in the field of industry as
well as in the field of research. This control strategy addresses
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system control issues that can be constrained while solving an
optimization problem. The principle of this control strategy
involves the knowledge of the mathematical model in order to
anticipate the future behavior of the process.
The principle of the predictive control can be formulated
as follows: ”use a model to predict the behavior of the
system and determine the convenient controller by minimizing
a performance criterion while respecting the constraints”.
The elements of the predictive control are therefore:

• a model representing the process for prediction;
• a performance criterion (cost function);
• constraints to impose on the state variables, inputs or

outputs;
• an optimization algorithm generating the control law.

For each element, several options can be considered, which
gives a multitude of algorithms of the predictive control.
In this work, we are interested in one-step predictive control.
The choice of a prediction horizon of a single step is justified
by the fact that the switching dynamics of the submodels is
not known a priori and therefore switching from one submodel
to another can occur in an unknown way.
The control law is calculated through the minimization of a
quadratic criterion which penalizes the differences between the
predicted outputs and the reference trajectory.
For each sampling time k, the available informations are the
current output y(k) and the previous inputs and outputs y(k−
1), ..., y(k − na) and u(k − 1), ..., u(k − nb).
The main principle of the one-step predictive control is to
find the control low u(k) that coincides the output y(k) with
the reference trajectory yc(k). More precisely, this control is
obtained by minimizing the following criterion:

J =
1

2
∥y(k + 1)− yc(k + 1)∥2Q +

1

2
∥u(k)∥2R (7)

Q ∈ Rm×m is a positive definite matrix and R ∈ Rn×n is
a semi-definite positive matrix and m and n are respectively
the number of outputs and inputs.

PWA control problem formulation
The quadratic form of the criterion is given by:

J = [y(k + 1)− yc(k + 1)]TQ[y(k + 1)−
yc(k + 1)] + u(k)TRu(k)

(8)

The output y(k) of a PWA system is given by:

a1,1y(k − 1) + ..+ ana,1y(k − na)+
b1,1u(k − 1) + ..+ bnb,1u(k − nb) + g1

if φ(k) ∈ H1
...

a1,sy(k − 1) + ..+ ana,sy(k − na)+
b1,su(k − 1) + ..+ bnb,su(k − nb) + gs

ifφ(k) ∈ Hs

(9)

The system output is as follows:

y(k) = θTσ(k)φ̄(k)

= a1,σ(k)y(k − 1) + · · ·+ ana,σ(k)y(k − na)
+b1,σ(k)u(k − 1) + · · ·+ bnb,σ(k)u(k − nb)
+gσ(k)

(10)

where ai,σ(k), bi,σ(k) and gσ(k) represent the coefficients of
the active sub-model and σ(k) represents the considered sub-
model.
The criterion of the one-step predictive control allowing a
coincidence between the output y(k + 1) and the reference
yc(k+1) for a PWARX system described by the relation (10)
is formulated as follows:

J = Q.Ψ2 +Ru2(k) (11)

where
Ψ = yref (k + 1)− a1,σ(k)y(k)− · · ·
−ana,σ(k)y(k − na + 1)− b1,σ(k)u(k)− · · ·
−bnb,σ(k)u(k − nb + 1)− gσ(k)

An explicit solution of u(k) can be obtained by minimising
the criterion (11).

u(k) =
Q.b1,σ(k).∆

Q.b21,σ(k) +R
(12)

where

∆ = yref (k + 1)− a1,σ(k)y(k)− · · ·
−ana,σ(k)y(k − na + 1)− b2,σ(k)u(k − 1)− · · ·
−bnb,σ(k)u(k − nb + 1)− gσ(k)

A convenient choice of the weights Q and R has an impact
on the stability of the synthesized controller.
In addition, the weight R can be considered as a tuning param-
eter allowing to obtain a balance between control magnitude
and tracking accuracy.

IV. SIMULATED EXAMPLE : PROCESS OF LEVEL CONTROL

We consider a level control system consisting of two con-
nected tanks described in [12].

This system has to control the level h2 in tank R2 using
the input flow qe [20]. This process can be modeled by using
the principles of Bernoulli and the conservation of mass as
follows:

dh1

dt
=

qe
S1

− α1

S1

√
2g(h1 − h2) = f1(h1, h2, qe) (13)

dh2

dt
=

α1

S2

√
2g(h1 − h2)−

α2

S2

√
2gh2 = f2(h1, h2, qe)

(14)
where h1 and h2 are the levels in R1 and R2 respectively,

S1 and S2 are the areas of R1 and R2, α1 and α2 are the
effluent areas of R1 and R2, qe is the sytem input, q1 is the
input of R2, q2 is the flow of th output while g represent the
gravity constant.
The following parameters are used to simulate this process:
α1 = 0.002m2, α2 = 0.002m2, S1 = 0.25m2, S2 = 0.1m2,
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l = 1.2m, g = 9.81m/s2 and q1 = 0.005m3/mn.
The identification of this process using the DBSCAN method
id presented in our paper [12]. In fact, we have used a multi-
sine sequence characterized by data length N = 200, sampling
time Te = 2s, input frequencies Fe ∈ [0.001, 0.008]Hz and
input amplitudes A ∈ [0.001, 0.01]m3/mn.
The input-output measurements are depicted in Figure. 2.

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

k

u
(k
)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

k

h
2
(k
)(
m
)

Fig. 2. Input-Output measurements.

Applying the DBSCAN identification method, we obtain
the following results:

• The number of submodels s is equal to three.

• The parameter vectors θi = {ai,1, bi,1, bi,2}i=1,2,3 are:

θ1 = {0.7915, 2.2125, 5.2863}
θ2 = {0.8877, 0.1246, 7.5378}
θ3 = {0.9105,−0.7323, 8.4514}

• The regions {Hi}i=1,2,3 are as follows:

H1 =
{
φ ∈ R3;

[−4.989− 0.105− 0.103]
T
φ (k)− 0.2528 ≤ 0

}
H2 =

{
φ ∈ R3;

[−4.5735− 0.0207− 0.0348]
T
φ (k) + 0.1977 ≤ 0

and [−4.989− 0.105− 0.103]
T
φ (k)− 0.2528 > 0

}
H3 =

{
φ ∈ R3;

[−4.5735− 0.0207− 0.0348]
T
φ (k) + 0.1977 > 0

}
We apply, firstly, the classical Hybrid Model Predictive

Control (HMPC) method with constant tuning parameters
(Qu = 9.9796 ∗ 10−5 and Qy = 7.9601 ∗ 10−7) [12].

The obtained results are presented in Figure. 3 which shows
that the output and the reference trajectory don’t have the same
dynamics.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

k
 

 

y r

0 500 1000 1500 2000 2500
0

2

4

6

8
x 10

−3

k

 

 

u

Fig. 3. HMPC control results: Reference trajectory and system output.

The application of the proposed control strategy with
the same reference trajectory gives the results presented
in Figure. 4 which presents the evolutions of the system’s
output, the reference, the error and the control signal.

We observe that the dynamics of the output and the refer-
ence trajectory are very close and then the tracking error is
close to zero. Indeed, the proposed control strategy allow to
obtain good closed-loop performance.

0 500 1000 1500 2000 2500

0

0.2

0.4

0.6

output

reference

0 500 1000 1500 2000 2500
-0.05

0

0.05 error

0 500 1000 1500 2000 2500

k

0

2

4

6

8
10

-3

control law

Fig. 4. Proposed Control results : Reference trajectory and system output.
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Figure 5 presents the switching instances. We remark that
if the reference changes value, the active sub-model is also
changed.

0 500 1000 1500 2000 2500

k

0

0.5

1

1.5

2

2.5

3

Fig. 5. Switching instances .

V. CONCLUSION

In this paper, the one-step predictive control is proposed
to solve the problem of nonlinear system control. Indeed, the
suggested strategy is inspired by the switching multimodel
control.

The proposed approach develops a controller to every sub-
model using one-step ahead predictive control. The selection
of the best regulator for every sampling time is ensured in
a systematic way using the active region mechanism. This
represents an important advantage because the knowledge
of this regulator in the case of the switching multimodel
adaptive control is ensured by minimizing an explicit criterion.

However, it is important to point out that the implementation
of these approaches for both identification and control is gen-
erally difficult in the case of a real system. These difficulties
arise at several levels such as the determination of the number
of sub-models, the choice of the structure of the sub-models,
the choice of the synthesis parameters, the stability of the
control system, etc. Indeed, the control of real time nonlinear
systems is the core of our future contributions and therefore
the problem is still open.
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