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Abstract

Piecewise affine systems have emerged as focal points of study within the realm of

control theory due to their ability to accurately model complex, non-linear dynamical

systems. This thesis navigates the motivations behind the extensive investigation of

piecewise affine systems and elucidates their practical utility.

The inherent flexibility of piecewise affine models allows for a perfect representation of

systems that exhibit distinct behaviors in different regions. This attribute makes them

particularly well-suited for applications in robotics, power systems, and process con-

trol, where the ability to capture nonlinearity is crucial. Examining the convenience of

piecewise affine systems in control scenarios reveals their capacity to address challeng-

ing dynamics and facilitate the design of efficient control strategies.

In the domain of optimal control solutions, Model Predictive Control (MPC) emerges as

a compelling technique when applied to piecewise affine systems. Toward the conclu-

sion of this exploration, this thesis delves into the MPC’s applicability in this context,

highlighting the advantages it offers. By leveraging MPC’s predictive capabilities, these

systems can achieve enhanced performance, increased robustness, and improved adapt-

ability. The synergies between piecewise affine systems and MPC provide a promising

avenue for advancing the state-of-the-art in control theory and its practical implemen-

tation. This thesis contributes to the ongoing discourse by explaining implications of

studying piecewise affine systems, showcasing their versatility, and ultimately under-

scoring why MPC stands out as an optimal technique for harnessing the full potential of

these intriguing dynamical models.
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1 Introduction

The study of physical, biological, and economic systems often involves mathematical

modeling using constructs like differential or difference equations. These systems evolve

over time or another independent variable, following dynamic relations. To meet spe-

cific requirements within a finite period (horizon), external inputs or controls can be

applied. However, these requirements must be satisfied while adhering to the inher-

ent limitations and constraints of the systems, such as equipment or safety constraints.

When seeking to fulfill these requirements, there may be various controls that achieve

the same outcome.

Among these, one control may be considered the "best" in terms of performance. The

measure of performance is typically quantified using a cost function. The constraints

on inputs and outputs are referred to as constraints, and the optimal control associated

with achieving the best performance is known as optimal control. The methodology for

solving such problems is termed finite-horizon optimal control.

The design of an infinite-horizon optimal control can be achieved through a receding

horizon approach by repeatedly solving finite-horizon optimal control problems. In this

methodology, a finite-horizon optimal control problem is solved at each step, yielding

an optimal control sequence. However, only the first control sample from this optimal
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sequence is applied to the system. Subsequently, a new finite-horizon optimal control

problem is solved in the next step. This iterative process is known as Model Predictive

Control (MPC), or sometimes referred to as model-based predictive control. The ad-

vent of MPC as a control strategy has marked a significant leap in the field, providing

a framework that offers an efficient and adaptable solution to many control problems,

particularly in nonlinear systems.

In this thesis we consider MPC in the context of a complex nonlinear dynamic system,

particularly by utilizing a piecewise affine (PWA) model to represent the underlying

system dynamics and we will see how both of these aspects are pivotal for addressing

the challenges posed by complex nonlinear dynamic systems.
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2 State of art

2.1 Piecewise affine dynamical systems

Complex nonlinear dynamic systems abound in various fields, from industrial processes

and robotics to environmental monitoring and autonomous vehicles. These systems ex-

hibit intricate behaviors that make their accurate modeling and control a formidable

undertaking. Unlike linear systems, nonlinear systems do not adhere to the princi-

ples of superposition and proportionality, rendering classical control techniques often

ineffective. Their responses are characterized by nonlinearities, discontinuities, and

non-convexities, which defy straightforward mathematical representations. A funda-

mental and historical challenge of control theory is the one of finding systematic design

and analysis methods that can apply with a moderate effort to virtually any dynamical

system. Methods such as Reinforcement Learning (RL) have the potential of dealing

generically, in principle, with very complex dynamical systems, but they suffer from

a lack of theoretical guarantees in term for example, of closed-loop performance and

stability. These shortcomings prompt the necessity of developing nonlinear control tech-

niques that would exploit as efficiently as possible the deep experience acquired from

decades of theory and practice of linear systems. One promising way to achieve such
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an objective is to work on system models which are structurally simple enough to ap-

prehend and yet able to capture the essential behavior of the nonlinear system. The

classes of PieceWise Affine (PWA) models or blended PWA (also called multi-models)

seem particularly appealing for establishing a bridge from the rich legacy of linear sys-

tems theory to nonlinear systems study. A PWA model represents a dynamic system in

which the system’s behavior is approximated by a series of linear subsystems, each of

which is active in a specific region of the state space. In other words, the overall system

is ’partitioned’ into different regions, and in each region, the behavior is approximated

by a linear model. Piecewise affine models, for this reason, offer a unique advantage

in representing complex nonlinear systems. The PWA model can approximate the sys-

tem dynamics with high fidelity in the presence of nonlinearity and discontinuity. This

property makes PWA models an attractive choice when dealing with systems that ex-

hibit abrupt changes or nonlinear phenomena. This class of models is known to have

a universal approximation capability. In these years, many reaserchers are focusing on

PWA models and their way of being controlled. The research is driven by PWA’s demon-

strated capability to effectively model and describe a wide range of practical physical

systems that exhibit nonlinear characteristics. These nonlinear features include, but

are not limited to, dead zones, saturation, hysteresis, and other complex behaviors.

PWA systems offer a flexible framework that allows for the representation of intricate

dynamics within different regions or modes, making them particularly suitable for cap-

turing the inherent complexities found in real-world systems. As a result, researchers

find PWA models to be a powerful and versatile tool for understanding and analyzing

systems where traditional linear models may fall short in providing accurate represen-

tations. In practical applications, PWA systems belong to the class of hybrid systems

and are defined by a polyhedral partition of the system state space. This means that the

state space is divided into distinct polyhedral regions, each associated with a specific

affine dynamics or model. This partitioning allows for a piecewise representation of the
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system’s behavior, where different modes or regimes govern the dynamics based on the

region in which the system currently resides. Such a characterization enables the mod-

eling of complex systems with varying behaviors, making PWA systems valuable in the

analysis and control of real-world processes exhibiting nonlinear and hybrid features.

During the past few decades, PWA systems have drawn extensively attention and many

elegant results on the problems of stability analysis like [44], where a Lyapunov matrix

polynomial continous and time-dependent is constructed and used for the e robustness

analysis of system, or control context [42] regarding periodic piecewise linear systems.

Other optimum results are obtained in estimation [52], where the guaranteed cost con-

trol problem with the optimization of two performance indexes is investigated for a class

of continuous-time periodic piecewise linear time-delay systems, and identification [13]

proposing an online identification framework for the continuous-time PWA models in

state-space form, with an arbitrary number of subsystems and the unknown partitions.

It has been shown that many general smooth nonlinear systems can be approximated by

PWA systems to any degree of accuracy [54]. In tackling the control challenges posed by

PWA systems, numerous model-based results have been documented. Notably, some of

these results include the use of piecewise Lyapunov functions for system stability analy-

sis [36] and [20]. Most of the model-based control strategies assumed that the models

of PWA systems are know in advance. However, in some cases, system models may

not be known a priori and must be identified from measured data using identification

methods. In practical terms, the control problem for PWA systems is typically divided

into two distinct steps: first, the identification of the model, and second, the design of a

model-based controller. An alternative approach that circumvents the two-step design

procedure of model-based control methods is the data-driven control, explored better

in [48], where a data-driven controller is designed to guarantee the asymptotic stability

of discrete-time PWA systems in both cases of known and unknown state space partition

information.
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More and more research endeavors are employing machine learning techniques for the

construction of PWA systems [1] and [21], using respectively Clustering and Bayesian

approaches to identify Hybrid Systems. This growing trend reflects a recognition of

the potential benefits and capabilities that machine learning can bring to the develop-

ment and understanding of PWA models. In this context, machine learning serves as

a valuable tool for system identification and control, offering an alternative or comple-

mentary approach to traditional model-based methods. The appeal of machine learning

in the construction of PWA systems lies in its ability to adapt to complex and nonlinear

dynamics without requiring a detailed understanding of the underlying physics. This

adaptability is especially advantageous when dealing with systems characterized by un-

certainties, disturbances, or varying operating conditions. The integration of machine

learning techniques into PWA modeling not only streamlines the modeling process but

also opens up new avenues for addressing control challenges in diverse and dynamic

real-world applications. Others use ML to compute a weighting scheme for PWA sys-

tems. In [31] the weights are predicted by a deep neural network trained online and

combined with multiple linear PID controllers for different operating points.

Resuming, the motivation behind studying piecewise affine dynamical systems stems

mainly for two reasons. On one hand, they represent the most straightforward nonlin-

ear extensions of linear systems. On the other hand, these systems can effectively ap-

proximate piecewise smooth nonlinear systems with a desired level of accuracy, much

like how linear systems are employed to locally approximate smooth nonlinear sys-

tems.
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2.2 MPC controller

Over the last three decades, there has been a significant surge in the application of

control techniques based on dynamic optimization, resulting in enhanced system per-

formance [2]. These applications span various domains, such as maximizing process

output or minimizing energy consumption and emissions. The fundamental princi-

ple behind these techniques involves employing a mathematical model, typically rep-

resented by differential equations describing the process to be controlled. This model

is utilized to predict the future behavior of the system and calculate optimized control

actions. In some instances, this optimization can be carried out once before the run-

time of the process, leading to the development of an offline controller. However, the

presence of unknown or unmodeled disturbances often necessitates the use of a feed-

back controller. Such controllers repeatedly solve optimal control problems in real-time,

meaning during the active runtime of the process. This approach is commonly referred

to as Model Predictive Control (MPC), emphasizing the real-time, predictive nature of

the control strategy in response to dynamic system conditions. Model Predictive Con-

trol offers several advantages compared to traditional control approaches. One of its

key features is the direct specification of the control objective and desired constraints

on the process behavior within an optimal control problem. This eliminates the need

for heuristics in controller design and simplifies the tuning process. Mathematical opti-

mization techniques are then employed to derive control actions that represent optimal

solutions to these specified control problems.

Furthermore, MPC formulations can incorporate predictive information, enabling the

controller to proactively respond to anticipated changes in the system. Additionally,

MPC naturally accommodates processes with multiple inputs or outputs, as it can con-

ceptually be applied to dynamic models of any dimension.

However, these advantages come with a trade-off—optimal control problems must be
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solved in real-time, possibly on embedded controller hardware. This challenge becomes

particularly pronounced when the dynamics of the controlled process are fast, necessi-

tating a controller capable of providing feedback at high sampling rates, as is often the

case in applications like mechanical or automotive systems. What makes solving MPC

problems challenging is the fact that if the model features nonlinear dynamics, the re-

sulting optimisation problem typically becomes nonconvex. Thus, the optimal solution

might not be unique and, moreover, many sub-optimal local solutions might exist. This

circumstance introduces complications to both the solution procedure, leading to in-

creased computational load, and the theoretical analysis of the closed-loop behavior of

the process. Secondly, even when a linear dynamic model results in a convex problem

with a unique optimal solution, solving it reliably within short sampling times is still

computationally demanding, especially for complex systems. Apart from the compu-

tational challenges, considerable effort has been dedicated to exploring the theoretical

properties of MPC algorithms.

2.3 Outline of the thesis

The application of MPC to nonlinear systems can present significant computational chal-

lenges, especially when real-time processing is essential. The computational burden is

further compounded when considering the use of Piecewise Affine (PWA) models, which

accurately capture the underlying nonlinear dynamics. While PWAs offer a promis-

ing avenue for modeling complex systems, the associated mixed-integer programming

problem, a common consequence of employing PWA models in MPC, introduces com-

putational complexities, with the problem being NP-complete. This intricacy not only

impacts the efficiency of the MPC algorithm but also poses challenges for real-time ap-

plications, particularly when dealing with fast-paced processes, as observed in various

mechanical and automotive systems. Addressing these challenges becomes pivotal for
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unlocking the full potential of MPC in controlling nonlinear and dynamic processes. In

this thesis, we delve into the nuanced interplay between MPC, nonlinear systems, and

PWA models, exploring strategies to enhance computational efficiency while maintain-

ing the robustness of the control framework.
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3 PWA model

The piecewise affine system can be seen as a collection of affine systems each operating

within its own designated region. These regions are determined by dividing the com-

bined state space and input space into segments. The behavior of the system is governed

by the region in which the state and input vectors reside at a given time. Consequently,

the dynamics is controlled by a switch when the state-input vector transitions from one

region to another.

The motivation for exploring PWA dynamical systems primarily arises because these sys-

tems serve as the most direct nonlinear extensions of linear systems. Additionally, they

offer the capability to approximate piecewise smooth nonlinear systems with a high de-

gree of accuracy, such as the way linear systems are employed for locally approximating

smooth nonlinear systems.

3.1 Mathematical Formulation of PWA Models

Understanding the foundations and inherent characteristics of PWA models is crucial,

for implementing them in control systems. This section aims to provide an exploration

of how PWA model are formulated explaining their fundamental principles and the

13



key parameters that influence their behavior. By delving into the complexities of PWA

models our goal is to offer an understanding that enables practitioners to utilize these

models in various control applications.

PWA models fall under a category of representations that intricately divide the state

space into defined regions. Each region corresponds to a model that captures localized

insights, into the systems dynamics. Within these regions the systems behavior is rep-

resented by a set of linear equations pieced together to create an approximation that

captures the nuanced intricacies of the nonlinear system dynamics. This approach al-

lows for an region specific characterization of the systems behavior resulting in a precise

and accurate representation.

Mathematically speaking a PWA model can be expressed as a nonlinear autonomous

dynamical system Σ : U → Y with a state space representation given by:

y = Σ(u) =


ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

x(0) = x0

(3.1)

where x(t) ∈ X ⊆ Rn is the state, u ∈ U is the input taking values in U = Rnu, y ∈ Y

is the output taking values in Y = Rny and x0 is the initial condition. The functions

f : Rn × Rnu → Rn and h : Rn × Rnu → Ry are called the drift map and output map,

respectively.

Piecewise-affine systems represent a class of nonlinear systems wherein the evolution of

the state is dictated by a collection of affine equations, each applicable within a distinct

region of the state space. This characterization results in a system described by a set of
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piecewise differential equations. The representation of these systems is as follows:
ẋ(t) = Aix(t) +Biu(t) + ai

y(t) = Cix(t) +Diu(t) + ci for x(t) ∈ Xi

x(0) = x0

(3.2)

where Ai ∈ Rn×n, ai ∈ Rn, Bi ∈ Rn×nu , Ci ∈ Rny×n, ci ∈ Rny and Di ∈ Rny×nu, for

i ∈ I := {1, ..., N}. We shall denote I0 ⊆ I the set containing all i such that 0 ∈ Xi. The

regions Xi, for i ∈ I, are closed convex polyhedral sets, and may be unbounded. Each

face of the polyhedron Xi is in a hyperplane that divides X into two regions. Let

Gi,k := {x ∈ X | Gi,kx + gi,k ⩾ 0} (3.3)

be a half-plane defined by the k-th face of the polyhedron. Thus, Gi and gi work as cell

identifiers for cell Xi. If x0 lies in the interior of a cell, this i is unique, and we can

recall the appropriate system matrices to evaluate the model (3.1). If x0 lies on a cell

boundary, there are several i that satisfies the vector inequality and the right-hand side

may not be uniquely defined. This is the case for non-smooth systems. The region Xi is

then characterized by the intersection of all Gi,k, i.e

Xi :=
⋂

k

Gi,k = {x ∈ X | Gix + gi ⩾ 0} (3.4)

where

Gi :=


Gi,1

...

Gi,li

 gi :=


gi,1
...

gi,li

 (3.5)

and li is the number of faces of Xi. The sign ⩾ defines that each value of the vector

Gix + gi must be positive. The regions Xi have non-empty and pairwise disjoint

interiors and are such that ∪i∈I Xi = X. Then, {Xi}i∈I denotes a finite partition of
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X. From the geometry of Xi, the intersection Xi ∩Xj between two different regions is

always present in a hyperplane. Let us define by ET
ij ∈ Rn and eij ∈ R the vector and

the scalar such that

Xi ∩Xj ⊆ {x ∈ X | Eijx + eij ⩾ 0}. (3.6)

In the next figure is showed the polyhedral partition:

Figure 3.1: Polytopic partition of the state space

Only one model at each sampling time is employed, to reduce computational costs as

well as the difficulty of including uncertainty into the optimization problem. Piecewise-

affine systems emerge organically when addressing static piecewise-affine nonlinearities

like saturations, relays, and dead-zones. Not only do they serve as suitable representa-

tions for such nonlinear elements, but they also function as effective approximations for

more intricate nonlinear systems, including those featuring smooth separable nonlinear-

ities. Within the control community, these systems have garnered significant attention

in recent years. One key factor contributing to this interest is the close resemblance of

their description to that of Linear Time-Invariant (LTI) systems. This similarity enables

the seamless adaptation of several results from classical control theory, facilitating the

application of concepts such as Lyapunov stability and the computation of the L2-gain,

of which we will talk later. This inherent connection to well-established control prin-
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ciples makes piecewise-affine systems a valuable and versatile tool for modeling and

analyzing complex dynamic processes.

As a subclass of nonlinear systems, piecewise-affine systems exhibit a diverse range

of behaviors that go beyond what is typically observed in Linear Time-Invariant (LTI)

models. Notable features include the presence of multiple isolated equilibrium points

[19], non-unique steady states [3], and the emergence of limit cycles [22], among

others. This underscores the fact that, despite their somewhat "simple" description,

piecewise-affine systems are inherently nonlinear. Their dynamic nature encompasses a

rich variety of purely nonlinear behaviors, emphasizing their capacity to capture com-

plex and diverse phenomena within the realm of dynamic systems. Due to the con-

nection between the continuous dynamics inside each region of the state space parti-

tion and the switching of dynamics when the trajectory crosses a boundary, piecewise-

affine systems can be considered as a special class of hybrid systems. One way to

represent hybrid systems is a finite collection of continuos dynamics fi ∈ S, with

fi : Rnx ×Rnu → Rnx ,∀i ∈ S and S ∈ N, and a switching function σ : R×Rnx ×Rnu → S

that selects which subsystem is active at each step k.

3.2 Identification and Estimation Techniques for PWA

Models

As systems become more complex and the demand, for high quality products increases

the use of system modeling techniques has become widespread in fields. It is crucial

to identify and estimate parameters within Piecewise Affine (PWA) models to imple-

ment them in control systems. This section explores the methodologies and techniques

used to discern and estimate these parameters within the PWA framework. It provides

insights into the challenges involved in this process. Outlines strategic approaches to

overcome them. Recognizing the importance of this aspect in enhancing reliability and
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performance in control applications using PWA models.

There are two approaches to achieve nonlinear system modeling; one based on princi-

ple models and another based on data. With advancements in large scale data mining

and processing technologies like networks and Gaussian process regression algorithms,

a range of data driven identification methods have emerged. These methods are de-

signed to construct models that approximate systems, especially when first principle

models are not available. This reflects a shift towards utilizing data based techniques

for system modeling due, to complexities involved with systems and strict quality re-

quirements.

The introduction of the multi-model modeling approach is motivated by the recognition

that, in contrast to a global model, employing multiple submodels allows for a more

accurate prediction in localized regions where process characteristics undergo signifi-

cant changes. This strategy acknowledges the inherent variability in complex systems

and aims to enhance predictive accuracy by tailoring submodels to specific regions of

the system where their representations are more adept at capturing nuanced dynamics.

We introduce the piecewise affine (PWA) model owing to its capability for describing

nonlinear dynamics and the universal approximation properties of the PWA map.

The process of identifying Piecewise Affine (PWA) models mainly involves two compo-

nents; estimating the models parameters and dividing the state space into regions. Pa-

rameter estimation focuses on determining the values of the models parameters whereas

region partitioning involves defining regions in the state space and associating each re-

gion with model parameters. These two essential steps together contribute to identify-

ing PWA models making them useful, in various domains. To tackle data classification

challenges several clustering algorithms, such as K means clustering and its derivative

algorithm K means++ are used in system identification. Before using these algorithms

users need to specify the number of clusters and initialize clustering centers, which

greatly impact the efficiency and accuracy of the clustering process. Moreover some al-

18



gorithms partition data into categories without incorporating feedback criteria therefore

making parameter estimation less precise and potentially affecting classification accu-

racy. Therefore it is crucial to consider these factors for optimizing the performance of

clustering algorithms, in system identification tasks.

It’s essential to highlight that region partitioning is a crucial aspect intricately linked

with parameter estimation. Given that nonlinear systems generate data that is linearly

inseparable, certain classification methods, such as support vector machines, may not

entirely delineate the valid regions of the Piecewise Affine (PWA) model[29]. In con-

trast, Softmax regression presents a viable solution by employing the Softmax function

to represent a categorical distribution, effectively addressing the challenge of accurate

region partitioning in the context of PWA modeling.
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3.2.1 Problem statement

Consider a nonlinear system with input u ∈ Rm and output y ∈ R. It is assumed that

input-output data (u(k), y(k)), k = 1, ..., N̄ , have been collected. The output y(k) can be

described by a Nonlinear AutoRegressive eXogenous (NARX) model in the form

y(k) = f(x(k)) + ε(k) (3.7)

where k ∈ N is the time index, ϵ(k) ∈ R is the error term, Gaussian independent

identically distributed random variables with zero mean and variance σ2. The NARX

model is a type of model used in the analysis and prediction of systems. It is a variation

of the AutoRegressive eXogenous (ARX) model. With added elements. In a NARX model

the current output not depends on values of output and input variables but also on past

values of the output variable itself. This feature allows the model to capture patterns

in the data effectively. In this section we will explore how a PWA model can naturally

emerge from linearization at points. The first example we see is defined on Voronoi-type

of polyhedral partition of the regression space [5] which can be obtained either from the

equations of the nonlinear system, when available, or directly from input-output data

generated by the nonlinear system. A Voronoi-type partition, or Voronoi diagram, is a

concept in computational geometry that divides a space into regions based on proximity

to a discrete set of points called generators or sites. In a Voronoi diagram, each region

is associated with a specific generator and includes all points in space that are closer to

that generator than to any other generators.

In equation (3.7) k is the time index and the vector of regressors x(k) is defined as

x(k) = [y(k − 1) y(k − 2) · · · y(k − na) uT (k − 1) uT (k − 2) · · ·uT (k − nb)]
T (3.8)

where na and nb are the model orders. In this case, the bounded polyhedron X ⊂

Rn, n = na +mnb is referred to as regressor set.In case na = 0, the regressor becomes
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just

x(k) = [u′(k − 1) u′(k − 2) · · ·u′(k − nb)]
′ (3.9)

and the model (3.7) is then called a Nonlinear Finite Impulse Response (NFIR) model.

As mentioned in the introduction, our focus lies in deriving a Piecewise Affine (PWA)

model for the nonlinear system (3.7) directly from a set (x(k), y(k))Nk=1 of experimental

data generated by the nonlinear system. To achieve this objective, we will explore a spe-

cific category of PWA functions characterized by a Voronoi-type partition of X. Indeed

if f is continuously differentiable as discussed earlier, then by strategically selecting

a finite number s of points ci in X, we can effectively approximate f by a PWA map

fPWA X→ R defined by

fPWA(x) =


aT1 x + b1 if x ∈ X1

...
...

aTs x + bs if x ∈ Xs

(3.10)

where (ai, bi) ∈ Rn × R, i = 1, · · · , s, are defined by

ai = ∇f(ci), bi = f(ci) − cTi ∇f(ci) (3.11)

with the notation ∇f referring to the gradient of f with respect to x, and the sets Xi are

given by

Xi = {x ∈ X :∥ x− ci∥2 ⩽∥ x− cj∥2, ∀j = 1, · · · , s} (3.12)

The sets of all the Xi form the regression space X : X =
⋃s

i=1Xi and the interiors are

pairwise disjoint int(Xi)
⋂

int(Xj) = ∅ for all i ̸= j with int(·) referring to the inte-

rior. Such a partition is known as Voronoi partition. The regions Xi are then called the

Voronoi cells while the points ci are termed the seeds or the generators of the partition.

It’s not difficult to demonstrate that each set Xi is a convex polyhedron, which is a set
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derived from the intersection of a finite number of half-spaces. It should be noted that

the proposed method can also be applied to multiple-input multiple-output systems,

and relevant expressions are in [1].

More precisely, we can define

Hi = [c1 − ci · · · ci−1 − ci ci+1 − ci · · · cs − ci]
T (3.13)

hi = [β1,i · · · βi−1,i βi+1,i · · · βs,i]
T (3.14)

and we can write

Xi = {x ∈ X : Hix ⩽ hi} (3.15)

where βj,i = (cTj cj − cTi ci)/2. The following picture is an example of Voronoi partition in

R2:

Figure 3.2: Example of Voronoi-type partition of in 5 polyhedral regions

It has a few useful qualities: (a) An understandable interpretation of the seeds ci as

operating points; (b) the affine functions connected to the regions can be viewed as lin-

earization concerning the operational points of the nonlinear systems; (c) the estimate
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task only requires determining the parameters (ai, bi, ci)
s
i=1 from observations.

To make things easier, we may write in the sequel

fpwa(x) = x̃T θi if x ∈ Xi (3.16)

with x̃ = [xT 1]T and θi = [aTi bi]
T . This is the compact formulation of the PWA

model.

3.2.2 Estimation of PWA Models from data

From now on we view the PWA as a data-generating system. The goal of the estimation

task is therefore to infer estimates of the parameters {θi}si=1 and {ci}si=1 from a finite

collection of data (x(k), y(k))Nk=1.

A reasonable approach to the estimation problem stated above would be to solve the

optimization problem

min
θ1,...,θs
c1,...,cs

s∑
i=1

∑
x(k)∈Xi(c1,...,cs)

(
y(k)− θ⊤i x̃

)2
(3.17)

for {θi}si=1 and {ci}si=1 where Xi(c1, . . . , cs) is defined as (3.12). With this notation

it’s possible to see the dependence of the sets Xi on the seeds ci’s for more clarity

concerning the decision variables. We begin by acknowledging that a straightforward

and immediate algorithm for solving equation (3.17) would typically involve alternating

between assigning the data points to the regions Xi based on their distances to the ci

points and computing the associated hyperplane parameters θ̃i. A basic implementation

of this algorithm might entail initializing estimates of (ci) by random sampling from Rn.

However, it is well-known that the performance of such a basic algorithm tends to be

poor due to the nonconvex nature of the underlying optimization problem.
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3.3 Stability and Performance Analysis

The research domain of piecewise-affine (PWA) systems, as introduced in [43], has gar-

nered significant attention over the last 15 years. Various techniques have been recently

explored for the stability analysis of these systems, primarily relying on the computa-

tion, facilitated through semi-definite programming, of common quadratic or piecewise-

quadratic Lyapunov functions [14], [46], [26]. This focused investigation reflects the

growing interest in developing robust stability analysis methods for PWA systems, con-

tributing to the advancement of our understanding and control of complex dynamical

systems exhibiting piecewise-affine characteristics. In addition to the approaches us-

ing common quadratic or piecewise-quadratic Lyapunov functions, alternative methods

have emerged that rely on piecewise-polynomial Lyapunov functions [33], and on PWA

Lyapunov functions [18].

In this section we will explore the tools for analyzing systems; dissipativity and Lya-

punov stability. These fundamental concepts provide insights. Will help us establish

practical conditions, for studying piecewise affine systems. By using dissipativity and

Lyapunov stability our goal is to create a framework that enables an understanding and

analysis of the complex dynamics present, in piecewise affine systems.

3.3.1 Dissipativity analysis

Input-output properties serve as a cornerstone for characterizing the interaction be-

tween the internal behavior of a dynamical system and its environment. This concept

lies at the core of the dissipativity theory introduced by Willems [50], [51]. The concept

of dissipativity is extremely valuable when studying the performance and resilience of

systems. Essentially dissipativity means that a system absorbs energy from its surround-

ings than it generates. In a sense a dissipative system is characterized by its ability

to handle an input power, which represents the rate of supply and a storage function
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that measures the stored energy. This setup ensures a dissipation of energy highlighting

the importance of dissipativity, in comprehending the energy dynamics and behaviors

of systems. These principles offer a framework for understanding how energy moves

within a system and interacts with its environment providing valuable insights, into the

systems dynamics and behavior.

We need to define the supply rate as a function w̃ from U × Y into R. This function is

locally absolutely integrable and for all t1 ⩾ t0 ⩾ 0, it satisfies∫ t1

t0

| w̃(u(t), y(t)) | dt <∞ (3.18)

The supply rate provides a view of how energy moves, between the system and its

surroundings. When energy enters the system it can. Be stored internally. Released.

To consider the impact of stored energy we introduce the notion of a storage function.

This enables us to describe systems in the manner.

Definition 3.1. (Dissipative system)

A dynamical system Σ : U → Y is said to be dissipative with respect to the supply rate

w̃ : U × Y → R if there exists a nonnegative function S : X → R+, called storage

function, such that for all t1, t0 ∈ R+, t1 ⩾ t0, and u ∈ U ,

S(x(t1)) − S(x(t0)) ⩽
∫ t1

t0

w̃(u(t), y(t)) dt (3.19)

In the case where S is differentiable, the previous dissipation inequality (3.19) can be

written as

∇S(x) · f(x, u)− w̃(u, y) ⩽ 0 (3.20)

for all u ∈ U .

The inequality (3.19) establishes that the generalized energy stored in the system at

any future time t1 cannot exceed the sum of the generalized energy at a specific time t0
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and the energy supplied during the interval between these two time instances. In other

words, it implies that there can be no internal creation of "energy" within the system.

This constraint encapsulates a fundamental principle, emphasizing the conservation or

dissipation of energy in the dynamical behavior of the system.

The connection, between storage functions and Lyapunov functions is quite significant.

In some cases the storage function itself can fulfill the requirements of a Lyapunov

function, which ensures system stability. Additionally for linear systems with supply

rates it has been shown that dissipativity implies the presence of a storage function.

This interplay, between dissipativity Lyapunov functions and storage functions offers a

framework to analyze and comprehend the stability properties of systems. For more

details see [49]. In the next chapter we analyze the Lyapunov stability, explaining why

it’s fundamental for stability analysis.

3.3.2 Lyapunov stability

Lyapunov-based analysis methods carry out an important role for piecewise linear sys-

tems stability. The key component of such an analysis, namely methods for Lyapunov

function computations, will be presented in this chapter. In more detail, our explo-

ration will illustrate the process of computing piecewise quadratic and piecewise linear

Lyapunov functions using convex optimization techniques. This approach underscores

the practicality and efficiency of leveraging convex optimization to derive Lyapunov

functions, offering a valuable methodology for stability analysis in piecewise-affine sys-

tems.

3.3.2.1 Asymptotical and Exponential Stability

Stability is an aspect when it comes to control systems. It basically means that a system

doesn’t behave explosively in any way. Initially we focus on stability, which ensures that

not does the system avoid explosive behavior but it also settles down after an initial
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period of change. Specifically we pay attention to stability, which guarantees that the

systems state converges, to its equilibrium point within a bound determined by a func-

tion of time. This detailed exploration of stability properties is essential for analyzing

and designing control systems.

While there are stable systems where convergence may not be exponential the concept

of exponential stability has particular significance in Lyapunov analysis for piecewise

linear systems. In the case of linear systems exponential stability go hand in hand mak-

ing it convenient for analysis. Additionally when dealing with systems an equilibrium

point is locally exponentially stable if and only if its linearization around that point is

exponentially stable. This connection highlights the importance of stability in analyzing

both nonlinear systems providing a valuable tool, for assessing their stability.

In words the linearization provides all the information needed to determine whether an

equilibrium is exponentially stable. Additionally in the case of a system global exponen-

tial stability is confirmed if and only if there is a Lyapunov function that supports this

property.

As first, we have to define what is a Lyapunov function:

Definition 3.2. V(x) is called a Lyapunov function for the system ẋ(t) = f(x(t)) if, in a

defined space containing the origin, V(x) is positive definite and has continuos derivatives,

and if its time derivative along the solutions of the system is negative semi-definite, i.e.

V (x) = (∂V/∂x)f(x) ⩽ 0.

This linkage between linearization and Lyapunov functions highlights their complemen-

tary roles in the analysis of stability properties, providing valuable insights into the be-

havior of complex dynamical systems. This makes exponential stability the appropriate

concept in a piecewise linear approach for smooth nonlinear systems.

Below are described respectively the theorem of asymptotic and exponential stability,

proof in [47]
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Theorem 3.1. System (3.1) is asymptotically stable if there exist a continuous function

V : X → R+, called a Lyapunov function, and α1, α2 > 0, such that

α1(| x |) ⩽ V (x) ⩽ α2(| x |) (3.21)

and along any trajectory x, starting from x0, V satisfies for any t ⩾ 0

V (x(t)) − V (x(x0)) ⩽ −
∫ T

0

ρ(| x(τ) |) dτ (3.22)

with ρ a positive definite function.

Theorem 3.2. If the conditions in (3.1) are satisfied with αi(r) = σi | r |2, with σi > 0

for i ∈ {1, 2}, and ρ(r) = σ3 | r |2, with σ3 > 0, then the system is exponentially stable.

3.3.2.2 Quadratic Stability

Quadratic stability refers to the concept of stability that can be proven through the use

of a Lyapunov function. The idea of quadratic stability has the origins with Lyapunov,

who demonstrated that a quadratic Lyapunov function is both necessary and sufficient

for ensuring stability, in linear systems. When we analyze systems quadratic Lyapunov

functions are often employed as a tool. Additionally the study of stability heavily relies

on the utilization of Lyapunov functions underscoring their significance in examining

stability in systems.

In this context, the following result is central: Let us consider the linear time-invariant

system possessing a minimal state space representation given by:
ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t) +Diu(t)

x(0) = x0

(3.23)

where x(t) ∈ Rn is the state, u ∈ U is the input taking values in U = Rnu, y ∈ Y is the

output taking values in Y = Rny and x0 is the initial condition. The associated transfer
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function between u and y is defined as H(s) := C(sI − A)−1B + D where s is the

complex Laplace variable.

In the following sections we propose to analyze system (3.23) through the construction

of quadratic storage and Lyapunov functions of the form:

S(x) = V (x) = xTPx (3.24)

Theorem 3.3. Consider the system (3.23). If the convex optimization problem
P = P T > 0

ATP + PA < 0

(3.25)

has a solution, then the origin is globally exponentially stable. It’s possible to see the proof

in [47].

The primary advantage of the Theorem (3.3) lies in formulating the search for a quadratic

Lyapunov function as a convex optimization problem. This approach significantly re-

duces the computational burden, making the imposition of extra constraints on the

form (3.25) a relatively low-cost addition. Solving the multiple Lyapunov inequalities is

not significantly more demanding than solving a single Lyapunov equation, as discussed

in [11]. This characteristic renders quadratic stability a potent and efficient tool when

applicable. The practicality of this approach is evidenced by numerous applications in

systems with piecewise linear dynamics, as exemplified in works on fuzzy systems [45].

From a standpoint quadratic stability holds appeal. It allows for the analysis of systems

to be framed as optimization problems, which can be efficiently solved using numeri-

cal computation techniques. This computational efficiency plays a role, in addressing

challenges within control systems and related domains. By approaching system analysis

through the lens of optimization quadratic stability methodologies become scalable and

applicable to real world scenarios involving dynamical systems.

However there are considerations when applying stability to piecewise linear systems.
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While quadratic Lyapunov functions offer attractiveness relying on them may result in

overly conservative outcomes or unduly pessimistic assessments of the systems stability.

Moreover conventional approaches to stability often do not leverage information about

the state space partition during analysis. Additionally these approaches typically do not

account for the inclusion of affine terms in the dynamics. This limitation restricts the

capacity of stability analysis particularly when dealing with systems that possess affine

dynamics or intricate state space structures. Thus it emphasizes the need, for methods

that can encompass a wider range of system behaviors.

In the upcoming sections, we will introduce an approach that addresses the shortcom-

ings associated with relying solely on quadratic Lyapunov functions. This method will

embrace non-quadratic Lyapunov functions, incorporate information about the state

space partition, and permit the inclusion of affine terms in the dynamics. This more

flexible approach aims to enhance the accuracy and applicability of stability analysis,

accommodating a broader class of systems with varying dynamics and structures.

To facilitate the search for Lyapunov functions, we will introduce a concise matrix pa-

rameterization for continuous piecewise quadratic Lyapunov functions. This compact

representation aims to streamline the analysis process. Additionally, to mitigate exces-

sive conservatism, we will leverage the observation that each affine dynamics is em-

ployed within a limited region of the state space.

We introduce Lyapunov functions that are continuous and piecewise quadratic of the

form:

Vi(x) = xTPix+ 2qTi xi + ri =

 x

1


T  Pi qi

qTi ri


 x

1

 := x̄T P̄ix̄ (3.26)

Given that the Lyapunov function and storage function are required to be zero at the

origin, we set ri = 0, for all i ∈ I0. Furthermore, we choose qi to be zero whenever

i ∈ I0, so that the piecewise-quadratic function behaves as a quadratic function close to
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the origin. We then obtain the following structure:

V (x) =



xTPix for x ∈ Xi, i ∈ I0 x

1


T

P̄i

 x

1

 = xTPix+ 2qTi x+ ri for x ∈ Xi, i ∈ I1.

(3.27)

We now delve into the analysis of the exponential stability of piecewise-affine systems,

employing piecewise-quadratic Lyapunov functions. More precisely, we have the fol-

lowing result.

Theorem 3.4. (PIECEWISE QUADRATIC STABILITY)

Consider the piecewise-affine system (3.1). If there exist symmetric matrices Pi ∈ Sn, vec-

tors qi ∈ Rn, scalars ri ∈ R, symmetric matrices Ui,Wi ∈ Sli with nonnegative coefficients

and zero diagonal and vectors Lijkl ∈ Rn+1 such that

 Pi − E⊤
i UiEi ≻ 0

A⊤
i Pi + PiAi + E⊤

i WiEi ≺ 0
for i ∈ I0



 Pi − E⊤
i UiEi qi − E⊤

i Uiei

• ri − e⊤i Uiei

 ≻ 0

 A⊤
i Pi + PiAi + E⊤

i WiEi Piai + A⊤
i qi + E⊤

i Wiei

• 2q⊤i ai + e⊤i Wiei

 ≺ 0

for i ∈ I \ I0

(3.28)

 Pi qi

• ri

=
 Pj qj

• rj

+ Lij

[
Eij eij

]
+

[
Eij eij

]⊤
L⊤
ij for (i, j) ∈ I × I

s.t. Xi ∩Xj ̸= ∅

(3.29)
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with qi = 0 and ri = 0 for i ∈ I0, are satisfied, then the piecewise-affine system is

exponentially stable. Proof in Appendix B.1 of [47].

Piecewise quadratic Lyapunov functions were used to analyze stability of continuous-

time piecewise linear systems in [20]. Counterpart works for the discrete time case

could be found in [15]. The main advantages of the piecewise quadratic Lyapunov

function approach include, at first, that the criterion is much less conservative than the

existence of a common quadratic Lyapunov function and the searching of piecewise

quadratic Lyapunov function is reduced to a set of linear matrix inequalities (LMIs),

which admits numerical verification.

3.4 Uncertainty Models

Uncertainty and robustness play pivotal roles in the modeling and analysis of feedback

systems. The relationship between a system and its model inherently involves a gap,

the significance of which is contingent on the resources allocated for its development.

Moreover, a model may serve to represent a class of systems produced using real ma-

chinery, introducing variability in their output. Therefore, the concept of uncertainty

arises between the model and the actual physical system. This uncertainty encapsulates

the variations, discrepancies, and unpredictabilities that inherently exist in the real-

world system, emphasizing the importance of accounting for and managing uncertainty

in the modeling and analysis processes. In this circumstance it’s very important to in-

corporate feedback into systems to ensure the fulfillment of system specifications even

in the presence of variations in system components and external disturbances. Given

the inherent mismatch between control design models and the actual system, account-

ing for this uncertainty becomes crucial to ensure that the conclusions drawn from the

model are applicable in real-world scenarios.

To assess robustness, it becomes essential to delineate the sets of admissible uncertain-
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ties and disturbances. By specifying these sets, one can systematically evaluate and

validate the performance and stability of feedback systems under varying conditions,

providing a more comprehensive understanding of their resilience in the face of uncer-

tainties and disturbances.

We can define two classes of uncertainties. The first class is systems

ẋ = f(x) (3.30)

where the function f(x) is uncertain. This situation can arise when f(x) is a piecewise

linear approximation of some smooth function. When uncertainty stems from param-

eters that are either unknown or exhibit time variations, it is typically referred to as

parametricuncertainty. The second class of uncertainty descriptions deals with systems

on the form

ẋ = f(x, y)

ẏ = g(x, y)

(3.31)

where g(x, y) is uncertain or lacks a description with an appropriate structure, this form

of uncertainty is typically termed dynamicuncertainty. This manifests when the vari-

able y represents either an exogenous disturbance or a neglected component.

The conventional approach to address dynamic uncertainties involves incorporating

norm-bounded uncertainties within a feedback interconnection as show in Figure 4.1.

Figure 3.3: Piecewise linear system with uncertainty feedback
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In robust control literature, the nominal system Σ is assumed to be linear time invari-

ant, while system nonlinearities and uncertainties are confined to the uncertainty block

∆. In contrast to this, we will allow Σ to be piecewise linear. This flexibility enables us

to make choices regarding whether the system nonlinearities should be explicitly mod-

eled within the piecewise linear subsystem or treated as uncertainties in the ∆ subsys-

tem. This extra level of flexibility allows us to find a balance, between the complexity

of computations and the cautiousness in our analysis. By choosing how to represent

nonlinearities we can customize the model according to our requirements. Strike an

optimal balance between computational efficiency and the degree of caution, in our

analysis. The operator ∆ that specify the feedback u = ∆y may be linear time varying

or nonlinear, but is assumed to satisfy the dissipation inequality

∫ t

0

 y(s)

u(s)


T

M

 y(s)

u(s)

 ds ⩾ 0 for all t ⩾ 0 (3.32)

for some real symmetric matrix M .

It’s possible to include uncertainty (∆) in a Piece-wise affine system, as done in [32]

and define it, in the case of discrete time systems, for every submodel Xi, as


x(k + 1)

z(k)

y(k)

 =


Ai B1

i B2
i fi

C1
i D11

i D21
i g1i

C2
i D12

i D22
i g2i





x(k)

w(k)

u(k)

1


(3.33)

where w(k) = ∆(z)(k).

Vectors x(k) ∈ Rnx, u(k) ∈ Rnu, y(k) ∈ Rny are respectively the state, input and mea-

sured output at time k ∈ Z+, while w represents the uncertainty and ∆ is a causal

nonlinear map. The vectors gi and fi represent an arbitrary set of constant real valued

vectors.
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Collection {Xi} is the set of (not necessarily closed or bounded) polyhedra, with ∪Xi =

Rn, assuming that the regions i are not overlapping. The model i changes with respect

to x(k) and u(k), and also with respect to time, k.

3.5 Example of global model construction through ML

The application of Machine Learning (ML), in constructing piecewise affine systems has

become quite common. It is a way to handle the complexity of models. This approach

proves useful in sectors where phenomena are dynamic and nonlinear requiring a more

advanced method than traditional linear models. The decision to use Machine Learn-

ing for building piecewise affine systems is justified because it can learn patterns and

relationships from data. This ability allows it to model parts of the system adapting

accurately to variations without the need for a detailed description of the entire system.

Various methods have been developed to implement this approach effectively. Neu-

ral networks, feedforward networks have shown their effectiveness, in capturing local

nonlinear relationships. This enables the creation of piecewise affine models that can

dynamically adjust to regions of the input domain.

We have talk about PWA identification in Section 3.2, but there is indeed a rich liter-

ature on PWA system identification. The large diversity of existing methods illustrates

a clear surge of interest in these models in the recent years. Examples of ML meth-

ods include multiple local estimation and clustering through K-means [1], or recursive

bayesian/incremental learning [21] [6], minimum partition into feasible sets (MIN PFS)

[8], optimization via mixed integer programming approach [37], sparsity-inducing op-

timization techniques. A complete overview of systems identification is present in [30]

and [16].

However in situations it becomes equally important to view the system as one cohe-

sive global model. In these cases utilizing Machine Learning to create a model of the
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segmented system becomes crucial. This approach allows for the integration of ac-

quired knowledge, from segmented models ensuring a comprehensive and unified un-

derstanding of the system. The implementation of fusion algorithms or recurrent neural

networks can facilitate this integration making it easier to transition between regions

of the system. It’s quite clear that incorporating Machine Learning into constructing

segmented linear systems provides an robust solution for capturing the complexity of

phenomena. The decision to use either global models will depend on the requirements

of the problem, at hand allowing for customization based on system dynamics and pre-

diction or control needs.

In this section, we aim to elaborate on a significant example [31] that elucidates the

construction of a global model through linear interpolation of several linear models

within a piecewise affine system, facilitated by a weighted system. Consider a system

that demonstrates piecewise affine (PWA) behavior, characterized by linear dynamics,

in different parts of its input space. In order to create a model that captures the behav-

ior of the system a technique based on linear interpolation is employed. This approach

involves blending the outputs of linear models using a system. As we’ve discussed in

this chapter each of these regions is defined as a linear model to accurately depict the

dynamics. These local models act as elements capturing the subtleties of the system

within their regions. To construct a model we introduce a set of weights that determine

how much each local model contributes to the output. These weights are adaptable.

Can change based on inputs ensuring flexibility in response to shifting system condi-

tions. By employing interpolation, with these weighted values smooth transitions are

achieved between regions resulting in a cohesive and uninterrupted representation of

the entire system.

Mathematically, the discrete nonlinear model is of the form x(k + 1) = f
(
x(k), u(k)

)
y(k) = g

(
x(k), u(k)

) (3.34)
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with y ∈ Rny the measured outputs, u ∈ Rnu the measured inputs and the set of local

linear models can be expressed, as already seen, as xi(k + 1) = fi
(
xi(k), u(k)

)
yi(k) = gi

(
xi(k), u(k)

) (3.35)

each tuned to approximate the global system (3.34) around an operating point.

The global output can be expressed as

ŷ(k) =
N∑
i=1

wi(k)yi(k) (3.36)

Here, the weights wi provide a time-varying adaptation. It is necessary to identify them

online so that the outputs of the global model best match those of the plant. The prob-

lem then becomes one of finding an online estimate of the weights wi(k) such that the

multi-model (3.35)-(3.36) approximates the initial system (3.34) on a wide range of

operating conditions. Many different methods of weight estimation are available in lit-

erature.

The determination of the weight wi in this context often follows a popular approach

rooted in the Bayesian interpretation of plant model mismatch [28], [4]. The underly-

ing concept involves employing a recursive Bayesian weighting scheme, which centers

around estimating probabilities pi(k). Each of these probabilities corresponds to the

likelihood of the i − th model being valid at the discrete time step tk. In this Bayesian

framework, the weights are dynamically adjusted based on the evolving probabilities

of model validity. The recursive nature of the scheme allows for continuous updates,

ensuring that the weights accurately reflect the changing confidence in the validity of

each model as the system operates over time. Another approach is to use the Distance

bades estimator [17].

They decided to compute these weights with a deep neural network trained online and

to combine them with multiple linear PID controllers used for different operating points

of the system. The focus of this approach, which integrates machine learning with clas-
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sical control techniques tailored for linear processes, is to develope a controller for a

Waste Heat Recovery System (WHRS) installed on a Heavy-Duty (HD) truck engine.

The primary objectives of this approach are to reduce fuel consumption and align with

forthcoming pollutant emissions standards.

In the next rows we explain briefly how it works: At each time step tk, the network

takes as input not only the latest model errors ϵ(k) but also the sequences of errors(
ϵ1(k), ..., ϵ1(k − d), ..., ϵN(k), ..., ϵN(k − d)

)
along with

(
u(k), ..., u(k − d)

)
, providing in

this way information about the local evolution of the error. It’s possible to divide the

algorithm in two section: Neural Network estimator and Online training. In the Neu-

ral Network estimator context, let z(k) ∈ R(ny×N+nu)×d be the flattened representation

of the local modeling errors on the previous d sampling times concatenated with the

process inputs:

z(k) =[ϵ1(k), ..., ϵ1(k − d), ..., ϵN(k), ..., ϵN(k − d),

u(k), ..., u(k − d)].

(3.37)

In order to construct the network architecture from the input z(k) to the output C(z(k)),

they use a sequence of linear layers each followed by a local non-linearity of type recti-

fied linear unit (ReLU):

C̃(z(k)) = [c̃1(z(k)), ..., c̃N(z(k))] (3.38)

= Lpϕ(Lp−1ϕ(Lp−2...ϕ(L1z(k))...)) (3.39)

C(z(k)) = Φ(C̃(z(k))), (3.40)

where the activation function ϕ(.) = max(., 0) is called the element-wise ReLU function,

and Φ is the softmax function:

Φ(ci(k)) =
exp(c̃i(k))∑N
j=1 exp(c̃j(k))

, (3.41)

which is a mathematical function that converts a vector of numbers into a probability

distribution. It guarantees that the predicted outputs Wi are assigned values between 0
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and 1 with a sum equal to 1.

The outputs of the neural network is so computed and characterized by the predicted

weights Wi for the different linear models:

W (k + 1) = [w1(k + 1), ..., wN(k + 1)] = C(z(k)). (3.42)

The next figure explain the representative scheme of the multi-model controller: It’s

Figure 3.4: Proposed multi-model controller

possible to see that the weights Wi predicted by the network are used by the controller

to generate the control signal towards the process and local-models. In return the

neural network estimator receives process and models outputs that are used to improve

the estimator parameters online.

A deep neural network (DNN) is a non-linear function defined by a parameter vector

Θ, which can approximate any continuous function on compact subsets RN given a

sufficient number of parameters. This parameter is update to minimize a loss between

measurements y and predicted ŷ, making the dependency on network parameters Θ

explicit, is given by

ŷ(k) =
N∑
i=1

ci(zk,Θ)yi(k) (3.43)
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The loss function to minimize is the L2 loss given as

L2 = (y − ŷ)2. (3.44)

and the algorithm used to iteratively update Θ is the stochastic gradient descent

Θ← Θ− α∇Θ

∑
(y,ŷ)∈B

L2(y, ŷ), (3.45)

where α is the learning rate and B is the current batch of a replay buffer, procedure

that should reduce correlations in the data and it should smooth changes over data

distribution when the controller changes operating points.

In the successive sections of [31] is possible to go further into details in the connection

of this system of weights with the PID controller and in the application to an Organic

Rankine Cycle simulator.

3.6 Conclusion

In this chapter we have explored the complexities of piecewise affine systems, which

may seem simple but actually showcase a range of behaviors. We have given an ex-

planation of the methodology used to analyze these systems. This analytical approach

provides a foundation, for understanding the dynamics and stability of piecewise affine

systems giving us insights, into their dynamic properties.

Expanding upon this discourse, we have extensively discussed the mathematical for-

mulation of piecewise-affine systems, describing the aspects of identification and es-

timation, conducted thorough stability and performance analyses, and addressed un-

certainty modeling. Additionally, we have presented a concrete example illustrating the

construction of a global model, using a system of weights generated by neural networks,

employed for multimodal control, showcasing the practical applicability and efficacy of

the methods discussed throughout this chapter.

By exploring these various aspects of piecewise-affine systems and their associated
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methodologies, we have laid a solid foundation for understanding and leveraging their

potential across a wide range of applications, further advancing the field of control

theory and system dynamics.
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4 MPC for PWA systems

The primary objective of this thesis is to establish a connection, between the effective-

ness of MPC and the adaptability of PWA models in order to create a control policy

that can adjust to systems. It will delve into the complexities of combining these two

elements and highlight their potential in addressing the control challenges posed by

systems.

Model Predictive Control (MPC) is a control strategy that incorporates analysis to calcu-

late control actions in a manner. At each time step MPC plans a trajectory for a period.

Then it applies the control action to the system. This process is repeated iteratively at

subsequent time steps based on new measurements. By utilizing prediction MPC can

account for uncertainties and changes, in system behavior enabling it to make informed

decisions at each iteration.

Linear MPC has been widely used in a number of industries [35] due to its relative

simplicity and robustness. Nonlinear MPC is more appropriate for handling complex

processes with underlying nonlinear dynamics. Nevertheless, computations for nonlin-

ear MPC may become prohibitively slow, making it difficult to handle the process model

in real time. Piecewise affine (PWA) models [9]can accurately represent the underlying

nonlinear dynamic system.
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Several results about stability of PWA systems and MPC schemes for such systems can

be found in the literature. In [9], one of the early results in ensuring closed-loop stabil-

ity for Model Predictive Control applied to Piecewise Affine systems is achieved using a

terminal equality constraint approach. This method, however, has limitations, as it re-

quires a long prediction horizon to ensure feasibility of the optimal problem, leading to

computationally demanding challenges. Another approach, presented in [27], employs

a terminal set and a terminal cost to ensure stability of the MPC scheme for continuous

PWA systems, particularly when the state equilibrium (the origin) is located within one

of the polyhedra of the system’s partition. In [24] this approach is extended to PWA

systems where the origin lies at the intersection of some polyhedra of the partition.

In the first section of this chapter we will introduce the most important principles of

PWA’s control, passing then to an introduction of the MPC theory, defining the meaning

of the optimal control problem and analyzing its behaviour with and without uncer-

tainty. In the third section, we shift our focus to MPC for PWA systems, before moving

to the last one, where we define the robust version of MPC for PWA.

4.1 Control of a PWA model

4.1.1 Introduction

In the field of control systems accurately representing nonlinear dynamics is incredibly

important. Piecewise Affine (PWA) models are a tool, in this regard. They naturally

come into play in applications especially when dealing with phenomena like zones, sat-

urations, relays or hysteresis. Moreover piecewise affine systems are approximations

for types of nonlinear systems. As a result they provide a framework for analyzing and

designing systems. In years significant progress has been made in understanding the

properties of piecewise affine systems. This includes advancements, in solution exis-
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tence and uniqueness stability analysis and controller design.

These models provide a versatile and tractable approach to capturing the intricacies of

system behavior within distinct regions of the state space. This introduction seeks to

illuminate the significance of Piecewise Affine models in control applications, outlining

their unique advantages and contributions in tackling the challenges posed by nonlinear

systems.

In the realm of contemporary control systems, the pervasive presence of inherent non-

linearities in real-world processes poses a significant challenge. Conventional linear

models, designed for simplicity, often prove inadequate in faithfully representing the

intricate nonlinear behaviors inherent in these systems. The complexities introduced by

nonlinear dynamics, including discontinuities and sudden changes in behavior, demand

an innovative and adaptive approach to model formulation. Traditional control strate-

gies, built upon linear foundations, are confronted with limitations when addressing

the nuanced intricacies of nonlinear systems.

Although the field of nonlinear control techniques is making progress it remains chal-

lenging to develop an universally applicable theory and methodology. This challenge

arises from the complexity and difficulty of controlling systems, which exceeds the chal-

lenges encountered in linear systems. Firstly accurately deriving a model, which’s often

crucial, for control systems is not an easy task. Secondly designing controllers for sys-

tems presents a problem even with an accurate model at hand. These complexities

highlight the necessity, for approaches and methodologies to effectively address the in-

tricacies of controlling systems.

As a result, there is a pressing need for novel methodologies that can effectively capture

and navigate the complexities inherent in these dynamic processes. Piecewise Affine

models present a compelling solution to this issue. By partitioning the state space into

distinct polyhedral regions, each governed by a linear model, PWA models provide a

flexible and adaptive representation of system dynamics. This inherent adaptability al-
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lows them to capture the diverse nonlinear behaviors within different regions, making

them particularly suited for systems characterized by varying modes of operation.

A key strength of PWA models lies in their ability to approximate complex nonlinearities

through the judicious use of piecewise linear segments. This enables the representation

of intricate system responses within each region, offering a computationally efficient

means to navigate the challenges associated with nonlinear dynamics.

Among advantages already said, it should be noted that the use of PWA systems permits

introducing thresholds and other discontinuities in a natural way that is not available

in other algebraic approaches to nonlinear system theory.

Resuming, the piecewise linear approximation facilitates the translation of nonlinear

complexities into a more manageable and analytically tractable framework and they

constitute a robust modeling framework that can effectively capture the behavior of

various nonlinear systems, including those exhibiting chaotic dynamics. As systems tra-

verse different regions, characterized by varying linear models, PWA models adeptly

capture the abrupt changes in behavior. This feature is particularly advantageous in

control applications where the ability to navigate through disparate system modes is es-

sential. The control strategies applied to these systems inherently involve switch control

mechanisms. In this context, the control action transitions between different affine or

linear subsystems based on specific switch conditions determined by the system states.

Recent advancements in methodologies for analyzing both piecewise linear and piece-

wise affine systems have garnered significant interest, particularly in addressing control

challenges associated with such systems.
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4.1.2 Fundamental Principles of PWA’s Control

When multi-linear models are used to represent a nonlinear system, the mature lin-

ear control theory can be easily utilized to design linear controllers. Broadly speaking,

methods employing multi-linear models can be categorized into two main types: soft

switching and hard switching. In soft switching methods a global model is constructed

by combining each local linear model with a different weight. The subsequent design

involves creating a global controller for the overall model. Alternatively, in the soft

switching approach, a linear controller is individually designed for each local model,

and the aggregate of these controllers, each with different weights, is considered as the

global controller. On the other hand, in hard switching methods [14,16,18], the ap-

proach involves designing a distinct local linear controller for each corresponding local

linear model. Subsequently, these controllers are scheduled based on predefined rules

to formulate a global controller.

While various linear control techniques can be applied in multi-linear model methods,

both general soft switching and hard switching approaches may encounter challenges

such as oscillations and slow adaptation when the system undergoes switches. The

dynamic nature of switching between different local models poses difficulties in main-

taining stability and responsiveness, leading to potential oscillations and delays in adap-

tation within the control system. However, general hard-switching and soft-switching

multilinear model-based approaches may encounter difficulty in scheduling linear sub-

systems and thus may incur slow adaptation and/or oscillation when the system tran-

sits between different subsystems. To avoid slow adaptation and/or oscillation during

subsystems controller scheduling and get an effective global control policy for the en-

tire operating regions, the scheduling of multiple controllers should be considered in

a unified framework. For instance, [25] proposed a value function-based approach for

scheduling multiple controllers, aiming to derive an effective global control policy that

46



covers the entire operating range.

Indeed, in the implementation of a multilinear model-based approach, the supervisor

controller introduces multiple modes to the system. These modes are linked to dif-

ferent linear subsystems and are typically represented by discrete states, contributing

to the hybrid character of the system. Given this hybrid nature, recent advancements

in optimal control methods tailored for hybrid systems are well-suited for comprehen-

sively capturing the dynamics of the subsystems, weakening slow adaptation and/or

oscillation, and guaranteeing the overall control performance of nonlinear systems for

the entire operating regions. The evolution of continuous states in response to discrete

states and the switching of discrete states based on certain conditions contribute to the

hybrid nature of the system. This interaction between continuous and discrete states

allows the formulation of a hybrid model that amalgamates both aspects into a unified

framework [12]. Consequently, designing a global optimal controller under this hybrid

model enhances the overall control performance of the nonlinear system across its en-

tire operating region [41].

The control imposed on such piecewise affine systems is naturally switch control, where

the control action switches from an affine subsystem to another according to the switch

conditions depending on the system states. A unified method for such switch control de-

sign has been established by employing piecewise continuous Lyapunov functions [20],

[34], as seen in the previous chapter. However, LMI based approaches have the draw-

back of being conservative, the more conservative the larger the number of regions in

the polyhedral partition of the state-space. In this thesis we formulate as a verification

problem the issue of characterizing the stability of a feedback system composed of a

PWA system and a constrained MPC controller, whose explicit solution can be found in

PWA form [10].
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4.2 Introduction of MPC

Model predictive control (MPC) is an advanced method of process control that is used

to control a process while satisfying a set of constraints. It has emerged as a power-

ful paradigm in the control theory landscape, capable of addressing the main issues

of complex nonlinear systems. MPC operates by iteratively optimizing control inputs

over a finite prediction horizon based on a dynamic system model. It provides the

flexibility to accommodate nonlinearities, constraints, and uncertainties, making it a

compelling choice for tackling the complexities inherent in nonlinear systems. Model

predictive controllers rely on dynamic models of the process, most often linear empir-

ical models obtained by system identification. The main advantage of MPC is the fact

that it allows the current timeslot to be optimized, while keeping future timeslots in

account. This is achieved by optimizing a finite time-horizon, but only implementing

the current timeslot and then optimizing again, repeatedly, thus differing from a lin-

ear–quadratic regulator (LQR). MPC, by applying at state x the first control in a finite

sequence of control actions obtained by solving online a constrained, discrete-time, op-

timal control problem, traded arduous off-line computation of a control law u = κ(x)

for repeated on-line solution of a constrained dynamic optimal control problem; this

trade-off was perfectly acceptable for control applications for which the optimal control

problem could be solved within one sampling interval. The optimal control problem

had, for computational reasons, to have a finite horizon so that the resultant controller

did not guarantee stability but stability was achieved in most process applications since

the horizon of the optimal control problem was normally sufficiently long.
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4.2.1 Optimal control: problem formulation

In the optimal control literature the plant to be controlled is usually described in terms

of state-space methods. The reason is that a lot of analysis will be done within a Lya-

punov framework, which is most naturally performed in the state-space. The discrete-

time systems with state x and control u described by:

x(k + 1) = f(x(k), u(k)) (4.1)

y(k) = h(x(k)) (4.2)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp denote the state, control input and measured

output respectively. It is a standing assumption that the system is both controllable

and observable. The controlled system is required to satisfy the state and control con-

straints x ∈ X and u ∈ U respectively where, usually X is a closed subset of Rn and U

is a compact subset of Rm; more generally, the state and control are required to satisfy

(x, u) ∈ Z ⊂ Rn×m.

We use u to define a control sequence and ϕ(k;x,u) to denote the state solution of (4.1)

at step k when the initial state is x at step 0 and the control sequence u is applied. By

definition ϕ(0;x,u) := x.

The control objective is to steer the state of the system in a finite number of steps N

to a “safe” region Xf , that for instance might be the origin or any other set point, in

a “best” way. In control systems, performance is typically quantified through a perfor-

mance measure, often referred to as a cost function. The primary goal is to control the

plant in a manner that minimizes this cost function. Beyond straightforward perfor-

mance measures, objectives like tracking can be reformulated as the task of guiding the

system to a designated safe set. This can be achieved through various means, such as

extending the model appropriately, selecting suitable coordinates, or defining the cost
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function in a specific manner.

The cost criterion is written as a sum of stage costs ℓ(x, u) satisfying ℓ(0, 0) = 0. Per-

formance can also be expressed with respect to the safe region Xf where we may have

a cost criterion (terminal cost) Vf . By combining these two measures of performance,

we can formulate a comprehensive cost function:

VN(x,u) =
N−1∑
i=0

ℓ (xi, ui) + Vf (xN) , (4.3)

where u := [u⊤
0 u⊤

1 . . . u⊤
N−1]

⊤ and xi := ϕ(i;x,u). For a given initial condition x, the

set of feasible input sequences is defined by:

ΠN(x) :=
{
u ∈ RNm : xi ∈ X, ui ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf

}
(4.4)

We denote with XN the set of initial states for which a feasible input sequence exists,

i.e.

XN := {x ∈ Rn : ΠN(x) ̸= ∅} (4.5)

Then, the finite horizon optimal control problem is formulated as follows:

PN(x) : V 0
N(x) := inf

u∈ΠN (x)
VN(x,u) (4.6)

The optimal control problem PN(x) yields an optimal control sequence

u0
N(x) ∈ arg minu∈ΠN (x)VN(x,u):

u0
N(x) =

[(
u0
0(x)

)T (
u0
1(x)

)T · · · (u0
N−1(x)

)T]T
. (4.7)

It is called optimizer and it is designed to guide the system from any initial condition

x ∈ XN to the safe region Xf in N steps. Crucially, this is achieved without violating

the specified constraints and represents the most effective open-loop control strategy

for ensuring system safety and performance. The function V 0
N : XN → R̄ assigns

to each state x ∈ XN the minimum value of the performance index and is named as

optimal value function.
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4.2.2 Model Predictive Control (MPC)

In the previous section we have seen the main ingredients of a constrained finite-

horizon optimal control problem for a general nonlinear system (4.1). We can obtain

an infinite-horizon controller by repeatedly solving the finite-horizon optimal control

problem (4.6) where the current state of the plant is used as an initial state for the

optimization. The procedure involves implementing only the first control sample from

the computed optimal control sequence, and this entire process is repeated at the next

step when new measurements of the state become available. This is referred to as the

receding horizon implementation of the controller and the resulting design method is

called modelpredictivecontrol (MPC).

In the following figure is well explained the MPC operation and its evolution during the

time:

Figure 4.1: The model predictive control setup.

It’s possible to visualize graphically the mathematical behaviour: given the event pair

(k, x), i.e. x(k) = x, the optimization problem (4.6) is solved yielding the optimal
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control sequence u0
N(x). Only the first control u0

0(x) is applied to the system at step k.

At the next step k + 1 a new optimization problem is solved over a shifted horizon.

We can explicit the MPC law

κN(x) = u0
0(x) (4.8)

An intrinsic characteristic of MPC is that the optimization problem (4.6) is executed in

open-loop, even if the MPC law (4.8) is a feedback law. Consequently, an open-loop

control is employed in the prediction, while the actual controller of the plant (i.e., the

MPC) operates in closed-loop form:

x(k + 1) = f (x(k), κN(x(k))) , y(k) = h(x(k)). (4.9)

The main issues in MPC involve the feasibility of on-line optimization and closed-loop

stability. These two issues are interconnected, and we will delve into more details on

them in the following sections.

4.2.3 Robustness against uncertainty

Incorporating uncertainty into the mathematical representation of a system introduces

the critical aspect of robustness. A controlled system is deemed robust when it main-

tains stability and meets performance specifications within a certain range of model

variations and in the presence of specific disturbances. The exploration of stability and

performance robustness is crucial to ensure the favorable behavior and safety of con-

trolled systems. Various approaches are available in the literature for studying robust-

ness. In this section we explain robustness using a min-max game framework, where the

controller acts as the minimizing player, and the plant model along with the disturbance

act as the maximizing players. Two main categories of robust optimal control strategies

are explored: open-loop min-max control and feedback min-max control. In open-loop

min-max control, a single control sequence is utilized to minimize the worst-case cost.

On the other hand, in feedback min-max control, the worst-case cost is minimized over
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a sequence of feedback control laws. Each of these approaches will be briefly discussed.

The robust control problem under consideration involves guiding an uncertain system,

constrained by hard state and input limits, towards a safe or target set. Simultaneously,

the objective is to minimize a worst-case performance function, addressing the chal-

lenges posed by uncertainties in the system.

Mathematically, the problem can be formulated based on the assumption that the plant

is represented by a difference equation, taking the form:

x(k + 1) = f(x(k), u(k), w(k)) (4.10)

y(k) = h(x(k)) (4.11)

where w(k) ∈ Rn is an additive disturbance that is assumed to lie in a compact sub-

set W of Rn. Boundedness of w is required to permit satisfaction of the constraints

in the optimal control problem for all possible realizations of the sequence w :=

[w⊤
0 w⊤

1 . . . w⊤
N−1]

⊤, which denote a realization of the disturbance over the prediction

horizon N . Also, let ϕ(k;x,u,w) denote the solution of (4.10) at step k when the initial

state is x at step 0, the control sequence u and the disturbance sequence is w. By defi-

nition ϕ(0;x,u,w) := x. For a given initial state x, control sequence u and disturbance

realization w, the cost function VN(x,u,w) is:

VN(x,u,w) :=
N−1∑
i=0

ℓ (xi, ui) + Vf (xN) (4.12)

where xi := ϕ(i;x,u,w) and thus x0 = x. For each initial condition x we define the

set of feasible open-loop input sequences u :

Πol
N(x) :=

{
u : xi ∈ X, ui ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf ,∀w ∈ W

}
(4.13)

whereW := WN . Also, let Xol
N denote the set of initial states for which a feasible input

sequence exists:

Xol
N :=

{
x : Πol

N(x) ̸= ∅
}
. (4.14)
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The finite horizon open loop min−max control problem is defined

Pol
N(x) : V 0,ol

N (x) := inf
u∈Πol

N (x)
max
w∈W

VN(x,u,w) (4.15)

Typically VN is a continuous function and since W is a compact set, it follows that the

maximum is reached in and it is finite.

When an open-loop min-max control is applied in a receding horizon fashion we refer to

this design method as open-loop min-max MPC. The open-loop formulation, while com-

putationally advantageous, tends to be conservative as the set of feasible trajectories

may significantly diverge from the origin [39]. Effective control in the presence of dis-

turbances often necessitates optimization over feedback policies rather than open-loop

input sequences. Feedback control helps prevent trajectories from diverging excessively

and generally leads to improved performance compared to the open-loop case. This

advantage arises from the increased degree of freedom in the optimal control problem

associated with feedback strategies.

We now present the feedback min-max optimal control formulation. In this case we

define the decision variable in the optimal control problem, for a given initial condition

x as a control policy

π := (µ0(·), µ1(·), . . . , µN−1(·)) (4.16)

where each µi()̇ is a feedback law. Also, let xk = ϕ(k;x, π,w) denote the solution of

(4.10) at step k when the initial state is x at step 0, the control is determined by the

policy π and the disturbance sequence is w. For each initial condition x we define the

set of feasible policies π:

Πfb
N(x) :=

{
π : µi ∈ U, xi ∈ X∀i ∈ N[0,N−1], xN ∈ Xf ,∀w ∈ W

}
(4.17)

Also, let Xfb
N denote the set of initial states for which a feasible policy exists

X fb
N :=

{
x : Πfb

N(x) ̸= ∅
}
. (4.18)
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The finite horizon feedback min−max control problem is defined as:

Pfb
N(x) : V 0,fb

N (x) := inf
π∈Πfb

N (x)
max
w∈W

VN(x, π,w) (4.19)

The receding horizon implementation of a feedback min-max control is referred to as

feedback min-max MPC. Given the assumption that the disturbance is bounded, the

optimal controller’s achievement is constrained to steering the state to a neighborhood

of the origin, denoted as Xf . Subsequently, a local controller, represented as κf , is

employed to sustain the state within Xf for any conceivable realizations of disturbances.

As an alternative, in [7] it is proposed that a dynamic programming approach be used

to obtain an explicit expression for the feedback MPC law.

The fundamental elements of finite-horizon optimal control and its receding horizon

implementation, known as Model Predictive Control (MPC), have been outlined for

general nonlinear systems. Additionally, various solutions to key challenges in MPC,

including feasibility, robustness, and closed-loop stability, were discussed, relying on

the utilization of a terminal set and a terminal cost approach.

4.3 MPC for PWA Systems

PWA models are incredibly useful when it comes to explaining systems, with behaviors

that don’t follow a straight line but rather change in specific ranges. To effectively imple-

ment MPC with these models it’s essential to develop a model that accurately captures

how the system moves between connected subsets and its dynamics. By using optimiza-

tion techniques based on linear or quadratic programming algorithms we can smoothly

handle any changes. Ensure a seamless transition between the various operating modes

of the system. When adapting MPC to PWA models it becomes crucial to create a model

that precisely represents the transitions, between interconnected subsets and their dy-

namics. A common approach involves utilizing a set of linear or affine equations that

represent the system within each region of the state space defined by the PWA model.
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The main challenge is determining which region the system currently belongs to, as the

matrices A and B can vary discontinuously between regions. This requires a switching

strategy that identifies the current region based on the system state and activates the

corresponding equations. Practically implementing this approach might involve defin-

ing a set of constraints that capture transitions between regions, enabling the MPC

controller to handle the discontinuities in the PWA system. The accuracy of the mod-

eling and the robustness of the switching strategy will be crucial to ensure reliable and

effective control of the PWA system.

Another important fact to consider is the discrete nature of PWA models. Since PWA

models describe systems with nonlinear behaviors and discrete transitions between dif-

ferent regions, it’s crucial to adapt optimization algorithms to consider these charac-

teristics. Firstly, the presence of affine regions and discrete transitions requires special

attention to formulating optimization constraints. Optimization algorithms should be

able to handle the switching between different dynamics of the system, ensuring that

control is consistent with transitions between regions.

Additionally, the selection of prediction and control horizons within MPC must be care-

fully considered, taking into account the discrete nature of the PWA model. Proper

horizon choices can help capture transitions between regions and ensure optimal con-

trol performance. Incorporating a robust switching strategy that accurately identifies

the current system region is also crucial. This involves a careful analysis of the activa-

tion conditions of different affine subsets, enabling the controller to promptly respond

to changes in the system’s behavior.

Let’s assume we have a PWA model with N affine regions. The associated predictive

model could be expressed as:

x(k + 1) = Aix(k) +Biu(k) if x(k) ∈ Xi

y(k) = Cix(k)

(4.20)
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where i represents the corrisponding region, x(k) is the state, u(k) is the control, y(k)

is the output. The matrices Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n and ai ∈ Rn are different

for each region. Here, Xi is a polyhedral partition of the state space Rn.

The system (4.20) is subject to hard input and output constraints:

X =
{
x ∈ Rn : |yj| ⩽ yj, max ,∀j ∈ N[1,p]

}
U =

{
u ∈ Rm : |uj| ⩽ uj, max ,∀j ∈ N[1,m]

}
,

(4.21)

The objective is to drive the system (4.20) from an arbitrary initial state x to the origin

while adhering to the constraints on inputs and outputs (4.21), limiting also the finite-

horizon quadratic cost function defined as

VN(x,u) =
N−1∑
i=0

ℓ (xi, ui) + Vf (xN) (4.22)

where the stage cost is given by the quadratic expression

ℓ(x, u) = xTQx+ uTRu, (4.23)

such that Q = QT ≻ 0, R = RT ≻ 0 (positive definite matrices), u := [u⊤
0 u⊤

1 . . . u⊤
N−1]

⊤

and xi := ϕ(i;x,u). We assume that at each step k the state x(k) is available (can be

measured or estimated).

For each initial condition x we define the set of feasible control sequences u:

ΠN(x) =
{
u : xi ∈ X, ui ∈ U ∀i ∈ N[0,N−1], xN ∈ Xf

}
(4.24)

where also a terminal constraint xN ∈ Xf is added. Let XN denote the set of initial

states for which a feasible input sequence exists:

XN = {x : ΠN(x) ̸= ∅} (4.25)

The MPC law is then obtained as follows. At event (x, k) (i.e. the state of the PWA

system at step k is x) the following optimal control problem is solved:

V 0
N(x) = inf

u∈ΠN (x)
VN(x,u). (4.26)
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Let u0
N(x) =

[
(u0

0(x))
T
(u0

1(x))
T · · ·

(
u0
N−1(x)

)T]T define a minimizer of the optimization

problem (4.26)

u0
N(x) ∈ arg min

u∈ΠN (x)
VN(x,u) (4.27)

and let x0 =
[
xT (x0

1)
T · · · (x0

N)
T
]T

denote the optimal state trajectory (i.e. x0
i = ϕ(i;x,u0

N(x))).

We obtain an implicit MPC law:

κN(x) = u0
0(x). (4.28)

referred, in this case, only to PWA systems. This process is repeated at each sampling

step, considering the new information about the state and continuously adjusting the

control to the complex and discrete dynamics of the PWA model.

4.4 Robust MPC for PWA systems

There is always a difference between the PWA models used in the mathematical analysis

and the actual physical system, so it is important to consider this uncertainty to ensure

that the results will hold in reality. In such a scenario, the uncertainty description cap-

tures the variations in the parameters within each polyhedral partition, providing a

more realistic representation of the actual system behavior. Robust control techniques,

such as Robust Model Predictive Control (RMPC), can be employed to ensure stability

and performance in the presence of these uncertainties. The challenge lies in designing

controllers that can handle the variability in model parameters across different par-

titions and maintain robustness in the face of uncertainties. Various forms of model

uncertainty descriptions have been proposed for PWA systems, including: (1) PWA sys-

tem with additive disturbance [29], (2) local affine parameter-dependent PWA models

[40], and (3) PWA systems with normbounded uncertainty [38].

Here, to define robust stability of an MPC controller for a Piecewise Affine system, we

will consider a polytopic uncertain linear system description, presenting an uncertain
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structure of PWA systems that is a set of polytopic parameter varying models. To ex-

plain it in a better way, we say that in each partition of the PWA systems, the PWA

subsystem is represented by a polytopic uncertainty. Indeed, the described uncertainty

formulations provide a framework to embed more general nonlinear systems into the

PWA framework.

Indeed, implementing robust Model Predictive Control (MPC) for Piecewise Affine (PWA)

systems involves solving an online optimization problem that depends on the current

state of the system. The computational complexity can increase with the size of the

problem, and the presence of state switching in PWA systems further adds to the com-

putational burden.

The model considered here is the (4.20)

x(k + 1) = Aix(k) +Biu(k) if x(k) ∈ Xi (4.29)

where i ∈ S := {1, 2, ..., s} represents the corrisponding region and s denotes the num-

ber of discrete modes. x(k) is the state, u(k) is the control. Ai ∈ Rn×n, Bi ∈ Rn×m. Here,

Xi is a convex polyhedron containing the origin for all i ∈ S.

The state and input gains are uncertain and time-varying within each polyhedral par-

tition of a Piecewise Affine system, it introduces additional complexity to the control

problem. The uncertainty in these matrices implies that the system’s dynamics can

change over time, and the exact variations are not known in advance:[
Ai(k) Bi(k)

]
∈ Ωi, ∀k ⩾ 0, (4.30)

where Ωi := Co

{[
A1

i B1
i

]
,

[
A2

i B2
i

]
, . . . ,

[
AL

i BL
i

]}
, and

[
Ail Bil

]
:=

[
Al

i Bl
i

]
represents a vertex of the polytope Ωi, i.e., ∀k there exist Li nonnegative coefficients λl

i

(with l = 1, 2, . . . , Li ) such that

L∑
l=1

λl
i = 1, [Ai(k) Bi(k)] =

L∑
l=1

λl
i(k)

[
Ail Bil

]
. (4.31)
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MPC, as already explained, is a step-by-step optimization technique where new mea-

surements are calculated at each step and a model of the process is used to predict

future outputs of the systems. A cost function like (4.23) is minimized to compute the

future control action.

In this section we want to transform the predictive control problem for the uncertain

PWA system (4.20) to a set of LMI (Linear Matrix Inequalities) problems. The pro-

posed approach suggests using a set of PWA Lyapunov functions, each corresponding

to different sampling times or instances where the state may switch from one partition

to another. This is an interesting strategy for dealing with closed-loop PWA systems.

Consider a PWA quadratic function

V (x) = xTPix

 x

u

 ∈ Xi (4.32)

where i ∈ S. At sampling time k, x(k|k) denotes the true measured state x(k). In ordeer

to obtain an upper bound on the robust performance objective, we let V∞(x(∞ | k)) = 0

because of x(∞ | k) = 0 and the following requirement is required (as explained in the

Theorem (3.1) in section 3.3.2

V (x(k + j + 1 | k))− V (x(k + j | k))

< −
[
x(k + j | k)TQx(k + j | k) + u(k + j | k)TRu(k + j | k)

]
∀ [Ai(k + j) Bi(k + j)] ∈ Ωi.

(4.33)

Summing (4.33) for j = 0→∞ we get the following inequality:

max
[Ai(k+j) Bi(k+j)]∈Ω

J∞(k) < V (x(k | k)). (4.34)

Therefore, the robust MPC algorithm, with the state-feedback controller of the form

u(k + j|k) = Fpx(k + j|k), with Fp ∈ Rm×n, can be denoted as follows. At each time

step k, the state-feedback controller can be synthesized by minimizing the following
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problem:

min
γ,Pi

γ

s.t. x(k | k)TPix(k | k) ⩽ γ

and (4.33),

(4.35)

where
[
xT (k | k)uT (k | k)

]T ∈ Xi, and γ is a suitable nonnegative coefficient to be mini-

mized. In the end, supposing that the switching sequence of the PWA system from one

partition to another is known, the optimization problem (4.35) can be solved by the

LMI already described in the Theorem (3.4) in section 3.3.2.

We have seen that the computational complexity can increase with the size of the prob-

lem, and the presence of state switching in PWA systems further adds to the compu-

tational burden. In [55] a new method to reduce the computational complexity is

presented. They proposed an improved robust MPC for PWA systems, consisting in an

online computation of the robust MPC when the state is outside of the region where the

origin is included and in a sequence of asymptotically stable attraction domains con-

structed off-line once the state enters in the region including the origin. They proposed

also an example to proof the off-line stabilizing state-feedback laws, demonstrating the

good behaviour of the controller. In our opinion, in the example provided the number

of models was only two and maybe increasing the number of models to 10 or more, the

control system presented may not be optimal. A future challenge would be to test it on

a more complex nonlinear system and assess its effectiveness. At that point, additional

modifications may be necessary.
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4.5 Conclusion

In this chapter, we have delved into the control of Piecewise Affine (PWA) models using

Model Predictive Control (MPC), a powerful technique in control engineering. We be-

gan by introducing the fundamental principles of PWA control, highlighting the unique

characteristics associated with controlling nonlinear and hybrid systems. Subsequently,

we provided an overview of MPC, discussing its formulation as an optimal control prob-

lem and its application in real-time control of dynamic systems

Through our exploration of MPC for PWA systems, we have demonstrated the poten-

tial of this approach in achieving robust and adaptive control in complex and uncertain

environments. By leveraging predictive models and optimizing control actions over a

finite time horizon, MPC offers a systematic framework for addressing constraints and

optimizing performance, even in the presence of disturbances and uncertainties.

Moreover, our discussion on robust MPC for PWA systems underscores the importance of

considering uncertainty and disturbances in control design. By incorporating robustness-

enhancing techniques such as constraint tightening and disturbance rejection, robust

MPC ensures stable and reliable control performance in the face of varying operating

conditions and disturbances.

Overall, this chapter has provided valuable insights into the theory and application of

MPC for PWA systems, highlighting its effectiveness in addressing control challenges

and achieving desired performance objectives. Moving forward, further research and

development in this area could lead to advancements in control strategies for a wide

range of nonlinear and hybrid systems, with potential applications across various in-

dustrial sectors and domains.
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5 Experimental results

This chapter presents two cases of application of the Model Predictive Control (MPC)

to a Piecewise Affine (PWA) system, as described in the previous chapters. The exper-

iments conducted aim to assess the performance, stability, and feasibility of employing

MPC in controlling such a dynamic system. The implementation of MPC on a PWA sys-

tem holds significance in various engineering applications, particularly in fields where

complex nonlinear dynamics need to be effectively managed and controlled.

5.1 Example I

The experiment focuses on a fluid level control process, representing a popular example

for nonlinear application. The system consists of two interconnected cylindrical tanks

R1 and R2 [53], as described in the following figure
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Figure 5.1: Level control process

The objective is to regulate the water level h2 in tank R2 by adjusting the input flow qe.

The dynamics of this process are governed by principles of Bernoulli’s equation and the

conservation of mass, resulting in the following system of differential equations:

dh1

dt
=

qe
S1

− α1

S1

√
2g (h1 − h2) = f1 (h1, h2, qe)

dh2

dt
=

α1

S2

√
2g (h1 − h2)−

α2

S2

√
2gh2 = f2 (h1, h2, qϵ)

(5.1)

where h1 and h2 are the water levels in R1 and R2, respectively, S1 and S2 are the areas

of R1 and R2, α1 is the area of the pipes linking R1 to R2, α2 is the area of the outlet

pipes of R2, qe is the incoming flow, q1 is the flow between R1 and R2, q2 is the outlet

flow and g is the gravity.

The parameter’s values of the level control process are chosen as: α1 = 0.002 m2, α2 =

0.002 m2, S1 = 0.25 m2, S2 = 0.1 m2, l = 1.2 m, g = 9.81 m/s2.

The objective of the experiment is to construct a piecewise affine system and then con-

trol it using MPC. The focus of this thesis is on control, but first, I’ll briefly explain the

construction of the PWA system. The PWA system can be expressed, as seen in Section

3.2, as

y(k) =


θT1 φ̄(k) + e(k) if φ(k) ∈ H1

...

θTs φ̄(k) + e(k) if φ(k) ∈ Hs

(5.2)
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where

φ(k) =

[
y(k − 1) . . . y (k − na) u(k − 1) . . . u (k − nb)

]⊤
(5.3)

θi =

[
ai,1 . . . ai,na bi,1 . . . bi,nb

gi

]⊤
(5.4)

φ̄ =

[
φT 1

]⊤
. (5.5)

- y(k) ∈ R, u(k) ∈ R, e(k) ∈ R, s ∈ N are respectively the output, the input, the additive

noise and the number of sub-models.

- θi ∈ Rna+nb+1 is the parameter vector of the ith submodel having na and nb as orders.

- ai,j and bi,j represent the coefficients of the ith submodel while gi represents an inde-

pendent affine parameter of the ith sub-model.

- φ(k) ∈ Rna+nb is the regressor vector.

- Hi ∈ Rna+nb is the polyhedral partition of the ith submodel.

In the paper [53] the identification of the process is done throw the DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) algorithm, which is a popular

clustering algorithm used in machine learning. This computational technique enables

the categorization of data into separate groups, relying on specific density criteria. In

essence, it identifies dense clusters as distinct classes, with gaps of low density sepa-

rating them. Furthermore, this approach effectively filters out anomalies during the

classification process and has the capability to ascertain the quantity of classes present.

In [23] the DBSCAN algorithm is more detailed.

They obtained parameter vectors θi = {ai,1, bi,1, bi,2}i=1,2,3

θ1 = {0.7915, 2.2125, 5.2863}

θ2 = {0.8877, 0.1246, 7.5378}

θ3 = {0.9105,−0.7323, 8.4514}

(5.6)

and the regions {Hi}i=1,2,3, computed throw support-vector machine (SVM) approach,are
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as follows:

H1 =
{
φ ∈ R3; [−4.989− 0.105− 0.103]Tφ(k)− 0.2528 ⩽ 0

}
H2 =

{
φ ∈ R3; [−4.5735− 0.0207− 0.0348]Tφ(k) + 0.1977 ⩽ 0

and [−4.989− 0.105− 0.103]Tφ(k)− 0.2528 > 0
}

H3 =
{
φ ∈ R3; [−4.5735− 0.0207− 0.0348]Tφ(k) + 0.1977 > 0

}
(5.7)

The result of their simulation is shown in the following figure:

Figure 5.2: Paper [53] control results using Hybrid MPC

It’s possible to see that the output and the reference trajectory don’t have the same

dynamics. In order to implement it and try to obtain a better result, we decided to use

Matlab and Simulink.
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The Simulink block scheme is

Figure 5.3: Simulink Model

where the process is defined by the two differential equations, each followed by the

integrator and the saturation blocks, as shown in the following scheme

Figure 5.4: Process blocks scheme

The simulink model is iteratively launched and stopped N times, with updates to the

controller conditions based on the linear submodel of the selected PWA system, deter-

mined by the switching conditions. The total number of controllers is thus 3. Once the

submodel is defined, the respective θ is used to determine the system output y(k) and

it will directly influence the value of the cost function. The control signal outputted by

the MPC then enters the process, from which the two variables h1 and h2 are measured,

to be passed to MATLAB for the subsequent step. At each cycle, the controller’s actions
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are adjusted based on the current operating conditions, ensuring adaptive and efficient

control of the system dynamics.

We aimed to verify that it’s possible to achieve a better outcome respect to Figure 5.2.

Indeed, through our experimentation, we succeeded in aligning the output closely with

the reference:

Figure 5.5: Plot with same reference of the paper

Figure (5.5) illustrates that utilizing MPC for such processes can be effective, as evi-

denced by the near perfect tracking of the reference by the output and by the absence

of significant overshoots, while the rise time is optimal.

The only issue identified in the simulation (5.5) is the absence of switching between

models. Initially, this was considered as a coding error, but, through further experimen-
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tation, it was revealed that the switching mechanism operates correctly for significantly

smaller reference values as illustrated below:

Figure 5.6: Plot with smaller reference

Here, it’s possible to see the reference values, each for 300 steps, of 0.2, 0.02, 0.05,

0.03, and 0.1, respectively. It’s observable that in this scenario, the switching between

submodels works correctly, but only between models 1 and 3. The switching to model

2 never activates because the inequality condition H2 in (5.7) is never met with these

reference values, despite repeated checks in the code. It’s worth noting that the paper

does not specify the switching instants, so we cannot conclusively state whether, in

their experiment, with our same reference values, switching occurs between all three
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submodels. This suggests that the switching logic of the paper may require adjustments

to accommodate the reference values effectively. In order to do that, we modified the

treshold value defined in (5.7) from 0.25 to − 2.1 and from −0.19 to − 1.2. The plot

obtained is the following:

Figure 5.7: Plot with different tresholds

This graph highlights consistency in switching between different models, each covering

a specific range of output values, thus demonstrating the correctness of the code.

In contrast to the paper, through our experiments, we successfully demonstrated the

effectiveness of MPC in controlling the level of interconnected tanks, showcasing its

potential applicability in similar processes with nonlinear dynamics. This allowed us to

effectively regulate the liquid levels in the tanks while considering constraints in the sys-
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tem. This highlights the versatility of predictive control techniques, particularly when

applied to complex systems like the level control system considered in our study.

We believe that the difference between our results and those reported in the paper stems

from the fact that they employ one-step predictive control, where the horizon is set to

one, and they utilize an explicit solution of u to compute the state at the next time

step. In contrast, we choose to use a prediction horizon Hp = 15 and a control horizon

Hu = 10, ensuring a better prediction of future states and thus improved tracking of the

reference. As demonstrated by the plots, our approach proves to be more effective.

5.2 Example II

Subsequently, we implemented another experimental application of MPC for PWA sys-

tems, based on the same two-tanks model Figure 5.1, so the same Simulink block di-

agram and mathematical model were used. The difference lies in the construction of

the models and the method of switching between them. The saturation level was aug-

mented, in order to have a larger range of operation points. Each model is constructed

around an equilibrium point, denoted as q̄, h̄1 and h̄2, identified by fixing a value of

h2 and setting the differential equations (5.1) equal to zero, as the system under such

conditions remains time-invariant. The values of h̄2 chosen are in order for the models:

0.1, 0.4, 0.8, 1.2 metres. Around each of these equilibrium points, as explained earlier,

we can approximate the system behavior as linear. Four MPC controllers were then de-

veloped, each tailored to its respective model.

The switching, however, is based on selecting the model that predicts the minimum

error between the current system measurement and the estimation of each individual

model. At each time step, the liquid level in the second tank (output y) was measured

and stored. Additionally, a future estimation ŷ was computed for each model. The es-
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timation error for each model was calculated as the l2 norm of the difference between

the last three measured output values and the last three estimated values.

Y =

[
y(k) y(k − 1) y(k − 2)

]
Ŷ =

[
ŷ(k) ŷ(k − 1) ŷ(k − 2)

]
ε = ∥Y − Ŷ ∥22

(5.8)

This approach of considering multiple past measurements aimed to enhance the robust-

ness of the switching system. The model with the smallest error was selected for control

action at each time step. However, to address the issue of excessive switching observed

in the initial simulation runs, a threshold was introduced. This threshold, when ex-

ceeded, triggers the system to switch from one model to another.

The threshold was determined based on errors dynamic and desired control perfor-

mance. If the estimation error surpasses this threshold, indicating a significant devia-

tion from the current model’s predictive capabilities, the system initiates a switch to an

alternative model better suited to the prevailing conditions.
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The next figure shows the obtained results:

Figure 5.8: Plot of 4 Models PWA system

By implementing the threshold-based switching mechanism, the frequency of unneces-

sary switches was significantly reduced, leading to smoother operation and enhanced

stability. The MPC system effectively tracked desired trajectories while minimizing oscil-

lations and overshoots. The optimal result was found with prediction horizon Hp = 40,

control horizon Hu = 15, Q = 20, R = 1, and τ = 1.5× 10−3. It is possible to notice that

only three out of the four submodels are primarily used. Indeed, model 4, which has

the linearization point with the highest value of h̄2, is not used. Model 1, characterized

by the lowest value of h̄2, is engaged when h2 exhibits very small magnitudes. As the

output h2 approaches approximately 1 meter, model 2 takes over. Subsequently, for
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higher peaks in h2, the control shifts to model 3.

As a final validation for the correct functioning of the system, we decided to introduce

a random disturbance to the output of approximately 5% of its value. At first, the re-

sult was not satisfactory, as a significant overshoot occurred on the output h2 when its

value transitioned from h2 = 0.1 to h2 = 0.8. To mitigate this overshoot and enhance

controller performance, we extended the horizons to Hp = 50 and Hu = 20, thereby

achieving excellent results even in the presence of a disturbance, as depicted in the

following figure.

Figure 5.9: Plot of 4 Models PWA system with output disturbance

In this case, it is evident that even submodel 4 is utilized in the switching, demonstrating

the system’s correctness.
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5.3 Conclusion and Future Developments

Through the exploration and experimentation with Model Predictive Control (MPC) ap-

plied to Piecewise Affine (PWA) systems, this chapter has provided valuable insights

into the efficacy and adaptability of MPC techniques for controlling complex nonlinear

processes. By implementing and fine-tuning MPC controllers on a two-tanks model,

we have demonstrated the versatility and robustness of this control strategy in achiev-

ing precise tracking of reference trajectories while minimizing overshoots and oscilla-

tions. Our approach involved constructing multiple linear submodels around equilib-

rium points and dynamically switching between them based on prediction errors, en-

suring adaptive and efficient control in varying operating conditions. Additionally, the

introduction of a threshold-based switching mechanism effectively reduced unnecessary

switches, further enhancing system stability and performance. Furthermore, our inves-

tigation into the effects of horizon selection and disturbance handling underscored the

importance of parameter tuning and system robustness in real-world applications. Over-

all, the successful implementation and validation of MPC techniques in this study high-

light their potential for addressing control challenges in diverse industrial processes,

paving the way for future advancements in control system design and optimization.

Looking ahead, several avenues for future research and development in MPC for PWA

systems present themselves. Firstly, exploring advanced optimization techniques such

as model predictive control with state and input constraints could further enhance con-

trol performance and robustness, particularly in scenarios with stringent operational

constraints. Additionally, investigating the integration of machine learning methods,

such as reinforcement learning or data-driven modeling, could offer insights into op-

timizing MPC controllers in real-time based on historical process data, leading to im-

proved adaptability and performance in dynamic environments. Lastly, exploring MPC

applications in emerging fields such as renewable energy systems, smart grids, and
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autonomous vehicles could offer exciting opportunities for addressing complex con-

trol challenges and advancing sustainability and efficiency goals. Overall, continued

research and innovation in MPC for PWA systems hold the potential to revolutionize

control engineering practices and drive progress across various industrial sectors.
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