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Abstract 

The automotive industry is confronted with a multifaceted challenge: contending with 

intense competition, adapting to evolving standards, and managing increasingly complex 

components, all while addressing sustainability concerns. Global pollution and climate 

change demand solutions and electrification through Battery Electric Vehicles (BEVs) 

offers a promising path to carbon neutrality. Within this context, the innovative 

EVERGRIN project developed by “brain Technologies S.r.l.” plays a pivotal role. The 

general project proposal of the company is to develop an electronic device, a Vehicle 

Management Unit (VMU), that allows the rapid configuration of a new electric vehicle 

but can also be adapted to an existing vehicle, as part of a retrofit activity. This thesis is 

part of this ambitious company project and is divided into three parts: first, an overview 

of the EVERGRIN project is given with details and insights, followed by an examination 

of the relevant theories related to automotive standards, V-cycle, Model-In-the-Loop 

(MIL) phase and software testing; then, the operational part carried out for this thesis is 

revealed and illustrated step by step, starting from the writing of the system requirements 

in accordance with the current regulations in the industry (e.g. ISO/IEC/IEEE 

29148:2018); it follows the definition of the general state machine describing the macro 

conditions assumed by a BEV during its different operational phases is discussed, with a 

focus on the development process and iterations; finally, everything is translated into 

software using Model-Based Software Design (MBDS) techniques, using Simulink 

environment for the creation of an interactive and real-time simulation, adjustable during 

execution from a customised dashboard. After a thorough analysis and discussion of the 

data, a final and overall consideration will be provided, tailored to future applications.  
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Introduction 

Nowadays the automotive industry is navigating a complex and highly competitive 

terrain, marked by an abundance of players vying for market share. This challenge is 

further compounded by the continuous updates required to align with the ever-evolving 

rules and regulations imposed by various countries. At the same time, there is an urgent 

need to streamline production costs, demanding the optimization of production processes 

and the shrinkage of the whole time of production, a.k.a. time to market. Additionally, it 

is relevant to take into account the development of the necessary software that requires 

an enormous effort due to its increasing complexity over the years. Navigating this 

intricate and challenging landscape has become even more crucial due to the pressing 

need for sustainable solutions. As a matter of fact, one of the big problems of modern 

society is global pollution and climate change, so there is a demand to reach as soon as 

possible carbon neutrality (for instance, Europe is striving to become the world's first 

climate-neutral continent by 2050); investing in renewable electricity combined with 

Battery Electric Vehicles (BEV) would enable carbon neutrality also for transport. Life 

cycle assessments including the production of batteries raise questions regarding resource 

depletion including rare earth metals. Nevertheless, on average, BEVs are in most cases 

already on par with, or better than, conventional vehicles and with recycling and 

opportunities for resource substitution in batteries, resource scarcity is a tractable 

challenge [1]. The transition to BEVs is well under way in the automotive industry, with 

experts forecasting an increase in production over the coming decades. This shift though 

will not be smooth and orderly but, more accurately, it’s going to be lumpy and erratic: 

customer preference, pricing, regulations, and other market factors play a major role in 
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this changeover. So, there is no doubt that the transition to purely electric vehicles 

represents one of the most likely technological scenarios in the coming years, however, 

its full implementation faces some obstacles that have not been completely overcome yet: 

 

• the cost of a fully electric vehicle, including batteries, remains around 10 to 

20,000 euros more than a conventional car of the same segment; 

• the supply chain of components and subsystems providers is not ready yet to 

offer optimized solutions according to automotive standards; 

• there are numerous vehicles with Euro 3 or Euro 4 emission standards that, 

despite being perfectly functional, can no longer be used in lots of urban 

centres (depending on the country’s regulations); their disposal, therefore, will 

represent a cost. 

 

Unless these issues are addressed, at least to some extent, the adoption of electric 

vehicles will struggle to take off. This is where the groundbreaking project, called 

EVERGRIN, advanced by “brain Technologies S.r.l.” comes in. The general project 

proposal of the company is to develop an electronic device, a Vehicle Management Unit 

(VMU), that permits rapid configuration of a new electric vehicle, but can also be adapted 

to an existing vehicle, as part of a retrofit activity, i.e. the conversion of a polluting 

conventional vehicle into a pure electric one allowing a considerable cut in the total cost.  

 

This thesis is part of this ambitious company project, and it will be developed 

according to the following steps: 

 

• initially, an overview of the EVERGRIN project with details and insights will be 

provided, followed by an examination of relevant theories related to the 

automotive standards, V-cycle, development phase and In-the-Loop testing; 

• then the operational part that was carried out for this thesis work will be exposed 

and illustrated step by step; starting from the writing of the system 
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requirements, in accordance with the current regulations in the industry 

(e.g. ISO/IEC/IEEE 29148:2018); afterwards, the definition of the general state 

machine describing the most significant macro conditions assumed by a BEV 

during its various operating phases, with a focus on the development process and 

iterations, will be discussed;  

• lastly, everything will be translated into software using Model-Based Software 

Design (MBSD) techniques within Simulink resulting in an interactive and real-

time simulation adjustable during the execution from a custom-made dashboard. 

Following a thorough analysis and discussion of the data, a final and 

comprehensive consideration tailored towards future applications will be 

provided. 
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Chapter 1 

EVERGRIN PROJECT 

A full evaluation of the significance of this thesis and its contribution to the field of 

electric vehicles requires a close examination of the EVERGRIN project's goals and how 

it addresses the challenges of electric vehicle adoption. As mentioned before, at the core 

of this project lies the development of the Vehicle Management Unit (VMU), a smart 

device that simplifies the setup and customization of electric vehicles. This technology 

applies to both newly built models and existing gasoline cars undergoing conversion 

through a retrofit process. The VMU, developed according to the latest automotive 

standards, will consolidate functionalities currently found in various subsystems like the 

Battery Management System (BMS) and inverter. This centralization not only enables the 

development of ISO 26262 compliant safety features but also reduces the number of 

required minimal subsystems, leading to a significant cost saving. Positioned as a crucial 

component for electric vehicle architecture, the VMU targets both new vehicles (M1, N1, 

offroad, and L quadricycles) and the retrofit market. In the latter, it empowers specialized 

workshops to convert polluting vehicles to electric at a fraction of the cost of new electric 

vehicles, offering adequate performance for urban use. The project concludes with the 

construction of a retrofitted electric vehicle that acts as a mobile laboratory. This real-

world testing environment allows us to measure key metrics like range, performance, and 

cost savings, effectively demonstrating the VMU's success in achieving its scope. 
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To be able to understand the functionality of the system, it is important to first define 

the logical architecture, which includes identifying the key components and their 

interactions. The project utilizes a Modular Technical Model (MTM) as a pillar 

throughout various phases. This digital representation of the vehicle serves as a "virtual 

prototype" for simulating overall dynamics in MATLAB/Simulink and for defining the 

control logic using a model-based control design approach. The MTM's versatility 

extends to automatic code generation, facilitating both rapid prototyping and the 

production control unit within the Electric Retrofit Kit (ERK) system. Furthermore, the 

model guides the preliminary sizing of key components like the motor, inverter, and 

battery pack. It additionally integrates with the EVERGRIN project's test bench in both 

kinematic and dynamic modes. This seamless integration between the virtual prototype 

and test bench enables real-time validation and development of the ERK system's control 

logic directly on the VMU control unit. The overall development process, encompassing 

both the ERK system and specifically the VMU control logic, follows an extended V-

cycle (more on that later) incorporating the rapid prototype phase on the test bench. This 

iterative approach ensures an optimized final realization of the actual vehicle. A detailed 

representation of this process is provided in the accompanying figure: 
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Figure 1 - Extended V-cycle of the development process 

 

The extended V-Cycle employs a rigorous multi-stage verification process for the 

developed control logic. This process goes through distinct execution modes, which are 

listed below: 

 

• Model-In-the-Loop (MIL) phase: the control logic is initially developed and 

verified through a dynamic model using various simulations on a high-

performance computer, the Development WorkStation (DWS); 

• Software-In-the-Loop (SIL) & Processor-In-the-Loop (PIL) phases: the generated 

code previously compiled with the DWS is subsequently ported to a system for 

Rapid Control Prototyping (RCP from dSpace), which is a processor that will run 

and test the code in real time but in a simulated environment; 

• Hardware-In-the-Loop (HIL) phase: finally, the code is compiled for the target 

processor and uploaded to the VMU. Functional testing of the VMU occurs on the 

test bench, where it interacts with real physical components of the ERK system 

for comprehensive validation. 
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The following figure depicts the connections and interactions between the various 

modules of the whole vehicle's dynamic model. It also includes the user interfaces and 

the user himself. Additionally, the figure highlights a set of monitors that can be used to 

verify and track the behaviour of the individual modules. These monitors may be partially 

or fully available in the physically realized system. 

 

 

Figure 2 - Connections and interactions between the modules of the vehicle's dynamic model 

 

The MTM is built in MATLAB/Simulink using nested subsystems and reusable 

components (referenced blocks). This approach allows for efficient development and 

separate management of complex sub-models by specialists, like those focusing on 

vehicle dynamics or automatic controls, e.g. the motor model or the battery model. In 

order to fulfil its dual purpose effectively, the vehicle dynamics controller requires a 
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special structure: serving as both a simulation tool and the foundation for generating the 

VMU control unit code; so, the control module comprises two distinct sections: a frame 

encapsulating the input and output interfaces, and the core control logic section. The next 

figure shows the general diagram of the entire control module: 

 

 

Figure 3 - General diagram of the control module 

 

Once the whole logical architecture was defined, the system requirements specification 

phase was then conducted for the vehicle requalified with the ERK. The ISO 29148 

System and Software Engineering requirements standard was used as a reference, with a 

specific focus on a "dynamic state machine" control logic setup. The first step of this 

approach involved identifying the possible states of the system and the transition 

conditions between them; an example proposal is shown in the following figure: 
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Figure 4 - Possible states of the system and the transition conditions between them 

 

Following state and transition identification, the system's behaviour is rigorously 

defined through detailed functional requirements and transition conditions. The model-

based approach demands a meticulously designed and efficient dynamic model for the 

entire system. As mentioned earlier, this is achieved through a modular dynamic model, 

the MTM, built in MATLAB/Simulink. This model leverages nested and referenced 

blocks (subsystems and referenced) for simplified separate management of various 

components, supporting diverse skill sets and use cases. 
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Figure 5 - Simulink scheme of the full modular technical model (MTM) 

 

The vehicle model, referred to as the "plant" in this context, incorporates the following 

dynamics: 

 

• longitudinal motion parameterized using the "coast-down" method; 

• electrical and thermal characteristics of the battery; 

• efficiency maps of the electric motor torque and drive system. 
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Therefore, the model is implemented as a "referenced block" to facilitate separate 

development and validation from the rest of the comprehensive modular technical model. 

The Human-Machine Interface (HMI) serves as the user's gateway to controlling the 

vehicle, comprising functions from parked state to dynamic driving scenarios. During the 

design phase, a virtual control panel facilitated code validation and provided valuable 

insights for shaping the final physical interface. To accurately simulate the vehicle's 

dynamic behaviour under real-world driving conditions, a driver model was incorporated 

to follow a predefined speed reference. Throughout the project, the Simulink/Stateflow 

environment played a crucial role in verifying adherence to all functional and timing 

specifications. This included, for instance, closely monitoring transitions between system 

states. The integration phase ensured seamless collaboration between the newly 

developed control system and the vehicle's pre-existing systems. This involved a series 

of targeted tasks, including: 

 

• Controller Area Network (CAN) sniffing and integration, so monitoring and 

analysing the CAN network to ensure proper communication between the control 

system and other vehicle components; 

• signal tracing, where useful signals were identified and tracked within the vehicle 

to provide the control system with critical data for decision-making; 

• control model integration, which consists of the integration onto the VMU of the 

control model itself, enabling real-time execution and coordination of control 

algorithms. 

 

The initial stage of integration involved identifying the CAN frames used by the Fiat 

Panda II. To achieve this, a Raspberry Pi 3 equipped with an MCP2515 driver served as 

the interface to the car's CAN bus. This cost-effective solution took advantage of the 

affordability of Raspberry Pi compared to other options. The reverse engineering process 

involved connecting the Raspberry Pi with the MCP2515 CAN interface to the car's 

OBD2 port. OBD stands for On-Board Diagnostic and is the standardized system that 

allows an external electronic device to interface with a car's computer system. In this case, 
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the OBD2 connector is located under the dashboard on the driver's side. OBD2 allows 

you to have complete control over engine parameters and monitor other parts of the car 

such as the chassis and accessories. The structure of the OBD2 connector is shown in the 

next diagram: 

 

 

Figure 6 - OBD2 connector with pins description 

 

Following the completion of the configuration phase for the Raspberry Pi, a remote 

connection was established through VNC Viewer software to facilitate the subsequent 

CAN message sniffing process. Three essential software utilities dedicated to CAN 

communication were employed during the sniffing phase: 
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• can_viewer offers real-time visualization of incoming CAN messages; 

• can_logger enables the recording of received messages to a designated file; 

• can_player facilitates the replay of CAN frames stored within a log file. 

 

To verify the operational status of the CAN interface on the Raspberry Pi, the car 

engine was activated, and the can_viewer command was executed to confirm the presence 

of CAN traffic. The baud rate was identified through the examination of standardized 

speeds, with implausible data transmissions being discarded; the determined speed was 

around 50 kbps. The can_viewer script underwent repeated executions, enabling the 

continuous monitoring of messages generated by various car operations, including the 

activation of lights, steering manipulation, and the engagement of high and low beam 

functionalities. To decipher the intent behind these messages and potentially engage in 

ethically responsible car manipulation, numerous message dumps were acquired through 

the utilization of the can_logger script. In conclusion, the can_player command was 

employed to replicate the captured messages, constituting the fundamental component of 

the CAN analysis. Following its development, the MTM model was integrated into the 

vehicle management unit using drivers and the Real-Time Operating System (RTOS). 

This integration was facilitated by the code generation capabilities provided by the 

MathWorks suite, effectively translating the MTM model into executable C code. The 

control software underwent rigorous testing through a two-step process aligned with the 

V-cycle extended for prototyping. This process involved Software-In-the-Loop (SIL) and 

Hardware-In-the-Loop (HIL) testing, both widely adopted in the automotive industry as 

essential phases of the design process. The rigorous methodology employed guaranteed 

a high level of safety and robustness for the algorithm in all usage scenarios. The V-cycles 

compliance with ISO 26262 facilitated the design of the VMU and internal software, 

ensuring an easier homologation process for the entire kit, fulfilling the purpose of the 

project [2]. 
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Chapter 2 

ISO 26262 

Building upon the previous chapter, it is crucial to reiterate the project's reliance on 

model-based techniques throughout its entirety, from definition to development and final 

implementation. This approach, coupled with strict adherence to the latest international 

automotive standards, was essential for the project's success. ISO 26262 is the 

international standard for functional safety that governs Electrical and Electronic (E/E) 

systems in road vehicles (cars, motorcycles, heavy vehicles), implementing safety 

functions. It defines the requirements for the whole lifecycle of the system (ranging from 

the specification, to design, implementation, integration, verification, validation, and final 

production release), achieving a level of safety proportionate to the identified risks, 

ensuring hardware and software components meet the necessary standards. The adoption 

of ISO 26262 empowers Original Equipment Manufacturers (OEMs) and their suppliers 

with compelling advantages: 

 

• enhanced safety assurance, so demonstrate and guarantee the overall safety of 

vehicles and related systems, upholding the stringent standards of the standard; 

• competitive edge, gaining a significant advantage by accurately interpreting 

and implementing the requirements, propelling then your position in the 

marketplace; 
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• reduced risk, minimizing the potential for harm to individuals and mitigating 

product non-acceptance due to safety concerns; 

• cost-effectiveness, preventing costly product recalls and potential reputational 

damage arising from inadequate safety measures; 

• global market accessibility; streamline entry into international markets by 

adhering to the relevant international regulations established by the standard. 

 

The International Organization for Standardization (ISO) collaborates closely with the 

International Electrotechnical Commission (IEC) in developing standards. Building upon 

IEC 61508, the generic functional safety standard for E/E systems, ISO released the initial 

version of ISO 26262 in 2011, specifically addressing functional safety in road vehicles. 

The standard was further revised in 2018 to reflect advancements in automotive 

technology and industry best practices. Originally published as a Draft International 

Standard (DIS) in June 2009, ISO 26262 has gained significant traction within the 

automotive industry. This early availability as a public draft is partly responsible for its 

widespread adoption, as legal professionals could consider it the "state of the art" in 

automotive functional safety. 
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Figure 7 - Dependence of ISO 26262 from IEC 61508 

 

Functional safety refers to the deliberate inclusion of safeguards in embedded systems 

to minimize the risk of harm to users. It's critical to mitigate potential hazards and 

emphasize risk-based implementation, where the level of safety measures scales with the 

potential consequences. While not directly enhancing core functionality, functional safety 

is a necessary investment in ensuring the well-being of end users. To achieve this, the 

standard provides an automotive-specific risk-based approach for determining risk 

classes, called Automotive Safety Integrity Levels (ASILs), from A (the lowest) to D (the 

highest), plus Quality Management (QM). Uses ASILs to specify the item's necessary 

safety requirements for achieving the freedom from unacceptable risk of physical injury 

or of damage to the health of people (harm) either directly or indirectly, through damage 

to property or to the environment [3]. 
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Figure 8 - Automotive Safety Integrity Levels (ASILs) scheme 

 

Assigning an Automotive Safety Integrity Level (ASIL) to a potential source of harm 

(hazard) requires conducting a Hazard Analysis and Risk Assessment (HARA). This 

method identifies and categorizes potential hazards associated with an item (system or 

array of systems or a function to which ISO 26262 is applied), establishes safety goals 

(top-level safety requirement as a result of the HARA), and determines the necessary 

ASILs to prevent or mitigate these hazards and achieve an acceptable level of residual 

risk (combination of the probability of occurrence of harm and the severity of that harm). 

 

It is now possible to direct our focus to the ISO 26262 safety life cycle, which serves 

as a structured framework for the development and maintenance of safety-critical systems 

within the automotive industry. This life cycle prioritizes continuous risk management, 

ensuring the identification, mitigation, and control of potential hazards throughout the 

entire development process. 
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Figure 9 - ISO 26262 safety lifecycle 

 

The initial stage of the standard’s safety lifecycle, as shown in the figure above, 

involves defining the Item Under Test (IUT); this includes its purpose, functionalities, 

and interactions with the surrounding environment and other components. This 

information lays the groundwork for the subsequent HARA, which consists of four key 

parts: 
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• situational analysis: describe operational situations and operating modes in which 

malfunction results in hazardous events; 

• hazard identification and classification: determine hazardous events, using 

appropriate techniques like brainstorming, checklists, quality history, Failure 

Mode and Effect Analysis (FMEA), for relevant combinations of operational 

situations and determine their consequences; 

• ASIL determination: classify each hazardous event based on specific parameters;  

• safety goals determination: definition of a safety goal for each hazardous event 

with ASIL, so not for QM. 

 

Focusing on the third part, for each identified hazard, the ASIL classification is based 

on the three main parameters: 

 

• Severity - estimates the extent of harm that can occur to one or more individuals 

in a potentially hazardous event. The severity is rated from S1 (light injuries) to 

S3 (fatal injuries); 

• Exposure - assesses the likelihood of being in a driving situation that can be 

hazardous when it coincides with the identified hazard or failure mode. The 

exposure is rated from E1 (very low probability) to E4 (high probability); 

• Controllability - evaluates the ability to avoid specific harm through the timely 

reaction of the involved person. The controllability can be rated C1 (simply 

controllable) to C3 (difficult to control). 

 

For a more detailed look at each of the parameters, including their exact levels and 

descriptions, please refer to the following tables: 
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Severity level Title Description 

S1 Light Light and moderate injuries to the driver 

or passengers or people around the vehicle 

S2 Severe Severe and life-threatening injuries to 

the driver or passenger or people around the 

vehicle or in other surrounding vehicles 

S3 Fatal Life-threatening and fatal injuries to the 

driver or passenger or people around the 

vehicle or in other surrounding vehicles 
 

Table 1 – Severity levels 

 

Controllability level Title Description 

C1 Simply controllable 99% or more of all drivers or other traffic 

participants are usually able to avoid harm 

C2 Normally controllable 90% or more of all drivers or other traffic 

participants are usually able to avoid harm 

C3 Difficult to control Less than 90% of all drivers or other 

traffic participants are usually able, or 

barely able, to avoid harm 
 

Table 2 – Controllability levels 
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Exposure level Title Description 

E1 Very low probability Less than 0.1 % of operating time 

E2 Low probability From 0.1% to 1% of operating time 

E3 Medium probability From 1% to 10% of operating time 

E4 High probability 10% or more of operating time 

 
Table 3 – Exposure levels 

 

The combination of the three parameters will lead to determination the of the ASIL 

level for every hazardous event. 

 

 

Figure 10 - ASIL determination 

 

The interplay of severity, exposure, and controllability leads to the QM rating; in this 

case, the system is not safety relevant. However, for safety-relevant hazards (rated ASIL 

A, B, C, or D), a specific safety goal, expressed in functional terms that specify the 

required actions to mitigate the hazard, must be defined. 
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Figure 11 - ASIL overview 

 

After defining safety goals and their criticality through ASIL, the functional safety 

concept phase focuses on deriving the specific functional safety requirements. These 

requirements are then allocated to the preliminary architectural elements of the item or 

external safety measures. The complete functional safety concept addresses: 

 

• fault detection and mitigation: identifying and responding to system malfunctions 

to prevent safety goals from being violated; 

• transitioning to a safe state: ensuring the system reaches a safe condition 

following a fault, minimizing potential harm; 

• fault tolerance mechanisms: making the system resilient to faults (for instance 

with redundancy or diversity), ensuring it can maintain a safe state (with or 

without reduced functionality) despite malfunctions; 

• driver warning: alerting the driver to potential issues (e.g., engine malfunction 

light, ABS warning light) to enable appropriate action and reduce risk exposure. 
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Next, there is the implementation phase that pursues two parallel paths: 

 

• product development at the hardware level - this path focuses on implementing 

the safety requirements in the physical hardware components of the system; 

• product development at the software level - this path focuses on implementing the 

safety requirements in the software code of the system. 

 

For each path, the standard provides specific guidance on: 

 

• required methods and measures, i.e. the data to be collected and the methods to 

be used to demonstrate compliance with the standard and to ensure the 

effectiveness of the security measures implemented; 

• recommended methods and measures, i.e. the appropriate approach to achieve the 

desired safety level. 

 

The complex process of product development at the system level is further structured 

into several subphases, as illustrated in the figure: 
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Figure 12 – Product development at the system level phase 

 

Now, let's delve into some of the key steps in this process, along with the essential 

verifications required for each. 

 

Specification of technical safety requirements 

This stage focuses on refining the functional safety concept into specific technical safety 

requirements. These requirements consider both the functional concept (intended 

behaviour) and the preliminary architectural assumptions (hypotheses about the system 

structure). 
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Verification: following specification, a thorough analysis is conducted to verify that the 

technical safety requirements effectively fulfil the functional safety requirements. This 

ensures alignment and adherence to the intended safety goals. 

 

System design 

This stage aims to develop a system design and a corresponding technical safety concept 

that adhere to the established functional requirements and the technical safety 

requirements specification for the item. 

Verification: following the design phase, a rigorous verification process confirms that the 

final system design and the associated technical safety concept align with the technical 

safety requirements specification. This ensures the system meets the established safety 

goals. 

 

HW/SW interaction 

This crucial phase ensures coordinated interaction between hardware (HW) and software 

(SW) components. It involves defining and specifying: 

 

• relevant operating modes and configuration parameters - this outlines the different 

operational states of hardware devices and their corresponding configuration 

settings; 

• hardware features for independence and partitioning - this focuses on hardware 

capabilities that facilitate the separation of software elements (partitioning) and 

ensure their independent operation; 

• shared and exclusive use of resources - this defines how hardware resources are 

allocated, specifying whether they can be used by multiple software components 

simultaneously or reserved for exclusive use; 

• access mechanisms for hardware devices - these detail the methods used by 

software to interact with hardware devices; 

• timing constraints for safety-critical services - this outlines the time limitations 

imposed on specific services involved in the overall safety concept. 
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Verification: a thorough analysis is conducted to ensure the technical safety requirements 

align with the functional safety requirements. 

 

Integration and testing 

This phase guarantees compliance with all safety requirements and verifies their effective 

implementation through the item's design. The integration process consists of three key 

parts: 

 

• HW/SW level integration - testing the seamless interaction of hardware and 

software within each element of the item; 

• System level integration - testing how the individual elements function together 

to form the complete item; 

• Vehicle level integration - testing how the item interacts with other systems within 

the vehicle and with the entire vehicle itself. 

 

Verification: by carrying out a rigorous validation process during the process, engineers 

gain a high level of confidence that the integrated system meets all established safety 

requirements. This rigorous approach promotes the development of robust and reliable 

automotive systems that prioritise safety as a critical design principle. 
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Chapter 3 

MODEL-BASED DESIGN 

The following chapter focuses on Model-Based Design (MBD), a design method used 

extensively throughout this project. MBD provides a mathematical and visual approach 

to the development of complex control and signal processing systems. It focuses on the 

use of a system model, that reflects all the relevant parts and properties of the system, 

throughout the entire development chain, from initial design, analysis, and simulation to 

automatic code generation, and verification. Model-based design moves the design phase 

from the lab and field to the desktop, resulting in a reduction in costs and time. Instead, 

Model-Based Software Design (MBSD) is a software development process that addresses 

the increasing complexity of software development through abstraction and automation. 

Abstraction is achieved by using appropriate models of a software system, while 

automation systematically transforms these models into executable source code. 

Engineers create a model to specify the behaviour of an embedded system; the model, 

consisting of block diagrams, textual programs, and other graphical elements, is an 

executable specification that allows engineers to run simulations to test ideas and verify 

designs throughout the development process. The benefits are the following: 

 

• improve product quality: testing activities during the design and development 

phase allow to improve the quality of the product; 
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• developing high complexity functions: classical software development is difficult 

to use to design functions with high complexity; 

• costs and time-saving: simulations are performed on a software model and 

transformations are used to obtain final artefacts, like executable code. 

 

Model-driven development helps to develop highly complex functions with viewer 

iterations, resulting in less development effort; in fact, this approach leads to:  

 

• better communication: the graphical nature of the models makes them very useful 

for communicating with other experts. It's also possible to involve people who are 

not familiar with software development thanks to the use of models. This helps to 

include additional know-how in the software development;  

• rapid control prototyping: this step reduces development time by allowing 

corrections to be made early in the product process. This allows errors to be 

corrected and changes to be made while they are still inexpensive;  

• reduce software errors: code can be automatically generated for embedded 

deployment, saving time, and eliminating the risk of manually introducing errors 

into the code. 

 

One of the most popular tools for MBSD is Simulink by MathWorks. It is a software 

integrated with MATLAB for modelling, simulation, and analysis of dynamic systems 

developed by MathWorks. Instead of manually writing thousands of lines of code, 

Embedded Coder provides the ability to automatically generate high-quality C, C++, and 

VHDL code that behaves the same as the model created in Simulink; it extends MATLAB 

CoderTM and Simulink CoderTM with advanced optimizations for precise control over 

the generated functions, files, and data [4]. 

 

Having established the foundation, we can now proceed to a more specific examination 

of the MBSD's application, including both the logical sequence and the practical steps 
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required for its implementation. MBSD offers a structured approach to define system 

functionality; here's a key aspect of this process: 

 

• the system's core functionality is described within a Platform-Independent Model 

(PIM), which utilizes a Domain-Specific Language (DSL), specifically designed 

for the system's domain of operation, capturing the system's essential properties 

in a clear, concise, and unambiguous manner; 

• the PIM then undergoes automatic translation into a Platform-Specific Model 

(PSM) executable by computers. 

 

The V-model, also known as the V-cycle in the automotive industry, is a widely used 

software development methodology known for its rigorous approach to managing the 

entire project lifecycle. It takes its name from the distinct V-shape it forms when the 

development and testing phases are visualised working in tandem. The V-model divides 

the process into two main parts: the left part of the V deals with the requirements analysis, 

and functional/software design, while the right part of the V concentrates on the 

integration, testing and final verification activities. So, the left side of the model can also 

be called the Validation phase, while the right side can be called the Verification phase; 

the two processes are joined by the Coding phase at the base of the V. With this model, 

each step of the lifecycle has a corresponding test plan that helps identify errors early in 

the life cycle, minimise future issues, and verify adherence to project specifications. Thus, 

the V-model lends itself well to proactive defect testing and tracking. However, a 

drawback of the V-model is that it is rigid and offers little flexibility to adjust the scope 

of a project. Not only is it difficult, but it is also expensive to reiterate phases within the 

model [5].  
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Figure 13 - V-model 

 

Verification phase 

The verification phase refers to the practice of evaluating the product development 

process to ensure the team meets the specified requirements. The phase includes several 

steps: business requirement analysis, system analysis, software architecture design, and 

module design: 

 

• in the business requirement analysis step, the team comes to understand the 

product requirements as laid out by the customer;  

• in the system analysis step, the system engineers analyse and interpret the business 

requirements of the proposed system by studying the user requirements document; 

• in the software architecture design stage, the team selects the software architecture 

based on the list of modules, the brief functionality of each module, the interface 
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relationships, dependencies, database tables, architecture diagrams, technology 

details and more. The model testing is developed in this phase; 

• in the module design stage, the development team breaks down the system into 

small modules and specifies the detailed design of each subsystem, called low-

level design.  

 

Coding phase 

The development team selects a suitable programming language based on the design and 

product requirements. There are, of course, guidelines and standards for coding, like the 

MathWorks Advisory Board (MAB) guidelines, and the code will go through many 

reviews to check its performance. 

 

Validation phase 

The validation phase involves dynamic analysis methods and testing to ensure the 

software product meets the customer’s requirements and expectations. This phase 

includes several stages including unit testing, integration testing, system testing and 

acceptance testing: 

 

• during the unit testing stage, the team develops and executes unit test plans to 

identify errors at the code or unit level. This testing happens on the smallest 

entities, such as program modules, to ensure they function correctly when isolated 

from the rest of the code; 

• the integration testing stage involves executing integration test plans developed 

during the architectural design step in order to verify that groups created and tested 

independently can coexist and communicate with each other; 

• the system testing stage involves executing system test plans developed during 

the system design step, which are composed by the client’s business team. System 

testing ensures the team meets the application developer’s expectations; 

• the acceptance testing step is related to the business requirement analysis part of 

the V-model and involves testing the software product in the user environment to 
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identify compatibility issues with the different systems available within the user 

environment. Acceptance testing also identifies non-functional issues like load 

and performance defects in the real user environment. 

 

The V-cycle emphasises the importance of testing and quality assurance throughout 

the entire development process [6]. In particular, the observation of the entire design flow 

makes it possible to distinguish between what is known as In-the-Loop testing. 

 

 

Figure 14 – Design flow diagram 
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Model-In-the-Loop (MIL) testing 

This technique is used to evaluate the functionality of the control algorithm within a 

simulated environment. 

 

 

Figure 15 - Model-In-the-Loop (MIL) testing 

 

Both the plant, i.e. the system to be controlled, and the controller, i.e. the algorithm to 

control the plant, are modelled, so that the model exists entirely in a native simulation 

tool (e.g. Simulink/Stateflow), and multiple simulations are run to refine the model itself 

and/or evaluate design alternatives. 
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Software-In-the-Loop (SIL) testing 

Similar to MIL testing, SIL testing evaluates the functionality of the control software in 

a simulated environment. However, unlike MIL which uses a model of the control 

algorithm, SIL testing uses the actual embedded software code that has been generated. 

 

 

Figure 16 - Software-In-the-Loop (SIL) testing 

 

Part of the model exists in the native simulation tool (e.g. Simulink/Stateflow) and part 

as executable code, typically in C (e.g. S-function). The controller implementation is co-

simulated with the plant model to test its correctness. 
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Processor-In-the-Loop (PIL) testing 

PIL testing is a software development technique based on the concepts of both MIL and 

SIL testing. This step involves deploying the implementation to the target processor, or a 

very similar one, such as an Electronic Control Unit (ECU) for rapid prototyping. 

 

 

Figure 17 - Processor-In-the-Loop (PIL) testing 

 

Part of the model still exists in the native simulation tool (e.g. Simulink/Stateflow) and 

part as executable code (e.g. S-function) running on target or rapid prototyping hardware 

without real-time constraints to fully test and verify the controller implementations in C 

code. 
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Hardware-In-the-Loop (HIL) testing 

HIL testing is the final critical phase in the development process of complex systems 

controlled by embedded software. This step involves integrating the actual physical 

hardware components with an emulated environment representing the system's 

operational environment. The embedded software code, previously validated through SIL 

and PIL testing, is loaded onto the hardware components. 

 

 

Figure 18 - Hardware-In-the-Loop (HIL) testing 

 

Part of the model runs in a real-time simulator and part exists as physical hardware: the 

implementation runs on the target hardware (e.g. the ECU), while a model representing 

the physical system (plant model) runs on separate rapid prototyping hardware. This setup 

allows real-time testing of the interaction between the software and the emulated plant 

environment [7]. 
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Chapter 4 

REQUIREMENTS AND      
STATE MACHINE 

Having clearly and comprehensively outlined the theoretical basis, it is now possible 

to deal with what has been done operationally for this thesis. This work hooks up with 

the EVERGRIN company project, going specifically to re-develop, for academic 

purposes, the initial phases of the same, always following the V-cycle and model-based 

design techniques. The process is divided into the following key stages: 

 

• system requirements drafting: the initial step involves defining the main 

functionalities and requirements of the system; 

• state machine creation: a general state machine is then developed to model the 

system's behaviour under various operational conditions; 

• control law development: the control law, governing the system's behaviour, is 

implemented within the Simulink environment. This allows for simulation and 

analysis of the control strategy; 

• Model-In-the-Loop (MIL) testing: finally, the developed model undergoes 

rigorous testing to validate its functionality and performance. 
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This methodical approach, based on the V-cycle, ensures a structured and well-defined 

development process. The first two phases will be covered in this chapter, while the 

development of the control algorithm and subsequent testing will be analysed in detail in 

the next two chapters. 

 

The system under consideration for which the requirements have been written is a 

battery electric vehicle (BEV). During the initial stage of this project, considerable 

attention was given to gaining a thorough comprehension of the system's behaviour 

throughout its complete operational spectrum.  This entailed a meticulous examination of 

all potential key operating scenarios for the car, encompassing both its inactive and active 

states. For every identified operating condition, a comprehensive analysis was conducted 

to scrutinise the interactions and behaviour of the crucial components involved. This 

extensive investigation provided a clear understanding of how the car functions under 

various circumstances. Furthermore, this phase of the work allowed for the identification 

of potential challenges or limitations that might arise in different situations. All 

requirements have been carefully listed according to the latest industry standards, in 

particular ISO/IEC/IEEE 29148:2018. The standard, titled “Systems and software 

engineering — Life cycle processes — Requirements engineering” is an international 

standard that provides guidelines and best practices for requirements engineering in 

systems and software development. It outlines a structured approach to defining, 

documenting, and verifying a system's requirements throughout the entire development 

lifecycle. As stated in the ISO/IEC/IEEE 29148:2018 document, its scope is: 

 

• specifies the required processes implemented in the engineering activities that 

result in requirements for systems and software products (including services) 

throughout the life cycle; 

• provides guidelines for applying the requirements and requirements-related 

processes described in ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 12207; 
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• specifies the required information items produced through the implementation 

of the requirements processes; 

• specifies the required contents of the required information items; 

• provides guidelines for the format of the required and related information items 

[8]. 

 

According to the V-cycle, the first step in software modelling is indeed to specify the 

system requirements, i.e. statements which translate or express a need and its associated 

constraints and conditions. This phase serves as a crucial foundation for the entire 

software development process. It outlines the functional and non-functional requirements 

of the system, capturing the needs and expectations of the stakeholders, i.e. individuals 

or organizations having a right, share, claim or interest in the system or in its possession 

of characteristics that meet their needs and expectations. The requirements specification 

typically includes a detailed description of the software's purpose, its intended users, and 

the specific features and functionalities it should possess. It also defines any constraints 

or limitations that need to be considered during the development process. Writing a 

comprehensive business requirements specification is essential for ensuring that the 

software development team and the stakeholders are aligned in their understanding of the 

project. It helps to establish clear communication and provides a reference point for 

evaluating the success of the final product. Once the requirements specification is 

complete, the software modelling process can proceed to the next stage, which involves 

transforming these requirements into a more technical and detailed design. This design 

phase lays the groundwork for the subsequent steps in the V-cycle, such as 

implementation, testing, and deployment. 

 

First, it is essential to have a thorough understanding of how the requirements are 

formulated under the established standard. This involves comprehending the key 

principles and guidelines that govern the construction of these requirements. By doing so, 

one can ensure that the resulting requirements are aligned with the standard's 
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specifications and objectives. According to the standard document, well-formed 

stakeholder requirements, system requirements and system element requirements shall be 

developed. This practice contributes to requirements validation with the stakeholders and 

helps ensure that the requirements accurately capture stakeholder needs. A well-formed 

specified requirement contains one or more of the following: 

 

• it shall be met or possessed by a system to solve a problem, achieve an objective 

or address a stakeholder concern; 

• it is qualified by measurable conditions; 

• it is bounded by constraints; 

• it defines the performance of the system when used by a specific stakeholder or 

the corresponding capability of the system, but not a capability of the user, 

operator or other stakeholder; and it can be verified (e.g., the realization of the 

requirement in the system can be demonstrated. 

 

A requirement is a statement that translates or expresses a need and its associated 

constraints and conditions. A requirement can be written in the form of a natural language 

or some other form of language. If expressed in the form of a natural language, the 

statement should include a subject and a verb, together with other elements necessary to 

adequately express the information content of the requirement. A requirement shall state 

the subject of the requirement (e.g., the system, the software, etc.), what shall be done 

(e.g., operate at a power level, provide a field for) or a constraint on the system. 

Condition-action tables and use cases are other means of capturing requirements. It is 

important to agree in advance on the specific keywords and terms that signal the presence 

of a requirement. A common approach is to stipulate the following. 

 

• Requirements are mandatory binding provisions and use 'shall'. 
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• Non-requirements, such as descriptive text, use verbs such as are', 'is', and 'was'. 

It is best to avoid using the term 'must, due to potential misinterpretation as a 

requirement. 

• Statements of fact, futurity, or a declaration of purpose are non-mandatory, non-

binding provisions and use 'will'. 'Will' can also be used to establish context or 

limitations of use. 

• Preferences or goals are desired, non-mandatory, non-binding provisions and use 

'should'. They are not requirements. 

• Suggestions or allowances are non-mandatory, non-binding provisions and use 

'may'. 

• Use positive statements and avoid negative requirements such as 'shall not'. 

• Use active voice: avoid using passive voice, such as 'it is required that'. 

• Avoid using terms such as 'shall be able to'. 

 

All terms specific to requirements engineering should be formally defined and applied 

consistently throughout all requirements of the system. 

 

 

Figure 19 - Examples of functional requirements syntax 
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Conditions are measurable qualitative or quantitative attributes that are stipulated for 

a requirement. They further qualify a requirement that is needed and provide attributes 

that permit a requirement to be formulated and stated in a manner that can be validated 

and verified. Conditions may limit the options open to a designer. It is important to 

transform the stakeholder needs into stakeholder requirements without imposing 

unnecessary bounds on the solution space. Constraints restrict the design solution or 

implementation of the systems engineering process. Constraints may apply across all 

requirements, may be specified in relationship to a specific requirement or set of 

requirements, or may be identified as stand-alone requirements (i.e., not bounding any 

specific requirement). 

 

Requirements may be ranked or weighted to indicate priority, timing or relative 

importance. Requirements in scenario form depict the system's action from a user's 

perspective. Each stakeholder, system and system element requirement shall possess the 

following characteristics. 

 

• Necessary. The requirement defines an essential capability, characteristic, 

constraint and/or quality factor. If it is not included in the set of requirements, a 

deficiency in capability or characteristic will exist, which cannot be fulfilled by 

implementing other requirements. The requirement is currently applicable and has 

not been made obsolete by the passage of time. Requirements with planned 

expiration dates or applicability dates are clearly identified. 

• Appropriate. The specific intent and amount of detail of the requirement is 

appropriate to the level of the entity to which it refers level of abstraction 

appropriate to the level of entity). This includes avoiding unnecessary constraints 

on the architecture or design while allowing implementation independence to the 

extent possible. 

• Unambiguous. The requirement is stated in such a way so that it can be interpreted 

in only one way. The requirement is stated simply and is easy to understand. 
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• Complete. The requirement sufficiently describes the necessary capability, 

characteristic, constraint or quality factor to meet the entity need without needing 

other information to understand the requirement. 

• Singular. The requirement states a single capability, characteristic, constraint or 

quality factor. 

• Feasible. The requirement can be realized within system constraints (e.g., cost, 

schedule, technical with acceptable risk. 

• Verifiable. The requirement is structured and worded such that its realization can 

be proven (verified) to the customer's satisfaction at the level the requirements 

exist. Verifiability is enhanced when the requirement is measurable. 

• Correct. The requirement is an accurate representation of the entity need from 

which it was transformed. 

• Conforming. The individual items conform to an approved standard template and 

style for writing requirements, when applicable. 

 

In addition, there are also requirement language criteria. When writing textual 

requirements, implementing the following considerations will result in well-formed 

requirements employing the characteristics above. Requirements should state 'what' is 

needed, not 'how'. Requirements should state what is needed for the system-of-interest 

and not include design decisions for it. However, as requirements are allocated and 

decomposed through the levels of the system, there can be recognition of design 

decisions/solution architectures defined at a higher level. This is part of the iterative and 

recursive application of the requirements, architecture and design processes. Vague and 

general terms shall be avoided. They result in requirements that are often difficult or even 

impossible to verify or may allow for multiple interpretations. The following are types of 

unbounded or ambiguous terms: 

 

• superlatives (such as 'best', 'most'); 

• subjective language (such as 'user friendly', 'easy to use', 'cost effective"); 
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• vague pronouns (such as 'it', 'this', 'that'); 

• ambiguous terms such as adverbs and adjectives (such as 'almost always', 

'significant', 'minimal') and ambiguous logical statements (such as 'or', 'and/or'); 

• open-ended, non-verifiable terms (such as 'provide support', 'but not limited to', 

'as a minimum'); 

• comparative phrases (such as 'better than', 'higher quality'); 

• loopholes (such as 'if possible', 'as appropriate', 'as applicable'); terms that imply 

totality (such as 'all', 'always', 'never', and 'every'); 

• incomplete references (not specifying the reference with its date and version 

number; not specifying just the applicable parts of the reference to restrict 

verification work) [8]. 

 

Once the objectives, aims, and writing methods have been outlined, it is time to delve 

into the practical aspect of drafting the general requirements for the system in question, 

i.e. a Battery Electric Vehicle (BEV). At this stage, it is important to specify the critical 

features and capabilities that the BEV should have in order to meet the desired objectives. 

To begin with, it is central to define the functional requirements of the BEV. This includes 

determining the major characteristics and functions, as well as the essential components 

and subsystems that make up the vehicle. In addition, factors such as the driver's control 

input and charging conditions should be considered to ensure optimal usability and 

comfort for the user. Next, attention should be given to the safety and security aspects of 

the BEV; this involves establishing the necessary features, such as electronic braking 

systems and security cameras or battery protection systems respectively. By clearly 

defining these general requirements, the foundation for the development of a battery 

electric vehicle can be laid, ensuring that the final product is consistent with the stated 

goals and specifications. Below are the tables listing all the requirements that have been 

defined, strictly following the writing methods dictated by ISO/IEC/IEEE 29148:2018 

during their drafting. 
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For the inactive status and general requirements of the vehicle: 

 

Figure 20 – Off state requirements 

 

For the charging phase and related failures: 

 

Figure 21 – Charging state requirements 

 

For the start-up process and related failures: 

 

Figure 22 – Start-up state requirements 
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For the traction mode and related failures: 

 

Figure 23 – Traction state requirements 

 

Once all the vehicle requirements have been defined, the next stage involves 

structuring the creation of a finite state machine. This machine plays a crucial role in 

describing the macro conditions in which the BEV is involved; it acts as a powerful tool 

that captures and represents the various states and transitions that the system under study 

can go through during its operation. By utilizing a finite state machine, engineers can 

effectively model the different operating scenarios of the vehicle. This includes situations 

such as starting the vehicle, accelerating, decelerating, and charging. Each of these 

scenarios can be represented as a state (represented with circles) with transitions 

(represented with arrows) indicating how the vehicle moves from one state to another. 

The creation of the machine requires careful consideration of the BEV's capabilities, 

limitations, and desired functionalities. Once the finite state machine is created, it 

becomes a valuable tool for analysing and simulating the BEV's behaviour in the primary 

different scenarios. It allows engineers to identify potential issues, optimise performance, 

and validate the vehicle's design before physical implementation. The systematic 

approach employed in developing the state machine for this thesis involved several key 
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steps. Firstly, a thorough analysis of the system requirements was conducted to identify 

the necessary macro-states and their corresponding transitions. This analysis helped in 

defining the overall structure and general layout. Once the initial diagram was created, 

successive iterations were carried out to refine and enhance the model. Furthermore, as 

the model was progressively updated, extended, and improved, additional features and 

functionalities were incorporated. This iterative process allowed for a comprehensive and 

robust state machine to be developed, capable of accurately representing the desired 

system behaviour. Throughout the development process, careful attention was given to 

ensure that the diagram adhered to established design principles and best practices. This 

approach not only facilitated the creation of a reliable and efficient model but also enabled 

easy comprehension and maintenance of the state machine by future developers. Overall, 

the approach employed in developing the state machine for this thesis ensured a well-

structured and effective representation of the system's behaviour, providing a solid 

foundation for further analysis and implementation. The first version of the vehicle state 

machine provided below already includes the pivotal macro-states and their 

corresponding basic transitions. 
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Figure 24 – Version 1 of the vehicle state machine 
 

The cardinal states shown in this diagram are described below:  

 

• OFF - the initial state, where the vehicle is powered off, not in use, and parked; 

• START UP - the state where the vehicle is initializing systems and preparing for 

driving. This state might include activating headlights or the infotainment system 

as desired by the user; 

• TRACTION - the state when the vehicle is fully operational and ready to drive 

(idle, forward, or backward); 

• CHARGE - the state when the vehicle is plugged in and undergoing the battery 

charging process; 
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• FAULT - this general state is accessible from any other state (except for the 

inactive OFF state) when the system detects a malfunction. A warning is sent to 

the driver, and some functions, even critical ones, may be disabled. 

 

This initial state machine diagram provides valuable insights into the system it 

represents. By identifying the key transitions between states, it is possible to visualise the 

sequential order of execution and the accessibility of each state from others. This 

information is fundamental for comprehending the system's overall flow and logic. 

Furthermore, the diagram facilitates a deeper understanding of the system's behaviour. 

Analysis can reveal how different states interact and how the system transitions between 

them. This visual representation serves as a powerful tool for grasping the system's 

structure and functionality, potentially enabling the identification of issues or areas for 

improvement. The diagram has been improved with the next iteration: 

 

 

Figure 25 – Version 2 of the vehicle state machine 
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In this second version, several notable improvements and optimisations have been 

implemented. Firstly, the modelling of the vehicle's sequential gearbox sub-states has 

been added to the TRACTION macro-state. This enhancement allows for a more detailed 

representation of the vehicle's gearbox functionality, providing a more accurate 

simulation. Additionally, sub-states related to the battery charging process have been 

incorporated into the CHARGING macro-state. This inclusion enables a more 

comprehensive depiction of the various stages involved in the battery charging procedure, 

enhancing the overall realism of the simulation. Furthermore, specific FAULT states have 

been introduced, depending on the type of fault that occurs and the macro-state in which 

it happens. This addition allows for a more nuanced representation of potential faults, 

enabling the simulation to accurately reflect real-world scenarios and their corresponding 

consequences. Lastly, related transitions and sub-transitions have been included in this 

version, resulting in a more comprehensive and detailed simulation by capturing the 

various interactions and processes that occur within the system. Overall, these 

improvements and optimisations present in the second version enhance the accuracy, 

realism, and depth of the simulation, providing a more robust and comprehensive 

representation of the vehicle's functionality and behaviour. 

 

The definitive version of the state machine has been finalized after the third and final 

iteration. This version will be used to translate the system into the Simulink platform for 

the upcoming implementation phase: 
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Figure 26 - Version 3 of the vehicle state machine 
 

The changes made to this diagram have greatly improved its functionality and clarity. 

Firstly, the TRACTION state has been enhanced by incorporating several sub-transitions. 

This addition allows for a more comprehensive and realistic representation of the model, 

providing a detailed description of each state within the TRACTION sub-state. Moreover, 

transitions have been introduced between the macro-states and their corresponding 

FAULT states. This modification enables the diagram to illustrate the process of returning 

to the state before the occurrence of a fault, or directly to the off state, once the issue has 

been resolved. This feature augments the diagram's ability to depict the fault management 

process accurately. To improve the overall understanding and management of the 

diagram, labels have been added to each state and transition. These labels serve as 

markers, making it easier to identify and track the different states and transitions within 

the diagram. This improvement facilitates efficient management and interpretation of the 

diagram's different parts. Overall, these implemented changes have significantly 
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optimised the diagram's level of detail, realism, fault management capabilities, and global 

usability. With the definition and development of the state machine complete, and the 

system design complete, the next step was to translate everything into the Simulink 

environment using the V-cycle methodology. The upcoming chapter will provide 

comprehensive details about the implementation process, providing a deeper 

understanding of how the state machine was integrated into the Simulink environment. It 

will also highlight the specific steps taken and any challenges encountered along the way. 
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Chapter 5 

SOFTWARE 
IMPLEMENTATION 

Once the requirements have been established and the design of the system in question 

has been outlined, the next phase in the MBD approach is to demonstrate the relevant 

software implementation. This involves translating the system design into a software 

model that can be simulated in real time, showing the key aspects of the vehicle and 

demonstrating the goodness of the previous steps. To achieve this, MBSD techniques 

utilise various software tools and frameworks that then facilitate the generation of code 

directly from the system model. Simulink, developed by MathWorks, is a widely used 

tool in the field of system modelling and simulation. It offers a user-friendly visual 

interface that allows developers to define the behaviour of a system using various 

graphical notations, including block diagrams and state machines. With Simulink, 

engineers can easily design, simulate, and analyse complex systems, making it an ideal 

choice for this thesis. The tool provides a comprehensive library of pre-built blocks and 

components, enabling developers to quickly assemble and connect different elements to 

create a functional system model. Additionally, Simulink supports various mathematical 

operations and algorithms, making it suitable for a wide range of applications, from 

control systems to signal processing. Its intuitive interface and powerful simulation 
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capabilities make Simulink a valuable tool for researchers and engineers alike. Once the 

system model is complete, it is also possible to automatically generate the corresponding 

code, which can later be compiled and deployed on the specific target hardware. This 

code generation process ensures that the software implementation accurately reflects the 

design specifications, reducing the chances of errors or inconsistencies. In addition, the 

MBSD procedure encourages a highly iterative and collaborative development process. 

As the software implementation progresses, developers can continuously validate and 

verify the behaviour of the system against the established requirements through multiple 

simulations of the model itself. This iterative approach allows early detection and 

resolution of any design flaws or functional issues, leading to a more robust and reliable 

end product. Overall, the use of MBSD techniques streamlines the software development 

process by providing a systematic and efficient approach to translating system designs 

into working software implementations. The first step for software implementation was 

to transpose the completed design directly into the Simulink environment using the 

integrated Stateflow tool to configure the various states and transitions within the state 

machine; this process allowed for the precise definition of the system's behaviour and 

logic. In Simulink, the Stateflow tool provided a visual representation of the state 

machine, making it easier to understand and modify. Engineers could easily add, remove, 

or modify states and transitions, ensuring that the system accurately reflected the desired 

functionality. Additionally, the Stateflow tool offered a range of powerful features to 

enhance the state machine's functionality. For example, engineers could incorporate 

conditions and actions within each state and transition, enabling the system to respond to 

specific events or inputs. This flexibility grants the creation of complex and dynamic state 

machines that could adapt to evolving conditions. Furthermore, the Simulink environment 

provided a comprehensive set of simulation and analysis tools. Engineers could simulate, 

in real time or not, the state machine's behaviour under different scenarios, ensuring that 

it operated as intended. They could also perform various analyses, such as checking for 

deadlocks or excessive transitions, to validate the correctness of the state machine. 

Therefore, the integration of the state machine into the Simulink environment using the 

Stateflow extension tool facilitated the development and analysis of complex systems, 



58 

providing engineers with a powerful toolset to design and validate their designs. The 

Stateflow implementation of the system state machine is shown below: 

 

 

Figure 27 - Stateflow state machine chart 

 

The chart offers valuable insights into the system's behaviour, and a closer examination 

reveals several key considerations. 

 

Macro-states and system representation 

The diagram utilizes rectangles of varying sizes to represent macro-states, which capture 

the broad operational modes of the system. These macro-states encapsulate the system's 

behaviour at a high level, allowing for a clear understanding of its overall functioning. 

 

Variables declaration and initialization 

For each defined state, all relevant quantities (parameters, variables) are meticulously 

defined and initialized. This ensures that the state machine has a well-defined starting 

point for each operational scenario. Notably, for each component within the system, a 

dedicated boolean variable is declared. This variable acts as a flag, indicating whether the 

corresponding subsystem is active or inactive in a particular state based on the system 
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requirements. By incorporating these subsystem activity flags, the state machine 

explicitly models the behaviour of each component within different operational modes. 

 

Transitions and model clarity 

Transitions between states are represented by directional arrows. These arrows depict the 

flow of the system as it progresses from one state to another based on specific conditions. 

In the case of complex transition paths, the diagram adheres to MathWorks Advisory 

Board (MAB) guidelines. This means that right-angled arrows and junctions are used to 

maintain clarity and avoid cluttered lines, especially when multiple transitions originate 

or terminate at a single state. 

 

Dynamic data management and state changes 

As previously mentioned, variables play a crucial role in the state machine's functionality. 

These defined variables provide a dynamic mechanism for storing and managing 

parameters specific to each state. This allows the system to adjust its actions based on 

changing values within the state. Transitions, on the other hand, define 

the conditions under which the state machine changes states. They are typically triggered 

by events (external signals or internal events) and rely on boolean expressions involving 

variable values. If both the triggering event occurs and the condition evaluates to true, the 

transition fires and the state machine moves to the designated target state. 

 

State tracking and hierarchy 

The state machine incorporates two additional variables, state and subState; these 

variables serve as a tracking mechanism, helping to maintain a clear record of the current 

state and any potential sub-states within a macro-state. This becomes particularly 

important when dealing with hierarchical state machines, where states can further 

decompose into a series of smaller, more detailed sub-states. For example, in this model, 

both the TRACTION and CHARGING macro-states encapsulate additional internal 

states representing sub-operations within these modes. The subState variable would be 
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crucial for tracking the system's behaviour within these further refined operational 

categories. 

 

Overall, the state machine diagram effectively combines clear visual representation 

with well-defined state variables and transitions. This comprehensive approach provides 

a robust and well-structured model for understanding the system's functionality and 

interactions among its various components. 

 

Having a complete view of the model structure, excluding the transient fault states, 

serves as a valuable base for a detailed examination of the main operating states of the 

system.  Fault states, while relevant for safety and robustness, represent exceptional 

circumstances triggered by failures. By focusing on the primary operating cases within 

the baseline system behaviour, a more granular analysis is possible. 
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Figure 28 – OFF state 

 

The OFF state plays a crucial role in system initialization.  When the simulation is run, 

the system automatically enters the OFF state as the default state. This state ensures that 

all the necessary components, from the electronic brake to the powertrain and 

transmission, are properly settled and ready for operation. Furthermore, the figure 

provides a comprehensive overview of the system's initial configuration; it shows not 

only the parameters that have been declared and initialised, but also, like all the other 

states, the two variables state and subState, which are essential for monitoring and 

controlling the current state of the system during operation. 
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Figure 29 – START UP state 

 

The START UP state is an important condition that allows the vehicle to prepare itself 

for the next phase of driving. To enter this state, the vehicle must be in the correct gear 

(P) and the user needs to press the START/STOP button. Once these conditions are met, 

the vehicle undergoes a series of changes in the values of its boolean parameters. During 

the START UP state, most of the vehicle's components are activated, ensuring that 

everything is ready for a smooth driving experience. This includes systems such as the 

powertrain, transmission, and various safety features. The vehicle's onboard computer 

checks for any faults or malfunctions before proceeding to the next phase. If any faults or 

malfunctions are detected during the start-up process, the vehicle shall not proceed to the 

next driving phase but shall enter the corresponding fault condition, START UP FAULT 
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state, until the problems have been resolved, if possible. This is an important safety 

measure to ensure that the vehicle operates optimally and minimizes the risk of any 

potential problems on the road. 

 

 

Figure 30 – TRACTION state 
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Figure 31 - Insight into the TRACTION state 

 

The TRACTION state is the third non-fault state, and it is a critical one in the system. 

It encompasses additional sub-states that enhance the accuracy and representation of the 

sequential shift process. Within the TRACTION state, it is possible to observe the 

dynamic evolution of all the parameters involved. This allows for a seamless transition 

from one gear to another, based on the gear selected by the user while driving. 

Furthermore, two new variables, motorTorque and brakingTorque, come into play: they 

fluctuate in response to the driver's acceleration and braking, directly influencing the car's 

cruising speed. An interesting aspect of the TRACTION state is the inclusion of a history 

junction in the Stateflow chart. This feature enables the system to keep track of previous 

sub-states and their corresponding transitions, providing valuable context for the current 

state of the system. 
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Figure 32 - CHARGING state 

 

 

Figure 33 - Insight into the CHARGING state 

 

The last condition examined is the CHARGING condition. This mode is only 

accessible from the OFF state, i.e. when the vehicle is stationary and parked, and the 

driver plugs the car. It's important to note that the charging system is designed to protect 

the battery and other components. Various protections are in place to ensure safe and 

efficient charging. These protections include monitoring the battery's charge level and 

temperature, as well as controlling the charging current and voltage. When in the charging 

scenario, all the components of the charging system, along with their associated 
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protections, are activated. This means that the variables related to these components are 

set to 1, indicating their active state. Charging will cease if the user disconnects the 

vehicle from the power supply or when the battery reaches its maximum charge capacity, 

as indicated by the sub-states present. This ensures that the battery is not overcharged, 

which could potentially damage it. 

 

Finally, as mentioned above, in the event of a malfunction, the system immediately 

switches to the relevant fault state. Apart from the OFF state, which doesn't have a 

corresponding fault state, there are a total of three fault conditions in the state machine:  

START UP FAULT, TRACTION FAULT, and CHARGING FAULT. Each of these 

states serves a specific purpose in identifying and addressing the issues within the system. 

When the system enters one of these fault states, it ensures that the user is promptly alerted 

through audible or visual warnings displayed on the dashboard. These warnings serve to 

inform the driver about the specific fault that has occurred. Additionally, the system may 

partially reduce the vehicle's functionality to prevent any further damage or risks. While 

in the compromised state, the vehicle remains in the fault state until the current problems 

are resolved. Once the issues have been addressed and the nominal state has been restored, 

it is possible to return to the state prior to the fault or to switch the vehicle directly to the 

OFF state, based on the drivers' desires or needs. 
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Chapter 6 

SIMULATION AND TESTING 

This chapter focuses on the simulation aspect of the high-level vehicle model that has 

been generated. The primary objective is to provide a detailed description of the 

simulation framework, the tests performed, and the subsequent analysis of the data 

obtained. By delving into the simulation process, a comprehensive understanding of how 

the vehicle model behaves in the different scenarios and conditions will be provided. The 

tests carried out will cover a wide range of factors according to the requirements provided, 

allowing a thorough evaluation of the model's capabilities. Analysis of the data collected 

will provide valuable insights enabling engineers to make informed decisions and 

improvements. To delve deeper into the simulation, it is essential to provide a complete 

overview of the developments made in the Simulink environment. Initially, the Stateflow 

state machine was encapsulated within a subsystem. This encapsulation allowed for 

seamless integration and interaction with other systems and quantities within the 

Simulink framework. By encapsulating the state machine, it became possible to establish 

connections and facilitate communication between the state machine and various 

components in the Simulink environment. This integration of the Stateflow state machine 

as a subsystem within Simulink provided a structured and modular approach to the 

simulation. It enabled the state machine to interact with other blocks, such as sensors, 

actuators, and controllers, thereby creating a cohesive and interconnected simulation 
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model. By encapsulating the state machine within a subsystem, it became easier to 

manage and control the simulation's behaviour. The subsystem acted as a container for 

the state machine, allowing for efficient organisation and simplifying the overall 

simulation design. Moreover, this encapsulation facilitated the reuse of the state machine 

in different simulation scenarios; it could be easily replicated and integrated into other 

Simulink models, promoting code reusability and reducing development time. In 

summary, this integration enhanced the simulation's modularity, facilitated 

communication between different components, and allowed for the efficient management 

of the simulation's behaviour. 

 

The implementation of the system in the Simulink environment for this thesis aims to 

achieve a significant objective: the creation of an interactive and real-time simulation. 

This simulation will be designed to allow users to manage and make modifications to it 

while it is running, all through a custom-made dashboard. This feature will provide users 

with a seamless and dynamic experience, enabling them to monitor and control the 

simulation in real time, making adjustments as needed. The custom dashboard will serve 

as a central hub, providing a user-friendly interface for easy navigation and efficient 

management of the simulation. This interactive and real-time capability will enhance the 

overall effectiveness and flexibility of the system, allowing for better analysis, testing, 

and experimentation. In the next image is shown the overview of the entire Simulink 

project: 
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Figure 34 - Overview of the Simulink project 

 

As can be seen, the complexity of the simulation is evident due to its numerous 

components. One of the key aspects is the management of input and output signals, which 

are essential for the Statflow state machine. To accomplish this, Simulink Goto and From 

blocks are employed. These blocks effectively handle the required and generated signals, 

resulting in a simulation interface that is more streamlined and organised. By eliminating 

the need for lengthy and convoluted connections between input/output variables and the 

relevant blocks, this approach aligns with modern development practices and adheres to 

the reference guidelines. Turning to the dashboard is made up of several panels, each of 

which encapsulates several functions related to each other or to the same state. Starting 

on the right side, there is the MAIN CONTROL panel. 
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Figure 35 - MAIN CONTROL panel 

 

As the name suggests, the MAIN CONTROL panel serves as a critical user interface 

element within the real-time simulation. This panel replicates the physical controls found 

in a real vehicle, enabling users to interact with the simulated system and perform driving 

manoeuvres. A meticulous examination of these Simulink blocks reveals their 

functionalities and significance in the context of the overall simulation. 

 

START/STOP button 

The top right corner of the control panel houses the START/STOP button block. This 

block emulates the physical push-button switch commonly found in modern vehicles. Its 
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primary function lies in initiating the simulated vehicle's operation. When activated by 

the user, the START/STOP button block transmits a digital signal that triggers the 

transition from the default OFF state to a non-faulty operational state, excluding the 

charging state. This action effectively serves as the catalyst for the simulated vehicle to 

become operational and ready for further user interaction. 

 

Motor torque knob 

Located counterclockwise from the START/STOP button lies the motor torque knob 

block. This block functions as the central element in simulating the driver's interaction 

with the accelerator pedal. By turning this knob from a scale of 0 to 100 (Newton-metres), 

the user transmits to the system the signal representing the desired engine torque. In 

essence, this simulated action dictates the amount of power the system needs to generate 

for forward or backward motion. Positive torque values correspond to forward 

propulsion, while negative values correspond to backward propulsion (the electric 

machine rotates in the opposite sense). This simulation element therefore plays a vital 

role in providing realistic control of the vehicle's speed and direction. 

 

Braking torque knob 

Directly to the right of the motor torque knob is the brake torque knob block. This block 

acts as a virtual representation of the physical brake pedal. Similar to its counterpart, the 

application of braking force by the driver is simulated by rotating this knob on a scale 

from 0 to 100 (Newton metres). The corresponding signal transmitted by the block 

informs the system of the desired braking torque, ultimately leading to a simulated 

deceleration of the vehicle. Notably, the simulation offers the potential for future 

integration of regenerative braking, a technology enabled by Battery Electric Vehicles 

(BEVs). This innovative feature harnesses the vehicle's kinetic energy during braking: 

when the driver applies the brakes, the electric motor essentially acts as a generator, 

converting the kinetic energy back into electrical energy. This recovered energy is then 

stored in the vehicle's battery, increasing the overall efficiency of the BEV. This inclusion 

of a realistic braking mechanism adds another layer of fidelity to the simulation. 
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Gear radio Button 

Completing the control panel interface is the gear radio button block. This element 

mimics the physical gear selector found in traditional vehicles. By selecting the 

appropriate option on this virtual gear selector, the user transmits a digital signal to the 

simulated engine control electronics. This signal instructs the system on the desired 

direction of travel, forward or reverse. This crucial element empowers the user to control 

the vehicle's direction within the simulated environment, adding another layer of realism 

and enabling manoeuvring capabilities. 

 

The second panel, located immediately below the MAIN CONTROL panel, is the 

BATTERY CONTROL panel, used to manage the charging state. 

 

 

Figure 36 - BATTERY CONTROL panel 
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Similar to the previous panel, the BATTERY CONTROL panel comprises distinct 

Simulink blocks, each fulfilling a specific function in simulating the vehicle's charging 

process. 

 

Plug state slider switch 

The plug-state slider switch block plays an essential role in mimicking user interaction 

with the vehicle's charging system. This block functions as a digital two-position switch, 

replicating the act of plugging or unplugging the vehicle from a charging station. When 

activated by the user, the slider switch transmits a corresponding digital signal to the 

simulated system. This signal triggers the activation or deactivation of the charging 

function, allowing for realistic control over the vehicle's connection to the external power 

source. 

 

Battery percentage slider 

The battery percentage slider block serves as a valuable tool for researchers to manipulate 

the battery's state of charge during the simulation. This user-controlled slider allows for 

the adjustment of a continuous signal representing the battery's percentage charge. By 

modifying this value, developers can explore the system's performance and behaviour 

under a variety of battery charge levels. 

 

Battery LED 

The battery LED block functions as a visual indicator of the battery's state of charge. This 

block emulates a light-emitting diode (LED) in the dashboard of the vehicle that changes 

colour based on the received digital signal representing the battery percentage. The colour 

coding scheme employed within the simulation adheres to a widely recognised 

convention: 

 

• red light means a critical battery level, corresponding to a charge level of 20% or 

less. This visual cue alerts the user to the urgent need for charging the vehicle; 
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• yellow light indicates a medium battery level, ranging from 20% to 80%. This 

indicates a condition where the vehicle still has a moderate amount of charge 

available, without concern for the driver; 

• green light denotes a fully charged or almost charged battery, exceeding 80% 

charge level. This visual indication informs the user that the vehicle has sufficient 

range for operation. 

 

The inclusion of the battery percentage slider combined with the status LED enhances 

the user experience within the Simulink environment by providing an intuitive and easy-

to-interpret visual representation of the battery's state of charge. 

 

The right-hand side of the dashboard is completed by the FAULT CONTROL panel. 

 

 

Figure 37 - FAULT CONTROL panel 
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The simulation incorporates a dedicated FAULT CONTROL panel, serving as a vital 

tool to investigate the system's behaviour under various fault conditions. This panel 

comprises distinct elements that facilitate the controlled introduction of faults and provide 

visual feedback on their occurrence. Here's a detailed exploration of these elements: 

 

Fault toggle switches 

The Fault Control Panel features three prominent toggle switches, each designed to 

correspond to a specific potential fault scenario. These switches, acting as digital two-

position switches, empower the simulation user with the ability to activate fault injection. 

When a user toggles a switch to the "on" position, the corresponding fault signal is 

injected into the state machine. This simulated fault triggers the state machine to transition 

from a nominal operational state to the designated fault state associated with the activated 

switch. For instance, activating the "Start up fault" switch would cause the state machine 

to simulate a starting system malfunction. 

 

Fault lamps 

Accompanying each toggle switch is a dedicated fault indicator lamp. These lamps 

function as crucial visual aids, providing immediate feedback on the current fault state 

within the simulation. Upon activation of a specific fault through the corresponding 

toggle switch, the associated lamp illuminates, signifying the presence of the simulated 

fault. Importantly, the system employs a distinctive design for the traction fault lamp. 

This lamp takes the form of a red hazard triangle, visually emphasising the critical nature 

of traction failures, that typically occur while the vehicle is moving, pose the greatest 

safety risk and require immediate attention. 

 

By combining the functionality of toggle switches and fault indicator lamps, the 

FAULT CONTROL panel grants users the ability to meticulously introduce and monitor 

simulated faults within the system. This capability facilitates a rigorous evaluation of the 

system's response to various fault conditions, aiding in the development of robust fault 

detection and isolation mechanisms for real-world vehicle operation. 
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Upon careful examination of the panels responsible for user interaction and fault 

injection, our focus now turns to the right-hand side of the Simulink project. This section 

houses three panels dedicated to the management and visualization of data within the 

simulation. The functionality and importance of these panels are here explained. 

 

Starting at the bottom is the OUTPUT CONTROL panel. 

 

 

Figure 38 - OUTPUT CONTROL panel 
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The OUTPUT CONTROL panel is the primary means of visualising and 

understanding system behaviour within the Simulink environment. This panel plays a 

pivotal role in providing a clear and centralised view of all outputs generated by the 

system during the simulation run. This centralised display provides a quick and easy 

overview of the system throughout the simulation, enabling researchers to analyse system 

behaviour and gain valuable insight into system performance. Users can also easily 

observe the evolution of key variables associated with individual system components. By 

including all relevant outputs in a single location, the panel eliminates the need to navigate 

through different sections of the simulation model, improving the user experience and 

streamlining data analysis. The OUTPUT CONTROL panel takes a multi-faceted 

approach to data presentation, accommodating different user preferences and facilitating 

a more intuitive understanding of the state of the system. Here's a breakdown of the 

visualisation blocks used: 

 

Status LEDs 

These LEDs are directly associated with all boolean variables within the system. Their 

illuminated state provides a clear and immediate visual indication of the current value 

(active or inactive) associated with each variable. This rapid visual update enhances the 

user's ability to monitor the system's dynamic behaviour. 

 

Dedicated displays 

Specific displays are integrated into the panel to show key system parameters. These 

displays include: 

 

• active status and sub-status: these two displays use numbers to show the current 

operating state and sub-state of the system. This visualisation provides a concise 

understanding of the overall and granular operating mode of the system; 

• current gear: a dedicated display, graphically distinct from the others, shows the 

currently selected gear. This visualisation provides a clear and easy to interpret 

indication of the vehicle's transmission status. 
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Half gauges 

The panel incorporates two half gauges to visually represent the magnitude of both the 

engine torque and the braking torque generated by the vehicle. These gauges provide a 

continuous and intuitive representation of the system's power output and braking force 

respectively. In particular, the gauges use a colour-coded scale to highlight critical values. 

The scale changes from white to yellow and red as the torque approaches its limit, 

providing a visual warning of potential operating limits and allowing proactive action to 

be taken if necessary. 

 

This combination of visual elements within the OUTPUT CONTROL panel provides 

a comprehensive and user-friendly interface for examining system output. Multimodal 

data presentation allows for a more efficient and refined understanding of system 

behaviour during simulation runs. 

 

Completing the dashboard of the Simulink environment are two panels dedicated to 

the detailed management of the variables used by the overall project. These panels, named 

the INPUT panel and the OUTPUT panel, serve as the interface for configuring the data 

flow within the simulation. What follows is an in-depth look at their characteristics and 

significance: 
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Figure 39 - INPUT and OUTPUT panels 

 

The INPUT panel acts as the central hub for collecting and managing all the input 

variables used by the state machine and, by extension, the entire project. This panel 

contains the complete set of input variables, each accompanied by its corresponding tag 

block and, in some cases, function blocks, providing better organisation and enabling 

specific actions to be taken. 
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Figure 40 - INPUT panel insight 

 

Constant and Goto blocks 

The panel contains Goto blocks, which are essential for identifying and organising each 

input variable stored in the Constant block. A Goto block in Simulink is a signal routing 

tool that allows you to jump between different parts of your model without using physical 

connections; in fact, it works in conjunction with another block called From: the Goto 

block passes its input directly to the corresponding From blocks, providing a simpler and 

cleaner interface. This clear labelling and signal routing facilitates efficient navigation 

within the simulation model and optimises the process of understanding the data flow. 
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Function block 

Beyond simple data entry, certain input variables may require additional processing or 

manipulation before being used by the state machine. The input panel contains a function 

block to deal with these cases. These blocks allow the implementation of mathematical 

operations, logical expressions, or other computations on the input variables, tailoring 

their behaviour to meet specific system requirements. In this scenario, a function is used 

to correctly model the behaviour of the battery LED. 

 

In addition, the INPUT panel is further divided into sub-panels to improve organisation 

and facilitate user interaction. These sub-panels are categorised based on the system 

elements or processes they affect and are as follows: 

 

• CONTROL INPUT: this sub-panel includes input variables related to user control 

inputs, such as driver commands from the MAIN CONTROL panel; 

• BATTERY INPUT: this sub-panel contains input variables related to the battery 

model, such as the initial state of charge and the status of the battery LED; 

• TORQUE INPUT: this sub-panel contains input variables related to torque 

generation, such as desired motor torque and braking torque commands; 

• FAULT INPUT: This sub-panel manages input variables related to fault injection 

scenarios, allowing researchers to introduce specific faults into the simulation. 

 

Using a structured approach with sub-panels and clear labelling, the INPUT Panel 

promotes a well-organised and user-friendly environment for configuring system inputs. 
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Figure 41 - OUTPUT panel insight 

 

The OUTPUT panel serves as the central interface for managing all output variables 

generated by the system during simulation. These output variables are essential as they 

represent the system's dynamic response to various inputs and user control commands. 

Unlike input variables, which are defined prior to simulation execution, output variables 

change dynamically during the simulation run. Within this panel, you will find two main 

types of blocks: 
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From blocks 

This block acts like a receiver, waiting for a signal with a specific Goto tag. When it 

receives a matching tag from a Goto block, it captures the input signal and outputs it. The 

data type of the output is the same as the input of the Goto block. As mentioned before, 

the From and Goto blocks allow you to pass a signal from one block to another without 

actually connecting them. 

 

To Workspace block 

This block in Simulink acts as a data exporter, capturing data connected to its input port 

and storing it in the MATLAB workspace. During simulation, the logged data flows into 

the Simulation Data Inspector. When the simulation pauses or stops, the logged data is 

written to the workspace. This allows the data to be analysed, visualised, or further 

processed after the simulation run. 

 

Examining both the INPUT and OUTPUT panels provides a full understanding of the 

data management structure within the Simulink environment. This structure facilitates the 

configuration of system inputs and the visualisation of system outputs. 

 

After a meticulous examination of the complex model structure and associated 

dashboard, a decisive stage in the project is reached. This is where the groundwork is laid 

for the initiation of simulations and the subsequent execution of rigorous testing. This 

phase is critical to the overall development process. The constructed model and its 

interactive dashboard provide a robust platform for systematically validating the system 

requirements established for this project. By running a series of well-defined simulation 

scenarios, engineers can assess how the modelled system behaves under various 

conditions and user interactions. This rigorous testing process allows a detailed 

comparison between the expected system behaviour, as outlined in the requirements, and 

the actual performance observed in the simulation environment. Any deviations from the 

expected behaviour can be easily identified and addressed, ensuring that the final system 

meets its intended functionality. 
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The first step is to identify all the necessary tests that need to be performed to verify 

one or more requirements at a time. This is an extremely important part of the process as 

it helps to ensure that all requirements are tested and satisfied before moving on to the 

next stage of the V-cycle. A comprehensive test suite has been carefully planned, 

comprising a total of 12 verification and validation tests. These tests target specific project 

requirements and ensure thorough coverage of critical system functionality. Each 

Verification and Validation (V&V) test is performed completely within the Simulink 

environment. This approach is twofold: 

 

• real-time interaction: the user interacts with the dashboard controls during 

simulation runs allowing dynamic adjustment of simulation parameters and 

facilitating exploration of the different operational scenarios. By manipulating 

quantities and parameters of interest within the model, it is possible to evaluate 

the response of the system under different conditions and check the requirements; 

• data acquisition and analysis: after each simulation run, all simulation output is 

meticulously stored. This comprehensive data collection serves as the basis for 

subsequent analysis. Specialised MATLAB scripts (see appendix) are then used 

to retrieve and plot the relevant data and variables under investigation. This data 

visualisation allows a rigorous examination of the system under test conditions. 

 

The successful execution of the simulation, coupled with the correct collection of data 

sets and analysis process, provides a solid platform for validating the identified project 

requirements. By comparing the observed system behaviour within the simulation with 

the expectations outlined in the requirements, any discrepancies can be easily spotted. In 

addition, the ability to repeat the simulation as many times as required increases the 

overall reliability of the V&V process. For a faster and more efficient start of the 

simulations, all variables are pre-allocated and some of them are already initialised within 

a MATLAB script inserted into the model as an initialisation function (InitFcn), i.e. a 

type of callback that is executed or evaluated at the beginning of model compilation. 
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The first is the only static test where the simulation is simply started and the model is 

set to OFF by default, allowing requirements related to this state to be verified without 

any user intervention on the dashboard. TEST 1 deals with the checking of C1 to C10 

requirements: 

 

 

Figure 42 - Test 1_1 results 
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Figure 43 - Test 1_2 results 

 

 

Figure 44 - Test 1_3 results 
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From the second test onwards, specific user actions on the control panels are required 

during the execution of the simulation to fully and correctly verify the requirements under 

consideration. TEST 2 deals with the checking of C11 to C20 requirements. These 

conditions are related to the CHARGING state of the machine, so the tests are designed 

as follows: starting from the default OFF state, the plug is connected (through the specific 

command on the dashboard), allowing the proper transition of the state machine to the 

CHARGING state; when there, the outputs are collected and analysed for their 

conformity with the requirements. 

 

 

Figure 45 - Test 2_1 results 
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Figure 46 - Test 2_2 results 

 

 

Figure 47 - Test 2_3 results 
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Figure 48 - Test 2_4 results 

 

TEST 3 deals with the checking of the C21 requirement. This indicates the end of the 

charging process when the vehicle is plugged and has reached 100% battery charge: 
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Figure 49 - Test 3 results 

 

TEST 4 deals with the checking of C22 and C23 requirements. The fault injection 

technique is used to verify these requirements. When the machine reaches the desired 

state (in this case, the CHARGING state), a fault is simulated, acting on the appropriate 

toggle, to verify the correctness of the system's response to it and the next phase after its 

resolution: 
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Figure 50 – Test 4 results 

 

TEST 5 deals with the checking of C24 to C30 requirements. This set of requirements 

deals with the state immediately before the driving phase. During the simulation, always 

starting with the vehicle switched off, the vehicle reaches this state by pressing the 

START/STOP button, after which it is verified that all components involved in the start-

up sequence proceed to their correct activation. 
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Figure 51 – Test 5_1 results 

 

 

Figure 52 - Test 5_2 results 
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Figure 53 - Test 5_3 results 

 

TEST 6 deals with the checking of C31 and C32 requirements. Similar to TEST 4, 

there is another fault injection, this time affecting the START UP state. When the system 

detects the fault, it immediately enters the START UP FAULT state; when the problem 

is fixed, the system returns to the state it was in when the problem occurred. 
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Figure 54 - Test 6 results 

 

TEST 7 deals with the checking of C33 to C41 requirements. Verification of this set 

of requirements allows evaluation of the correct activation and deactivation of specific 

system components when entering the TRACTION state. To reach this state, it is 

necessary to first enter the START state and then press the START/STOP button one 

more time. 
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Figure 55 - Test 7_1 results 

 

 

Figure 56 - Test 7_2 results 
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Figure 57 - Test 7_3 results 

 

 

Figure 58 - Test 7_4 results 
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TEST 8 deals with the verification of requirements C42 and C43. In particular, it deals 

with the behaviour of the vehicle when the D gear is engaged. Note that the motor torque 

is positive, reflecting the fact that the vehicle is moving forward. 

 

 

Figure 59 - Test 8 results 

 

TEST 9 deals with the verification of requirements C44 and C45, checking the 

vehicle's behaviour when R gear is engaged. Note that the motor torque is negative, 

reflecting the fact that the vehicle is moving backward. 
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Figure 60 - Test 9 results 

 

TEST 10 deals with the checking of the C46 requirement, checking the vehicle's 

behaviour when N gear is engaged. According to project requirement C46, engaging the 

neutral gear signifies a disengaged powertrain state. This condition is correctly indicated 

by zero motor torque values during the entire simulation. 
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Figure 61 - Test 10 results 

 

TEST 11 deals with the checking of C47 and C48 requirements, checking the vehicle's 

behaviour when P gear is engaged. To meet these requirements, it is necessary to check 

that the powertrain is disconnected and that it is possible to shut down the car by pressing 

the START/STOP button when the vehicle is in driving mode, but the parking gear is 

engaged. 
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Figure 62 - Test 11 results 

 

TEST 12 deals with the checking of C49 and C50 requirements. As seen in TESTs 4 

and 6, the fault injection technique is used here to verify that the system reaches the 

TRACTION FAULT state and how it reacts after the fault has been resolved. 
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Figure 63 - Test 12 results 

 

Extensive data analysis, facilitated by the extracted simulation results and visualised 

data sets, has played a critical role in demonstrating the model's compliance with all the 

50 established requirements. This data serves as concrete evidence and provides a clear 

and objective assessment of the system response. Through this rigorous V&V process, 

developers gain a high degree of confidence that the simulated system will operate as 

expected. Successful validation of project requirements provides compelling evidence 

that the system design is consistent with its intended functionality. In summary, this V&V 

process, carefully executed within the Simulink environment, serves as a critical gateway 

to project success. By systematically evaluating the behaviour of the system against the 

established requirements, it is possible to ensure that the designed model is well-

positioned for subsequent real-world implementation and fulfils the overall project 

objectives.  
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Conclusion 

In conclusion, this thesis has presented a powerful demonstration of the effectiveness 

of Model-Based Software Design (MBSD) techniques within the development of the 

EVERGRIN project's Vehicle Management Unit (VMU). By focusing on the left side of 

the V-cycle development process, this research specifically explored the benefits of 

Model-In-the-Loop (MIL) testing within the system design phase. Leveraging the 

Simulink environment, combined with the Stateflow tool, the development process 

benefited significantly from the ability to create a system model that could be controlled 

in an interactive, real-time simulation via a custom dashboard. 

 

This approach facilitated a robust trial-and-error process, allowing multiple 

considerations and optimisations from the initial generation of system states to the final 

stages of software testing. In fact, the iterative nature of the MBSD approach, starting 

with the definition of system requirements in accordance with current international 

standards, through the creation of the state machine, to the consequent translation by 

software, promoted an effective and dynamic environment for verification and 

refinement. This not only ensured the intended functionality and behaviour of the system 

under study but also allowed for continuous improvement, maximising its efficiency and 

adaptability. 

 

The focus of this research has been on software development, and the natural 

progression from this point would involve the generation of code and its subsequent 

progressive integration with hardware. This procedure would indeed follow the 
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established V-cycle development model, specifically dealing with the lower and right 

sides of the cycle. After successful Verification and Validation (V&V) of the embedded 

code, the project will be ready to move forward with combined hardware and software 

during the integration phase, once again proving the power of the MBSD method. 

 

Ultimately, the research conducted in this thesis has served a valuable academic 

purpose by revisiting and analysing the initial development stages for the EVERGRIN 

project through the V-cycle. Although the company project itself is already in the final 

prototyping phase, this review through an academic lens has offered significant insights 

into the potential of MBSD methodology for designing, developing, and enhancing 

complex automotive systems. The software provided will serve as a valuable reference 

point for future efforts to develop viable and adaptable electric vehicles, ultimately 

contributing to a more sustainable and efficient automotive future.  
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Appendix 

Appendix 1 – MATLAB code for TEST 1 

 

close all 
clear 
clc 

 
load("test1.mat") 

 
state = out.state; 
eBrake = out.eBrake; 
powertrain = out.powertrain; 
steeringWheel = out.steeringWheel; 

 
figure('Name','TEST 1_1','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), ylim([1 3]), yticks(1:3) 

 
subplot(4,1,2), plot(eBrake,LineWidth=2), title('ELECTRONIC BRAKE') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,3), plot(powertrain,LineWidth=2), title('POWERTRAIN') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(steeringWheel,LineWidth=2), title('STEERING 
WHEELS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
pedals = out.pedals; 
chargeSys = out.chargeSys; 
headlights = out.headlights; 
infotainment = out.infotainment; 
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figure('Name','TEST 1_2','NumberTitle','off') 

subplot(4,1,1), plot(pedals,LineWidth=2), title('PEDALS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,2), plot(chargeSys,LineWidth=2), title('CHARGING 
SYSTEM') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
 
subplot(4,1,3), plot(headlights,LineWidth=2), title('HEADLIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(infotainment,LineWidth=2), 
title('INFOTAINMENT') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
serviceLights = out.serviceLights; 
securityCam = out.securityCam; 
batProtection = out.batProtection; 
 
figure('Name','TEST 1_3','NumberTitle','off') 

 
subplot(3,1,1), plot(serviceLights,LineWidth=2), title('SERVICE 
LIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,2), plot(securityCam,LineWidth=2), title('SECURITY 
CAMERAS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(batProtection,LineWidth=2), title('BATTERY 
PROTECTION') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
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Appendix 2 – MATLAB code for TEST 2 

 

close all 
clear 
clc 

 
load("test2.mat") 

 
state = out.state; 
subState = out.subState; 
plug = out.plug; 
chargeSys = out.chargeSys; 

 
figure('Name','TEST 2_1','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel('') 

 
subplot(4,1,3), plot(plug,LineWidth=2), title('PLUG') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(chargeSys,LineWidth=2), title('CHARGING 
SYSTEM') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
powertrain = out.powertrain; 
steeringWheel = out.steeringWheel; 
pedals = out.pedals; 

 
figure('Name','TEST 2_2','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 
 
subplot(4,1,2), plot(powertrain,LineWidth=2), title('POWERTRAIN') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,3), plot(steeringWheel,LineWidth=2), title('STEERING 
WHEELS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
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subplot(4,1,4), plot(pedals,LineWidth=2), title('PEDALS') 

grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
headlights = out.headlights; 
infotainment = out.infotainment; 
serviceLights = out.serviceLights; 

 
figure('Name','TEST 2_3','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(headlights,LineWidth=2), title('HEADLIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
 
subplot(4,1,3), plot(infotainment,LineWidth=2), 
title('INFOTAINMENT') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(serviceLights,LineWidth=2), title('SERVICE 
LIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
securityCam = out.securityCam; 
batProtection = out.batProtection; 

 
figure('Name','TEST 2_4','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(3,1,2), plot(securityCam,LineWidth=2), title('SECURITY 
CAMERAS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(batProtection,LineWidth=2), title('BATTERY 
PROTECTION') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

  



108 

Appendix 3 – MATLAB code for TEST 3 

 

close all 
clear 
clc 

 
load("test3.mat") 

 
state = out.state; 
subState = out.subState; 
batState = out.batState; 

 
figure('Name','TEST 3','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(3,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel('') 

 
subplot(3,1,3), plot(batState,LineWidth=2), title('BATTERY 
PERCENTAGE') 
grid on, ylabel(''), ylim([0 100]), yticks(0:20:100) 
yticklabels({'0%','20%','40%','60%','80%','100%'}) 
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Appendix 4 – MATLAB code for TEST 4 

 

close all 
clear 
clc 

 
load("test4.mat") 

 
state = out.state; 
plug = out.plug; 
cFault = out.cFault; 

 
figure('Name','TEST 4','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), ylim([1 7]), yticks(1:7) 

 
subplot(3,1,2), plot(plug,LineWidth=2), title('PLUG') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(cFault,LineWidth=2), title('CHARGING FAULT') 
grid on, xlim([0 10]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 
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Appendix 5 – MATLAB code for TEST 5 

 

close all 
clear 
clc 

 
load("test5.mat") 

 
state = out.state; 
pushButton = out.pushButton; 
powertrain = out.powertrain; 
headlights = out.headlights; 
 
figure('Name','TEST 5_1','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), yticks(1:2) 

 
subplot(4,1,2), plot(pushButton,LineWidth=2), title('BUTTON') 
grid on, xlim([0 10]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 

 
subplot(4,1,3), plot(powertrain,LineWidth=2), title('POWERTRAIN') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(headlights,LineWidth=2), title('HEADLIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
infotainment = out.infotainment; 
serviceLights = out.serviceLights; 

 
figure('Name','TEST 5_2','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), yticks(1:2) 

 
subplot(3,1,2), plot(infotainment,LineWidth=2), 
title('INFOTAINMENT') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(serviceLights,LineWidth=2), title('SERVICE 
LIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
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chargeSys = out.chargeSys; 
securityCam = out.securityCam; 

 
figure('Name','TEST 5_3','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), yticks(1:2) 

 
subplot(3,1,2), plot(chargeSys,LineWidth=2), title('CHARGING 
SYSTEM') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(securityCam,LineWidth=2), title('SECURITY 
CAMERAS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
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Appendix 6 – MATLAB code for TEST 6 

 

close all 
clear 
clc 
 
load("test6.mat") 

 
state = out.state; 
pushButton = out.pushButton; 
suFault = out.suFault; 

 
figure('Name','TEST 6','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), ylim([1 5]), yticks(1:5) 

 
subplot(3,1,2), plot(pushButton,LineWidth=2), title('BUTTON') 
grid on, xlim([0 10]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(suFault,LineWidth=2), title('START UP FAULT') 
grid on, xlim([0 10]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 
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Appendix 7 – MATLAB code for TEST 7 

 

close all 
clear 
clc 

 
load("test7.mat") 

 
state = out.state; 
subState = out.subState; 
pushButton = out.pushButton; 
eBrake = out.eBrake; 

 
figure('Name','TEST 7_1','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel(''), ylim([0 4]), yticks(0:4) 

 
subplot(4,1,3), plot(pushButton,LineWidth=2), title('BUTTON') 
grid on, xlim([0 10]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(eBrake,LineWidth=2), title('ELECTRONIC BRAKE') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
headlights = out.headlights; 
infotainment = out.infotainment; 
serviceLights = out.serviceLights; 

 
figure('Name','TEST 7_2','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(headlights,LineWidth=2), title('HEADLIGHTS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,3), plot(infotainment,LineWidth=2), 
title('INFOTAINMENT') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(4,1,4), plot(serviceLights,LineWidth=2), title('SERVICE 
LIGHTS') 
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grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
powertrain = out.powertrain; 
steeringWheel = out.steeringWheel; 
 
figure('Name','TEST 7_3','NumberTitle','off') 
 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 
 
subplot(3,1,2), plot(powertrain,LineWidth=2), title('POWERTRAIN') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(steeringWheel,LineWidth=2), title('STEERING 
WHEELS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
%% 
state = out.state; 
pedals = out.pedals; 
chargeSys = out.chargeSys; 

 
figure('Name','TEST 7_4','NumberTitle','off') 

 
subplot(3,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(3,1,2), plot(pedals,LineWidth=2), title('PEDALS') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 

 
subplot(3,1,3), plot(chargeSys,LineWidth=2), title('CHARGING 
SYSTEM') 
grid on, ylabel(''), ylim([0 1]), yticks(0:1), 
yticklabels({'OFF','ON'}) 
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Appendix 8 – MATLAB code for TEST 8 

 

close all 
clear 
clc 

 
load("test8.mat") 
 
state = out.state; 
subState = out.subState; 
gear = out.gear; 
motorTorque = out.motorTorque; 

 
figure('Name','TEST 8','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel(''), ylim([0 4]), yticks(0:4) 

 
subplot(4,1,3), plot(gear,LineWidth=2), title('GEAR') 
grid on, ylabel(''), ylim([1 4]), yticklabels({'P','N','R','D'}) 

 
subplot(4,1,4), plot(motorTorque,LineWidth=2), title('MOTOR TORQUE') 
grid on, ylabel('(Newton-meters)'), ylim([0 100]), yticks(0:25:100) 
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Appendix 9 – MATLAB code for TEST 9 

 

close all 
clear 
clc 
 
load("test9.mat") 

 
state = out.state; 
subState = out.subState; 
gear = out.gear; 
motorTorque = out.motorTorque; 

 
figure('Name','TEST 9','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel(''), ylim([0 4]), yticks(0:4) 

 
subplot(4,1,3), plot(gear,LineWidth=2), title('GEAR') 
grid on, ylabel(''), ylim([1 4]), yticklabels({'P','N','R','D'}) 

 
subplot(4,1,4), plot(motorTorque,LineWidth=2), title('MOTOR TORQUE') 
grid on, ylabel('(Newton-meters)'), ylim([-100 0]), yticks(-
100:25:0) 
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Appendix 10 – MATLAB code for TEST 10 

 

close all 
clear 
clc 

 
load("test10.mat") 

 
state = out.state; 
subState = out.subState; 
gear = out.gear; 
motorTorque = out.motorTorque; 

 
figure('Name','TEST 10','NumberTitle','off') 
 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel(''), ylim([0 4]), yticks(0:4) 

 
subplot(4,1,3), plot(gear,LineWidth=2), title('GEAR') 
grid on, ylabel(''), ylim([1 4]), yticklabels({'P','N','R','D'}) 

 
subplot(4,1,4), plot(motorTorque,LineWidth=2), title('MOTOR TORQUE') 
grid on, ylabel('(Newton-meters)'), ylim([0 100]), yticks(0:50:100) 
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Appendix 11 – MATLAB code for TEST 11 

 

close all 
clear 
clc 

 
load("test11.mat") 

 
state = out.state; 
pushButton = out.pushButton; 
gear = out.gear; 
motorTorque = out.motorTorque; 

 
figure('Name','TEST 11','NumberTitle','off') 

 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel('') 

 
subplot(4,1,2), plot(pushButton,LineWidth=2), title('BUTTON') 
grid on, xlim([0 15]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 

 
subplot(4,1,3), plot(gear,LineWidth=2), title('GEAR') 
grid on, ylabel(''), ylim([1 4]), yticklabels({'P','N','R','D'}) 

 
subplot(4,1,4), plot(motorTorque,LineWidth=2), title('MOTOR TORQUE') 
grid on, ylabel('(Newton-meters)'), ylim([0 100]), yticks(0:50:100) 
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Appendix 12 – MATLAB code for TEST 12 

 

close all 
clear 
clc 

 
load("test12.mat") 

 
state = out.state; 
subState = out.subState; 
tFault = out.tFault; 
gear = out.gear; 
 
figure('Name','TEST 12','NumberTitle','off') 
 
subplot(4,1,1), plot(state,LineWidth=2), title('STATE') 
grid on, ylabel(''), ylim([1 6]), yticks(1:6) 
 
subplot(4,1,2), plot(subState,LineWidth=2), title('SUBSTATE') 
grid on, ylabel(''), ylim([0 4]), yticks(0:4) 
 
subplot(4,1,3), plot(gear,LineWidth=2), title('GEAR') 
grid on, ylabel(''), ylim([1 4]), yticklabels({'P','N','R','D'}) 

 
subplot(4,1,4), plot(tFault,LineWidth=2), title('TRACTION FAULT') 
grid on, xlim([0 15]) 
ylabel(''), ylim([0 1]), yticks(0:1), yticklabels({'OFF','ON'}) 
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