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Summary

This thesis project delves into the analysis of contemporary connected vehicle plat-
forms, focusing on the benefits and challenges associated with these advanced solu-
tions and emphasising aspects of safety and flexibility. A key trend in the current
automotive sector is the prospect of transforming the car from a hardware-focused
product to a software-driven device. The technology of choice for leading software
development and production companies driving this change is the Software Defined
Vehicle (SDV).

The primary objective of the thesis is to apply this paradigm to the develop-
ment of a simulator for a vehicle control unit responsible for collecting telemetric
data from the vehicle. The implementation of the simulator involves an in-depth
analysis of the drawbacks of the automotive software production industry and the
advantages of the Software Defined Vehicle solution. The simulator implementation
also includes the creation of a scaled-down version of a connected vehicle platform,
storage infrastructure and example application.

Using the Amazon Web Services (AWS), an environment in the cloud is es-
tablished for the development of the necessary software for the operation of the
vehicle control unit. Development of the vehicle control unit simulator is carried
out, including client connectivity to interact with the cloud platform, telemetry
generation, logic for remote operations, and optional applications. The final phase
involves testing the simulator on compatible hardware to validate its functionality
and performance.

The successful completion of this project in collaboration with Storm Reply, not
only highlights the potential of the software-defined vehicle paradigm as a leading
force in the future of the automotive sector, but also explores the economic, safety
and security benefits associated with its adoption, paving the way for significant
progress in the field and ensuring an advanced and safe end-user experience.
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Chapter 1

Introduction

”We really designed the Model S to be a very sophisticated computer on wheels.
We view this the same as updating your phone or your laptop. Tesla is a software
company as much as it is a hardware company. A huge part of what Tesla is, is a

Silicon Valley software company.” - Elon Musk [14]

With these words, Elon Musk, the visionary entrepreneur behind many of the
most innovative companies in today’s business landscape and co-founder of one of
the most, progressive automotive companies of our time, Tesla, highlighted how
the automotive industry is changing dramatically over time, transforming today’s
cars and vehicles from objects where the fundamental part consists of mechanical
components to ones where the main focus lies in the simplicity of hardware and the
innovation of software.

This shift in paradigm, which is now a reality in the automotive industry, re-
quires significant effort, especially from a security perspective. While a cyber vul-
nerability in a traditional device like a laptop or smartphone may result in data
loss, vulnerabilities in a vehicle’s computer system, where software is a fundamental
element, can have tragic and even life-threatening consequences. For this reason,
addressing security from the design stage is one of the primary objective of this
paper.

To understand and address the Software Defined Vehicle (SDV), the latest form
of software integration in the automotive industry, it is important to examine the
industry’s dynamics and software production processes. This introduction provides
an overview of the automotive context in which the project is located. It then
details the role of the project partner company, a leader in software consulting and
development and a partner of major automotive companies. Finally, in conclusion
of this chapter, the thesis’s key objectives and the practical project that will support
this work are described, providing an overview of the entire thesis project and a
description of the practical validation demo that was executed on a physical device
using the various elements of the built project itself.
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1.1 Automotive Context

The automotive industry has stood out for decades as a continuously growing sec-
tor, playing a significant role both as an employer for millions of people and as
an investor in the research and development of cutting-edge technologies in many
fields, including mechanics, materials, and software. Thanks to the presence of the
largest automotive companies across Europe, there is a great deal of knowledge
in this sector, which represents one of the most crucial areas for the European
Union’s economy. As can be seen from the table below 1.1, the production of total
vehicles worldwide has been continuously growing, with the exception of two peri-
ods: following the financial crisis of 2007-2008 and following the pandemic of 2020,
both events having a very strong impact on the entire global economy and which
have had effects on many sectors. In any case, it can be noted that automotive
production has resumed strong growth in the last two years.

Table 1.1. World automobile production in million vehicles [11]

Year Production (millions) Change

2007 73 266 061 + 05.80 %
2008 70 520 493 - 03.70 %
2009 61 791 868 - 12.40 %
2010 77 857 705 + 26.00 %
2011 79 989 155 + 03.10 %
2012 84 141 209 + 05.30 %
2013 87 300 115 + 03.70 %
2014 89 747 430 + 02.60 %
2015 90 086 346 + 00.40 %
2016 94 976 569 + 04.50 %
2017 97 302 534 + 02.36 %
2018 95 634 593 - 01.71 %
2019 91 786 861 - 05.20 %
2020 77 621 582 - 16.00 %
2021 80 145 988 + 03.25 %
2022 85 016 728 + 06.08 %
2023 93 546 599 + 10,03 %

In the ever-expanding landscape of the automotive industry, a new frontier has
been added in recent years, that is the software development, which first arrived
in the luxury car markets as optional and marginally relevant systems in the ve-
hicle, and then spread to all types of vehicles. Today, the current challenges for
automotive companies extend far beyond the traditional areas of mechanical or
material engineering to reach a total and fundamental involvement in the study
and innovation of software and hardware components for vehicle construction.

A look at the intricate network of different components in today’s cars, as shown
in Figure 1.1, reveals that a vehicle is actually composed of a mosaic of dozens of
different systems, which in turn are composed of dozens of processors that interact
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with each other at different levels. For these reasons, today’s cars have have earned
the moniker of ’Computers on Wheels’.

Figure 1.1. An incomplete overview of computers in a modern car [1]

This paradigm shift has been driven in part by the introduction of autonomous
driving. To ensure maximum safety, a car must be equipped with dozens of sensors
that can constantly collect data about what is happening to the vehicle and its
surroundings. The number of these telemetry devices, which are nothing more
than specialized Internet of Things (IoT) devices for the automotive world, also
known as Telematic Control Unit (TCU), is expected to grow as autonomous driving
technologies advance. In addition to data collection, another key issue is the data
analysis of information collected from the devices. Modern vehicles are caught
between low-power systems for maximum vehicle efficiency and high-performance
systems for analyzing the collected data and making excellent decisions in a short
time.

However, the proliferation of processors within vehicles, orchestrating commu-
nication to manage diverse components, presents a formidable challenge; each com-
ponent often integrates a processor with unique logics, diverging from the logics
embedded in processors of other components. Complicating matters further, these
components are frequently supplied by companies with proprietary management
logics, not readily accessible to the automotive companies themselves.

In addressing this intricate scenario, the transformative concept of a SDV comes
to the forefront. Defined as ”any vehicle that manages its operations, adds func-
tionality, and enables new features primarily or entirely through software” [15], the
notion of SDV, with all the associated technologies, offers a comprehensive solu-
tion to the challenges posed by the intricate interplay of software and hardware in
modern vehicles.
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One of the main benefits of this innovation in the automotive industry is the
ability to have easily manageable systems. In the past, due to their high level of
specialization for performance and low power consumption, automotive computer
systems were developed and tested directly on the devices themselves, often in a
manual way. This resulted in a large consumption of resources and a waste of
time. Today, the goal is to have cloud infrastructures that ensure a more agile
development and testing process due to the presence of general-purpose systems in
the vehicle.

Consequently, the use of SDV aims to completely separate software and hard-
ware, allowing the production of high-level software on entirely generalized hard-
ware systems. This results in significant savings in terms of time and money for
hardware production, along with providing an advantage in terms of security due
to the simplification of software.

Another very important aspect of SDV, which will be analyzed in the follow-
ing chapters, is that since a SDV is by definition characterized by the ability to
dynamically and flexibly update software, this solution offers significant security
advantages in several aspects:

1. Human Safety Critical Security: From the moment that a vehicle can be
classified as safety critical (as it is reported in the standard International Or-
ganization for Standardization (ISO) 26262-1:2018 of the ISO society where
is said that ”safety is one of the key issues in the development of road vehi-
cles” [16]), the elimination of software vulnerabilities related to the vehicle’s
systems is crucial for the overall safety of the vehicle itself.

2. Intrinsic Software Security: This approach allows for the prevention and
resolution of vulnerabilities unknown at the time of software design, contribut-
ing to ensuring a high standard of security. For example, as demonstrated by
National Institute of Standards and Technology (NIST) in the research on the
Analysis Of The Impact Of Software Complexity [17], the increase in software
complexity in different cases results in less analyzable programs. In some in-
stances, the same vulnerability analysis tool may detect vulnerabilities, while
in others, analyzing the same code, it may not.

Effectively navigating the development of SDV technology necessitates a collab-
orative approach across diverse companies, particularly in the realms of hardware
and cloud computing. For this reason, many software, hardware, and automotive
companies are involved in the development of this innovation, which aims to become
a standard in vehicle production for the entire automotive industry.

In order to carry out the research and analysis of the new technologies described
above, as well as to get involved in the practical side of things, it was essential to find
a company that had both the Information Technology (IT) skills needed to interface
with cloud technologies and experience in the world of automotive manufacturing
and software production. The partner company with which the practical design and
implementation of the working explanatory example was carried out is introduced
below.
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1.2 Partner Company

Leveraging extensive experience in the cloud industry and fostering deep-rooted re-
lationships within the automotive sector, Storm Reply stands out as the ideal choice
to lead the project discussed in this thesis. A key player in the Reply group, Storm
Reply specializes in designing and implementing innovative Cloud-based solutions
and services [18].

With a broad client base spanning multiple sectors, particularly the automotive
industry, the company’s expertise played a pivotal role in fully understanding the
project’s context and internal dynamics. This extensive knowledge provided the
cornerstone for the development of a tangible example of the infrastructure.

Figure 1.2. Logo of the partenr company of the project

Among the main customers in the automotive world of the consulting company,
we can mention Ferrari, one of the most important companies in motor sports com-
petitions and in the production of luxury cars, and Stellantis, one of the biggest
giants in the automotive industry as well as in the global market. Although differ-
ent, these two companies interact with Storm Reply to take advantage of its great
knowledge in the cloud world and in the management of Amazon Web Services
(AWS) services. Thanks to the connection with these important companies it was
possible to receive essential information for the thesis work.

One great advantage of collaborating with this company is the wide availability
of resources, both material and, above all, in terms of experience. As a large IT
consultancy company, Reply is divided into many sub-business units, that makes
possible the interaction with various realities, ranging from embedded to low-level
development, network and security infrastructure management, and web services
management. Furthermore, there is a research and development section called Area
42 where entities can interact and influence each other to create innovative projects.

A point of pride for Storm Reply is its recognition as an AWS Premier Con-
sulting Partner since 2014, ranking among the top Amazon Partners globally. This
distinctive characteristic underscores the decision to develop the infrastructure us-
ing AWS services.

According to the official AWS description page [19] the AWS Cloud spans 102
Availability Zones within 32 geographic Regions around the world and servs 245
countries and territories. With millions of active customers and tens of thousands
of partners globally, AWS has the largest and most dynamic ecosystem. AWS is
evaluated as a leader in the 2022 Gartner Magic Quadrant for Cloud Infrastructure
and Platform Services (a series of market research reports published by IT con-
sulting firm Gartner that rely on proprietary qualitative data analysis methods to
demonstrate market trends, such as direction, maturity and participants), placed
highest in Ability to Execute axis of measurement among the top 8 vendors named
in the report.
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Figure 1.3. The Gartner Magic Quadrant for Cloud Infrastructure
and Platform Services [2]

The infrastructure exhibits several key attributes contributing to its robustness
and efficiency:

❼ Security: The infrastructure undergoes 24/7 monitoring to ensure the confi-
dentiality, integrity, and availability of data. All data flowing across the AWS
global network is automatically encrypted at the physical layer before leaving
secured facilities.

❼ Availability: To ensure high availability and isolate potential issues, appli-
cations can be partitioned across multiple Availability Zones (AZ)s within
the same region, creating fully isolated infrastructure partitions.

❼ Performance: AWS Regions offer low latency, low packet loss, and high
overall network quality. This is achieved through a fully redundant 100 GbE
fiber network backbone, often providing terabits of capacity between Regions.

❼ Scalability: The AWS Global Infrastructure allows companies to take advan-
tage of the virtually infinite scalability of the cloud. This enables customers
to provision resources based on actual needs, with the ability to instantly
scale up or down according to business requirements.

❼ Flexibility: The AWS Global Infrastructure provides flexibility in choosing
where and how workloads are run, whether globally, with single-digit millisec-
ond latencies, or on-premises.
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❼ Global Footprint: AWS boasts the largest global infrastructure footprint,
continually expanding at a significant rate.

Thanks to its expertise and qualifications, Storm Reply is able to provide the above
features to its customers, offering a comprehensive consultancy service for managing
cloud infrastructures.

1.3 Thesis Objective

In the automotive context, the use of SDV plays a crucial role in terms of cost,
innovation and safety. The objectives of the thesis are intertwined with the oppor-
tunities offered by SDV technology, for instance addressing the primary challenge of
overcoming the current difficulties associated with the presence of different special-
ized hardware platforms on the same vehicle, to make the vehicle a more efficient
and safer device based on software as a fundamental element.

One of the main objectives of this thesis is to propose the opportunity offered
by SDV solution capable of eliminating various phases of the software production
pipeline. This would result in significant time and cost savings, enabling the in-
vestment of these resources in other areas.

From a practical standpoint, the project’s goal is to provide, through the use of
AWS services, a cloud infrastructure capable of managing the SDV both in terms
of software production and data analysis.

The work begins with an overview of the state of the art of software development
in the automotive world, comparing the goals of the future with the techniques
used in the past. For this purpose, the weaknesses of the sector are explained in
order to highlight the advantages of SDV technology. Next, some definitions of the
technologies that can bring the development of a paradigm shift in SDV benefits
are provided. Finally, an example of an initiative proposed as a first attempt to
standardize the SDV concept is presented, that is the Scalable Open Architecture
for Embedded Edge (SOAFEE) project.

The work continues with an introduction to cloud computing, which is the
programming approach that accompanied the entire project from beginning to end.
The characteristics of this technique are analyzed, especially the advantages it can
bring, and the example of how AWS manages to best enhance the potential of
cloud computing is shown. Special attention is given to the security aspect, as
it is a fundamental objective of the thesis topic, but also central element of the
idea behind the cloud development of the AWS company and the project partner
company.

Moving towards the description of the implementation of the practical project,
it is possible to arrive at the exploration of the AWS services used. In order to make
the realization of the project possible, as described several times throughout the
thesis, it is necessary to rely on this type of service. With the aim of introducing
the characteristics of the services used, an extensive descriptive list is provided.

The last part of the thesis deals with the actual implementation of the project,
with the purpose of providing a concrete and working example of what has been
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described in the previous chapters. The implementation begins with the creation
from scratch of a device capable of simulating telematic data, develops in the con-
struction of a cloud infrastructure with the services mentioned above, and ends
with the exploration of the tool used for data analysis.

Finally, to conclude the research, the results of the final presentation of the
operation of the whole system on a real device are shown. In addition, a final
evaluation of the whole project is made and the future possibilities opened by the
work are shown.
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Chapter 2

State-of-the-Art Analysis

The following chapter constitutes an in-depth exploration of current technologies
and methodologies within the automotive industry, with a specific focus on the
complexity of vehicular software development. Firstly, the current automotive land-
scape will be examined, providing a detailed insight into challenges associated with
software development in vehicles.

Subsequently, through meticulous analysis of scientific publications, technical
reports, and practical implementations, the chapter delves into the radical transfor-
mation of the automotive sector facilitated by the concept of SDV. This technology,
crucial for technological progress and vehicular safety, will be explored from vari-
ous perspectives. Particularly, the synergy between cloud computing, software, and
hardware will be investigated, highlighting solutions proposed by major industry
players and analyzing their applications, benefits, and limitations.

The objective is to offer a comprehensive overview of current dynamics, empha-
sizing the pivotal role of SDV in the evolution of the automotive industry.

2.1 Context

In the past, the automotive industry advanced primarily through the development
of technologies in mechanical engineering, focusing on perfecting combustion en-
gines. Nowadays, the paradigm has radically changed due to multiple factors,
including electrification, automation, shared mobility, and connected mobility.

Software technology development in the automotive field can be metaphorically
compared to what has happened in smartphone development, as highlighted in the
manifesto document regarding Bosch’s SDV [20].

The ultimate goal is to achieve simple and user-friendly devices that fully meet
the user’s needs. Currently, many customers express dissatisfaction because their
cars do not offer the same functionality and ease of use common in smartphones.
Many ask the question about how is possible that their ✩50,000 car can’t perform
the same tasks as their ✩300 smartphone.

A key difference between the automotive and smartphone industries is the level
of complexity, which brings with it a number of issues.
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2.1.1 difficulties

It is possible to analyse in depth the problems of the current automotive software
that is being developed via four main difficulties:

❼ Specialized Hardware: Today’s vehicles are still complex systems of sys-
tems. Each subsystem in a car, from brakes to transmission, is a complex
entity, supplied by a different manufacturer and integrated with a unique
software architecture. The level of complexity and the need for seamless in-
teroperability between systems far exceeds that of today’s smartphones.

❼ Time: The software production pipeline involves many development and
testing steps with a not inconsiderable amount of time spent on each one. This
is greatly increased by the presence of different components, so development
time must be considered for each different unit of the system.

❼ Cost: The complexity of the software systems in vehicles entails very high
costs, aggravated by the fact that the test phase is often carried out directly
on the boards (for hardware requirements), which means a much longer pro-
duction process, especially in the event of errors.
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Table 2.1. Cost of fixing errors increases in later phases of the life cycle [12]
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❼ Human Safety Security: Automotive embedded software must meet strin-
gent reliability and security requirements, while delivering performance and
a reasonable memory footprint. To develop automotive embedded software,
you need the right tools that meet safety and security standards to evaluate,
prototype and test your software.

At this point, Several valuable lessons can be learned from studying the barri-
ers that apply to the vehicle life cycle. Historically, the vehicle lifecycle has been
characterised by the simultaneous production and deployment of tightly integrated
hardware and software. Once the vehicle was in the hands of the consumer, its char-
acteristics remained largely unchanged until the end of its life. However, the SDV
paradigm introduces the possibility of decoupling hardware and software release
dates, a prerequisite for adopting a digital-first approach. This approach brings
the design and virtual validation of the digital vehicle experience to the forefront
of the lifecycle. It also requires the application of the digital-first concept, which
means that new ideas for the vehicle experience are first explored in virtual envi-
ronments to ensure early user feedback, long before any custom hardware needs to
be developed or a physical test vehicle is available. Digital first is the application
of design thinking and lean startup principles, originally rooted in internet culture,
to the tangible realm of automotive development.

2.2 Introduction to Software Defined Vehicle

The SDV represents the new frontier of automotive manufacturing and is poised to
completely change the paradigm of automotive production.

Let’s try to imagine to bringing a feature update to one of today’s vehicles. It
will most likely take anywhere from one to seven years from the idea to when that
feature is actually perceptible in the production vehicle; this takes so long because
the vehicles produced up to this point have not been designed with frequent updates
in mind [21]. Traditionally focused on physical functionality, the automotive indus-
try has evolved from early electronic features such as airbags, vehicle stabilisation
and braking systems to modern driver assistance and even automated driving. The
current shift towards a digital experience is possible thanks to vehicle design that
includes software integration as a fundamental part. Software should no longer be
seen as an accessory to the vehicle, but as an integral part of the vehicle itself.

The simultaneous efforts of major automotive companies such as Bosch, Renault
and Stellantis, in collaboration with leading computer developers such as Arm,
BlackBerry and AWS, have given rise to the SDV concept, which they define as
”any vehicle that manages its own operations, adds functionality and enables new
features primarily or entirely through software” [15].

The SDV solution is nowadays being considered by several companies as the
manifesto of a new era of vehicle development. An example is given by the Renault
Group, which in an overview of its products describes: ”Today, it is already possible
to make remote updates of some vehicles via the Firmware-Over-The-Air (FOTA)
system. This keeps the vehicle safe by making it easier and faster to improve the
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on-board system and apply patches. Tomorrow, the SDV’s flexible and scalable
architecture will enable the faster development and integration of new features
throughout the vehicle lifecycle, directly into the cloud, that is, in secure online
servers accessible from anywhere and anytime” [22].

It is evident that SDVs represent the future of the automotive industry, promis-
ing an enriched and sustainable user experience as vehicle technologies evolve. This
section further clarifies the current state of the industry, highlighting the key en-
ablers that are allowing the development of the SDV paradigm and the benefits of
this innovation.

2.2.1 Enablers

There are mainly four fundamental technologies that contribute to the realisation
of the SDV: standardized hardware, cloud, Over-The-Air (OTA) updates via OTA
servers, and Message Queuing Telemetry Transport (MQTT) communication. All
these enablers are developed by leading companies in the computing industry. In
this section, each technology will be analysed with reference to concrete examples
from the current market.

Standardized hardware

One of the most important aspects of SDV is the separation of software from
hardware. To achieve this, it is essential to move away from the approach
of using dedicated hardware for each vehicle component system, and instead
favour an approach based on general purpose processors that are as centralised
as possible. This transition not only promotes ease of software development
and scalability, but also offers the opportunity to create parity between the
virtual development and test environment and the real execution environ-
ment.

Several players in the semiconductor industry have stepped up to the chal-
lenge of realising this vision, including Arm. Through the development of
energy-efficient processors, Arm is present in every part of the vehicle, from
high-performance systems in Advanced Driver Assistance Systems (ADAS),
Automated Driving (AD), In-Vehicle Infotainment (IVI) and digital cockpits,
to gateway, body and microcontroller endpoints [23]. The aim is to create
Arm-based MicroController Unit (MCU)s that enable implementation of a
common architecture, scalability between applications to meet processing re-
quirements, software reuse and reduced development costs.

Another major player is Qualcomm, which is being adopted by the Renault
Group through its Snapdragon Digital Chassis vehicle architecture, a set of
cloud-connected platforms for telematics and connectivity, digital cockpits,
assistance and driver autonomy.

Cloud

Using a cloud platform that offers scalable and secure solutions for real-time
application updates, increased connectivity and efficient data management is
essential for SDV.
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Well-known companies such as AWS and Google Cloud are already present
in the automotive industry as partners of partner of many automotive com-
panies. The AWS services and technologies will be in depth described in the
futher chapters.

Over-The-Air updates

An OTA update is the remote and wireless transfer of applications, services,
firmware and configurations from a server to a target device. This process
takes place over an available network, preferably the Internet. The main
purposes of OTA are to remotely update software or firmware, provide power-
safe procedures to ensure that the device will boot even if power is lost during
the update process, maintain a robust implementation, ensure data protection
and reduce overall maintenance costs [24].

In the context of the thesis, it is crucial to acknowledge that the implemen-
tation of OTA updates may increase the vulnerability of automotive systems
to hacking and other cyber attacks. These vulnerabilities could potentially
be exploited by hackers to gain unauthorised access to private information,
take remote control of the vehicle or even cause it to malfunction. Another
significant issue is the leakage of information about updates and their sources.
This can enable malicious actors to introduce viruses and malware, further
exacerbating the security risks associated with OTA updates [25].

To perform an OTA update, both a client on the vehicle, responsible for wait-
ing and checking for incoming updates, and a server, facilitating the avail-
ability of the update broadcast to all connected devices, are essential. In
this context, Autosar can be considered, as it represents a standard and open
source architecture for intelligent mobility [26], which includes a dedicated
platform for client and server management of OTA updates. Another no-
table example is Hawkbit, which serves as a backend framework for deploying
software updates to edge devices and is being developed by the Eclipse Foun-
dation; this tool will be discussed in more detail in later chapters as it will be
used to create a proof of concept. The final tool of note is AWS Greengrass,
an edge agent manager for managing software updates in edge IoT devices,
provided by AWS; this tool will also be discussed in later chapters as an
alternative solution to the client manager.

MQTT communication

The MQTT is a standardized protocol, specified by ISO/IEC 20922:2016 and
developed by the Oaesis organization. It enables the exchange of Application
Messages (AM) over a network connection, providing an ordered, lossless
stream of bytes from the Client to Server and Server to Client without the
need to support of a specific transport protocol.

In an MQTT transport, an AM carries payload data, a Quality of Service
(QoS), a collection of Properties, and a Topic Name (TN). Clients, which
can be programs or devices, perform various actions such as opening and
closing network connections, publishing AM, subscribing to requested AM,
and managing subscriptions [27].
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On the Server side, it acts as an intermediary between publishing and sub-
scribing Clients. The Server accepts network connections, processes Subscribe
and Unsubscribe requests, and forwards AM matching Client Subscriptions.
The Server, also known as the Broker, essentially coordinates messages among
various Clients. Its responsibilities extend to authorizing and authenticating
MQTT Clients, transmitting messages to other systems for further analysis,
and managing tasks such as handling missed messages and Client sessions
[28].

Sessions, representing stateful interactions between Clients and Servers, can
last for the duration of a Network Connection or span multiple consecutive
connections.

Figure 2.1. A simple representation of communication using the MQTT protocol

The MQTT protocol can be used in SDV, both for sending data produced
by the vehicle to the cloud servers and for sending updates from the servers
to the vehicle. This is because the MQTT protocol allows asynchronous
and misaligned communication even in the presence of poor connectivity, a
situation that cannot be underestimated in the automotive field.

The collaborative efforts of this technologies contribute to advancement of SDV
for makeing vehicles not only defined by their physical attributes but also as dy-
namic entities that can be continuously updated through software.

2.2.2 Benefits

The SDV, as introduced in the previous chapters, brings several benefits to both
automotive companies and the end-user experience. These innovations are made
possible by the fact that the vehicle becomes a device that can be constantly mon-
itored and updated in real time via the cloud throughout its entire lifecycle. Let
us now look at the key benefits.

From the point of view of this project, the main innovation brought by this
technology is the security of the device software. Since, as mentioned above [16],
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vehicles are considered as safety elements critical to human life, the safety benefits
can be analysed from two perspectives:

❼ Human Safety Critical Security: The ability of SDV to receive real-time
data from the vehicle allows in-depth monitoring of all its components. Tak-
ing the influence of tyres as an example, it has been found that most road
accidents are caused by tyre wear and lack of regular maintenance. It is there-
fore necessary to assess the health of tyres through continuous monitoring of
physical parameters such as tyre thickness, temperature and pressure, as well
as regular maintenance. This helps to eliminate or minimise the possibility
of tyre bursts and subsequent accidents. It also improves the safety of people
and vehicles [29]. These factors can be monitored either manually or auto-
matically: manual predictive maintenance requires human intervention and
can lead to some errors; automatic predictive maintenance using artificial in-
telligence can be more efficient [30]. Renault defines this work as ”predictive
maintenance” [22], stressing the importance of collecting and analysing data
in a centralised system to anticipate and prevent potential failures, ensure
the safety of people, reduce maintenance costs and improve the performance
of the vehicle.

❼ Intrinsic Software Security: In the presence of bugs and vulnerabilities in
the vehicle’s software, SDV makes it possible to intervene promptly to resolve
each problem and reduce the window of exposure.

Table 2.2. Risks and time relationship in the various phases of a vulnerability lifecycle

A crucial aspect of vehicle software security is the robustness of the algo-
rithms, especially in the context of autonomous driving. In this context, a
predictive algorithm responsible for vehicle safety decisions can be continu-
ously improved and optimised. The SDV also introduces the concept of the
Digital Twin, that is a platform that virtually replicates the functionality and
behaviour of the vehicle in a computing environment. Thanks to this tech-
nology, predictive algorithms used in autonomous driving can be effectively
tested on the cloud platform and, when ready, integrated directly into the
vehicle.
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From a user experience point of view, two other significant benefits can be iden-
tified: an increase in the value of the vehicle, which can be continuously upgraded
over time, and the ability to enable additional vehicle functions via software. For
example, the user can decide to activate a feature for a certain period of time and
then deactivate it (paying only for the time it is used), or activate a new feature
that was not available at the time of purchase. In essence, the vehicle becomes a
dynamic platform that is constantly evolving and fully customisable through the
software.

For automotive companies, the benefits mentioned so far can bring direct ad-
vantages to the entire industry. In support of this, Stellantis reports that: ”the
team in Poland will contribute to the global software creation network that is key
to Stellantis’ work in creating SDV that offer customer-focused features through-
out the vehicle’s life span, including updates and features that will be added years
after the vehicle is manufactured. Creating an infrastructure inside our vehicles
that easily and seamlessly adapts to meet driver expectations is a key element of
Stellantis’ global drive to deliver cutting edge mobility. Stellantis’ software-driven
strategy deploys next-generation tech platforms, building on existing connected ve-
hicle capabilities to transform how customers interact with their vehicles and to
generate ➾20 billion in incremental annual revenues by 2030” [31].

In addition, the SDV paradigm brings an advantage from a software production
pipeline perspective. In today’s software production scenario, there can be two
development mechanisms:

❼ A more traditional mode in which software is created directly on the system,
hence on the processor itself. This is undoubtedly the most inconvenient solu-
tion, as it would require unnecessary overuse of processors, wasting resources,
money and time.

❼ Alternatively, developers rely on cumbersome operating system emulation
tools on the host machine and the cross-compilation process, which uses a
dedicated compiler to produce executable code for the target system. Once
the code is on the development system, a final integration and validation
test can be performed, but scalability is limited to the number of physical
hardware platforms.

Typical workflows for the development, integration and validation of embedded
systems are as follows:

By using the SDV, such as operating systems that rely on general porpouse
architectures to provide parity between cloud and edge systems, it is possible to
reduce the embedded developer’s workflow to remove many of the steps that are
now no longer required, as shown in the diagram below 2.3. More specifically, the
development and integration workflow eliminates the build and test phases. Instead,
a validation function is added to verify the product in a cloud environment, where
the digital twin concept can be used directly. All tests can be conducted in a
virtual cloud environment where a digital copy of the actual vehicle is available
for distributing the product software or related updates. This reduces software
production times, costs, and waste of physical resources.
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Figure 2.2. today development, integration, and validation work-
flows for embedded systems [3].

Figure 2.3. future development, integration, and validation work-
flows for embedded systems [3].

2.2.3 initiatives: SOAFEE

In 2021 Arm, AWS, and other founding members announced the SOAFEE Special
Interest Group, which brings together automakers, semiconductor, and cloud tech-
nology leaders to define a new open-standards based architecture to implement the
lowest levels of a software-defined vehicle stack [3].

SOAFEE is created to achive SDV objective, and for doing that four-pillar
principle are used [32]:

1. Standards: standardization ensures interoperability and compatibility among
various software components, fostering a cohesive ecosystem for SDVs.

2. New software architecture and methodologies: this involves transi-
tioning from traditional monolithic architectures to more modular and scal-
able designs; the incorporation of agile development practices and DevOps
methodologies ensures efficient and continuous software evolution.

3. Industry collaboration: Fostering partnerships, knowledge sharing and
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collaboration among key stakeholders, including automakers, technology com-
panies and regulators, is essential.

4. Vehicle simulation: simulated environments allow in-depth testing and re-
finement of software functionality to ensure optimal performance and security
under a variety of conditions.

SOAFEE aims to adopt and enhance current standards used in today’s cloud-native
world to help manage the software and hardware complexity of the automotive SDV
architecture.

The core principles of safety, security, and real time are inherent in each pillar. It
is fully expected that the SOAFEE architecture will support use-cases that execute
safety-critical services alongside non-safety-critical ones. It is fully expected that
the SOAFEE architecture will support use cases that execute safety-critical services
alongside non-safety-critical services. As it is not reasonable to develop the whole
platform according to one safety standard, the strategy is to develop only safety-
critical elements according to ISO 26262 and to isolate them from the non-safety-
critical elements in order to ensure spatial, temporal and communication isolation.
All implementations pass security checks and follow a set of best practices [33].

The SOAFEE paradigm is based on a very sophisticated architecture becouse
it should work in the same way in the vehicle and in the cloud and follow cloud
native technologies while considering the automotive specific needs for safety and
limited resource footprints [4].

Figure 2.4. SOAFEE Architecture v1.0 [4]
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Chapter 3

Cloud Computing and Amazon
Web Services

As the analysis in previous chapters has shown, the SDV is a pivotal advancement
in the evolution of the entire automotive industry toward a safer, more efficient,
and more sustainable future. Cloud computing is a crucial resource for SDV de-
velopment due to its facilitation of development through its features and benefits.
In the following section, cloud computing technologies will be analyzed in detail,
focusing on one of the most important providers, AWS.

3.1 Cloud Computing

The NIST provides the most comprehensive definition of cloud computing such as:
”a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. This cloud model is composed
of five essential characteristics, three service models, and four deployment models”
[34]. This allows for a thorough analysis of the features of cloud computing in
relation to AWS services, starting with the five essential characteristics.

❼ On-demand self-service: Consumers can access and allocate computing
resources autonomously, such as server time and network storage, without
direct involvement with service providers. AWS offers a vast cloud infrastruc-
ture with over 200 fully-featured services that consumers can easily access
and use from their AWS account.

❼ Broad network access: Resources can be accessed over the network through
standard mechanisms, making them usable across various client platforms. In
AWS services, this is translated as an on-demand delivery of IT resources over
the Internet with ”pay-as-you-go” pricing.

❼ Resource pooling: Providers pool computing resources in a multi-tenant
model, dynamically assigning them based on consumer demand. As said be-
fore AWS services are allocable e pagabili in base alle necessità del momento.
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The customer has limited control over the exact resource location but can
specify a higher-level abstraction as country, state, or datacenter. In AWS,
clients can select the geographic location of their services through regions.
textitAWS Regions provide access to AWS services that are physically lo-
cated in a specific geographic area. AWS provides the option to view the
availability of a particular service in a specific region, in addition to selecting
different regions [35]. Resources include storage, processing, memory, and
network bandwidth. It also provides services for the IoT, machine learning,
data lakes, and analytics.

❼ Rapid elasticity: Resources can be easily adjusted to match fluctuations
in demand, either automatically or manually. AWS provides various auto-
mated resource allocation systems, including the AWS Cloud Development
Kit (CDK) framework, which will be discussed later. The available capabil-
ities are perceived as virtually limitless, and consumers can acquire them in
any quantity at any time, always with a ”pay-per-use” system.

❼ Measured service: Cloud systems efficiently manage resources through au-
tomated control and optimization, utilizing metering capabilities tailored to
specific services such as storage, processing, bandwidth, and user accounts.
For instance, AWS has infrastructure worldwide, allowing for easy deployment
of applications in multiple physical locations. The proximity to end-users re-
duces latency and enhances their experience. This feature allows for clear
and objective monitoring, control, and reporting of resource usage by both
providers and consumers.

The three primary types of cloud computing are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These
options provide different levels of control, flexibility, and management, allowing
users to configure services to meet their specific requirements.

❼ IaaS: Consumers are able to utilize and deploy fundamental computing re-
sources, including processing, storage, and networks. However, they only
have control over operating systems, storage, and applications, as the cloud
infrastructure is managed by the provider. Consumer control over some net-
working components is limited. IaaS provides a high level of flexibility and
management control over IT resources. It is similar in practice to existing
IT resources that many IT departments and developers are already familiar
with.

❼ PaaS: Consumers can deploy their applications on the cloud infrastructure
using the programming languages, libraries, services, and tools supported by
the provider. The provider manages the underlying cloud infrastructure, in-
cluding network, servers, operating systems, and storage, while consumers
maintain control over their applications and configuration settings. This ap-
proach improves efficiency by eliminating the need to manage resource pro-
curement, capacity allocation, software maintenance, patching, or any other
tasks involved in running your application.
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❼ SaaS: Consumers can use the provider’s applications on the cloud infrastruc-
ture, which are accessible from different client devices through interfaces such
as web browsers or programs. However, consumers do not have control over
the underlying cloud infrastructure, including the network, servers, operating
systems, and storage, except for limited user-specific application configuration
settings. With a SaaS offering, users do not need to worry about maintaining
the service or managing the underlying infrastructure. The focus should be
on how to use the software effectively.

The analysis thus far has focused on cloud computing, specifically the essential
characteristics that a cloud service must possess to be considered a true cloud
service, as well as the service models that can be offered. Now, let’s analyze in
more detail the part related to cloud computing service deployment models and
explore which models are most suitable for which workloads using AWS [36]. Note
that in this case, there are slight differences between the NIST and AWS definitions
of the various deployment modes.

❼ public cloud: According to NIST, a public cloud is defined as cloud in-
frastructure that is publicly accessible and owned, managed, and operated
by businesses, academic institutions, government entities, or a combination
thereof. In contrast, AWS defines a public cloud as infrastructure and ser-
vices that are accessible over the public internet and hosted in a specific AWS
Region.

❼ private cloud: Both NIST and AWS define private cloud as a cloud infras-
tructure exclusively provisioned for a single organization, which may own,
manage, and operate it independently or in collaboration with a third party.
However, there is a difference in the location of the infrastructure. Accord-
ing to NIST, the infrastructure can be located on or off premises, while in
AWS documentation, the infrastructure is provisioned on premises using a
virtualization layer.

❼ hybrid cloud: The hybrid cloud is a combination of two or more separate
cloud infrastructures, private or public, connected by technology to facili-
tate data and application portability. It allows organizations to leverage the
cloud for its efficiency and cost savings while also maintaining on-site security,
privacy, and control.

Exploring the many benefits of cloud computing, the focus now shifts to a
comprehensive analysis of the main value patterns of cloud computing, with some
charts and graphs to help clarify the outlook.

Cloud computing reduces costs by aggregating resources needed by different
companies in a transparent way to consumers. This means that a company will no
longer need to spend excessive amounts of money on building its IT system to meet
overestimated demands or satisfy underestimations of necessary resources as it is
shown in 3.1. In addition to shortening the time to market and increasing earnings,
cloud computing allows for access to resources anytime and anywhere, optimizing
resource management with lower latency and a better experience as it is shown in
3.2.
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In conclusion, cloud computing, exemplified by platforms like AWS, enables or-
ganizations to access IT resources on-demand via the Internet. This is facilitated
by pay-as-you-go pricing models, which liberate organizations from the burdens of
procuring, owning, and maintaining physical infrastructure. Cloud computing has
a wide range of applications across industries, including the automotive sector. One
of the main benefits of cloud computing is its dynamic scalability, which improves
operational efficiency and reduces costs by utilizing resources more cost-effectively.
This is due to the economies of scale inherent in cloud services, resulting in signif-
icantly lower variable expenses compared to self-managed infrastructure [37]. The
characteristics of AWS are analyzed in depth below.
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3.2 Amazon Web Services

AWS is a widely adopted cloud solution with over 200 fully featured services avail-
able globally across multiple data centers. It is used by millions of customers,
from emerging startups to industry giants and government agencies, as the cloud
platform of choice to reduce costs, increase agility, and accelerate innovation [38].

AWS stands out by providing a broad set of services, including infrastructure
technologies as well as cutting-edge capabilities such as machine learning, artificial
intelligence, data lakes, analytics, and the IoT. This extensive service portfolio
facilitates the fast, easy and cost-effective migration of existing applications to the
cloud and the creation of diverse digital solutions. AWS provides purpose-built
databases for various application types, allowing users to choose the most suitable
tool for optimal cost and performance. The depth of AWS services is unmatched,
providing customers with a comprehensive toolkit for diverse computing needs.

Beyond its vast offerings, AWS has a large and dynamic global community
with millions of active customers and tens of thousands of partners. This inclusive
ecosystem spans industries and business sizes, with startups, enterprises, and public
sector entities leveraging AWS for a myriad of use cases. The AWS Partner Network
(APN) solidifies this network with thousands of system integrators and independent
software vendors who adapt their technology to work on AWS.

AWS demonstrates its commitment to innovation through continuous technolog-
ical advancements. In 2014, AWS launched AWS Lambda, which pioneered server-
less computing. This allows developers to run their code without the need to
provision or manage servers. Another example is Amazon SageMaker, a fully man-
aged machine learning service that empowers developers to use machine learning
without any previous experience.

Rooted in more than 17 years of operational experience, AWS offers unmatched
reliability, security, and performance [39]. Since its establishment in 2006, AWS has
become a globally trusted platform, revolutionizing IT infrastructure services by
providing a highly reliable, scalable, and cost-effective cloud solution for businesses
worldwide in the form of web services with ”pay-as-you-go” pricing [40]. One of the
main advantages of cloud computing is the ability to replace a company’s initial
capital expenditures required for infrastructure with low costs that vary as needed
and can scale with the business. AWS places great emphasis on the security of its
systems and services, which is a fundamental pillar of their platform. In this thesis,
we will analyze this feature in more detail.

3.2.1 Security

AWS is known for its flexible and secure cloud computing environment, designed to
meet the strict security requirements of military, global banks, and high-sensitivity
organizations. The infrastructure includes over 300 security, compliance, and gov-
ernance services, supporting 143 security standards and compliance certifications.
This architecture ensures scalability, reliability, and rapid deployment of applica-
tions and data while adhering to the highest security standards. Strong security
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at the core of an organization enables digital transformation and innovation. AWS
utilizes redundant controls, continuous testing, and automation to maintain moni-
toring and protection forever non-stop continuously. Unlike customers’ IT depart-
ments, which often operate on limited budgets, AWS prioritizes security as a core
business aspect and allocates significant resources to safeguard the cloud and assist
customers in ensuring robust cloud security [41].

AWS empowers customers to confidently advance their businesses by providing
a secure and innovative cloud infrastructure, a comprehensive suite of security
services, and strategic partnerships. The AWS cloud infrastructure, combined with
a comprehensive suite of security services and strategic partnerships, provides a
solid foundation for secure innovation. Security is integrated and automated at
every level of the organization, ensuring a swift and secure development process
while reducing human errors. AWS offers a wide range of security services and
partner solutions to help organizations effectively navigate evolving threats and
compliance challenges. These expert-built capabilities equip organizations with the
tools they need to stay secure and compliant [42].

The AWS global infrastructure follows rigorous security best practices and com-
pliance standards, ensuring that users have access to one of the most secure com-
puting environments in the world. It is designed and managed in alignment with a
range of IT security standards, providing assurance to customers, including those
in the life sciences industry, that their web architectures are built on exception-
ally secure computing infrastructure. The main security standards obtained from
infrastructure will now be explored through AWS documentation [43].

❼ System and Organization Controls (SOC) 1, 2, 3: AWS SOC Reports
are third-party examination reports that demonstrate AWS’s alignment with
key compliance controls and objectives. SOC 1 focuses on controls relevant
to a financial audit, covering security organization, access, data handling,
change management, and more. SOC 2 expands to American Institute of
Certified Public Accountants (AICPA) Trust Services Principles, evaluating
controls related to security, availability, processing integrity, confidentiality,
and privacy. The SOC 3 report is a publicly available summary of SOC 2.
It includes an external auditor’s assessment, AWS management’s assertion,
and an overview of AWS Infrastructure and Services. The report provides
transparency and demonstrates AWS’s commitment to security, compliance,
and protection of customer data [44].

❼ Federal Risk and Authorization Management Program (FedRAMP):
FedRAMP is a United States government program that ensures a standard-
ized approach to security assessment, authorization, and continuous monitor-
ing for cloud products and services. It is aligned with NIST SP 800 series.
The program mandates that cloud service providers undergo an independent
security assessment by a Third-Party Assessment Organization (3PAO) to
verify compliance with the Federal Information Security Management Act
(FISMA) [45].
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Figure 3.1. AWS SOC Logo

❼ ISO 9001: ”ISO 9001 is a globally recognized standard for quality manage-
ment. It helps organizations of all sizes and sectors to improve their perfor-
mance, meet customer expectations and demonstrate their commitment to
quality. Its requirements define how to establish, implement, maintain, and
continually improve a Quality management System (QMS)” [46]. AWS ISO
9001:2015 certification directly supports customers developing, migrating, and
operating their quality-controlled IT systems in the AWS cloud. They can use
AWS compliance reports as evidence for their own ISO 9001:2015 programs
and industry-specific quality programs [47].

❼ ISO/International Electrotechnical Commission (IEC) 27001: ISO/IEC
27001 is a global security standard that outlines requirements for the system-
atic management of corporate and customer information. AWS has achieved
ISO 27001 certification, demonstrating a comprehensive approach to assess-
ing, managing, and mitigating information security risks. The certification
covers AWS infrastructure, data centers, and services, ensuring ongoing com-
pliance with international security standards [48].

❼ ISO/IEC 27017: ”ISO/IEC 27017:2015 gives guidelines for information
security controls applicable to the provision and use of cloud services by pro-
viding: additional implementation guidance for relevant controls specified
in ISO/IEC 27002; additional controls with implementation guidance that
specifically relate to cloud services. This Recommendation — International
Standard provides controls and implementation guidance for both cloud ser-
vice providers and cloud service customers” [49]. This certification ensures
the implementation of precise, cloud-specific controls and validates AWS com-
mitment to robust security measures in cloud services [50].

❼ ISO/IEC 27018: ISO 27018 is a global code of practice for safeguarding
personal data in the cloud. It builds upon ISO 27002 and offers guidance on
implementing controls for Personally Identifiable Information (PII) in public
clouds. AWS’s ISO 27018 certification affirms its dedication to internationally
recognized standards, emphasizing privacy and content protection through
the use of this certification[51].
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❼ Health Information Trust Alliance Common Security Framework
(HITRUST CSF): The HITRUST CSF integrates global standards such
as General Data Protection Regulation (GDPR), ISO, NIST, Payment Card
Industry (PCI), and Health Insurance Portability and Accountability Act
(HIPAA) to establish a comprehensive framework for security and privacy
controls. Some AWS services have been assessed under the HITRUST CSF
CSF Assurance Program by an approved HITRUST CSF Assessor and have
been found to meet the HITRUST CSF Certification Criteria. Customers
can inherit AWS certification for controls relevant to their cloud architectures
established under the HITRUST CSF Shared Responsibility Matrix (SRM).
The certification is valid for two years, describes the AWS services that have
been validated, and can be publicly accessed [52].

❼ Security, Trust, Assurance, and Risk (STAR): The Cloud Security Al-
liance (CSA) introduced the STAR to promote transparency in cloud provider
security practices. STAR is a publicly accessible registry that documents the
security controls of cloud computing offerings. AWS has joined the CSA
STAR Self-Assessment, aligning with CSA best practices. The completed
CSA Consensus Assessments Initiative Questionnaire (CAIQ) reports for
AWS are publicly available [53].

39



Chapter 4

Cloud Infrastructure

As discussed in previous chapters, the development of SDV technology requires a
cloud infrastructure to handle server-side operations. AWS is a leading player in
the cloud world, and therefore an ideal alternative for the advancement of SDV, as
well as an active partner in the implementation of technologies that contribute to
the creation of a publicly available SDV for all. The following discussion introduces
and analyzes, via AWS documentation the key tools for successful Proof of Concept
(PoC) implementation which will be explored in more detail later.

4.1 AWS Used Services

Among the hundreds of services offered by AWS, here are the ones that are used
to build a cloud infrastructure that is useful for work purposes. The following ser-
vices have been sorted in order of importance. In particular, services dedicated
to development support, services related to IoT devices, services related to execu-
tion, services related to data management, and services related to virtual machine
instances are analyzed.

AWS Command Line Interface (AWS CLI)

The AWS CLI is an essential tool for developing with AWS services. It allows
interaction with AWS services from the command line of a local Personal
Computer (PC), enabling the creation of infrastructure and management of
properties from the command line.

AWS Boto

Boto is an AWS Software Development Kit (SDK) made for Python. A SDK,
more generally, is a set of creation tools specifically for developing and running
software in a single platform. It includes resources such as documentation,
examples, and APIs to facilitate faster application development. Boto basi-
cally works as an interface for applications that need to interact with and take
advantage of the services provided by AWS. The AWS SDK for JavaScript
v3 is another example of an SDK for JavaScript that works basically in the
same way.
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Figure 4.1. The high level rappresentation of the AWS SDK for JavaScript v3 [5]

Cloud Development Kit (AWS CDK)

The AWS CDK ”is an open-source software development framework for defin-
ing cloud infrastructure in code and provisioning it through AWS CloudFor-
mation” [54]. It is compatible with both JavaScript and Python languages
and it support the automatic creation of several services with just one execu-
tion command. This code-tool was used in the final phase of the PoC design
to automate the creation of the stack comprising all the services used.

AWS IoT Core

AWS IoT Core provides the ability to connect IoT devices to AWS cloud
services. AWS IoT Core enables the connection of IoT devices to AWS cloud
services. It simplifies the integration of IoT devices with other AWS services.
This is especially relevant in the automotive industry, where vehicle system
Electronic Control Unit (ECU)s can be viewed as multiple IoT devices. Com-
munication between the device and AWS services can occur in several modes,
with the MQTT protocol being the most important for this project. The
device can be connected by developing applications that utilize the SDK li-
braries. Once the data is transmitted, it can be utilized for various purposes
such as testing, validation, and analysis. The AWS IoT services, including
the AWS IoT Core service, allow for the creation of digital twins of physical
IoT devices, known as Thing, and monitoring of traffic on selected MQTT
channels. These elements will be explored in greater detail later in the PoC
analysis were it is use as the connection point between the IoT device an the
cloud infrastructure.

AWS IoT Greengrass

”AWS IoT Greengrass is an open source IoT edge runtime and cloud service
that helps you build, deploy and manage IoT applications on devices” [55].
It is designed to work with intermittent connections and can manage fleets
of devices in the field, locally or remotely, using MQTT or other protocols.
Once installed, this service can be accessed through the command line. It
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Figure 4.2. AWS IoT Core connection system between IoT device
and AWS service [6]

was utilized in the early stages of project development as an agent to handle
updates on the vehicle simulator side. However, this solution will be replaced
by a custom solution as explained later.

AWS Identity and Access Management (AWS IAM)

”AWS IAM is a web service for securely controlling access to AWS services
[...] such as access keys, and permissions that control which AWS resources
users and applications can access” [56]. AWS IAM is a service that provides
a powerful access management mechanism. However, for the purpose of this
thesis, only the relevant functionality to the project will be analyzed, specif-
ically AWS IAM’s role management capabilities.An IAM role is an identity
within AWS that can be assigned specific permissions via permission policies
to determine what actions can and cannot be taken. Roles can be assumed
by users, applications, or services that do not normally have access to the
specific AWS resources. The AWS IAM service also provides another impor-
tant concept, that of policy, which is an AWS object that, when attached
to an identity (including roles) or a resource, enables the creation of permis-
sions and access control to other resources. For example, as explained below,
a policy can be attached to the cloud representation of an AWS IoT Core
device to enable the connection of the physical dual IoT device or to grant
Subscriber or Publisher permissions in a communication via MQTT protocol.

AWS Lambda

AWS Lambda is a computing service that provides the ability to run code
without servers. It runs code on a high-performance computing infrastruc-
ture and handles administrative tasks related to computing resources au-
tonomously, such as server and operating system management, capacity pro-
visioning, automatic scaling, and logging. It is possible to run code for po-
tentially any type of backend application or service [57]. Code can be written
directly in Lambda console or imported from the local environment, and it
supports several languages, including Python and JavaScript. The Lambda
service can also manipulate data from other AWS services or manage tasks
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with services outside AWS as will be analyzed below.

Amazon Cloudwatch

Amazon CloudWatch is a system to monitor the AWS resources and the ap-
plications running on the infrastructure in real time. With the use of Amazon
CloudWatch it is possible to collect and track metrics from other AWS ser-
vices such as Lambda, which are numeric variables that can be measured and
analyzed for resources applications [58]. Practically this service represents
the center for viewing and analyzing logs from the various AWS services in
use.

AWS CodePipeline

AWS CodePipeline is a fully managed continuous delivery service that au-
tomates release pipelines for software updates. It enables fast and reliable
updates to applications and infrastructure, facilitating the rapid release of
new features, iterative development based on feedback, and bug detection
through testing every code change. The software release process can be mod-
eled and configured quickly via the Stages execution. A Stage is a logical unit
that creates an isolated environment and allows for the execution of a lim-
ited number of concurrent software changes. Each stage contains actions that
are executed on application artifacts, such as source code from AWS Code-
Commit. For instance, as shown in the image 4.3, it is feasible to establish a
software development pipeline that incorporates a CodeCommit repository as
its source stage. This way, a CodeCommit-related event triggers the pipeline
execution which then proceeds to the software build stage. An execution is
defined as a series of modifications released from a pipeline. Each execu-
tion represents a set of modifications, such as a merged commit or a manual
release of the last commit. Subsequently, the pipeline moves on to the test
stage where the desired tests can be launched via AWS CodeBuild, and finally
delivers the application for production.

Figure 4.3. An example of a AWS CodePipeline in which some stages are reported [7]

AWS CodeBuild

AWS CodeBuild is a fully managed build service in the cloud that provides
source code compilation, unit testing, and production of executable programs
ready for distribution [59]. AWS CodeBuild provides ”out-of-the-box” con-
figuration of compilation environments for popular programming languages,
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such as Python. It is also possible to create build platforms for programming
languages for which there is no preconfiguration, but in this case it is neces-
sary to leverage multiple AWS services. It is also possible to use CodeBuild
to run tests on application code using for example the Pytest tool that allows
you to test Python code.

AWS CodeCommit

”AWS CodeCommit is a version control service that enables you to privately
store and manage Git repositories in the AWS cloud” [60]. This service
becomes particularly interesting in the context of multiple services working
together, including Lambda, CodePipeline, and CodeBuild, because it allows
the repository’s Git and all its associated events (such as commit and push)
to be used to trigger events that can automate various operations, such as
triggering a pipeline in CodePipeline. As a result, CodePipelines typically
use a CodeCommit repository as their input source stage that contains the
code necessary for the subsequent stages.

Amazon Simple Storage Service (Amazon S3)

”Amazon S3 is an object storage service that offers industry-leading scala-
bility, data availability, security, and performance” [61]. The data saved in
the storage is physically placed in multiple locations to ensure the durability
of the data even if there is tampering with an item due to the presence of
these copies; optionally, it can also be chosen to store the data in a single
location to reduce the cost of the service. Amazon S3 can be used for data
collection, aggregation, and analysis in many contexts and scenarios, but in
the scope of this project, this service is used to store data that is transferred
from one stage of the CodePipeline to another. AWS CodePipeline service
automatically implements this method of output use. However, data stored
in Amazon S3 from one stage to another can be manipulated through integra-
tion with other AWS services, such as Lambda. This service is not explicitly
mentioned in the description of the project as it plays a secondary role in the
implementation, but it is present, even if not always visible to the user.

Figure 4.4. Amazon S3 high level storing rappresentation
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Amazon Kinesis Data Streams

Amazon Kinesis Data Streams is used to collect and process large streams
of data records in real time, and eventually route them through other AWS
services to various data collection and analysis applications, such as Amazon
S3 as it is shown in the image 4.5. ”The delay between the time a record
is put into the stream and the time it can be retrieved (put-to-get delay)
is typically less than 1 second. In other words, a Kinesis Data Streams ap-
plication can start consuming the data from the stream almost immediately
after the data is added” [62]. The Kinesis Data Stream service allows for the
selection of specific data based on characteristics through an integrated query
system. Additionally, this service can serve as input for Lambda functions or
to populate databases.

Figure 4.5. Illustration of the high-level architecture of Kinesis Data Streams
with some examples of services that use the output of the stream. [8]

Amazon Timestream

Amazon Timestream is a time-series database that allows you to store and eas-
ily analyze large amounts of data stored at regular intervals, ensuring that the
time-series data is always encrypted, whether at rest or in transit. This service
simplifies the complex process of managing the lifecycle of data by providing
storage tiering with an in-memory store for current data and a magnetic store
for historical data using Amazon S3 space. The transition of data between
these two storage types is enabled through the use of user-configurable poli-
cies. The data lifecycle management mechanism makes Amazon Timestream
ideal for handling telemetry data from IoT devices, for example. The service
also provides a built-in interface for accessing data through a query engine
[63]. The Amazion Timestrem service also provides an interface for Grafana
to view and analyze stored data, which will be explored later.

DinamoDB

Amazon DynamoDB is a full-featured NoSQL database service that pro-
vides high perfomances both speed and scalability. Amazon DynamoDB re-
moves the administrative complexity of running and scaling your distributed
database, so there’s no need to manage provisioning, hardware setup and
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configuration, replication, software patching, or cluster sizing. Amazon Dy-
namoDB also provides encryption at rest, eliminating the operational costs
associated with protecting sensitive data. Amazon DynamoDB provides the
ability to change the allocation of resources needed to store data in real time to
use only the resources required. Additionally, Amazon DynamoDB offers on-
demand backup functionality for long-term retention and archival purposes,
as well as ”point-in-time” recovery to safeguard against accidental write or
delete operations. This feature enables users to restore a table to any point
within the last 35 days [64]. Note that this service was not utilized in the
final version of the project, but was considered during development as an
alternative for data storage and as a case study for understanding the data
storage mechanisms used by AWS services.

AWS System Manager

AWS Systems Manager is a service that provides visibility and control of the
infrastructure on AWS. It allows users to view operational data from multiple
AWS services and manage the automation of operational tasks across differ-
ent AWS resources [65]. The AWS System Manager service is particularly
relevant to the project due to its application management capability, namely
the Parameter Store. Parameter Store is used to securely store configuration
data and secrets, such as passwords, connection strings, and Amazon Machine
Images (AMI) identifiers. Values are stored hierarchically by assigning hier-
archical names to stored values using the ”/” character, while maintaining
the uniqueness of the name. For example, names such as ”Parameters/Pa-
rameter1”, ”Parameters/Parameter2” can be used. In addition, it is possible
to choose whether to store the data as plain text or encrypted data. Stored
data can be retrieved directly from other services, for example, by interacting
with Lambdas and SDK code functions.

Amazon Elastic Container Registry (Amazon ECR)

”Amazon ECR is an AWS managed container image registry service that is
secure, scalable, and reliable. Amazon ECR supports private repositories with
resource-based permissions using AWS IAM. This is so that specified users or
instances can access [...] container repositories and images” [66]. Basically, as
shown in the figure 4.6, once the software has been produced and packaged,
for example through the use of the CodeBuild service, it can be uploaded
to Amazon ECR. The Amazon ECR takes care of encrypting the image and
controlling access to it, and then automatically manages the entire lifecycle
of the image. Once the image is on Amazon ECR, it can be used either as an
image for local download or through other AWS services.

Amazon Elastic Container Cloud (Amazon EC2)

Amazon EC2 provides scalable, on-demand computing capacity in the AWS
cloud. With Amazon EC2, users can create and use virtual machines in
the cloud, instantiating resources as needed to perform compute operations.
Amazon EC2 is a common choice for rapidly deploying applications because it
provides an excellent computing resource at a low cost [67], and it is possible
to manage networks of different instances of Amazon EC2 virtual machines
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Figure 4.6. Example of how Amazon ECR works in production
and for pulling images [9]

through Amazon Virtual Private Cloud (Amazon VPC) and set their rela-
tive security, either on a per-instance basis or on an overall network basis.
Additionally, it is possible to increase the capacity (scale up) of the instance
after creation to handle computationally heavy tasks, such as spikes in web-
site traffic. Conversely, if utilization decreases, capacity can be reduced (scale
down). Amazon EC2 instances can be launched with AMIs, which are pre-
configured templates containing the necessary components to use the server,
including the operating system and additional software. AWS provides pre-
built AMIs, but it is also possible to create your own AMIs using containers.
Furthermore, it is possible to connect to an Amazon EC2 instance through
various communication systems, such as using Secure Socket Shell (SSH) keys
provided at the time of instance creation.

4.2 Infrastructure Schema

All of the previously listed services have been useful, both as an active part in
the project’s realization and as potential options for the project’s implementation,
which will be analyzed below.

After reviewing the various services theoretically, it is now possible to under-
stand a high-level look at how the various services interact with each other. The
interaction system is intricate and consists of two main circuits. The image 4.7
shows the management of data from the TCU edge device in the first part. The
data is sent to the cloud via the IoT Core Thing, inserted into a Kinesis channel,
and then sent to a Timestream database in relevant tables.

Figure 4.7. The high level rappresentation of the AWS services for the data managing

During the second part of the service interaction shown in the image 4.8, the
system consists of a CodePipeline that can be triggered by a CodeCommit event
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Figure 4.8. The high level rappresentation of the AWS services for the
update managing

acting as a source. The pipeline includes a build phase via CodeBuild, which can
utilize images from Amazon ECR registries, followed by three phases consisting
of Lambda functions. The pipeline interacts with a server located on an Amazon
EC2 instance, which stores its key information in the Parameter Stor of the System
Manager service.

The components of the cloud structure may appear separate, indeed there is no
actual interaction between data management services and update management ser-
vices. However, the TCU device serves as the point of connection. It continuously
sends data to the cloud, which can be analyzed, and receives updates. This process
can continue indefinitely.

The following section provides a detailed analysis of the PoC structure, covering
the edge device, cloud infrastructure, their connection, and data analysis system.
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Proof Of Concept

This chapter explores the PoC phase within the context of the thesis, aiming to
validate the feasibility and efficacy of implementing SDV technologies. The main
objective of this chapter is to translate theoretical concepts into concrete results,
demonstrating the practical application of SDV in real-world situations. Through
the PoC, we aim to confirm the fundamental principles and features of SDV, in-
cluding its potential impact on vehicle performance, user experience, and overall
safety.

The multifaceted nature of SDV requires a structured approach to its imple-
mentation, taking into account factors such as standardized hardware, cloud inte-
gration, and OTA updates. To achieve this, a PoC was designed to address these
components individually and holistically, ensuring a seamless integration that aligns
with the envisioned paradigm shift in automotive manufacturing. Furthermore, this
chapter aims to demonstrate the collaborative efforts with industry-leading tech-
nologies and platforms, highlighting the strategic partnerships forged with key play-
ers in the automotive and software development sectors. By aligning with renowned
entities, the PoC aims to leverage their expertise, technologies, and frameworks,
thereby enhancing the robustness and scalability of the SDV ecosystem.

The PoC exploration utilizes the description of services and technologies pro-
vided by AWS in IoT, data management, and automotive industries, which are
essential for the project’s implementation.

Now, let’s look at the components of the PoC in detail through a high-level
architectural representation of the previously introduced elements and a more de-
tailed analysis of the code that compose them.

5.1 Architectural design

This section delves into the heart of the project implementation, starting with a
high-level view of the various systems that make up its realization and transitioning
to a visualization of the interactions between the various elements.

The study and analysis of the SDV case study revealed that three fundamental
elements were essential to create a concrete example of SDV implementation:
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❼ TCU simulator: The TCU simulator is a system that replicates the basic
functions of a telematic control unit (TCU). The system has the capability
to send data packets and receive updates from a cloud server structure.

❼ Cloud infrastructure: The cloud infrastructure must be capable of man-
aging both the data from the TCU and the update function.

❼ Data viewer: The data viewer is a platform that enables the visualization of
manipulated and processed data in a manner that clearly displays changes in
data behavior resulting from variations in the data and updates to the TCU.

With these three elements, a practical implementation made it possible to
achieve what should happen in an SDV: having a vehicle system capable of updat-
ing itself via OTA updates. To support this implementation, it was necessary to
use the services previously mentioned for creating the cloud infrastructure through
the services made available by AWS.

5.1.1 TCU Simulator

This project considers a TCU to be a hardware system capable of generating data
from one or more subsystems of a potential vehicle, collecting it, and then preparing
it for transmission outside the vehicle. To familiarize with this structure and to
design the sample project, it was necessary to simulate a TCU in a way that was as
close as possible to a real system, without having the availability of a real vehicle.
Therefore, to simplify the concept, a Raspberry Pi board was chosen as the TCU
endpoint capable of generating telemetric data.

Figure 5.1. Illustration of a Raspberry Pi board with its periferics [10]

As shown in the figure above 5.1 a Raspberry Pi is a board containing everything
necessary to function as an independent system to which various peripherals can
be attached, making it the ideal abstraction of a general-purpose TCU needed
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to implement the SDV case study. Before working with the raspberry, it was
necessary to implement the project on a virtual machine, which greatly facilitated
the development and testing of the written code on a PC with a different operating
system and architecture than the Raspberry Pi board.

The simulator was thought to consist of four different software components,
each with its own functionality, during its various stages of development:

❼ A component is responsible for connecting to the cloud server to send telem-
atics data;

❼ A component for establishing a connection to the cloud server in order to
update the telematics unit;

❼ A component for generating telematics data;

❼ A component for recognizing and managing local unit updates.

An external script manages the startup of the simulation unit via command line
using the four items.

Analyzing these four elements in detail, the first element in chronological order
was the component responsible for connecting the system to the cloud infrastruc-
ture via the MQTT protocol. This component required the presence of an active
cloud-side IoT Core service, which, as we will discuss later, generates a certificate
with an attached public and private key pair to ensure the device’s identity. The
consideration of the cloud infrastructure will be analyzed later when the cloud
infrastructure is discussed.

In order to establish a connection to the cloud platform, the following code
snippet from listing 5.1 is analyzed. The Python script launches and establishes a
connection to the AWS IoT Core server using the function specified on line 1 from
the designated library. This enables the data to be sent to the server. The code
on line 12 creates an MQTT client. On line 13, the code configures the client’s
host name and port number. Finally, on line 14, the code is configured with the
authentication certificates. It is important to note that these files are stored locally
on the device and must be accessed by the linking script. The MQTT connection
will be established on the topic specified on line 19. This will enable the AWS
service, which will be connected to the topic through appropriate policies (as we
will see later), to receive the transmitted data.

Listing 5.1. MQTT connection to the AWS IoT Core AWS service

1 from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient

2 certificate_path="./Permanent/Certificates/"

3 def telemetry_handler():

4 global mqttc

5 global connection_event

6 VIN = "HawkbitDevice001" ##This is the Thing name

7 ENDPOINT = "**********.amazonaws.com" #This field contains

the aws region

8 CERT_FILEPATH = f"{certificate_path}{VIN}.cert.pem"
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9 PRIVATE_KEY_FILEPATH = f"{certificate_path}{VIN}.private.key"

10 ROOT_CA_FILEPATH = f"{certificate_path}root-CA.crt"

11 mqttc = AWSIoTMQTTClient(VIN)

12 mqttc.configureEndpoint(ENDPOINT, 8883)

13 mqttc.configureCredentials(ROOT_CA_FILEPATH,

PRIVATE_KEY_FILEPATH, CERT_FILEPATH)

14 if mqttc.connect():

15 print("Connected␣to␣IoT␣core.␣Now␣the␣device␣sends␣its␣

telemetry␣every␣1␣seconds")

16 connection_event.set() #Send connected signal to the main

17 publish_topic = f"device/{VIN}/telemetry"

The second item of analysis used in the realization of the simulator is the com-
ponent that allows connecting to the OTA server to detect and download OTA
updates. This was made possible by utilizing the ’Device Simulator’ provided by
Hawkbit. The simulator is a Java script that takes advantage of the Hawkbit Server
interface to connect to the server and listen for updates specifically targeted to the
device.

The code automatically establishes the connection when started through the
simulation properties. For experimental design purposes, the device name is set
statically as shown on line 2 of code fragment 5.2, while the server’s Internet Pro-
tocol (IP) address to connect to is taken as input in the provided code 5.3, as shown
on line 6.

Listing 5.2. Simulation properties of the Hawkbit Device Simulator

1 public static class Autostart {

2 private String name = "HawkbitDevice001";

3 private int amount = 1;

4 @NotEmpty

5 private String tenant = "DEFAULT";

6 private Protocol api = Protocol.DMF_AMQP;

7 private String endpoint = "http://localhost:8080";

8 private int pollDelay = (int) TimeUnit.MINUTES.toSeconds(30);

9 private String gatewayToken = "";

10 ...

11 }

Listing 5.3. Input arguments to set the ip of the OTA server to contact

1 public static void main(final String[] args) {

2 //take endpoint rabbit server as input

3 if (args.length > 0) {

4 String newHost = args[0];

5 if (!newHost.isEmpty()) {

6 System.setProperty("spring.rabbitmq.host", newHost);

7 }

8 }

9 SpringApplication.run(DeviceSimulator.class, args);

10 }
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As demonstrated in the relevant sections of source code 5.4, when the device
receives a download signal, it performs a series of security checks before starting
to download the received data into the folder specified in line 4 of the code, using
a stream that takes the incoming data from the link and places it in the selected
folder, with the filename obtained from the download Uniform Resource Locator
(URL).

Listing 5.4. Downloading files from the OTA server to the specific
device simulator folder

1 private static long getOverallRead(final CloseableHttpResponse

response, final MessageDigest md, final String url) throws

IOException {

2 long overallread = 0L;

3 String[] urlParts = url.split("/");

4 File downloadFolder = new File("./TCU/downloads");

5 if (!downloadFolder.exists()) { //If "Download" folder

doesn’t exist

6 boolean created = downloadFolder.mkdirs();

7 if (!created) {

8 System.err.println("Error␣in␣the␣directory␣creation!");

9 }

10 }

11 File downloadFile = new File("./TCU/downloads/"+urlParts[10]);

12 try (FileOutputStream outputStream = new

FileOutputStream(downloadFile);

13 final BufferedOutputStream bos = new BufferedOutputStream(new

DigestOutputStream(outputStream, md))) {

14 try (BufferedInputStream bis = new BufferedInputStream(

response.getEntity().getContent())) {

15 byte[] buffer = new byte[8192]; //byte dimension from

createBuffer of ByteStream.class

16 int bytesRead;

17 while ((bytesRead = bis.read(buffer)) != -1) {

18 bos.write(buffer, 0, bytesRead); //Here only for

the md hash correctness.

19 overallread += bytesRead;

20 }

21 }

22 }

23 return overallread;

24 }

During the TCU software update phase, at the time the server sends the update,
the device in charge of listening for the update receives the update signal and the
update download, the log file is written. The file is created in a specially created
location each time the system is booted, or it is overwritten if it already exists. It
will print a confirmation if the download was successful 5.2, and the cause of the
error if the download was unsuccessful.
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Figure 5.2. Update log file of the Device Simulator

The third component of the simulator is the heart of the TCU, which is the
system that can generate the simulated vehicle data that changes in a progressive
manner over time. This component has undergone several modifications during the
course of development, in particular it was initially designed as a command line
interface device written in Python language.

More specifically, as shown in Figure 5.3, in the first version of the simulator,
once started, based on commands given by the user via the command line, it was
able to increase or decrease its simulated speed to a limit until it stopped. The
speed information, which varied over time, was sent every second to the component
that manages communication with the AWS IoT Core server and then sent to the
server.

Figure 5.3. A snapshot of the first version of the TCU interface

In this case, there were two different versions of the speed handler code: the
first one represented the initial state of the simulated vehicle, while the second one
represented the vehicle after the update. In this way, it was clear that the update
of the vehicle had occurred.

At a later stage, for the creation of the final Python TCU, it was decided to
increase the number of telemetry data provided in such a way as to be able to collect
and analyze a more realistic number of values in the cloud, but at the expense of a
predefined data generation not decided by the user. This solution solved the fact
that a real TCU would not present a graphical interface, but would simply collect
the data generated by the subsystems present in the vehicle as a function of time.
In this case, it was possible to build five subsystems capable of generating data
every second in a way that can be considered as close as possible to a real system,
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then this data is collected by an orchestrating script 5.5 that aggregates it to make
it ready to be sent to the listening cloud service.

Listing 5.5. TCU orchestrator that collects data from other subsystems

1 for sub in subsystems:

2 values[sub.get_name()] = sub.get_info(t)

3 values["Timestamp"] = datetime.isoformat(datetime.utcnow())

4 values["DeviceID"] = f"{VIN}"

5 print(values)

6 messageFinal=json.dumps(values)

7 mqttc.publish(publish_topic, messageFinal, 0)

As shown in code 5.5, an iteration is performed on each subsystem present in
the simulator, the data is collected in Json format and sent to the AWS IoT Core
service through the previously seen object in script 5.1 to establish the connection
with the service itself. This system allows you to have maximum modularity of the
subsystems, therefore possibly being able to add new ones with future updates, the
only constraint is to specify the list of present subsystems in the Python init 5.6
file and then add any new subsystems present.

Listing 5.6. TCU init file for the import of the TCU subsystems

1 from .airConditioning import AirConditioning

2 from .airbag import Airbag

3 from .heatedSeats import HeatedSeats

4 from .abs import ABS

5 from .engine import Engine

6 from .battery import Battery

7 subsystems = [Engine(), Battery(), AirConditioning(), Airbag(),

HeatedSeats(), ABS()]

Now, we will examine one of the sample subsystems developed for the project
and assess its primary functions. A simulator has been implemented to generate
data from a hypothetical vehicle battery in the case of hybrid or fully electric
vehicles. This subsystem reports three main pieces of information: the energy added
to the battery through regenerative braking, the total energy stored in the battery
at a given moment, and the battery temperature at a given instant. The vehicle is
considered a system where an electric motor provides energy during acceleration,
causing a decrease in the battery’s energy. During deceleration, part of the energy
is stored in the battery through regenerative braking. The battery’s temperature
varies over time due to these operations.

The functions listed in code block 5.7 are the most important parts of the
class composing the subsystem simulator. These functions practically identify the
common parts of each subsystem present in the project. The telemetry data is first
aggregated in a Json format and then returned by these functions. Additionally,
a function is required to return an identifying name of the subsystem. This name
is useful to the orchestrator shown previously in 5.5 at line 2 for constructing the
data packet to be sent to the server correctly.
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Listing 5.7. Battery subsystem return code

1 def get_info(self, time):

2 return {

3 "StateOfCharge" : self.stateOfCharge,

4 "BatteryTemperature": self.batteryTemperature,

5 "EnergyAdded" : self.energyAdded,

6 }

7 def get_name(self):

8 return "Battery"

During the updating phase, this data 5.4, as well as all other subsystems, is created
using a different algorithm. This ensures that when the telemetry data is analyzed,
the download event is clearly visible. It is important to note that each Python
subsystem has a related set of tests that can be utilized by the cloud structure, as
analyzed further below.

Figure 5.4. A snapshot of the TCU simulator on the virtual machine

In the final phase of the project, it was decided to modify the simulator to
use a compiled script. This change makes the system more similar to a real world
situation, since in a real environment there would be systems where it is not possible
to have scripts based on interpreters such as the Python language, for reasons of size
and resources, but where compiled programs are needed, which are more optimized.
In order to do so and to give a concrete demonstration of the changes made to the
infrastructure as analyzed in the following, it was decided to create a much simpler
TCU simulator in C language (C simulator code).

In order to be compatible with both the first and second versions of the simu-
lator (for backward compatibility), it was also necessary to adapt the orchestrator
element 5.5 to be capable of recognizing the type of simulator to which it would
be interfaced with. To make this possible, a specification file indicating the type of
simulator used 5.8 was added to each TCU simulator.
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Figure 5.5. A snapshot of the TCU compiled simulator on the Raspberry Pi interface

Listing 5.8. Manifest example of compiled TCU simulator

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <project>

3 <name>C Project</name>

4 <language>C</language>

5 <compiler>gcc</compiler>

6 <build_command>gcc main.c -o main.exe</build_command>

7 <run_command>./main.exe</run_command>

8 </project>

The TCU simulator’s download recognition system is the last element to be
explored in detail. It is capable of activating downloads and ensuring that new
elements are fully functional within the TCU system. Essentially, it functions as
an edge agent, providing some of the tasks that the AWS IoT Greengrass service
would have performed in parallel if AWS IoT Greengrass had been used on the
edge device.

Listing 5.9. Main function of the update recognition system

1 from watchdog.observers import Observer

2 from watchdog.events import FileSystemEventHandler

3 folder_to_watch = ’./TCU’ # Define the folder to monitor

4 def main():

5 global observer

6 while True:

7 observer = Observer() # Create an observer

8 event_handler = DownloadHandler()

9 observer.schedule(event_handler, folder_to_watch,

recursive=True) # Attach the event handler to the

observer

10 observer.daemon = True

11 observer.start() # Start the observer in a separate

thread

12 observer.join() # Wait for the observer to finish

operations

13

14 class DownloadHandler(FileSystemEventHandler):
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15 def on_created(self, event):

16 update_file(event)

17

18 def on_modified(self, event):

19 update_file(event)

The Python script remains in an infinite loop, waiting for changes to the folder
defined in line 3, using the libraries shown in lines 1 and 2 of code 5.9. If a folder
is created or modified, and updates from the server infrastructure are downloaded
(which will be analyzed in a later subsection), this program aims to detect the
processes involved in the execution of the TCU simulator (as done in lines 3 and 12
of code 5.10) and kill the identified processes. Meanwhile, the update file will be
identified by a compressed folder, as specified by the update pipeline (which will
be analyzed later). The update files will then be extracted according to line 19 of
the code. Finally, this component will reboot the entire system so that the update
can be installed and take effect.

Listing 5.10. Code for performing actions when the designated down-
load folder is changed

1 def update_file(event):

2 global observer

3 process = subprocess.Popen(["pgrep", "-f", "OS.py"],

stdout=subprocess.PIPE, text=True)

4 output, _ = process.communicate()

5 pid_to_kill_list = output.splitlines()

6 if not event.is_directory and (’downloads’ in

event.src_path): #If the new item is a directory

7 print(f"src_path␣type:␣{type(event.src_path)}")

8 print(f"New␣file␣downloaded:␣{event.src_path}")

9 for pid_to_kill in pid_to_kill_list:

10 print(f"Pid␣to␣kill:␣{pid_to_kill}")

11 os.kill(int(pid_to_kill), signal.SIGTERM)

12 process = subprocess.Popen(["pgrep", "-f", "start.sh"],

stdout=subprocess.PIPE, text=True)

13 output, _ = process.communicate()

14 pid_to_kill_list = output.splitlines()

15 for pid_to_kill in pid_to_kill_list:

16 print(f"Pid␣to␣kill:␣{pid_to_kill}")

17 os.kill(int(pid_to_kill), signal.SIGTERM) #Kill the

process

18 if ’.zip’ in event.src_path:

19 with zipfile.ZipFile(event.src_path, ’r’) as zip_ref:

20 zip_ref.extractall(folder_to_watch)

21 else:

22 shutil.copy(event.src_path, folder_to_watch)

23 print("File␣updated!")

24 observer.stop()
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Figure 5.6. A snapshot of the TCU recognition module logs

The TCU simulator is composed of the three elements analyzed so far, and their
evolution during the project made it possible to create a system compatible with
systems based on Arm architectures, that is the Raspberry Pi, capable of generating
telemetry data and sending them to the cloud server connected through AWS IoT
Core, receiving updates, and rebooting the system to make the updates effective
and active. Simulations were performed on virtual machines with ”x86 architecture
processors”. The project will proceed to real test phases on actual systems once all
necessary information has been acquired.

5.1.2 Cloud Infrastructure

Now the core of the project will be analyzed in detail, which is the cloud structure
that allows, through the services offered by AWS previously introduced, both the
connection of the vehicle to send, analyze and manipulate data telemetry, and the
cloud structure that allows the execution of the Hawkbit server for the deployment
of the update. This part of the project, as well as the previous one of the TCU
simulator, experienced several changes during the implementation of the project,
starting from a more experimental part of analysis and study of the various services,
passing through a part of use more concretely linked to the development of the
project, always relying on the console visualization tools, to arrive at a phase of
creation of the entire structure through CDK, by executing the various stacks using
Python script. To avoid unnecessary repetition of operations, to simplify things,
it was decided to directly analyze the structure of the stack built with CDK. In
the following sections, each component of the structure will be examined in detail,
assuming that there is already a general and theoretical knowledge of the various
services used.

The initial stack analyzed is related to the construction of AWS IoT Core ser-
vices for device connectivity, that is, the connection of the TCU simulator to the
cloud service for collecting telemetry data. In order to utilize the AWS IoT Core
service, an AWS IoT Core Thing had to be defined, which can be described as
the cloud-based version of the device’s digital twin. After creating the IoT device
assigning it a name (as shown in line 1 of code 5.11), policies were added to enable
connection with the TCU simulator and exchange of telemetry data via the MQTT
protocol (line 4).
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Listing 5.11. Code for the creation of AWS IoT Core Thing and related policies

1 cfn_thing=iot.CfnThing(self, "HawkbitDevice",

2 thing_name="HawkbitDevice001"

3 )

4 cfn_policy = iot.CfnPolicy(self, "CfnPolicy", # Create a policy

of the certificate

5 policy_document={

6 "Version":"2012-10-17",

7 "Statement":[{

8 "Effect":"Allow",

9 "Action":["iot:Connect"],

10 "Resource":[f"arn:aws:iot:"+region+":"+account+":client/"

+ cfn_thing.thing_name]

11 },

12 {

13 "Effect": "Allow",

14 "Action": ["iot:Publish"],

15 "Resource":[f"arn:aws:iot:"+region+":"+account+":topic/*"]

16 }]},

17 policy_name=f"{cfn_thing.thing_name}IoTCertPolicy",

18 )

Note that, in this and all other stacks, the region and account Identification (ID) are
taken directly from the CDK functionality. The process of creating certificates was
then implemented using Boto3 functions to save resources. Code 5.12 certificates
and their related keys are generated using a string seed and saved in a local directory
for use in the physical device. The certificates are then returned to the CDK for use
by the stack in saving to the AWS IoT Core Thing. The two-second waiting period
at line 23 is a precautionary measure to ensure the completion of the certificate
creation operation.

Listing 5.12. Code for the creation of AWS IoT Core Thing certificates and keys

1 import boto3

2 import os

3 SECRET_NAME = "****"

4 iot = boto3.client(’iot’, region_name=’*****’)

5 def on_create(thing_name):

6 response = iot.create_keys_and_certificate(setAsActive=True)

7 certificate_id = response[’certificateId’]

8 certificate_pem = response[’certificatePem’]

9 key_pair = response[’keyPair’]

10 directory_path="./certificates"

11 if not os.path.exists(directory_path):

12 os.makedirs(directory_path)

13 file_path = os.path.join(directory_path,

f"{thing_name}.private.key")

14 with open(file_path, ’w’) as file:

15 file.write(key_pair[’PrivateKey’])
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16 file_path = os.path.join(directory_path,

f"{thing_name}.public.key")

17 with open(file_path, ’w’) as file:

18 file.write(key_pair[’PublicKey’])

19 file_path = os.path.join(directory_path,

f"{thing_name}.cert.pem")

20 with open(file_path, ’w’) as file:

21 file.write(certificate_pem)

22 time.sleep(2)

23 return {

24 ’PhysicalResourceId’: certificate_id,

25 ’Data’: {

26 ’certificateId’: certificate_id

27 }}

To enable the creation of security files via Boto3, separate from the CDK stack,
a status variable was introduced to indicate the deploy or destroy status of the
system 5.13. This was necessary to synchronize the deployment of the certificate
and keys. Contrary to the rest of the mechanisms built into the CDK, the Boto3
functions are independent and not affected by the CDK commands. If this state
variable had not been used, there would have been a misalignment between CDK
stack for the AWS IoT Core Thing creation and Boto3 certificates. CDK functions
can be used to destroy the certificate and keys as in line 5. Finally, the created
certificate is linked to the relevant policy and to the AWS IoT Core Thing for
proper usage.

Listing 5.13. Code for the creation and destruction of AWS IoT Core Thing
certificates and keys from the CDK stack

1 if (status=="deploy"): # Creation of certificate with Boto3

2 certificate=cert_handler(cfn_thing.thing_name)

3 else:

4 certificate={"Data": {"certificateId": "Null"}}

5 print(f"{certificate[’Data’][’certificateId’]}")

6 deactive_certificate_resource = cr.AwsCustomResource(self,

"DeactiveCertificateResource",

7 on_delete=cr.AwsSdkCall(

8 service="Iot",

9 action="UpdateCertificate",

10 parameters={

11 "certificateId":

f"{certificate[’Data’][’certificateId’]}",

12 "newStatus": "INACTIVE",

13 },),

14 policy=cr.AwsCustomResourcePolicy.from_sdk_calls(

15 resources=cr.AwsCustomResourcePolicy.ANY_RESOURCE

16 ))

17 delete_certificate_resource = cr.AwsCustomResource(self,

"DeleteCertificateResource", # Destruction of certificates
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18 service="Iot",

19 action="DeleteCertificate",

20 parameters={

21 "certificateId":

f"{certificate[’Data’][’certificateId’]}",

22 "forceDelete": f"{True}"

23 },),

24 policy=cr.AwsCustomResourcePolicy.from_sdk_calls(

25 resources=cr.AwsCustomResourcePolicy.ANY_RESOURCE

26 ))

27 deactive_certificate_resource.node.add_dependency(

delete_certificate_resource )

The next step in building the cloud infrastructure involves creating the necessary
environment for the Hawkbit server. The idea is to use a basic Amazon EC2 machine
to build the server on, which, as discussed later, will be contacted by the AWS
Codepipeline via the server’s Application Programming Interface (API) interfaces
to deploy the updates. To create the Amazon EC2 instance, as shown in code 5.14,
requires a Amazon VPC network in which to insert the instance itself as in line 1,
an AMI that contains everything necessary for the computer to run properly (line
2), and a role that can provide the correct policies for the computer to function
properly (line 3).

Listing 5.14. Code for the creation the EC2 Hawkbit server istance

1 vpc = ec2.Vpc(self, "VPC",

2 nat_gateways=0,

3 subnet_configuration=[ ec2.SubnetConfiguration(

name="public",subnet_type=ec2.SubnetType.PUBLIC ) ]

4 )

5 generic_linux = ec2.MachineImage.generic_linux({ # AMI

6 ’eu-west-1’: ’ami-0905a3c97561e0b69’,

7 })

8 role = iam.Role(self, "InstanceSSM",

assumed_by=iam.ServicePrincipal("ec2.amazonaws.com"))

9 role.add_managed_policy(

iam.ManagedPolicy.from_aws_managed_policy_name(

"AmazonSSMManagedInstanceCore" ) )

10 instance = ec2.Instance(self, "Instance", # Instance

11 instance_type=ec2.InstanceType("t2.small"),

12 machine_image=generic_linux,

13 vpc = vpc,

14 role = role,

15 )

After creating the Amazon EC2 machine instance, it is necessary to modify its
properties to ensure correct operation of the Hawkbit server. Specifically, two ports
must be opened for Hypertext Transfer Protocol (HTTP) connections 5.15. This
allows the server to be accessible to both the CodePipeline for deploying updates
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from the CodePipeline to the server, and the TCU simulator device for downloading
updates from the server to the edge device [68].

Listing 5.15. Code for opening the server doors

1 instance.connections.connections.allow_from_any_ipv4(

ec2.Port.tcp(8080), "Allow␣inbound␣HTTP␣traffic" )

2 instance.connections.connections.allow_from_any_ipv4(

ec2.Port.tcp(5672), "Allow␣inbound␣HTTP␣traffic" )

At this step, it is possible to insert commands directly into the created machine,
which are interpreted as command-line inputs necessary to start the server via the
Docker image 5.16. Specifically, a Docker-compose file is used to instantiate all the
necessary server elements, including a database to record various information and
a queue manager to manage external connections 5.17. Note that the properties
mentioned in the code on line 36 are present in a local file. These properties are
necessary to set the correct IP address in the server’s Docker image interface. The
Docker-compose file was created based on information from the Hawkbit guide.

Listing 5.16. Code to run commands on the machine

1 file_path = "./files/docker-compose.yml"

2 with open(file_path, ’r’) as file:

3 docker_compose = file.read()

4 instance.user_data.add_commands(

5 ’sudo␣apt-get␣update␣-y’,

6 ’sudo␣apt-get␣install␣-y␣docker-compose’,

7 f’sudo␣echo␣-e␣"{docker_compose}"␣>␣

/home/ubuntu/docker-compose.yml’,

8 ’sudo␣sed␣-i␣"s/\[server_ip_address\]/✩(sudo␣curl␣-s␣

http://169.254.169.254/latest/meta-data/public-ipv4)/g"␣

/home/ubuntu/docker-compose.yml’,

9 ’sudo␣docker-compose␣-f␣/home/ubuntu/docker-compose.yml␣up␣

-d’,

10 )

Listing 5.17. Hawkbit server Docker compose

1 version: ’3’

2 services:

3 rabbitmq:

4 image: ’rabbitmq:3-management’

5 restart: always

6 ports:

7 - ’15672:15672’

8 - ’5672:5672’

9 labels:

10 NAME: ’rabbitmq’

11 mysql:

12 image: ’mysql:8.0’

13 environment:
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14 MYSQL_DATABASE: ’hawkbit’

15 # MYSQL_USER: ’root’ is created by default in the

container for mysql 8.0+

16 MYSQL_ALLOW_EMPTY_PASSWORD: ’true’

17 restart: always

18 ports:

19 - ’3306:3306’

20 labels:

21 NAME: ’mysql’

22 hawkbit:

23 image: ’hawkbit/hawkbit-update-server:latest-mysql’

24 environment:

25 - ’SPRING_DATASOURCE_URL=␣

jdbc:mariadb://mysql:3306/hawkbit’

26 - ’SPRING_RABBITMQ_HOST=rabbitmq’

27 - ’SPRING_RABBITMQ_USERNAME=guest’

28 - ’SPRING_RABBITMQ_PASSWORD=guest’

29 - ’SPRING_DATASOURCE_USERNAME=root’

30 - ’HAWKBIT_ARTIFACT_URL_PROTOCOLS_DOWNLOAD-HTTP_HOSTNAME=␣

[server_ip_address]’

31 - ’HAWKBIT_ARTIFACT_URL_PROTOCOLS_DOWNLOAD-HTTP_IP=␣

[server_ip_address]’

32 restart: always

33 ports:

34 - ’8080:8080’

35 volumes:

36 - ./application.properties:

/opt/hawkbit/application.properties

37 labels:

38 NAME: ’hawkbit’

The final step in the Hawkbit Amazon EC2 server stack involves saving the
necessary parameters in the Parameter Store of the System Manager to connect
the AWS CodePipeline with the Hawkbit server via its APIs. For example, let’s
consider the saving of one of the parameters, specifically the IP address of the
Amazon EC2 machine in code 5.18. The interaction with the System Manager
was performed using custom components of the CDK. The identifying name of the
parameter, the value, and the type of the variable to be saved are indicated from
line 5. In this case, the variable will simply be saved as a String since it does
not need to be obscured, this is different from the user’s password, which is saved
as SecureString. The address is retrieved from the newly created instance using
CDK functions in the line 7 of the code. The Lambda functions utilized in the
CodePipeline will then access the saved parameters as will be examined later.

Listing 5.18. Code for the Parameter Store parameters creation

1 create_param3 = cr.AwsCustomResource(self, "CreateParam3",

2 on_create=cr.AwsSdkCall(

3 service="SSM",
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4 action="PutParameter",

5 parameters={

6 "Name": "/hawkbitServer/ip_address",

7 "Value": f"{instance.instance_public_ip}",

8 "Type": "String"

9 },

10 physical_resource_id=

cr.PhysicalResourceId.of("create_param3")

11 ),

12 on_delete=cr.AwsSdkCall(

13 service="SSM",

14 action="DeleteParameter",

15 parameters={

16 "Name": "/hawkbitServer/ip_address",

17 },

18 physical_resource_id=

cr.PhysicalResourceId.of("delete_param3")

19 ),

20 policy=cr.AwsCustomResourcePolicy.from_sdk_calls(

21 resources=cr.AwsCustomResourcePolicy.ANY_RESOURCE

22 ))

Let’s now analyze the construction of the pipeline for managing updates via
CodePipeline. Two pipeline variants were elaborated during the development phase:
one for managing updates via Python scripts, and one for managing compiled up-
dates, written in the C language. To prevent description redundancy of the code,
the two CodePipelines will be analyzed step by step. Common stages will be ex-
plained only once, while the specifics of the reference CodePipeline will be discussed
for the discordant parts. The Stack for updates in C language will serve as a ref-
erence for the common parts of CodePipeline. To begin, create a Codecommit
repository for the pipeline source 5.19. The CodeCommit repository will contain
the code and functionality to update the TCU simulator unit seen previously. The
update will be created from a local ZIP file as shown in line 4. For the C-compiled
pipeline, use the source code provided in the zip file for compilation. The Python
script for the CodePipeline Python does not require compilation and will be ready
to run in theory.

Listing 5.19. CDK Code for the creation of the TCU simulator Code-
Commit repository

1 code_repo = codecommit.Repository(

2 self, "HawkbitDeviceC",

3 repository_name="HawkbitDeviceC",

4 code = codecommit.Code.from_zip_file(

"./repos/Lorenzo_DeviceC.zip", "master" ) # Copies files

from app directory to the repo as the initial commit

5 )

The CodeCommit repository is placed in the first stage of the pipeline, as shown
in 5.20. Each CodePipeline stage can use an artifact as input and output. Since this
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is the first stage, only an output artifact is set, as shown in line 2. The pipelines
require a default artifact bucket, which is an Amazon S3 bucket or folder, as shown
in line 1, and can be used by the pipeline if needed as will be shown in the actual
pipeline creation phase later.

Listing 5.20. CDK code for the CodeCommit source stage set up

1 artifact_bucket = s3.Bucket.from_bucket_arn(self,

f"codepipeline-{region}-****",

f"arn:aws:s3:::codepipeline-{region}-****") #default

codepipeline bucket

2 source_artifact = pipeline.Artifact("SourceArtifact")

3 source_stage = pipeline.StageProps(

4 stage_name="Source",

5 actions=[

6 pipelineactions.CodeCommitSourceAction(

7 action_name="CodeCommit",

8 branch="master",

9 output=source_artifact,

10 repository=code_repo,

11 variables_namespace="SourceVariables"

12 )])

The next stage requires separate and specific descriptions for both the Python
and C pipelines. This stage concerns the build process. Specifically, for the build
stage of the compiled update in C, it is essential to establish a dedicated CodeBuild
stage for compiling C scripts since it is not directly supported by the CodeBuild
service through the use of an Amazon ECR registry. A second supporting Code-
Pipeline is created by following the steps shown in code 5.21. The first step involves
creating a CodeCommit repository (at line 4) that contains the necessary informa-
tion for building the new CodeBuild module to compile the script. This includes
a Dockerfile for configuring the image with the necessary command to be created
and a configuration file for the second pipeline build phase. The second stage of
this pipeline involves the Codebuild stage (line 20), which is the actual creation
of the image, placed into a special Amazon ECR (line 15). This Amazon ECR is
then used in the update pipeline. It is important to note that during the creation
of the second pipeline different roles are created with the related policies for the
interaction between the different components.

Listing 5.21. CDK code for the Codepipeline for the C compiled file build creation

1 C_custom_code_repo = codecommit.Repository(

2 self, "HawkbitCCustomBuildImageRepo",

3 repository_name="HawkbitCCustomBuildImage",

4 code= codecommit.Code.from_zip_file(

"./repos/HawkbitCCustomBuildImage.zip", "main" )

5 )

6 source_stage_c = pipeline.StageProps(

7 stage_name="Source",

8 actions=[

9 pipelineactions.CodeCommitSourceAction(
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10 action_name="CodeCommit",

11 branch="main",

12 output=source_artifact_c,

13 repository=C_custom_code_repo,

14 )])

15 ecr_repository = ecr.Repository(self, "HawkbitCBlogRepo",

16 repository_name="hawkbit-C-blog",

17 removal_policy=RemovalPolicy.DESTROY,

18 auto_delete_images=True,

19 )

20 C_custom_build = codebuild.Project(

21 self, "HawkbitCCustomBuildImageBuild",

22 build_spec=codebuild.BuildSpec.from_source_filename(

23 "buildspec.yml"),

24 source=codebuild.Source.code_commit(

25 repository=C_custom_code_repo,

26 branch_or_ref="master"),

27 environment=codebuild.BuildEnvironment(

28 build_image=

codebuild.LinuxBuildImage.AMAZON_LINUX_2_ARM_2,

29 privileged=True),

30 role=codebuild_role,

31 project_name="HawkbitCCustomBuildImage",

32 environment_variables={

33 ’ecr’: codebuild.BuildEnvironmentVariable(

34 value=ecr_repository.repository_uri),

35 ’tag’: codebuild.BuildEnvironmentVariable(

36 value=’v1’),

37 },

38 timeout=Duration.minutes(60)

39 )

40 C_custom_pipeline = pipeline.Pipeline(

41 self, "hawkbit-device-c",

42 pipeline_name="hawkbit-device-c",

43 artifact_bucket=artifact_bucket,

44 stages=[source_stage_c, build_stage_c]

45 )

In the initial CodePipeline, a machine is built during the stage to compile the
C script from the source stage using the image saved in the previously analyzed
Amazon ECR. At this point, the build stage can compile and build the necessary
C script for the update. The final result of this stage 5.22 is an executable in the
pipeline that contains the functionality produced by the C script in the Source
stage.

Listing 5.22. CDK code for the Codecommit build stage set up

1 hawkbit_build = codebuild.Project(

2 self, "HawkbitDeviceBuildC",
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3 build_spec=codebuild.BuildSpec.from_source_filename(

4 "buildspec.yml"),

5 source=codebuild.Source.code_commit(

6 repository=code_repo,

7 branch_or_ref="master"

8 ),

9 environment=codebuild.BuildEnvironment(

10 privileged=True,

11 build_image=

codebuild.LinuxArmBuildImage.from_ecr_repository(

ecr_repository, "v1")

12 ),

13 project_name="HawkbitDeviceBuildC"

14 )

15

16 build_stage = pipeline.StageProps(

17 stage_name="Build",

18 actions=[

19 pipelineactions.CodeBuildAction(

20 action_name="Build",

21 input=pipeline.Artifact("SourceArtifact"),

22 project=hawkbit_build,

23 outputs=[build_artifact]

24 )])

Figure 5.7. A snapshot of the CodePipeline source stage

Regarding the Python pipeline, the build stage is utilized as a test stage to
launch tests built specifically for the repository code. This is due to the fact that
Python scripts do not require actual code compilation. Using the pytest tool, it
is possible to initiate the battery of tests present in the code repository. This
information is located in the build configuration file within the repository.

The next stage of both pipelines contains Lambda functions that interact with
the Hawkbit server through its API. To ensure greater modularity, there are three
Lambda functions distributed over three different stages. As a first step, a dedicated
role is created for each Lambda function. This role contains the necessary policies
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for the function to perform its tasks once associated with the Lambda. Starting from
the deployment stage of the software update on the Hawkbit server, it is evident in
code 5.23 that the function is extracted from a local ZIP file and uploaded to the
Lambda service, and this approach is followed for all subsequent Lambda stages.

Listing 5.23. CDK code for the deploy software on Hawkbit server Lambda creation

1 lambda_function = _lambda.Function(

2 self,"hawkbitDeploySoftwareOnHawkbitServer",

3 function_name="hawkbitDeploySoftwareOnHawkbitServer",

4 runtime=_lambda.Runtime.PYTHON_3_11,

5 code=_lambda.Code.from_asset(

"./lambda/hawkbitDeploySoftwareOnHawkbitServer.zip"),

6 handler="hawkbitDeploySoftwareOnHawkbitServer.lambda_handler",

7 role=lambda_role,

8 log_retention=logs.RetentionDays.ONE_DAY,

9 timeout=Duration.seconds(60)

10 )

11 hawkbitDeploySoftwareOnHawkbitServer_stage = pipeline.StageProps(

12 stage_name="hawkbitDeploySoftwareOnHawkbitServer",

13 actions=[hawkbitDeploySoftwareOnHawkbitServer_invoke],

14 )

When analyzing the Lambda function, it can be seen that the calls to the
Hawkbit Server API, after obtaining all the parameters necessary for execution,
basically follow a fairly precise pattern. This is demonstrated in code 5.24 for
building the software module, which is the component of the Hawkbit server that
contains the update file. It starts by specifying the URL of the server, then specifies
the information to send in the request payload, then specifies the headers containing
the authentication information, and finally sends the HTTP request.

Listing 5.24. Lambda code for the software module creation

1 url = f"http://{server_ip}:8080/rest/v1/softwaremodules"

2 payload = json.dumps([{

3 "name": project_name,

4 "version": project_version,

5 "type": "Application",

6 "description": "Hawkbit␣device␣simulator␣module␣from␣

codecommit",

7 "vendor": "Reply",

8 "encrypted": False

9 }])

10 headers = {

11 ’Content-Type’: ’application/json’,

12 ’Authorization’: auth_header

13 }

14 response = requests.request("POST", url, headers=headers,

data=payload)

15 if response.status_code != 201:
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16 print(f"Error␣in␣the␣Software␣Module␣creation!␣␣Error:␣

{response.status_code}")

17 traceback.print_exc()

18 put_job_failure(job_id, ’Function␣exception:␣’)

19 return

20 print(’Software␣Module␣creation␣completed’)

After creating the software module, the update file is retrieved from the Amazon
S3 bucket where it was saved in the source stage and loaded into the module. Then
the distribution set is created following the same pattern as the previous software
module. In this experimental project, the distribution set only contains one software
module. It is important to note that any errors in these steps, like in any Lambda
stage, will cause the pipeline to abort and report the error.

After analyzing the Lambda stage, the Hawkbit server now has a distribution
set that includes a software module. This module contains the update file that
needs to be downloaded to the TCU simulator device. The CodePipeline proceeds
by creating two Lambda stages that perform similar operations: deploying the
distribution set to the device connected to the OTA server. Specifically, in the first
case reported in the code 5.25 a roll-out is performed, creating a fleet of devices
to which the update is scheduled. The pool of devices on which to roll out the
update is selected by reviewing the devices currently connected to the OTA server,
so given the nature of the project, the pool will consist of only one edge device. In
the second case, however, the update is directly assigned to the device. Both stages
essentially perform the same operation, but they use different APIs of the Hawkbit
server. Executing one stage excludes the execution of the other. The stages are
designed to provide the user with the maximum API usability.

Listing 5.25. Lambda code for the roll out creation and execution

1 url = f"http://{server_ip}:8080/rest/v1/rollouts"

2 payload = json.dumps({

3 "createdBy": "Reply",

4 "createdAt": int(datetime.now().timestamp()),

5 "lastModifiedBy": "Reply",

6 "lastModifiedAt": int(datetime.now().timestamp()),

7 "name":

f"{distribution_set[’name’]}{distribution_set[’version’]}",

8 "description": "Rollout␣on␣HawkbitDevice",

9 "targetFilterQuery": f"id=={target_names}*",

10 "distributionSetId": distribution_set[’id’],

11 "amountGroups": 1,

12 "type": "forced"

13 })

14 headers = {

15 ’Content-Type’: ’application/json’,

16 ’Authorization’: auth_header

17 }

18 response = requests.request("POST", url, headers=headers,

data=payload)
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19 url =

f"http://{server_ip}:8080/rest/v1/rollouts/{rollout_id}/start"

20 payload = ""

21 headers = {

22 ’Content-Type’: ’application/json’,

23 ’Authorization’: auth_header

24 }

25 response = requests.request("POST", url, headers=headers,

data=payload)

As a last point in both analyzed CDK implementations the pipeline is declared
with all the necessary stages so that it is built correctly. In practice with these stages
it is possible to build or a test the source code as needed, and perform a deployment
of the updates directly to the TCU simulator device through the use of the Hawkbit
server and its exposed API. The final stack of the cloud infrastructure created by

Figure 5.8. A snapshot of the Hawkbit server during the deployment of
the update on the device

CDK is the actual data collection stack via AWS Timestream. In this stack, a
Kinesis Data Stream is first created. The stream takes the data published to the
channel created by the device via an Structured Query Language (SQL) query and
routes it to a new destination. Next, the database and tables needed to store the
telemetry data are created. Then, the Kinesis stream is used as input, triggering
the start of a Lambda function that takes the output data from the stream as input,
decompresses and formats it so that it can be handled by Timestream, and finally
sends it to the corresponding tables, which at this point already exist because they
were created previously. Upon analyzing code 5.26 in detail, it becomes clear that
once the Kinesis Stram has been created, it is assigned a role for reading data from
the channel (line 1) and then, via a rule to be executed, is given the very instruction
to read data from the channel (line 14).

Listing 5.26. CDK code for the creation of the Kinesis stream with its role and rule

1 kinesis_stream = kinesis.Stream(self, "hawkbitDeviceData",

2 stream_mode=kinesis.StreamMode.ON_DEMAND,

3 stream_name="hawkbitDeviceData"

4 )
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5 device_to_kinesis_role = iam.Role(self,

"hawkbitDeviceToKinesis",

assumed_by=iam.ServicePrincipal("iot.amazonaws.com"),

role_name="hawkbitDeviceToKinesis")

6 device_to_kinesis_role.add_to_policy(iam.PolicyStatement(

7 effect=iam.Effect.ALLOW,

8 actions=["kinesis:*"],

9 resources=[kinesis_stream.stream_arn],

10 ))

11 device_to_kinesis_rule = iot.CfnTopicRule(self,

"fromDeviceToKinesis",

12 rule_name="HawkbitDeviceDataToKinesis",

13 topic_rule_payload=iot.CfnTopicRule.TopicRulePayloadProperty(

14 sql="SELECT␣*␣FROM␣’device/HawkbitDevice001/telemetry’",

15 actions=[iot.CfnTopicRule.ActionProperty(

16 kinesis=iot.CfnTopicRule.KinesisActionProperty(

17 role_arn=device_to_kinesis_role.role_arn,

18 stream_name=kinesis_stream.stream_name,

19 partition_key="✩{DeviceID}"

20 ),)]))

After creating the stream, the database is established. First, the general configura-
tion settings are provided, including the data retention period and the identifying
name. Then, the necessary tables shown in example code 5.27 are created one
by one. In this case, there are 5 tables since the TCU simulator device has 5
subsystems.

Listing 5.27. CDK code for the creation of the battery table of the
Timestream database

1 Battery_table = timestream.CfnTable(self, "Battery",

database_name=database.database_name,

2 schema=timestream.CfnTable.SchemaProperty(

3 composite_partition_key=

[timestream.CfnTable.PartitionKeyProperty(

4 type="DIMENSION",

5 enforcement_in_record="REQUIRED",

6 name="DeviceID"

7 )]),

8 retention_properties=retention,

9 table_name="Battery",

10 )

11 Battery_table.add_dependency(database)

The Lambda function is created at the end, with its policies attached to the role
that was specifically created for it. As demonstrated in code 5.28, the Lambda is
retrieved from a local file and imported into the AWS service. In this case, the
Lambda function processes the received data by formatting the Json format into a
flat one, so that there are no table sub-levels because they are not supported by the
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Timestream service, and organizes the data into the appropriate tables by making
an association between the data name and the table name.

Listing 5.28. CDK code for the creation of Lambda function that takes data from
Kinesis stream and sends it to the Timestream tables

1 lambda_function = _lambda.Function(

2 self,"hawkbitFromKinesisToTimestream",

3 function_name="hawkbitFromKinesisToTimestream",

4 runtime=_lambda.Runtime.PYTHON_3_11,

5 code=_lambda.Code.from_asset(

"./lambda/hawkbitFromKinesisToTimestream.zip"),

6 handler="hawkbitFromKinesisToTimestream.lambda_handler",

7 role=lambda_role,

8 timeout=Duration.seconds(60),

9 )

10 lambda_function.add_event_source(eventSources.KinesisEventSource(

11 kinesis_stream,

12 batch_size=100, # default

13 starting_position=_lambda.StartingPosition.LATEST

14 ))

Now that the entire cloud infrastructure system has been established, it is possible
to gain a better understanding of the interactions between its various components.
The system begins with four basic elements: the IoT Core Thing, the CodePipeline
pipeline, the Hawkbit server, and the Timestrem database. After creating the IoT
Core device, it can retrieve data that will be stored in the Timestrem database.
Updates can be deployed to the physical TCU simulator device through the Code-
pipeline pipeline and the Hawkbit server. After installation, the data received by
IoT Core and stored in the database will undergo a change that can be detected
during analysis. The process can be repeated indefinitely for any updates made to
the code in the development repository.

5.1.3 Data Viewer: Grafana

Grafana was selected to visualize the data in the Timestream database. It na-
tively supports linking to Timestream service as a data source by providing ac-
count credentials. To use Grafana, start a Docker container containing the server
to construct graphs using data from the chosen source, in this case, the Timestream
project.

To utilize the Grafana server, a separate virtual machine was created to connect
to the Timestream database using AWS credentials and retrieve the stored data. By
querying the Timestream tables, real-time graphs can be generated as the database
is continuously updated. It is important to maintain a consistent update cadence
between the Timestream database and the Grafana server. These queries produce
a dataset that is plotted and interpreted differently depending on the type of graph
used.

Real dashboards can be created by combining multiple graphs, even if they
display the same data, to provide different perspectives. For the purposes of this
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project, it was decided to create three dashboards for three different taballe to
represent data from the three most relevant subsystems of the TCU simulator.

With the use of these dashboards as shown in Figure 5.9, it was possible to
clearly represent the successful update of the TCU simulator device. For instance,
this example shows the simulation of a vehicle’s battery system. The dashboard
displays two progressive data sets over time and one instantaneous data set. Specif-
ically, the bottom left corner of the dashboard shows the battery temperature over
time. From this information, it is evident that the temperature exhibits greater
oscillations following the update, while remaining around a precise value. The to-
tal amount of energy present in the battery is also displayed at the bottom right,
although it is not possible to detect the presence of the update due to the instanta-
neous nature of the data. Above, the graph shows the progression of energy added
to the battery over time. It is evident that after the update, the addition of energy
to the battery increased significantly after one second. This observation is based on
the detected data. With this update, the goal is basically to simulate an improve-
ment in performance related to the recovery of energy from regenerative braking,
and this is shown in the graph both with the fact that after a certain moment the
energy present in the battery is higher, and with the fact that the total net energy
accumulated by regenerative braking is higher after the update.

Figure 5.9. A snapshot of the ABS graph on the Grafana server

The dashboards for the Anti-lock Braking System (ABS) system of the TCU
simulator are produced in Graphana. This allows for easy detection of updates
through changes in the data. The data shows improved performance of regenerative
braking, resulting in less energy needed for the physical brakes to apply to the discs.
As a result, the simulated temperatures are lower. The dashboard for the vehicle’s
acceleration system is presented last.

To provide a complete summary of all the PoC elements, the system interacts as
described below. Firstly, launch the CDK script to activate the supporting cloud
infrastructure immediately. This will also generate the necessary certificates for
device authentication. Secondly, after correctly positioning the certificates, it will
be necessary to start the TCU simulator device by providing the correct IP address
of the Hawkbit server to connect to for any future updates. Once a sufficient amount
of data has been produced and analyzed in the Grafafana dashboard, updates can
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be made. The AWS CodeCommit repository can be used to produce a specific
code that represents the source of the update. After a commit is made on the
master branch, the pipeline will deploy the update on the Hawkbit server and the
device. Once the update is received, the TCU simulator will position the functions
correctly and restart the system for the update to work effectively. At this point,
there are two ways to evaluate the update: either through the log files produced
directly on the device (if access to the physical device is available), or by analyzing
the data produced by the TCU simulator after the update, which at this point
will be different from the initial data. The execution of this complex system was
confirmed during the testing phase with the demo on the real Raspberry Pi device,
as will be seen later.
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Chapter 6

Conclding Remarks

In this final chapter, first of all, the results obtained with the test demo of the
project developed during the course are presented, then an analysis is made in
relation to the objectives proposed by the thesis, evaluating what has been achieved
and the future work that can be related to the project.

This chapter aims to be a conclusion for the thesis work done, both from the
descriptive side by providing a summary of the work done, and from the practical
side of project development, but also with the purpose of providing open options for
furthering the project. The SDV technologies are very young and there are many
development ideas. In addition, as an open project with the objective of creating
a standard for the entire automotive industry, there are many opportunities for
collaboration.

Let’s start the description with the conclusions gathered with the final test demo
of the project on Raspberry Pi.

6.1 Test and Validation on Raspberry Pi

To create the test demo, a Raspberry Pi 4 board was used, with an architecture
based on Cortex-A72, a processor from the Arm family. This device was found to
be the best solution for simulating a modern automotive TCU physical system.

First of all, it was necessary to instantiate the cloud stacks of AWS services so
that the supporting cloud structure was operational and ready to interact with the
board. Once the necessary certificates for communication with the cloud platform
had been obtained, it was possible to insert the communication scripts on the
Raspberry Pi.

Once the script was started, the communication was successful and the gener-
ated data arrived at the cloud server ready to be analyzed, as shown in the image
6.1. The only difference compared to the simulations performed on a local vir-
tual machine was the time it took to receive the data. In particular, in the case
of the Raspberry Pi, there was a delay in sending data, although it was almost
imperceptible and acceptable for the purposes of the test.
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Figure 6.1. Comunication between the Raspberry Pi board and the Grafana
server via the AWS cloud services

At this point, it was possible to start the update using the AWS CodePipeline
service. In particular, once the update process was started on the pipeline, it was
able to correctly contact the Hawkbit server where the TCU simulator was already
present to start the update. Also in this case, it was necessary to wait a few more
seconds for the update to be received on the device, but once this happened, the
Raspberry Pi was able to interrupt the flow, receive the update, and restart the
system with the updated features. As shown in the figure 6.2, the update was also
detected by the data analysis server. Specifically, both the Python updates, which
showed a drastic change in the data sent, and the update compiled in C, which
caused an interruption in the sending of data, as expected by the update itself were
launched on the demo board.

The presentation of test demos on the Raspberry Pi board was useful from
several points of view and showed the following characteristics

❼ The ability of the system to communicate through the MQTT protocol across
different connection networks.

❼ The capability of the software simulator to be used on different platforms,
including Arm.

❼ The flexibility to adapt the cloud infrastructure to different conditions, whether
it is a virtual machine or a physical board.

❼ Correct implementation of the pipeline capable of computing update projects
written in compiled languages.

Figure 6.2. Update to the Raspberry Pi board and Grafana data after the update
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6.2 Contribution Recaps

The aim of the thesis was to show the innovations introduced by the SDV technol-
ogy, which is capable of completely revolutionizing the automotive industry. This
result was achieved thanks to the support of the partner company, which provided
the necessary resources to study, understand and analyze the cloud services offered
by AWS, but also to put them into practice in the implementation of the project,
which included technologies currently used by several companies in the automotive
sector.

The SDV represents a true innovation in the automotive field, as it would al-
low the industry to move forward in creating more efficient and safer vehicles. In
addition, it would open the door to a different and innovative development and pro-
duction method that could significantly reduce production costs and times, thereby
reducing the waste of necessary resources.

The thesis has certainly achieved its objectives, but let’s now evaluate whether
the objectives of the project, which was created to give a practical demonstration
of the cooperation between the various elements involved in the SDV, have been
achieved.

6.2.1 Are the PoC goals being met?

One of the main objectives of the proof of concept was to demonstrate how the cloud
infrastructure composed of services provided by AWS could support the develop-
ment of the SDV by using its resources. Certainly, this objective was fully achieved
with the use of more than one pipeline responsible for managing updates. In par-
ticular, both the updates in Python language, easily portable from one platform to
another, and the updates in compiled languages, more targeted and specific to each
platform, but also more optimized and closer to the real use case, were successfully
carried out.

Another important goal of the work was to be able to bring together different
technologies to support the creation of the infrastructure. Specifically, the project
succeeded in making AWS cloud services work with the Hawkbit system (already
under development in several automotive companies) for managing the deployment
of updates, and with Grafana services for data analysis. Achieving this goal made
it possible to make the most of the technologies offered at the lowest possible cost
to the company, obtaining a true ecosystem that is as open as possible.

As a final goal of the project, we can identify the need to introduce general
purpose systems to support the development of the SDV. Also in this case, as seen
before, the demo on the Raspberry Pi board showed that it can interact masterfully
with different general purpose platforms and make the best use of the available
resources.

In conclusion, the results obtained at the beginning of the implementation can
be considered as achieved. However, it is important to emphasize that the PoC
was a demonstration example, still in its early stages as far as actual production is
concerned. The remaining points, deliberately left open due to limited resources,
will be addressed below.
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6.3 Future Works

Now the open aspects for the future development of the project are analyzed. In
consideration of the nature of the work, some aspects were deliberately neglected
in order to achieve a complete and functional result. If there had been an ambition
to create a fully functional product on a real vehicle ready for use, not even a small
part of the project could have been achieved with the available resources. Now let’s
talk about future work.

6.3.1 Transform the PoC in a product

To transform the proof of concept into a real product, usable in an automotive
system capable of producing vehicles, it is necessary to cover three different steps:
interfacing with a real vehicle to study the operational dynamics of a real TCU
with all the subsystems that compose it, delving into the detailed analysis of the
free software used such as Hawkbit, and managing additional elements of the vehicle
such as machine learning or cockpit applications. A brief overview of each of these
future works is given below.

1. Making the system usable with a real vehicle is essential to creating a market-
ready commercial product. A real vehicle is made up of dozens, if not hun-
dreds, of subsystems interconnected at various levels, and the management of
all the data produced may be slightly different from what is seen in the PoC.
The telemetry systems of real vehicles contain security systems that prevent
direct connection to each individual subsystem, for example through firewalls;
this is another aspect to consider when building a real product.

2. Another fundamental aspect for the creation of a concrete product is the in-
depth analysis of the operational dynamics of the free software used in the
development of the infrastructure. In particular, with regard to the Hawkbit
server, in the PoC, after a not too detailed analysis of the various compo-
nents, it was decided to use a pre-built Docker image. This made it easier to
manage the elements, since everything was ready, but limited the freedom of
customization. To fully exploit the potential of these technologies, it will be
essential to fully customize the software used, as happens in real companies.

3. Last, but not least, is the adaptability of the SDV system to additional ele-
ments of the vehicle, such as machine learning systems for decision making
or cockpit systems. For the PoC to become a usable product in reality, it is
essential that it is fully integrated into the vehicle. Therefore, it is inconceiv-
able that there are systems in the vehicle itself that do not interface with the
SDV system, especially if they are other systems strictly related to IT, such
as those mentioned above.

In conclusion, the full integration of the PoC with a real vehicle represents
an essential phase in the development of the technologies covered in the thesis.
This would allow vehicles to be transformed into fully upgradeable devices, thus
contributing to the improvement of efficiency and safety, fundamental elements in
the automotive sector.
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