
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Cybersecurity Focus

Decentralized Identity Management:
Building and Integrating a Self-Sovereign

Identity Framework

Supervisor Candidate
Prof. Danilo Bazzanella Luca Rota
Company Supervisors
Dr. Alfredo Favenza
Dr. Silvio Meneguzzo

Accademic Year 2023/2024

Summary

In the era of technology transition, the traditional concept of identity has been
redefined, giving rise to digital identity. This important shift in the identity man-
agement is setting the need for reconsidering how we treat the identities. The
most feasible solution in this context is the Self-Sovereign Identity (SSI), which is
a model designed to put identity under the control of individuals.

This master’s thesis, conducted at the Links Foundation, delves into the growing
world of SSI within decentralized systems. By using blockchain technology and a
tool called MetaMask,a SSI standalone framework has been developed and later
integrated into the Data Cellar project of Links Foundation, showcasing its real-
world utility. Going through the aspects related to cryptography and cybersecurity,
the research ends in a decentralized application (DApp), combining an easy-to-use
interface (developed with React and JavaScript) with a robust foundation (built
using NestJs), for a secure and user-centric authentication.

While the decentralized identities discussions keep on evolving, this thesis fits
in the ongoing discourse, emphasizing the pivotal role of blockchain technology
in creating self-sovereign identity solutions and at the same time supports the
commitment of Links Foundation’s to digital innovation.

i

Acknowledgements

ii

Contents

List of Tables vi

List of Figures vii

Listings ix

Acronyms x

1 Introduction 1
1.1 Objectives . 1
1.2 Outline . 2

2 Blockchain Technology 4
2.1 What is the Blockchain . 4

2.1.1 Core Elements of Blockchain 4
2.1.2 Blockchain Architecture . 5

2.2 How the Blockchain works . 6
2.2.1 Transaction process . 6
2.2.2 Blockchain Benefits . 7

2.3 Blockchain Classification . 8
2.3.1 Types of Blockchains . 8
2.3.2 Types of Consensus Mechanisms 10

2.4 Bitcoin versus Ethereum . 11
2.4.1 Bitcoin . 11
2.4.2 Ethereum . 13

3 Evolution of Identity 15
3.1 Pre-Digital Era . 15

3.1.1 Origin of Identity . 15
3.1.2 Early Documentation . 15

3.2 Emergence of Digital Identity . 16

iii

3.2.1 PINs and Passwords . 16
3.2.2 Introduction of ARPANET and IP 16
3.2.3 The Public Key Cryptography 16

3.3 Shifting Identity Paradigms . 17
3.3.1 Pitfalls of Centralized Identity 18
3.3.2 Emergence of Federated Identity 18
3.3.3 Evolution towards User-Centric Identity 19

4 State of the Art of SSI 21
4.1 History of Self-Sovereign Identity 21

4.1.1 Origins of SSI . 21
4.1.2 The Seven Laws of Identity 21
4.1.3 Modern Development . 22

4.2 Advantages and Principles . 23
4.2.1 Advantages of Decentralized Identity 23
4.2.2 Principles of SSI . 24

4.3 Key Components of SSI . 25
4.3.1 Decentralized Identifiers . 26
4.3.2 Verifiable Credentials . 28
4.3.3 Verifiable Data Registries 30

4.4 Architecture of Decentralized Identity 31
4.4.1 The Four Layers . 31

4.5 The SSI Trust Triangle . 33
4.5.1 Key Actors of SSI . 33
4.5.2 Workflow of Verifiable Exchange 34

5 Cryptography and Cybersecurity Aspects 35
5.1 Cryptography behind SSI . 35

5.1.1 Data Integrity in SSI . 35
5.1.2 Digital Signature using EdDSA 37

5.2 Cybersecurity within SSI . 39
5.2.1 Security in Blockchain and SSI 39
5.2.2 Potential Attacks on the SSI System 41

6 Design and Implementation 44
6.1 Framework Development Journey 44

6.1.1 Initial Research . 45
6.1.2 Challenges and Failed Attempts 46
6.1.3 Final Choice . 46

6.2 Framework Main Components . 47
6.2.1 Ethr-did and Other Libraries 47

iv

6.2.2 Ethereum and Smart Contracts 49
6.2.3 MetaMask . 52

6.3 Verifiable Credentials and Limitations 53
6.3.1 Utilization and Challenges 53
6.3.2 Solution Exploration . 54
6.3.3 Final Decision . 55

6.4 Application Functionality Analysis 56
6.4.1 Server Implementation . 57
6.4.2 Access Process . 59
6.4.3 Sign-Up Procedure . 60
6.4.4 Sign-In Mechanism . 62

7 Integration in a Real Project 64
7.1 Overview of Data Cellar . 64
7.2 Initial Project Status . 65

7.2.1 Development Environment 65
7.2.2 Offered Functionalities . 65

7.3 Integration Process . 66
7.4 Final Application . 66

7.4.1 Backend Implementation . 67
7.4.2 Frontend Development . 68

8 Conclusions and Future Works 73

v

List of Tables

2.1 Types of Blockchain . 9
2.2 Types of Consensus Mechanism . 10

3.1 Comparison of the characteristics of three models. 17

6.1 A comparative analysis of blockchain based SSI system. 45

vi

List of Figures

2.1 Blockchain structure . 6
2.2 Blockchain transaction process . 7
2.3 UTXO transaction process . 12
2.4 Ethereum Proof of Stake’s features. 14

3.1 The timeline of digital identity development. 17
3.2 Centralized Identity Management Model (IDM 1.0) 18
3.3 Federated Identity Management Model (IDM 2.0) 19
3.4 Self-Sovereign Identity Management Model (IDM 3.0) 20

4.1 Decentralized Identifiers (DID) URI syntax. 26
4.2 The basic components of DIDs architecture. 27
4.3 A simple example of verifiable credential. 29
4.4 Core data model in W3C’s VC. 29
4.5 SSI architecture. 31
4.6 Basic concept of W3C’s VC. 33

5.1 Process to create a cryptographic proof. 36
5.2 Process to verify a cryptographic proof. 36
5.3 A simple example of cryptographic proof. 37
5.4 An attack tree of Faking Identity Attacks in the SSI system. 41
5.5 An attack tree of Theft Identity Attacks in the SSI system. 42
5.6 An attack tree of Distributed DDoS Attacks in the SSI system. . . . 43

6.1 Access page with MetaMask installed. 59
6.2 Sign Up page with confirm transaction pop-up. 60
6.3 Sign In page with sign message pop-up. 63

7.1 The marketplace in the Data Cellar Home page. 68
7.2 List of licenses for a specific dataset, after authentication process. . 69
7.3 Page to view user’s personal information. 70
7.4 Page to manage user’s DataCellar tokens. 70

vii

7.5 Page to view user’s dataset and access their licenses. 71
7.6 Page to create a new license or switch for new dataset. 71
7.7 Page to view purchased licenses of specific dataset and use them. . . 72
7.8 Page to delete user’s account, performing de-registration. 72

viii

Listings

6.1 Deploying DataCellarRegistry contract. 50
6.2 Smart contract for DataCellarRegistry. 51
6.3 Function for updating wallet and accounts. 52
6.4 Function for verifying verifiable credentials. 55
6.5 Handling cookie and setting authentication state. 56
6.6 Async function for generating JWT token. 57
6.7 Async function for generating verifiable credentials. 58
6.8 Async function for signing up in DataCellar. 61
6.9 Verifiable Credential JSON data. 62

ix

Acronyms

SSI Self Sovereign Identity

DApp decentralized application

DLT Distributed Ledger Technology

MemPool Memory Pool

PoW Proof of Work

PoS Proof of Stake

SHA-2 Secure Hash Algorithm 2

UTXO Unspent Transaction Output

PKI Public Key Infrastructure

PIN Personal Identification Number

ARPANET Advanced Research Projects Agency Network

IP Internet Protocol

IDP Identity Provider

DID Decentralized Identifier

VC Verifiable Credential

IDM Identity Management

x

SSO Single Sign-On

PGP Pretty Good Privacy

W3C World Wide Web Consortium

DDO DID Document

URI Uniform Resource Identifier

VP Verifiable Presentation

ZKP Zero-Knowledge Proof

DHT Distributed Hash Table

IPFS Interplanetary File System

TEE Trusted Execution Environment

EdDSA Edwards-curve Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

DDoS Distributed Denial of Service

ABI Application Binary Interface

API Application Programming Interface

JWT JSON Web Token

SDK Software Development Kit

CLI Command Line Interface

IDMS Identity Management System

Nonce Number used once

xi

GUI Graphical User Interface

EU European Union

HTTPS Hypertext Transfer Protocol Secure

SSL Secure Sockets Layer

xii

Chapter 1

Introduction

In a world of constantly advancing technology, the concept of identity has expe-
rienced significant transformation. Managing identity becomes a critical issue in
this time when our lives are becoming bound by digital platforms, services and,
networks. Centralized identity systems, being popular, are however, encumbered
by issues like the lack of user control and data breaches. As an answer to the
above mentioned challenges, the idea of Self Sovereign Identity (SSI) has been
gaining more attention. SSI adopts a decentralized and user-centric approach to
identity management that enables individuals to assert and manage control over
their identity data effectively. Through blockchain technology, SSI enables a se-
cure and trust-based architecture of identity verification, where intermediaries are
not required and identity is protected from theft. The present research centers
on the terrain of digital identity, especially concentrating on the standards and
implementations of SSI.

1.1 Objectives
This thesis delves into the ever-evolving ecosystem of Links Foundation to thor-
oughly explore the concept of SSI. Our ambitious objectives are to develop an
autonomous SSI framework for managing decentralized identities by using Meta-
Mask and the Ethereum blockchain. Furthermore, we strive to seamlessly incor-
porate this cutting-edge framework into the advanced Data Cellar project at Links
Foundation.

Link Foundation is an innovative organization that facilitates digital transfor-
mation via applied research, innovation, and technology transfer projects [28].

1

Introduction

Founded by the collaboration between the Compagnia di San Paolo and the Po-
litecnico di Torino, the Links foundation is the central part of different technical
and scientific disciplines, developing projects raging from Artificial Intelligence to
Cybersecurity.

This exploration takes us into the intricacies of technology tracing the origins
of identity from its non digital beginnings to its current form. By studying the
foundations of SSI we gain insights, into the security and privacy measures in place
as well as addressing the prevalent cybersecurity challenges within the SSI domain.

With a focus on practicality this research culminates in developing a SSI frame-
work that incorporates groundbreaking elements like MetaMask and a customized
Ethereum smart contract. This framework has the potential to revolutionize iden-
tity management, as evidenced by its integration into Data Cellar.

As we reach the end of this journey, we celebrate achieving an accomplishment,
creating a decentralized application (DApp). This achievement not showcases an
user friendly interface built with React and JS for frontend development and NestJs
for backend development but also seamlessly integrates our SSI framework. This
milestone not overcomes standing obstacles but also paves the way, for a future
where individuals have greater control over their digital identities.

1.2 Outline
After a brief introduction and description of the goals of the thesis presented in
Chapter [1], the remainder of the paper is structured as follows:

• Chapter [2]: This chapter, therefore, is all about the background of the SSI
model used in this study, which is blockchain technology. It starts with the
definition and roles of blockchain, passes to the analysis of different types
of blockchains, and ends with a comparative review of two famous existing
blockchains, namely Bitcoin and Ethereum.

• Chapter [3]: In this relatively concise chapter, an introduction to identity
is provided, encompassing its evolutionary history from the pre-digital era
to a comparison of the three primary paradigms utilized for digital identity
management: centralized , federated and user-centric.

• Chapter [4]: This chapter focuses on the main theme of the thesis, namely
the SSI model. It evaluates the state-of-the-art of this model of leading
by starting from its historical context, then defining its main principles and
presenting its advantages. Subsequently, the three main components of a SSI
system, consist of DID, VC, and Verifiable Data Registry, will be discussed

2

Introduction

followed by an architecture analysis with a main focus on the "Trust Triangle"
relation between the three principal entity: holder, verifier, and issuer.

• Chapter [5]: According to the previous chapter’s theme, this paragraph
goes further to provide an in-depth study of the other strong cryptographic
and cybersecurity aspects of the SSI model. Firstly, it highlights the working
of VC proofs and then analyzes the attack vectors and their vulnerabilities
to which this model is prone.

• Chapter [6]: This chapter ends with the theoretical part and starts the
practical discussion applied during the thesis period. Overall, it explains
the whole procedure of building an independent framework to handle the
digital identities of individuals in a decentralized way under the SSI model.
It demonstrates the instruments used for its implementation, the limitations
encountered, and the final result.

• Chapter [7]: In this subsequent chapter, the integration of the previously
mentioned framework into a practical project will be presented to show its
practical significance. It provides a brief background of the project and then
proceeds to a comprehensive analysis before and after integration.

• Chapter [8]: This final chapter summarize the conclusions drawn from the
research.It begins with a succinct summary outlining the primary thesis topic
and the executed practical endeavors, followed by an exposition of potential
future work avenues necessitated by encountered limitations.

3

Chapter 2

Blockchain Technology

In the current landscape, blockchain technology has attracted increasing global
interest due to its promising applications and potential transformative impacts
on various sectors. Founded in 2008 by Satoshi Nakamoto as the mainstay of
the Bitcoin system [19], blockchain has evolved from a simple ledger of financial
transactions to a fundamental technology that revolutionizes the way information
is recorded, shared and managed within decentralized networks.

2.1 What is the Blockchain
Blockchain is a core technology that drives many decentralized systems that offer
transparency, trust and safety without having to have a central authority. It is
basically a distributed ledger that operates through the peer-to-peer network [25],
[21]. This section talks of the key components and architecture of blockchain,
revealing its fundamental features and operating principles.

2.1.1 Core Elements of Blockchain
Blockchain comprises several key elements essential to its functionality:

• Blocks: A block is a basic unit comprising transactional data. Every block
is securely connected to the previous one; this connection creates a chain of
blocks. Transactions within a block are cryptographically secured; hence,
immutability and integrity [25], [21].

• Transactions: Transactions are diverse interactions in the blockchain net-
work. These interactions are not limited to financial transfers only; any

4

Blockchain Technology

piece of valuable information can be considered as a transaction and diffused
within the network [19], [35].

• Decentralization: Unlike centralized systems that depend on a single con-
trolling authority, the blockchain is decentralized. It includes a web of inter-
dependent nodes, each replicating the distributed registry. Resilience, trans-
parency and no single points of failure are guaranteed by decentralization
[25], [19].

• Consensus Mechanism: For verification and agreement of the state of a
ledger, blockchain uses consensus mechanisms. The most common mech-
anism, PoW, requires miners to solve complicated cryptographic puzzles
to add new blocks on the chain. Consensus mechanisms ensure consensus
among network participants to prevent attacks by malicious actors [25], [19].

2.1.2 Blockchain Architecture
The structure of the system is carefully crafted to uphold its principles of decen-
tralization, immutability and transparency;

• DLT: At the core of blockchain lies DLT, where all participants in the net-
work have access to a ledger of transactions. This shared ledger eliminates
redundancy, ensures that everyone has a trusted source of information across
the network [21], [19].

• Immutable Records: One key feature of blockchain is its record immutabil-
ity. Once a transaction is recorded on the ledger it cannot be tampered with.
Any attempt to change a transaction requires adding one that preserves the
integrity of data [21].

• Smart Contracts: Smart contracts are self-executing contracts with prede-
fined rules embedded within the blockchain. These contracts enforce agree-
ments between parties speeding up transaction processing and reducing re-
liance on intermediaries [21], [35].

• Security Measures: Cryptography plays a role in ensuring security by
protecting transactions from tampering and fraud. Key pairs authentica-
tion enable secure digital identity management. In addition, cryptographic
hashing guarantees data integrity and confidentiality [25], [35].

• Peer-to-Peer Network: The blockchain functions using a network archi-
tecture in which participants can directly communicate and interact. This
decentralized structure promotes trust and resilience since transactions are
verified and validated through consensus among distributed nodes [19], [35].

5

Blockchain Technology

Figure 2.1. Blockchain structure

2.2 How the Blockchain works
The function of a blockchain system encompasses a complex chain of procedures
that safeguard the integrity, transparency, and security of transactions. In this
section, we delve into the fundamental mechanisms of blockchain.

2.2.1 Transaction process
Recording transactions

1. Starting a Transaction: In a network, users initiate transactions through
their wallets. Each wallet has a pair of keys. A key, for starting transactions
and a private key for authentication [25].

2. Creating Blocks: As transactions occur, they are grouped together into
blocks of data. These blocks act as containers for recording details like asset
movement participants involved and timestamps [21].

3. Hashing: Every block contains information and refers to the hash of the
previous block. Secure hash functions like SHA 256 play a role in ensuring
the integrity and immutability of transactions. Hashing allows each block to
have a fingerprint, making identification and verification simple [21] ,[35].

Consensus Mechanism

4. Verification Process: When a transaction is initiated the information is
sent to a network of distributed peer to peer nodes. These nodes work
together to confirm the validity of transactions using consensus mechanisms
[35], [18].

6

Blockchain Technology

5. Formation of New Blocks: Valid transactions are added to a MemPool,
where they wait to be included in a block. Miners, who are responsible for
creating blocks solve cryptographic puzzles in order to mine blocks. This
process, known as PoW requires resources and time [25], [18].

6. Consensus Algorithm: In order to add a block to the blockchain nodes
must agree on its validity through consensus algorithms. The miner who
successfully creates a block is rewarded. Consensus algorithms ensure that all
nodes are synchronized and in agreement, about the state of the blockchain
[18].

7. Blockchain Integrity: The interconnected nature of blocks ensures the
immutability and integrity of the blockchain. Each block references the hash
value of its predecessor, making it practically impossible to tamper with
transactions without altering blocks [25] ,[35].

Figure 2.2. Blockchain transaction process

2.2.2 Blockchain Benefits
Due to the execution process described above and its architecture, blockchain offers
many benefits in different areas:

• Greater Trust: Blockchain helps establish trust across the network by
utilizing the decentralized ledger, ensuring that data is consistent and timely
plus, it does not require intermediaries [25].

7

Blockchain Technology

• Enhanced Security: Blockchain’s security features are designed to thwart
tampering as well as cybercrime. The blockchain structures transactions
as read-only data which is difficult to change and ensures that the data is
protected even when it is in transit. Moreover, cryptography is used as a
verification mechanism and the cryptographic infrastructure is used to store
and transmit secrets [21].

• Time Savings: The utilization of blockchain technology greatly decreases
the processing time for transactions since they are completed within a quarter
of an hour due to the removal of the centralized authority that confirms [21].

• Cost Savings: The blockchain adjusts the transaction procedure and lowers
operational costs by removing intermediaries, as tasks are automated and
there is lower duplication of activities through the usage of shared ledger
[25], [35].

• Efficiency Improvements: The distributed architecture of blockchain in-
creases system resilience, decreases processing costs, and removes the need
for centralized network control by distributing network operations thinly,
facilitating faster settlements, and solving identity management issues [35].

• Transparency Enhancement: A blockchain keeps a permanent record of
transactions through which it delivers transparency, accountability and trust
to network users via its chronological and transparent nature [35].

2.3 Blockchain Classification

2.3.1 Types of Blockchains
Blockchain technology comes in various forms, each with unique characteristics
that adapt to specific needs and application contexts Beyond the well-known public
and private blockchains, it is essential to recognize two other significant variants:
hybrid chains and consortium chains.

8

Blockchain Technology

• Public Blockchain: A public blockchain is open to everybody who wants
to interact and contribute to the consensus protocol, e.g., Bitcoin. This
model provides a high degree of transparency though, it is susceptible to
51% attacks. Its open nature fosters a distrustful environment, as no one
individual or entity is solely relied on for transaction validation [25], [21].

• Private Blockchain: In contrast to public blockchains, private or permis-
sioned (access is restricted to authorized entities) blockchains allow only a
limited set of entities to access the network. This method is popular among
situations that demand more features such as security as well as control
where it is applied in applications like financial transactions that also handle
sensitive data. Access to the network is controlled by a single entity or by
particular criteria [25],[35].

• Consortium Blockchain: A consortium blockchain is governed by more
than one organization or entity that works together to ensure the distributed
ledger. On the other hand, blockchains that are public or private, consortium
blockchains are the only ones that give power to a chosen group of nodes
to validate and record transactions. This model is suitable where several
subjects need to work with data and processes together but they do not
want or cannot fully trust a unique central entity [21], [19].

Property Public
Blockchain

Consortium
Blockchain

Private
Blockchain

Consensus
determination All miners Selected set of

nodes One organization

Read permission Public Could be public or
restricted

Could be public
or restricted

Efficiency Low High High

Immutability Nearly impossible
to transfer

Could be
tampered

Could be
tampered

Centralized No Partial Yes
Consensus

process Permissionless Permissioned Permissioned

Table 2.1. Types of Blockchain

9

Blockchain Technology

• Hybrid Blockchain: In addition to the previous ones mentioned above, a
new type of blockchain, hybrid blockchains, has also emerged. They are de-
scribed by the property of switching between different modes having different
types of operating systems, for example, public and private blockchains that
suit specific needs. This approach provides a greater degree of flexibility
and customization compared with conventional blockchain configurations;
thereby, the actors have the option to decide the degree of decentralization
and control that is suitable for them [25].

2.3.2 Types of Consensus Mechanisms
Blockchains also differ based on the type of consensus mechanism used. In the
previous section we discussed an example of how blockchain uses a consensus
mechanism called PoW [19], [42]. However there are several types of consensus
mechanisms that can be used in a blockchain network.

In general, the two main types of consensus mechanisms are: PoW and PoS.
With PoW miners solve puzzles to add new blocks, which requires significant com-
putational resources and time [19], [42]. This is elaborated further in Section 2.4.1.
On the hand PoS assigns the right to create blocks based on participants cryp-
tocurrency holdings, providing benefits such, as energy efficiency and scalability
advantages. Further information, about PoS can be found in Section 2.4.2. There
are also other consensus mechanisms beyond PoW and PoS; refer to the table for
further details.

Property PoW PoS PBFT DPOS Ripple

Node
identity

management
Open Open Permissioned Open Open

Energy
saving No Partial Yes Partial Yes

Tolerated
power of
adversary

<25%
comput-

ing power

<51%
stake

<33.3%
faulty

replicas

<51%
validators

<20%
faulty

nodes in
UNL

Example Bitcoin Ethereum Hyperledger
Fabric Bitshares Ripple

Table 2.2. Types of Consensus Mechanism

10

Blockchain Technology

2.4 Bitcoin versus Ethereum

Bitcoin and Ethereum stand as two big giants in the blockchain technology area,
and both of them possess their own characteristics and they make their own contri-
butions to the ever-changing world of decentralized systems. This section takes a
comparative approach between Bitcoin and Ethereum; analyzing their basic archi-
tectures, transaction mechanisms, consensus methods, cryptographic techniques,
and the advantages and lacks they can offer.

2.4.1 Bitcoin

Overview

Bitcoin, launched in 2008 by Satoshi Nakamoto, is a decentralized digital currency
that is also accompanied by the great invention, the blockchain. It functions as a
peer-to-peer decentralized electronic payment system; it introduces a new way of
executing business transactions and ensuring data security [33]. Bitcoin is an open-
source and permissionless blockchain, allowing for involvement of anyone with the
required hardware.

Transaction mechanism

When a user sends bitcoins, sender hashed addresses, recipient hashed addresses,
transaction amount and fee are recorded. Digital signatures prove property rights
and the transaction is floated to the network, being submitted to the mempool
for confirmation [3]. The mining being the process of validating transactions;
therefore, miners pick transactions from the MemPool in order to create new blocks
by solving complex mathematical puzzles called PoW [33]. The winner of the
puzzle then broadcasts their newly found block to the network. After a verification
done by other network nodes, the block is added to the blockchain, thus finalizing
the transaction.

Proof of Work

Bitcoin uses the PoW consensus algorithm to maintain agreement among network
participants about the validity of transactions. The PoW was first specified in the
Hashcash paper [33]. It requires miners to search for solutions of cryptographic
puzzles consuming computational power. Through the cost of computation, min-
ers establish their commitment to the security of the network as changing the

11

Blockchain Technology

blockchain will require enormous computational resources, hence, making fraudu-
lent endeavors expensive.

Bitcoin Cryptography

Bitcoin uses the SHA-2 for cryptographic hashing, which ensures irreversible and
collision resistive attributes. This guarantees the data integrity of the blockchain,
which makes it impractical to tamper with transactions that are already in the
database. Moreover, the Merkle Trees that Bitcoin natively uses for block data
encoding take security to the next level [33].

Unspent Transaction Output

Bitcoin transactions are registered in the blockchain as UTXOs, which meaning
constant fractions of bitcoins that are linked to a certain owner. This UTXO
is pervasively distributed over the blockchain and represents ownership [3]. It is
subsequently used in other transactions too. Bitcoin balances are not stored in user
accounts but rather tracked through the UTXOs associated with their addresses.

Figure 2.3. UTXO transaction process

Advantages and Limitations

Bitcoin is decentralized and provides encryption security that can be used to resist
censorship, to ensure accessibility particularly on a global scale and to preserve
integrity of the data. Nevertheless, Bitcoin has limitations such as the scalability
problem, transaction throughput rate without the corresponding increase in the
number of transactions and undulatory acceptance and valuation. Furthermore,
there are additional security concerns, such as the "51% attack" and human error,

12

Blockchain Technology

which continue to plague the Bitcoin ecosystem [33].

2.4.2 Ethereum

Overview

Ethereum, designed by Vitalik Buterin, is the introduction of Smart Contracts to
the crypto-sphere, which is a novelty in the blockchain space, and, obviously, it
has been a highly valuable addition. The September 2022 saw the newly born
Ethereum 2.0 replace Ethereum 1.0 by incorporating the Beacon Chain and the
shift from PoW to PoS consensus mechanism [16]. This change shall constitute one
of the really important milestones reached by Ethereum, the blockchain providing
scalability, sustainability, as well as security.

Beacon Chain Impact

The introduction of the Beacon Chain revolutionized Ethereum’s operating model
[16]. It replaced the original execution layer and introduced a new consensus layer,
the PoS which was a major improvement in terms of power consumption and the
amount of energy consumed was reduced from 99.95%. Validators, staking their
ETH, assumed the responsibility of block production and transaction validation,
moving away from energy-intensive mining. This transition helped create a sus-
tainable network architecture as well as secure the information connections.

Transaction Mechanism

In Ethereum 2.0, validators play a pivotal role by depositing 32 ETH and operating
three essential software components: a execution client, a client for consensus, and
a client for validation as well. Here we have the validators appointed randomly for
being picked on 12 second timeslots which then make up epochs composed of 32
slots. They formulate and verify blocks and this way they add to the Ethereum
System. This process regulates all the transactions on the blockchain. Transac-
tions include processing stages of creating, verifying, and block proposal irrespec-
tive of the fact that the transactions are created, verified, combined into execution
payloads, and broadcasted across the network so as to make self-enforcement and
fault-tolerance in proper working order. Finality being one of the main features
of transaction irreversibility, is sealed by using checkpoints that initiate even the
smallest epochs. As requisite effort to checkpoints pairs, validators vote in a su-
permajority to revert them, consequently, block reversal is discouraged and the
entire Ethereum network is protected from brainwashing attacks [15].

13

Blockchain Technology

Proof of Stake

The Ethereum 2.0 version puts the PoS consensus mechanism at the core of the
protocol with validators given the chance to make the most of their investment
through staking [15]. Validator’s deposit their own ETH as bond to release valida-
tor software which helps in the job of validating the transactions and generating
new blocks proposals. In contrast to proof-of-work, the PoS is doing well in main-
taining both the security and the decentralization of validators that attempt to
undermine the network due to its feature of penalization.

Figure 2.4. Ethereum Proof of Stake’s features.

Ethereum Cryptography

Ethereum 2.0 still relies heavily on the standards of crypto- security for safety,
keeping the Keccak-256 algorithm implemented by Ethereum 1.0. These algorith-
mic primitives give Ethereum strong security by making sure the data integrity,
confidentiality, and authenticity [33].

Advantages and Limitations

The new Ethereum 2.0 version has several new advantages. The transition from
PoW to PoS results in a substantial reduction in energy and makes Ethereum more
sustainable. In addition, the PoS model makes the network more secure, decentral-
ized and scalable, so that a thriving ecosystem of decentralized applications can
grow within it [15]. However, even this version, still has some drawbacks. Process-
ing time can still be a bottleneck, as Ethereum cannot process transactions at the
same speed as traditional processes, such as Visa [33]. Besides, market fluctuations
and rumors become the main problems for Ethereum’s stability and reputation,
which requires continuous technological development and management.

14

Chapter 3

Evolution of Identity

The notion of identity verification has changed drastically over the course of his-
tory, and with the advent of digitalization, a new era where different problems are
met. The chapter aims at dissecting the phase of identity transition from non-
digital to digital form, noting the historical background and major milestones that
have shaped present-day identity verification. The development of digital identity
models will be reviewed, including the centralized, federated and decentralized
approaches that will be discussed, with a focus on their impacts on security and
privacy in the digital age. Through this overview we attempt to create a full picture
of how identity changes in the face of an increasingly interconnected world.

3.1 Pre-Digital Era

3.1.1 Origin of Identity
The identity concept has ancient origins and it has been expressed in a number
of forms in ancient times, including jewelry, tattoos and cultural symbols. These
material signs not only expressed own individuality but also signified social status,
family ties, and community membership [4]. For example, Babylonians, Romans,
as well as the Chinese ancestors used tattoos and fingerprints as primitive identi-
fication methods, and some cultures treated thumbprints as legal signatures.

3.1.2 Early Documentation
The requirement to identify people’s origin developed with the growth of civi-
lizations and the need for safe travel and commercial transactions. The earliest
recorded types of documentation were in Persia in approximately 450 BCE and

15

Evolution of Identity

these documents, which bordered on rudimentary passports, carried essential infor-
mation about the traveler [4]. These documents proved to be the most important
for securing safe travels and identifying an individual during the journey.

The idea of the official passport took form as societies reached a certain level
of development, especially during Henry V’s reign in England. In the beginning,
passports started as "safe-conducts" signed personally by the king, while in the
20th century, passports turned into the standardized documents. Later, the use
of photography in passports took identity verification a step further, providing a
visual reference for identifying individuals accurately [4].

3.2 Emergence of Digital Identity

3.2.1 PINs and Passwords
PINs and passwords became critical elements of digital identity validation. Start-
ing in the 1960s, PINs were fundamental to secure data and transactions, growing
from simple four-digit codes to more complex security measures such as "chip and
pin" [20]. Simultaneously, passwords that employ characters and numbers have
been used for decades to provide user authentication across multiple digital ser-
vices. Together, the PINs and passwords have thus been playing a pivotal role in
protecting the digital identities of individuals.

3.2.2 Introduction of ARPANET and IP
With ARPANET coming to be in 1969, a new digital era of connectivity began.
Nevertheless, it was required to have parallel robust identity protection mecha-
nisms, as a result of this global network. By adopting the username and password,
ARPANET resorted this drawback, allowing secured access to the networked re-
sources. On the other hand, IP has taken over as the standard for device address-
ing, which facilitates end-to-end data transferability across various networks. IP
addresses, which are identifiers of networked devices, played a key role in packet
routing and maintaining secure communication over the internet [20].

3.2.3 The Public Key Cryptography
Public Key Cryptography has revolutionized in digital identity protection, provid-
ing trusted communication over public networks. Diffie and Hellman introduced
the idea of public-key cryptography in 1976 [4]. Using this system pairs of in-
terconnected keys, one key for encryption and the other one for decryption, are

16

Evolution of Identity

generated. PKI successfully added a layer to identity verification by matching
public keys to specific entities, enabling secure transactions and data exchange.

Figure 3.1. The timeline of digital identity development.

3.3 Shifting Identity Paradigms
This section focuses on the evolution of IDM models, which have been categorized
into three main paradigms. These paradigms describe the evolution of digital iden-
tity management which show trends for more user-friendly and secure approach.

Model
Name

Credentials
Ownership

of User

Optional
Disclosure

Information
Silo

Support
Pseudonyms

Centralized
Storage

Centralized
Identity X X X X V

Federated
Identity X X V X V

Self-
Sovereign
Identity

V V X V X

Table 3.1. Comparison of the characteristics of three models.

Centralized IDM model (IDM 1.0), includes organizations issuing credentials to
users, using shared secrets, such as usernames and passwords, for authentication.
Federated IDM model (IDM 2.0) brings in third-party IDP for SSO and so still

17

Evolution of Identity

centralizes user’s personal identifiable information. Finally, Self-Sovereign IDM
model (IDM 3.0) allows users to have absolute mastery over their digital identities
via Digital Wallets using standards such as VC and DID [32].

3.3.1 Pitfalls of Centralized Identity
Centralized IDM models were predominant in the initial stage of the digital iden-
tity development process, and these models were managed by organizations and
institutions. Under this model, people literally gave their personal data to these
centralized authoritative bodies, that in return gave them status or official recog-
nition [23]. Having all personal data in one place was a big plus; on the other
hand, it also had some disadvantages.

Figure 3.2. Centralized Identity Management Model (IDM 1.0)

One of the primary issues with Centralized IDM models is that they are naturally
prone to security breaches. The fact that all user data were stored in a single
location meant that in case of a breach in the system, victims of this breach would
be subject to widespread data leaks and identity theft [4]. Furthermore, users had
to deal with the bother of having too many account names and passwords for the
different platforms which increased the risks of password-related security issues.
Even though it was convenient at first, centralized identity model has proved to
be inadequate in helping to solve emerging security threats and protecting user
privacy.

3.3.2 Emergence of Federated Identity
To deal with the issues caused by the Centralized IDM models, the idea of the
Federated IDM models appeared, which is much more flexible and user-centered
[23]. These identity management solutions paved the way for IDP, a system which
enables the creation, handling, and implementation of online identities. of feder-
ated identities, the users could use a unique identity registered with an IDP to

18

Evolution of Identity

access different network applications within their domain, and the authentication
process would be simplified to just clicking once.

Figure 3.3. Federated Identity Management Model (IDM 2.0)

With the adoption of federated identity solution, user convenience and inter-
platform operability have been enhanced, but new security challenges also arise.
An expansion of the IDP gave rise to a more vulnerable attack surface for Federated
IDM models that made them more prone to data breaches and cyber-attacks [23].
Furthermore, the usage of several IDP suggested the possibility of privacy and user
consent problems, as the user’s identity information was spread across multiple
service providers. Federated IDM models persisted in gaining popularity even
though they encountered many challenges owing to their flexibility and ease of
use.

3.3.3 Evolution towards User-Centric Identity
In direct response to the rapidly developing issues surrounding traditional Cen-
tralized and Federated IDMs, user-centric identity appeared as a concept, which
aims to give users back control over their digital identities. Specifically, the so-
called Self-Sovereign IDM models have emphasized the importance of user control
and consent in identity management, allowing them to store authenticators and
certificates issued by a range of service providers in their personal devices [2].

The introduction of blockchain technology was a pivotal transformations in user-
centric identity and it provides a decentralized and immutable ledger for identity
verification. The SSI model was based on blockchain that enabled users to retain
authority over their data, discarding intermediaries and centralized authorities

19

Evolution of Identity

Figure 3.4. Self-Sovereign Identity Management Model (IDM 3.0)

[2]. In the SSI model, users can securely and privately own and control data
and identity information while sharing them in a way, that protects their data
sovereignty. Eventually, the deployment of SSI will need to be fully developed and
adopted, however, it constitutes a major milestone on the way to a more secure
and user-centric model for identity management.

20

Chapter 4

State of the Art of SSI

As mentioned in earlier chapters, the principle of SSI has become popular in con-
temporary times, particularly in the context of cybersecurity and identity man-
agement. SSI follows the decentralized method of managing digital identities,
resulting in increased personal control and independence for individuals.

In this chapter, we discuss current status of the SSI model in the state-of-the-
art. First, we give a historical background and then follow with an examination of
evolution of SSI. Next we focus on its architecture with an in-depth look at its core
components and operational steps. Through this sector, we look to furnish a full
picture of the identity management framework and the SSI model in particular.

4.1 History of Self-Sovereign Identity

4.1.1 Origins of SSI
The roots of SSI can be traced back to the early 90s with the introduction of
encryption methods like PGP by Phil Zimmerman [4]. PGP introduced the public
key type of encryption, which formed the basis of later models of SSI. PGP allowed
the users to directly exchange cryptographic keys, and, thus, enabled the creation
of a network of trust without any need for centralized intermediaries.

4.1.2 The Seven Laws of Identity
The "Seven Laws of Identity" of Kim Cameron was pivotal in the development
of SSI approach in 2005 [17]. These laws described the main building blocks of
the user-oriented and conducive identity framework. The Seven Laws of Identity

21

State of the Art of SSI

articulate key principles guiding SSI, including:

1. User control and consent: Technical identity systems must only reveal
information identifying a user with the user’s consent.

2. Minimum disclosure for a constrained use: The solution which dis-
closes the least amount of identifying information and best limits its use is
the most stable long-term solution.

3. Justifiable Parties: Digital identity systems must be designed so the dis-
closure of identifying information is limited to parties having a necessary and
justifiable place in a given identity relationship.

4. Directed Identity: A universal identity system must support both “omni-
directional” identifiers for use by public entities and “unidirectional” identi-
fiers for use by private entities, thus facilitating discovery while preventing
unnecessary release of correlation handles.

5. Pluralism of Operators and Technologies: A universal identity system
must channel and enable the inter-working of multiple identity technologies
run by multiple identity providers.

6. Human Integration: The universal identity metasystem must define the
human user to be a component of the distributed system integrated through
unambiguous human-machine communication mechanisms offering protec-
tion against identity attacks.

7. Consistent Experience Across Contexts: The unifying identity meta-
system must guarantee its users a simple, consistent experience while en-
abling separation of contexts through multiple operators and technologies.

4.1.3 Modern Development
Christopher Allen had also made the term SSI more popular than ever with his
2016 article "The Road to Self-Sovereign Identity" [4]. Allen’s work was built on
Cameron’s principles that highlighted the crucial aspects of user control, longevity,
portability and limited disclosure in SSI frameworks. These principles constitute
the foundation of a system that is about individuals having the ultimate power
over their personal information.

For the last few years, an increase in the use of blockchain technology has led to
a rapid development of SSI. With blockchain being a decentralized and immutable
system, it forms the backbone of SSI systems that secures digital identities due to
their immutable and transparent nature. DID and VC are among others some of

22

State of the Art of SSI

the components of modern SSI architectures, which enables peer-to-peer transac-
tions and having no need of central authorities.

4.2 Advantages and Principles

4.2.1 Advantages of Decentralized Identity

Advantages for Organizations

• Efficient Verification: Organizations thus can verify information faster
without involving the manual verification procedures, improving operational
efficiency [12].

• Prevention of Certificate Fraud: Decentralized identity systems prevent
abuse of fake certificates minimizing the chances of credentials being forged
.

• Enhanced Data Security: Public-key cryptography is utilized by organi-
zations to encrypt data safely, which therefore helps reduce the risk of data
breaches.

• Reduced Cybersecurity Risks: Minimizing user data information makes
organizations less sensitive to cybersecurity attacks. The overall cybersecu-
rity posture improves.

Advantages for Individuals

• Data Ownership and Control: People retain both ownership and control
of their data, and they can independently manage their digital identities [12].

• Self-Verification: Individuals can establish their statements without the
help of third parties, thus confidence and autonomy are promoted.

• Privacy Protection: Decentralized identity management provides better
privacy because it can shield from indiscriminate tracking and allows for
selective disclosing of data.

• Immutable Identity: Identities will be stored and kept in the decentralized
digital wallets in which they cannot be arbitrarily deleted and provide every
person with a reliable digital persona.

23

State of the Art of SSI

Advantages for Developers

• Enhanced User Experience: The developers can build applications for
users with short and easy user identification processes, resulting in increased
ease of use.

• Privacy-Preserving Data Requests: Developers can request the data
directly from users while respecting their privacy and increasing trust-users
and transparency.

• Streamlined Transactions: Developers can simplify transactions by reach-
ing the relevant information securely via decentralized identity wallets with-
out any time-consuming data collection activities [12].

4.2.2 Principles of SSI

Foundational Properties

• Existence: People can digital assets for their characteristics which exist in
the digital domain. This is what the SSI achieves [1].

• Autonomy: SSI provides full independence for self-governance in identity
management to issue, edit, and revoke digital identities independently.

• Ownership: Users as the final decision-makers own their identities, includ-
ing self-asserted and third-party-attributed claims.

• Access: Users don’t have to worry about their identity; they can freely
control when it is needed.

• Single Source: Since individuals are the single point of reference for their
identities, they also prevent unauthorized information exchange without their
consent.

Security Properties

• Protection: SSI provides strong protection via cryptographic means, thus
ensuring trustworthiness, privacy and integrity of stored information.

• Availability: Readily accessible identities must be cross-platform compati-
ble, while being resistant and recoverable [1].

• Persistence: Identities should be preserved as long as needed, protected
through secure identity storage and transmission.

24

State of the Art of SSI

Controllability Properties

• Choosability: Potential users could decide what data relating to identity
they ought to disclose, granting access to information only in line with their
preferences.

• Disclosure: Users have the luxury of sharing identifiable data in a selective
manner to third party as long as it is done in a structured way that allows
for fine-grained control [1].

• Consent: Identity information is delegated only with user consent, ensuring
privacy protection and personal autonomy.

Flexibility Properties

• Portability: The identity projects need the portability across platforms in
order to ensure its longevity and inter-operability.

• Interoperability: Maximum interoperability should be achieved by SSI
systems, which in that case would allow for effortless communication with
existing identity systems [1].

• Minimization: User objectives are meant to be covered, which minimizes
data disclosure, thus ensuring data protection and efficiency of the data
processing.

Sustainability Properties

• Transparency: SSI should be transparent, open-source, and accessible,
which will produce trust, and participation of the community

• Standardization: The Identity should be compliant with open standards
that enables it to have better portability and interoperability.

• Cost: Identity solutions should be cost-effective or free to make them af-
fordable and that can lead to their wide adoption and inclusivity [1].

4.3 Key Components of SSI
This section elaborates on the three main pillars of SSI model, each of which is
of critical relevance to the revolution of digital identity management. We shall
properly discuss DIDs, VCs, and Verifiable Data Registries, highlighting their
importance and functionality in the identity ecosystem which is decentralized.

25

State of the Art of SSI

4.3.1 Decentralized Identifiers
DIDs represents a cutting edge feature of SSI. Unlike the conventional identifiers
such as emails and usernames that are centralized, DIDs provides a secure and
decentralized way of verifying digital identities. DIDsis an individual identifier,
which can be used separately for people, organizations, and data models, without
the need of any centralized authority. DIDs are owned by users and are held in
identity wallets, enabling people to retain control of their original data verified by
certified issuers. [5] They are as well a solution to some of the problems linked to
centralized identifiers such as identity theft and data leakage. Significantly, DIDs
do not contain personally identifiable information, that is why they are secure [26].

Syntactic Components of DIDs

DIDs are composed of distinct syntactic components, delineating their structure
and facilitating interoperability across decentralized systems [8] :

• Schema: The schema serves as a guideline to provide a uniform structure
and format of the DIDs thereby ensuring compatibility to standardized con-
ventions and guidelines. These frameworks are mostly created by organiza-
tions like the W3C, and they provide a bedrock for the deployment of DIDs
across various ecosystems.

• Method: Method part defines a protocol or mechanism used for creating and
maintaining DIDs within a certain ecosystem. Varying methods may involve
different cryptographic algorithms or diverse distributed ledger technologies
to develop and complete DIDs. Examples of methods are "ethr" for EthDIDs-
based DIDs and "key" for standard key-based DIDs.

• DID Method-Specific Identifier: This identifier being unique for this
method, differentiates the corresponding DIDs within the indicated ecosys-
tem. It works as the reference point on DID documents finding and network
interactions enabling within the decentralized systems.

Figure 4.1. Decentralized Identifiers (DID) URI syntax.

26

State of the Art of SSI

DID Document

A DDO outlines the basic details connected to a certain DID, being the main part
of the identity system. It typically includes [1]:

• Verification Methods: Public keys or cryptographic objects serving as
authentication and verification purposes.

• Authentication Methods: Holder of the DID is verified through specific
validation mechanisms applied.

• Service Endpoints: Identifiers referring to services or endpoints associated
with DID subject, allowing interactions and data exchange to be completed.

• Timestamps: Proof data records, which host the verification history data
or temporal metadata, enhancing transparency and auditability.

• Signature: Cryptographic signatures used for the purpose of security and
trust of the DDO.

DID Resolution

DID resolution is the procedure for transforming a DID into the corresponding
DDO that allows for retrieval of information related to a particular DID. This
procedure of querying distributed ledgers or repositories seeks the relevant DDO
[8]. Upon the resolution, verifiers obtain crucial attributes and secure materials,
thus being able to have secure interactions and identity verification within the
delegated systems. In addition to that, DID resolution enables interoperability by
standardizing mechanisms for use of DID associated data as well as for its access
and interpretation.

Figure 4.2. The basic components of DIDs architecture.

27

State of the Art of SSI

4.3.2 Verifiable Credentials

In a SSI framework, VCs represent the most crucial element as they permit iden-
tification and authentication in a decentralized manner. Briefly, a VC represents
a claimed certified identity, stored by an authorized user, residing in their digital
wallet, and comprising integrity features that can be verified by issuing entities
[27]. They consist of attributes denoting assertions as well as ensuring the truth-
fulness of data provided to create a user profile. VCs have an important role
in enabling individuals to direct their identity thus able to conduct secure and
privacy-preserving communication in the digital ecosystem.

Syntactic Components of VCs

The syntactic structure of a VC encompasses several key components [40]:

• Context: This element defines a shared set of terms for interoperability
among different systems giving option of using short aliases mapped to com-
plex URIs that define the attributes and values for specific credentials.

• Id: An additional attribute which allows the unique identification of entities
within a credential, usually by using a URI or a DID.

• Type: Mandatory specification which identifies the kind of credential, al-
lowing software systems in processing and verification.

• CredentialSubject: Functional for stating the claims focused on one or
several subjects of the credential, as well as for presenting the needed details.

• Issuer: Represents the entity issuing the credential and including informa-
tion like issuer identifier and further metadata.

• IssuanceDate: Shows the date and time when the credential is firstly valid,
particularly important to determine whether it is still valid.

• Proof : Comprises cryptographic proofs needed to verify the authenticity
and integral of the credential, including mechanisms like digital signatures

• ExpirationDate: May be included optionally to mark the validity duration
of the credential which must be relevant over the time.

• CredentialStatus: Gives the current valid status of the credential, whether
active, suspended, or expired.

28

State of the Art of SSI

Figure 4.3. A simple example of verifiable credential.

Verifiable Presentations

VPs are verifiable proofs of a person’s claims that only provide selective disclosure
of identity data to verifiers [40]. They are usually derived or generated from one
or more VCs that have metadata and crypto signatures that can be verified by
the recipient. Credentials from different sources are combined through VP which
allow fast and privacy-preserving interactions within the SSI framework [27].

Figure 4.4. Core data model in W3C’s VC.

Zero-Knowledge Proof

ZKPs are a type of proof that allows one to demonstrate a value without actually
revealing the value itself [40]. Essentially, ZKPs provide privacy and support

29

State of the Art of SSI

selective discloser of credential attributes in the VCs ecosystem. The ZKPs enable
hidden proving with the provision holding claims of participants without revealing
the sensitive information, they provide privacy-protecting interactions in the SSI
ecosystems. This provides the opportunity to issue zero-knowledge verifiable proofs
of possession, to allow holders to disclose important information without revealing
their secret. This conceals the information disclosed to verifiers by individuals
utilizing ZKPs while remaining in charge of their personal data.

4.3.3 Verifiable Data Registries
Verifiable data registries form a key pillar in SSI systems which provide a decen-
tralized mechanism for the secure storage of identity-related data such as DIDs and
VCs. These registries guarantee the validity and reliability of the data without
any need to the central authority [40].

Blockchain as a Distributed Verifiable Data Registry

Blockchains provide distributed verifiable data registries as a critical feature for
SSI infrastructures. Being a distributed ledger technology, blockchains ensures im-
mutability and decentralization, which makes them a perfect choice, for recording
and validating transactions in a trustless environment [1].

In the case of blockchain-based SSI frameworks, the transactions containing the
assertions of the identity and the verifications of these assertions are recorded in
blocks linked chronologically. Each block is given a cryptographic hash of the
previous block, thus the blockchain is made secure and the ledger is done with-
out interruption. Through cryptographic signatures of stored data and events,
Blockchains provide a tamper-proof encryption repository for identity data.

Distributed Hash Table in SSI

As in blockchain, DHTs ensures a decentralized way of storage and retrieval of
data within the scope of SSI frameworks. DHTs are the decentralized data store
components and are known for their rapid lookup capabilities based on the key-
value pair [1]. Technology platforms such as the IPFS utilize DHTs to make
the storage and retrieval of archival data more efficient, increasing the overall
performance and improving the decentralization of content delivery.

IPFS utilizes the DHT technology, distributing data across multiple nodes of
a decentralized peer-to-peer network. Such an approach not only increases data
resilience and availability, but also minimizes the dependence on a centralized
server for data retrieval. In addition, the DHT structure used in systems like

30

State of the Art of SSI

IPFS facilitates content addressing, which makes it possible for users to retrieve
the data using the unique hash addresses while not having to depend on any
centralized storage infrastructures.

4.4 Architecture of Decentralized Identity
The Decentralized Identity architectural framework consists of four layers that
correspond to different building blocks, each of them being a critical part in im-
plementation and operation of the system. Such layers are built to offer trust
and smoothen interactions among parties existing in the decentralized identity
ecosystem. The implementation of this infrastructure is based on the works of the
pioneers in the field, including papers from the Trust over IP Foundation [9].

4.4.1 The Four Layers

Figure 4.5. SSI architecture.

1. Blockchain Layer (Layer 1):

• It works as a base layer, making a retrievable data registry and storage
for DIDs and the associated DDOs [9].

• Deals with the definition, storage and management of VCs and their
definitions, schemas and descriptions respectively.

31

State of the Art of SSI

• It facilitates credential revocation by maintaining the Revocation Reg-
istry record when a credential issuer revokes a credential.

• Incorporates proof of consent mechanisms for the exchange of data
among entities securely.

2. Secure Pairwise Connections Layer (Layer 2):

• Enables secure communication between agents and digital wallets through
share pairwise links.

• Is in charge of the creation and maintenance of secure links between
two parties, which are the agents.

• It makes communication of personal messages safely through encrypting
and decrypting.

• Its job is to deal with the digital wallet information, guaranteeing the
secure storage and management of credentials.

3. Credential Issuance and Verification Layer (Layer 3):

• Enables the issuer to issue VCs to holders in order to form the trust
triangle.

• Enables the holders to have their digital wallets and accommodate the
credentials from multiple issuers.

• Provides ability to combine different claims from several VCs into one
complex compound proof for attestation.

• Enables verifiers to verify the holder’s proof using the VCs and disre-
garding the issuer.

4. Trust Governance Layer (Layer 4):

• Establishes governance structures, policies, and contracts to build up
trust among parties participating in the ecosystem.

• Specify a set of rules in which entities can stay within the guidelines of
the decentralized identity system.

• Uses Trust Anchors, Auditors, or known governance organizations which
are responsible for issuer and verifier’s integrity.

The security measures are implemented across the layers 1 and 2, using cryp-
tography primarily [9]. This helps improve security to a great extent. These tasks

32

State of the Art of SSI

range from the generation of public and private keys through the associated cryp-
tographic operations during the interval of credential lifecycle (issuing, generating,
verifying, and revocation), and to the encryption and decryption of messages that
are exchanged between wallets and agents.

4.5 The SSI Trust Triangle
In the realm of decentralized identity management, the SSI architecture operates
on the basis of a trust triangle involving three primary actors: Holder, Issuer and
Verifier. Clearly, the role and interactions of these components are the determining
factor in understanding the dynamics of decentralized identity systems.

Figure 4.6. Basic concept of W3C’s VC.

4.5.1 Key Actors of SSI
• Holder: The Holder is the individual user within the decentralized identity

ecosystem. Equipped with a digital wallet application, the Holder generates
their DIDs. The DID acts as a unique identifier for the user and belongs to a
digital wallet in which VCs are stored. VCs are cryptographic attestations,
which are issued by trusted parties, the Issuers [12].

• Issuer: Issuers are the organizations or entities that are responsible for
verifying the identities of users and issuing VCs. These credentials are signed
with the Issuer’s private key and therefore establish the authenticity and
integrity of the information contained within. After the verification, the VC
is linked with the Holder’s DID and it is stored in their digital wallet.

• Verifier: Verifiers are entities that use the provided VCs to verify the users’
identities. Upon the presentation of the Holder’s credentials by the Holder,

33

State of the Art of SSI

the Verifier runs the public DID on the blockchain to confirm the credibility
of the issuer. The verification of the cryptographic signatures embedded
within the credentials by the Verifier ensures that the presented information
was not tampered with and originates from a trusted source.

4.5.2 Workflow of Verifiable Exchange
1. Creation of Decentralized Identity: Users start the whole procedure by

generating a DID for each piece of data that they want to share. This DID
functions as the user’s identification post within the decentralized network
in a cryptographic manner [5].

2. Issuance and Validation of Verifiable Credentials: On request, an
Issuer validates the Holder’s DID usually by referring to an immutable public
ledger. After validation, the issuer creates and signs the VC containing the
relevant information. This credential is paired with Holder’s DID and stored
in their digital wallet.

3. Presentation of Verifiable Credentials: The Holder uses the stored VCs
in their digital wallet to establish a specific claim. Through signing the
provided credential, the Holder builds a VP of their claimed identity.

4. Verification by the Verifier: After receiving the presentation, the Verifier
performs a set of verifications to ensure its authenticity is intact. This process
entails checking the cryptographic signatures appearing in the credentials
and authenticating the nearest public DIDs on the blockchain. The Verifier
confirms the authenticity of the delivered information and thus guarantees
the credibility of the reported identity [1].

34

Chapter 5

Cryptography and Cybersecurity
Aspects

Cryptography and cybersecurity serve as vital elements in a digital identity man-
agement system, in particular, in the decentralized systems of SSI, which are based
on blockchain. Cryptography enables the data to be tamper-proof, secure and pri-
vately shared through mechanisms such as hashing and digital signatures. This
chapter explains the role of cryptography in SSI while providing steps on how to
create and verify integrity proofs, also, we demonstrate a digital signature algo-
rithm implementation of EdDSA.

As mentioned earlier, cybersecurity also plays a key role in protecting SSI sys-
tems from various threats and vulnerabilities. In this chapter we will highlight
how, despite the inherent security features of blockchain technology, SSI models
still face several security challenges. Once this is done, potential attacks on SSI
systems, which arise precisely from these vulnerabilities, will be evaluated.

5.1 Cryptography behind SSI

5.1.1 Data Integrity in SSI
Among numerous cryptographic aspects in the SSI approach, one of the most sig-
nificant is perhaps the concept of proof used to verify the integrity and authenticity
of VCs within the trust triangle, which forms the core of the SSI model. In the
rest of this subsection, we delve into how a proof is created, verified, and what are
the parts that make it up.

35

Cryptography and Cybersecurity Aspects

Proof Creation and Verification

The essential steps for creating a data integrity proof in an SSI system entail [41]:

1. Transformation: This initial step entails the preparation of data inputs
through converting them using canonicalization algorithms and binary-to-
text encoding.

2. Hashing: Cryptographic hash factories, for instance SHA-3, BLAKE-3 etc.,
provides hash identifiers that are resistant against hash collision and hence
ensure integrity and safety of data.

3. Proof Generation: Implementing the proof serialization algorithms the
values are calculated to make the input data secure from any inadmissible
change. Well-known examples are, digital signature and proofs of participa-
tion.

Figure 5.1. Process to create a cryptographic proof.

Next, verifying the proof requires three steps to be completed [41]. The initial
steps comprise the Transformation and Hashing processes which were previously
presented, followed by the Cryptographic Proof Verification which involves some
specific algorithms that confirm the reliability of the data being put in. It could
mean checking up on the validity of digital signatures or verifying participation
proofs.

Figure 5.2. Process to verify a cryptographic proof.

36

Cryptography and Cybersecurity Aspects

Proof Data Model

A data integrity proof in SSI systems consists of a number of parameters, some
mandatory and some optional; among the first ones there are [41]:

• Type: Identifies the exact proof type for cryptographic proof, thus, allows
the relevant fields that are used to validate and verify the provided proof.

• Proof Purpose: Explicates the purpose of the proof, protects against the
misuse and guarantees its proper implementation.

• Verification Method: Provides a description of the procedure and the data
that may be required to verify the proof, which may involve cryptographic
proofs or other verification tools.

• Proof Value: It contains the encoded binary data that is required for proof
verification, which is the process that uses the specific verification method.

Figure 5.3. A simple example of cryptographic proof.

In addition, other optional parameters can also be included within a proof,
such as [41]: id, created, expires, domain (useful for representing the security
domains in which the proof is meant to be used, ensuring its proper application
within specified contexts) ,challenge (only if the domain is specific, to mitigate
replay attacks), previousProof and nonce (useful to increase privacy by decreasing
linkability, that is the result of deterministically generated signatures).

5.1.2 Digital Signature using EdDSA
In the manner before, the usage of the approach of digital signature is very common
on the way of creating a proof. As a part of different algorithms, one that has

37

Cryptography and Cybersecurity Aspects

the most outstanding impact is EdDSA, which its implementation we will cover
in this subsection. Using the elliptic curve cryptography, the EdDSA is one of the
most known for its speed and security.

EdDSA Key Generation

Key generation in EdDSA consists in the creation of a private-public key pair.
The private key (priKey) consists of 32 octets of cryptographically secure random
data (256 bit). For the public key (pubKey) the hashing algorithm (SHA-512) is
applied to the private key as the first step in the process. And finally, the hashing
product is converted using specific bit operations, as well as scalar multiplication,
in order to get the public key [34]. Specifically, this process involves the following
steps:

1. Hashing: The first step is hashing the private key (priKey) of 32-byte, using
SHA-512, and store the result in a 64-octet buffer denoted as h′; only the
first 32-byte will be considered for the pubKey.

2. Buffer Pruning: Then, some bit manipulations are performed on the buffer
to ensure compliance with specific encoding requirements, for example some
specific bits are clear in the first and last octets.

3. Scalar Multiplication: The pruned buffer is then considered as a secret
scalar represented by a little-endian integer and a fixed-base scalar multi-
plication [s′]B is performed, where B represents a base point on the elliptic
curve.

4. Encoding: Finally, the resulting point [s′] is encoded, through manipulation
of the y-coordinate values of the curve. In this way the pubKey has also been
generated.

EdDSA Signing

Signatures are formed by using the private key to sign the message. This process
is based on combining the message and the private key by using different crypto-
graphic operations [34]. In our case, the message corresponds to the value of the
proof to be signed. Specifically, this process involves the following steps:

1. Hashing and Scalar Derivation: The private key (priKey) is hashed
using SHA-512 to obtain a digest (h′), of which the first half is used to
create the secret scalar s′, while the second half is denoted as prefix.

2. Message Hashing: The message (M ′) is hashed using SHA-512, along

38

Cryptography and Cybersecurity Aspects

with prefix, context information (CTX) and a flag (FLG), so as to obtain
a 64-octet digest (i).

3. Point Calculation: The point [i]B is calculated, where B is the base point
on the elliptic curve. This calculation includes the reduction of i modulo L,
that is, the group order of B, and finally the result is encoded, obtaining R.

4. Digest Calculation: Then, another digest is computed by hashing the
concatenation of CTX, FLG, R, the public key (A), and a modified hash of
the message (PH(M ′)), and from this is obtained the little-endian integer k.

5. Scalar Calculation: S ′ = (i + k · s′) mod L is calculated.

6. Signature Construction: Finally, the signature is created by concatenat-
ing R (32 octets) and S ′ (32 octets, with the three most significant bits at
0) in little-endian encoding.

EdDSA Verify Signature

Signature verification attests to the authenticity of a certain signature by utilizing
the public key, message (in our case the proof), and signature data. This method
is based on decoding the signature, forming a digest out of the message and public
key, and finally, verifying the group equation to ensure the integrity of the signature
[34]. Specifically, this process involves the following steps:

1. Signature Decoding: Using the public key A as reference point, the sig-
nature is decoded into two 32-octet parts, which represent the point R and
integer S ′, respectively.

2. Digest Generation: Then, a 64-octet digest is generated by hashing the
concatenation of CTX, FLG, R, public key (A), and a modified hash of the
message (PH(M ′)).

3. Group Equation Verification: Finally, the validity of the signature is
verified by checking the group equation [8][S ′]B = [8]R + [8][k]A′, or alter-
natively, [S ′]B = R + [k]A′; where A′ is the public key encoded.

5.2 Cybersecurity within SSI

5.2.1 Security in Blockchain and SSI
As previously outlined, in the context of SSI, blockchain may be used as a dis-
tributed ledger to implement certain security features for the system. Nevertheless,

39

Cryptography and Cybersecurity Aspects

this might not be sufficient enough because the SSI model still contains some vul-
nerabilities. Next, we present the main features of blockchain technology, useful
for the SSI system, and after that we examine the security challenges according to
the security assessment of the SSI system.

Security Features in Blockchain

Among the key security features of blockchain, those most crucial for decentralized
identity management include [36]:

• Tamper Resistance: Data immutability is ensured via blockchain thus
cryptographic hashing methods, linking each block cryptographically. Con-
sensus Protocols like Nakamoto consensus and digital signature algorithms
such as ECDSA mitigate the tampering of data.

• DDoS Resistance: The decentralized architecture of blockchains consensus
protocols allows the reduction of DDoS attacks’ impact, since they permit
transaction processing even with offline network nodes. In this scenario,
attackers must compromise a significant portion of the network to make it
inoperable.

• Double Spending Resistance: Consensus protocols and transparent trans-
actions permit the mitigation of double-spending attacks, while verification
mechanisms guarantee transaction’s validity, maintaining network integrity.

• %51 Resistance: Attacks made against consensus protocols require the
attacker to gain majority control, threatening the integrity of the transaction
history. Various consensus protocols have different susceptibility thresholds,
so several robust security measures must be developed.

Security Assessment of SSI

The main challenges that SSI models must approach are [36]:

• Dependency on Manufacturer Reliability: SSI systems depend on
TEEs supplied by the manufacturers, which is crucial for the security of
the systems. The reliance put on the security model manufacturers come up
with is also dubious and might introduce further vulnerabilities associated
with single points of failure.

• Data Availability and Memory Risks: Storing verifiable credentials in a
local storage in the SSI systems can decrease the accessibility and can expose
issues related to memory corruption or misuse. The availability of the data

40

Cryptography and Cybersecurity Aspects

spot on without ruining the integrity is a big question.

• Confidentiality Protection and Information Disclosure Risks: Al-
though SSI systems are using different methods such as anonymous authen-
tication and ZKPs to protect privacy, risks for disclosing sensitive identity
information still remain. The reasonable selective disclosure mechanisms are
still under development. The implementation of these mechanisms should
be improved to mitigate the risks.

5.2.2 Potential Attacks on the SSI System
The vulnerabilities identified in the previous segment could give malicious actors
the push to conduct different types of attacks and lead to damage or steal identi-
ties of other people to the SSI system. These attacks can be grouped into three
categories, and an attack tree can be defined for each of them in order to better
analyze them.

Fake Identity Attacks

Fake identity attacks pose a major threat to SSI systems, using fake identities to
gain access to services they are not authorized for. Attackers exploit vulnerabilities
in the SSI architecture to create fake credentials. These attacks can damage the
trust and reliability of the identity management system as a whole [36].

Figure 5.4. An attack tree of Faking Identity Attacks in the SSI system.

41

Cryptography and Cybersecurity Aspects

Attack Tree Analysis: In this attack scenario, attackers pretend to be trusted
issuers by creating fake credentials, like DIDs and public keys. Once inside the
network, they trick it into believing these fake credentials are real. In addiction,
vulnerabilities in the architecture, like hacked network machines, can give attackers
access to secret administrative credentials and keys, allowing them to change them.
For instance, in the Eclipse Attack, attackers take control of the peer-to-peer
network by redirecting connections to fake nodes, making the network accept the
false credentials [31].

Identity Theft Attacks

Identity theft attacks use vulnerabilities, in the SSI system to steal sensitive and
personal information, from user wallets without permission. These actions put
individuals’ privacy at risk and could result in types of fraudulent activities and
improper use of personal data [36].

Figure 5.5. An attack tree of Theft Identity Attacks in the SSI system.

Attack Tree Analysis: In this type of attack, malicious actors might access
data in wallets without permission by exploiting vulnerabilities in the SSI infras-
tructure. To do that, They could exploit authentication weaknesses or misuse
credential verification methods to obtain additional personal information, a prac-
tice known as Credential Creep. The impact of identity theft attacks goes beyond
users impacting the credibility and reliability of the SSI environment as a whole
[31].

42

Cryptography and Cybersecurity Aspects

DDoS Attacks

DDoS attacks pose a serious risk to the availability and reliability of SSI system
services. Through attacking the system with a large volume of traffic, the attackers
intend to cripple the users’ access to the system and breach the system’s function
[36].

Figure 5.6. An attack tree of Distributed DDoS Attacks in the SSI system.

Attack Tree Analysis: This type of attacks aim at several parts of the SSI
system, such as issuer, holder, and verifier hosts, along with the distributed ledger
nodes. Malicious actors can exploit vulnerabilities to attacks using vulnerabilities
in the blockchain infrastructure, for example flooding the nodes or disrupting the
consensus process. Furthermore, operational frameworks can be targeted, leading
to difficulties in governance and regulatory processes that are imperative for the
functioning of the SSI ecosystem [31].

43

Chapter 6

Design and Implementation

Once the initial research was completed on the basics of blockchain and the current
stage of the development of SSI models, the objective of this thesis was developed.
The first goal is to make the standalone framework for the decentralized user iden-
tity management, applying the SSI models with the blockchain technology as the
foundation. In this model, the identity management process consists of authen-
tication and authorization procedures that do not rely on centralized systems or
databases. The blockchain technology, smart contracts, and VCs are used for this
purpose. Therefore, it guarantees a high level of seclusion and security for the
personal and sensitive information of the users.

Subsequently, the aim was to integrate this system into an ongoing project at
Links Foundation named Data Cellar. Chapter 7 will delve into what Data Cellar
is and discuss the integration of the framework into that project.

In this chapter instead, the work will be analyzed in the design and implementa-
tion of the standalone framework for decentralized identity management. The work
comprised several phases: analysis of existing projects in this domain, selection of
the environment and libraries for developing the project, actual implementation of
the project, and analysis of its limitations arising from the lack of robust support
structures not yet commercially available, given the relatively short time since the
development of blockchain-based SSI systems.

6.1 Framework Development Journey
In this section, the design phase of the standalone framework is explored, tracing
the journey from initial research to the final selection concerning the development
environment, namely the blockchain and libraries for managing DIDs. The choices

44

Design and Implementation

made regarding the management of another fundamental element of the SSI model,
namely VCs, will be discussed in section 6.3.

6.1.1 Initial Research
Firstly, we conducted an examination of the primary IDMS blockchain products
on the market. Several scientific papers and articles were examined to identify
their technology choices, means of operation, and functionalities they offer [24],
[33], [17]. The three primary solutions encountered were:

• ShoCard: This SSI technology underlines the decentralization providing
every user with full control over their identities and data. ShoCard uses the
public Bitcoin blockchain for digital identity and authentication, when users
hold their identities on their devices using private keys.

• The Sovrin Network: Governed by Sovrin Foundation, it is an open-source
solutions framework that provides users with sovereign and decentralized
digital identities. It uses Sovrin ledger as a blockchain to support Hyperledger
Indy framework and other Hyperledger libraries like Aries and Ursa.

• The uPort System: An open-source identity system management with
SSI. It uses Ethereum blockchain for identity representation and IPFS for
data storing.

Project ShoCard Sovrin uPort

Blockchain
Implementation Bitcoin Hyperledger Indy Ethereum

Blockchain Type Permissioned Public
Permissioned Permissionless

Storage Off-Chain On/Off-Chain Off-Chain
Interoperability Yes Yes Yes

Selective
Disclosure No Yes Yes

Auth Yes Yes No

Table 6.1. A comparative analysis of blockchain based SSI system.

In order to avoid the usage of the existing systems and to bring up a decentral-
ized identity management system from scratch, the main work was done on the

45

Design and Implementation

fundamentals. The first step was the creation of a unique user representation that
in the case of a decentralized system is ensured by the DIDs. Several libraries
facilitating DID creation and management were explored [7], including:

• Ethr-did: Utilizes Ethereum’s accounts and smart contracts to implement
the registry for DIDs resolution. It stores DDO on the Ethereum blockchain.

• Did-algo: A framework for the Algorand blockchain, storing DDOs on IPFS.
It offers a CLI software for managing operations and supports various cryp-
tographic keys.

• Did-indy: Part of the Hyperledger Indy ecosystem, based on a permissioned
blockchain with multiple logical ledgers. It enables role assignment to DIDs
and provides mechanisms for VC issuance and verification.

6.1.2 Challenges and Failed Attempts
Initially, there were works focusing on the analysis of the Did-indy, which is also
built on the Hyperledger Indy blockchain. Nevertheless, the development was chal-
lenged by the outdated Indy SDK and the absence of the comprehensive guideline.

These constraints thus provoked an exploration of other solutions, which resulted
in a focus on algo-did, which works on the Algorand blockchain. It turns out
that there were certain challenges that we encountered with algo-did, such as
documentation issues, technical problems that remain unresolved, and the lack of
community support that we have noticed. These problems led to a re-evaluation
of the relevance of this system for the framework.

6.1.3 Final Choice
After a thorough screening and exclusion process, the spotlight focused on ethr-
did, which is based on the Ethereum blockchain, one of the most widely used
blockchains at present. The ethr-did system was not only robust but also well-
documented, and uPort also made use of it, as discussed before, which made it
the ideal option.

In the beginning, the ethr-did library’s functionality was tested by running lo-
cally executed software, using Infura to communicate with the Ethereum blockchain.
Developers can easily get access to the blockchain networks through Infura by cre-
ating an API key, and this is done without requiring them to directly manage full
nodes on their devices [22].

However, anticipating the integration of the framework with the Data Cellar
project, envisioned as a browser-accessible application for users, the framework

46

Design and Implementation

was promptly developed in the form of a browser DApp supported by the use of
MetaMask. MetaMask serves not only as a digital wallet for users but also facili-
tates direct communication with the blockchain through the browser, eliminating
the need for an API key and thus Infura.

6.2 Framework Main Components
In this section, the libraries, blockchain, and support tools utilized in the devel-
opment of the standalone framework designed as a browser DApp for identity
management will be explored. This framework operates under the decentralized
identity management model based on blockchain technology, focusing on the cre-
ation and management of DIDs. The section excludes the management of VCs,
which will be addressed in the subsequent section.

6.2.1 Ethr-did and Other Libraries
The foundation for standalone framework development is ethr-did library. Through
ethr-did, we try to use Ethereum addresses as a fully self-directed DID so as to
help easy key development and management for these identifiers. ethr-did stan-
dardizes the identity methods and provides a scalable mechanism for public keys
and Ethereum addresses [38]. Thus, the collection of on-chain and off-chain data
becomes possible.

This library relies on two additional libraries:

• ethr-did-registry: This library contains the Ethereum contract code al-
lowing owners of ethr-did identities to update attributes in their DDOs. It
provides an API enabling developers to interact with the contract functions
using JavaScript, designed for resolving public keys for off-chain authentica-
tion [39].

• Ethr-did-resolver: Intended for use with Ethereum addresses or secp256k1
public keys as fully self-managed DIDs, wrapping them in a DDO. It supports
the DIDs spec from the W3C Credentials Community Group and relies on
the did-resolver library [11].

ethr-did together with ethr-did-registry and ethr-did-resolver are all based on
ethers, which is a thin and well-known library for smart contract interactions and
DApps development, most commonly used for digital wallets, like MetaMask.

The other hand, ethr-did makes use of the did-jwt library thereby introducing
the signing and verification of JWTs using various algorithms. However, specific

47

Design and Implementation

functions from did-jwt were not utilized in the framework created.

In this case, only the ethr-did constructor was used to generate DIDs associated
with users’ Ethereum accounts and resolved them later using the ethr-did-resolver
library. Supplementary functions within ethr-did were unnecessary for the pur-
poses and thus remained unused.

Ethr-did Constructor

The majority of functions within the ethr-did library can be executed either locally
or interact directly with the Ethereum blockchain, depending on the chosen ap-
proach for constructing the ethr-did object, whether or not the etherDidController
class from the ethers library.

Now, let’s analyze in detail the parameters required by the constructor [38]:

• identifier: Represents the identifier used for DID creation, which can be
either an Ethereum address, a public key, or an Ethereum address as a
string. (Required)

• chainNameOrId: Represents the name or ID of the blockchain network.
(Optional)

• registry: Represents the address of the DID registry contract. (Optional)

• signer: Represents the JWT signer. (Optional)

• alg: Represents the signature algorithm, which can be either ’ES256K’ or
’ES256K-R’. (Optional)

• txSigner: Represents the transaction signer. (Optional)

• privateKey: Represents the private key associated with the Ethereum ad-
dress. (Optional)

• rpcUrl: Represents the RPC URL used to connect to the Ethereum network.
(Optional)

• provider: Represents the Ethereum provider. (Optional)

• web3: Represents the web3 provider. (Optional)

The constructors logic checks, for the existence of an Ethereum provider or
network details. If present, sets up the txSigner using an object that can sign
transactions or generates one, from a Wallet. If a private key is defined and theres
no existing txSigner object a fresh Wallet object is generated with the given key,
which is then utilized as the txSigner for signing transactions.

48

Design and Implementation

The EthrDidController class is created to work with the ERC1056 contract,
which’s a standard used to represent identities, on the Ethereum platform. When
the EthrDid object constructor is called it triggers the constructor of EthrDidCon-
troller generating a DID with did:ethr on the designated network, in a process.
This means that only DIDs generated through EthrDidController and actions ex-
ecuted using its functions are able to communicate with the Ethereum network.

6.2.2 Ethereum and Smart Contracts
As previously mentioned, for the purpose of building the following framework of
decentralized identity management, the Ethereum blockchain has been chosen.
Ethereum is possibly one of the most widely used blockchains in the world to-
day due to the fact that it has completely redefined the concept of blockchain
itself through the functions of smart contracts and through the support for the
development of DApp [14].

In particular, Ethereum’s main test networks, namely Goerli and Sepolia, were
used, given the possibility of obtaining the relevant tokens via faucets. A smart
contract was set up on these blockchains to serve as a registry, for keeping track
of which DIDs linked to users Ethereum accounts had registered on the browser
DApp. In addition, the smart contract used by ethr-did for managing DIDs, which
is useful during their resolution, already present on Goerli, has also been deployed
on Sepolia.

Deployment of these contracts on Goerli and Sepolia will be facilitated by using
Truffle, a development framework for Ethereum that eases and hastens the creation
of smart contracts and DApps. After correctly configuring Truffle [37], a brief
script was created to deploy the contract, using the following commands:

• "truffle compile": to compile the contract and obtain the ABI, which de-
scribes the methods it accepts, the parameters they accept, and the values
returned.

• "truffle migrate –network": to deploy the contract correctly on the given
blockchain network, provided that the account used has enough tokens to
cover the fees. During deployment, the address of the block where the con-
tract had been stored on the blockchain was retrieved.

49

Design and Implementation

1 const registry = artifacts . require (" DataCellarRegistry ");
2 module . exports = async function (deployer , accounts) {
3 try {
4 await deployer . deploy (registry , accounts [0]);
5 const registryInstance = await registry . deployed ();
6 console .log(" DataCellarRegistry contract deployed at:",

registryInstance . address);
7 } catch (error) {
8 console . error ("Error deploying the contract :", error);
9 }

10 };

Listing 6.1. Deploying DataCellarRegistry contract.

The Smart Contract

A smart contract is a self-executing contract wherein the conditions of the agree-
ment are automatically captured in code. It executes the agreement conditions
automatically and intermediaries are no longer a necessity.

In the scope of the project, Solidity language is used to write a smart contract
that will perform functions of user registration management in a decentralized
way. It is realized by updating a mapping in which a boolean value is attached to
each Ethereum account to show the user status whether he is registered or not. In
using the Ethereum blockchain which is inherently decentralized and immutable,
the Smart contract ensures the integrity and transparency of the system, while
eliminating the need for a central authority. Participants can register or unregister
themselves safely and autonomously, with the contract recording these actions on
the blockchain.

Functions of the smart contract:

1. registerUser(address _userAddress): It registers a user in the registry.
This function can only be called by the user, and the user must not be already
registered.

2. unregisterUser(address _userAddress): Unregisters the user. This
function can be called only by the user itself, and the user should have
registered before that.

3. isUserRegistered(address _userAddress): Checks if a user is registered
in the registry. This function can be used by anyone, and it returns a boolean
value indicating whether the user is registered or not.

50

Design and Implementation

The contracts three functions all require an Ethereum account as input. The
final function is read only displaying whether a user is registered or not while the
other two functions alter the contracts state. These state altering functions need
the contract to update its status on the blockchain leading to transaction fees
being paid to miners for overseeing and validating these modifications.

1 pragma solidity ^0.8.2;
2 contract DataCellarRegistry {
3 mapping (address => bool) private registeredUsers ;
4 event UserRegistered (address indexed user);
5 event UserUnregistered (address indexed user);
6 modifier onlySelf (address _userAddress) {
7 require (msg. sender == _userAddress , "Can only

perform action on yourself ");
8 _;
9 }

10 modifier onlyUnregistered (address _userAddress) {
11 require (! registeredUsers [_userAddress], "User

already registered ");
12 _;
13 }
14 modifier onlyRegistered (address _userAddress) {
15 require (registeredUsers [_userAddress], "User not

registered ");
16 _;
17 }
18 function registerUser (address _userAddress)
19 external onlySelf (_userAddress) onlyUnregistered (

_userAddress) {
20 registeredUsers [_userAddress] = true;
21 emit UserRegistered (_userAddress);
22 }
23 function unregisterUser (address _userAddress)
24 external onlySelf (_userAddress) onlyRegistered (

_userAddress) {
25 registeredUsers [_userAddress] = false;
26 emit UserUnregistered (_userAddress);
27 }
28 function isUserRegistered (address _userAddress)
29 external view returns (bool) {
30 return registeredUsers [_userAddress];
31 }}

Listing 6.2. Smart contract for DataCellarRegistry.

51

Design and Implementation

6.2.3 MetaMask
One of the crucial factors that led to the construction of the framework as a browser
DApp is MetaMask. MetaMask is a user-friendly Ethereum blockchain software
wallet designed for convenient transaction operations [30]. In other words, Meta-
Mask serves as an interface between the users and Ethereum DApps, providing
access to Ethereum wallets via browser extensions or mobile applications. The
advent of MetaMask has provided users with a convenient way to manage their
cryptocurrencies, transact online, and engage DApp across different browsers and
mobile platforms.

Specifically, the browser DApp is able to monitor the presence of the MetaMask
extension in the browser being used and the existence of an Ethereum account
in the wallet, which most of the time means that the extension is connected to
the application. Additionally, the DApp can identify the primary account and
the desired reference networks on MetaMask in real-time. As a matter of fact,
MetaMask not only help in handling multiple accounts but also multiple network
like Goerli and Sepolia which has been deployed the smart contract.

Finally, MetaMask provides the ability to securely store the private keys of DApp
accounts in a secure wallet, allowing users to sign and execute transactions that
will enable them to register or deregister without the private keys ever leaving the
extension in clear or encrypted form.

1 const _updateWallet = useCallback (async (providedAccounts)
=> {

2 const accounts = providedAccounts || await window . ethereum
. request ({ method : ’eth_accounts ’ })

3 if (accounts . length === 0) {
4 setWallet (disconnectedState)
5 return
6 }
7 const chainId = await window . ethereum . request ({ method : ’

eth_chainId ’})
8 setWallet ({ accounts , chainId })
9 }, [])

10

11 useEffect (() => {
12 const getProvider = async () => {
13 const provider = await detectEthereumProvider ({

mustBeMetaMask : true , silent : true })
14 setHasProvider (provider)
15 if (provider) {
16 updateWalletAndAccounts ()

52

Design and Implementation

17 window . ethereum .on(’accountsChanged ’, updateWallet)
18 window . ethereum .on(’chainChanged ’,

updateWalletAndAccounts)
19 }
20 }
21 getProvider ()
22 return () => {
23 window . ethereum ?. removeListener (’accountsChanged ’,

updateWallet)
24 window . ethereum ?. removeListener (’chainChanged ’,

updateWalletAndAccounts)
25 }
26 }, [updateWallet , updateWalletAndAccounts])

Listing 6.3. Function for updating wallet and accounts.

6.3 Verifiable Credentials and Limitations
As outlined in section 4.3, VCs are crucial, in the SSI model. So, once the
blockchain and libraries for DID support were determined, the focus of the re-
search turned to finding for managing, issuing, and verifying VCs.

6.3.1 Utilization and Challenges
The idea was to make dual use of VCs within the SSI framework: first, to obtain
user information certified by an entity, and then, having obtained this information,
to create a VC issued and signed by the browser DApp, with a triple purpose:

• Ensuring that the user has registered in the registry on the blockchain, i.e.,
the smart contract uploaded to Goerli and Sepolia, through the browser
DApp.

• Maintaining the information provided by the user within an immutable cre-
dential, being signed by the browser DApp.

• Allowing the user to present the VC issued by the DApp to other entities to
demonstrate registration with the service.

In this way, the user could authenticate the browser DApp just if they offer
the VP related to the VC issued by the DApp itself, from which the data will
be read and the user would be allowed to perform certain actions, such as based
on age, country of origin, or profession. Furthermore, all of this is carried out
in a fully decentralized way, which means that the browser DApp contains no

53

Design and Implementation

centralized database which stores the user’s sensitive information. The VC is the
one maintained by the user, and then it is temporarily stored in a session cookie
to allow them to perform certain functions once authenticated.

However, even though the concept is well founded and aligns completely with
the standards outlined by the state of the art of the SSI model, two significant
challenges emerged. These limitations arise from the absence of frameworks and
resources, for overseeing and upholding these VCs:

• The absence, for now, of VCs issued by genuine certified entities, easily
findable and provided by the user during the registration phase to allow
the creation of the VC issued by the browser DApp. For example, there
is currently no VC corresponding to an identity card issued by the Italian
government or similar entities. This limitation forced the direct request to
the user to manually enter their data via a form, which is automatically
taken as "trusted" and inserted into the VC that will be issued.

• The absence of non-proprietary wallets capable of storing and managing VCs
for different purposes and containing DIDs with any type of DID method.
Such wallets are necessary to allow the user to securely store the VC provided
and to present a VP, signed by them and containing only the necessary
information requested. This limitation forced the direct request to the user
for the VC provided, without being able to apply the concept of selective
disclosure.

6.3.2 Solution Exploration
Another idea that emerged due to a possession of the MetaMask as a wallet for
the Ethereum accounts of our users was Masca. Masca, being a MetaMask Snap
(extension), adds support for decentralized identity management of DIDs, storage
of VCs, and creation of VPs [29].

This framework appeared to be suitable for the requirements; however for VC
creation and signing, Masca must use the MetaMask account of the user connected
to the DApp browser at that time. By the default mechanism, it was not possible
to designate one particular account as an issuer that could have represented an
application. The only possible way to deal with the problem after contacting
Masca Support on dedicated forums was to pass the VC payload from the user to
the server, at which point it would be temporarily stored. Later, the application
administrator would use another DApp to access the requests from the server and
sign them, which in turn create the VC to be finally transmitted to the user via
other means.

54

Design and Implementation

However, this solution was disregarded because it not only prohibited immediate
user registration and authentication within the application but also necessitated
the implementation of database within the service, thus eliminating the complete
decentralization of the system.

6.3.3 Final Decision
The ultimate choice in this case relied on sending the VC from the browser DApp
to the user, where it is saved on the users device along with a suggestion to keep
it safe in a place, like a wallet if possible.

In terms of selecting a library to use for VC creation and verification, the library
did-jwt-vc was selected. This library, also used by Veramo, the current implemen-
tation of uPort, has APIs such that they allow for the creation of a VC by sending
a payload that contains the user’s account-associated DID, along with that of the
issuer, that is EtherDid object which represents the browser DApp [10]. The pro-
cess of signing and verifying JWTs using the ES256K and EdDSA mechanisms,
respectively, is accomplished via the invocation of the functions present in the
did-jwt library.

Subsequently , the VC can be validated by a Resolver object that allows the
resolution of the DDO. Inside DDO there are verification methods which contain
the issuer of VC. These methods are extracted and used for the verification of the
signature. Signature verification provides the assurance that the VC’s signature
complies with the public key that is related to the verification method. All these
operations are invoked through calling for the functions within did-jwt library.

1 export const verifyVc = async (vc) => {
2 const providerMetamask = new BrowserProvider (window .

ethereum , parseInt (’0x539 ’, 16));
3 const providerConfig = {
4 provider : providerMetamask ,
5 chainId : ’0x539 ’,
6 registry : getContract ("0x539")
7 }
8 const resolver = new Resolver (getResolver (providerConfig))
9 try {

10 const verifiedVC = await verifyCredential (vc , resolver);
11 return verifiedVC ;
12 } catch (err) {
13 return false;
14 }}

Listing 6.4. Function for verifying verifiable credentials.

55

Design and Implementation

6.4 Application Functionality Analysis
Let us now look in detail at how the standalone SSI framework, which was created
for decentralized identity management, was built, following the blockchain-based
SSI model, its functionality and the mechanisms it uses. As mentioned earlier, the
framework was developed as a browser DApp, consisting of a frontend, developed
with React, and a backend, built using JavaScript, which serves as the DApp
server.

In addition, to solve problems with the secure storage of authentication to-
kens, within session cookies, the application is supported by HTTPS. To do this,
OpenSSL and mkcert were used to generate SSL certificates, which are required
to enable HTTPS functionality. Thus, this enhancement also allowed the over-
all security of the framework to be strengthened, aligning with established best
practices for web application development.

1 useEffect (() => {
2 const cookies = document . cookie .split (’;’);
3 const authTokenCookie = cookies .find(cookie => cookie .trim

(). startsWith (’authToken =’));
4 if (authTokenCookie) {
5 const authToken = authTokenCookie .split (’=’)[1];
6 const { payload : { publicAddress , name , surname , email ,

profession , country , region } } = jwtDecode (authToken);
7 setAuthState ({ publicAddress , name , surname , email ,

profession , country , region });
8 }
9 }, []);

10

11 const handleLoggedIn = (auth , publicAddress , credentials) =>
{

12 document . cookie = ’authToken =${JSON. stringify (auth)}; path
=/; samesite =None; secure ’;

13 setAuthState ({ publicAddress , name: credentials .name ,
surname : credentials .surname , email : credentials .email ,
profession : credentials . profession , country : credentials .
country , region : credentials . region });

14 navigate (’/’);
15 };

Listing 6.5. Handling cookie and setting authentication state.

In the frontend, which corresponds to the most substantial part of the browser
DApp, in addition to the complete manage the graphical user interface, the user

56

Design and Implementation

authentication process is also managed, also taking advantage of MetaMask sup-
port. This process consists of 3 steps: Access (or connection), Sign up and Sign in
(or authentication). For each of them a different web page has been defined and
within each there is always an "information" button that explains to the user what
exactly he has to do at that precise moment.

Below, in the remaining subsections, the server’s functions first and then each
step of the authentication process within the frontend, will be examined in detail.

6.4.1 Server Implementation
Being decentralized, the DApp server does not contain any database. However, it
performs two important functions:

• Generating the VC with the payload provided by the user and signed with
the private key of the application administration, stored as an environment
variable within a .env file, during the registration phase of a new user.

1 async generateJwtToken (signature , pubAddress , nonce ,
credentials) {

2 if (! signature || ! pubAddress || ! nonce || !
credentials) {

3 throw new UnauthorizedException (’Request should have
signature , pubAddress , nonce and credentials .’);

4 }
5 const msg = ‘I am signing a one -time nonce: ${ nonce }‘;
6 const msgBufHex = eth_utils . bufferToHex (Buffer .from(

msg , ’utf8 ’))
7 const address = eth_sign_utils .

recoverPersonalSignature ({
8 data: msgBufferHex ,
9 sig: signature ,

10 });
11 if (address . toLowerCase () === pubAddress . toLowerCase ()

) {
12 try {
13 const payload = await this. generatePayload (

credentials , pubAddress);
14 const accessToken = await this. jwtService .

signAsync (payload);
15 return accessToken ;
16 } catch (error) {
17 throw new UnauthorizedException (’Error generating

token.’);

57

Design and Implementation

18 }
19 } else {
20 throw new UnauthorizedException (’Signature failed .’)

;
21 }
22 }

Listing 6.6. Async function for generating JWT token.

• Creating and signing, using a secret also stored as an environment variable
within the .env file, a JWT to be inserted into the session cookie. This
JWT contains the user’s data, which was contained in the VC issued to him,
which he has to replenish during the authentication phase. The purpose of
the JWT is to grant specific permissions to the user, based on the data in
it, during that session. In addition, before doing so, a check is made on the
correctness of a Nonce, which is signed by the user, within a message, during
the authentication phase. This allows to increase the security level of the
process itself, preventing replay attacks.

1 async generateVerifiableCredential (publicAddress ,
credentials) {

2 if (! credentials || ! publicAddress) {
3 throw new UnauthorizedException (’Request should have

publicAddress and credentials .’);
4 }
5 try {
6 const issuer = new ethr_did . EthrDID ({
7 identifier : process .env. OWN_ADDRESS ,
8 privateKey : process .env.PRIV_KEY ,
9 alg: ’ES256K -R’,

10 chainNameOrId : 1337 ,
11 });
12 const holder = new ethr_did . EthrDID ({
13 identifier : publicAddress ,
14 alg: ’ES256K -R’,
15 chainNameOrId : 1337 ,
16 });
17 const payload = await this. generateVcPayload (

credentials , holder .did);
18 const vc = await did_jwt_vc .

createVerifiableCredentialJwt (payload , issuer);
19 return vc;
20 } catch (error) {

58

Design and Implementation

21 throw new Error (’Verifiable Credential creation
failed .’);

22 }
23 }

Listing 6.7. Async function for generating verifiable credentials.

6.4.2 Access Process
Upon launching the framework, the user will be presented with a single button
that will redirect them to the page where they can perform the installation of
the MetaMask browser extension, which is essential for the proper functioning of
this SSI framework, as it allows users to interact with the blockchain by signing
transactions directly through their wallet.

Once MetaMask is installed, this one button will be replaced by another that
will allow the user to connect the MetaMask extension, to the DApp and unlock
the wallet, in case it is still locked, thus allowing the DApp to access the Ethereum
accounts within it, representing the user.

Figure 6.1. Access page with MetaMask installed.

After doing so, the user will be in the Home of the DApp, but will have logged
in as a visitor, so they will only be able to view certain parts of the DApp and
perform only limited functions.

59

Design and Implementation

However, two buttons will appear in the navigation bar: one for accessing the
Sign in page and one for the Sign up page. In addition, two text boxes will
appear showing the network and account selected at that particular time, within
the MetaMask extension, providing the user with real-time information about the
blockchain and the address they are working with.

6.4.3 Sign-Up Procedure
This step in the process allows the user to register with the selected account within
the MetaMask wallet and using one of the blockchains, in which the smart contract
that serves as the registry for the DApp has been previously deployed.

To begin, the user must fill in all the fields on the form presented to him; every
value entered by the user is properly validated, so as to prevent possible security
problems, but this still does not fully follow the SSI paradigm. This is because
there are currently no authentic VCs from which to take this data (as explained
in detail in the previous section). This data will constitute the VC payload, which
the DApp browser, in the manner described above, will send through the server
to the user.

Figure 6.2. Sign Up page with confirm transaction pop-up.

Before receiving this VC, however, the user must register by adding his account
in the DApp’s smart contract, which serves as a registry, present on the referenced
blockchain. To do so, he must make a transaction, via the MetaMask wallet, which
will involve payment of fees, both from MetaMask and from the network used. This

60

Design and Implementation

registration is necessary not only to allow the application administrator to know
how many users are registered and with which accounts, but also to control and
issue only one VC per account.

1 const signupDataCellar = async () => {
2 try {
3 const provider = new ethers . BrowserProvider (window .

ethereum , parseInt (wallet .chainId , 16));
4 const signerPromise = provider . getSigner (wallet . accounts

[0]);
5 const signer = await Promise .race ([signerPromise ,

timeoutPromise (10000)]);
6 if (! signer) {
7 throw new Error (’Timeout ’);
8 }
9 const dataCellarRegistry = new ethers . Contract (

contractAddress , contractAbi , signer);
10 const registeredCheck = await isRegistered ();
11 if (! registeredCheck) {
12 const tx = await dataCellarRegistry . registerUser (

wallet . accounts [0]);
13 await tx.wait (1);
14 clearError ();
15 return true;
16 } else {
17 setErrorMessage (’The selected account is already

registered .’);
18 return false;
19 }
20 } catch (err) {
21 if (err. message === ’Timeout ’) {
22 window . location . reload ();
23 } else {
24 setErrorMessage (’The sign up operation on DataCellar

smart contract failed .’);
25 return false;
26 }
27 }
28 }

Listing 6.8. Async function for signing up in DataCellar.

Once the registration is completed, the VC will be provided to the user who,
pushing a button, can download it to his device and store it securely, as indicated.

61

Design and Implementation

6.4.4 Sign-In Mechanism
In this final and perhaps most important step, user authentication occurs, using
the account selected within the MetaMask wallet and the blockchain with which
the registration was made. A note reminds the user to change the network selected
in the MetaMask extension in case it is incorrect.

To do this, the user must provide the VC issued during the sign up phase, from
the browser DApp, for the selected Ethereum account; this is because there is
currently no way to request the corresponding VP (as explained in detail in the
previous section). The DApp will then check the validity of this VC, following the
methods described above, to ensure both that it has been issued by the DApp and
that it contains the DID, associated with the account selected by the user, in his
MetaMask wallet, at that time.

1 {
2 " credentialSubject ": {
3 "name": "Luca ",
4 " surname ": "Rota ",
5 "email": " lucarota@gmail .com",
6 " profession ": " studente ",
7 " country ": "Italy",
8 " region ": " Liguria ",
9 "id": "did:ethr :0 xaa36a7 :0

x6815Bcc7DA136E34E6E6ACBf0a1F9671225c767A "
10 },
11 " issuer ": {
12 "id": "did:ethr :0 xaa36a7 :0

x2F506eaaFfe39edD456cA74F13c74D6d80768Eb0 "
13 },
14 "type": [" VerifiableCredential "],
15 " @context ": ["https :// www.w3.org /2018/ credentials /v1"],
16 " issuanceDate ": "2024 -03 -13 T11 :08:24.000 Z",
17 "proof": {
18 "type": " JwtProof2020 ",
19 "jwt": " eyJhbGciOiJFUzI1NkstUiIsInR5cCI6IkpXVCJ9eyJ2Y .

yI6eyJAY29udGV4dCI6WyJodHRwczovL3d3dy53My5vcmcvMjAxOC9j .
cmVkZW50aWFscy92MSJdLCJ0eXBlGOTx6lSAnLrhLp9iUOdUPl6H ...

20 }
21 }

Listing 6.9. Verifiable Credential JSON data.

62

Design and Implementation

If these checks are passed, the user will be asked to sign a message containing
a Nonce, using the private key associated with their account, through the Meta-
Mask wallet. This process does not involve any transactions on the blockchain
and therefore does not require payment of fees. As explained earlier, this Nonce
serves to increase the level of security and will be automatically sent to the server
along with the signed message and the payload extracted from the VC previously
provided by the user. After appropriate verification, if successful, the server will
return a signed JWT containing the payload received.

Finally, this JWT will be placed in a token in the session cookies and the user
will be authenticated. This corresponds to accessing the DApp as a member. In
this way, the user can view the entire browser DApp, access its page, and perform
all functionality, within the limits of the information in the session cookies. In
fact, depending on the functionality the user wishes to perform within the DApp,
the session cookie token will be decoded and, based on the information obtained,
certain authorizations will be granted or denied to the user. In addition, a button
will appear in the navigation bar that allows the user to log out of the account
with which they have authenticated.

Figure 6.3. Sign In page with sign message pop-up.

63

Chapter 7

Integration in a Real Project

To demonstrate the real utility and effectiveness of the previously created decen-
tralized identity management SSI framework, it was integrated as an authentica-
tion process into an ongoing project at Links Foundation, known as Data Cellar.
Later, in addition to the integration of this system, the entire GUI of the applica-
tion was also developed.

In this chapter, we will first deal with what Data Cellar is and what the initial
state of the project was. Then, we will examine in detail the entire integration
process and the final graphical result of the application.

7.1 Overview of Data Cellar
Data Cellar is an energy data center, geographically located within the European
Union, whose main activities consist of the construction of a federated energy data
space in order to enable the creation, growth, and support of local energy com-
munities [6]. That initiative is based on an innovative rewarded private metering
approach„ stressing successful integration, simplicity of the interactions, guaran-
teeing integration with other energy data spaces in the EU and providing the actors
with the services and tools they need for their own actions.

As part of this four-year project, Links Foundation endeavors to decentralize
various functionalities of the data center, resulting in enhanced security, speed,
distribution, and additional benefits inherent to blockchain and decentralized ar-
chitectures.

Naturally, being a project in development within the company and at the out-
set of this process, in its initial version, the set of functionalities offered by this

64

Integration in a Real Project

decentralized version is still limited compared to its standard operational version
at the European level.

7.2 Initial Project Status
In its decentralized application form, the Data Cellar project comprised a set of
smart contracts enabling various functionalities (briefly discussed later), invoked
through a backend written in NestJs, with its interface generated via Swagger.
Swagger, which is an API documentation tool, streamlines the documentation of
RESTful APIs, so that the developers could focus on the code while not bothering
about the manual creation of documentation.

7.2.1 Development Environment
The execution environment of the project was simulated using Docker. Docker is
an open-source platform that is used for application creation, distribution, and
execution, all within containers. Docker containers represent a modern form of
virtualization that allows developers to bundle applications and all their depen-
dencies (such as libraries, frameworks, and other components) into a self contained
unit known as a "container" [13].

Specifically, in this case, three containers were executed:

• Ganache: An Ethereum-based private blockchain simulation containing
pre-created accounts with visible private keys and a fund of 100 ETH.

• Postgres: The off-chain database for storing user information.

• Redis: The service for initializing and using queues to handle requests on
the blockchain.

As can be seen from these containers, the user identity management system
was still completely centralized, using a database implemented through Prisma,
in which user IDs, accounts and private keys were stored.

7.2.2 Offered Functionalities
The key aspect of the initial version of the project was the digitization of energy
data and its exchange among users through the purchase of one-time and periodic
licenses. Features offered included:

• User registration, which includes the assignment of an address to the new
user enabling them to buy and sell digital assets on the blockchain.

65

Integration in a Real Project

• Visualization of datasets and associated licenses.

• Upload of datasets and associated licenses.

• Purchase of licenses associated with datasets.

• Deletion of licenses associated with datasets and the datasets themselves.

• Visualization of DataCellar Token balance.

7.3 Integration Process
Following the guidelines provided, from the initial version, of the Data Cellar
project, in the form of a decentralized application, the decision was made to con-
tinue using Ganache as a local network, running through a Docker container,
rather than using Ethereum testnets, such as Goerli and Sepolia, as was done for
the creation of the standalone framework for managing SSI.

First, the previously created framework was adapted to work with Ganache,
and the configuration of MetaMask was then modified. In fact, among other func-
tions, MetaMask allowed the addition of new local networks, such as Ganache,
and the import of corresponding accounts into the wallet. As a final step regard-
ing the blockchain aspect, the existing script, which loaded all the contracts used
to execute the project’s functionalities upon Docker startup, had the SSI frame-
work smart contract acting as a registry and the one used by ethr-did for DID
management added.

Subsequently, the code was modified, changing its structure almost completely.
This was done because all the APIs, which invoked the functions, defined within
the smart contract, had to be moved from the backend, where it was executed only
because the users’ private keys were stored in plain text in the database, to the
frontend, to be executed using MetaMask, which allows transactions to be signed
without exposing the users’ private keys.

During this code change, the use of the database, thus Prisma and Postgres, the
use of queues, as they are not supported by MetaMask, and the use of Swagger
were completely eliminated, as a new GUI was created.

7.4 Final Application
The second version of the Data Cellar corresponds to the final application that
has been built, in the form of a decentralized application that has been integrated

66

Integration in a Real Project

with the SSI framework and is further enriched with a dynamic and user-friendly
frontend.

The functionalities of the second version of the Data Cellar can be divided into
functionalities that relate to the SSI framework, those designed for visitors, and
those for registered members.These functionalities include:

• SSI functionalities:

– Connection to Data Cellar (access as a visitor)

– Registration to Data Cellar (sign up as a member)

– Authentication in Data Cellar (sign in as a member)

– Delete your Data Cellar account

• Visitor functionalities:

– View all datasets available in Data Cellar

– View all available licenses for each dataset

• Member functionalities:

– View the balance of ETH and DataCellar tokens

– Convert ETH to DataCellar tokens

– Add new datasets in Data Cellar

– Create new licenses, single-use, or periodic, for your datasets

– View, edit, and delete your own datasets

– View, edit, and delete your own licenses

– Buy licenses for datasets added by other users

– View purchased licenses and reference datasets

– Consume purchased licenses

7.4.1 Backend Implementation
To follow the guidelines, provided by the first version of this project, the back-
end remained written in NestJs, using the structure proposed by the language,
consisting of Module, Controller and Service files. On the logical level, however,
within the backend, which acts as a server, only the two features present in the
framework for SSI management remained, namely:

67

Integration in a Real Project

• Verification of the user’s signature and generation of an access token (which
will be placed in the session cookie to verify user authentication)

• Generation of a VC demonstrating the sign-up to DataCellar (the user must
provide it in order to access the dApp)

7.4.2 Frontend Development
As in the previous case, the frontend, realized using React, covers the most sub-
stantial part of the application. It contains not only the entire graphical interface
but also the authentication process of the SSI framework, explained earlier, en-
riched by the de-registration functionality, along with all the APIs invoking the
functionalities defined in the smart contracts of the Data Cellar project.

The GUI, in order to be user-friendly, has been enriched with confirmation
modals for the most important operations, which the user can perform, and auto-
matically disappearing error and success alerts, which cover all possible outcomes,
of the various features the user can perform, within the application.

Finally, let us then briefly examine the two main pages that make up the Data
Cellar project in its second version in the form of a browser DApp.

Home Page

Figure 7.1. The marketplace in the Data Cellar Home page.

68

Integration in a Real Project

The initial page shows the Data Cellar marketplace, where all transferable
datasets created by other users are visible. Various information is provided for
each dataset, from the address of the owner, to the URI of the Token, which
actually contains the energy data.

Clicking on the license symbol takes you to the corresponding page, which shows
for the referenced dataset all available licenses, indicating for each of them various
information, including the price in DataCellar Token, i.e., the currency used within
the application.

Figure 7.2. List of licenses for a specific dataset, after authentication process.

Authenticated members can purchase these licenses, either for a period or for
single use, in the latter case, a modal allowing the definition of the quantity of
licenses to purchase together is provided.

Profile Page

By clicking on the "visit your profile" button in the navigation bar, users can access
their profile. Within it are various sections covering all the personal functionality
executable by the user:

69

Integration in a Real Project

• General Information: Contains the user’s information obtained from the
token placed in the session cookie.

Figure 7.3. Page to view user’s personal information.

• Manage Balance: Displays the user’s DataCellar Token and Ethereum
balance, also allowing conversion of new ETH to DataCellar tokens.

Figure 7.4. Page to manage user’s DataCellar tokens.

• Datasets and Licenses: Displays all datasets created by the user; each can
be edited or deleted, using the corresponding buttons that open the relevant
modals. Also, by clicking on the license symbols, the user can view all the
licenses he has created for that dataset. By accessing the dedicated page, the
user can also edit and delete each license through the corresponding buttons
and modals, as in the previous case.

70

Integration in a Real Project

Figure 7.5. Page to view user’s dataset and access their licenses.

• Create new Ones: Here the user can create new datasets, i.e., add new
datasets to the marketplace, or create new licenses related to an existing
dataset among its available ones. Datasets marked as transferable will be
on the Home page of other users, allowing them to purchase their respective
licenses.

Figure 7.6. Page to create a new license or switch for new dataset.

• Purchased Licenses: Shows the list of datasets for which the user has
purchased at least one license. These licenses are visible by clicking on the
respective symbol leading to the dedicated page. Here the user can consume
licenses, i.e., use them; periodic licenses can be used as many times as desired
within the validity period, while single-use licenses can be used a number of
times equal to the amount of tokens available for it.

71

Integration in a Real Project

Figure 7.7. Page to view purchased licenses of specific dataset and use them.

• Delete Account: This last page developed the latest smart contract func-
tion created for the SSI management framework, which gives the user the
ability to delete their account, i.e., deregister. However, this function was
not originally designed for this specific project, so it has limitations. In fact,
by deleting an account, the datasets, licenses and DataCellar tokens related
to it and defined in the other smart contracts of the project are not deleted.

Figure 7.8. Page to delete user’s account, performing de-registration.

72

Chapter 8

Conclusions and Future Works

In conclusion, this thesis delves into the concept of Self Sovereign Identity (SSI),
presenting an approach, to handling digital identities. It is evident that SSI shows
potential in transforming how identities are controlled in the world, offering several
benefits, over conventional centralized systems. Nevertheless, it is crucial to rec-
ognize that both, SSI and the underlying blockchain technology, are still in their
development stages.

This thesis outlines a framework for managing SSI throughout this exploration.
By using Decentralized Identifier (DID), Verifiable Credential (VC) and blockchain
technology this system delivers a decentralized solution for managing user identi-
ties. Designed as a decentralized browser application, it can be easily incorporated
into various systems as an authentication tool.

Moreover, the integration of this framework into a real-world project has proven
its usefulness, accompanied by the development of a user-friendly interface. How-
ever, it is important to note that given the stage of this field both the SSI frame-
work and the project its integrated into show areas that could be developed in the
future.

During the implementation phase of the SSI framework identified limitations
highlight two advancements that can support this application and similar ones;
establishing standardized verifiable credentials issued by accredited entities and
creating non-proprietary wallets capable of securely storing and managing these
credentials for selective information disclosure. These changes would enhance sys-
tem autonomy and reliability while boosting user privacy and security.

Regarding integration with the real project, future progress could focus on using
the information contained within the VCs, released by the application, for concrete

73

Conclusions and Future Works

purposes. In addition, it is critical to improve the process of de-registering users
from the application, to ensure proper management of the assets associated with
users.

In summary, although this thesis has provided the groundwork for future work on
identity management, through the creation and integration of an SSI framework,
there is much more that needs to be done to boost this emerging field. Recognizing
the identified limitations and exploiting the research opportunities, will take us a
step closer towards a secure and privacy preserving digital identity ecosystem.

74

Bibliography

[1] Morteza Alizadeh, Karl Andersson, and Olov Schelén. “Comparative Analy-
sis of Decentralized Identity Approaches”. In: IEEE Access 10 (2022), pp. 92273–
92283. doi: 10.1109/ACCESS.2022.3202553.

[2] Yirui Bai et al. “Decentralized and Self-Sovereign Identity in the Era of
Blockchain: A Survey”. In: 2022 IEEE International Conference on Blockchain
(Blockchain). 2022, pp. 500–507. doi: 10.1109/Blockchain55522.2022.
00077.

[3] Bitcoin.com. How Bitcoin Transactions Work. url: https://www.bitcoin.
com/get-started/how-bitcoin-transactions-work/ (visited on 02/14/2024).

[4] Business Reporter. The History of Digital Identity. url: https://www.
business- reporter.co.uk/technology/the- history- of- digital-
identity (visited on 02/20/2024).

[5] Cisco FPIE. Decentralized Identities Demystified. url: https://medium.
com/cisco-fpie/decentralized-identities-demystified-49a65159196c
(visited on 02/22/2024).

[6] Data Cellar Project. url: https://datacellarproject.eu/ (visited on
03/06/2024).

[7] Andrea De Salve et al. “AlgoID: A Blockchain Reliant Self-Sovereign Identity
Framework on Algorand”. In: 2023 IEEE Symposium on Computers and
Communications (ISCC). 2023, pp. 1162–1168. doi: 10.1109/ISCC58397.
2023.10218198.

[8] Decentralized Identifiers (DIDs) v1.0. World Wide Web Consortium (W3C).
url: https://www.w3.org/TR/did-core/ (visited on 02/22/2024).

[9] Blockchain for Decentralized Identity. Blockchain for Decentralized Identity:
Conceptual Architecture. url: https://medium.com/blockchain- for-
decentralized-identity/blockchain-for-decentralized-identity-
conceptual-architecture-982c41e446d9 (visited on 02/26/2024).

75

https://doi.org/10.1109/ACCESS.2022.3202553
https://doi.org/10.1109/Blockchain55522.2022.00077
https://doi.org/10.1109/Blockchain55522.2022.00077
https://www.bitcoin.com/get-started/how-bitcoin-transactions-work/
https://www.bitcoin.com/get-started/how-bitcoin-transactions-work/
https://www.business-reporter.co.uk/technology/the-history-of-digital-identity
https://www.business-reporter.co.uk/technology/the-history-of-digital-identity
https://www.business-reporter.co.uk/technology/the-history-of-digital-identity
https://medium.com/cisco-fpie/decentralized-identities-demystified-49a65159196c
https://medium.com/cisco-fpie/decentralized-identities-demystified-49a65159196c
https://datacellarproject.eu/
https://doi.org/10.1109/ISCC58397.2023.10218198
https://doi.org/10.1109/ISCC58397.2023.10218198
https://www.w3.org/TR/did-core/
https://medium.com/blockchain-for-decentralized-identity/blockchain-for-decentralized-identity-conceptual-architecture-982c41e446d9
https://medium.com/blockchain-for-decentralized-identity/blockchain-for-decentralized-identity-conceptual-architecture-982c41e446d9
https://medium.com/blockchain-for-decentralized-identity/blockchain-for-decentralized-identity-conceptual-architecture-982c41e446d9

BIBLIOGRAPHY

[10] decentralized-identity. did-jwt-vc GitHub Repository. url: https://github.
com/decentralized-identity/did-jwt-vc (visited on 03/08/2024).

[11] decentralized-identity. Ethr-did-resolver GitHub Repository. url: https://
github.com/decentralized-identity/ethr-did-resolver (visited on
03/06/2024).

[12] Dock. Decentralized Identity and Self-Sovereign Identity: What’s the Differ-
ence? url: https : / / www . dock . io / post / decentralized - identity #
decentralized-identity-and-self-sovereign-identity-whats-the-
difference (visited on 02/22/2024).

[13] Docker. url: https://www.docker.com/ (visited on 03/08/2024).
[14] Ethereum. url: https://ethereum.org/it/ (visited on 03/06/2024).
[15] Ethereum Foundation. Proof of Stake (PoS). url: https://ethereum.org/

en/developers/docs/consensus-mechanisms/pos (visited on 02/14/2024).
[16] Ethereum Foundation. The Merge. url: https : / / ethereum . org / en /

roadmap/merge (visited on 02/14/2024).
[17] Md Sadek Ferdous, Farida Chowdhury, and Madini O. Alassafi. “In Search of

Self-Sovereign Identity Leveraging Blockchain Technology”. In: IEEE Access
7 (2019), pp. 103059–103079. doi: 10.1109/ACCESS.2019.2931173.

[18] GeeksforGeeks. How does the Blockchain Work? url: https://www.geeksforgeeks.
org/how-does-the-blockchain-work/ (visited on 02/08/2024).

[19] Varun Chandra Gupta et al. “An Intrinsic Review on Securitization using
Blockchain”. In: 2021 International Conference on Computational Perfor-
mance Evaluation (ComPE). 2021, pp. 971–976. doi: 10.1109/ComPE53109.
2021.9752154.

[20] Humanizing the Singularity. A Brief History of Digital Identity. url: https:
//medium.com/humanizing-the-singularity/a-brief-history-of-
digital-identity-9d6a773bf9f5 (visited on 02/20/2024).

[21] IBM. Blockchain Technology. url: https://www.ibm.com/topics/blockchain
(visited on 02/06/2024).

[22] Infura. url: https://www.infura.io/ (visited on 03/06/2024).
[23] Yue Jing et al. “The Introduction of Digital Identity Evolution and the In-

dustry of Decentralized Identity”. In: 2021 3rd International Academic Ex-
change Conference on Science and Technology Innovation (IAECST). 2021,
pp. 504–508. doi: 10.1109/IAECST54258.2021.9695553.

76

https://github.com/decentralized-identity/did-jwt-vc
https://github.com/decentralized-identity/did-jwt-vc
https://github.com/decentralized-identity/ethr-did-resolver
https://github.com/decentralized-identity/ethr-did-resolver
https://www.dock.io/post/decentralized-identity#decentralized-identity-and-self-sovereign-identity-whats-the-difference
https://www.dock.io/post/decentralized-identity#decentralized-identity-and-self-sovereign-identity-whats-the-difference
https://www.dock.io/post/decentralized-identity#decentralized-identity-and-self-sovereign-identity-whats-the-difference
https://www.docker.com/
https://ethereum.org/it/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos
https://ethereum.org/en/roadmap/merge
https://ethereum.org/en/roadmap/merge
https://doi.org/10.1109/ACCESS.2019.2931173
https://www.geeksforgeeks.org/how-does-the-blockchain-work/
https://www.geeksforgeeks.org/how-does-the-blockchain-work/
https://doi.org/10.1109/ComPE53109.2021.9752154
https://doi.org/10.1109/ComPE53109.2021.9752154
https://medium.com/humanizing-the-singularity/a-brief-history-of-digital-identity-9d6a773bf9f5
https://medium.com/humanizing-the-singularity/a-brief-history-of-digital-identity-9d6a773bf9f5
https://medium.com/humanizing-the-singularity/a-brief-history-of-digital-identity-9d6a773bf9f5
https://www.ibm.com/topics/blockchain
https://www.infura.io/
https://doi.org/10.1109/IAECST54258.2021.9695553

BIBLIOGRAPHY

[24] Jayana Kaneriya and Hiren Patel. “A Comparative Survey on Blockchain
Based Self Sovereign Identity System”. In: 2020 3rd International Conference
on Intelligent Sustainable Systems (ICISS). 2020, pp. 1150–1155. doi: 10.
1109/ICISS49785.2020.9315899.

[25] Rajesh Kumar Kaushal et al. “Immutable Smart Contracts on Blockchain
Technology: Its Benefits and Barriers”. In: 2021 9th International Conference
on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO). 2021, pp. 1–5. doi: 10.1109/ICRITO51393.2021.
9596538.

[26] Kyung-Hoon Kim et al. “Analysis on the Privacy of DID Service Properties
in the DID Document”. In: 2021 International Conference on Information
Networking (ICOIN). 2021, pp. 745–748. doi: 10.1109/ICOIN50884.2021.
9333997.

[27] Seungjoo Lim et al. “A Subject-Centric Credential Management Method
based on the Verifiable Credentials”. In: 2021 International Conference on
Information Networking (ICOIN). 2021, pp. 508–510. doi: 10.1109/ICOIN50884.
2021.9333857.

[28] Links Foundation. url: https://linksfoundation.com/ (visited on 03/06/2024).
[29] Masca Documentation. url: https://docs.masca.io/ (visited on 03/06/2024).
[30] MetaMask - Crypto Wallet for Ethereum and ERC-20 Tokens. url: https:

//metamask.io/ (visited on 03/06/2024).
[31] Nitin Naik, Paul Grace, and Paul Jenkins. “An Attack Tree Based Risk Anal-

ysis Method for Investigating Attacks and Facilitating Their Mitigations in
Self-Sovereign Identity”. In: 2021 IEEE Symposium Series on Computational
Intelligence (SSCI). 2021, pp. 1–8. doi: 10.1109/SSCI50451.2021.9659929.

[32] Nitin Naik and Paul Jenkins. “Governing Principles of Self-Sovereign Identity
Applied to Blockchain Enabled Privacy Preserving Identity Management
Systems”. In: 2020 IEEE International Symposium on Systems Engineering
(ISSE). 2020, pp. 1–6. doi: 10.1109/ISSE49799.2020.9272212.

[33] Bharti Pralhad Rankhambe and Harmeet Kaur Khanuja. “A Comparative
Analysis of Blockchain Platforms – Bitcoin and Ethereum”. In: 2019 5th
International Conference On Computing, Communication, Control And Au-
tomation (ICCUBEA). 2019, pp. 1–7. doi: 10.1109/ICCUBEA47591.2019.
9129332.

77

https://doi.org/10.1109/ICISS49785.2020.9315899
https://doi.org/10.1109/ICISS49785.2020.9315899
https://doi.org/10.1109/ICRITO51393.2021.9596538
https://doi.org/10.1109/ICRITO51393.2021.9596538
https://doi.org/10.1109/ICOIN50884.2021.9333997
https://doi.org/10.1109/ICOIN50884.2021.9333997
https://doi.org/10.1109/ICOIN50884.2021.9333857
https://doi.org/10.1109/ICOIN50884.2021.9333857
https://linksfoundation.com/
https://docs.masca.io/
https://metamask.io/
https://metamask.io/
https://doi.org/10.1109/SSCI50451.2021.9659929
https://doi.org/10.1109/ISSE49799.2020.9272212
https://doi.org/10.1109/ICCUBEA47591.2019.9129332
https://doi.org/10.1109/ICCUBEA47591.2019.9129332

BIBLIOGRAPHY

[34] Sampath S et al. “Decentralized Digital Identity Wallet using Principles of
Self- Sovereign Identity Applied to Blockchain”. In: 2022 IEEE 7th Inter-
national Conference on Recent Advances and Innovations in Engineering
(ICRAIE). Vol. 7. 2022, pp. 337–341. doi: 10.1109/ICRAIE56454.2022.
10054286.

[35] Sheetal Sinha, Kumkum, and Ruchika Bathla. “Implementation of Blockchain
in Financial Sector to Improve Scalability”. In: 2019 4th International Con-
ference on Information Systems and Computer Networks (ISCON). 2019,
pp. 144–148. doi: 10.1109/ISCON47742.2019.9036241.

[36] Mustafa Takaoğlu et al. “The Impact of Self-Sovereign Identities on Cyber-
Security”. In: Apr. 2023.

[37] Truffle Suite. url: https : / / archive . trufflesuite . com/ (visited on
03/08/2024).

[38] uport-project. Ethr-did GitHub Repository. url: https://github.com/
uport-project/ethr-did (visited on 03/06/2024).

[39] uport-project. Ethr-did-registry GitHub Repository. url: https://github.
com/uport-project/ethr-did-registry (visited on 03/06/2024).

[40] Verifiable Credentials Data Model. World Wide Web Consortium (W3C).
url: https://www.w3.org/TR/vc-data-model/ (visited on 02/26/2024).

[41] W3C. Verifiable Credentials Data Model 1.1. url: https://w3c.github.
io/vc-data-integrity/ (visited on 02/28/2024).

[42] Xuesen Zhang et al. “Research on blockchain consensus algorithm for large-
scale high-concurrency power transactions”. In: 2022 9th International Fo-
rum on Electrical Engineering and Automation (IFEEA). 2022, pp. 1221–
1225. doi: 10.1109/IFEEA57288.2022.10037907.

78

https://doi.org/10.1109/ICRAIE56454.2022.10054286
https://doi.org/10.1109/ICRAIE56454.2022.10054286
https://doi.org/10.1109/ISCON47742.2019.9036241
https://archive.trufflesuite.com/
https://github.com/uport-project/ethr-did
https://github.com/uport-project/ethr-did
https://github.com/uport-project/ethr-did-registry
https://github.com/uport-project/ethr-did-registry
https://www.w3.org/TR/vc-data-model/
https://w3c.github.io/vc-data-integrity/
https://w3c.github.io/vc-data-integrity/
https://doi.org/10.1109/IFEEA57288.2022.10037907

	List of Tables
	List of Figures
	Listings
	Acronyms
	Introduction
	Objectives
	Outline

	Blockchain Technology
	What is the Blockchain
	Core Elements of Blockchain
	Blockchain Architecture

	How the Blockchain works
	Transaction process
	Blockchain Benefits

	Blockchain Classification
	Types of Blockchains
	Types of Consensus Mechanisms

	Bitcoin versus Ethereum
	Bitcoin
	Ethereum

	Evolution of Identity
	Pre-Digital Era
	Origin of Identity
	Early Documentation

	Emergence of Digital Identity
	PINs and Passwords
	Introduction of ARPANET and IP
	The Public Key Cryptography

	Shifting Identity Paradigms
	Pitfalls of Centralized Identity
	Emergence of Federated Identity
	Evolution towards User-Centric Identity

	State of the Art of SSI
	History of Self-Sovereign Identity
	Origins of SSI
	The Seven Laws of Identity
	Modern Development

	Advantages and Principles
	Advantages of Decentralized Identity
	Principles of SSI

	Key Components of SSI
	Decentralized Identifiers
	Verifiable Credentials
	Verifiable Data Registries

	Architecture of Decentralized Identity
	The Four Layers

	The SSI Trust Triangle
	Key Actors of SSI
	Workflow of Verifiable Exchange

	Cryptography and Cybersecurity Aspects
	Cryptography behind SSI
	Data Integrity in SSI
	Digital Signature using EdDSA

	Cybersecurity within SSI
	Security in Blockchain and SSI
	Potential Attacks on the SSI System

	Design and Implementation
	Framework Development Journey
	Initial Research
	Challenges and Failed Attempts
	Final Choice

	Framework Main Components
	Ethr-did and Other Libraries
	Ethereum and Smart Contracts
	MetaMask

	Verifiable Credentials and Limitations
	Utilization and Challenges
	Solution Exploration
	Final Decision

	Application Functionality Analysis
	Server Implementation
	Access Process
	Sign-Up Procedure
	Sign-In Mechanism

	Integration in a Real Project
	Overview of Data Cellar
	Initial Project Status
	Development Environment
	Offered Functionalities

	Integration Process
	Final Application
	Backend Implementation
	Frontend Development

	Conclusions and Future Works

