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Abstract

The latest trends in cybercrime show increasing damage to society and companies’ eco-
nomic assets by cyber attacks, most often conducted with the help of extremely versatile
and effective attack tools called malware. Countermeasures taken to limit the impact of
this threat often prove to be invalid, or at least can be circumvented through phishing tech-
niques. This is why tireless research is needed to limit the advancement of such significant
damage and such malicious techniques.

The thesis explores the most widely used techniques for recognizing malicious programs
through classification: the ability, from an unknown file, to recognize its characteristics
and assign it an identifying label, in order to distinguish malware from safe programs. In
addition, the purpose of this work, aims at the application of a type of Machine Learning
to the field of malware classification, evaluating benefits and performance obtained from
the help of Recurrent Neural Networks.

Given the huge amount of malware found on a daily basis, another aspect that was given
importance in the work done was the need to automate as much as possible the chain of
extraction, behavioral analysis, and analysis by machine learning. The first proposed step
sees an in-depth study regarding the most widely used techniques in the scientific literature
for malware analysis, diversifying them according to the context in which the sample is
studied: in fact, the main study methods used in static and dynamic analysis will be
presented.

Since the need to automate the process is a crucial part of the work, useful tools for
automating the discovery of malicious samples and the extraction of key features from
them will also be presented.

The core of this research is based on the applicability of a Machine Learning algorithm,
called Long Short-Term Memory, in analyzing certain features extracted from malware,
which are essential based on their sequentiality. In fact, the algorithm will learn to recognize
a malicious sample based on the sequential usage of system APIs that the Operating System
provide to the running program.

Starting with the composition of a data collection containing, one by one, the first
100 APIs called by each malware extracted from an automated type of analysis, the main
settings necessary for the above algorithm to achieve the best possible performance will
be identified. Therefore, the choices provided in the work performed, will be based on
the objectivity of the tests performed with different parameters to evaluate its efficiency.
Finally, a proof-of-concept and useful hints will be provided in order to facilitate the future
work of those who wish to continue the type of research proposed.
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Chapter 1

Introduction

In a world racing toward digital innovation, more and more pieces are being devised every
day to make up the new model society of the future. Rich in benefits and accessibility,
but equally rich in risks and threats. In an ecosystem where information becomes the
new currency of exchange, the possibilities of being able to break through and obtain that
information become more and more appealing. The growing trend of the phenomenon is
also represented by the enormous exchange of this resource.

From 2010 to nowadays, the amount of data produced each year is increased by 9000%
[65, Volume of Data Created]. While data is growing with such speed, the supply of IT-
related jobs is not growing at the same rate, it then becomes much easier to be able to
exploit distractions or flaws in a less controlled system in order to gain illicit access.

The work proposed in this Thesis aims to apply one of the greatest technological re-
searches of our decade to simplify the role of defense in one of the most consistent and
frequent threats of the cyber era: the malware.

In the fog of all the possible threats that can materialize in a system, one of the most
feared is the category of malware, a malicious software that may be used by an attacker
for multiple purpose: Spying, Blackmailing, Stopping a Service, Political or Financial
Purposes, and so on.

Figure 1.1. Percentage of Malware-Free Attacks for each year [37]
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Nowadays cyberspace represents a new battleground, rising geopolitical tensions and
humanitarian disasters often result in an increase in cyber attacks and malware incidents.
In 2020, malware attacks increased by 358% compared to 2019, and in 2021 raised by an-
other 125% [37, Latest Cyber Crime Statistics]. Despite the incredible increase in malware
threats, The CrowdStrike 2023 Global Threat Report shows that more and more attackers
are deciding to engage in malware-free attacks (Figure 1.1) [19].

That is not why the cyberdefense side of conducting autopsies on new forms of malware
can take a back seat. An increase in malware-free attack rates has a basis in a significant
increase in attacks of another nature, so it cannot be proof that attacks conducted by
malware have decreased. As an illustration of the phenomenon of cyberattacks as a new
battleground of modern wars, one can look at the last two events of international signifi-
cance: the beginning of the Ukraine-Russia war and the deflagration of the Israel-Palestine
conflict.

“In the third quarter of 2022, Europe was dragged into a high-intensity hybrid
cyber-war at a turning point in the conflict, with a massive wave of DDoS at-
tacks, particularly in the Nordic and Baltic countries and Eastern Europe. Cy-
ber is now a crucial weapon in the arsenal of new instruments of
war, alongside disinformation, manipulation of public opinion, economic war-
fare, sabotage and guerrilla tactics [27, Pierre-Yves Jolivet, VP Cyber Solutions,
Thales.].”

Indeed, in the wake of the tragic events, Europe’s network, cloud, and information
systems infrastructure has reported continuous attacks, which in some cases do not seem
to be remedied. This is where the branch of algorithms that has reported the fastest growth
in performance over the past twenty years may come into play: Machine Learning.

As reported in [32], this technology grew by doubling its capacity each year, following
Moore’s law, until 2012. From 2012 onward, the rate of improvement has increased dra-
matically. The average growth was by a factor of 3.4 times its previous capacity, and not
annually, but quarterly (see Figure 1.2).
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Figure 1.2. Machine Learning growth over the years [32]

This thesis will present a targeted work to address the challenge of building and testing
a model, known in machine learning as a Recurrent Neural Network, capable of recognizing
the degree of maliciousness of any file solely by judging its behavior.

The remainder of the document is organized as follows. In Chapter 2, a brief mention
regarding all the knowledge needed to understand the state of the art and the techniques
used, starting from the definition of malware, proceeding to machine learning basic knowl-
edge. Chapter 3 will present the state of the art, including the most commonly used
analysis protocols and techniques in malware analysis. Chapter 4 will describe in details
how the test was conducted, from the starting point of the information gathering until the
last block used to compose the model. Chapter 5 the results will be illustrated to present
the reader with metrics and performance obtained so that conclusions can be drawn re-
garding its effectiveness. Finally, Chapter 6 draws the conclusions and will present some
possible future works.
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Chapter 2

Background

Malware is any software intentionally designed to cause disruption to a computer, server,
client, or computer network, leak private information, gain unauthorized access to infor-
mation or systems, deprive access to information, or which unknowingly interferes with
the user’s computer security and privacy [76]. “In the past three decades almost everything
has changed in the field of malware and malware analysis. From malware created as a
proof of some security concept and malware created for financial gain to malware created
to sabotage infrastructure.” [47].

2.1 What is a Malware
When the Internet was not yet as advanced and complex as it is today, it was still called
ARPANET, which stands for The Advanced Research Projects Agency Network. It was
a project initiated by the United States Department of Defense and Advanced Research
Project Agency (ARPA), with the aim to enable resource sharing between remote comput-
ers [43]. The creation of such a system provided the basis for the genesis of experiments
aimed at testing its destruction.

It was not many years before “Creeper”, the first malware ever created, began to oper-
ate. Creeper copied itself from one computer to the next, after which it erased itself from
the first infected computer so that it could move between systems [66]. Although it was not
created with malicious intent, it was able to demonstrate to the founders of ARPANET
the importance of devoting sufficient attention to the security measures to be taken to
prevent similar situation from occurring. Creeper originated in the early 1970s, but with
the advent of the Internet it was only that the beginning. At that time, no one could
have guessed that this type of malware would later be referred to as “worm”, unwanted
software with the ability to replicate itself independently within a network. Subsequently,
came increasingly complex patterns of malicious software: suffice it to say that in the 1990s
most viruses used email as an attack vector, Windows as the main target, and possessed
the characteristic of polymorphism, that is, the ability to evade the defense of the most
popular antivirus by changing its very form.

Later, new Worm models were created, but this time with malicious intent. In 2000,
a 24-year-old resident of the Philippines, unable to afford Internet service, built a worm
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based on a macro command system to steal the credentials needed to access the service
De Guzman (the worm creator), called it ILOVEYOU. This was the first case of outlaw
malware, a perfect example of phishing and social engineering. The Attack Vector was in
fact an email attachment representing a fake love letter [67].

It is not news that the history of malware is dictated by a crescendo of economic
damage: the ensuing two decades will be disastrous precisely because of the enormous
impact malware will have on businesses. One of the most malicious kind of malware that
impacts on companies is Ransomware (from Ransom and malware). It exploits the infection
to encrypt valuable resources on the infected system to ask for a ransom, usually paid over
cryptocurrency to make payments impossible to trace.

In 2013 the first type of Ransomware was released: CryptoLocker. Known for its rapid
and powerful asymmetric encryption capabilities [67]. That time, the requested ransom
was only of 2 bitcoins, of around $745.

Although defenses to contain new ransomware have become more efficient over the years,
between 2019 and 2022 this type of malware represents one of the main daily threats that
security experts have to deal with every day. Suffice it to say that in 2021 the leading
U.S. gasoline and jet fuel supplier, Colonial Pipeline, was attacked by ransomware that
blocked both public and private service for several days. The incident was so severe that
it convinced the current President of the United States, Joe Biden, to declare a state of
emergency.

According to Health and Human Services Cyber Security Program, “The average bill for
rectifying a ransomware attack – considering downtime, people time, device cost, network
cost, lost opportunity, ransom paid, etc. – was $1.27 million” [33].

2.1.1 Malware Classification
Malware, or malicious software, includes a variety of digital threats that compromise the
security and functionality of computer systems. Their classification is determined in the
distinct ways they behave and the objectives they pursue. One primary category is viruses,
which embed themselves within legitimate programs and replicate when those programs
are executed. The first distinction that can be demarcated between the various categories
of malware is the execution environment, as a key factor necessary for the functionality of
much malware is the need for the infected system to be connected to a network.

Viruses can spread from one system to another, causing widespread damage. Worms,
on the other hand, are self-replicating entities that exploit vulnerabilities in networks to
propagate. They don’t require user interaction to spread, making them particularly pow-
erful in rapidly infecting multiple systems. Trojans, named after the ancient Greek tale of
the wooden horse, disguise themselves as benign software but, once installed, grant unau-
thorized access to attackers. Unlike viruses and worms, Trojans rely on social engineering
to deceive users into willingly installing them. Ransomware represents a more direct and
financially motivated threat. This type of malware encrypts files on a victim’s system and
demands payment, often in cryptocurrency, for the decryption key. Failure to comply can
result in permanent data loss, making ransomware a significant concern for individuals and
organizations alike. Spyware operates covertly, infiltrating systems to monitor and collect
user information without their knowledge. This type of malware poses a substantial threat
to privacy, as it can capture sensitive data, such as login credentials and personal details,
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2.1 – What is a Malware

leading to identity theft or unauthorized access to confidential information.
Understanding these classifications (see Table 2.1) is crucial for developing effective cy-

bersecurity strategies. By recognizing the diverse tactics employed by malware, individuals
and organizations can better protect their systems through proactive measures, including
robust antivirus programs, regular software updates, and user education on safe online
practices.

Malware Purpose Description Examples
Spyware Gathers user information. Keyloggers, Spyware Tro-

jans
Adware Displays unwanted ads. Pop-up ads, Invasive ban-

ners
Ransomware Encrypts files, demands ransom. WannaCry, Locky, Cryp-

toLocker
Virus Infects and spreads. Melissa, Sasser, CIH
Worm Spreads autonomously. Conficker, Slammer, My-

doom
Trojan Horse Pretends to be legitimate. Zeus, SpyEye, Back-

door.Rustock
Botnet Controls remote computers. Zeus Botnet, Mirai, Con-

ficker
Rootkit Conceals presence in the system. Stuxnet, Sony Rootkit,

HackerDefender

Table 2.1. Malware Classes Description

Another risk comes from the exponential growth of infected devices that remain con-
nected to a network: individual machines, referred to as bots, that remotely commanded
form a botnet. “With a botnet on board, your device is no longer just a victim, but also a
perpetrator of cyber crime. The botnet receives commands and executes them without any
intervention or control from you. The personal data stored on your PC or smartphone isn’t
safe either” [36].
Experts estimate that approximately 16% to 25% of all the computers connected to the
Internet are members of botnets [63].

2.1.2 Why Malware are Created
There can be multiple motivations behind the creation of malware: since usually behind
the programming of a tool that can have a huge impact are people and groups with high
capabilities from every branch of IT, one can easily assume that the targets of these attacks
are entities with extremely sensitive data or companies with substantial wealth. The truth
is that this is not a correct assumption, because to understand the targets, it is necessary
to understand the motivation.

We can resume the most common motivations in the following list:

13



Background

• Financial Gain: creating malware to steal valuable information like credit card
details or to demand ransom payments.

• Espionage and Cyber Warfare: developing malware for spying on rivals or dis-
rupting the operations of other nations.

• Hacktivism: using malware to further political or ideological causes by disrupting
services or stealing and leaking sensitive information.

• Information Theft: creating malware to steal trade secrets, intellectual property,
or other valuable data.

• Botnets and DDoS Attacks: using malware to create networks of compromised
computers for various malicious activities, including overwhelming websites with traf-
fic.

• Cyber Sabotage: creating and deploying malware to harm specific organizations or
critical infrastructure.

• Personal Vendettas: occasionally, individuals may create malware out of personal
animosity towards specific targets.

Wanting to focus on the most advanced forms of malware, it is worth addressing one
case, codename Stuxnet, known to the world to be one of the most advanced forms of
Cyber Warfare.

The following is taken from 2017 Stuxnet Report [7]. The discovery of Stuxnet occurred
at a time of extreme tension between Iran and the U.S., a time when Iran announced that
it wanted to produce nuclear energy, and, possibly, nuclear weapons. It happened when
an antivirus company based in Belarus, VirusBlockAda, received a worm sample found
in an Iranian computer that rebooted himself continually. Only years later, following
numerous analyses, did people begin to understand the true nature of malware that was
initially confused as spyware. Reports on the incident pointed in one direction: The
malware analyzed was intended to disrupt an air-gapped SCADA-based industrial control
system, and in particular, that of a Uranium enrichment plant located in Natanz. Since
the target facilities are an air-gapped system (disconnected from any external network) the
real strength of this attack lies in the attack vector (see Figure 2.1) and the worm’s ability
to replicate itself in other similar neighboring system. The attack led to the destruction of
about 1,000 centrifuges used by the plant.

Therefore, the first public example of the use of malware in a conflict between nations
deserves to be analyzed, primarily on the basis of the effects caused on the attacked country,
which are of three types:

• Social And Political Effect: Iranian population felt defenseless in terms of cyber-
security measures.

• Economic Effect: since Iran could not rely on an international market, most of the
centrifuges were by them themselves. The delay in the production led to a long-term
economic repercussion.
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Figure 2.1. Stuxnet Infection Mechanism [1]

• Technological Effect: long-term technological consequences of Stuxnet can be seen
in the mistrust that Iranians people had towards technical malfunctions.

• International Effects: wealthiest States learned that they had to invest in specific
Cybersecurity Units to increase security standard.

The incident described may be a good way to describe what impact such an attack
can have in today’s world. In any case, it is common for cyber criminals to have as their
primary goal obtaining money as well as invalidating a system and causing harm, to such
an extent that, as recounted by TrollEye Security in The Rise of Ransomware as a Service
(RaaS) [68], the emergence of ransomware has led to the emergence of a new phenomenon:
ransomware became a mercenary service, a product that could be purchased on a black
market. According to The Ransomware-as-a-Service economy within the darknet [44] “On
the darknet markets, Ransomware-as-a-Service (RaaS) is being offered as a franchise model
that allows people without programming skills to become active attackers and take part in
the ransomware economy”.

In the context of Cyber Warfare a new term has been coined to define an advanced
threat that can maintain unauthorized access and are capable of conducting large-scale
intrusions causing immense damage: Advanced Persistent Threat (APT).

As Cisco discussed in its article What Is an Advanced Persistent Threat (APT)?, “An
advanced persistent threat (APT) is a covert cyber-attack on a computer network where
the attacker gains and maintains unauthorized access to the targeted network and remains
undetected for a significant period. During the time between infection and remediation
the hacker will often monitor, intercept, and relay information and sensitive data. The
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intention of an APT is to exfiltrate or steal data rather than cause a network outage,
denial of service or infect systems with malware.” [74]. Stuxnet can be seen as an example
of APT. Usually the cybercriminals behind APTs are adversaries well-funded, Information
Technology Security Professionals that are able to target high-value organizations [73].
Most of the these teams are nation-state actors, and CrowdStrike has been able to track
over 150 adversaries, including nation-states, eCriminals and hacktivists.

2.2 Malware Structure and Behaviour
Since malware are complex forms of code, it is not easy to explain a general pattern of
operation among all existing families. Despite this, it is possible to make a classification,
presented in Table 2.2, based on common components:

Malware Component Description/Details
Crypter Conceals malware existence, encrypts orig-

inal binary code.
Downloader Downloads malware from the Internet, fa-

cilitates installation.
Dropper Camouflages malware payloads, initiates

covert installation.
Exploit Breaches system security via software vul-

nerabilities for malware installation or in-
formation theft.

Injector Injects code into vulnerable processes, al-
ters execution to resist removal.

Obfuscator Conceals code and purpose using various
techniques to evade detection.

Payload Performs desired activities upon activa-
tion, compromising system security.

Wrapper (Packer) Bundles files using compression techniques
to create a single executable file.

Table 2.2. Malware Components Overview [14]

The structure helps to understand how behaviors are delineated, but they can also
exhibit common patterns. Most of them are represented in the MITRE ATT&CK Matrix,
a useful resource to investigate the most common categories in behavioural analysis of the
incidents [48].

• Persistence: the ability of a Malware to maintain a foothold inside the target envi-
ronment, using tools like backdoors. In order keep the activity on the target usually it
requires to install a new entry in the Startup Application via Registry Modifications
[55].

• Monitor and Capture Data: common in spywares, malicious programs can often
work to capture sensitive informations from the victim by intercepting keystrokes,

16



2.2 – Malware Structure and Behaviour

screen captures and other valuable data.

• Privilege Escalation: malware seeks privilege escalation to gain more control over a
system, allowing it to persistently run, avoid detection, and perform malicious actions
like data manipulation or spreading to other machines.

• Command And Control Communication: in a C&C Attack, attacker and com-
promised target machine can exchange data from and to specific endpoints. Also
known as C2, this kind of attack is the most used when the goal is to form and
control a botnet [41].

• Lateral Movement : Lateral movement enables the attacker to gain information
and move between system inside the same environment of the victim target.

2.2.1 Obfuscation and Polymorphism
One of the first defensive maneuvers offered by antiviruses is the interception of programs
by analyzing their fingerprint. The fingerprint is usually the result of an operation called
Hashing, which can summarize the entire contents of a file into a string of a fixed length
of characters [75]. In this way, a malicious file can be easily recognized if a form of it is
always spread over the network in the same way (see Figure 2.2).

Nowadays, online services like VirusTotal offer the possibility to look for the fingerprint
of a file and analyze previous feedback given to it. And this is where Polymorphism comes
into play: by Polymorphism we mean the ability of a malware to change shape while
keeping its behavior unchanged [77]. With this operation, which can be done by simple
substitutions, but also by very complex patterns, a malware is able to evade the defensive
measures of fingerprint-based antiviruses.

Another typology of shape-shifting malware lies in Metamorphism: it is an advanced
technique that allows a program to self-modify its code whenever it propagates or is de-
ployed.

In 2008, WetStone Technologies Inc. brought a speech at BlackHat Convention to talk
about the evolution of Polymorphic and Metamorphic Malware to raise awareness among
IT professionals about the impact this kind of threat would have in the future. According
to that article, [18], the impact of these phenomenons on law enforcement would bring a
slower incident response and a more difficult determination of the Attack Source.

More generally, these behaviors fall under the term Obfuscation which outlines a
technique that makes a program more difficult to understand. Obfuscation is originally used
to protect a developer’s intellectual property [80]. However, one of the most widely used
techniques to analyze the functionality of a malware since the beginning of this practice is
static analysis. This technique makes use of a decompiler (such as Ghidra [3] or IDA [57]),
which can reconstruct the source code of a program from the compiled executable.

According to “Malware Obfuscation Techniques: A Brief Survey” [80]:

• Dead Code Insertion: instruction lines may be inserted into the code (Instructions
such as nop), used to code an operation without instructions to execute [60].

• Register Reassignment: switches registers used in machine language operations.
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Figure 2.2. How Scanner Use Hasing

• Subroutine Reordering: it works alternating subroutines randomly.

• Instruction Substitution: substitutes specific instructions with equivalent ones.

• Code Transposition: sequence of instructions are reordered in random shuffles or
exchanged only if they are independent between themselves.

• Code Integration: malware code is reassembled inside the code of a target program.

Another common form of obfuscation is what is done by special programs called Packers.
A Packer “is a program that runs on an already compiled binary, compresses it, and turns
it into an executable that will decompress itself at runtime” [64].
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2.3 Malware Analysis
Malware Analysis can be seen as the art of perceive and understand intentions and risks
regarding a specific Malware Threat. Because of their complexity, these analyses can be
decidedly labor-intensive and time-consuming, but sometimes it is necessary to learn new
ways to defend one’s systems and to learn more about digital threats [25].

In terms of software analysis, this branch should be understood as a black-box analysis,
a term used to refer to the study of a program without any prior knowledge of the sample
under examination. Two are the main kinds of analysis used, Static and Dynamic Anal-
ysis, but others were later outlined based on the tools used, such as Automated Analysis,
or based on the sample behavior, called Behavioural Analysis (also a kind of Dynamic
Analysis). Later, in this thesis, the above techniques will be explained in more detail.

With static analysis the intent is to analyze a program without executing it, useful to
extract information such are File Properties, Strings, Fingerprint (via Hash Functions),
Opcode (instruction codes), or Control Flow Graphs [30].

Dynamic Analysis instead represent a bigger group of methods, that have in common
between themselves the execution of the sample. Running the Portable Executable is
useful to monitor how the system behaves, what processes are spawned, what connections
are established and so on.

With the advent of new Machine Learning capabilities, everyday new methods are
developed, since these capabilities are able to define a model out of input data extracted
directly from Malware (see Figure 2.3). These models are defined on the base of measurable
property extracted from the PE (Portable Executable) of the programs.

Figure 2.3. Modern Malware Analysis [70]
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2.3.1 Sandboxing
Dynamic Analysis requires the execution of the malicious program, and so, exposing the
testing environment to the infection of that specific sample. In order to test a sample
in a safe environment are available various kinds of Malware Sandbox, that are virtual
environments where malware can be analyzed without causing damage to the system. The
Sandbox can full system emulations, or virtual machines, ad-hoc operating systems running
in a fenced space of the host system regulated by a Hypervisor (a control mechanism to
ensure that the operating systems are interacting only in their spaces and between them
only following specific rules) [72]. Sandbox furthermore enables the execution of automated
analysis systems like Cuckoo [21], FlareVM [42] and CAPE[61].

Inside the survey called An Inside Look into the Practice of Malware Analy-
sis[79] twenty-one analysts from 18 different companies were consulted in order to observe
the main targets that experts focus on when studying a malware. Six main information
was the focus of the analysts (Hashes, IP Addresses, Domain Names, Network and Host
Artifacts, Tools, TTPs). The goals behind the research of these details are:

• Blacklist: communicate the Hash, IP Addresses and Domain Names used by the
malware to block communications and further infections.

• Extract Malicious Behaviour: used to understand how malware works by captur-
ing Network and Host Artifacts, IP Addresses and Domain Names through a Sandbox
analysis.

• Label Malware Families: classify malicious programs into families to avoid in
depth analysis on known samples.

• Generate Report: involves both static and dynamic analysis to triage the malware
incident and generate a report, usually requested in companies to maintain a record
of what happened.

• Track Tactics, Techniques and Procedures: used to define a bigger picture
of how the malware authors operate, using a standard created by NIST (National
Institute of Standards and Technology), that describes tactics as the best description
of behavior.

2.4 Machine Learning
One of the main and the simplest form of Artificial Intelligence is Machine Learning, which
regards the specific sets of algorithms and analysis that are able to extrapolate models and
insights from training data [53]. In today’s world, everyone is racing to keep up and invest
in machine learning: according to statista.com [69] the 79% of all companies now uses AI
for cybersecurity.

The broadest categories in terms of techniques are based on the type of training that
the algorithm receives:

• Supervised Learning:
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– Involves machines learning from labeled data.
– Tries to predict or infer a feature based on known data.
– Examples include Bayesian networks, Decision trees, k-Nearest Neighbour (KNN),

Support Vector Machine (SVM), and Artificial Neural Networks (ANN).

• Unsupervised Learning:

– Deals with discovering hidden patterns or structures in unlabeled data.
– Often referred to as clustering.
– Common algorithms include k-means clustering, hierarchical clustering, and

neighborhood-based methods like Self-organizing map (SoM).

• Reinforcement Learning:

– Focuses on training machines to interact with a dynamic environment to achieve
a specific goal.

– Involves learning through trial and error.

Machine Learning is especially useful to classify (assign a label to a sample to associate
it with a family), to cluster (group similar data into points based on their characteristics),
to predict (given future or trends based on past values) and to optimize (using data to find
the best solution or one of).

As simple as the operations may seem, it is not as simple when dealing with very large
data sets characterized by a multitude of features. When it comes to large datasets, Ma-
chine Learning is able to perform Dimensionality Reduction (reduce the number of features
keeping the most important information), and to grant Interpretability (analyzing the cor-
relations within a dataset insight information can be found).

In this Thesis we will discuss a specific field of Machine Learning, consisting of Neural
Networks, and in detail, Recurrent Neural Networks.

2.4.1 Neural Networks
Neural networks are an example of learning based on a system inspired by the functioning
of the human brain (see Figure 2.4) and the connection between neurons [8].

In a human brain neurons are nerve cells interconnected between themselves, with the
duty of transmitting chemical and electrical signals [8]. The branches of neurons are called
dendrites and receive the information from them, and are connected to other neurons via
long cables called axons and synapses that work as interface between the axon and the
neuron. In a neural network the dendrites represent the inputs, the synapses operate as
weights and the axon is referred as the output. To keep trace of the similarities, these are
displayed in the Table 2.3.

Since the term "neural network" represents a very large family of algorithms, it is nec-
essary to make a distinction.

1. Perceptrons: basic artificial neurons for binary classification.
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Figure 2.4. Neurons and Neural Networks [56]

Biological Neuron Artificial Neuron
Cell Nucleus (Soma) Node
Dendrites Input
Synapse Weights or interconnections
Axon Output

Table 2.3. Neuron and Perceptron Similarities [8]

2. Multi-Layer Perceptrons (MLP): neural networks with layers, capable of non-
linear tasks.

3. Convolutional Neural Networks (CNN): designed for grid-like data, especially
images.

4. Recurrent Neural Networks (RNN): processes sequential data with feedback
loops.

5. Autoencoders: unsupervised learning for data reconstruction.

6. Deep Learning: broad term encompassing neural networks with many layers.

Nobody knows why Neural networks are able to perform well where others algorithms
will not ever reach, but is not so difficult to understand how they work.

The main characteristic of this type of Machine Learning is without any doubt the
so-called dense layers [23], in which each neuron of a specific layer is connected to every
other neuron of the next layer, and so, using the output of the first as input for the second.
What influences the transmitted information are called weights and biases: the weights
decide how much of the input is passed to the next layer, whilst biases are constants that
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are added between a layer and its next one. So, to compute the output of a single neuron,
it’s sufficient to use the formula 2.1.

output = (inputs ∗ weights) + bias (2.1)

The inner beauty of this type of algorithm is that weight and biases are all tuned by
the algorithm itself during its training. One last component is always necessary when it
comes to Neural Network, and it’s called Activation Function, and as the name suggest
is a function in charge of simulating the role of the synapses, adding non-linearity to the
system.

This new field opens up a world of possibilities for so many applications in cybersecurity.
The simplest form of machine learning application are the handling of automated threat
detection and response, and the possibility to provide to analysts data that are easier to
understand and interpret. Secondarily it finds a purpose in Vulnerability Management,
Behavioral Analysis and Sandbox Malware Analysis. The goal of this thesis is to apply a
specific form of Neural Network to a whole dataset extracted from a Sandbox Analysis of
over 40,000+ samples (both safe and malicious).
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Chapter 3

State of the Art

The central part of this thesis will focus on how Recurrent Neural Networks can be used
to enhance malware classifications after a behavioral analysis. This chapter will provide
an overview of related works and the topics discussed will be the following:

• How professionals conduct Malware Analysis

• How sandbox and automated analysis work

• How to construct a feature dataset to train an RNN algorithm

• Which algorithms could be used to perform the analysis

• Analyzing the results and interpret them

3.1 Malware Analysis
Today’s networks are constantly polluted by files, archives, documents and executables
that, until proven otherwise, must be analyzed due to the doubt of their maliciousness.
Each one of them can represent an attack vector, a starting point for the infection of a
malware (using a Stager), or directly reveal a malware itself. Precisely for this reason
it is necessary to develop robust and efficient analysis measures so that feedback can be
provided and the "fingerprint" of the file reported on sites such as VirusTotal1.

The goal of conducting an analysis on a particular file are almost always the same:
determine whether it is malicious or benign. This operation is called Binary Classifica-
tion (called binary because the possible outcomes are only two). The analysis consists in
looking for evidences to demonstrate the presence or the absence of common pattern and
characteristics found in malicious programs. Examples could be multiples:

• Hidden text inside the file that could be links to dangerous websites and server.

• The presence of a packer.

1https://www.virustotal.com
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• The use of particular APIs that interfere with the system in which they are executed.

• IP Addresses related to known malicious endpoints.

• File metadata.

• Obfuscation Methods.

The classification then is done by assigning a score to each sample. If it exceeds a threshold,
then the samples is labelled as malware, otherwise as safe. Hence, the classification is not
immediate, and it can lead to classification errors referred to as False Positives (malware
labelled as safe files) and False Negatives (safe programs identified as malware).

Watching a malware as part of a family is useful when it comes to understand the rela-
tionship behind multiple threats, and doing so, to have insight on which group hides behind
the attack: this relation is found almost in each family because “malware authors, like most
software developers, tend to reuse their own code, share code and ideas with collaborators,
pull code found on the internet into their projects, and follow trends set by competitors”
[46]. All this set of information is part of a branch called Threat Intelligence, and it is
used to describe the knowledge associated to adversaries and their motivations, intentions
and method.

3.1.1 Static Analysis
As mentioned earlier, analyzing malicious software without running it is called static anal-
ysis, but the steps are quite linear, due to the limited room for maneuver that such an
analysis offers. Previously in this Thesis, some obfuscation methods were named, yet
the first obstacle in running a static analysis is represented by packing mechanisms, that
compress the executable and make them unintelligible when looking for information in the
executable headers. To understand how packers work, a brief explanation of the Executable
Structure is needed. In Windows executables are called PE (Portable Executable), and it
represents a data structure that contains the information used by the OS loader to run the
wrapped code (see Figure 3.1).

The most valuable information (when using a static analysis approach) are usually
contained in the sections: the sections usually have the same reserved names, and varies
between different Operative Systems, however Microsoft describes in depths how these
work in Microsoft Docs [45]:

These sections are inspectable through software such as Strings 2, a tool to look for any
combinations of three or more ASCII unicode characters, or PeID 3, used to determine if a
packer has been used and identify the signature of the Executable, and more others. As one
of the parts containing the most information, the role of packing becomes clear, as hiding
what could be identified within minutes is the first step among anti-analysis techniques.
The other trivial part of this kind of analysis put the focus on the Import Tables: a list of
all the functions needed by the executable to work, as well as linked libraries. Indeed, a
program has 3 main ways to have its libraries linked [5]:

2https://www.ibm.com/docs/en/aix/7.2?topic=s-strings-command
3https://www.aldeid.com/wiki/PEiD
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Figure 3.1. Portable Executable Format [62]

• Static Linking: the less-used type of linking, found in most of Linux and Unix
programs. It works by merging the libraries needed with the author’s code, expanding
the size of the whole executable and making it harder to understand the executable’s
own code.

• Dynamic Linking: the de-facto standard when it comes to generate a malware,
because when libraries are dynamically linked the PE includes automatically all the
functions needed in the Header and delegates the role of executing them to the libraries
themselves.

• Runtime Linking: the libraries and functions are loaded only when needed. In this
case the import table does not show all the functions used by the executable.

When working with dynamically linked Malware, the content of the import table makes
it easier to understand what will the malware behavior be, because each library has a
specific subset of functions to observe the same role (see Figure 3.2).

In order to proceed with a static analysis on a particular malware, a previous step is
needed. As mentioned before, a strong anti-analysis resource is represented by Packing
mechanism. These techniques generate a new Portable Executable with a new header,
using a compression algorithm, a cryptographic operation or both [12]. The possibility
to use a random key, moreover, makes each sample unique making fingerprint checking
useless. The code, now packed, incomprehensible by any analyst, contains only a runtime
created by the packer and used to unpack the malware in runtime (see Figure 3.3).
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Figure 3.2. Portable Executable Format [5]

3.1.2 Dynamic Analysis
Dynamic analysis requires extensive attention due to the risk of infecting the machine on
which the analyst is running the sample, and for this reason, according to [51], character-
istics necessary to address the analysis must be outlined:

• “It must be trusted”: insights coming out of the analysis environment must not be
influenced by the malware.

• “It must be undetectable by the analyzed file”: malware could behave differently if the
system is recognized as analysis systems.

• “It must collect as much relevant data as possible about actions performed by the
malware”: the more data it can collect, the better the description of the behavior.

• “It must meet the malware’s expectations to expose its full behavior”: a malware is
always created for a specific target, so the environment should appear in the condition
that the malware expects, in order to unleash its full potential.

• “It must limit/emulate network access by the malware”: malicious programs such
as worms are capable of moving through the network, so a proper control must be
enabled to prevent infections.

• “It must generate a coherent and concise report”: a report must be generated, and it
must be comprehensible by an analyst or a machine learning algorithm.
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Figure 3.3. How a Packer works[12]

With these issues being said, the goal is to let the malware infect only part of the
system, that was previously prepared with a correct environment to prevent the evasion of
the sample. This can be done by using a virtual machine, a hypervisor or an emulator. In
such cases, some programs may have the ability to detect if the infected host is a virtual
machine or not, and in that case the second point of the above list is not true anymore.
When it comes to decide the type of framework, a distinction is needed between bare-metal
and host-guest model.
Bare-Metal approach relies on the construction of a full physical machine, with the only
goal of analyzing a sample without any virtualization model. This approach guarantees the
best growing soil for the malware to infect and take actions. However, after the analysis is
finished, the problem of the bare-metal solution lies in the extremely difficult operation of
reverting, because the only methods available are formatting and changing the hardware
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used, that can lead to huge costs in terms of time and money.
Host-Guest model instead offers a simpler solution, more scalable and affordable by
anyone, with the only contraries aspects of evasions or the analysis environment to be
discovered by the sample. In this last situation, reverting the machine to a clean state is
immediate, because the state of the OS can be saved to a file (a Snapshot), that will later
be used as a baseline to revert the system settings, RAM and file systems.

The two most used types of Host-Guest model are REMnux[58] and FLARE VM
[42]. These two were born for the exact same reason: conduct malware analysis and reverse
engineer in a safe analysis framework. They differ only on the operative system used as
victim, since the first is used to analyze Linux malware, while the second for Windows
samples. For the purpose of this Thesis, only Flare VM will be presented.

Flare VM Developed by Mandiant as a collection of useful tools to aid malware re-
searchers and Reverse Engineers, FLARE VM was born with the idea of deploying an
open-source extension to Windows to speed up the process of initializing a Windows anal-
ysis framework. The entire workflow becomes now easier, because it offers process monitors
(see Figure 3.4) network emulators to deceive the sample, Decompilers, Unpackers, multiple
Reverse Engineering software and the whole Sysinternals Suite (a collection of Microsoft
diagnostic tools), in addition to the possibility to revert the state of the machine to a clean
state.

Figure 3.4. Process Monitor in FLARE VM [42]

But Dynamic Analysis Framework are not risk-free. As mentioned before, when a
malicious software is busy doing malicious activity, the analysis work as expected. However,
multiple avoiding and detection techniques have been developed by malware authors to
evade the analysis system and eventually escape from the system to infect new victims.
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Bare Metal could be vulnerable to hardware infection and to the detection of the analysis
framework. Host-Guest model could be vulnerable, instead, to Rootkits and Malicious
Hypervisors.

Dynamic Analysis Techniques

The main techniques used in dynamic analysis are three: Function Call Monitoring,
Function Parameter Analysis and Information Flow Tracking [24].

Function Call Monitoring A function, in terms of programming, is a block of code
that perform a specific action, that may elaborate input values and produce output values.
With that given role, a function has in its advantages the re-usability, since it may be used
multiple times in the same program or the same function could be used in multiple pro-
grams. So starting with understanding how to analyze the functions used in the program,
it is possible to abstract its behavior: that process of intercepting function calls is called
hooking. According to Kaspersky definition, Hooking is a “Techniques used to alter or
augment the behavior of an operating system, applications or of other software components
by intercepting function calls or messages or events passed between software components.
Code that handles such intercepted function calls, events or messages is called a hook” [40].
Basically it works by modifying the analyzed program in order to implement the required
analysis functionality. To understand what can be hooked, the following definitions are
given [24]:

• Application Programming Interface (API): groups of functions that enable
a common functionality, that can be shared between different programs, such as
manipulating files and communicating over the network. Usually each operating
system provide its own set of API.

• Function Calls: programs have two modes of requesting the access of an operating
system environment. General applications usually to request access to kernel-mode,
that enables them to manipulate what they need. User-mode however has no right to
modify the system state directly, so the operating system provide a set of well-defined
API, called system-call. Some malware have shown the ability to perform a privilege
escalation, gaining the kernel-mode privileges.

• Windows Native API: the Windows Native API are placed between the system
call interface and the Windows API. While Windows API remains stable and coherent
between all the versions, Native API may vary. These are called by higher-level APIs,
to invoke the system calls and act as a wrapper for the functions. Malicious programs
that use Native API are mostly written by people with a deep knowledge of Windows
Internals, since these APIs don’t have a complete documentation.

The results of Function Hooking provide a better description on the abstraction level of
the respective set of functions. Semantically, the best observations are found by hooking
Windows API functions, while a more detailed view can be seen in Native API hooking.
To enable this type of analysis, multiple approaches can be used, such as inserting hook
functions into the source code, or enabling compiler flags.
One of the most used techniques is called Binary Rewriting, and is used if the program is
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only available in binary form, and it works by modifying the monitored function so that
this call invokes the hook, or, alternatively, find all the call sites and invoke the monitored
function to call the hook. In both cases, the hook function can analyze all the optional
argument on the stack, and if the function is invoked through a pointer, this value can be
changed to point to a hook function instead.
Otherwise, to modify an already-running binary, it may be useful to exploit the DLL
injection: by forcing another process to load a dynamic-link library, it is possible to run
code within its address space. Debugging techniques are also used to hook into invocations
of specific functions, by inserting breakpoints that trigger and delegate the control of the
process to the debugger, so that it can have full access to memory contents and CPU state
of the process.

Function Parameter Analysis In dynamic analysis, differently from the role that has
in static analysis, function parameter analysis focuses on the actual values that are passed
to a function when is called. This technique can be useful to determine correlations between
functions into logically coherent sets to give a “different, object-centric, point-of-view” [24].

Information Flow Tracking Information flow tracking was born to understand how
the data propagate and find useful resource such as endpoints by using taint analysis:
the data that should be controlled while flowing are labelled (tainted). Such operation
make sense when the concept of Taint Sources and Sinks is introduced: taint source are
endpoints used by the programs to generate new taint labels into the system, whereas a
sink is a part of the system that acts with a specific routine when the tainted input is
modified, such as conditional branches that react to a different value of the tainted value.
The value of information flow tracking in malware analysis, as described in [16], could have
a great impact, but with the advent of this technique newer malware could be generated
in such ways to evade this analysis technique.

Unlike static analysis, dynamic analysis has a significant weakness: since it works by
running the sample and analyze its functioning, it can’t cover all the possible execution
flows, because it covers only the executed path.

3.1.3 Challenges in Malware Analysis
The history of malware analysis is constituted by an evolving path of technics to uncover
what is hide behind the mask of a false friend such as a Trojan or a worm, intelligible
information that somehow have to be retrieved to enhance defense systems and to sharpen
analysis tools. Each discovery in defensive counter-measures was later faced by an anti-
analysis approach and led to new features, and vice versa. The ACM Computing Surveys
published in [24] this issue calling it “Malware Analysis Arm Race”. In the previously cited
paper, a specific chapter is dedicated to this challenge, to present all the critical point in
malware analysis approaches of those years, remained then topical.

• Self-Modifying Code and Packers: Signatures cannot be used anymore to assess
a threat, due to polymorphic code and packers.

• Detection of Analysis Environment: Malware are able to detect Virtual Ma-
chines, Monitor Tools and debuggers.
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• Logic Bombs: Logic bombs trigger only in specific conditions. Some analysis may
lead to inefficient results because the logic bomb didn’t exhibit its behavior.

• Analysis Performance: Excess time spent due to the performance requirements
of the analysis may lead to timeouts.

3.1.4 Automated Analysis
To conduct a behavior-based large-scale analysis with a reasonable amount of resource,
thinking of analyzing each malware one-by-one is an idea to be discarded due to its time
requirements. Merging the concept of Sandboxing, Static and Dynamic Analysis, a new
type of analysis can be defined: the Automated Analysis. This concept is generated by
the aim to find the shared patterns behind malware families and classify these based on
their common behavioral pattern. The workflow of an automated analysis proceeds by
clustering the samples considering their features and use the clusters generated to form
prototypes to use as class labels (see Figure 3.5)

Figure 3.5. Workflow of Automated Analysis model [59]

In this Thesis, the purpose is to analyze the results of an automated analysis system to
constitute a dataset for training a Recurrent Neural Network. The network will be tasked
with generating a binary classification model (determining whether a sample belongs to one
of two categories) to determine the degree of maliciousness of an ambiguous file by analyzing
its sequence of calls to system APIs (specifically, the APIs of a Windows operating system).

Cuckoo Sandbox The open-source automated analysis tool used is called Cuckoo Sand-
box [21]. Cuckoo Sandbox was born as a project in Google Summer Code in 2010, and
was originally created to run and analyze suspicious or malicious files and generate a set
of results [22]:

• Traces of calls performed by all processes spawned by the malware.

• Files being created, deleted, and downloaded by the malware during its execution.

• Memory dumps of the malware processes.

• Network traffic trace in PCAP format.
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• Screenshots taken during the execution of the malware.

• Full memory dumps of the machines.

Its architecture is composed by a central management framework that handles execu-
tions and analysis, with each one of them running in an isolated and clean virtual machine
(see Figure 3.6). The host runs the core of the sandbox, and may run a web-interface to
interact with a graphical interface on which upload each sample. Cuckoo is equipped with
a network simulator (Inetsim in Cuckoo Rooter) that enables the analysis environment to
interact with different modalities of network:

• None Routing: all the communications are disabled.

• Drop Routing: completely drops all the cuckoo non-related traffic.

• Internet Routing: full internet access.

• Inetsim Routing: routes all the requests to multiple fake servers running on the
host.

• Tor Routing:: all the traffic is routed to TOR (The Onion Router [13]).

• VPN Routing: all the communications must pass through a VPN predefined
endpoint.

Figure 3.6. Cuckoo Sandbox Architecture [22]
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3.2 Feature Extraction
As written in [11], a feature is an individual measurable property or characteristic of a
phenomenon, that represents a crucial element in pattern recognition algorithms and ma-
chine learning. To better describe what a feature is and what does it mean to perform
feature extraction, a standard dataset will be introduced to understand this concepts: the
Iris Dataset [26].
The Iris Dataset is “one of the earliest dataset used in the literature on classification meth-
ods and widely used in statistics and machine learning” [26]. It contains 3 types of Iris
plant, with 50 instances per Flower, all described by four variables as features (sepal length,
sepal width, petal length, petal width), and a class label that indicates to which class of
iris plant the sample belong (Setosa, Versicolour, Virginica as in figure 3.7).

Figure 3.7. Iris families used for the Iris Dataset [78]

Of course, the data extracted from a single plant could be more than 4 types, but these
represent the most significant in terms of classification. The act of extracting information
from a sample, pre-process them, and select the most significant, is called Feature Ex-
traction. All the data used as a feature must overcome a preliminary phase to check their
correctness, since they could be redundant or big enough to make the optimization part
ineffective.
Features can be of 2 types: categorical, including discrete values that can be grouped into
categories that necessitate to receive a specific encoding before the analysis, or numerical,
such as continuous values that can be measured on a scale and do not need any conversion
before the elaboration.

Within the context of malware analysis how are the features extracted? The following
sources of features are taken in account [4]:

• Application features: from the static analysis API calls, PE headers, string hashes,
import address table. From the dynamic instead, API call sequences.

• Network features: the traffic generated by the sample is captured and analyzed to
extract IP addresses.
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• Features from external sources: antivirus engine signatures and reports used as
features [17].

3.3 Machine Learning goals and algorithms
As introduced in Chapter 2, Neural Networks represent a branch of Machine Learning, a
family of algorithms having the ability to improve and learn on their own. These algorithms
are able to predict values, to detect anomalies, classify groups of samples and find patterns
where people cannot see them. Using neural networks, is possible to implement speech and
image recognition tasks in terms of minutes, instead of hours.

3.3.1 Recurrent Neural Networks and LSTM
Among all branches of Deep Learning, the type of neural network to be addressed in this
Thesis is the Recurrent Neural Network (RNN), defined in [31] as “is any network whose
neurons send feedback signals to each other”. In the past these have been involved in
the analysis of sequence of events or characters in words, but later were used to enhance
motion detection and music synthesis. To better address the functioning of RNN, the
working schema must be explained. Differently from basic Neural Networks where inputs,
weights and biases are independent of one another, Recurrent Neural Networks parameters
are not independent, because they are modeled by each input of the sequence due to the
feedback model (see Figure 3.8). The feedback loop acts as a memory, that is used by
the algorithm to alter the next evaluation based on the previous inputs, and this creates a
hidden state, an abstract component used to remember specific data about a sequence.

Figure 3.8. Difference between Neural Networks schema and RNN schema [39]

Given the number of inputs and outputs Recurrent Neural Networks are classified in 4
types, that are used to determine which model is the best fit for a specific application [29]:

• One-to-One: the simplest one, it acts as a standard neural network, used mostly in
Image Classification

• One-to-Many: the input is fixed and gives a series of data outputs, found in Music
Generation and Image Captioning

36



3.3 – Machine Learning goals and algorithms

• Many-to-One: given a sequence of inputs, the hidden layer are converted into a single
output, found in Sentiment Analysis

• Many-to-Many: multiple inputs to multiple outputs, the more general, found in Ma-
chine Translation

As in neural networks, in RNNs the output value is calculated with the linear equation
(see equation2.1), but when dealing with feedback loops this formula leads to a common
problem known as “Exploding and Vanishing Gradient”. Basically, it is possible to
depict the first rounds of this algorithm on a random sequence, by looking at what would
the first different rounds act considering each consecutive round as a simple neural network
with one input and one output: this technique is called “unfolding” (see Figure 3.9).

Figure 3.9. Unfolding of a Recurrent Neural Network [29]

The problem of the “Exploding and Vanishing Gradient” was first highlighted in 1994
by Bengio in [10], and it refers to a propagating large scale increase in the norm of the
gradient during training [54]. During backpropagation, a common step in RNNs used to
update the weights of the network in each iteration, weights are updated proportionally to
the gradient value after each iteration, and this propagating error increases exponentially
by each training iteration (epoch) [9]. It can be seen by assuming a relatively small (less
than 1) or a relatively big (bigger than 1) value as initial weight: the first case led to
vanishing gradients, the second case to exploding gradients. Each output of the function
used in a single iteration, in RNN, become the weight for the next iteration. By considering
starting values less than 1, after many iteration the propagation of the weight brings
the latest decision to have no influence on the results. On the other hand, by choosing
values bigger than 1, the power elevation of the weight brings it to grow exponentially.
This act of deciding what gradient should be taken is referred as part of the optimization
of the Recurrent Neural Network, and can be achieved by analyzing gradients with a
Gradient Descent algorithm, used to find the minimum of a differentiable function (or to
find parameters values to minimize the loss function).

Multiple solutions are available to overcome the problem of the “Exploding and Van-
ishing Gradient”: the one used in this Thesis and the most popular is called LSTM, or
Long Short-Term Memory.
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LSTM - Long Short-Term Memory

LSTM, or Long Short-Term Memory, is the most popular solution to the problem of the
“Exploding and Vanishing Gradient”. This solution transformed a huge part of the machine
learning fields, and has been used to improve Google’s speech, Amazon’s Alexa answers
and Facebook reached 4 billion LSTM-based translations per day in 2017 [34].
On first look it has a complex structure (see figure 3.10), but can be understood by splitting
the concept into pieces:

• The upper line works as a propagator for the long-term memory, and it is influenced
only by the so-called forget-gate and input-gate. The forget-gate is needed to
decide what information to discard by a previous state, by assigning it a value between
0 and 1 (by mean of the sigmoid activation function).

• The bottom line instead is needed to elaborate the short-term memory in multiple
operations, in the forget gate to decide what part of the input should be remembered
in long-term, in the input gate, to decide which percentage of the short-term memory
should be remembered and added to long-term memory, and a last one called output-
gate, that make use of the long-term memory to influence short-term memory values
and produce an output.

Figure 3.10. A LSTM block [34]

As presented in [34], between all the types of LSTM variants, the most efficient and
easiest one is the so-called vanilla LSTM. The Vanilla LSTM is “interpreted as the original
LSTM block with the addition of the forget gate and peephole connections. In total, eight
variants were identified for experimentation. In a nutshell, the vanilla architecture per-
forms well on a number of tasks, and none of the eight investigated variants significantly
outperforms the remaining ones. This justified most applications found in the literature to
employ the vanilla LSTM.” [34].
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Chapter 4

Implementations

The core of this thesis is explained in the Implementation chapter, in which it is demon-
strated how the starting idea was was applied to produce a Proof of Concept. Leveraging
the theoretical knowledge described in the chapter 3, the workflow was well defined. With
the purpose of extrapolating an inherent characteristic of an unknown file, it was planned
to collect a set of samples, both malicious and safe, from which it was then possible to ex-
tract the necessary values to build a dataset. A tool capable of automating the extraction
process was therefore chosen, combining it with an ad-hoc script capable of collecting a
sufficient number of samples from a reliable source on the Internet.

The third block is the construction of the actual machine learning classification model,
which is initially made in a rough way and then refined so that it can achieve a fair trade-off
between optimal results and training cost.

Figure 4.1. Implementation Schema

Finally, after the first results are obtained from the scratch, the model can be tuned in
order to achieve better results and evaluate it the approach was correct. Through specific
classification metrics, indeed, the parameters are tested with different values to choose the
best solution.
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4.1 Analysis Environment
When faced with an unknown file whose content and behavior one wants to learn, the first
step is to have a laboratory available that can contain the analysis context and isolate it
from valuable assets, whether sensitive information or valuable content. As explained in
Chapter 3, there are many versions of ecosystems already set up to handle the analysis of
hazardous content, so it may be useful to delve into the available choices to evaluate the
most efficient solution that fits the type of analysis proposed in this Thesis. The key values
sought are as follows:

• Sandbox robustness: sandboxing is a technique, not a de-facto invulnerable defensive
system. Sandboxing does not represent the perfect form of computational fencing, be-
cause even hypervisors may have vulnerabilities. Since multiple malware have shown
the ability to evade and infect environments regulated and protected by hypervi-
sors, the sandbox must be robust and constantly updated whenever a vulnerability
is found, to prevent the inefficiency of this defensive counter-measure.

• Ability to extract malware configurations: the environment should provide enough
tools and programs to elaborate each sample.

• Automated functions: once the analysis routine is determined, the laboratory should
provide a system to automate the function for the multitude of samples.

• Analysis limits: not all systems are free or affordable in terms of time or money.

• Virtualization limits: virtualization, if present, let the guest system to use only part
of the available resources on the host.

What follows is the description of pros and cons of the three most suggested sandbox
systems to better understand the one that has been chosen:

ANY.RUN ANY.RUN 1 is a cloud-based sandbox with full access to the environment
and able to track in real-time DNS resolutions, IP connections, and file spawned. At
the end of the analysis a report is generated, and it is possible to customize the analysis
configuration choosing a timeout, various types of routing, and human-activity simulations.
Without any doubt, this could represent the best solution to limit any damage and extract
malware configurations, but each task requires a fair amount of time. It offers a wide range
of solutions to assess the behavior and the maliciousness of a file (see Figure 4.2), website
or address, but makes it harder to extrapolate information such as API call sequences.
Therefore, ANY.RUN is an idea discarded from the beginning as it does not align with the
needs of the work required in this Thesis.

Flare VM Flare VM 3.1.2 characteristics can be summarized as:

• Comprehensive Toolset: FLARE VM provides a comprehensive set of tools for
malware analysis and reverse engineering.

1https://any.run/
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Figure 4.2. Visualization of malware behavior in ANY.RUN

• Windows-Based Environment: It is a Windows-based virtual machine, suitable
for analyzing Windows-specific malware and threats.

• Frequent Updates: FLARE VM is regularly updated with the latest tools and
plugins, ensuring access to the most current resources.

• Community Support: Developed by FireEye, FLARE VM benefits from commu-
nity support and collaboration, enhancing its effectiveness and reliability.

• Pre-configured Environment: The VM comes pre-configured with a variety of
tools, saving time and effort in setting up the analysis environment.

Although Flare VM may seem a viable choice, defining an analysis routine that can generate
a report to be used to take valuable information from it is actually quite complicated.

Cuckoo Sandbox Cuckoo Sandbox 3.1.4 characteristics can be summarized as:

• Dynamic Analysis: Cuckoo Sandbox allows for dynamic analysis of malware by
running it in a controlled environment, enabling observation of its behavior.

• Automated Execution: Cuckoo automates the execution of suspicious files, making
it efficient for analysts to analyze a many samples.
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• Network Traffic Monitoring: Cuckoo Sandbox monitors the network traffic gen-
erated by the malware during execution, helping analysts understand communication
patterns and potential threats.

• API Support: Cuckoo provides an API for integration with other security tools and
systems, allowing seamless incorporation into existing workflows.

• Screenshots and Memory Dump Analysis: Cuckoo captures screenshots and
extracts memory dumps during malware execution, aiding in visual and memory-
based analysis.

• Behavioral Signatures: The observed behavior of malware in the sandbox can be
used to create behavioral signatures for identifying similar patterns in other samples.

• Open Source and Community Support: Cuckoo is an open-source project with
a community of security professionals contributing to its development, ensuring con-
tinuous improvement.

Newer systems are available to perform automated malware analysis but Cuckoo sand-
box was chosen because through the year it proved to be the most consistent and coherent
in each part of the analysis, and it represents the best low-budget solution to produce a
proof-of-concept.

4.1.1 Malware Repositories
Once the analysis environment is deployed and ready to work on new samples, the next
step is to decide where find malware samples. The most popular solution resides in Mal-
wareBazaar 2, a project ideated by abuse.ch with the intent to create a place where freely
share malware (see Figure 4.3), “helping IT-security researchers and threat analysts pro-
tecting their constituency and customers from cyber threats” [6]. Due to its properties,
this kind of malware repository is always up-to-date, thanks to all the professionals and
societies that help by sharing their own samples. The service is accessible via a website
user interface and via API, providing its own endpoints to retrieve the daily, or even the
monthly, batch of malware.

4.1.2 Automating the Analysis
A diverse, scalable, and well-performing programming language was sought to coordinate
calls to the Cuckoo API, downloading samples from Malware-Bazaar, and pre-processing
reports from Cuckoo. The choice fell on Python.

During the script development process, the requests3 module was used, because it
offers a wide-range solution to interact with Cuckoo API, using REST, and to perform
downloads from the malware repository.

2https://bazaar.abuse.ch/
3https://requests.readthedocs.io/en/latest/
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Figure 4.3. Malware-Bazaar repository

Cuckoo Sandbox provide a simple REST API server to interact with the environment
remotely or without using the Graphical User Interface [20]. To operate with REST API
an Authentication Token must be set, in order to admit to the analysis environment only
samples submitted by those who have access to the token.

The server runs on the port 8090, and can be configured to use HTTPS, to tune server
performance and enable other protocols. Multiple endpoints are available, but basically,
the most useful are few (according to Official Cuckoo API Documentation4.1):

The requests are customizable through various parameters: it is possible to set a time-
out, to modify the analysis options, add tags, a priority or request a memory dump. The
only mandatory field is the file to analyze.

The analysis and report-processing routine is developed as follows:

1. A Malware batch is retrieved by Malware-Bazaar, using a specific endpoint provided
by the same platform.

2. Using the ZipFile module, each batch is extracted.

3. All the executable files extracted are sent, one by one, to Cuckoo via POST request.
The request module enables python to construct Headers and Payload of a request
and send it to a specific URL. This action starts a new task with the submitted
sample.
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Request Method Resource Description
POST /tasks/create/file Adds a file to the list of pending

tasks to be processed and analyzed.
GET /tasks/report Returns the report generated out of

the analysis of the task associated
with the specified ID.

GET /tasks/view Returns the details on the task as-
signed to the specified ID.

GET /tasks/list Returns the list of tasks stored in the
internal Cuckoo database. You can
optionally specify a limit of entries
to return.

Table 4.1. Description of Cuckoo API Endpoints

4. The sample analysis, set up with a given timeout, is appended to the cuckoo workflow
and the script is set in sleep mode to wait for the report.

5. After the report has been produced, the script retrieve the report in JSON format.

6. From the text report, the fingerprint and the list of API is extracted and elaborated.
Each consecutive repeated call is replaced by a single occurrence. Only the first 100
are collected.

7. The extracted data is then appended to a csv file, that would later form the dataset.

Since this is a very expensive process to implement on a large scale on a single device,
it was decided to use an existing dataset 4 to produce a proof-of-concept.

4.2 Dataset Insights
The dataset [15] represents perfectly the target of the used analysis model: it was created
starting from 49,797 malware and 1,079 goodware, passed through the analysis offered by
Cuckoo sandbox, to extrapolate the API list of each sample. As can be seen from the
amounts of information available, the dataset is heavily unbalanced, as the number of
goodware represents less than 2 percent of all total samples. However, since the weight of
classification has more importance in recognizing true positives instead of true negatives,
the expected model can be applied by accepting a reasonably high percentage of false
positives.

Here follows a brief description of the dataset structure:
To better comprehend each field, could be useful to look at Figure 4.4. Each one of

the values contained in the middle columns, refers to a particular API Call. API calls are

4https://www.kaggle.com/datasets/ang3loliveira/malware-analysis-datasets-api-call-sequences/
data
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Feature Description
hash Represents the fingerprint(using MD5 hashing)

of the sample analyzed
t_0 to t_99 Contains the ID of a Windows API at a specific

timestamp
malware The label(0 or 1) to identify if the sample is ma-

licious or not

Table 4.2. Dataset feature description

Figure 4.4. First five samples of the dataset used

reported in the order they were called from the sample, not repeated and truncated to 100
values: all identical contiguous values are considered as a single call, since it is usual for a
call to be made dozens of times in succession. Before the building of a classification model,
it is possible to see that the information in the dataset is already valuable in its own right.
As reported in the Section 3.1.1, each class of API and system library can be traced to a
type of required function, and as will show in the following summary, many APIs recur
often.

For example, LdrGetProcedureAddress, LdrLoadDll and LdrGetDllHandle are
mostly present due to the dynamic linking of the libraries and DLL injection techniques.

The second most present type of API in malware are related to Registry Keys: mal-
ware use these functions to ensure persistence and make the infection harder to eradicate.
This justifies the presence of APIs such as RegCreateKeyEx, RegOpenKeyEx and
RegGetValue. Secondarily other functions required could relate to Encryption function-
alities, such as all the API including Crypt in the name, or Network functionalities such
as the APIs with Internet in the name.

The presented set of functions also include shared words, that imply shared behavior.
Ldr refers to all Loader functions, Nt functions are used to run system calls, or Rtl, that
is instead used for C Run-time library functions. When a call ends with the letter A, means
that the output produce will be in an ASCII format. With the letter W, a Unicode output
is intended.

Over all the malware samples the following APIs usage were found (see Table 4.3):
In the goodware subset instead, some differences appear almost immediately (see Table

4.4):
Conclusions can be drawn from the above tables :

• Loader functions and DLL functions are present almost with the same frequency.
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API Name # of occurrences % of usage per sample
LdrGetProcedureAddress 722904 16.89%

LdrLoadDll 406631 9.50%
RegOpenKeyExW 256080 5.98%

CryptAcquireContextW 12043 0.28%
NtCreateFile 37479 0.87%

InternetOpenA 274 0.006%
InternetSetOptionA 230 0.005%
InternetConnectA 213 0.005%

Table 4.3. Number of occurrence per API in the malware subset

API Name # of occurrences % of usage per sample
LdrGetProcedureAddress 14371 13.31%

LdrLoadDll 7651 7.09%
RegOpenKeyExW 8495 7.87%

CryptAcquireContextW 32 0.02%
NtCreateFile 2177 2.01%

InternetOpenA 1 0.0001%
InternetSetOptionA 1 0.0001%
InternetConnectA 0 0%

Table 4.4. Number of occurrence per API in the goodware subset

• Goodware show less occurrences of Cryptographic operations.

• In goodware, almost no Internet function is present.

These differences are better explained by looking at the heatmap in figure 4.5
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Figure 4.5. Differences between Most common API usage

4.3 LSTM Application
With a dataset complete, and ready to be used, model creation can begin. Given the
complexity of the algorithms used in the model study, it was decided to use implementations
already provided by well-known libraries set up for neural network generation in Python
and data analysis:

• Keras 5: a simple, but powerful, deep-learning API written in Python.

• pandas6: a necessary data analysis library to handle matrices as data-frame.

• numpy 7: similar to pandas, but used to perform conversions and to handle matrices
manipulations.

• matplotlib 8: used as visualization tool to create charts and plots.

• Scikit-learn 9: the most versatile library, considered as a “Jack-of-all-trades” of
machine learning.

5https://keras.io/
6https://pandas.pydata.org/
7https://numpy.org/
8https://matplotlib.org/
9https://scikit-learn.org/stable/
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Instead of writing a single script to contain all the execution-flow of the neural network
application, it was opted to use Jupyter Notebook 10, a web application local-hosted used
to create and share computational documents. Jupyter has been a fundamental part of the
research, because the feature included in the notebook helped to “backtrack” rapidly when
encountering errors, fix parameters where they were found to be inadequate and visualize
the results in the same windows.

Figure 4.6. A common Jupyter Notebook page [38]

As shown in the Figure 4.6, the notebook provide a cell-oriented programming interface
with the possibility to run single cell at a time and the charts are illustrated directly below
the cell.

These characteristics make Jupyter one of the first choice when dealing with machine-
learning applications.

10https://jupyter.org/
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Algorithm Initial Settings Before starting to work with a new dataset, it is recom-
mended to extract a percentage of it to form two groups: the two groups will be used to
train the neural network and to test its performance.

The action of splitting the database in 2 partitions, sampling a given percentage of
rows randomly, is done by using the function train_test_split. The percentage of sampled
elements can be tuned to enhance the training phase or to test the neural network in a
more accurate way. It was decided to start with a standard ratio used in splitting the
dataset, 80% for the training set and 20% for the test set. The second step that must be
addressed, regards the mean and the variance of the features.

When a neural network operates on unscaled data, it is possible for large inputs to slow
down the learning process and could prevent the effectiveness of the network. The most
used types of scalers are two: Standardizer or Normalizer.

• Standard Scaler: Mostly used for features characterized by negative values, useful
to arrange data in a standard normal distribution. Should generally be preferred in
classification models.

• Normalizer: Recommended for positive values with high magnitude and range,
especially in regressive models.

For what has been said, the first was chosen to produce a Proof-of-Concept.
As the reader will observe in this chapter, all the tweakable parameters are chosen from

an objective analysis of performance. But generally, what are the parameters?

• Batch size: groups of samples that are processed at a time.

• Epochs: an epoch is an iteration in which the dataset has passed through the LSTM
entirely.

• Optimizers: families of algorithms used to find the best parameters and weights.

Epochs are necessary because this type of algorithm work better by using multiple
iterations and updating weights with multiple passes. Using a single epoch, the model
would lead to a phenomenon called “underfitting”.

As it is possible to notice from the figure 4.7, underfitting and overfitting phenomenons
may happen whenever a predictive model is outlined. The first regards an overly simplistic
model, where both training and testing underperforms and results present errors in both
phases. Overfitting, on the other hand, happens when the model fits too closely to training
data, and underperforms in testing data because of its high variance.

Given the batch size, the number of iterations is represented by the number of batches
needed to complete a single epoch. This information will prove important when the algo-
rithm is to be set to improve its efficiency.
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Figure 4.7. Visualization of Underfitting and Overfitting Phenomenon [52]

LSTM Optimizers In terms of improving the performance of a machine-learning al-
gorithm, Optimizers play a crucial part. Optimizers are families of algorithms used to
find the best parameters and weights that minimize the error when evaluating the results
between inputs and outputs, and doing so, to minimize the loss function (see Figure 4.8).

Figure 4.8. Plot of a Loss Function [2]

Minimizing the loss function relies on the process of quantifying the error between a
prediction and a target value. The most basic types of loss function are based on simple
statistical formulas, like MSE (Mean Squared Error) or MAE (Mean Absolute Error), or
involving mathematical operations such as logarithms. However, the family of optimizers
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used in conjunction with an LSTM model are more complicated. The main optimizers are
listed below:

• Gradient Descent: works by calculating gradients and represents the best choice
for most of the purposes, but it becomes more expensive proportionally to the size of
the dataset.

• Stochastic Gradient Descent: born as remedy to the gradient descend scalability
problem, it exploits randomness to calculate gradients over a set of samples instead
of using the whole dataset. Still one of the most used.

• Adagrad (Adaptive Gradient Descent): used to adopt an optimizer without the
need to define the learning rate, but which can equally exploit the efficiency of the
gradient descend family.

• AdaDelta: a more robust adaptation of Adagrad. Since in Adagrad the learning
rate becomes infinitesimally small, AdaDelta is able to mantain an efficient ability to
learn.

• Adam (Adaptive Moment Estimation): extension of Stochastic Gradient De-
scent that is able to dynamically set learning rates. Similar to Adagrad.

Finally, it is necessary to prepare the labels so that the algorithm can process them to
evaluate the training phase and to test the predictive model. The labels then, represented
by a unique value that can be 0 or 1 depending on the class they belong to, must be coded
in such a way that they become categorical data. One can accomplish this by using the
to_categorical function offered by Keras as an extension to Numpy, which exploits a type
of encoding called “One Hot Encoding”.

This technique (see Figure 4.9) relies on the conversion between a single value to a
categorical variable as binary vectors. Each integer value is represented as a binary vector
with all zero values except the matching index of the integer, that is instead marked with
a 1.

Figure 4.9. How “One Hot Encoding” works [49]
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4.3.1 Description of the Model
The model, written in Python using Keras as API, was developed with the goal to produce
a binary classification algorithm based on the Long Short-Term Memory concept. The
first step to be conducted in the decision-making process leading to the construction of the
above model concerns the analysis of the cardinality of the input and output:

• The algorithm expects to receive a three-dimension matrix as input for the training
phase, and the respective labels must be represented as categorical data.

• Concerning the outputs instead, the model produce a categorical result of cardinality
2.

Given the cardinality of inputs and outputs, it is possible to begin creating the model
from the Sequential API, provided by Keras, to build a model that by definition must
accept a sequence of values. The Sequential model is based on the idea of connecting a
defined number of layers, each with a single input and a single output, and only then it is
possible to set a proper block on each layer. In the specific case of the work related to this
Thesis, each block was represented by a single LSTM cell. Each output then is elaborated
by a common block, called Dense. The Dense layer is intended to process a defined number
of inputs and produce an output of a lower cardinality.

Figure 4.10. Dense Layer schema[28]

Dropout Optionally, it is possible to another layer to prevent the effect of the overfitting
behavior that this model could cause. This is called Dropout, and it is used to cancel the
effect of specific neurons that are excessively trained over the input data.
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Figure 4.11. Dropout schema[28]

4.3.2 Evaluation of the performance
A key factor in parameters decision is represented by the possibility to try different configu-
rations. The first launch can be done with a default configuration, and then the parameters
can be changed for better performance. From an analysis one of the information that can
be derived are measurement information called metrics, which similar to loss functions
serve to test the model, but unlike the latter are not used directly in training.

To understand how metrics work, a new concept must be defined, called Confusion
Matrix (see Figure 4.12). Recalling the definitions of false negatives and false positives
introduced in the Section 3.1, Confusion Matrices represent the easiest way to visualize
the results of a classification model. The values on the main diagonal are the correctly
classified values, while the misclassified (false prediction), are on the anti-diagonal.

Several metrics can be considered in evaluating the model, and all can be derived from
one of the four pieces that make up the Confusion Matrix.

Acronym Full Name
TP True Positive
TN True Negative
FP False Positive
FN False Negative

Table 4.5. Confusion Matrix Acronyms and Full Names

Considering the acronyms in the table 4.5, the following definitions can be given:
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Figure 4.12. Confusion Matrix Schema [35]

Accuracy The Accuracy represents the amount of correct predictions, divided by the
sum of the total number of cases. If over a total of 1000 values, the model predicts
correctly 900 of them, then the accuracy is 90%.

Accuracy = TP + TN

TP + TN + FP + FN

As discussed previously, since the dataset shows a strong imbalance in the distribution
of classes, accuracy may not be the optimal metric to evaluate the model. With an un-
balanced dataset, accuracy is an inadequate way of evaluating results because it does not
give importance to the weight of false positives and/or false negatives, which might be of
greater or lesser importance.

Precision Precision is a kind of metric that relies entirely on the rate of the positive
class prediction.

Precision = TP

TP + FP

Since it is based on the results relevant for the positive class, it works well with imbal-
anced classes when the cost of false positive is high. The higher the precision, the lower
are the positive errors.

Recall Also called True Positive Rate, it is used to assess the ability to correctly classify
all instances of a particular class.

Recall = TP

TP + FN
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It has a great impact whenever the cost of missing positive samples is high, and acts as
a complementary part of Precision since it also assesses the weight of false negatives. Due
to this characteristic, increasing Recall might lead to a decrease in Precision.

F1 Score The F1 Score is a metric that combine the previous 2 definitions: Precision
and Recall.

F1_Score = Precision · Recall

Precision + Recall

Being a formula that combines Precision and Recall, it fits well in problems where the
weight of False Positives and False Negatives is equal. As it is possible to see, the above
presented formula ignores totally the weight of True Negatives.

ROC and AUC Before describing what a ROC (Receiver Operating Characteristic)
curve is, two rates must be introduced: TPR (True Positive Rate) and FPR (False Positive
Rate).

TPR = TP

TP + FN

FPR = FP

FP + TN

Figure 4.13. ROC Curve [71]

The previous rates can be used as a metric by assigning the FPR to a horizontal axis,
the TPR to a vertical axis, and then plot a graph (see Figure 4.13) to test the performance
of a classification model and its parameters (such as classification threshold).

55



Implementations

The ROC is then used to compute the AUC value. AUC stands for Area Under ROC
Curve, and as the name suggests, it is obtained by the integral of the curve, to compute
the area underneath it. It represents a valuable resource, but it is not optimal when used
alone, and moreover works only for binary classification models.

Once all the parameters are explicated, the results can be interpreted and the model
can be optimized. The next chapter will explore in depth the achieved results to assess the
performances of the algorithm in the presented context.
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Chapter 5

Experimental Results

The investigation conducted began with the aim of finding out whether information in-
herent in unknown files could be used to understand their degree of maliciousness with as
little error as possible. Before the advent of machine learning in the context of malware
analysis, the techniques were shown to be functional but with major flaws:

• Poor adaptability to polymorphism mechanisms

• Insufficient extraction of information from samples

• Low degree of automation in the analysis process

In the following section evidence and results necessary to understand whether Recurrent
Neural Networks can bring valuable results will be exhibited.

As presented in the previous chapter, the metrics used to evaluate the performance will
be used to generate an estimation of the underfitting/overfitting grade. Keras fit method,
provide the functionality to test fitting performances over a fixed set of samples for each
epoch, and so, generating two tuple.

Given a certain metrics, for example Precision, fit history will provide a first tuple con-
taining (precision, val_precision), and loss, val_loss. Independently by the used metric,
a loss tuple will be generated, to estimate how the loss evolves, while the first tuple de-
scribes how the chosen metric varies.

To ensure that the optimal parameters are chosen for model operation, a special library
will be used to optimize these values. The library in question is Optuna.

Optuna 1 enables the ability to iterate the behavior of the model with parameters tested
in a particular range, and once finished, extract the optimal value to use. The presented
behavior fills the part of the optimization needed for a machine learning algorithm to draw
the best conclusions.

This branch falls under the name Hyperparameter Optimization.

1https://optuna.org/
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5.1 Hyperparameter Optimization
As explained previously, 4 main parameters need to be tuned to ensure the best perfor-
mance (see Table 5.1).

Parameter Range
Epochs 5-40
Batch Size 10-128
LSTM Depth level 1-3
Dropout 0, 0.1, 0.2, 0.4

Table 5.1. Hyperparameters in the scope

Thanks to Optuna, it is possible to conduct a runtime analysis to decide which value
could be chosen, and it works by using 3 components:

• Study: The Object containing the studied case, the results and the weights used.

• Trial: The Instance of the case, with the configuration values used to run the analysis.

• Objective: The Objective represents the brain of the Optuna test, it contains the
code used to build the model and an iterable value that is chosen by the module itself.

The library becomes useful expecially because of its implementation. The Objective func-
tion is sent to Optuna APIs (see Figure 5.1), that create abstract workers in a multithreaded
environment, and each worker is able to comprehend if the current path needs to be pruned
(skipped) or evaluated.

To draw a better overview about model performance, it may be useful to run some brief
tests to illustrate the obtained results, even if the model can still be seen as a draft.

5.1.1 No Optimization
The first attempt will see the model composed by only a single LSTM layer, a single Dense
layer, a batch size of 128 and 15 epochs.

Predicted Values
Goodware Malware Total

Actual Values Goodware 74 124 198
Malware 15 8563 8579

Total 89 8687 8776

Table 5.2. Confusion Matrix with no optimization

The classification results reported in table 5.2 show a high accuracy, with a 98.8% of
total accuracy, but as it is shown, the false negatives value is high, while the false positive
is low.

An important aspect to take into account when reviewing false positives and false
negatives is their value. Depending on the context, a false positive can carry enormously
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Figure 5.1. Optuna Schema [50]

more weight than a false negative and vice versa. Given the context, it would be more
appropriate to consider a decrease in misclassified malware more valuable than misclassified
goodware.

Metric Malware Class % Goodware Class %
F1-Score 0.98 0.52
Precision 0.98 0.83
Recall 0.99 0.37

Table 5.3. Result metrics with no optimization

Metrics values shown in Table 5.3, represent the significant imbalance in the obtained
results, which, however, results not only from a lack of optimization but also from a lack of
sufficient goodware samples to balance the dataset. In any case, even without considering
these factors, the results look promising, not because of overall accuracy but taking into
account goodware class precision and weighted accuracy.

Looking at Goodware metrics indeed, it is possible to notice a high precision at the
expense of a low recall. This means that the class is not well detected, but when it is, the
model is reliable.
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5.1.2 Epochs optimization
The first step in the optimization phase is to adjust the number of epochs needed to train
the algorithm. Keeping the other parameters stable, different values should be tested to
analyze the classification performance: therefore, it was chosen to keep the batch size at 128
samples, a single layer of LSTM and dropout at zero. Optuna is then asked to run Trials
to achieve the goal with the greatest outcome, in this case, maximizing Precision. Given
a timeout and a maximum number of trials, Optuna is able to produce an approximate
value that should be used to improve the performance.

In Figure 5.2 is displayed the process of optimization for each trial.

Figure 5.2. Optuna Optimization plot

This process will then result in the decision of the number of the epochs that will most
probably enhance the obtained results. In Figure 5.3 is it possible to see the illustrated
results of the decision.

The point with the maximum precision obtained is in line with the value 37, but each
value nearby have a great impact on the performance. After each optimization, the algo-
rithm can be tested to ensure that the classification method improved.

Table 5.4 present the results obtained by repeating the training with 37 epochs, 128
samples per batch, a single LSTM layer and no dropout.

Multiple considerations can be drawn from what emerged in the last test:

• F1-Score increased because of an improvement in Recall. Now the model is more
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Figure 5.3. Optuna Epoch Slice plot

Predicted Values
Goodware Malware Total

Actual Values Goodware 66 54 120
Malware 23 8633 8656

Total 89 8687 8776

Table 5.4. Confusion Matrix with optimized epoch value

capable of distinguish between the two classes, returning most of the relevant results
(Table 5.5).

• Goodware Class Precision decreased, but overall the Precision average increased (Ta-
ble 5.5).

• The Hyperparameter optimization provided an enhancement of the performance, even
if not all optimizations have been performed.

• The number of True Positives classifications increased (Table 5.4).

• True Negatives number decreased by an almost insignificant percentage factor (Table
5.4).
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Metric Malware Class % Goodware Class %
F1-Score 0.99 0.63
Precision 0.99 0.74
Recall 0.99 0.55

Table 5.5. Result metrics with epoch number optimization

5.1.3 Batch size optimization
The second Trial tested in Optuna is dedicated to batch size optimization: as already
presented, the batch size is used to divide the training set in batches that represent groups
that are elaborated together. Differently from Epochs value, generally the lower the batch
size, the more accurate is the classification model. However, this over-specialization, may
lead to an overfitting behavior, and so, the improvement in the model could be seen only
in training data and not in test labels.

Optuna has been set to select the best value as batch size to maximize the precision.

Figure 5.4. Optuna Batch Size Slice plot

The Figure 5.4 is used to visualize how the test parameters perform. In details, the slice
plot has on its x-axis the range of values that are tested, and on the y-axis the precision
values obtained. The higher the point, the better the performance.
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Predicted Values
Goodware Malware Total

Actual Values Goodware 76 39 115
Malware 13 8648 8661

Total 89 8687 8776

Table 5.6. Confusion Matrix with optimized batch size

The newer confusion matrix (Table 5.6) depicts how much the results changed after
implementing the change obtained from the test.

Metric Malware Class % Goodware Class %
F1-Score 0.99 0.74
Precision 0.99 0.85
Recall 0.99 0.66

Table 5.7. Result metrics with batch size optimization

From the previous Tables (5.6 and 5.7), that represent the classifications results and
the metrics obtained from them, after a comparison with previous results, remarkable
differences are shown. The Precision, that is the ratio between the number of correct
predictions and the overall predictions for a specific class, generally increased by 0.11.
Recall instead, is used to present the ratio between the number of correct predictions and
the number of all the actual samples in a class. Finally, the F1-Score is a factor derived
from both previous metrics to show the performance of both with a single value.

5.1.4 Depth optimization
Optuna represent an extremely useful tool when the parameter is a value that vary in
a certain range, reason why it has been successfully used to find the optimal values in
the previous cases, but which cannot be used to determine how many layers of LSTM
are needed. Three main tests, using respectively one, two and three LSTM layers, were
conducted to compare how the training curve changes and see if these changes transfer
any improvement in the testing phase of the classification model. The main metric used to
evaluate and compare the three cases is the Precision, to maintain consistent the analysis
using the same metric used for the other parameters.

In Figure 5.5, 5.6 and 5.7 are presented the Precision obtained in the three cases.
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Figure 5.5. Precision obtained with a single LSTM layer

Figure 5.6. Precision obtained with two LSTM layers

As it is possible to see in Figures 5.5, 5.6 and 5.7, the test performance (represented in
orange) seems to saturate at the same level in both three cases, meanwhile the estimated
performance level in training phase reach almost the same value regardless of the case.
Given the lack of substantial improvement in the results obtained and the significant in-
crease in the computational complexity of the added layers, it was decided to maintain a
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Figure 5.7. Precision obtained with three LSTM layer

single active layer.
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5.1.5 Dropout optimization
The same process was repeated straightforward to evaluate the adoption of a Dropout
threshold to adjust any possible damaged caused by an underlying overfitting phenomenon.
The depth analysis of the LSTM layers, indeed, showed a maximum threshold of capac-
ity growth in the algorithm in the testing phase that diverges from the increase instead
obtained in the training phase. Dropout could force the algorithm not to rely on single,
over-specialized, neurons and thus force it to find other weights and connections with which
to learn.

Figure 5.8. Optuna Dropout Slice plot

The selective process produced by the module used led to the choice of a Dropout value
of 0.49. Once the dropout value is chosen by the Optimization algorithm (see Figure 5.8),
it is possible to proceed and analyze in depth the results obtained.
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5.2 Final Results
To recapitulate, the parameters chosen are listed in Table 5.8

Parameter Range
Epochs 37
Batch Size 18
LSTM Depth level 1
Dropout 0.49

Table 5.8. Hyperparameters in the scope

These values should allow the model to reach its best classification performance in terms
of training cost and prediction metrics. After repeating the training phase with the chosen
parameters the results obtained are reported in Tables 5.9 and 5.10.

Predicted Values
Goodware Malware Total

Actual Values Goodware 76 37 113
Malware 13 8650 8663

Total 89 8687 8776

Table 5.9. Confusion Matrix with optimal parameters

Although the model presented excellent results even without optimizations, it is possible
to see how much performance has improved, and what new considerations can be made.

• Initially, the model was so specialized in identifying the class of malware that it could
not effectively recognize goodware. Goodware class recall indeed increased by 30%,
passing from 37% to 67% (see Table 5.10). This means that the model learned to
better recognize the difference between the two classes.

• The average Precision of previous attempts, before tuning all the parameters, was
around 80% for the goodware class, and increased to 85%, meaning that less samples
were missclassified as Malware.

• Due to the increase in both the previous metrics, the F1-Score increased coherently.

• Overall, the malware class had a lower increase in its metrics, but less malware were
classified as goodware.

Generally the improvements and the achieved results seems interesting, but as can be
seen from Table 5.10, the model still presents high loss in goodware’s classification.

• With a relatively low recall value such as 0.67, it can be seen that the model is still
unable to effectively recognize samples belonging to the goodware class.

• On the other hand, between all the samples labeled as goodware 85% were correctly
classified, obtaining a wrong result only for 13 out of 89 cases (see Table 5.9).
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Metric Malware Class % Goodware Class %
F1-Score 0.99 0.75
Precision 0.99 0.85
Recall 0.99 0.67

Table 5.10. Result metrics with optimal parameters

To summarize, the evolution of each metrics for the goodware class is shown in Table
5.11.

Goodware Class Opt TP TN FP FN Precision Recall F1-Score
No-Optimization 8563 74 124 15 0.83 0.37 0.52
After Epochs opt. 8633 66 54 23 0.74 0.55 0.63
After Batch Size opt. 8648 76 39 13 0.85 0.66 0.74
Final Version 8650 76 37 13 0.85 0.67 0.75

Table 5.11. Metrics improvements for goodware Class

Although the results regarding the classification of the Malware class had marginal
growth with respect to an already very good starting point, improvements were manifested,
and these are presented in the following Table 5.12. The percentages did not increase as
substantially as in the case of the other class, but it can be seen that from the first version
to the optimized version, false positives decreased from 124 to 37, even if the false positive
value remained unchanged.
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Malware Class Opt TP TN FP FN Precision Recall F1-Score
No-Optimization 8563 74 124 15 0.9858 0.9982 0.9920
After Epochs opt. 8633 66 54 23 0.9937 0.9973 0.9955
After Batch Size opt. 8648 76 39 13 0.9955 0.9984 0.9970
Final Version 8650 76 37 13 0.9957 0.9984 0.9971

Table 5.12. Metrics improvements for malware Class
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Chapter 6

Conclusions and Future Work

This Thesis presents a comprehensive exploration into the use of advanced machine learn-
ing techniques, specifically Long Short-Term Memory (LSTM) networks, to improve the
classification and analysis of malware, a critical concern in cybersecurity. As malware
continues to evolve in complexity, traditional detection methods may be not sufficient,
necessitating the development of more dynamic and adaptable solutions. The thesis ad-
dresses the escalating threat posed by malware, not only to individual users but also to
large organizations and the infrastructure of the internet itself. It highlights significant
incidents where malware has caused substantial damage, illustrating the need for more
effective countermeasures.

The study provides an in-depth look at traditional malware analysis techniques, in-
cluding static and dynamic analysis, outlining their methodologies and limitations. Static
analysis involves examining the malware without executing it, focusing on code analysis
and signature detection. However, it struggles with obfuscated or packed malware, which
can hide its true nature. Dynamic analysis, on the other hand, involves executing mal-
ware in a controlled environment to observe its behavior, but it faces challenges such as
detecting the analysis environment and dealing with sophisticated evasion techniques. The
limitations of these traditional approaches highlight the need for more advanced methods
capable of adapting to the evolving nature of malware.

This Thesis tries to explain that machine learning, particularly neural networks like
LSTM, offers a promising solution to these challenges. LSTM networks, a type of RNN, are
well-suited for analyzing sequential data, making them ideal for understanding the complex
behaviors exhibited by malware. These networks can learn from large datasets of malware
samples, identifying patterns and anomalies that might indicate malicious intent. The
research outlines the process of implementing LSTM networks for malware classification,
from setting up the analysis environment and selecting appropriate features to training
and optimizing the model. The study emphasizes the importance of feature extraction
in machine learning, where meaningful attributes of the malware samples are identified
and used as inputs for the model. Features such as API calls, network traffic, and file
characteristics are considered, as they provide valuable insights into the malware’s behavior.

The experimental results of this Thesis demonstrate the effectiveness of LSTM networks
in classifying malware. Through a series of optimizations, including adjusting hyperparam-
eters like epochs, batch size, and dropout rates, the model’s accuracy and reliability are
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significantly improved. The results show that LSTM networks can effectively distinguish
between benign and malicious software based on behavioral analysis, outperforming tra-
ditional analysis methods. The research also addresses challenges encountered during the
model’s development, such as overfitting and the need for a balanced dataset to train the
model effectively.

In conclusion, this work highlights the potential of LSTM networks to revolutionize
malware classification and analysis. By leveraging the capabilities of machine learning,
cybersecurity professionals can develop more resilient defenses against the ever-changing
landscape of malware threats. The research acknowledges the limitations of the current
study and suggests avenues for future work, including exploring different neural network
architectures, incorporating more diverse datasets, and refining the model to improve its
scalability and real-time detection capabilities. This thesis contributes to the ongoing effort
to enhance cybersecurity measures and provides a foundation for further research in the
field of machine learning-based malware analysis.

Multiple insights can be drawn from the work done in This thesis to outline future
work: indeed, there are many deficient points that can be improved. The starting point
probably concerns the dated analysis environment that performs the feature extraction
part in virtual machines of operating systems that are no longer considered a target by the
vast majority of today’s malware, as they represent disused machines.

The search for automated analysis tools continues to move forward, and one might
consider building a feature dataset from analysis on more complex machines. It would
make sense to direct future research toward the creation of a more balanced dataset with
respect to the one used to produce the Proof-Of-Concept of this Thesis: in fact, a heavily
unbalanced dataset was used, given the large presence of malicious samples but the almost
complete absence of benign samples (about 2 percent of the entire dataset). Indeed, by
remedying this problem, one could assess how the classification model would behave while
avoiding overspecialization in a particular class such as malware.

Finally, since machine learning is an exponentially growing field of research, it would be
worthwhile to evaluate approaches other than the neural network used, which could adapt
more naturally to the characteristics of the features used.

The research presented is also limited by the intended goal: there has been a focus
on binary classification, whereas consideration could be given to shifting the focus to a
multi-class type of classification, to distinguish samples based on the Malware family to
which they belong.
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