
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

CAN Bus Security Analysis: a Fuzzing Approach

Supervisor Candidate
Alessandro SAVINO Mattia DE ROSA
Co-Supervisors
Nicolò MAUNERO
Giacomo D’AMICO

Academic Year 2023-2024

Abstract

Modern vehicles are equipped with numerous Electronic Control Units (ECUs),
each featuring intricate functionalities and being tightly interconnected via internal
networks. Among these, the Controller Area Network (CAN) is the most common.
Past research has revealed the CAN network to be vulnerable to a multitude
of cybersecurity attacks, enabling an attacker to take control of safety-critical
ECUs such as the ones managing the engine, steering, or brakes. Securing ECUs
connected via the CAN network against cyber threats is of paramount importance
since an infected ECU could be used to propagate the attack to the other units on
the network.

Fuzz testing is a widely adopted, automated software testing technique that
helps identify vulnerabilities and defects in programs. It involves sending a large
amount of generated data to the system under test to identify messages that cause
crashes, errors, or other incorrect behavior.

Existing fuzzers in the automotive security landscape often fall into two cat-
egories: proof-of-concept open-source tools lacking advanced functionalities or
closed-source solutions requiring proprietary hardware, hindering interoperability
with other tools.

This thesis aims to bridge this gap by developing a modular fuzzer tailored for
robustness and future extensibility. The primary focus is on enhancing the ease of
integration while providing a versatile tool for cybersecurity testing.

Organizing the fuzzer into multiple modules facilitates the concurrent devel-
opment of different features. Additionally, relying on a higher abstraction of the
CAN protocol ensures interoperability among the developed components. A di-
rect outcome of this abstraction is the elimination of dependence on proprietary
hardware.

The development of dedicated modules for various network interfaces transforms
them into plug-and-play components for the fuzzer. This thesis introduces two
interfaces: one for utilizing a virtual CAN bus and the other for interfacing with
Intrepid CS devices.

To validate the fuzzer’s effectiveness, testing has been conducted on both a sim-
ulated virtual ECU and a physical test bench. Finally, testing has been performed
to compare various developed fuzz generator modules, highlighting their efficacy
under different assumptions.

It is important to note that while the project primarily focuses on the CAN
network, the architecture has been designed to seamlessly extend to multiple pro-
tocols.

Contents

List of Tables 3

List of Figures 4

Acronyms 7

1 Introduction 9
1.1 Cybersecurity Concerns . 10

1.1.1 Attack Goals . 10
1.1.2 Attack Surfaces . 11

1.2 Industry Standards . 11
1.2.1 AUTOSAR . 12
1.2.2 ISO 26262 . 13
1.2.3 ISO/SAE 21434 . 13

2 State of the Art for Vehicle Cybersecurity 15
2.1 Threat Modeling . 15
2.2 Testing Methodologies and Tools 16

2.2.1 Penetration Testing . 16
2.2.2 Fuzz Testing . 17
2.2.3 Regression Testing . 18
2.2.4 Modularity of Tools . 18

2.3 Continuous Vehicle Security . 19
2.4 Fuzz Testing . 19

2.4.1 Classification of Fuzzers . 21
2.5 Thesis Objectives . 22

3 Controller Area Network (CAN) Bus 24
3.1 Why focus on the CAN bus? . 25
3.2 CAN Design Overview . 26
3.3 Physical Layer . 27

1

3.3.1 Logic Signaling . 28
3.3.2 Electrical specifications . 29
3.3.3 Node Architecture . 29

3.4 Data Link Layer . 30
3.4.1 Arbitration . 31
3.4.2 Bit Timing and Synchronization 32
3.4.3 Bit Stuffing . 33
3.4.4 CAN Frames . 34

3.5 Information Security in CAN Networks 39
3.6 Threat Mitigation Technologies . 40

4 Solution Design 43
4.1 Key design principles . 43
4.2 Key components . 44
4.3 Additional components . 45

5 Implementation 47
5.1 Technologies and Libraries . 47

5.1.1 Python . 47
5.1.2 python-can . 48
5.1.3 python-ics . 48
5.1.4 PySide6 . 48

5.2 CAN Interfaces . 49
5.3 Virtual ECU . 52
5.4 Fuzz Generators . 53
5.5 Fuzzer . 54
5.6 Logger . 54
5.7 CAN Reverse . 55
5.8 User Interface . 58

6 Testing and Results 60
6.1 Full virtual setup . 60
6.2 CANalyzer . 62
6.3 Testing Bench . 63

6.3.1 Results . 64
6.3.2 Reverse Engineering of CAN Frames 65

6.4 Virtual ECU on a Physical CAN Bus 66
6.4.1 Results . 68
6.4.2 Error Detection . 70

7 Conclusions 73
7.1 Future Work . 73

2

List of Tables

2.1 Comparison between different fuzzing techniques 23
6.1 Fuzzer performance compared to different baudrates 62
6.2 Components of the Fiat 500 BEV test bench and their respective

functions . 64

3

List of Figures

1.1 Means of transport in the EU, 2011-2021 10
1.2 AUTOSAR Classic Platform schema 12
2.1 Data flow diagram example for a vehicle used for Threat Modeling . 17
2.2 Number of bugs reported by Domino over time 20
3.1 CAN adoption timeline . 24
3.2 CAN physical and data link layers in relation to the ISO OSI model 27
3.3 High-speed CAN signaling . 28
3.4 CAN bus Node . 30
3.5 Arbitration example between three nodes in an 11-bit ID CAN net-

work . 32
3.6 CAN bit timing example with 10 time quanta per bit 33
3.7 Base CAN data frame . 34
3.8 Extended CAN data frame . 35
3.9 CAN error frame . 37
3.10 CAN overload frame . 38
3.11 A gateway is used to decouple the CAN network in multple sub-

networks . 42
4.1 Example of CAN network interfaces 45
4.2 Developed software modules and their relationship 46
5.1 ValueCAN 4-2 developed by IntrepidCS 49
5.2 CAN Interface overview . 51
5.3 Virtual ECU state diagram . 52
5.4 Fuzzer UML diagram . 55
5.5 Identifing a CAN frame using CAN Reverse 57
5.6 Fuzzer graphical user interface . 58
5.7 CAN Reverse graphical user interface 59
6.1 CANalyzer testing setup . 62
6.2 Example of a test bench using Volkswagen components 63
6.3 Ratio between received CAN frames during and before a fuzzing

session . 65
6.4 Example Usage of the CAN reverse module 66

4

6.5 Virtual ECU testing setup . 67
6.6 Slow-rate vs batch fuzzing . 69
6.7 Batch fuzzer with varying batch size 69
6.8 Bit Flip vs Random Fuzzing . 71
6.9 Bit Flip vs Random Fuzzing, with CRC 71
6.10 Bit Flip fuzzing with CRC bruteforce 72

5

6

Acronyms

ABC Abstract Base Class.

API Application Programming Interface.

ASIL Automotive Safety Integrity Level.

BEV Battery Electric Vehicle.

BLF Binary Logging Format.

CAN Controller Area Network.

CAN FD Controller Area Network Flexible Data.

CRC Cyclic Redundancy Check.

CVSS Common Vulnerability Scoring System.

DBC Database CAN.

DLC Data Length Code.

ECU Electronic Control Unit.

EoF End of Frame.

HSM Hardware Security Module.

IDE IDentifier Extension bit.

IDS Intrusion Detection System.

IPS Intrusion Prevention System.

ISO International Organization for Standardization.

7

MAC Message Authentication Code.

OBD-II On-Board Diagnostics II.

OSI model Open Systems Interconnection model.

SoF Start of Frame.

SUT System Under Test.

V&V Verification And Validation.

8

Chapter 1

Introduction

The most common method of transportation for people and goods are, by far, road
automobiles. According to a study performed by Eurostat [15], in 2011 transport
by car accounted for 73.1% of passenger-kilometers1 with small variations until
2019. After the pandemic we saw a decrease in the usage of public transport which
in turn caused the percentage of passenger-kilometers for cars to reach 79.7% in
2021 [Figure 1.1].

Cars have massively evolved over the years, the introduction of advanced tech-
nologies in auto vehicles began in the early ’70 thanks to the development of
integrated circuits and microprocessors which allowed the production of ECUs
(Electronic Control Unit) on a large scale. The number of ECUs has steadily in-
creased in road vehicles reaching as many as 150 on luxury models [5], all these
ECUs exchange thousand of messages every second and communicate which each
other through cabled or wireless communication networks, of which the most im-
portant is the CAN bus (Controller Area Network).

In recent years, the automotive industry has undergone a remarkable trans-
formation, propelled by technological advancements that have introduced a new
era of intelligent, connected, and autonomous vehicles. Vehicles have become
increasingly more sophisticated, incorporating cutting-edge technologies such as
advanced driver-assistance systems (ADAS), telematics, vehicle-to-vehicle (V2V)
and vehicle-to-everything (V2X) communication. As a result of these transforma-
tions, the necessity of addressing cybersecurity concerns in the automotive domain
has grown significantly.

1The passenger-kilometer is a unit of measurement representing the transport of one passenger
by a defined mode of transport (road, rail, air, sea, inland waterways etc.) over one kilometer.

9

Introduction

Figure 1.1: Means of transport in the EU, 2011-2021. Image from Eurostat [15].

1.1 Cybersecurity Concerns
Due to the complexity of the underlying systems in an auto vehicles many attacks
are possible and there is a need to protect against both practical and theoretical
attacks. To understand how to best protect a car against attackers it is important
to explain and highlight the different goals an attacker could have and the attack
surfaces that could be employed to perform the attack.

1.1.1 Attack Goals
The goals of an attacker are many and varied, but they can be summarized with
the mnemonic STRIDE [33], which divides security threats in six categories:

• Spoofing: Pretending to be something or someone other than yourself, for
example can be used to unlock and start a car without the key.

• Tampering: Modifying the behavior of a component, for example can be used
to take remote control of a car.

• Repudiation: Denying the performance of an action without other parties
having any way to prove otherwise, for example it could be used to falsify
logs.

10

Introduction

• Information disclosure: Exposing information to someone not authorized to
access it, for example can be used to obtain GPS data or capturing micro-
phone signals.

• Denial of service: Denying a service to the user, for example can be used to
prevent a car from unlocking the doors or starting.

• Elevation of privilege: Allowing someone to do something they are not au-
thorized to do, for example could be used to access locked features of a car
or removing safety features.

1.1.2 Attack Surfaces
Examining the diverse attack surfaces of a vehicle, we can distinguish between
long-range, short-range, and local attack surfaces.

The long-range attack surfaces encompass technologies such as LTE (Long-Term
Evolution) and DSRC (Dedicated Short-Range Communication)2, extending the
potential reach of external threats.

Short-range attack surfaces, though wireless in nature, operate within closer
proximity and include technologies like Bluetooth and Wi-Fi.

Finally, local attack surfaces comprise interfaces that necessitate physical access
to the vehicle, such as USB ports and the OBD-II connector (On-Board Diagnos-
tics).

It is crucial to safeguard against all these attack surfaces since a breach in any
of them could potentially lead to vulnerabilities in the entire system, due to the
possibility of privilege escalation exploits.

1.2 Industry Standards
Recognizing the urgency of the situation, both the automotive industry and reg-
ulatory bodies have begun to respond. Standards and guidelines for automotive
cybersecurity are emerging, shaping the industry’s approach to securing vehicles
against cyber threats. The most important standards and documents for the au-
tomotive industries are AUTOSAR [2], ISO 26262 [28] and ISO/SAE 21434 [30] of
which the key points are detailed below. These standards collectively contribute
to creating safer and secure automotive systems, keeping up with the industry’s
evolving needs and challenges.

2DSRC is a technology for direct wireless exchange of V2X data between vehicles, other road
users (pedestrians, cyclists, etc.) and roadside infrastructure (traffic signals, electronic message
signs, etc.)

11

Introduction

1.2.1 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is a global partnership of
leading companies in the automotive and software industry. It is focused on creat-
ing and establishing an open and standardized software architecture for automotive
ECUs.

AUTOSAR provides specifications basic software modules, focusing on creating
common API (Application Programming Interface) and development methodology
based on a standardized exchange format. AUTOSAR software architecture can be
used by vehicles of different manufacturers and components of different suppliers,
increasing interoperability and reducing research and development costs.

AUTOSAR Classic Platform [3] [Figure 1.2] is the standard for embedded
ECUs, it is composed by a three layer architecture:

• Application Software: designed to be hardware independant, it interacts
with the RTE layer.

• Runtime Environment (RTE): is a middleware that represents the full
interface for applications and abstracts the BSW layer.

• Basic Software (BSW): contains the drivers necessary to interface with
the hardware.

Figure 1.2: AUTOSAR Classic Platform schema. Image from autosar.org [3].

12

Introduction

1.2.2 ISO 26262
This document is an international standard that focuses on ensuring the functional
safety3 of electrical and electronic systems in road vehicles. The aim is to minimize
the risk of accidents and ensure the proper function of individual components in
road vehicles, according to their intended purpose. Additionally it provides an
automotive-specific risk classification scheme known as ASIL (Automotive Safety
Integrity Level).

ASIL divides risk in four levels, from A to D, which is determined by a combi-
nation of Severity, Exposure and Controllability.

ISO 26262 provides a process for managing and reducing risk, based on the
concept of "safety life cycle", which includes the following phases:

• Planning: the safety requirements are defined and a safety plan is developed.

• Analysis: the system is analyzed to identify hazards and potential failures.

• Development: the system is designed and implemented to meet the safety
requirements defined in the planning phase and to eliminate or mitigate haz-
ards defined in the analysis phase.

• Verification and Validation: the system is tested to ensure it complies
with the design and behaves as expected in case of failures.

• Operation, service and decommissioning: the safety requirements are
maintained and the system is decommissioned.

This standard helps ensure that the safety of car components is considered
throughout the lifecycle of the vehicle. It provides guidelines for concurrent devel-
opment and testing of both hardware and software to ensure optimal safety.

1.2.3 ISO/SAE 21434
This document addresses the cybersecurity perspective in engineering of electrical
and electronic systems within road vehicles. Its objective is to ensure the appro-
priate consideration of cybersecurity and to enable the engineering of E/E systems
to keep up with state-of-the-art technology and evolving attack methods, without
prescribing specific technologies or solutions related to cybersecurity.

ISO/SAE 21434 plays a crucial role in enhancing vehicle security for several
reasons:

3In the context of the automotive industry, functional safety assures that electronic and
electrical systems operate safely, without posing unreasonable risk, even when faced with faults
or failures.

13

Introduction

• Unified Framework: this document provides a unified and standardized
framework for addressing cybersecurity concerns in the automotive industry.
This standardization helps create a common language and set of practices
that can be adopted by manufacturers, suppliers, and other stakeholders.

• Lifecycle Approach: the standard takes a lifecycle approach to cybersecu-
rity, encompassing all phases from concept and design through production,
operation, maintenance, and decommissioning.

• Risk Assessment and Management: the document emphasizes a risk-
based approach to cybersecurity, it encourages organization to conduct risk
assessments to identify potential threats or vulnerabilities.

• Adaptability to Technological Advances: the standard is designed to
be adaptable to evolving technologies, expecting vehicles to become more
connected and autonomous, while maintaining it secure against cyber attacks.

• Post-Production Activities: along the multiple control practices defined
for development of products, the standard also requires support post-production
by monitoring cybersecurity breaches and the need to release fixes and patches
to the developed products.

• Integration with Existing Standards: ISO 21434 is designed to integrate
with other relevant standards such as ISO 26262 for functional safety.

• Customer Trust and Confidence: as cybersecurity concerns become more
prominent in the public consciousness, adherence to recognized standards
signals a commitment to ensuring the safety and security of vehicle systems
and data.

In summary, ISO/SAE 21434 is important for vehicle security because it es-
tablishes a standardized and comprehensive approach to addressing cybersecurity
throughout the entire lifecycle of automotive development. It provides guidance,
best practices, and a common language that fosters collaboration, risk manage-
ment, and adaptability to the evolving automotive landscape. Adhering to this
standard contributes to building resilient and secure vehicles in an increasingly
connected and technologically advanced automotive industry.

14

Chapter 2

State of the Art for Vehicle
Cybersecurity

The current state of the art for automotive cybersecurity testing involves a combia-
tion of tools, methodologies and best practices aimed at identifying and mitigating
vulnerabilities in the complex landscape of modern vehicles.

To best illustrate the protection measures against cyber-threats in vehicles, we
can higlight the distinct procedures and tools implemented through its lifecycle.
Threat modeling plays a pivotal role during the planning and design phase, diverse
testing methodologies are applied post production and finally a suite of tools is
used to consistently verify and maintain the proper operation of a vehicle.

2.1 Threat Modeling
Threat modeling is a process which aims to identify, evaluate, and mitigate poten-
tial security threats and vulnerabilities within a system, application, or network.
Its purpose is to provide developers with a full analysis of the system highlighting
the most likely attack vectors and most desired assets an attacker might want to
access or compromise.

A threat model typically includes:

• description of the subject

• assumptions to be checked or challenged

• potential threats to the system

• actions to be taken to mitigate each threat

• a way to validate the models and threats

15

State of the Art for Vehicle Cybersecurity

• a way to verify the success of action taken

It is ideal to establish a threat model early in the planning phase and subse-
quently evolve it alongside with the system it represents. This implies continuous
refinement throughout the entire lifecycle of the product: as more details are added
to the system, new attack vectors are created and exposed so updating the model
is needed to account for these changes.

The OWASP Foundation defines a "Four Question Framework" [42] to help
organize a threat model:

• What are we working on? The scope of the project, can be as small as a
sprint or as large as the whole system.

• What can go wrong? Can be as simple as brainstorming or structured
using STRIDE, DREAD or many other strategies.

• What are we going to do about it? Resolve, Mitigate, Transfer (to a
third party) or Accept the risk.

• Did we do a good job? Assess the work done on the project.

Most threat modeling processes start by creating a visual representation of the
system being analyzed. It is decomposed into basic blocks to aid the analysis. The
representation is then used to enumerate potential attack vectors or other threats
to the analyzed system [Figure 2.1].

If done right threat modeling is a powerful tool that provides a clear picture on
how to develop a secure system. The threat model allows the developers to take
security decision rationally, with all the relevant information on the table.

2.2 Testing Methodologies and Tools
One of the key activities performed by developers during the development cycle
is Software Testing. To address all possible vulnerabilities in a system, software
testing employs a diverse array of techiniques. Of particular relevance to the
automotive sector are penetration testing, fuzz testing and regression testing.

All these different testing techniques complement eachother to form a robust
and comprehensive testing framework.

2.2.1 Penetration Testing
Penetration testing (also known as "Ethical Hacking") is a security exercise where
a cyber-security expert impersonates the role of an attacker and attempts to find

16

State of the Art for Vehicle Cybersecurity

Figure 2.1: Data flow diagram example for a vehicle used for Threat Modeling.
Image from Copper Horse [12].

and exploit vulnerabilities in a computer system. Its purpose is to identify weak
spots which could be taken advantage of [6].

Penetration testing begin with a phase of reconnaissance, called "scoping" with
the objective to gather data to be used in the simulated attack.

After the attack is carried out, the pentester wraps up the test by covering
their tracks and producing a report which details the discovered vulnerabilities
with associated levels of risk and possible mitigations.

2.2.2 Fuzz Testing

Fuzz testing (or Fuzzing) is an automated software testing technique, which con-
sists in finding implementation bugs using malformed data injection [17].

The biggest advantages of fuzzing are that the test design is extremely simple,
often being system-independent, and its complete automation. Additionally the
random approach allows this method to find bugs that would have been missed by
human eyes.

17

State of the Art for Vehicle Cybersecurity

2.2.3 Regression Testing
Regression testing consists in re-running functional and non-functional tests to
ensure that the behaviour of previously developed and tested software still performs
as expected. In short regression testing is done to ensure that a achange in the
code to fix a defect has not introduced any new defect [4].

2.2.4 Modularity of Tools
The automotive industry utilizes an extensive array of communication protocols,
each serving specific functions within the complex ecosystem of vehicles. Given
the diversity of protocols present, a key consideration in the selection of testing
tools and methodologies lies in its modularity.

Modular tools offer numerous advantages compared to their non-modular coun-
terparts, with the most crucial ones being:

• Support for multiple protocols: Modern vehicles employ a multitude
of communication protocols. Some examples are CAN, ethernet and LIN
for communication between the various ECUs, or Bluetooth, Wi-Fi, USB
and cellular data for communication between the vehicle and other devices.
An effective tool needs to support as many of these protocols as possible,
a modular approach is ideal to easily and effectively add support to each
protocol.

• Adaptability to new technologies: The automotive industry is dynamic,
with rapid advancements in technologies and introduction of new features.
A modular tool allows it to rapidly adapt to these emerging technologies,
ensuring it remains relevant and effective over time.

• Scalability: As the complexity of an automotive system grows, modular
tools provide a scalable solution. New modules can be added to work in
tandem with existing ones without requiring a complete overhaul of the testing
infrastructure.

• Interoperability: A modular tool promotes interoperability between differ-
ent testing tools and system. It allows for easier integration of third-party
tools or modules, forstering collaboration within the testing ecosystem.

• Easier maintenance and updates: When an update is needed, modularity
allows to make the process more efficient. Updates can be applied to specific
modules without affecting the entire system, this also means that if an update
breaks a specific module, it does not affect the rest of the system negatively.

18

State of the Art for Vehicle Cybersecurity

Due to the numerous outgoing interfaces in a vehicle, an unbalance exists be-
tween developers and potential attackers. Developer are required to propertly
protect all interfaces, meanwhile an attacker can succeed by exploiting a single
vulnerability among the multiple entry points to successfully gain access to the
system. Because of this an effective testing tool leverages its own modularity to
comprehensively test and protect all possible interfaces.

2.3 Continuous Vehicle Security
After the development of a vehicle and its ECUs is completed, various security
measures are implemented to protect it from potential threats. Some key aspects
of how a vehicle is protected post-development are:

• Software Security Updates: Regular software updates are crucial to ad-
dress vulnerabilities discovered after the vehicle’s release. Manufacturers
release updates to fix bugs, enhance performance and address any security
weakness that may be identied over time.

• Over-the-Air (OTA) Updates: Many modern vehicles support OTA up-
dates, which allows manufacturers to remotely deliver software updates to
vehicles. This enables timely deployment of security patches without requir-
ing constant physical visits to service centers.

• Intrusion Detection Systems (IDS) and Intrusion Prevention Sys-
tems (IPS): These systems’ objective is to monitor the vehicle’s internal
network for unusual or suspicious activities. IDS detects possible security
breaches, while IPS intervenes to prevent or mitigate the threat. Both IDS
and IPS are crucial to identify threats in real time.

• Cybersecurity Audits and Assessments: Regular cybersecurity audits
are scheduled to evaluate the overall security of the vehicle. The assessments
involve examining the effectiveness of security controls and ensuring compli-
ance with evolving industry standards.

• Incident Response Plans: Having a well-defined incident response plan is
crucial in the event of a cycbersecurity incident to deploy a patch in a timely
manner.

2.4 Fuzz Testing
In this section we delve into the details of fuzz testing to better understand why
we chose to develop a fuzzer, we will then explain the inner workings of one, which
will be helpful to undertand the design choices taken during development.

19

State of the Art for Vehicle Cybersecurity

As explained previously, fuzz testing is an automated software testing technique
with the aim of discovering bug, vulnerabilites and incorrect behaviours in the
system under test. Automating these kind of tests allows for discovering bugs in a
timely manner, which is of fundamental importance in developing secure software.

Any software accepting user input is potentially vulnerable to multiple security
issues. As previously stated, due to the abundance of external interfaces present
in a vehicle, cars are prime targets for attacks that rely on untrusted user in-
puts. Some key examples are protocols relating to the infotainment systems, like
bluetooth or wi-fi. An attacker might embed malicious code in a contact on his
smartphone so that, when the contacts are synchronized with the vehicle, the
injected code is launched and the attack is performed. This type of attack is
aptly named code injection and is one of the many kind of attacks that relies on
vulnerabilities detected by a fuzzer.

The effectiveness of fuzzing as a testing methodology is apparent when examin-
ing the substantial number of bugs found by widely adopted open source fuzzers.
For instance, Google’s OSS-fuzz, as of August 2023, was able to help identify over
10,000 vulnerabilities across 1,000 projects [23]. Similarly Mozilla’s domino identi-
fied more than 2,200 defects, including 20 with HIGH or CRITICAL CVSS1 scores
[35].

Figure 2.2: Number of bugs reported by Domino over time [34].

1The Common Vulnerability Scoring System is a standard for assessing the severity of com-
puter system security vulnerabilities. Scores range from 0 (NONE) to 10 (CRITICAL).

20

State of the Art for Vehicle Cybersecurity

2.4.1 Classification of Fuzzers
When developing a fuzzer from scratch there are many approaches and techniques
to consider that can be classified based on the internal knowledge of the target,
input type, presence or absence of a feedback and different ways to generate the
test cases [31].

Based on the amount of knowledge a fuzzer has available, we can classify fuzzers
in three categories:

• Black-box fuzzers do not require any additional input, they may be aware
of the structure of the input data, but knowledge about inner workings of the
target is not needed.
These kind of fuzzers are the most versatile since they can be applied with-
oud developing an ad-hoc solution, but they provide fewer insights on the
produced results. To counteract this, there are attempts at developing black-
box fuzzers that try to incrementally increase their knowledge about a target’s
internal structure, like LearnLib [39].
An additional strong point of black-box fuzzing is that it simulates the point
of view of an attacker more accurately.

• White-box fuzzers need internal knowledge about the target, usually source
code or data flow diagrams. This kind of fuzzer employs program analysis with
the main objective of increasing code coverage2 or reaching critical locations
in a program. Other possible techniques for white-box fuzzing include static,
taint or concolic analysis, each based on varying amount of knowledge of the
target.
These types of analysis are very effective on targeting specific platform, but
one of its main disadvanteges is the time needed to perform them. If a fuzzer
takes too long to generate a test case, a black-box fuzzer might be more
efficient, or produce results earlier.

• Gray-box fuzzers are an attempt to combine the efficiency of black-box with
the effectiveness of white-box fuzzers. They usually require minimal knowl-
edge about the target and employ instrumentation3 to discern information
about the target.

2Code coverage is a metric that measures the percentage of source code executed when a
particular test suite is run. An effective fuzzer tries to reach as close as full coverage as possible.

3Instrumentation is a technique used to track application behaviour by detecting errors and
obtaining trace information. It employs debug tools to perform profiling of the application and
log major events such as crashes.

21

State of the Art for Vehicle Cybersecurity

A major distinction in how fuzzing is approached depends on wheter the fuzzer
is aware of the input structure of the target.

• A smart fuzzer leverages its knowledge of the input to generate a greater
amout of valid input. For example if we have the objective of fuzzing an
image processing software we might want to only use images as input since
other file types will likely get discarded.
More advanced smart fuzzers might employ a model or grammar to restrict the
input space to only known valid combinations. For instance in the automotive
sector we might decide to develop a fuzzer that is aware of the structure
of a CAN frame and sends only valid ones to greatly speed up the fuzzing
process. Alternatively there is value in sending malformed frames if we believe
a vulnerability might be present in the protocol itself.

• A dumb fuzzer does not require any kind of input model so it can be employed
to fuzz a wider variety of programs. An example of a dumb fuzzer is AFL
[22] which modifies a seed file by flipping random bits, moving or deleting
portions of it.
Dumb fuzzers usually generate a lower proportion of valid files, so they might
stress the parser more than the core components of the program.

The final important distinction is related to how the input data is generated:

• A generation-based fuzzer generates inputs from scratch. The main upside
is that this kind of fuzzers do not depend on the quality of the input seed.

• A mutation-based fuzzer instead relies on an initial seed which is then
"mutated" to produce different results.
A white or gray-box mutational fuzzer might additionaly rely on the feedback
of the program to mutate inputs more effectively.

To conclude, many different choices can be made during the development pro-
cess of a fuzzer, which impact many different factors, like effectiveness, speed and
code coverage. A case study was performed on a small Web application with four
planted defects [31]. In table 2.1 we can see the impact of the various employed
fuzzing strategies.

2.5 Thesis Objectives
The project detailed in this thesis’ work was developed in collaboration with Teo-
resi S.p.A, a company specialising in engineering consulting in cutting edge global
technologies.

22

State of the Art for Vehicle Cybersecurity

Technique Effort Coverage Defects Found
Black-box + Dumb 10 min 50% 25%
White-box + Dumb 30 min 80% 50%
Black-box + Smart 2 hours 80% 50%
White-box + Smart 2.5 hours 99% 100%

Table 2.1: Comparison between different fuzzing techniques.

The main objective of this thesis is the development of a modular black-box
fuzzer for automating testing in automobiles. The focus of the project has been
the CAN network, but support for CAN FD is also present. Additionally due to
the modular structure of the fuzzer, it can be easily adapted to support different
protocols both wired and wireless.

More specifically the objectives of this work are the following:

• Researching the state of the art for vehicle security including leading industry
standards.

• Analyzing the inner workings and limitations of the CAN network.

• Developing a proof of concept virtual ECU to become acquainted with the
libraries interfacing with the CAN network.

• Developing the black-box fuzzer focusing on the modular structure, ease of
use and deployment of the tool.

• Testing the fuzzer against a test board including the key components of a
Fiat 500, simulating a real car in a lab environment.

Additionally, a tool was created to assist in reverse engineering CAN frames
within a vehicle.

23

Chapter 3

Controller Area Network
(CAN) Bus

The Controller Area Network (CAN) bus is an asynchronous serial bus used for
realtime communication between multiple microcontrollers with eachother. It is a
message based protocol designed for communication in a multi-master architecture.

It was developed by Robert Bosch GmbH, released to the public in 1986 and
finally standardized in 1993 by the International Organization for Standardization
as ISO 11898 [27]. The CAN standard is still adapting and evolving to rising needs
in the industry, in 2015 CAN FD (Flexible Data) was standadrdized and in 2018
development for CAN XL has started.

In the modern automotive industry CAN is still the de-facto leading standard
for ECU communication in vehicles. The development of newer protocols, like

Figure 3.1: CAN adoption timeline. Image from CSS Electronics [14].

24

Controller Area Network (CAN) Bus

SAE J19391 and LIN2, designed to operate either in conjunction with or on top
of the CAN bus, further solidifies the integral role of the CAN bus in automotive
ECU communication. These protocols exemplify the enduring significance and
adaptability of the CAN bus in the evolving landscape of automotive connectivity.

This chapter will provide the motivation for the focus of this thesis on the CAN
protcol and an in depth summary of the CAN protocol. Starting with an overlook
on the fundamental properties behind its design, followed by a description of its
phyiscal and data link layers, and concluding by highlighting the cybersecurity
concerns and measures taken to mitigate them.

3.1 Why focus on the CAN bus?
As detailed in section 2.5, this thesis is centered around creating a versatile and
modular fuzzer for testing various protocols, with a predominant emphasis on
the CAN bus. The rationale for this focus can be summarized by the following
motivations.

• The CAN protocol is universally adopted in cars.
CAN bus is one of five different protocols used in the OBD-II (On-Board
Diagnostics) standard. OBD-II has been mandatory for all cars and light
trucks in the United states since 1996 and for all petrol and diesel vehicles in
the EU since 2001 and 2004 respectively [44].
The CAN standard is by far the preferred protocol among the five for cars,
additionally since 2008 it has been mandatory in the US for vehicles below
8500 pounds (about 3500 Kg) [41].

• CAN is the "Central Nervous System" of a car.
The CAN bus, akin to a vehicle’s central nervous system, orchestrates the
communication between the various ECUs. Every ECU relies on it to com-
municate with the other components of the vehicle. Therefore, an attack that
gains control or distrupts the CAN bus has its effect propagated on the entire
network.
Conversely, safeguarding the CAN bus may reduce the efficacy of attacks on
individual ECUs, as the impact could be confined to the affected ECU or a
more limited segment of the network.

1Society of Automotive Engineers J1939 is the standard in-vehicle network for heavy-duty
vehicles like trucks and buses.

2The LIN bus (Local Interconnect Network) has been introduced to complement CAN for
non-critical subsystems like air conditioning and infotainment.

25

Controller Area Network (CAN) Bus

• CAN is inherently less secure than higher level protocols.
Despite its pivotal role, the CAN bus is susceptible to multiple cybersecurity
threats owing to its design choices.
The original proposal for CAN dates back to the 80s, with widespread adop-
tion in the 90s and early 2000s. During this period, cybersecurity concerns
were relatively less prominent, as the primary focus was on establishing a
reliable communication protocol.
The CAN protocol lacks several vital security features found modern proto-
cols, making it susceptible to a range of attacks that would be impractical
against more contemporary communication standards.
Therefore, there is a motivation for attackers to avoid targeting higher-level
protocols equipped with more modern security standards. Instead, the focus
tends to shift towards directly exploiting the vulnerabilities present in the
CAN protocol, which makes protecting it all the more important.

3.2 CAN Design Overview
According to the original speification by Bosch, CAN has the following main prop-
erties:

• Noise immunity: the signal needs to be resistant against electric distur-
bances and electromagnetic interference.

• Multicast: CAN messages can receive multiple ECUs.

• Multimaster: there is no central bus master, every ECU can act like one.

• Priority Handling: CAN messages are prioritized so that critical ECUs get
immediate bus access.

• Time Synchronization: necessary to correctly prioritize messages.

• Error Detection and Automatic Retransmission.

• Fault Confinement: achieved by detecting and switching off defect nodes.

• Low Cost and Lightweight: allows to save on both cost and weight of
copper wiring in a vehicle.

• Ease of access: one point of entry to communicate with all ECUs.

26

Controller Area Network (CAN) Bus

The ISO 11898 standard covers both the physical and data link layers and is
composed of four parts [27].

Part 1 describes the data link layer composed of the logic link control (LLC),
media access control (MAC) and physical coding sub layers.

Part 2 describes the high-speed physical layer, it is by far the most popular
standard for the physical layer.

Part 3 describes the low-speed physical layer, it allows communication to con-
tinue even if there is a fault in one of the two wires. It is also referred to as "fault
tolerant CAN".

Part 4 describes time-triggered communication.
Part 5 and 6, pertaining to power modes and selective wake-up functionality,

previously existed independently but have since been withdrawn and merged into
part 2.

The role of CAN is often presented in the 7 layer ISO OSI model [Figure 3.2].

Figure 3.2: CAN physical and data link layers in relation to the ISO OSI model.
Image from CSS Electronics [14].

3.3 Physical Layer
The original CAN specification (ISO 11898-1) did not provide specific require-
ments for the physical layer, instead it relied on abstract criteria. This decision

27

Controller Area Network (CAN) Bus

aimed to promote broader adoption thanks to the additional freedom given to the
manufacturers.

However, this approach resulted in potential interoperability challenges among
CAN bus implementations. To address this issue, two standards were subsequently
introduced: ISO 11898-2 (established in 2003) and ISO 11898-3 (established in
2006).

3.3.1 Logic Signaling

All nodes are connected to eachother though a two-wire bus. The wires are a
twisted pair and the specification requires a nominal impedence of 120 Ω. The
CAN bus must be terminated using resistors, which are needed to suppress signal
reflection and to return the bus to its idle recessive state.

Two signals, CAN high (CANH) and CAN low (CANL) can be either driven
to represent a dominant state, or not driven to represent a recessive state. By
comparing the voltages of CANH and CANL we can determine if the bus is in the
dominant (CANH > CANL) or recessive (CANH ≤ CANL) state.

A dominant signal is always able to overwrite a recessive one. In practical
terms, if a dominant bit is transmitted at the same time of a recessive one, all
nodes on the bus, including the senders, will read the dominant bit.

Finally a bit is assigned to denote the logical state of the bus using a wired-AND
configuration, wherein 0 represents a dominant state, and 1 represents a recessive
one [Figure 3.3].

Figure 3.3: High-speed CAN signaling. ISO 11898-2. Image from Wikipedia, the
free encyclopedia [43].

28

Controller Area Network (CAN) Bus

3.3.2 Electrical specifications
ISO 11898-2, also called high-speed CAN, uses a linear bus terminated at each
end by 180 Ω resistors. It supports bitrates from 10 kbit/s to 1 Mbit/s.

Nodes can drive the CANH wire to 3.5 V and the CANL wire to 1.5 V, signaling
a dominant state. If no device is transmitting a dominant bit the resistors passively
return the voltage of CANH and CANL to a nominal 0 V, usually considering a
difference less than 0.5 V to be recessive. The dominant differential voltage is 2
V.

ISO 11898-3, also called low-speed or fault-tolerant CAN, can use different
bus combinations. Approved topologies include linear bus, star bus or multiple star
buses connected by a linear one.

In contrast to high-speed CAN, each node in a low-speed CAN bus requires its
own individual termination resistance, contributing to an overall resistance that
should be close, but not inferior to 100 Ω. Low-speed bus support bitrates from
10 kbit/s to 125 kbit/s.

Low-speed signaling operates similarly to high-speed CAN, but with larger volt-
age swings. The dominant state is transmitted by driving CANH towards the
power supply voltage (vdd) and CANL to 0 V. In a recessive state, CANH voltage
is pulled towards 0 V and CANL is pulled to vdd.

This allows for a simplification of the CAN transciever, which needs to only
consider the sign of CANH − CANL.

Another key difference from the high-speed bus is that in the event of a fault in
one of the two wires in the twisted pair, the low-speed bus can still communicate.

Today, the adoption of ISO 11898-3 remains low and usage has been limited to
a few niche segments in the automotive industrys.

3.3.3 Node Architecture
In both high-speed and low-speed can, nodes within a CAN network necessitate
three components to properly interface with the bus [Figure 3.4].

• Microcontroller: it is the Central Processing Unit of the node.
Its role involves parsing and processing the received complete CAN frames,
determining appropriate actions to take. Given the broadcast nature of com-
munication on the bus, the microcontroller must decide whether the received
message is pertinent to its function.
Moreover, the microcontroller is tasked with relaying responses on the bus or
transmitting sensor data if that corresponds to the node’s designated role.

• CAN controller: is in charge of correctly implement the CAN specification.
This includes automatically adding stuffing bits, perform error handling and

29

Controller Area Network (CAN) Bus

acting as a buffer for the serial communication.
More specifically, when receiving, the controller stores the received serial bits
until a full CAN frame is available in his internal buffer. Then it triggers an
interrupt to the microcontroller, prompting it to retrieve the message from
the buffer.
When the microcontroller sends a message to the CAN controller, the latter
waits until the bus is free and then transmits the bits serially.

• CAN transciever: serves as as an interface between the CAN controller and
the bus. Its role is to translate the logical bits into an electrical voltage and
vice versa.

Often the CAN controller is integrated into the microcontroller for cost-effectiveness
and space efficiency reasons. Additionally, microcontrollers with the entire node
stack embedded (including the CAN controller and CAN transciever) are available.

Figure 3.4: CAN bus Node. Image from Wikipedia, the free encyclopedia [43].

3.4 Data Link Layer
The focus of the original Bosch specification is the data link layer, its objective is
to act as an interface between the physical layer and the upper ones. The current
standard for this layer is ISO 11898-1, which is laregely unchanged from the Bosch
specification, except for the clarification of a few ambiguities.

30

Controller Area Network (CAN) Bus

3.4.1 Arbitration

As stated previously, the CAN protocol is a multi-master protocol, so to avoid
conflicts between the different nodes the data transmission is preceeded by an
arbitration phase. The objective of this phase is to establish which node is the
master for the current transmission, so that nodes with lower priority will yield
control of the bus to the higher priority master.

The arbitration process makes use of the dominant/recessive property of the
bits transmitted on the bus. After the start of frame identifier, the nodes start
transmitting their arbitration id on the bus.

If a node transmit a dominant bit, while another transmit a recessive one,
there is a collision and the dominat bit wins. This method of automatic collision
resolution allows for no additional delays during transmission.

After writing a bit on the bus each node reads the current value of the bus,
if a node reads the same bit it wrote it will continue by writing the next bit of
the arbitration sequence. Conversely if a node writes a recessive bit, but reads a
dominat one it realizes that there has been a contention with an higher priority
node, so it will yield the control of the bus and stop transmitting [Figure 3.5].

A node that loses arbitration will re-queue its message and attempt retransmis-
sion six-bit cycles after the end of the dominant message, restarting the arbitration
process.

Because the dominant bit is the one with logical value 0 and the bits of the
arbitration id are transmitted from the most significant to the least, messages with
lower arbitration id will always win arbitration against higher ids by transmitting
more zeros at the start.

This means that the arbitration id is used not only to identify the message sent,
but also to set its priority relative to the other messages.

An important consequence of this arbitration process is that arbitration ids
must be unique on a single CAN bus. If that were not the case, transmission
would continue for multiple nodes after the arbitration phase, causing contention
and subsequently an error.

A single node may send frames with different arbitration ids, but a single arbi-
tration id cannot be shared by multiple nodes.

To allow the arbitration method to work properly, all nodes on the bus are
required to be synchronized. Nonetheless CAN is not considered a synchronous
protocol because data is transmitted in an asynchronous format, meaning without
a clock signal. This implies the necessity of a synchronization mechanism.

31

Controller Area Network (CAN) Bus

Figure 3.5: Arbitration example between three nodes in an 11-bit ID CAN network.
Node 1 transmits a message with id 1631, node 2 uses id 1663 and node 3 uses id
1625. Node 2 is the first to lose arbitration since it has the highest id, while node
3 wins arbitration and procees with transmitting the rest of the frame.

3.4.2 Bit Timing and Synchronization
All nodes in the CAN network must operate at the same nominal bit rate, but the
presence of noise or tolerance between the components, means that the actual bit
rate may vary from the nominal bit rate.

An absence of synchronization can lead nodes to read or write incorrect data
on the bus, rendering the arbitration process ineffective and resulting in errors.

Due to the lack of a clock, synchronization is performed using the signal data
on every recessive to dominant transition.

Synchronization is achieved in two ways:

• Hard Synchronization: occurs on the first recessive to dominant transmis-
sion, which always happens at the start of the message since the bus goes

32

Controller Area Network (CAN) Bus

from an idle state (recessive) to the start of frame bit (dominant).

• Resynchronization: occurs on every recessive to dominant transition during
the frame. The CAN controller checks if the transition happens at a multiple
of the nominal bit rate and, if not, it adjusts the nominal bit rate accordingly.

To calculate the necessary adjustment, the controller divides the nominal bit
time into slices called quanta, the amount of which varies according to the con-
troller.

The quanta are then allocated among four different segments: synchronization,
propagation, phase 1 and phase 2. The sample point, crucial for calculating the
bit rate, is positioned between the phase 1 and phase 2 segments [Figure 3.6].

The synchronization segment is alway 1 quantum long and the propagation
segment is used to account for physical delay among nodes. The lengths of the
two phase segments can be extended or shortened by an amount calculated by the
CAN controller to compensate for desynchronizations.

Figure 3.6: CAN bit timing example with 10 time quanta per bit. Image from
Wikipedia, the free encyclopedia [43].

3.4.3 Bit Stuffing
CAN uses a non-return-to-zero encoding, indicating the absence of a neutral or rest
condition for the bus. The bus idle states corresponds to a recessive bit, holding
logical value of 1.

Consequently, messages may feature several consecutive dominant or recessive
bits, with the signal level remaining unchanged for an extended duration. As
synchronization relies on a recessive to dominant transition, a constant signal may
lead to node desynchronization.

To alleviate this issue, CAN employs a technique called bit stuffing: after five
consecutive bits of the same polarity, a bit of the opposite polarity is inserted.

33

Controller Area Network (CAN) Bus

Every field in a CAN frame except CRC delimiter, ACK and end of frame field
are subject to bit stuffing. In fields where stuffing is used, six consecutive bits of
the same polarity are considered an error.

Receiver nodes are tasked with destuffing the signal, by discarding the next bit
each time five consecutive bits of the same polarity are received.

This stuffing and destuffing process guarantees that the original bit sequence
remains unaltered, while still providing consistent re-syncrhonization.

3.4.4 CAN Frames
The CAN standard describes two frames formats that can be supported by a CAN
network, the standard or base format and the extended frame format.

The only difference between the two formats is the length of the arbitration id
field: the base frame supports an 11 bit identifier (base identifier) and the extended
frame supports a 29 bit identifier. The extended frame identifier is made up of the
11 bit base identifier and an 18 bit identifier extension.

To distinguish between a base and an extended frame, the CAN protocol makes
use of the IDE (IDentifier Extension) bit, which is dominant for base frames and
recessive for extended ones.

Finally the CAN standard describes four different frame types: data frames,
remote frames, error frames and overload frames.

Data Frame

Figure 3.7: Base CAN data frame, excluding stuff bits.

A data frame, represented in figure 3.7, is composed of:

• Start of Frame (SOF): 1 bit, must be dominant. It denotes the start of the
frame and is used to synchronize sender and receivers.

• Arbitration ID: An 11 bit long unique identifer. It also serves as priority
for the message.

34

Controller Area Network (CAN) Bus

Figure 3.8: ID, Control and Data portions of an extended CAN bus frame, to
highlight the differences with the base frame.

• Remote Transmission Request (RTR): 1 bit flag. Must be dominant for
data frames or recessive for remote frames (desribed below).

• Control: 6 bits with multiple purposes.

– Identifier extension (IDE): 1 bit flag. Must be dominant for 11 bit
standard CAN frames or recessive for 29 bit extended CAN frames (de-
scribed below).

– 1 reserved bit. Must be dominant, but accepted as either.
– Data Length Code (DLC): 4 bits. Describes the length of the data

field in bytes, from 0 to 83.

• Data: 0-64 bits. Data to be transmitted, the length of this field is dictated
in bytes by the DLC field.

• Cyclic Redundancy Check (CRC): 15 bits for the CRC sequence, followed
by 1 recessive bit for the CRC delimiter. Used for checking the integrity of
the received message. Uses the CRC-15-CAN polynomial.

• ACK: 1 bit for the ACK and 1 recessive bit for the ACK delimiter. The sender
writes a recessive bit, receivers can write a dominant bit to acknowledge the
correct reception of the message. The transmitter can read the ACK bit to
verify if any node received the sent frame, and possibly re-send it.

• End of Frame (EOF): 7 consecutive recessive bits. Used to signal the end
of the frame.

3It is possible to put in 4 bits values higher than 8, although the maximum length of the data
field still remain 8 bytes. The behaviour for invalid lenghts depends on the implementation of
the controller.

35

Controller Area Network (CAN) Bus

Extended data frames share many of the fields with base data frame, with the
following distinctions:

• Arbitration ID A: 11 bits. Contains the first part of the arbitration id.

• Substiture Remote Request (SRR): 1 bit. Replaces the RTR bit, must
be recessive.

• Identifier extension (IDE): 1 bit flag. Must be recessive for extended
frames.

• Arbitration ID B: 18 bits. Contains the second part of the arbitration id.
The full 29 bit id must be unique and represents the priority of the message.

• Control: 2 reserved bits, followed by 4 bits for the DLC.

Remote Frame

Typically, nodes autonomously transmit data; for instance, a sensor might con-
tinuously send data frames to be processed by another ECU. However, the CAN
standard, offers a method to request data from the source by sending a remote
frame.

A remote frame is similar to a data frame, with a few key differences:

• the RTR bit is recessive instead of dominant;

• the data field is never present;

• the DLC indicates the length of the requested data, not the transmitted one.

If a data frame and a remote frame with the same id begin arbitration at the
same time, the data frame will win arbitration since the dominant bit indicates a
data frame.

Interframe Spacing

Data frames and Remote frames are separated from preceding frames by a field
called interframe space. It consists of at least three recessive bits.

The next dominant bit received after the interframe spacing is considered a
start of frame.

36

Controller Area Network (CAN) Bus

Figure 3.9: CAN error frame.

Error Frame

Error frames are different from data and remote frames: instead of being transmit-
ted after the interframe spacing, they are allowed to be transmitted at the same
time of an ongoing data frame or remote frame, interrupting it.

Error frames rely on purposefully violating the bit stuffing rule and transmitting
six consecutive dominant or recessive bits to signal the error.

Error frames are composed of two fields:

• Superimposition of error flags: 6-12 dominant or recessive bits, which are
contributed by different nodes, each transmitting 6 bits possibly at different
times.

• Error delimiter: 8 recessive bits, signaling the end of the error frame.

The error flag bits can be all dominant or all recessive depending on the state
of the node when the error flag is sent.

To determine the current state of the node, each one has two different counters:
the transmitted error count (TEC) and received error count (REC). These
two counters are increased respectively when a node transmits or receives an error
flag by varying amounts based on the type of error received. The counters can be
decreased if an error is not detected for some time.

The states the node can be in are the following:

• Active error state: the starting state of the node. In this state the node
transmits active error flags (six dominant bits) whenever it detects an error.

• Passive error state: the node enters this state when TEC ≥ 128 or REC ≥
128. In this state the node transmits passive error flags (six recessive bits)
whenever it detects an error.

37

Controller Area Network (CAN) Bus

• Bus off state: the node enters this state when TEC ≥ 256. In this state
the node is not allowed to transmit anything on the bus and can only read
from it.

In conclusion there are five possible error types:

• Bit error: detected when a node transmits a bit on the bus, and the value
of the read bit differs from the one that was sent. An exception is made for
when a recessive bit is sent, but a dominant one is read in the arbitration
field or ACK flag of the frame.

• Stuff error: detected when the sixth consecutive bit of the same value is
read on the bus, violating the stuffing rule.

• CRC error: detected when receiving a frame and the CRC calculated from
the message does not match the received one.

• Form error: detected when a fixed form-bit is the incorrect one. For example
if the CRC delimiter, which needs to always recessive, is read as dominant.

• ACK error: detected by the sender of a message when no other node trans-
mits a dominant bit for the ACK flag.

Overload Frame

Figure 3.10: CAN overload frame.

An overload frame has the same format of an active error frame, but a very
different purpose:

• Superimposition of overload flags: 6-12 dominant bits, contributed by dif-
ferent nodes.

38

Controller Area Network (CAN) Bus

• Overload delimiter: 8 recessive bits, signaling the end of the overload
frame.

An overload frame can only be sent during the interframe spacing and can be
sent for the following reasons:

• A node requires a delay of the next data frame or remote frame due to some
internal condition. In this case a node has to start sending the overload frame
on the first bit of the interframe spacing. Additionally a node is allowed to
send a maximum of two consecutive overload frames with the purpose of
delaying successive frames.

• A node detects a dominant bit in the second or third bit of the interframe
spacing. In this case the node will send an overload frame with a delay of 1
bit.

3.5 Information Security in CAN Networks
CAN was originally conceived and designed with a primary focus on safety rather
than security. CAN aimed to facilitate reliable communication among Electronic
Control Units, enhancing system functionality and safety.

However the original design lacked robust cybersecurity features, as the preva-
lent concern at the time was ensuring the dependability and real-time performance
of communication in safety-critical automotive applications.

Nowadays, evaluating every network through the lens of information security
has become imperative.

Information security is the practice of protecting information by mitigating
risks. It is often defined as "Preservation of confidentiality, integrity and avail-
ability of information. Note: In addition, other properties, such as authenticity,
accountability, non-repudiation and reliability can also be involved." (ISO/IEC
27000:2018 [29]).

The original CAN specification violates most information security principles,
therefore making it extremely vulnerable against cybersecurity attacks.

• Confidentiality is the ability to provide data only to authorized actors, it
is achieved with encryption.
However, due to the broadcast nature of the CAN protocol and its lack of
encryption, there are no means to guarantee confidentiality. This allows any
attacker to simply listen in the conversation between ECUs, causing a viola-
tion of privacy.

39

Controller Area Network (CAN) Bus

• Integrity is the accuracy, completeness and validity of the data, it is usually
achieved by using a digest.

The CAN protocol uses a 15-bit CRC to protect against transmission errors.
However, it does not protect against attacks due to the possibility of collisions
and the lack of authentication.

• Availability is a concept that focuses on ensuring that a system is available
when requested.

Due to the nature of dominant/recessive bits in CAN and the priority based
arbitration, instigating a denial of service attack in the CAN network is
straightforward for an attacker, thus limiting availability.

• Authenticity is the ability to verify who the author of a message is, it is
usually achieved with MAC (Message Authentication Code), digital signature
or encryption with a shared key.

The CAN protocol does not provide any of the aforementioned methods for
assuring authenticity, so it is trivial for an attacker to impersonate a node on
the network and send arbitrary messages.

• Accountability and non-repudiation are concepts centered around estab-
lishing responsibility and preventing denial of involvement in specific actions.

While less critical in the automotive industry when compared to online com-
munications, these concepts remains relevant for tracking specific operations,
such as firmware updates.

• Reliability is the ability of the system to deliver its intended functionality
accurately and without errors.

Reliability is provided by the CRC, ACK and the ability of the ECUs to
automatically re-queue failed messages.

3.6 Threat Mitigation Technologies
Restructuring the CAN standard to inherently incorporate essential cybersecurity
features presents a significant challenge, given its extensive adoption and critical
role in automotive communication systems.

For this reason, emerges a necessity to implement measures to mitigate existing
threats. A study, performed by the United States Government Accountability
Office [40] in 2016, identified possible countermeasures.

40

Controller Area Network (CAN) Bus

• Cryptography: encryption and authentication can be used to protect the
data field of the frame and verify the legitimacy of message senders and
receivers.
The limited size of the data field poses a challenge for CAN encryption. This
issue can be overcome by splitting the encrypted message over multiple CAN
frames. But, as the number of ECUs rises, so do the amount of messages,
making this solution non-scalable in the long term.
Another concern arises from the restricted computing power of ECUs, limiting
the ability to use more complex encryption algorithms.

• Hardware Security Module (HSM): an external phyisical security unit
that is installed into an ECU. An HSM is equipped with its own CPU and is
able to perform various cryptographic functions, like encryption, decryption
and digital signatures.
The HSM effectively manages the computational workload associated with
cryptographic functions, mitigating the previously mentioned challenges. How-
ever, its adoption implies the installation of an additional component for every
ECU seeking to encrypt its traffic, significantly raising costs of production.

• Network Segmentation: consists in decoupling the CAN network into dis-
tinct sections based on their criticality and interconnecting them through a
gateway. Additionally the gateway can be equipped with a firewall to ensure
only approved messages are sent across it [Figure 3.11].
This network segmentation practice enables the isolation of non-critical sys-
tems (e.g., infotainment, air conditioning) from critical systems (such as en-
gine control). As a result, even in the event of a compromise in a non-critical
system, the potential for transmitting malicious messages to critical systems
is minimized.

• Intrusion Detection System (IDS): security device that monitors network
traffic and analyzes it for potential security issues. Additionally an Intrusion
Prevention System (IPS) can be employed to automatically intervene and
halt ongoing threats.
The main advantage of an IDS is that it requires little to no changes in the
network structure or ECUs and the bus traffic does not increase.
IDS rely on a database of known attack signatures to detect a threat, so
keeping the database up to date is necessary to make effective use of an IDS.

Among these methods network segmentation and IDS are the ones believed to
be the most cost-effective solutions. IDSs are especially useful when safeguarding

41

Controller Area Network (CAN) Bus

older vehicles due to the minimal modifications needed for integration with the
CAN bus.

Figure 3.11: A gateway is used to decouple the CAN network in multple sub-
networks. Image from Van Barel [24].

42

Chapter 4

Solution Design

The aim of this project is to develop a modular CAN fuzzer with dual functionality:
as a standalone tool for conducting fuzz testing on automotive networks and as
a foundational base for future future developments and integrations with other
tools.

A survey of existing solutions in this domain reveals a gap in the availabil-
ity of modular CAN fuzzers. Existing results from web searches yielded limited
outcomes, including open-source proof-of-concept projects lacking advanced fea-
tures [19, 1] or closed-source commercial products with limited modularity and
integration capabilities [26].

The objective is to recreate the many features available in commercial products,
while eliminating the necessity of using proprietary hardware that typically is
necessary to run the associated commercial solution.

4.1 Key design principles
The project has been designed and developed with adhering to the following prin-
ciples, acting as foundations for the decisions concerning its structure and compo-
nents.

• Ease of Use: the finished product is designed to be intuitive and easy to
learn, requiring only basic knowledge about the CAN protocol. To facilitate
usability, a straightforward graphical user interface has been created, allowing
the user to oversee every aspect of the fuzzer without the need for expertise
in command line operations or programming languages.

• Ease of Integration: the modularity of the software facilitates the incorpo-
ration of additional modules or the utilization of a single module as part of
a larger project. This is achieved by adhering to the best coding practices,

43

Solution Design

with the purpose of avoiding technical debt, and comprehensive documenta-
tion which covers all functionalities offered by the modules.

• Platform Agnostic: the fuzzer is designed to work independently of oper-
ating system, so no platform specific function were used.

• Protocol Agnostic: the fuzzer is a black box fuzzer, so it is designed to
work independently of car model or protcol. Developed modules reflect this
decision by using generic types that can be easily replaced or modified if
support for an additional protocol is required.

4.2 Key components
As mentioned previously, the fuzzer has been developed with a emphasis on mod-
ularity. Certain modules have been designed to be used with another, while some
can be used independently. Additionaly some modules offer different options to
choose from to perform the same task [Figure 4.2].

• CAN Interfaces: this module is the foundation for the communication with
the hardware. It is often required by other modules. Multiple options are
available to allow the program to interface with different CAN devices or
virtual interfaces [Figure 4.1].

• Fuzz Generators: the main objective of this component is to prepare and
generate data for the fuzzer. Multiple generation are available depending on
the need of the fuzzer.

• Fuzzer Loop: the core of the fuzzer. It requires both a CAN interface and
a fuzz generator. The purpose of this module is to continously generate data
from a fuzz generator and send it via the CAN interface. Multiple instances
of the fuzzer loop can be run in parallel if fuzzing to multiple interfaces at
the same time is required.

• Logger: this module is responsible for logging both the sent and received
data on the CAN bus. It requires the user to specify the CAN interface to
log and supports multiple file types and log outputs.

• User Interfaces: the user interface module is optional and can be omitted
on headless devices for a more lightweighted application.

The CAN interface and fuzz generator modules have been developed with the
intent of being easily extensible. Adding support to different protocols and fuzzing
strategies is straightforward.

44

Solution Design

(a) ValueCAN 4-2 [37] (b) Vector VN1630 [21]

Figure 4.1: Example of CAN network interfaces.

4.3 Additional components
To complement the fuzzer, additional modules were designed to work alongside it.

• Virtual ECU: to facilitate testing of the fuzzer during development, a sim-
ple virtual ECU has been developed. This ECU requires the CAN interface
module to communicate with the fuzzer.

• CAN Reverse: this module allows a user to easily find the CAN frame
triggering a specific event. It requires both a CAN interface to communicate
with the device under test and a fuzz generator to supply the messages for
exploration.

45

Solution Design

Figure 4.2: Developed software modules and their relationship.

46

Chapter 5

Implementation

In this chapter we will introduce the technologies used during the development
of this project, followed by an in-depth expaination of the implementation of the
various modules, including the rationale behind the decisions and the challenges
faced during this process.

5.1 Technologies and Libraries
The project has been developed from scratch in python, using the python − can
and python− ics libraries for handling the communication with the hardware, and
the PySide6 library to create an intuitive user interface.

5.1.1 Python
A key requirement for this fuzzer is its capability to run on multiple platforms, for
this reason the Python programming language was selected.

Python [18] is a high-level, multi-paradigm, known for its simplicity, readabil-
ity, and versatility. It provides a dynamic, object-oriented approach to software
development and emphasizes code readability, making it easier for developers to
express concepts in fewer lines of code.

Python was conceived in the late 1980s by dutch programmer Guido van Rossum
and saw its first official release in 1991. Over the years, its substantial evolution
owes much to the open-source model and collaborative efforts within the commu-
nity. Presently, python has a myriad of community-created libraries encompassing
diverse domains, including web development, scientific and numeric computing,
desktop GUIs, cybersecurity tools and many more [25].

The rich community environment contributes greatly to the "ease of integration"
requirement, enhancing this fuzzer’s versatility and adaptability across a wide

47

Implementation

spectrum of applications.
The fuzzer has been developed using python 3.11, the latest stable release at

the time of writing this thesis.

5.1.2 python-can
The python-can library [7] provides Controller Area Network support for Python,
including common abstractions to different hardware devices and utilities for send-
ing and receiving messages.

The core of this library relies on the Bus and Message classes which provide
an abstraction for communicating with different virtual or hardware CAN devices.

Other notable features of this library include:

• error handling for identifying CAN error frames;

• compatibility with both base and extended CAN frames;

• synchronous and asynchronous message management;

• logging messages in a variety of text based or binary formats.

Moreover, the python-can library proved to be an excellent educational resource
thanks to its easy to learn and straightforward design. The added advantage lies
in the possibility to simulate virtual CAN devices, facilitating testing scenarios
without the need for physical hardware. This feature enchances the library’s utility
as a learning tool for those seeking hands-on experience with CAN communication.

5.1.3 python-ics
Python-ics [13] is a python library for interfacing with Intrepid Control System
[38] hardware.

Primarily functioning as a wrapper around libicsneo, a C++ API for interfacing
with various hardware devices from IntrepidCS, this library exhibits a more intri-
cate interface compared to python-can. Its usage demands a deeper comprehension
of the CAN bus, adopting a lower-level approach reminiscent of C programming.

The selection of this library was dictated by the project’s network interface
requirements, specifically the utilization of the ValueCAN 4-2 interface [Figure
5.1] developed by IntrepidCS.

5.1.4 PySide6
PySide6 [16] is the official python module for the Qt for Python project [11].

48

Implementation

Figure 5.1: ValueCAN 4-2 [37] developed by IntrepidCS.

Qt is a cross-platform framework for GUI design. he selection of this library
was influenced by its capacity to develop a unified GUI for various platforms.
Additionally, Qt Designer, a visual design tool, allows programmers to quickly
create the user interface through intuitive graphical representations.

5.2 CAN Interfaces
The first and perhaps most important component implemented is the CAN In-
terface, serving as a crucial abstraction layer for hardware communication while
providing an API for higher level modules to use.

In the initial stages of development, the python-can library was deemed suffi-
cient for handling a virtual CAN bus.

As illustrated by this brief example, the library makes use of the can.Bus class
to easily define an interface, exposing the send and recv methods that higher level
components can leverage for basic communication. Additionally, the can.Message
class is used as a generic container for different types of CAN frames.

49

Implementation

1 import can
2

3 bus = can.Bus("default", interface="virtual")
4

5 msg = can.Message(arbitration_id=0x01, data=[0, 1, 2, 3])
6 bus.send(msg)
7

8 msg2 = bus.recv()

Python-can offers comprehensive support for a multitude of virtual and physical
CAN network interfaces [10, 9] including the NeoV iBus tailored for the ValueCAN
4-2 interface, which we will be using for testing the fuzzer.

Despite the compatibility with this network adapter, an alternative wrapper for
interface communication was developed. This decision was motivated by a desire
to improve the extensibility of the module and to gain access to the lower-level
functionalities provided by network devices. This choice not only enhances the
module’s flexibility, but also provides the programmer with additional customiza-
tion options.

Moreover, python-can includes support for numerous interfaces and features
that are not essential for our application. By opting not to rely on it, we can
streamline our application, creating a more lightweight solution tailored to our
requirements.

To abstract the communication between higher-layer modules and the hardware,
two classes were creted: MessageEnvelope and AbstractCANInterface. The
former serves as a generic container for various types of CAN frames, including
support for base and extended IDs, CAN FD, and error frames. The latter, an
abstract class, is defined as follows.

1 class AbstractCANInterface(ABC):
2

3 @abstractmethod
4 def close(self):
5 pass
6

7 @abstractmethod
8 def send(self, message: MessageEnvelope):
9 pass

10

11 @abstractmethod
12 def receive(self, waitForever: bool = False) ->

tuple[List[MessageEnvelope], int]:
13 pass

50

Implementation

Expanding this module to support a new network interface is a straightforward
process. It involves extening the AbstractCANInterface class and implementing
the three required methods, alongside any additional function necessary for the
specialized interface.

Two child classes were implemented within this module: PythonICSInterface,
supporting any device produced by Intrepid CS, such as the ValueCAN 4-2, and
PythonCANInterface, designed to work with any device supported by the python-
can library. The relationship between these classes and other modules is illustrated
in Figure 5.2.

The PythonCANInterface intruduces an additional layer of abstraction on
top of the one provided by python-can. Therefore, its direct usage is not re-
comended. Instead, this module should be extended by implementing another
child class specific to a particular device. Despite this, it has been included any-
way for compatibility reasons and its utility in testing, thanks to the provided
virtual interfaces.

Figure 5.2: CAN Interface overview.

51

Implementation

5.3 Virtual ECU
To assess the correct functionality of the implemented CAN Interface, a virtual
ECU has been developed, structured around a simple state machine. The ECU is
instantiated through a class named Node, which necessitates any implementation
of AbstractCANInterface, a list of states, an initial state, and a stateTransition
function.

The Node class automatically manages incoming messages received via the
specified CAN interface. It consults the stateTransition function to determine
whether the received message should trigger a transition to the next state.

Moreover, the ECU can transition to an idle state, to avoid unnecessary polling,
if no communication is detected on the bus within a specified timeout and can be
awakened by receiving any message.

Nodes are also capable of sending messages. By connecting multiple virtual
ECUs to the same interface, a rudimentary CAN network can be replicated.

Although the ECU’s functionality is too basic to provide profound insights into
the fuzzer’s efficacy, it serves as a useful tool for testing the functionality and
reliability of the other modules.

Figure 5.3: Virtual ECU state diagram.

52

Implementation

5.4 Fuzz Generators
A fundamental element of the fuzzer is the generator responsible for producing the
fuzzed messages. This module is built upon the abstract class AbstractFuzzGenerator
defined below.

1 class AbstractFuzzGenerator(ABC):
2

3 @abstractmethod
4 def __next__(self) -> Optional[MessageEnvelope]:
5 pass

Opting for a custom iterator class, as presented in this implementation, is pre-
ferred over a function generator (implemented in Python with the yield keyword).

This choice aligns with the strict typing employed in this project. By mak-
ing all fuzz generators child classes of AbstractFuzzGenerator, we can annotate
attributes in the fuzzer with this abstract class, rather than using the generic
Generator type. This enhances the code’s consistency.

Similarly to the CAN interfaces, developing a new fuzz generator involves ex-
tending this abstract class. The current roster of implemented fuzz generators
includes:

• RandomFuzzGenerator: a straightforward fuzz generator, it generates
CAN frames in a completely random manner. It requires a seed, minimum
and maximum arbitration ids to randomize, minimum and maximum DLC,
whether it should employ extended ids or CAN FD, and optionally a non-
RandomData field for fixed data bytes.

• SequentialFuzzGenerator: another straightforward generator, it brute forces
all possible combinations of CAN frames in specified ranges. It requires the
same parameters as the RandomFuzzGenerator.

• BitFlipFuzzGenerator: this generator is designed to mutate a given start-
ing message by flipping bits in the data field. It requires a MessageEnvelope
to mutate, the maximum number of bit flips to perform and optionally a mask
to specify if some bits should not be flipped.

• BLFReplayFuzzGenerator: this generator is designed to replay the con-
tent of a BLF file1, encompassing a CAN conversation that was previously

1A BLF file (Binary Logging Format) is a message-based format for storing CAN messages,
developed by Vector Informatik GmbH.

53

Implementation

recorded by the Logger module or other compatible applications. It requires
two parameters: the file name and a flag indicating if only "transmitted"
messages should be replayed.

5.5 Fuzzer
The fuzzer component is fairly straightforward, its main purpose is to serve as an
orchestrator for lower level modules. These modules, in turn, manage the majority
of the logic.

To instantiate a Fuzzer, two objects are required: an implementation of any
AbstractCANInterface and an implementaiton of any AbstractFuzzGenerator.
The purpose of the fuzzer is to simply iterate over the fuzz generator, obtain a
CAN frame, and send it though the CAN interface.

Additionally, the Fuzzer class provides methods to start and stop the fuzzing
loop. It requires a parameter to determine the delay between messages and op-
tionally accepts callback functions for handling events, such as sending a message
or reaching the end of the generator.

The fuzzer is a subclass of a python Thread so instantiating multiple fuzzers is
as simple as calling the Fuzzer constructor multiple times.

5.6 Logger
The logger component operates similarly to the fuzzer. To instantiate a Logger, an
implementation of any AbstractCANInterface is required, as it will be utilized to
continuously monitor the CAN bus and log all transmitted and received messages
on it.

The Logger class provides methods to start and stop it and is a subclass of
Thread, similar to the Fuzzer class.

Initially, there was consideration to include the logging functionality directly
inside the fuzzer module since they share a common CAN interface and structure.
However, keeping them in separate modules allows for greater flexibility. For
instance, it is possible to run multiple fuzzers on the same interface and use only
a single logger instead of having to use multiple of them. Alternatively, one can
run the logger without a fuzzer if only monitoring of the CAN bus is required.

The logger currently supports three different logging methods:

• Python’s builtin logging module: by default the log is output on stdout, but
can be configured to write to files instead. A human readable format is used
for this output, its main utility is debugging if few messages were exchanged
over the network.

54

Implementation

Figure 5.4: Fuzzer UML diagram.

• CSV file: useful because it can be processed by many tools. Since it is an
ASCII based format, file sizes for these log files tend to be larger.

• BLF file: proprietary Binary Logging Format developed by Vector Informatik
GmbH. Since it is a binary file, the size is a lot smaller compared to CSV,
but fewer tools support this format. Mainly used to analize the conversa-
tion using CANalyzer or as an input file for the BLFReplayFuzzGenerator.
The code for the BLFWriter and BLFReader classes was adapted from
python-can’s blf utility [8]. This was done to allow compatibility with the
MessageEnvelope object instead of can.Message, removing the dependence
on the python-can library.

5.7 CAN Reverse
The CAN reverse module has been developed with the intent of facilitating reverse
engineering of CAN frames.

Upon instantiation of the CANReverse class, an interactive session is started,
taking manual input to quickly identify a single message causing an observed effect.

55

Implementation

This is performed by first loading a specified number of messages into the
CANReverse instance by using any fuzz generator (typically by replaying a BLF
file, although data can be randomly generated if preferred).

Subsequently, all stored messages are transmitted to the CAN interface. If the
desired effect is not observed, we can proceed by loading the next section of mes-
sages, until the fuzz generator reaches its end. If the desired effect is observed,
the CAN reverse module can replay only the first half of the messages and we can
indicate to the CAN reverse module wether the effect is observed. By proceed-
ing in this manner, an efficient binary search is performed and it is possible to
correctly identify the CAN frame causing the desired effect in log2(section_size)
steps [Figure 5.5].

For instance, a practical scenario could involve connecting the logger to the
CAN network, then use the car’s key to unlock the doors and finally use the CAN
reverse module to correctly identify the message used to unlock the car. This
method allows the identification of any frame needed, proving especially valuable
for cybersecurity testing by simulating the process an attacker might employ to
target a vehicle without prior knowledge.

Moreover, automated detection of the desired effect enables the complete au-
tomation of the CAN reverse procedure. This is possible in cases where the effect is
transmitted over the CAN network (for example error frames or specific messages)
or if the effect can be observed with specialized sensors and its output transmitted
to the CAN reverse module.

56

Implementation

Figure 5.5: Identifing a CAN frame using CAN Reverse.

57

Implementation

5.8 User Interface
This project has been mainly developed to be run automatically in an headless
environment, but a proof of concept graphical user interface has been created in
PySide6 to showcase the main features of the fuzzer and CAN reverse modules.

Figure 5.6: Fuzzer graphical user interface. The interface selector allows the user
to specify which CAN interface to use and its configuration options. The CAN
fuzzer section, allows the user to specify the Fuzz Generator and its parameters.

58

Implementation

Figure 5.7: CAN Reverse graphical user interface. This module allows for loading
sections from the BLF file to replay, buttons are available to replay the two halves
of the section and then choose which of the two to keep. Refer to figure 5.5 for
the usage.

59

Chapter 6

Testing and Results

To validate the fuzzer’s effectiveness, testing has been conducted on a Dell Latitude
E6540, a laptop with an Intel Core i5-4200M and 8 GB of RAM, running Arch
Linux 6.7.4.

During testing, different setupts were employed, some leveraging the developed
virtual ECU, while other using a testing bench with physical ECUs.

The physical CAN interface used during testing is a ValueCAN 4-2 developed
by Intrepid Control Systems, supporting multiple CAN based protocols and OBD2
diagnostics. The ValueCAN 4-2 supports simultaneously two different CAN net-
work, but during testing only the first of the two networks has been employed.

The objective of the experimental evaluation is to verify the correct functioning
and performance of the fuzzer. The main objective of the virtual ECU is to allow
the fuzzer to detect known crashes in a white-box environment, while the bench
has been used to emulate a real world black-box scenario and benchmark the
performance.

6.1 Full virtual setup
This preeliminary testing setup makes use of SocketCAN [36] and was employed
for early tests of the developed CAN interfaces and fuzzer, without the use of the
logger.

SocketCAN is an open source CAN driver and networking stack contributed by
Volkswagen Research to the Linux kernel. This kernel module, along other com-
mand line utilities, is available under the package can − utils. Upon installation,
a new network device virtualizing a CAN bus can be instantiated and fuzzing can
begin.

60

Testing and Results

1 #!/bin/sh
2

3 # load the vcan kernel module
4 modprobe vcan
5

6 # add and enable new vcan device named vcan0
7 ip link add dev vcan0 type vcan
8 ip link set up vcan0

Listing 6.1: Loads the vcan kernel module and creates a new virtual interface
named vcan0.

1 #!/bin/python
2

3 vcan0 = PythonCANInterface(can.Bus(channel="vcan0",
type="socketcan"))

4

5 randomGenerator = RandomFuzzGenerator()
6

7 fuzzer = Fuzzer(vcan0, randomGenerator, delay=0.25)
8

9 fuzzer.start()

Listing 6.2: Instantiates a fuzzer with a random generator for the virtual interface
vcan0.

The command line utility candump can be used to visualize the output of the
fuzzer.

1 $ candump vcan0
2 vcan0 30B [6] 36 24 27 BE E3 AA
3 vcan0 7D7 [1] DF
4 vcan0 0A0 [4] 2A 63 E0 47
5 vcan0 523 [6] 04 FC E2 AD FA 28
6 vcan0 7FE [2] 6B C1
7 vcan0 1BA [5] F4 D6 FA 6E 82
8 vcan0 5E4 [8] CF 1C 78 61 50 45 25 F0

Listing 6.3: Example of the fuzzer output obtained with the utility candump. The
output includes the arbitration ID, DLC and data of the CAN frame.

61

Testing and Results

6.2 CANalyzer

Figure 6.1: CANalyzer testing setup.

To ensure correct behaviour of the developed logger and accurate implementa-
tion of the .blf file format, the next test was performed using CANalyzer [20], a
powerful analysis and diagnostic tool developed by Vector.

A Vector VN1630 network interface was used on the CANalyzer workstation to
receive data from the fuzzer. CANalyzer can log the received CAN frames in a .blf
file and, by using a simple script to compare the log files produced by CANalyzer
and the Logger module, it was possible to determine that no message was lost,
indicating a correct implementation of the BLF format.

An additional test was conducted by allowing the fuzzer to send CAN frames
without any delay between messages, with the objective of stressing the CAN
network and the hardware interfaces. The fuzzer was left running for 5 minutes
and different baudrates for the network interfaces were compared (Table 6.1).
Even by stressing the network we were able to determine that no messages were
lost and no error frames generated, assuring us of the reliability of the software
and hardware devices.

Baudrate Messages Message/s Estimated message/s % of estimate
virtual 3.707M 12,359 N/A N/A
125.000 423k 1,411 1,563 90.3%
250.000 829k 2,763 3,125 88.4%
500.000 1.630M 5,435 6,250 86.9%

Table 6.1: Fuzzer performance compared to different baudrates.

During this test, the runtime has been set at 5 minutes, the messages have
been generated with a RandomFuzzGenerator with default parameters and the
estimated messages per second is based on an average frame size of 80 bits (stan-
dard arbitration ID and 4 data bytes). The virtual interface does not support a
baudrate because it does not abstract the transmission delay of a real network, for
this reason the thoughput is much higher. Lower baudrates achieve results slightly
closer to the estimated maximum due to the overhead of the communication having
less impact at lower baudrates.

62

Testing and Results

6.3 Testing Bench
The next test was executed on a test bench equipped with components sourced
from a Fiat 500 BEV. The purpose of this test was to emulate a real-world black-
box scenario.

Figure 6.2: Example of a test bench using Volkswagen components. Image from
Ross-Tech Forum [32].

The evaluation utilized a RandomFuzzGenerator, mirroring the setup of the
previous CANalyzer test, with baudrates ranging from 125,000 to 1,000,000. De-
spite producing no visible response on the test bench, the ValueCAN’s LED indi-
cated transmission of error frames.

By utilizing a Y CAN connector and introducing the PC with CANalyzer on the
network verified the presence of bit errors, indicating the absence of a termination

63

Testing and Results

Instrument Cluster Displays vital vehicle information to the
driver, including tachometer, fuel gauge and
turn signals indicators.

Body Control Module (BCM) Manages various body-related functions like
lighting, door locks, and windows.

Infotainment Control Module
(ICM)

Manages audio, video, navigation, and com-
munication features.

Airbag Control Module (ACM) Controls airbag deployment and emergency
lights based on crash sensor inputs.

Table 6.2: Components of the Fiat 500 BEV test bench and their respective func-
tions.

resistance for the ValueCAN device. The issue was addressed by setting the flag
termination_enables to 1 in the library’s configuration, activating a software-
controlled termination.

Following this adjustment, the correct transmission of CAN frames was verified
by the ValueCAN LED, when transmitting frames with a baudrate of 500,000. All
further testing was performed with this rate.

Subsequent fuzzer runs elicited diverse reactions from the test bench, including
random fluctuation in the tachometer, activation of the rear view camera, various
alarms related to factors like seatbelt status, imminent collision, and others linked
to Bluetooth connectivity.

6.3.1 Results
A fuzzer efficacy is measured by the amount of errors or program crashes found
in a given amount of time. In the CAN protocol, program crashes translate to an
ECU resetting or violating the CAN protocol standard, thus causing error frames
to be sent. Program errors are instead communicated to other ECUs by using
error flags in the data block of a message.

During the multiple fuzzing runs executed, no error frames were reported, in-
dicating a correct implementation of the CAN standard by all ECUs considered.
Additionally, due to the black-box nature of this analysis, databases to interpret
the byte sequences received by the ECUs were non used, leaving the logged data
impossible to check for the presence of error flags.

Nonetheless, basic traffic analysis was performed on the frequency of received
arbitration IDs, to determine the influence of the fuzzer on the CAN network.

Figure 6.3 shows the increase or decrease in the number of receieved CAN
frames measured before and after the fuzzer session has started. The number of
the received CAN frames has been collected and averaged over multiple 5 minutes

64

Testing and Results

runs, and the ratio between the number of frames during and before the fuzzing
session has been plotted. As seen in the figure, only the CAN frames with ID
0x64D1 showed any noticeable increase in frequency, going from 1201 to 1985
received frames in a 5 minutes interval.

After empirical testing, frame 0x64D is confirmed to be the frame controlling
the ticking of the bench’s emergency lights. Additionally pressing the respective
button on the board does not turn off the emergency lights, so resulting to a board
reset is necessary.

Figure 6.3: Ratio between received CAN frames during and before a fuzzing ses-
sion. Fuzzing does not seem to affect the frequency of received CAN frames, with
the exception of frames with arbitration ID 0x64D, belonging to emergency lights.

6.3.2 Reverse Engineering of CAN Frames
The CAN reverse module, explained in section 5.7, has been purposefully developed
to gain some additional insights about the emergency lights CAN frame.

By using the CAN reverse module to replay the .blf log file obtained while
fuzzing the test bench, it was possible to quickly identify the specific CAN frame

1Arbitration IDs have been replaced and frame data bits have been swapped in these results,
to avoid revealing the reverse engineered data.

65

Testing and Results

responsible for turning on the emergency lights.
Through multiple cycles of fuzzing and reversing, a collection of CAN frames

with the same arbitration ID, all responsible for activating the emergency lights,
was obtained. All the reversed frames shared a uniform length of 4 bytes, but no
discernible pattern emerged among the data bytes.

To invesigate this frame further, random bits in one of the found frames were
flipped. However none of the resulting frames succeeded in triggering the emer-
gency lights, suggesting the presence of a CRC in the data portion of the message.

Consulting the CAN database for the test bench confirmed the hypothesis: the
identified frame’s purpose is to activate the emergency lights in the event of an
accident. The first three bytes of the data field contain multiple flags, specifying
the type of incident and which sensors were triggered, while the last byte serves
as a CRC-8 for the preceding three bytes.

Figure 6.4: Example Usage of the CAN reverse module. The highlighted frame is
the one responsible for triggering the emergency lights.

6.4 Virtual ECU on a Physical CAN Bus
To overcome the black-box limitation of bench testing, the next objective was
to conduct tests in a white-box environment, achieved by specifically crafting a
virtual ECU with known behaviour.

Unlike the initial test that relied on the virtual CAN bus, two ValueCAN devices
connected to each other were utilized. Finally, the two devices were connected to
different USB ports on the same PC, and a PythonCANInterface was assigned
to each based on the connected ValueCAN’s index.

Similar to the previous test, one of the interfaces was connected to the fuzzer,
while the other was used to instantiate an EqualityTestECU , a subclass of the
Node class outlined in section 5.3.

66

Testing and Results

Figure 6.5: Virtual ECU testing setup.

Several of assumption were made when designing the EqualityTestECU to
mimic the behaviour of the observed ECUs in the test bench:

• The ECU works in cycles of 100 milliseconds.

• The ECU can receive any number of messages per cycle.

• The ECU can be in two states "OK" and "ERROR".

• The ECU exclusively accepts messages with arbitration ID 0x100 and will
transition to the "ERROR" state if, during the cycle time, at least one message
matches the messageDataRule.

• The messageDataRule is defined as a dictionary where keys represent bit
indices and values represent bit values. A received message matches the rule
if all indicated bits match the specified value; all other bit values and DLC
are ignored.

• The ECU will transmit a single message with arbitration ID 0x101 every
cycle, indicating the current state of the ECU in the data field of the message
("OK" = 0x00, "ERROR" = 0xFF).

• The ECU is reset to the "OK" state at the start of evert cycle.

67

Testing and Results

The setup script used for testing is reported below.

1 #!/bin/python
2

3 int0 = PythonICSInterface(0)
4 int1 = PythonICSInterface(1)
5

6 messageDataRule = {
7 5: 1,
8 6: 0,
9 7: 1,

10 8: 0,
11 }
12

13 ecu1 = EqualityTestECU(int1, messageDataRule,
acceptedArbitrationIDs=[0x100])

14

15 fuzzGenerator = RandomFuzzGenerator(minId=0x100, maxId=0x100)
16 logger = Logger(int0)
17 fuzzer = Fuzzer(int0, fuzzGenerator)

6.4.1 Results
When fuzzing an ECU with a fixed response rate, there are two possible ap-
proaches: sending messages at a faster or slower rate than the ECU’s message
rate. Fuzzing at a slower rate requires sending a maximum of one message from
the fuzzer for every ECU cycle. This ensures that the logger can accurately pair a
"request" and a "response", allowing a straightforward approach to identify which
message caused an error. On the other hand, if the fuzzer exceeds the ECU’s rate,
sent messages must be grouped into "batches" for each cycle. The specific message
in the batch causing the error is subsequently identified using CAN reverse.

Figure 6.6 shows the difference in mean time needed to find the error between
the two strategies. As expected, the batch fuzzing technique yields better results,
even when factoring in the time required to execute CAN reverse. This is due to
the overall higher volume of messages sent.

Figure 6.7 compares the mean time needed to find the error among batch fuzzers
with different sizes. The results indicate that larger batch sizes result in improved
efficiency when dealing with larger error sizes. However, it is important to note
that excessively large batches can lead to a decrease in the number of messages
sent by the ECU, as the fuzzer may take precedence over the ECU response due
to the arbitration feature of CAN.

68

Testing and Results

The earlier findings are applicable only to an ECU that is able to maintain
the "ERROR" state. If an ECU that is not able to, and instead responds solely
to the last received message in each cycle, sending messages in batches becomes
impossible. This forces the fuzzer to operate using the slower-rate strategy.

Figure 6.6: Slow-rate vs batch fuzzing. The mean time needed to find an error is
plotted. The virtual ECU uses a 100 ms cycle time, the batch fuzzer uses a batch
of size 10 for every ECU cycle. In the batch fuzzer case, the time needed to run
CAN reverse is included.

Figure 6.7: Batch fuzzer with varying batch size. The mean time needed to find an
error is plotted. The virtual ECU uses a 100 ms cycle time. Note that a slow-rate
fuzzer would be equivalent to a batch fuzzer with size = 1. The time needed to
run CAN reverse is included.

69

Testing and Results

6.4.2 Error Detection

Allowing the fuzzer to run for an extended period allows the collection of multi-
ple errors, providing a dataset for analysis. To gain additional insights into the
behavior causing a specific error, two strategies can be employed.

First, by fixing the arbitration ID and DLC, and by continuously sending ran-
dom messages, we can collect a larger dataset relating to that specific error. Al-
ternatively, it is possible to use a BitF lipFuzzGenerator to mutate the original
message in a more controlled way.

The bitflip strategy requires sending fewer messages compared to the random-
ized strategy. While the first proves to be very effective in pinpointing the specific
bits responsible for the error in simple cases, its effectiveness diminishes in more
complicated scenarios. In contrast the random strategy may be more useful at iden-
tifying errors in more complex situations, such as those involving a CRC. However,
due to its random nature, a larger volume of messages needs to be exchanged to
accurately identify the bits causing errors.

To identify patterns in the message structure, one effective approach is to gen-
erate heatmaps of the data portion of the messages. Each heatmap illustrates
the cumulative value of individual bits across all error-inducing messages. The
minimum value (always 0) is depicted on the heatmap only if all error-causing
messages had that bit set to 0. Conversely, the maximum value (equal to the
reported number of errors) emerges when all messages exhibit that bit set to 1.
Values in-between count how many messages possess the particular bit set to 1.

Figure 6.8 compares the heatmaps generated by the two strategies. In the
bit flip example, a total of 41 messages has been sent (the original one, and one
message for every bit being flipped), of these 37 received an error as a response. In
the randomized strategy, about 2,000 messages were sent and 115 of them received
an error as a response.

Figure 6.9 shows how the introduction of a CRC in the last byte of the message
complicates error detection. By using the bit flip strategy, only the original mes-
sage before mutation is able to cause an error to be reported, thus no additional
insights on the message can be gathered from this mutator. By using the random-
ized strategy, about 57 thousand messages have been sent to the ECU, of which
only 18 caused an error, this is sufficient to observe the same pattern as figure 6.8.

If the CRC calculation algorithm is known, the mutation generator can be
adapted accordingly. However, in numerous instances, knowledge of the CRC
algorithm may not be readily available. As an alternative, the bit flip generator can
be modified to use a brute-force approach for the CRC. Although this still requires
awareness of the CRC’s position and size, it proves effective in revealing the bit
pattern with a reduced number of messages compared to the random approach.

Figure 6.10 illustrates a bit flip generator implementing a brute-force technique

70

Testing and Results

for the CRC byte. With this strategy, only 256 messages per bit flip are necessary,
resulting in a total of 8,448 messages sent.

Figure 6.8: Bit Flip vs Random Fuzzing. The sum of bit values for all error-causing
messages is plotted in this heatmap. Both strategies were able to successfully
identify the patterns in bits with indexes 5-8. The random strategy sent about
2,000 messages to achieve this result.

Figure 6.9: Bit Flip vs Random Fuzzing, on an ECU requiring a CRC in the
last byte (4). The bit flip strategy proved ineffective, while the random strategy
was able to identify the pattern. The random strategy sent about 57 thousand
messages to achieve this result.

71

Testing and Results

Figure 6.10: Bit Flip fuzzing, with CRC bruteforce. The resulting heatmap is
similar to the case without the CRC, except that the bits corresponding to the
CRC appear to be randomly distributed.

72

Chapter 7

Conclusions

This thesis has succeded in developing a CAN protocol fuzzer from scratch, focus-
ing on the modularity and extensibily aspects of the project. By organizing the
fuzzer into multiple modules and abstracting the CAN protocol, the project aimed
to enhance ease of integration while providing a versatile tool for cybersecurity
testing.

The project’s contributions include the development of specialized modules for
different network interfaces, effectively transforming them into plug-and-play com-
ponents for the fuzzer. Though the focus was on network interfaces produced by
Intrepid CS, the fuzzer can be easily extended to function with interfaces from
other manufacturers.

Testing conducted on simulated virtual ECUs and physical test benches val-
idated the fuzzer’s effectiveness and highlighted the efficacy of various fuzzing
techniques under different assumptions.

Moreover, post-processing techniques, such as analyzing heatmaps generated
from message data and implementing mutation strategies, provided insights into
error-inducing messages and enhanced the fuzzer’s capabilities.

7.1 Future Work
The easiest way to improve the fuzzer would be to extend existing modules, adding
new functionalities or refining existing ones based on feedback from testing and
usage. For example creating a new CAN Interface to support different hardware
devices would be trivial and would greately expand the fuzzer’s compatibility.

Additionally, adding support for other CAN-based protocols, such as CANopen
and SAE J1939, would be relatively straightforward, requiring only minor modifi-
cations to the MessageEnvelope class to support the additional features provided
by those protocols.

73

Conclusions

Incorporating support for non CAN protocols, like WiFi or Bluetooth would
require additional effort, as it involves different message structures. However, by
maintaining the same basic structure and principles, the fuzzer can be adapted
to accomodate these protocols, extending its applicability to a wider spectrum of
automotive networks and technologies.

To further improve the developed solution, incorporating features of a smart
fuzzer could significantly improve its effectiveness. For instance, integrating gram-
mar or model based fuzz generation techniques would enable the fuzzer to gener-
ate test cases that adhere closely to the syntax and semantics of the underlying
communication protocols. This approach has the potential to uncover more vul-
nerabilities and edge cases while potentially reducing the runtime needed to find
them.

Furthermore, introducing a feedback mechanism within the fuzzer could en-
hance its adaptability and effectiveness. By collecting and analyzing feedback
from the target system, the fuzzer could dynamically adjust its testing strate-
gies and prioritize test cases that exhibit promising results or trigger interesting
behavior.

Implementing such features would necessitate integration with database CAN
files (DBC), which are widely used in automotive development. These files serve as
structured databases containing information about the message, signals, and the
encoding scheme used by an ECU. By integrating DBC files in the fuzzer, valuable
insights can be gathered from the fuzzed data.

74

Bibliography

[1] Accenture. can_dlc_fuzzer. URL https://github.com/Accenture/can_
dlc_fuzzer.

[2] AUTOSAR. Automotive open system architecture, . URL https://www.
autosar.org/.

[3] AUTOSAR. Classic platform, . URL https://www.autosar.org/
standards/classic-platform.

[4] Anirban Basu. Software Quality Assurance, Testing and Metrics. PHI Learn-
ing, June 2015.

[5] Hammerschmidt Christoph. Number of automotive ecus continues to rise.
eeNews Automotive, May 2019. URL https://www.eenewseurope.com/en/
number-of-automotive-ecus-continues-to-rise/.

[6] Cloudflare. What is penetration testing? URL https:
//www.cloudflare.com/en-gb/learning/security/glossary/
what-is-penetration-testing/.

[7] Multiple Contributors. python-can, . URL https://pypi.org/project/
python-can/.

[8] Multiple Contributors. python-can – can.io.blf, . URL https://python-can.
readthedocs.io/en/stable/_modules/can/io/blf.html.

[9] Multiple Contributors. python-can – hardware interfaces, . URL https:
//python-can.readthedocs.io/en/stable/interfaces.html.

[10] Multiple Contributors. python-can – virtual interfaces, . URL https://
python-can.readthedocs.io/en/stable/virtual-interfaces.html.

[11] Multiple Contributors. Qt for python, . URL https://wiki.qt.io/Qt_for_
Python.

75

https://github.com/Accenture/can_dlc_fuzzer
https://github.com/Accenture/can_dlc_fuzzer
https://www.autosar.org/
https://www.autosar.org/
https://www.autosar.org/standards/classic-platform
https://www.autosar.org/standards/classic-platform
https://www.eenewseurope.com/en/number-of-automotive-ecus-continues-to-rise/
https://www.eenewseurope.com/en/number-of-automotive-ecus-continues-to-rise/
https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-penetration-testing/
https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-penetration-testing/
https://www.cloudflare.com/en-gb/learning/security/glossary/what-is-penetration-testing/
https://pypi.org/project/python-can/
https://pypi.org/project/python-can/
https://python-can.readthedocs.io/en/stable/_modules/can/io/blf.html
https://python-can.readthedocs.io/en/stable/_modules/can/io/blf.html
https://python-can.readthedocs.io/en/stable/interfaces.html
https://python-can.readthedocs.io/en/stable/interfaces.html
https://python-can.readthedocs.io/en/stable/virtual-interfaces.html
https://python-can.readthedocs.io/en/stable/virtual-interfaces.html
https://wiki.qt.io/Qt_for_Python
https://wiki.qt.io/Qt_for_Python

BIBLIOGRAPHY

[12] Copper Horse. Threat modelling. URL https://copperhorse.co.uk/
threat-modelling/.

[13] Rebbe David. python-can. URL https://pypi.org/project/python-ics/.

[14] CSS Electronics. Can bus explained - a simple intro, 2023. URL https:
//www.csselectronics.com/pages/can-bus-simple-intro-tutorial.

[15] Eurostat. Eu people on the move: changes in a decade. URL https://ec.
europa.eu/eurostat/web/products-eurostat-news/w/edn-20230918-1.

[16] Qt for Python Team. Pyside6. URL https://pypi.org/project/PySide6/.

[17] OWASP Foundation. Fuzzing, January 2020. URL https://owasp.org/
www-community/Fuzzing.

[18] Python Software Foundation. Python. URL https://www.python.org/.

[19] FrostTusk. Can-fuzzer. URL https://github.com/FrostTusk/CAN-Fuzzer.

[20] Vector Informatik GmbH. Canalyzer, . URL https://www.vector.com/int/
en/products/products-a-z/software/canalyzer.

[21] Vector Informatik GmbH. Vector vn1630, . URL https://www.vector.
com/int/en/products/products-a-z/hardware/network-interfaces/
vn16xx/.

[22] Google. American fuzzy lop. URL https://github.com/google/AFL.

[23] Google. Oss-fuzz – trophies, August 2023. URL https://github.com/
google/oss-fuzz?tab=readme-ov-file#trophies.

[24] Thomas Huybrechts, Yon Vanommeslaeghe, Dries Blontrock, Gregory
Van Barel, and Peter Hellinckx. Automatic Reverse Engineering of
CAN Bus Data Using Machine Learning Techniques, page 751–761.
Springer International Publishing, November 2017. ISBN 9783319698359.
doi: 10.1007/978-3-319-69835-9_71. URL http://dx.doi.org/10.1007/
978-3-319-69835-9_71.

[25] Python Institute. Python – the language of today and tomorrow. URL https:
//pythoninstitute.org/about-python.

[26] Intrepid CS. Vehicle spy. URL https://intrepidcs.com/products/
software/vehicle-spy/.

[27] ISO 11898-1:2015. Road vehicles – Controller area network (CAN). Standard,
International Organization for Standardization, December 2015.

76

https://copperhorse.co.uk/threat-modelling/
https://copperhorse.co.uk/threat-modelling/
https://pypi.org/project/python-ics/
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://ec.europa.eu/eurostat/web/products-eurostat-news/w/edn-20230918-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/w/edn-20230918-1
https://pypi.org/project/PySide6/
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://www.python.org/
https://github.com/FrostTusk/CAN-Fuzzer
https://www.vector.com/int/en/products/products-a-z/software/canalyzer
https://www.vector.com/int/en/products/products-a-z/software/canalyzer
https://www.vector.com/int/en/products/products-a-z/hardware/network-interfaces/vn16xx/
https://www.vector.com/int/en/products/products-a-z/hardware/network-interfaces/vn16xx/
https://www.vector.com/int/en/products/products-a-z/hardware/network-interfaces/vn16xx/
https://github.com/google/AFL
https://github.com/google/oss-fuzz?tab=readme-ov-file#trophies
https://github.com/google/oss-fuzz?tab=readme-ov-file#trophies
http://dx.doi.org/10.1007/978-3-319-69835-9_71
http://dx.doi.org/10.1007/978-3-319-69835-9_71
https://pythoninstitute.org/about-python
https://pythoninstitute.org/about-python
https://intrepidcs.com/products/software/vehicle-spy/
https://intrepidcs.com/products/software/vehicle-spy/

BIBLIOGRAPHY

[28] ISO 26262-1:2018. Road vehicles – Functional safety. Standard, International
Organization for Standardization, December 2018.

[29] ISO/IEC 27000:2018. Information technology – Security techniques – Infor-
mation security management systems. Standard, International Organization
for Standardization, February 2018.

[30] ISO/SAE 21434:2021. Road vehicles – Cybersecurity engineering. Standard,
International Organization for Standardization, August 2021.

[31] Neystadt John. Automated penetration testing with white-box fuzzing.
URL https://learn.microsoft.com/en-us/previous-versions/
software-testing/cc162782(v=msdn.10).

[32] jonese. Testbench setup – ross-tech forum. URL https://forums.
ross-tech.com/index.php?threads/5918/page-10#post-226184.

[33] Kohnfelder Loren. The stride threat model. URL https:
//learn.microsoft.com/en-us/previous-versions/commerce-server/
ee823878(v=cs.20).

[34] Mozilla. Browser fuzzing at mozilla, February 2021. URL https://hacks.
mozilla.org/2021/02/browser-fuzzing-at-mozilla/.

[35] Mozilla. Bugs found while fuzzing with domino, December 2023. URL https:
//bugzilla.mozilla.org/show_bug.cgi?id=domino.

[36] Volkswagen Research. Socketcan - controller area network. URL https:
//www.kernel.org/doc/html/next/networking/can.html.

[37] Intepid Control Systems. Valuecan 4-2, . URL https://
intrepidcs.com/products/vehicle-network-adapters/valuecan-4/
valuecan-4-2-overview-low-cost-two-channel-can-fd-usb-interface/.

[38] Intrepid Control Systems. Intrepidcs, . URL https://intrepidcs.com/.

[39] TU Dortmund University. Learnlib. URL https://github.com/LearnLib/
learnlib.

[40] U.S. Government Accountability Office. Vehicle Cybersecurity: DOT and
Industry Have Efforts Under Way, but DOT Needs to Define Its Role in
Responding to a Real-world Attack, March 2016. URL https://www.gao.
gov/assets/gao-16-350.pdf.

[41] U.S. Government Publishing Office. 40 cfr 86.005-17(h)(3). URL
https://www.govinfo.gov/content/pkg/CFR-2010-title40-vol18/
pdf/CFR-2010-title40-vol18-sec86-005-17.pdf.

77

https://learn.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)
https://forums.ross-tech.com/index.php?threads/5918/page-10#post-226184
https://forums.ross-tech.com/index.php?threads/5918/page-10#post-226184
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://hacks.mozilla.org/2021/02/browser-fuzzing-at-mozilla/
https://hacks.mozilla.org/2021/02/browser-fuzzing-at-mozilla/
https://bugzilla.mozilla.org/show_bug.cgi?id=domino
https://bugzilla.mozilla.org/show_bug.cgi?id=domino
https://www.kernel.org/doc/html/next/networking/can.html
https://www.kernel.org/doc/html/next/networking/can.html
https://intrepidcs.com/products/vehicle-network-adapters/valuecan-4/valuecan-4-2-overview-low-cost-two-channel-can-fd-usb-interface/
https://intrepidcs.com/products/vehicle-network-adapters/valuecan-4/valuecan-4-2-overview-low-cost-two-channel-can-fd-usb-interface/
https://intrepidcs.com/products/vehicle-network-adapters/valuecan-4/valuecan-4-2-overview-low-cost-two-channel-can-fd-usb-interface/
https://intrepidcs.com/
https://github.com/LearnLib/learnlib
https://github.com/LearnLib/learnlib
https://www.gao.gov/assets/gao-16-350.pdf
https://www.gao.gov/assets/gao-16-350.pdf
https://www.govinfo.gov/content/pkg/CFR-2010-title40-vol18/pdf/CFR-2010-title40-vol18-sec86-005-17.pdf
https://www.govinfo.gov/content/pkg/CFR-2010-title40-vol18/pdf/CFR-2010-title40-vol18-sec86-005-17.pdf

BIBLIOGRAPHY

[42] Drake Victoria. Threat modeling, December 2019. URL https://owasp.
org/www-community/Threat_Modeling.

[43] Wikipedia, the free encyclopedia. Can bus, 2024. URL https://en.
wikipedia.org/wiki/CAN_bus. [Online; accessed February 01, 2024].

[44] Wikipedia, the free encyclopedia. Can bus – history, 2024. URL https:
//en.wikipedia.org/wiki/CAN_bus#History. [Online; accessed February
01, 2024].

78

https://owasp.org/www-community/Threat_Modeling
https://owasp.org/www-community/Threat_Modeling
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/CAN_bus#History
https://en.wikipedia.org/wiki/CAN_bus#History

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Cybersecurity Concerns
	Attack Goals
	Attack Surfaces

	Industry Standards
	AUTOSAR
	ISO 26262
	ISO/SAE 21434

	State of the Art for Vehicle Cybersecurity
	Threat Modeling
	Testing Methodologies and Tools
	Penetration Testing
	Fuzz Testing
	Regression Testing
	Modularity of Tools

	Continuous Vehicle Security
	Fuzz Testing
	Classification of Fuzzers

	Thesis Objectives

	Controller Area Network (CAN) Bus
	Why focus on the CAN bus?
	CAN Design Overview
	Physical Layer
	Logic Signaling
	Electrical specifications
	Node Architecture

	Data Link Layer
	Arbitration
	Bit Timing and Synchronization
	Bit Stuffing
	CAN Frames

	Information Security in CAN Networks
	Threat Mitigation Technologies

	Solution Design
	Key design principles
	Key components
	Additional components

	Implementation
	Technologies and Libraries
	Python
	python-can
	python-ics
	PySide6

	CAN Interfaces
	Virtual ECU
	Fuzz Generators
	Fuzzer
	Logger
	CAN Reverse
	User Interface

	Testing and Results
	Full virtual setup
	CANalyzer
	Testing Bench
	Results
	Reverse Engineering of CAN Frames

	Virtual ECU on a Physical CAN Bus
	Results
	Error Detection

	Conclusions
	Future Work

