
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Research, Testing, and Mitigation Solutions for Web
Application Firewalls Evasion Techniques

Supervisor Candidate
prof. Alessandro Savino Pietro Andorno
Co-Supervisors
Nicolò Maunero
Matteo Graci

Academic Year 2023-2024

ABSTRACT

In today’s digital age, web application security is a priority for organizations of all
sizes and industries. Web Application Firewalls (WAFs) are a critical component in
defending web applications against threats and attacks. However, like all security
tools, they are subject to different evasion techniques that put the security of web
applications and sensitive data at risk. This thesis addresses the challenge of WAFs
evasion techniques through a combination of research, experimentation and devel-
opment of mitigation solutions.

The first part of this thesis will introduce web applications security describing some
of the most common vulnerabilities that can affect them such as SQL injection and
Cross-Site Scripting (XSS).

Then, we will see how Web Application Firewalls can be used to stop attackers
from exploiting some of those vulnerabilities while waiting for the developers to
patch them. In this part, particular attention will be put on ModSecurity, an open-
source Web Application Firewall, and the Core Rule Set, a set of rules developed
by the OWASP foundation to configure ModSecurity.

The third part of the thesis will contain a research on some of the most common
and effective techniques to bypass Web Application Firewalls protection. Techniques
such as finding the web server’s real IP address, payload obfuscation and impedance
mismatch will be explained in detail using some real world examples.

The last part of the thesis contains the active experimentation and testing of Web
Application Firewalls evasion techniques on a controlled environment. The testing
process involves using a known vulnerable application, the OWASP Juice Shop, pro-
tected by ModSecurity configured with the Core Rule Set. In this phase we will not
only concentrate on bypass techniques, but we will also see how Web Application
Firewalls fail to protect web applications from some kinds of vulnerabilities, such
as business logic ones. For every bypass technique that is proven successful in this
phase, we will also try to understand why it was possible and how to prevent it.

The ultimate goal of this thesis is showing how attackers are able to bypass Web Ap-
plication Firewalls protection to exploit vulnerabilities in order to understand how
to stop them and improve the overall attack detection capabilities of these tools by
implementing countermeasures for the evasion techniques seen.

I

CONTENTS

1 Introduction 1

2 Web Applications Security 3
2.1 Brief history of web applications . 3
2.2 How does a web application work? 4
2.3 Web applications vulnerabilities . 5

2.3.1 OWASP top 10 . 5
2.3.2 SQL Injection . 7
2.3.3 Cross-Site Scripting (XSS) . 9
2.3.4 Business logic vulnerabilities 11

2.4 Web Application Firewalls . 12

3 Web Application Firewalls: ModSecurity and the OWASP Core
Rule Set 13
3.1 Web Application Firewalls Explained 13

3.1.1 WAF classification . 15
3.2 ModSecurity . 17

3.2.1 Configuration Directives . 17
3.2.2 Processing Phases . 19
3.2.3 Writing Rules . 20

3.3 OWASP Core Rule Set (CRS) . 25
3.3.1 Anomaly Scoring . 25
3.3.2 Paranoia Levels . 27

4 WAF Evasion Techniques 29
4.1 Finding The Server’s Real IP Address 29

4.1.1 The Bypass . 30
4.1.2 The Mitigation . 34

4.2 Payload Obfuscation . 35
4.2.1 Unicode Compatibility . 35
4.2.2 Javascript Obfuscation . 35
4.2.3 Base64 Encoding . 40

4.3 Exploiting a Misconfiguration/Vulnerability 42
4.3.1 Submitting Very Large Requests 42
4.3.2 Exploiting a Bug . 43

4.4 Impedance Mismatch . 45
4.4.1 Content-type confusion . 45
4.4.2 JSON Duplicate Keys . 47

II

CONTENTS

4.4.3 The Mitigation . 48

5 Hands-on WAF Evasion And Mitigations 50
5.1 Building The Test Environment . 50
5.2 SQL Injection Through Impedance Mismatch 52
5.3 SQL Injection Through Parameters Overflow 55
5.4 Stored XSS Through Custom HTTP Header 56
5.5 The Business Logic Problem . 59

6 Conclusions 62
6.1 Possible Future Evolutions . 62

III

LIST OF FIGURES

2.1 Structure of a Web Application. Source: https://mobidev.biz/bl
og/web-application-architecture-types 4

2.2 2021 OWASP Top 10. Source: https://owasp.org/Top10/assets
/mapping.png . 6

2.3 SQL injection vulnerability. Source: https://portswigger.net/we
b-security/images/sql-injection.svg 8

2.4 Cross-Site Scripting. Source: https://portswigger.net/web-sec

urity/images/cross-site-scripting.svg 10

2.5 Business Logic Vulnerability. Source: https://portswigger.net/

web-security/images/logic-flaws.jpg 11

3.1 Web Application Firewall Structure. Source: https://webscoot.i

o/wp-content/uploads/2020/07/waf-1024x463.png 13

3.2 WAF internals. Source: https://miro.medium.com/v2/resize:

fit:720/format:webp/1*_gHw6hGIzpQvprVAPFO25A.png 14

3.3 Anomaly Scoring Example. Source: https://coreruleset.org/do
cs/concepts/anomaly_scoring/as_inbound_no_fonts.svg 26

3.4 CRS Paranoia Levels. Source: https://coreruleset.org/docs/c

oncepts/paranoia_levels/ . 27

4.1 WAF bypass connecting directly to the web server’s IP Address.
Source: https://kalilinuxtutorials.com/wp-content/uploa

ds/2019/02/WAF-1024x446.png . 30

4.2 Censys search for www.polito.it. IP addresses have been obscured
for privacy reasons . 31

4.3 DNS History for www.polito.it from Security Trails. IP addresses
have been redacted for privacy reasons 32

4.4 www.polito.it TLS Certificate . 33

4.5 Shodan search for common name polito.it. IP addresses have been
redacted for privacy reasons . 34

4.6 Fullwidth encoding of the SQL Injection payload 35

4.7 XSS using alert(’XSS’) function . 36

4.8 Basic XSS payload blocked by Imperva. Source: https://www.tech
anarchy.net/content/images/size/w1000/2021/02/56f5f291f4

97eb18499332e7f71698043e68a73b-imperva-block.png 38

4.9 Imperva Bypass using JJEncode. Source: https://www.techanarch
y.net/content/images/2021/02/javascript_xss.png 39

4.10 CRS rule to stop JSF**K encoded payloads 39

IV

https://mobidev.biz/blog/web-application-architecture-types
https://mobidev.biz/blog/web-application-architecture-types
https://owasp.org/Top10/assets/mapping.png
https://owasp.org/Top10/assets/mapping.png
https://portswigger.net/web-security/images/sql-injection.svg
https://portswigger.net/web-security/images/sql-injection.svg
https://portswigger.net/web-security/images/cross-site-scripting.svg
https://portswigger.net/web-security/images/cross-site-scripting.svg
https://portswigger.net/web-security/images/logic-flaws.jpg
https://portswigger.net/web-security/images/logic-flaws.jpg
https://webscoot.io/wp-content/uploads/2020/07/waf-1024x463.png
https://webscoot.io/wp-content/uploads/2020/07/waf-1024x463.png
https://miro.medium.com/v2/resize:fit:720/format:webp/1*_gHw6hGIzpQvprVAPFO25A.png
https://miro.medium.com/v2/resize:fit:720/format:webp/1*_gHw6hGIzpQvprVAPFO25A.png
https://coreruleset.org/docs/concepts/anomaly_scoring/as_inbound_no_fonts.svg
https://coreruleset.org/docs/concepts/anomaly_scoring/as_inbound_no_fonts.svg
https://coreruleset.org/docs/concepts/paranoia_levels/
https://coreruleset.org/docs/concepts/paranoia_levels/
https://kalilinuxtutorials.com/wp-content/uploads/2019/02/WAF-1024x446.png
https://kalilinuxtutorials.com/wp-content/uploads/2019/02/WAF-1024x446.png
https://www.techanarchy.net/content/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva-block.png
https://www.techanarchy.net/content/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva-block.png
https://www.techanarchy.net/content/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva-block.png
https://www.techanarchy.net/content/images/2021/02/javascript_xss.png
https://www.techanarchy.net/content/images/2021/02/javascript_xss.png

LIST OF FIGURES

4.11 XSS payload blocked by the WAF. Source https://github.com/C

ognisysGroup/cognisysgroup.github.io/assets/46415431/b16

58e65-64c8-48e0-bc38-1e8ab2f4c743 40
4.12 AWS WAF bypass using Base64 encoding. Source: https://github

.com/CognisysGroup/cognisysgroup.github.io/assets/464154

31/5c280ee5-b063-43a3-a26e-46f43f4bbf99 41
4.13 XSS Payload blocked by Akamai WAF. Some details have been redacted

for privacy reasons. 42
4.14 Very large HTTP request to bypass Akamai. Some details have been

redacted for privacy reasons. 43
4.15 Exploited XSS vulnerability bypassing Akamai. Some details have

been redacted for privacy reasons. 43
4.16 Command execution payload blocked by AWS WAF. Source: https:

//blog.sicuranext.com/content/images/2023/07/image-2.png . 47
4.17 Command execution payload bypassing AWS WAF. Source: https:

//blog.sicuranext.com/content/images/2023/07/image-3.png . 48

5.1 The docker compose file used to build the test environment 51
5.2 The docker container running the test environment 51
5.3 SQL Injection confirmation . 52
5.4 SQL Injection payload blocked by ModSecurity 53
5.5 Duplicate parameters concatenation confirmation 53
5.6 WAF bypass and SQL Injection exploitation 54
5.7 WAF bypass payload blocked after mitigation 55
5.8 WAF bypass and SQL Injection exploitation using an high number

of parameters . 55
5.9 WAF bypass mitigation . 56
5.10 Functionality to see the last login IP 56
5.11 Modifying the last login IP using a custom header 57
5.12 Inserting an XSS payload using an HTTP custom header 57
5.13 CRS XSS payload detection rule example 58
5.14 XSS payload triggered . 58
5.15 XSS payload blocked by ModSecurity 59
5.16 Normal user registration process . 59
5.17 Customer can not access administrative page 60
5.18 Modifies request to register an admin user 60

V

https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/b1658e65-64c8-48e0-bc38-1e8ab2f4c743
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/b1658e65-64c8-48e0-bc38-1e8ab2f4c743
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/b1658e65-64c8-48e0-bc38-1e8ab2f4c743
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bbf99
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bbf99
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bbf99
https://blog.sicuranext.com/content/images/2023/07/image-2.png
https://blog.sicuranext.com/content/images/2023/07/image-2.png
https://blog.sicuranext.com/content/images/2023/07/image-3.png
https://blog.sicuranext.com/content/images/2023/07/image-3.png

CHAPTER 1

INTRODUCTION

In today’s digital world, web applications have become essential in our daily lives.
From online banking to public administration, from social networks to online shop-
ping, nearly every digital interaction occurs through a web application.

From the user’s point of view, the introduction of web applications has been
hugely beneficial, since they allow us to perform every kind of task much faster than
before and without having to leave our homes. However, this improvement comes
with several security concerns:

• Using a web application involves transmitting personal data over the public
internet and trusting companies to securely store them.

• Web applications are constantly evolving and introducing new features. This
makes them more complex and, consequently, more prone to bugs and vulner-
abilities.

• Web applications are publicly accessible. This makes them easy targets for
attackers.

For these reasons it is crucial for companies to prioritize the security of their web
applications. Protecting a web application is a complex activity, but it can be
facilitated using various automatic tools. Among these, the most effective ones are
the Web Application Firewalls (WAFs). A WAF is a tool that is placed between
the client and the server and is able to intercept and analyze HTTP traffic between
the two in order to detect and possibly stop certain types of attacks.

Unfortunately, a WAF alone is not enough to secure a web application, for two
reasons:

• It is not able to detect all possible kinds of attacks;

• There are techniques that allow attackers to bypass its protection.

This thesis aims at describing and demonstrating how attackers are able to bypass
the protection offered by a Web Application Firewall. In order to do this, we will
firstly describe the main vulnerabilities of web applications and how attackers are
able to exploit them. Then, we will describe how Web Application Firewalls work
and how they can be used to protect web applications, with a particular focus on
ModSecurity, which is an open-source WAF. Next, we will describe how attackers

1

CHAPTER 1. INTRODUCTION

are able to bypass the protection offered by WAFs showcasing some real world at-
tacks. At this point, we will build our own testing environment using ModSecurity
to protect the OWASP Juice Shop, which is an intentionally vulnerable web appli-
cation, and we will use it for an hands-on demonstration on how to bypass a WAF.
Finally, we will try to understand what made the bypasses possible and we will
propose some mitigation in order to avoid them.

This document will be structured as follows:

• Chapter 2 contains an introduction to the main vulnerabilities of web appli-
cations along with some examples on how attackers are able exploit them.

• Chapter 3 explains how Web Application Firewalls work and how they can be
used to stop certain types of attacks, with a particular focus on ModSecurity,
which is an open source WAF, and the OWASP Core Rule Set, which is a set
of rules written by the OWASP to configure ModSecurity in order to stop the
most common attacks.

• Chapter 4 showcases some real world attacks in order to highlight the main
techniques that can be used to bypass the protection offered by Web Applica-
tion Firewalls.

• Chapter 5 contains an hands-on demonstration on how to bypass a WAF
using a controlled testing environment and possible mitigations for the bypass
techniques found to be successful.

• Chapter 6 concludes the thesis summarizing the achieved results and the
lessons learnt.

2

CHAPTER 2

WEB APPLICATIONS SECURITY

In order to understand how Web Application Firewalls work, a strong foundation
on web applications and their vulnerabilities is needed. In this chapter we will try
to build that foundation starting with a brief history of web applications. Then,
we will see how modern web applications work and which are the main technologies
involved. Next, we will describe the main vulnerabilities affecting web applications
and how attackers are able to exploit them. Finally, we will briefly introduce Web
Application Firewalls to understand their role in protecting web applications.

2.1 Brief history of web applications

Modern web applications are the result of a development process that started with
the invention of the World Wide Web (WWW) by Tim Berners Lee in 1989. At that
time, every web page was a static document written in HTML, which is a markup
language used to specify how to display the content of the document. The only
action that users could perform, was to request a document to the server, which
would than be displayed by the user’s browser [1].

The first improvement regarding interactivity of web pages took place in 1995
with the introduction of JavaScript, which is a programming language that can be
used to add dynamic elements to a web page, since it can be executed by the web
browser. This allowed the adjustment of the web page contents based on user input,
without needing to wait for the response of the web server, resulting in a much more
pleasant and efficient user experience. However, JavaScript allowed users only to
modify the way content was displayed, but not the content itself [2].

In 2005, with the introduction of the Asynchronous JavaScript and XML (AJAX)
programming model, web pages reached levels of interactivity similar to the ones of
modern web applications. The core principle of AJAX is the asynchronous commu-
nication between the client and the server, which allows users to continue interacting
with the web page while waiting for a response from the server, without having to
reload the page at every request. The AJAX model allowed the transition from
static web sites to dynamic web applications, because users were now able not only
to view the content of a web page, but also to generate and modify that content or
ask the server to perform specific tasks [3].

The final major improvement of web applications was the introduction of the
Application Programming Interfaces (APIs). An API offers a way to allow the
communication between two computers without the need of user interaction, by

3

CHAPTER 2. WEB APPLICATIONS SECURITY

defining the rules for data exchange. APIs make web applications development
simpler and increase their functionalities [4].

2.2 How does a web application work?

We have seen how web applications evolved from the early 1990s to nowadays.
Now, we will explain more in depth how a web application works and which are the
technologies involved.

A web application is a software that allows users to perform tasks over the
internet [5]. The following figure shows the high-level structure of a web application.

Figure 2.1: Structure of a Web Application. Source: https://mobidev.biz/blog/web-applica
tion-architecture-types

The first thing that we notice is that, differently from a native application, a
web application is structured in multiple tiers, each one of which can be installed
and run on a different machine:

• the presentation tier, also referred to as the client-side, is the part of the web
application that the users can see and interact with through their browser;

• the application tier, also referred to as the server-side, is the part of the web
application that implements the business logic and handles requests coming
from the client;

• the data tier is the part of the web application in which permanent data are
stored.

4

https://mobidev.biz/blog/web-application-architecture-types
https://mobidev.biz/blog/web-application-architecture-types

CHAPTER 2. WEB APPLICATIONS SECURITY

The typical workflow of a web application can be described as follows: “a user,
interacting with the client-side through their browser, triggers a request to the web
server, which will perform the task, eventually interacting with a database, and re-
turn the results back to the user.” Every interaction between different tiers occurs
through the HTTP protocol.

2.3 Web applications vulnerabilities

Every component of a web application is a potential source for vulnerabilities. In
order to correctly protect web applications from attackers it is essential to know
how different kinds of vulnerabilities can arise and how bad actors can exploit them.
One of the best resources to learn more about web applications vulnerabilities and
how to avoid them is the OWASP (Open Web Application Security Project) Top 10.

2.3.1 OWASP top 10

The OWASP Top 10 is a periodically updated collection of the ten most common
security risks for web applications [6]. It is important to stress the fact that a security
risk and a vulnerability are two different things: a vulnerability is a weakness in an
information system, system security procedures, internal controls, or implementation
that could be exploited or triggered by a threat source to compromise the system’s
security [7], while a security risk is a measure of the extent to which an entity is
threatened by a potential circumstance or event [8]. So, in the context of the OWASP
Top 10, every security risk category encompasses many different vulnerabilities.

Classification Methodology

The process of selecting the top ten security risks for web applications requires
different phases:

1. Information Gathering. In this phase, data about vulnerabilities discovered
in web applications is gathered from different organizations.

2. Mapping to CWEs. In this phase every vulnerability collected in the pre-
vious phase is mapped to a specific CWE (Common Weakness Enumeration).
A CWE is a standard way to describe a weakness of a system, which can be
defined as a condition in any part of a system that could contribute to the
introduction of a vulnerability [9].

3. Grouping into Risk Categories. In this phase, related CWEs are grouped
inside a single risk category.

4. Ranknig. In this phase, risk categories are ranked based on how frequent the
vulnerabilities inside them are.

The 2021 OWASP Top 10

Figure 2.2 shows the risk categories in the 2021 OWASP Top 10, which is the last
edition, and how things have changed from the previous edition.

As we can see, the categories in the 2021 version of the OWASP Top 10 are:

5

CHAPTER 2. WEB APPLICATIONS SECURITY

Figure 2.2: 2021 OWASP Top 10. Source: https://owasp.org/Top10/assets/mapping.png

• Broken Access Control. Access control, also known as authorization, is the
security mechanism which regulates access to resources based on the user’s
permissions. Access control vulnerabilities often lead to unauthorized disclo-
sure, modification or destruction of sensitive data. For example, an attacker
could exploit an access control vulnerability to gain access to other users data
or to portions of the application that should be visible only by administrators.

• Cryptographic Failures. Cryptography protects sensitive data from unau-
thorized access both when they are in transit over the network and when they
are stored in the database. Bugs in the cryptographic algorithms used or in
their implementation could allow an attacker to obtain sensitive information
such as the user’s password.

• Injection. An injection vulnerability generally arises when the application
blindly trusts the user input without validating or sanitizing it. This allows
an attacker to inject, for example, SQL commands (SQL injection), system
commands (command injection) or code snippets (code injection).

• Insecure Design. This category contains the security flaws in the application
design. A security flaw in the design process is particularly risky, since it can’t
be fixed in the implementation phase. This kind of flaws often arise when the
level of security required is underestimated.

• Security Misconfiguration. When configuring an application, several errors
can be committed, such as keeping unnecessary and potentially vulnerable
features active or leaving accounts with default credentials. If these errors
become exploitable vulnerabilities, they fall into this category.

• Vulnerable and Outdated Components. When developing an application,
it is common to use third party components and frameworks. If these are
vulnerable, then the vulnerability is reflected in the application and can be
exploited by attackers.

• Identification and Authentication Failures. Authentication is the secu-
rity mechanism that verifies if the user is really who they claim to be. Au-
thentication vulnerabilities could allow an attacker to log in the application as
another user. Authentication vulnerabilities often arise because there are no
controls against brute force attacks or because the authentication mechanism
is poorly implemented or designed.

6

https://owasp.org/Top10/assets/mapping.png

CHAPTER 2. WEB APPLICATIONS SECURITY

• Software and Data Integrity Failures. Integrity is what protects data
against unauthorized modification. An integrity violation could allow an at-
tacker to modify users data or the source code of the application.

• Security Logging and Monitoring Failures. Application logs are files
containing every action performed by the users. Analyzing the logs it is pos-
sible to detect suspicious behaviours and identify attackers. Without proper
logging and monitoring, attacks can not be detected.

• Server-Side Request Forgery. This vulnerability arises when the web ap-
plication fetches a remote resource without properly validating the user sup-
plied URL. This vulnerability allows an attacker to make the web application
send a crafted request to an unknown destination, often causing a sensitive
data leak.

Unfortunately, digging deeper into each category of the OWASP Top 10 is out of
the scope of this thesis. For this reason, only the most relevant vulnerabilities for
the goal of the thesis will be further analyzed.

2.3.2 SQL Injection

Introduction to Databases

Modern web applications have to handle a huge amount of data. To do this, a
database in which relevant information for the application are stored is almost always
required. So, when using a web application we can be quite sure that the web server
is accessing periodically the database either to retrieve some data or to store new
pieces of information.

Databases can be split into two different categories:

• Relational Databases, in which data are stored in tables organized in rows
and columns. Each row represents a unique element of the table, while each
column represent an attribute. For example, in a table named Users, each row
would represent a different user and each column would contain information
about the user such as the email, the username and the password.

• Non-Relational Database, in which data are stored using different formats such
as documents or graph nodes, depending on the database.

When using a relational database (which is the most common option), queries will
follow the Structured Query Language (SQL) syntax.

The Vulnerability

A SQL injection vulnerability occurs when a malicious actor is able to modify the
queries that the application makes to its database [10].

This kind of vulnerability can be exploited to access sensitive data stored in the
database such as users credentials or to bypass the login procedure, as we will see.
Let’s consider for example an application that lets a user filter elements using a
parameter category. Probably, the web server will execute a query similar to the
next one in order to retrieve from the database the elements to be displayed:

7

CHAPTER 2. WEB APPLICATIONS SECURITY

Figure 2.3: SQL injection vulnerability. Source: https://portswigger.net/web-security/im

ages/sql-injection.svg

SELECT * FROM Products WHERE category=‘<user_input>’

This query will return every row in the table Products where the category column
contains a value equal to the user supplied one.

Now, if the proper checks to validate the user input are missing, an attacker
could supply the following value:

’UNION SELECT * FROM Users--

The UNION clause in SQL is used to combine the results of two separate SELECT

statements, while -- is an SQL comment. So, the query that will be executed will
be:

SELECT * FROM Products WHERE category=‘’

UNION SELECT * FROM Users--’

This means that all the data in the Users table will be displayed, including, prob-
ably, the users’ credentials.

Let’s now imagine an application that uses the following query to authenticate users:

SELECT * FROM Users WHERE username=‘<username>’ AND

password=‘<password>’

If this query returns some data (the username and the password supplied are correct)
the application let’s the user log-in.

A malicious user could supply the following input:

’ OR 1=1--

If the user input isn’t checked, the following query would be executed:

SELECT * FROM Users WHERE username=‘’ OR 1=1

This will let the attacker log in the application without having the credentials, since
this query will always return some data.

8

https://portswigger.net/web-security/images/sql-injection.svg
https://portswigger.net/web-security/images/sql-injection.svg

CHAPTER 2. WEB APPLICATIONS SECURITY

How To Remediate

An SQL injection vulnerability has two causes:

• User input is blindly trusted.

• User input can interfere with the original query.

To best way to avoid an SQL injection vulnerability is to use the so called param-
eterized queries. In a parameterized query, user input is never interpreted as part
of the query itself, so it cannot interfere with it, even if it contains SQL commands.
Please note that, even when using parameterized queries, it is important to perform
input validation and sanitization properly.

2.3.3 Cross-Site Scripting (XSS)

Introduction to Browsers

As we already said, a browser is what the user interacts with to use a web application.
In particular, a browser is a software that is able to interpret an HTML document
to properly format the page that the user sees.

Browsers are also able to interpret and execute JavaScript code that can be
inserted in an HTML document, for example in a <script> tag, in order to increase
the interactivity of the client side of the application. This ability to execute code
can be exploited by attackers if they are able to inject a malicious script inside an
HTML document which is then rendered and executed by the user’s browser.

The Vulnerability

A Cross-Site Scripting vulnerability arises when an attacker is able to force the
user’s browser to execute a malicious script. This could be used to retrieve sensitive
data or to perform actions on the web application acting as the compromised user.
There are three types of Cross-Site Scripting vulnerabilities [11]:

• Reflected XSS, where the malicious script comes from the current HTTP re-
quest.

• Stored XSS, where the malicious script comes from the web server’s database;

• DOM-based XSS where the vulnerability exists on the client side of the appli-
cation.

Now we will try to understand better how each of these vulnerabilities can be ex-
ploited by attackers.

9

CHAPTER 2. WEB APPLICATIONS SECURITY

Figure 2.4: Cross-Site Scripting. Source: https://portswigger.net/web-security/images/c

ross-site-scripting.svg

Reflected XSS Reflected Cross-Site Scripting is the simplest XSS vulnerability.
It arises when the user input sent in the HTTP response is inserted in the HTML
document sent in the response in an unsafe way.

Let’s consider for example an application that takes a query parameter message
and displays its content in an HTML tag similar to the following one:

<p>message</p>

If proper checks on user input are missing, a malicious user could use a payload like
the following one as a value for the query parameter:

<script>...</script>

This will result in an HTML document containing the following tag:

<p> <script>...</script> </p>

Now, if the victim user will visit the URL constructed by the attacker, the malicious
JavaScript code inside the <script> tag will be executed in the context of the user
session with the application, so it will be able to perform any operation that the
compromised user is allowed to do.

Stored XSS Stored Cross-Site Scripting is the most dangerous among the XSS
vulnerabilities. It is similar to the Reflected XSS, but in this case, the payload will
be stored inside the application database and will be triggered every time a user will
request the resource in which the payload is present.

Let’s consider for example a blog in which a user can insert arbitrary input in the
posts. If he is able to insert a malicious script in a blog post, then every user that
will read that post will be infected, resulting in a much bigger damage compared to
a Reflected XSS, in which the attacker is able to compromise only one victim at a
time.

10

https://portswigger.net/web-security/images/cross-site-scripting.svg
https://portswigger.net/web-security/images/cross-site-scripting.svg

CHAPTER 2. WEB APPLICATIONS SECURITY

DOM XSS A DOM Cross-Site Scripting vulnerability, differently from the previ-
ous ones, arises because of bad programming practices on the client side. Typically
this involves using some JavaScript functions to process data coming from an un-
trusted source to write the results back in the HTML document.

If the attacker is able to control the input field, then they may be able to find a
way to execute the malicious script. If the input field is part of the HTTP request,
the attacker could make other users execute the script in the same way as the
Reflected XSS.

How To Remediate

The best way to avoid XSS vulnerabilities is to ensure that all variables go through
a process of validation and sanitization. A simple way to do this is to use a pro-
gramming framework (e.g. React.js). However, even the most popular frameworks
have vulnerabilities. In order to address those vulnerabilities output encoding can
be used.

Output encoding consists in encoding unsafe user input in a way that ensures
both that the displayed content doesn’t change and that no harm can be done by
an attacker. For example, a good way to avoid XSS vulnerabilities is to HTML
encode the symbols < and > to < and > respectively. Doing so ensures that
the browser doesn’t interpret the user input as JavaScript code to be executed.

2.3.4 Business logic vulnerabilities

The Vulnerability

A business logic vulnerability is a design and implementation flaw of the web appli-
cation that let’s a malicious user manipulate a legitimate functionality in a way that
results in bad consequences for the application. Business logic vulnerabilities have

Figure 2.5: Business Logic Vulnerability. Source: https://portswigger.net/web-security/im
ages/logic-flaws.jpg

an impact that depends on the functionality in which the vulnerability is present.
For example, a business logic vulnerability could allow an attacker to bypass the

11

https://portswigger.net/web-security/images/logic-flaws.jpg
https://portswigger.net/web-security/images/logic-flaws.jpg

CHAPTER 2. WEB APPLICATIONS SECURITY

authentication process or to be able to purchase some items from an online shop
even if they don’t have enough money.

Remediations

Usually, a business logic vulnerability arises because flawed assumptions about the
user behaviour are made in the application design phase. This means that the
application is not able to avoid the unintended ways in which an attacker could use
its functionalities.

Preventing a business logic flaw is particularly hard, especially for big applica-
tions, because the developers don’t know the whole application. However, a good
practice to lower the risk is to maintain clear documents for all transactions and
workflows of the application in order to keep track of the assumptions made and to
be able to predict unexpected behaviours and stop them.

2.4 Web Application Firewalls

Every web application vulnerability that we have seen can be avoided by attaining to
best security practices during the entire life cycle of the application. However, it is
important to remind that perfect security doesn’t exist, so some vulnerabilities will
always be present in every system and it is important to test for them periodically
in order to patch them.

Unfortunately, the time spent patching vulnerabilities is often less than the time
spent developing new functionalities, which could introduce new vulnerabilities in
the application. This gives the attacker a lot of time to try and exploit the vulner-
abilities that they find before they are patched.

In order to gain some time and to better protect web applications it is possible
to use a Web Application Firewall (WAF), which is a tool that is able to intercept
and analyze the requests to the web application in order to stop the most common
kinds of attacks. With a WAF in place, we slow down the attacker and we gain
some time to find vulnerabilities and patch them. Nevertheless, a WAF shouldn’t
be intended as a tool to avoid patching vulnerabilities because:

• In some cases it is possible to bypass its protection.

• It isn’t able to stop every kind of attack.

Instead, it should be intended as an additional layer of security. Chapter 3 will
explain better how Web Application Firewalls work, with a particular focus on
ModSecurity, an open source WAF.

12

CHAPTER 3

WEB APPLICATION FIREWALLS:
MODSECURITY AND THE OWASP

CORE RULE SET

In Chapter 2 we introduced the main security vulnerabilities that affect web appli-
cations and we introduced the Web Application Firewalls (WAFs) as a good security
measure to stop attackers from exploiting them while the developers try to patch
them.

In this chapter we will see in detail how a WAF works in order to understand
how it is able to stop attackers. Then, we will concentrate on ModSecurity1, which
is an open source Web Application Firewall, and its main features. Finally, we will
see how ModSecurity can be configured using the OWASP developed Core Rule Set
(CRS)2.

3.1 Web Application Firewalls Explained

Figure 3.1 shows the general structure of a web application protected by a Web
Application Firewall.

Figure 3.1: Web Application Firewall Structure. Source: https://webscoot.io/wp-content/u

ploads/2020/07/waf-1024x463.png

1https://github.com/owasp-modsecurity/ModSecurity
2https://coreruleset.org/

13

https://webscoot.io/wp-content/uploads/2020/07/waf-1024x463.png
https://webscoot.io/wp-content/uploads/2020/07/waf-1024x463.png
https://github.com/owasp-modsecurity/ModSecurity
https://coreruleset.org/

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

As we can see the web application firewall is placed between the clients and the
server. In technical terms, the web application firewall acts as a reverse proxy for the
back-end. This means that the HTTP requests made by the clients pass through
the web application firewall before reaching the web server, which analyzes them
using a set of rules to decide if the request is malicious. In that case the request is
blocked, otherwise it is forwarded to the web server for actual processing.

Let’s now analyze more in detail what happens inside aWeb Application Firewall,
starting from figure 3.2.

Figure 3.2: WAF internals. Source: https://miro.medium.com/v2/resize:fit:720/format:

webp/1*_gHw6hGIzpQvprVAPFO25A.png

As we can see, a WAF typically works in three phases. The first phase, also known
as pre-processing, is the phase that contains all the preliminary operations on the
client requests. These can involve understanding which parts of the request are
worth analyzing, removing unnecessary parts from the requests and even discarding
malformed requests. The ultimate purpose of this phase is to select which requests
are worth analyzing more in detail, in order to optimize the analysis process.

The second phase, also known as normalization, is responsible of creating an
uniform and standardized representation of input data in order to facilitate the
identification of malicious payloads. This step typically involves:

• Decoding input data to have them in their original form. This is particularly
important to avoid obfuscation of malicious payloads through character encod-
ing to bypass the WAF protection. If this step is missing, an attacker could url-
encode the payload <script>alert(1)</script> into %3c%73%63%72%69%70

%74%3e%61%6c%65%72%74%28%31%29%3c%2f%73%63%72%69%70%74%3e to avoid
detection.

• Case Normalization to convert all the input data in the same case and make
the WAF detection capabilities case independent.

14

https://miro.medium.com/v2/resize:fit:720/format:webp/1*_gHw6hGIzpQvprVAPFO25A.png
https://miro.medium.com/v2/resize:fit:720/format:webp/1*_gHw6hGIzpQvprVAPFO25A.png

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

• Unicode Normalization to ensure that equivalent Unicode characters are
represented in a consistent manner in order to prevent attackers from using
variations to bypass the WAF protection.

The normalization phase is crucial if we want to avoid WAF bypasses that leverage
upon character manipulation.

The final phase, also called input validation, is the one in which actual detection
of malicious input is performed. This phase is highly dependent on the WAF used,
but in most cases it involves comparing the input request with the WAF policies
and rules to decide if the request can be safely processed by the server or if it is a
malicious one. For example, if there is a rule that bans the keyword script, all the
requests containing it will be blocked [12].

3.1.1 WAF classification

Web Application Firewalls can be classified in:

• Stateful or Stateless, based on the amount of information they analyze;

• Allowlist or Blocklist based on how the rules for attack detection are en-
forced;

• Network-based, Host-based or Cloud-based, based on how they are de-
ployed.

Stateless vs Stateful WAFs

Early web application firewalls, also known as stateless, used static rules to detect if
an HTTP request could cause damage to the back-end server. Of course, they were
able to detect attackers much faster than a human analyzing traffic, but they were
slow in adapting to new kinds of attacks. This is because it takes time to develop
new rules to stop new attacks or evasion techniques.

Modern web application firewalls, also known as stateful, can enrich the collected
data with context information about the web applications they protect and their
possible threats. This makes them harder to bypass and better at detecting attacks
[13].

Allowlist vs Blocklist WAFs

The difference between an allowlist and blacklist WAF is quite trivial. An allowlist
Web Application Firewall blocks every request but the ones that are explicitly per-
mitted by the rules, while a blocklist WAF will allow all requests but the ones that
are explicitly forbidden by the rules.

From the security point of view, an allowlist WAF should be always preferred
because it is much more difficult to make configuration errors that would allow an
attacker to bypass its protection since the default action is to block an unknown
HTTP request.

However, configuring an allowlist WAF takes much more time because perfect
knowledge of the protected web application is needed in order to avoid blocking
legitimate requests that could result in a functionality loss. Furthermore, every

15

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

time a new functionality is added to the web application, the WAF needs to be
reconfigured in order to permit it.

The choice between a blocklist or an allowlist WAF is highly dependent upon the
web application that needs to be protected. If the possible inputs and behaviours
of the application are perfectly known, an allowlist WAF should be preferred to
maximize security. Otherwise, a blocklist WAF should be used in order to guarantee
usability [14].

Network-based vs Host-based vs Cloud-based WAFs

Based on how they are deployed, WAFs can be classified in: network-based, host-
based and cloud-based.

A network-based web application firewall is deployed on the network perimeter and
is able to protect all the web servers inside the network. It operates by applying the
rules to all the incoming network traffic and blocking all the traffic that does not
meet them. This kind of WAF can be deployed as a dedicated hardware device or
as a software that runs on a server.
The pros of this solution are:

• The protection of all the web servers inside the network at once.

• The possibility to block traffic based on network-level information, such as IP
addresses.

• The protection against network-based attacks.

On the other end, the cons of this solution are:

• The requirement for a dedicated hardware or software solution.

• The high cost of maintenance.

• The impossibility to have a fine grain control over the single web server.

An host-based WAF is deployed on the same machine as the web server, so it
can protect only one web application at a time. It works by inspecting all the traffic
to the web server they protect, blocking the requests that don’t respect its rules.

The pros of this solution are:

• The possibility to customize the rules based on the web application it protects,
providing more fine grained controls.

• The possibility to deploy it on any web server, without requiring additional
hardware.

Of course, the main downside of this solution is that it can only protect a single
web application at a time. So, if we have more web servers, it could require more
time and resources to configure it on each of them.

Finally, a cloud-based WAF is deployed and managed by a third party, which
offers it as a service. This means that there is no need to purchase or maintain new
hardware or software other than the one needed for the web servers. Furthermore,

16

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

it is a solution that is easy to scale-up and can be used to protect any kind of web
application.

Of course, a third-party service is a good way to save time and resources in
maintenance, but it lowers the level of control we have and it could not provide the
same level of security as an on-premises WAF[15].

3.2 ModSecurity

Now that we have a general overview of Web Application Firewalls and how they
work, it is time to go deeper and analyze in detail one of the most common WAFs,
ModSecurity.

ModSecurity is an open source Web Application Firewall that works for different
web servers technologies, such as Nginx and Apache, and is able to protect them
form the most common web applications vulnerabilities [16].

Among the most important features of ModSecurity we have:

• HTTP Traffic Logging. This could seem a superfluous feature, since com-
mon web servers already offer the possibility to log HTTP traffic. However,
in many cases they are not able to log request bodies, making it impossible
to detect attacks that use the HTTP method POST. On the other hand, Mod-
Security makes full HTTP transaction logging possible to make it easier to
detect attacks.

• Rule Based Attack Detection. ModSecurity uses a flexible rule engine that
implements the ModSecurity Rule Language, which is a programming language
through which it is possible to define rules to detect and stop various kinds of
attacks.

• Flexibility in Deployment. ModSecurity is suitable to be deployed both as
a network-based WAF or as an host-based one.

• Portability. ModSecurity is compatible with a wide range of operating sys-
tems and web server technologies.

3.2.1 Configuration Directives

ModSecurity provides a long list of directives that can be used to configure the Web
Application Firewall. In this section we will see some of the most relevant ones as
explaining all of them in detail is out of the scope for this thesis.

SecRuleEngine

This directive allows the configuration of the Rule Engine. In particular, it allows
it to be:

• On. This means that the rules are processed and executed.

• Off. This means that rules aren’t processed.

17

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

• DetectionOnly. This means that the rules are processed, but no disruptive
action will be taken, so if a malicious request is detected it will be logged, but
it will not be blocked.

The syntax is the following:

SecRuleEngine On|Off|DetectionOnly

SecRule

This is probably the most important directive, because it is the one that let’s us
specify rules to analyze portions of HTTP requests and responses, also called vari-
ables, using an operator and take specific actions if the conditions specified in the
operator are met.
The general syntax is:

SecRule VARIABLES OPERATOR [ACTIONS]

It is important to note that even if specifying an action for a rule is optional,
every rule will execute an action when triggered. If no action is specified, the default
ones, configurable with the directive SecDefaultAction, will be executed. We will
go more deeply in rules writing later.

SecRuleScript

Instead of writing rules, ModSecurity lets us write Lua scripts to inspect HTTP
transactions and decide weather they are malicious or not. Then, we can include
them using the directive:

SecRuleScript /path/to/file.lua [ACTIONS]

The main difference with normal rules is that there are no variables nor operators:
the script has access to all variables in ModSecurity’s context and can use Lua syntax
to analyze them.

SecRequestBodyAccess and SecResponseBodyAccess

These two directives are used to grant or deny ModSecurity access to the request
and the response body respectively. The syntax is:

SecRequestBodyAccess|SecResponseBodyAccess On|Off

Of course, denying ModSecurity access to the request or the response body will
improve efficiency, but it will limit the attack detection capabilities, because the
body will not be analyzed by the rules.

SecArgumentsLimit

This directive can be used to specify the maximum number of arguments accepted
for processing.
The syntax is:

SecArgumentsLimit LIMIT

18

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

When using this directive it is recommended to write a rule to deny every request
that contains more arguments than the number specified. Otherwise an attacker
could evade detection by inserting his payload in a parameter after the last one
analyzed.

3.2.2 Processing Phases

ModSecurity allows rules to be executed in one of five phases of an HTTP transac-
tion:

• Request Headers.

• Request Body.

• Response Headers.

• Response Body.

• Logging.

It is important to note that the data available is cumulative, so a rule in a specific
phase will have access to all the data from the previous phases of the transaction.

The phase in which a rule is executed can be specified in the actions of the
SecRule directive. For example, if we want a rule to be executed in the first phase
we will use this syntax:

SecRule VARIABLES OPERATORS "phase:1, ..."

Phase 1, Request Headers

Rules placed in the first phase will be executed immediately after the request headers
have been received. This means that they will not have any visibility on the body.

The purpose of these rules should be to do something before the request body is
processed or to specify how to process it.

Phase 2, Request Body

Rules in this phase will be the most important, since they are the ones that validate
the user input placed in the request body.

It is important to remember that ModSecurity only supports parsing for the
following body types:

• application/x-www-form-urlencoded.

• application/json.

• application/xml.

• multipart/form-data.

19

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

Phase 3, Response Headers

Rules in this phase will be executed before sending the response headers back to the
client.

In this phase it is possible to observe the response before it happens.

Phase 4, Response Body

Rules in this phase will have access to all the data exchanged in the HTTP trans-
action.

Typically, rules in this phase will be used to analyze the response HTML to look
for errors, information disclosures or any other relevant information for a potential
attacker.

Phase 5, Logging

Rules in this phase will have an impact only on how the logging of the transaction
takes place. This means that any disruptive action, such as blocking a malicious
request, must be executed before because in this phase it will not have any effect.

Rules in this phase are executed no matter what happened in the previous ones:
it doesn’t matter if the HTTP transaction was a malicious or a legal one.

3.2.3 Writing Rules

As we have seen, in ModSecurity, the rules are defined using the SecRule directive
which requires three parameters:

• The variables, which are used to specify to which parts of the request or the
response the rule will inspect.

• The operators, which are used to specify the scenario in which the rule will
be triggered.

• The actions, which are used to specify what to do when the rule is triggered.

Variables

Let’s now see some of the most important variables that can be used to write rules.

ARGS is the most important variable when inspecting an HTTP request because
it is a collection containing all the parameters such as a POST request payload and
the URL parameters, so most of the user controlled input and potential payloads
for an attack are contained in this variable.

If we want to restrict the analysis on a subset of parameters we can select them
by name using the syntax ARGS:<name of the parameter to analyze >. On the
contrary, we can exclude the parameters we don’t want to analyze using the syntax
ARGS:!<name of the parameter to exclude >. Of course, these operations must
be taken with caution because it is possible to exclude important parameters from
the analysis that an attacker could use to insert their payload and bypass the WAF.

20

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

RESPONSE BODY contains the body of the web server response and it could
be useful when we want to look for information disclosures or sensitive data expo-
sures in the response.

It is crucial to remember that this variable will be populated only if ModSecurity
has been configured to have access to the response body, otherwise any rule using
this variable will be ineffective.

FILES contains the names of the files in a request body of type multipart/form-data.
This variable could be used, for example, to verify if an attacker is trying to exploit
a file upload functionality to insert malicious code in the application. Using this
variable we can write rules to forbid some potentially dangerous file extensions such
as .aspx or .php.

It is important to note that the FILES variable will contain only the file names
in the request body, so an attacker could bypass rules using it by placing the file
name in other parts of the request.

REMOTE ADDR contains the remote IP address of the client. This could be
useful to write rules to exclude some known malicious IP addresses or to implement
IP-based brute-force protection. However, as always when implementing controls
based on IP addresses we need to be aware that they can be changed to avoid
detection. Furthermore, if we have another reverse-proxy in front of ModSecurity,
such as a load balancer, this variable could contain an IP address that is not the
one of the user.

Operators

Once we have decided on which variables the rule will operate, we need to define
the condition for which the rule will be triggered and the corresponding actions
executed. This is done through operators. ModSecurity supports a great variety
of operators, but we will see only the most relevant for the scope of the thesis.

@rx is one of the most used operators and is also the default one. It performs a
regular expression matching of the pattern specified as a parameter to determine
whether the rule should or shouldn’t be triggered.

Regular expressions are a powerful tool because they allow detection of multiple
potential attack payloads using a single rule. For example, if we want to disallow the
<script> and <iframe> HTML tags because they could be part of an XSS attack
payload, instead of writing two separate rules, we can use a regular expression
matching

SecRule VARIABLES "@rx <script>|<iframe>" ACTIONS

Of course this was just a simple example to show the capabilities of regular expression
matching. However, writing regular expressions is a complex activity and it is really
easy to make mistakes, which, in the context of a web application firewall, could
mean a bypass.

The last thing to consider is that, by default, pattern matching is case-sensitive
in ModSecurity, so, to avoid bypasses that leverage on this it is strongly suggested to
make regular expressions case-insensitive using either the lowercase transformation
function, which we will see later, or the (?i) prefix in the pattern.

21

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

@inspectFile can be used to execute an external LUA script for every variable
in the target list. This is particularly useful when the application has a file up-
load functionality to inspect the content of the uploaded file and determine if it is
malicious or not.

For example, if we want to allow only JPG files to be uploaded, we can write the
following LUA script

function main(filename)

-- OPEN THE FILE

local file = io.open(filename, "rb")

if file then

-- READ THE MAGIC BYTES

local magicBytes = file:read(3)

file:close()

-- CHECK IF THE MAGIC BYTES ARE DIFFERENT FROM THE JPG ONES

if magicBytes != "\xFF\xD8\xFF"

return "malicious"

end

return nil

end

This script performs a check on the magic bytes of the uploaded file, which are the
most reliable information to determine the file type. In this case, if the file is not a
JPG one, the following rule would be triggered

SecRule FILES_TMPNAMES "@inspectFile magicBytes.lua" ACTIONS

One important thing to remember is that the @inspectFile operator should not
be used with variables other than FILE TMPNAMES because it has been proven that
other variables such as FULL REQUEST could allow an attacker to execute code on
the web server.

@ipMatch can be used in combination with the REMOTE ADDR variable to block
requests coming from known malicious ips.

This operator can handle both IPv4 and IPv6 addresses and can be used as
follows

SecRule REMOTE_ADDR "@ipMatch 192.168.1.14" ACTIONS

to take appropriate actions on requests coming from a specific IP address.

Numerical operators such as @ge, @gt, @eq, @lt and @le can be useful to per-
form controls on, for example, the number of arguments of an HTTP request.

We could, for example, write the following rule

SecRule &ARGS "@gt 50" ACTIONS

to perform appropriate actions on requests that have more than 50 arguments.

It is important to note that if the value of the provided variable can not be
converted to an integer, these operators will treat that variable as 0. This could
cause problems to the protected web application and even some bypasses.

22

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

Actions

Once we determined on which variables the rule will operate and which operator it
will use to analyze them, the last thing we need when writing a ModSecurity rule
is the action that it will perform once triggered.

ModSecurity provides five different types of actions:

• Disruptive actions, which cause ModSecurity to do something that will have
a direct impact on the HTTP transaction. In many cases, the disruptive action
will cause the HTTP transaction to be blocked because an attack attempt has
been identified. Each rule can have up to one disruptive action.

• Non-disruptive actions, which cause ModSecurity to do something which
will not interfere with the rule processing flow. As an example, a non-disruptive
action could set or update the value of a variable.

• Flow actions, which change the rule processing flow. For example, we could
write a rule that, if triggered, will cause ModSecurity to skip the following n

rules for the current transaction.

• Meta-data actions, which are used to provide more information to the rules,
such as assigning them an id, a severity or a message to be inserted in the log
when the rule is triggered.

• Data actions, which are actually not actions but containers for data used by
other actions, such as the processing status.

Let’s now see some of the most important ModSecurity actions.

allow is a disruptive action that in its simplest form will stop the rule process-
ing for the current HTTP transaction and will allow it to proceed without further
inspection.

Of course, this action could be exploited by an attacker to bypass the WAF: the
attacker could craft a request that meets the conditions for which the rule will be
triggered to avoid inspection.

Because of this, this action can be configured to skip just a single processing
phase or just the request inspection phases.

block is the disruptive action used when a malicious request triggers a rule. This
action will immediately stop rule processing and will return an error code to the
client.

Actually, this is how this action is most commonly used, but if we read the Mod-
Security documentation we see that it will perform the action defined by the previous
directive SecDefaultAction. For this reason it is important, when using custom
ModSecurity configurations, to pay attention, because if the SecDefaultAction is
allow, the WAF will actually let every HTTP request through making the WAF
completely ineffective.

23

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

phase is a meta-data action that can be used to specify in which of the 5 phases
the rule will be executed.

When using this action, it is crucial that we insert the rule in a phase in which the
variables examined by the rule are available, otherwise we could allow an attacker
to bypass the rule.

For example, if we need a rule to inspect the request body, we will insert it in
phase 2.

id is a meta-data action that is required by the SecRule directive that will assign
a unique numeric identifier to the rule.

Note that the id will just identify the rule and not the processing order: it is
possible that rules with higher ids will be executed before rules with lower ids.

setvar is a non-disruptive action that can be used to create, update or delete a
variable. This will be particularly important when we will see the OWASP Core
Rule Set in section 3.3

Transformation Functions

In section 3.1, we saw that one of the most important phases in the WAF analysis
process is the normalization one. In ModSecurity, this phase is achieved through
transformation functions, which are specified in the action part of a rule with the
following syntax

SecRule VARIABLES OPERATOR "t:TRANSFORMATION_FUNCTION, ..."

We will now see the most important transformation functions available in ModSe-
curity.

htmlEntityDecode can be used to convert the characters encoded as HTML
entities into one byte. This function is particularly useful for XSS attacks, because
an attacker could encode the <script> payload as HTML entities as follows

\<\&\#115;\&\#99;\&\#114;\&\#105;\&\#112;\&\#116;\>

If the htmlEntityDecode transformation function is not present, this payload will
be let through by the WAF and will be converted back to its original form when
interpreted by the browser.

lowercase is a transformation function that transforms all the characters to low-
ercase. This is important if we want to have a case-independent detection.

If this function is missing, the attacker could use a payload like <ScrIpt> instead
of <script> to avoid detection.

urlDecodeUni can be used to convert url-encoded characters to Unicode ones.
As for the htmlEntityDecode function, this is useful to avoid bypasses that involve
encoding the payload.

If this function is missing, an attacker could obfuscate their <script> payload as
%3Cscript%3E which will avoid detection and will be converted back to its original
form when interpreted by the web server.

24

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

utf8toUnicode can be used to convert every utf8 encoded characters back to
the Unicode representation. This is particularly useful for normalizing the input,
minimizing the amount of false positives and negatives.

When using normalization functions we need to pay attention to the order in
which they appear in the rule, because it will be the same order in which they will
be executed. Making mistakes in the order in which the transformation functions are
executed could result in bypasses. For example, let’s consider the following payload

%26lt%3Bscript%26gt%3B

which is the <script> payload HTML-encoded and then URL-encoded. Let’s sup-
pose we have a rule like the following

SecRule ARGS "@rx <script>" "id:1000, deny, t:htmlEntityDecode, t:

urlDecodeUni"

As we can see, the transformation functions are in the wrong order, so the WAF
will analyze the following string

<script>

which will not be detected by the rule, resulting in a bypass.

In this section we saw how ModSecurity works and the most important features
needed to write rules to stop attackers. However, we have also seen that many er-
rors can be made that would allow an attacker to bypass the WAF. Fortunately,
there are many pre-built sets of rules to configure ModSecurity that leave the de-
velopers the only task to tune them on the application that needs to be protected,
avoiding a lot of mistakes. One of these sets is the Core Rule Set (CRS) developed
by the OWASP, which will see in section 3.3

3.3 OWASP Core Rule Set (CRS)

The OWASP Core Rule Set (CRS) is an open source collection of rules that can
be used to configure ModSecurity and many other Web Application Firewalls [17].
The rules in CRS are designed to protect against many of the security risks in the
OWASP Top 10. In this section we will explain the most relevant features of the
CRS.

3.3.1 Anomaly Scoring

To decide weather an HTTP transaction is malicious or not, the Core Rule Set
uses a mechanism called anomaly scoring. Basically, this means that every HTTP
transaction is assigned an anomaly score which represents how strange, and possibly
malicious, the transaction is. This score can then be compared to a threshold to
make blocking decisions [18].

The important thing to understand is that CRS rules designed to detect attacks
do not take disruptive actions when triggered, but they add a number to the anomaly
score based on how severe the anomaly is considered, which will then be compared
to the specified threshold in the blocking evaluation phase, which happens two times
in a complete HTTP transaction:

25

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

1. When all the rules inspecting the request are executed.

2. When all the rules inspecting the response are executed.

For this reason the CRS let’s us specify a threshold for the anomaly score of the
request, also called inbound anomaly score, and one for the anomaly score of the
response, also called outbound anomaly score.

If in one of the two phases the anomaly score is higher that the defined threshold,
the transaction is denied, otherwise it is let through. To understand better how this
mechanism works, we can look at Figure 3.3. Because of how this mechanism works,

Figure 3.3: Anomaly Scoring Example. Source: https://coreruleset.org/docs/concepts/an
omaly_scoring/as_inbound_no_fonts.svg

we need to be particularly careful about assigning correct values to the thresholds
and configuring correctly the severity levels.

By default, each CRS rule has one of four severity level associated with it, which
determines the number that will be added to the anomaly score when the rule is
triggered. The four severity levels are:

• Critical, which has a default anomaly scoring of 5.

• Error, which has a default anomaly scoring of 4.

• Warning, which has a default anomaly scoring of 3.

• Notice, which has a default anomaly scoring of 2.

This means that if a rule with a critical severity level is triggered, the anomaly
scoring will be incremented by 5 points using the setvar ModSecurity action.

While it is possible to modify the default anomaly scores for the severity levels
as well as introducing new ones it is strongly discouraged because it could lower the
detection capabilities (if the scores are lowered) or cause problems with the usage

26

https://coreruleset.org/docs/concepts/anomaly_scoring/as_inbound_no_fonts.svg
https://coreruleset.org/docs/concepts/anomaly_scoring/as_inbound_no_fonts.svg

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

of the application (if the scores are incremented).

Once we know the various severity levels we can configure the anomaly score thresh-
olds. The suggested value is 5, so that if a single critical severity rule is triggered the
whole transaction will be denied. As for severity levels, incrementing the thresholds
values will lower the detection capabilities, possibly allowing some bypasses, while
decrementing it could cause some problems in the normal usage of the application.

3.3.2 Paranoia Levels

Another important property that needs to be configured when using the Core Rule
Set is the paranoia level, which makes it possible to define how aggressive the CRS
is in detecting possible attacks [19].

Figure 3.4: CRS Paranoia Levels. Source: https://coreruleset.org/docs/concepts/parano

ia_levels/

In practice, the paranoia level defines the number of rules that are executed:
the lesser the paranoia level is, the lesser is the number of rules executed. The
lowest paranoia level (PL1) is the most reliable in terms of false alarms, but it
is the one with the highest probability of an attack being undetected. On the
other hand, the highest paranoia level (PL4) is the most reliable in terms of attack
detection (it is virtually impossible for an attacker to be undetected), but it could
cause problems with the normal usage of the application because it could stop even
perfectly legitimate HTTP transactions.

Choosing the appropriate paranoia level highly depends on the role of the web
application protected and the amount and sensitivity of the information it manages.
As a guideline:

• Applications that don’t deal with personal data should be put to paranoia
level 1.

• Applications that deal with personal data such as names and addresses of the
users should be put to paranoia level 2.

27

https://coreruleset.org/docs/concepts/paranoia_levels/
https://coreruleset.org/docs/concepts/paranoia_levels/

CHAPTER 3. WEB APPLICATION FIREWALLS: MODSECURITY AND THE
OWASP CORE RULE SET

• Applications that manage sensitive information such as credit cards should be
put to paranoia level 3.

• Paranoia level 4 should be used only if the application deals with highly sen-
sitive or classified information.

It is important to remember that choosing the paranoia level is not the end of
the job: once the WAF has been configured constant monitoring and testing are
of utmost importance to both tune away any false positive (especially with high
paranoia levels) and verify if the attack detection capabilities are enough for the
application we want to protect (especially for low paranoia levels).

The last key point to take into consideration is that paranoia levels and anomaly
scoring thresholds are two completely different things: the former regulates the num-
ber of rules executed for every HTTP transaction, while the latter determines how
many rules must be triggered for an HTTP transaction to be blocked.

Coming to the end of the chapter, we have a deeper understanding on how a Web
Application Firewall works and we have seen the most important features to config-
ure ModSecurity and the Core Rule Set. We have also seen that configuring a WAF
is not a simple activity and it requires a lot of attention and time to avoid errors
that could lead to bypasses. Unfortunately, many times developers do not have the
time or the skills necessary to configure a WAF properly and this is why attackers
are still able to bypass its protection and exploit vulnerabilities in the application.
In Chapter 4 we will see some of the most common techniques to bypass a Web
Application Firewall along with some real world examples.

28

CHAPTER 4

WAF EVASION TECHNIQUES

In Chapter 3 we introduced Web Application Firewalls and we saw how they can
be used to protect a vulnerable web application while waiting for the developers to
patch the existing vulnerabilities. While using a Web Application Firewall is a good
way to increase the security level of web applications, this doesn’t guarantee that
attackers won’t be able to exploit vulnerabilities for two reasons:

• WAFs aren’t able to protect against all kinds of attacks, as we will see in
Chapter 5.

• If the WAF is not perfectly configured, attackers may be able to bypass its
protection.

In this chapter we will explain some of the most common and useful techniques
to bypass a Web Application Firewall. It is important to note that the list of
techniques highlighted in this chapter is not an extensive one, as explaining every
possible technique would be virtually impossible, especially considering that the
methods used to bypass a WAF are highly dependant on its technology and its
configuration.

4.1 Finding The Server’s Real IP Address

In order to understand this bypass technique, we need to have a quick reminder
on the DNS protocol. When we use our web browser to access a website we use
its common name, such as www.polito.it or www.google.com. However, in order
to contact the corresponding web server and ask for the main page, our browser
needs its IP address, which is a unique identifier for a device on the internet. The
translation between the common name and the IP address is done through the DNS
(Domain Name System) protocol. So, if we visit www.polito.it, our web browser
will:

1. Connect to a DNS server, which keeps the correspondence between common
names and IP addresses, asking the IP address associated to www.polito.it.

2. Receive the web browser’s IP address from the DNS server, such as 216.58.204.228.

3. Initiate an HTTP transaction with the web server using the IP address re-
ceived.

29

CHAPTER 4. WAF EVASION TECHNIQUES

4.1.1 The Bypass

In Chapter 3 we saw that a Web Application Firewall is often configured as a reverse
proxy for the web server to protect. This means that all the HTTP requests from
the users should be analyzed by the WAF before being forwarded to the web server.
But it also means that the server on which the WAF is running and the web server
hosting the web application have two different IP addresses.

This is why, to ensure that the WAF is effective, it is crucial to correctly configure
the DNS resolution. In particular, it is essential that the common name of the web
application we need to protect is translated to the IP of the server acting as a reverse
proxy on which the WAF is running. This guarantees that users will never directly
connect to the web server, but always to the WAF, which will then be able to analyze
all HTTP transaction to decide if they are legitimate or not. The reverse proxy will
then be configured to forward legitimate requests to the web server and send back
the responses to the users.

Unfortunately, correctly configuring the DNS resolution isn’t enough to ensure
that every HTTP transaction is analyzed by the WAF. To better understand this,
let’s take a look to Figure 4.1.

Figure 4.1: WAF bypass connecting directly to the web server’s IP Address. Source: https:

//kalilinuxtutorials.com/wp-content/uploads/2019/02/WAF-1024x446.png

Let’s suppose we are in the following situation:

• We want to protect the www.polito.it website.

• The web server hosting the application has the IP address 80.40.10.22.

• The reverse proxy on which theWAF is running has the IP address 104.28.14.63.

• The DNS is correctly configured to translate www.polito.it to the WAF’s IP
address.

This configuration ensures that, if a DNS resolution happens, the HTTP transac-
tions will be analyzed by the WAF. However, there are several techniques that let
attackers find the web server’s IP address allowing them to bypass DNS resolution.
In this example, if the attacker is able to find out that the web server has the IP

30

https://kalilinuxtutorials.com/wp-content/uploads/2019/02/WAF-1024x446.png
https://kalilinuxtutorials.com/wp-content/uploads/2019/02/WAF-1024x446.png

CHAPTER 4. WAF EVASION TECHNIQUES

address 80.40.10.22, they can directly connect to it, entirely bypassing the WAF
protection.

There are a lot of different techniques that attackers can use to reveal the web
server’s real IP address in order to bypass the WAF.

Reconnaissance

The first thing to do when searching for the real server’s IP address is understanding
the target’s infrastructure. One of the most powerful tools that can be used to
achieve this goal is Censys1, a search engine that periodically gathers information
on publicly accessible devices and web servers and enables searching for it in order
to map the target organization’s network.

In this particular case, an attacker could use Censys to find the IP address
of the web server running the web application to bypass the WAF. Let’s consider
for example that we are targeting the www.polito.it website, which is protected
by a WAF. The first thing we would do is performing a Censys search to gather
information about the target. Figure 4.2 displays the search results.

Figure 4.2: Censys search for www.polito.it. IP addresses have been obscured for privacy reasons

As we can see, this search gave us 702 different IP addresses. The next step would
be trying to connect to each IP address to look for the target website. If one of these
web servers returns the same page that we would get connecting to www.polito.it,
then we would have found the web server’s IP address. Note that this example
was used only to demonstrate how an attacker could use a tool like Censys to find
the web server’s real IP address, but in this specific case it doesn’t lead to a WAF

1https://search.censys.io/

31

https://search.censys.io/

CHAPTER 4. WAF EVASION TECHNIQUES

bypass. However, this technique has proven successful to bypass Cloudflare2, a
popular cloud-based WAF solution [20].

One important thing to consider is that in some cases the IP address shown by
Censys is the one of the reverse proxy on which the WAF is running. If this is the
case, then we would probably receive an error when connecting using the IP address
directly and we would have to use a different technique to find the web server’s real
IP address.

DNS History

One important thing to consider when targeting a web application protected by a
Web Application Firewall is that the WAF could have been configured after the
application was made public. For example, a company could have decided to deploy
a WAF to protect an application after a successful attack.

This means that there was a point in time when the website’s common name
resolved to the web server’s IP instead of the WAF’s. An attacker could leverage
upon this to find the web server’s real IP address.

Some common tools that can be used to consult DNS history are Security Trails3

and Netcraft4. For example, let’s imagine that the website www.polito.it is pro-
tected by a Web Application Firewall, an attacker could search DNS history to see
if there was a moment in time in which the WAF was not configured.

Figure 4.3 shows DNS historical data for www.polito.it.

Figure 4.3: DNS History for www.polito.it from Security Trails. IP addresses have been redacted
for privacy reasons

As we can see, on December 16, 2022, the IP address associated to the common
name www.polito.it changed. From an attacker perspective this could represent
the moment in which the WAF was configured, so the IP address used until that
day could be the web server’s one. Now the attacker just has to confirm this by
connecting to the old IP address to see if he gets back the home page of the original
website. In that case, he found a way to bypass WAF protection entirely.

Note that this example was used just for demonstration purposes on how to consult
DNS history for a website and how an attacker could use it to bypass the WAF. For
the website considered, this technique doesn’t lead to a bypass.

2https://www.cloudflare.com/
3https://securitytrails.com/
4https://sitereport.netcraft.com/

32

https://www.cloudflare.com/
https://securitytrails.com/
https://sitereport.netcraft.com/

CHAPTER 4. WAF EVASION TECHNIQUES

TLS Certificates

Another useful source of information that can be used to try to discover the web
server’s IP address are TLS certificates.

A TLS certificate is a data structure that is used to determine the authenticity of
the server we are establishing an HTTPS (HTTP Secure) connection with. Among
the fields of a TLS certificate there is the Subject Common Name (CN) which iden-
tifies all the websites for which the certificate is valid. As an example, Figure 4.4
shows the TLS certificate for www.polito.it.

Figure 4.4: www.polito.it TLS Certificate

The information about the Common Name associated to the TLS certificate can be
used to search for every web server using the same CN and possibly reveal the target
web server’s real IP address.

This search can be achieved using Shodan5, a tool similar to Censys that let’s
us search for specific information. In this case we can use the following query:

ssl.cert.subject.cn:"polito.it" 200

5https://www.shodan.io/

33

https://www.shodan.io/

CHAPTER 4. WAF EVASION TECHNIQUES

which will search for every web server having a certificate with the subject common
name set to polito.it or its subdomains that responds with 200 Ok to a GET HTTP
request [21].

The results of this search are shown in Figure 4.5.

Figure 4.5: Shodan search for common name polito.it. IP addresses have been redacted for
privacy reasons

As we can see, we have 29 results of web servers and the corresponding IP addresses.
The last thing we would need to do would be to try every IP address to verify if one
of them is the one of the target web server. As with other examples, this was used
just to show how a tool like Shodan can be used to search for the web server’s real
IP address, but in this specific case it doesn’t lead to a bypass.

4.1.2 The Mitigation

The techniques we have seen to find the web server’s real IP address when it is
hidden and protected by a WAF configured as a reverse proxy are just a subset of
all the possible methods that can be used.

An important aspect that needs to be taken into consideration to create a mit-
igation for this kind of bypass is that all the techniques we have seen use publicly
available information and they do not require the attacker to interact with the tar-
get web server. This means that it could be really difficult to avoid an attacker
discovering the web server’s real IP address. So, the best mitigation for this bypass
is making it impossible for an attacker to connect directly to the web server using
its IP.

The best way to do this is to whitelist the reverse proxy IP (or IPs). This means
that our server will refuse any HTTP connection coming from a different IP than the
WAF’s one. Returning to the example shown in Figure 4.1, our server should accept
HTTP connections only if they come from the IP 104.28.14.63. If the attacker,
which will have a different IP that the WAF’s one, will try to directly connect to the
server, the connection will be refused and they will have to try a different technique
to bypass the WAF.

34

CHAPTER 4. WAF EVASION TECHNIQUES

4.2 Payload Obfuscation

In Chapter 3 we highlighted the importance of the normalization phase when ana-
lyzing HTTP transactions to avoid the attacker bypassing the WAF by encoding the
payload. While the normalization phase is usually very effective for simple and well
known encodings such as URL-encoding or HTML-encoding, some Web Application
Firewalls are not able to identify and decode some lesser known encoding techniques.

4.2.1 Unicode Compatibility

Unicode Compatibility is a form of normalization for Unicode characters which trans-
forms different visual character representations to the same abstract character. For
example, the Unicode character L would be normalized to L [22].

This can be particularly dangerous if the web server performs this kind of nor-
malization, but the WAF doesn’t. Let’s consider for example the basic SQL injection
payload:

’ or 1=1--

If the WAF is correctly configured and contains a rule to block SQL injection attacks
this payload will very likely be flagged as malicious. However, if the WAF doesn’t
implement Unicode Compatibility normalization, the payload shown in Figure 4.6
would be let through because it is not recognized as malicious as the characters,
even if they look the same, use a different UTF-8 encoding than the normal payload
ones, so the WAF isn’t able to understand them.

Figure 4.6: Fullwidth encoding of the SQL Injection payload

On the contrary, if the server performs Unicode Compatibility normalization, the
payload shown in Figure 4.6 will be translated to the original one and then passed
to the vulnerable SQL query, resulting in a correct exploitation of the vulnerability
regardless of the presence of the WAF, so a bypass.

The Mitigation

To avoid this bypass it is important that, during the normalization phase, the WAF
performs Unicode Compatibility normalization in order to be able to analyze the
payload in the same form as it will be then used on the server. For example, this
can be achieved in ModSecurity using the utf8toUnicode transformation function.

4.2.2 Javascript Obfuscation

In chapter 2 we introduced XSS (Cross-Site Scripting) vulnerabilities and we saw
that they allow injecting Javascript code inside an application, which is the executed
by the browser of the victim user and it can be used to steal sensitive data such as
access tokens, data structures used to prove that the user successfully logged in. This

35

CHAPTER 4. WAF EVASION TECHNIQUES

represents a big problem for the application because it would allow an attacker to
access the application as if they were another user, which means accessing sensitive
data and potentially disrupting the application behaviour.

In order to exploit an XSS vulnerability attackers have to use Javascript func-
tions. In most cases, the alert(’XSS’), which, when executed, produces a result
similar to the one shown in Figure 4.7, is used to prove that the application is vul-
nerable.

Figure 4.7: XSS using alert(’XSS’) function

Web Application Firewalls are able to recognize Javascript functions used as an XSS
payload and, in most of the cases, they are able to stop them. However, attack-
ers can use different forms of obfuscation and encoding that could make the WAF
protection ineffective.

We already have seen the HTML-encoding technique, which would transform
the payload alert(’XSS’) to

alert('XSS'&#

x29;

If the WAF doesn’t perform HTML-decoding during the normalization phase, this
could be enough to bypass it. Fortunately, it is really uncommon to see modern
WAFs being bypassed using just HTML-encoding. This is why attackers may use
lesser known techniques to obfuscate Javascript code.

JSF**k is a peculiar Javascript encoding technique that uses only six characters
to write and execute code. The six characters are: [,], (,), ! and + [23].

In particular:

• The [] brackets are used to create arrays and accessing their values.

• The () brackets are used to call functions and pass them the parameters they
need.

36

CHAPTER 4. WAF EVASION TECHNIQUES

• The + sign is used to create numbers and strings and to add values or con-
catenate strings.

• The ! sign is used to create boolean values true and false, which can then
be converted to strings to have access to the characters composing the words.

To better understand how this encoding works, let’s try to use it to obtain the first
letter of the alert(’XSS’) function, so ’a’. One way this can be done is treating
the word false as a string, and accessing the second character, which in Javascript
can be done using the following syntax:

"false"[1]

Now, we need a way to encode the index 1. We know that:

• +[] evaluates to the number 0.

• It is possible to insert an expression inside and array and then access its
element at index 0 to obtain the result. This means that [++[X][0]][0]

evaluates to X+1

So, to represent the number one we can use the syntax:

++[[]][+[]]

The final thing we need to do is obtaining the string representation of false. We
know that:

• ![] evaluates to the boolean value false.

• Adding +[] will turn previous values to strings.

So, to obtain the string "false" we can use the syntax:

![] +[]

Finally, we can combine everything to obtain the letter ’a’:

![] +[] ++[[]][+[]]

Now, we just need to repeat this process for every character of our payload to obtain
its JSF**k encoding.

This kind of obfuscation is lesser known that HTML-encoding, so it is more
likely that it would work to bypass the WAF protection when trying to exploit an
XSS vulnerability. For example, a similar technique was used to bypass the Imperva
WAF6, as reported by TechAnarchy7 [24].

In the report, we see that the tested application had an XSS vulnerability in the
search URL parameter. However, Imperva blocked the payload:

<script>console.log("XSS")</script>

as shown in Figure 4.8.

6https://www.imperva.com/products/web-application-firewall-waf/
7https://www.techanarchy.net

37

https://www.imperva.com/products/web-application-firewall-waf/
https://www.techanarchy.net

CHAPTER 4. WAF EVASION TECHNIQUES

Figure 4.8: Basic XSS payload blocked by Imperva. Source: https://www.techanarchy.net/co
ntent/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva

-block.png

The report than explains how it was possible to use the payload:

<code onmouseover="new hello;">test</code>

which executes the Javascript code inside "" when the user passes the mouse over the
HTML element code, but the WAF still blocked the payload when using Javascript
functions such as alert("Hello, JavaScript").

However, encoding this payload using JJEncode8, a similar obfuscation technique
as JSF**k, which differs only for the symbols used, proved successful to bypass
Imperva and exploit the XSS vulnerability, as shown in Figure 4.9. After encoding,
the payload is:

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],_$_:++$,
$_$$:({}+"")[$],$$_$:($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],$__:++
$,$_$:++$,$$__:({}+"")[$],$$_:++$,$$$:++$,$___:++$,$__$:++$};$.$_
=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$=($.$+"")[$.__$])+((!
$)+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._
=(!""+"")[$._$_])+$.$_[$.$_$]+$.__+$._$+$.$;$.$$=$.$+(!""+"")[$.
_$$]+$.__+$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_];$.$($.$($.$$+"\""+
$.$_$_+(![]+"")[$._$_]+$.$$$_+"\\"+$.__$+$.$$_+$._$_+$.__
+"(\\\"\\"+$.__$+$.__$+$.___+$.$$$_+(![]+"")[$._$_]+(![]+"")[$.
$]+$._$+",\\"+$.$__+$.___+"\\"+$.__$+$.__$+$._$_+$.$_$_+"\\"+$.
__$+$.$$_+$.$$_+$.$_$_+"\\"+$.__$+$._$_+$._$$+$.$$__+"\\"+$.__$+$

8https://pferrie2.tripod.com/papers/jjencode.pdf

38

https://www.techanarchy.net/content/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva-block.png
https://www.techanarchy.net/content/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva-block.png
https://www.techanarchy.net/content/images/size/w1000/2021/02/56f5f291f497eb18499332e7f71698043e68a73b-imperva-block.png
https://pferrie2.tripod.com/papers/jjencode.pdf

CHAPTER 4. WAF EVASION TECHNIQUES

.$$_+$._$_+"\\"+$.__$+$.$_$+$.__$+"\\"+$.__$+$.$$_+$.___+$.__
+"\\\"\\"+$.$__+$.___+")"+"\"")())();

Figure 4.9: Imperva Bypass using JJEncode. Source: https://www.techanarchy.net/content/
images/2021/02/javascript_xss.png

The Mitigation

To prevent these encodings to be successful in bypassing the WAF, it is possible to
proceed in two ways:

1. Write a rule that is able to identify JSF**k and JJEncode encoded payloads
and stop them.

2. Write a normalization function that decodes JSF**k and JJEncode encoded
payloads before executing the rules.

For example, the Core Rule Set contains a specific rule to stop JSF**k encoded
payloads, which is shown in Figure 4.10.

Figure 4.10: CRS rule to stop JSF**K encoded payloads

39

https://www.techanarchy.net/content/images/2021/02/javascript_xss.png
https://www.techanarchy.net/content/images/2021/02/javascript_xss.png

CHAPTER 4. WAF EVASION TECHNIQUES

4.2.3 Base64 Encoding

Another way attackers can use to obfuscate their payloads and avoid being detected
by WAFs is Base64. Base64 is a binary to text encoding that takes 6 bits at a time
from the source and maps them to one of 64 unique characters [25].

For example, the XSS basic payload:

<script>alert(’XSS’)</script>

can be base64 encoded to:

PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4=

This encoding is particularly useful to bypass a WAF, since without decoding the
payload it is impossible to recognize it as an XSS payload. Of course, in order for
the payload to be effective in exploiting the vulnerability, it needs to be decoded by
the web server. However, in the example of an XSS vulnerability, since the attacker
has the capability to execute Javascript code, it is possible to decode the payload
using the Javascript function atob().

This technique has proven successful to bypass the AWS (Amazon Web Services)
WAF9, as reported by Cognisys Labs10[26].

In the report, we see that the tested web application is vulnerable to an XSS
vulnerability in the redirect URL parameter. However, the payload:

?redirect=javascript:alert(1)

to execute the alert function that proves the XSS vulnerability, is blocked by the
WAF, as we can see in Figure 4.11.

Figure 4.11: XSS payload blocked by the WAF. Source https://github.com/CognisysGroup/c

ognisysgroup.github.io/assets/46415431/b1658e65-64c8-48e0-bc38-1e8ab2f4c743

On the contrary, using the payload:

?redirect=javascript:atob‘

PGltZyBzcmM9MSBvbmVycm9yPWFsZXJ0KCJIZWxsbyIpPg==‘

9https://aws.amazon.com/waf/?nc1=h_ls
10https://labs.cognisys.group

40

https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/b1658e65-64c8-48e0-bc38-1e8ab2f4c743
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/b1658e65-64c8-48e0-bc38-1e8ab2f4c743
https://aws.amazon.com/waf/?nc1=h_ls
https://labs.cognisys.group

CHAPTER 4. WAF EVASION TECHNIQUES

bypassed the WAF and was able to trigger an alert, as shown in Figure 4.12.

Figure 4.12: AWS WAF bypass using Base64 encoding. Source: https://github.com/Cognisy

sGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bb

f99

This payload works like this:

• The atob function decodes the base64 encoding to ,
which triggers the Javascript function alert() when errors happen during
loading the image from the source 1, which happens always since the source
is invalid.

• The decoded base64 is then interpreted by the browser as javascript code,
which is the executed.

The Mitigation

To prevent this kind of bypass, it is possible to proceed in two ways:

1. During the normalization phase, it is possible to decode all the base64 encoded
strings to analyze the original payload. For example, in ModSecurity this can
be achieved using the base64Decode transformation function. However, this
can be dangerous when used together with other transformation functions such
as lowercase, because they could invalidate the base64 encoding resulting in
the impossibility to decode. So, when using this approach, it is important to
consider carefully the order in which transformation functions are executed.

2. Alternatively, it is possible to stop every payload that contains a function to
decode base64 encoding, such as atob(), so that attackers are not able to
decode their payload. Of course, this approach is ineffective if the decoding
is performed by the web server. However, the Core Rule Set uses this second
approach.

41

https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bbf99
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bbf99
https://github.com/CognisysGroup/cognisysgroup.github.io/assets/46415431/5c280ee5-b063-43a3-a26e-46f43f4bbf99

CHAPTER 4. WAF EVASION TECHNIQUES

4.3 Exploiting a Misconfiguration/Vulnerability

As every security tool, WAFs are as secure as their configuration and implementa-
tion. This means that attackers may leverage upon configuration errors or bugs in
the WAF code to avoid detection.

4.3.1 Submitting Very Large Requests

One thing we need to consider when using a Web Application Firewall is that it may
affect the performance of the protected web application: the slower the WAF is in
analyzing the requests, the greater will be the delay to receive a response. This is
especially true if the WAF needs to analyze big HTTP requests.

In some cases, in order to avoid the WAFs slowing down the application, devel-
opers configure them to not analyze requests which size is bigger than a predefined
number of bytes. However, this could have a great impact on the security of the web
application and the effectiveness of the WAF protection, because if an attacker dis-
covers this misconfiguration he just needs to send bigger requests than the maximum
threshold to avoid their payloads being detected, unless proper security measures
are in place.

During my internship in aizoOn, which was mainly focused on Web Application
penetration testing, my team and I exploited this technique to bypass the Akamai11

Web Application Firewall.
In particular, when working on a penetration test for a client, we discovered a

Cross-Site Scripting (XSS) vulnerability in the alias parameter. Unfortunately,
when trying to trigger the usual alert() function to prove the existence of the
vulnerability, we got blocked by the WAF, as shown in Figure 4.13.

Figure 4.13: XSS Payload blocked by Akamai WAF. Some details have been redacted for privacy
reasons.

After a lot of tries with several encoding techniques, we decided to try with a very
big request (more than 8kB), as shown in Figure 4.14.

11https://www.akamai.com/products/app-and-api-protector

42

https://www.akamai.com/products/app-and-api-protector

CHAPTER 4. WAF EVASION TECHNIQUES

Figure 4.14: Very large HTTP request to bypass Akamai. Some details have been redacted for
privacy reasons.

As we can see, in order to be certain that the XSS payload remained clean, we
created a parameter foo with roughly eight thousand characters to enlarge the re-
quest size. Using this request the WAF didn’t trigger any error and we were able to
exploit the XSS vulnerability, as shown in Figure 4.15.

Figure 4.15: Exploited XSS vulnerability bypassing Akamai. Some details have been redacted for
privacy reasons.

This technique has also been proven successful for the AWS WAF, which doesn’t
analyze requests bigger than 8kB [27].

While limiting the request dimension that the WAF can analyze can be a good
choice on the performance side, we have seen that it could have dangerous implica-
tions on the security one, unless proper security measures are in place.

The Mitigation

To mitigate this kind of bypass it is enough to configure the WAF to block every
request that exceeds the maximum dimension configured. For example, in the case
of the AWS WAF this can be achieved using the SizeRestrictions BODY rule.

4.3.2 Exploiting a Bug

As every software tool, even WAFs could contain bugs in their source code, which
attackers could exploit to bypass their protection.

43

CHAPTER 4. WAF EVASION TECHNIQUES

Let’s consider for example, the last discovered vulnerability for ModSecurity,
CVE-2024-101912 discovered by the OWASP CRS team [28].

This vulnerability allows attackers bypass the WAF protection for path-based
payloads, which are those payloads that don’t appear in a parameter of the request,
but directly in the URL. Let’s consider for example a web application that retrieves
information about a user using the following URL:

/users/id/<id>

in which the <id> is used as a parameter in an SQL injection statement like the
following:

SELECT * FROM users WHERE id=’<id>’

If the query is vulnerable to SQL-injection an attacker could insert the payload
directly in the URL path:

/users/id/1’ OR 1=1--

This kind of payload is referred to as a path-based one.
The security researchers of the OWASP CRS team discovered that ModSecurity

performs URL-decoding of the URL before separating the URL path component
from the query parameters. This separation is performed at the first ? encountered
in the decoded URL. This allows an attacker to force the separation at a position
of their choosing by inserting %3F (URL encoding of the character ?) in the URL.
So, an attacker can bypass every rule that inspect the URL path component by
inserting the payload after the %3F character. In particular an attacker can bypass
the rules that inspect the REQUEST FILENAME and REQEST BASENAME variables which
contain the relative request URL without the query string and the filename of the
request URL respectively. So, for the URL /users/id/1:

REQUEST_FILENAME = /users/id/1

REQUEST_BASENAME = 1

To understand better the vulnerability let’s consider the previous example. If
the attacker uses the same payload:

/users/id/1’ OR 1=1--

ModSecurity will be able to detect it because the variables REQUEST FILENAME and
REQEST BASENAME would be correctly populated. However, if the attacker inserts
%3F before the payload:

/users/id/1 %3F ’ OR 1=1--

ModSecurity would populate the two variables like this:

REQUEST_FILENAME = /users/id/1

REQUEST_BASENAME = 1

As we can see, the payload is not present, resulting in a bypass of every rule that
inspect these two variables. On the contrary, if the web server uses the last part of
the URL without proper checks, the SQL statement would be:

SELECT * FROM users WHERE id=’1 %3F ’ OR 1=1--’

resulting in a correct exploitation of the SQL injection vulnerability.

12https://nvd.nist.gov/vuln/detail/CVE-2024-1019

44

https://nvd.nist.gov/vuln/detail/CVE-2024-1019

CHAPTER 4. WAF EVASION TECHNIQUES

The Mitigation

In order to avoid bypasses that exploit a bug or a vulnerability in the source code, it
is important to always use the latest version of the WAF software and periodically
check security updates in order to be aware of the latest discovered issues and be
quick into solving them, either by applying a patch or by changing the configuration
while waiting for it to be available.

4.4 Impedance Mismatch

As we have seen, in many cases the WAF and the web server on which the ap-
plication is running are hosted on different servers. This means that they could
use different technologies, and, more importantly, they can interpret user input and
HTTP requests differently. This behaviour is also referred to as impedance mis-
match and in some cases can be used by attackers to bypass the protection of the
Web Application Firewalls.

4.4.1 Content-type confusion

An example of a bypass for ModSecurity that leverages upon impedance mismatch
was reported by Terjanq on Medium [29].

To understand this bypass, a brief reminder on how the mulitpart/form-data

content type works is needed. This content type is mostly used when we want to
send an HTTP request containing different parts with different MIME types. When
we specify multipart/form-data as the content type, we also need to specify a
boundary, which is used as a separator for the different parts of the request. To
understand better, let’s consider the following example:

POST /login HTTP 1.1

...

Content-Type: multipart/form-data; boudary=test

--test

Content-disposition: form-data; name="username"

<username>

--test

Content-disposition: form-data; name="password"

<password>

--test--

As we can see, each part of the request is composed by the boudary prefixed with
--, the Content-disposition header, which is used to specify the part name and
MIME type and the actual value for the part. The important thing to notice is
that after the Content-disposition header, there is always a blank line before the
actual value for that part.

Terjanq discovered that, if the value for a specific part is not present and there
is a single blank line between the Content-disposition header and the following

45

CHAPTER 4. WAF EVASION TECHNIQUES

part, ModSecurity treats the corresponding parameter as empty. On the other hand,
some servers perform a different interpretation: they consider the rest of the request
as the value for the parameter. Let’s go back to the example before to understand
better, slightly modifying it removing the username value:

POST /login HTTP 1.1

...

Content-Type: multipart/form-data; boudary=test

--test

Content-disposition: form-data; name="username"

--test

Content-disposition: form-data; name="password"

<password>

--test--

If we sent this request, ModSecurity would think that the username field is empty,
while some server would think that its value is:

--test

Content-disposition: form-data; name="password"

<password>

This means that the attacker could craft a request that exploits these different
interpretation to send a payload and avoid detection. For example, an attacker
could send a request like the following to exploit an SQL injection vulnerability:

--test

Content-disposition: form-data; name="username"

--test

Content-disposition: form-data; name="jj"; filename="ccc"

’OR 1=1--

--test

Content-disposition: form-data; name="password"

test123

--test--

Note that a line with a filename has been added because the Core Rule Set ignores
the content of the files, so the WAF isn’t able to see the ’ OR 1=1-- payload. If
we put the same payload in the password field it would have been detected when
inspecting the password value.

46

CHAPTER 4. WAF EVASION TECHNIQUES

4.4.2 JSON Duplicate Keys

Impedance mismatch was also proven successful to bypass the AWS WAF, as re-
ported by Andrea Menin on Sicuranext13.

This bypass exploited the fact that the JSON, a data format composed of key/-
value pairs, standard doesn’t provide enough information on how to handle dupli-
cate keys. This results in having different implementations of the JSON parsing that
handle duplicate keys differently, bringing to the possibility of impedance mismatch
bypasses for the WAFs.

The default behaviour of the AWS WAF when JSON objects with duplicate keys
are encountered is to not take any action. So, the attacker just has to know how
duplicate keys will be handled on the web server to craft attack payloads that bypass
the WAF.

In the Proof of Concept (PoC) shown by Andrea Menin, a PHP web server
with a command execution vulnerability, which allows attackers to execute system
commands on the server on which the application is running, was tested. PHP
handles JSON duplicate keys by taking as value the on of the last occurrence, so if
we send a JSON object like the following:

{

"a":"first",

"a":"second"

}

the PHP web server will assign the value second to the key a.

As we can see by Figure 4.16, if we insert a system command in a JSON object
without duplicate keys, the AWS WAF is able to recognize it and block it.

Figure 4.16: Command execution payload blocked by AWS WAF. Source: https://blog.sicur
anext.com/content/images/2023/07/image-2.png

13https://blog.sicuranext.com

47

https://blog.sicuranext.com/content/images/2023/07/image-2.png
https://blog.sicuranext.com/content/images/2023/07/image-2.png
https://blog.sicuranext.com

CHAPTER 4. WAF EVASION TECHNIQUES

However, using the technique we described, it is possible to bypass the WAF, as
shown in Figure 4.17.

Figure 4.17: Command execution payload bypassing AWS WAF. Source: https://blog.sicuran
ext.com/content/images/2023/07/image-3.png

As we can see, in this case the command wasn’t really executed as the tested ap-
plication was just created to demonstrate the bypass, but the WAF wasn’t able to
recognize the payload.

4.4.3 The Mitigation

In order to mitigate WAF bypasses that leverage upon impedance mismatches it is
really important to know the differences between the server hosting the WAF and
the one on which the web application is running, especially in how they interpret
HTTP requests and user input. Once the differences are known it is possible to
change the configuration of either the WAF or the web server to align them on the
same interpretation.

For example, the bypass we showed for ModSecurity could be mitigated writing a
rule that forbids request parts without a value. While the bypass we showed for the
AWS WAF can be mitigated by changing the default behaviour to the one adopted
by the web server.

In this Chapter we have seen several techniques that attackers could use to bypass
different kinds of WAFs. It is important to remember that many other techniques
exist and that it is impossible to avoid them entirely. So, while using a WAF is a
good security practice and it sensitively improves the security of web applications,
it would be a big mistake to feel completely safe. To further demonstrate this, in

48

https://blog.sicuranext.com/content/images/2023/07/image-3.png
https://blog.sicuranext.com/content/images/2023/07/image-3.png

CHAPTER 4. WAF EVASION TECHNIQUES

Chapter 5 we will set up a test environment using ModSecurity and the OWASP
Juice Shop to put the techniques learnt in this chapter into practice.

49

CHAPTER 5

HANDS-ON WAF EVASION AND
MITIGATIONS

In this Chapter we will put into practice the WAF evasion techniques we have learnt
in Chapter 4 using the OWASP Juice Shop1 as target application and ModSecurity
with the Core Rule Set as Web Application Firewall.

In particular, we will try to understand the testing methodology to bypass a WAF
from the point of view of an attacker and, for every successful bypass technique, we
will write ModSecurity rules to mitigate it.

5.1 Building The Test Environment

To build the test environment we will use to test WAF bypass techniques, we will
utilize Docker Compose2, a popular tool to define and run multi-container appli-
cations, since both the OWASP Juice Shop and ModSecurity have their Docker
images34, that make the configuration easier.

In particular, we will use the docker compose file shown in Figure 5.1. This
will let us create a docker container composed by two sub-containers : one running
ModSecurity, the other running the OWASP Juice Shop. The environment variables
are used to configure the single sub-container.

For the Juice Shop container we just have the NODE ENV variable set to unsafe,
which lets us enable all the vulnerabilities that would otherwise be disabled for
security reasons.

For the ModSecurity container we have more environment variables, the most
interesting being:

• BACKEND, which is used to specify the URL of the web server running the
application to which ModSecurity will forward HTTP requests after having
analyzed them.

• PARANOIA, which is used to set the paranoia level of the Core Rule Set.

1https://owasp.org/www-project-juice-shop/
2https://docs.docker.com/compose/
3https://hub.docker.com/r/bkimminich/juice-shop/
4https://hub.docker.com/r/owasp/modsecurity/

50

https://owasp.org/www-project-juice-shop/
https://docs.docker.com/compose/
https://hub.docker.com/r/bkimminich/juice-shop/
https://hub.docker.com/r/owasp/modsecurity/

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

• MODSEC RULE ENGINE and MODSEC RESP BODY ACCESS, which are used to enable
the ModSecurity rule engine and access to the response body respectively.
Note that access to the request body is enabled by default.

Finally, we configure the ModSecurity container to publish port 80 to the outside
world and map it to the internal port 80, which is the port on which ModSecurity
will listen for HTTP requests.

Figure 5.1: The docker compose file used to build the test environment

When everything is configured and set up, out container will look like the one shown
in Figure 5.2.

Figure 5.2: The docker container running the test environment

51

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

As we can see in Figure 5.2, every HTTP request to http://localhost:80 will be
forwarded to ModSecurity, which will analyze them and, if they are not malicious,
will forward them to the OWASP Juice Shop for processing. Then, ModSecurity
will receive the response from the web server and return it back to us.

Now that everything is correctly configured, we can start testing for WAF bypasses.

5.2 SQL Injection Through Impedance Mismatch

The OWASP Juice Shop contains an SQL Injection vulnerability in the search

product functionality. We can confirm this by injecting the payload ’-- in the
q URL parameter, which is the one containing the user search value, as shown in
Figure 5.3.

Figure 5.3: SQL Injection confirmation

As we can see, the response from the server contains an error message which discloses
the SQL query executed. This is useful for two reasons:

1. It confirms the SQL Injection vulnerability.

2. It helps to craft a payload to exploit it.

This vulnerability can be exploited to retrieve the content of the database and, in
particular, the emails and passwords of the registered users. To do so, it is possible
to use the following payload:

’)) union select email,password,3,4,5,6,7,8,9 from users;

However, when sending the request with this payload, ModSecurity blocks us as it
recognizes it as malicious, as we can see from Figure 5.4.

52

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

Figure 5.4: SQL Injection payload blocked by ModSecurity

During testing, I found out that the web server running the OWASP Juice Shop
concatenates the value of duplicate parameters. This means that if we request the
URL /rest/products/search?q=test&q=123, the web server will use

test,123

as value for the q parameter. This can be confirmed by looking at Figure 5.5.

Figure 5.5: Duplicate parameters concatenation confirmation

As we can see from the error message, the values provided for the q parameter
are concatenated using the , character. On the other hand, ModSecurity doesn’t
perform this concatenation and analyzes the values separately. This means that we
can use the impedance mismatch technique to construct a request that bypasses
the WAF and exploits the SQL injection vulnerability.

53

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

To do so, we need to split the previous payload in half, so that both halves aren’t
recognized as malicious by ModSecurity rules. For example we could use:

• ’)) union select /* as the first half.

• */ email,password,3,4,5,6,7,8,9 from users; as the second half.

So, when the web server concatenates the values we obtain the payload:

’)) union select /*,*/ email,password,3,4,5,6,7,8,9 from users;

Note that the , concatenation character is now inside an SQL comment, so it doesn’t
interfere with our payload. Using this payload we are able to bypass the WAF and
retrieve all users’ emails and passwords, as we can see from figure 5.6.

Figure 5.6: WAF bypass and SQL Injection exploitation

On final thing to note is that in the payload shown in Figure 5.6 there is an additional
comment between the union and select keywords. This is essential for this payload
to work because it lets us bypass all the rules that verify that the two keywords union
and select don’t appear one after the other.

Mitigation

In order to mitigate this bypass, it is possible to write a ModSecurity rule that
blocks every request with duplicate parameters names, like the following one:

SecRule &ARGS_NAMES:q "@gt 1"

"id:<id>,

phase:2,

block,

t:none,t:utf8toUnicode,t:urlDecodeUni,

msg:’Duplicate parameter names detected’"

This rule counts the number of occurrences of the parameter name q, verifies if it is
greater than one and, if so, blocks the request. Once this rule has been configured,
the bypass we have seen isn’t possible anymore, as we can see from Figure 5.7.

54

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

Figure 5.7: WAF bypass payload blocked after mitigation

5.3 SQL Injection Through Parameters Overflow

The technique we used in Section 5.2 is not the only one that can be used to bypass
ModSecurity and exploit the SQL Injection vulnerability in the search product

functionality.

Indeed, during testing I discovered that this installation of ModSecurity and the
Core Rule Set stops analyzing the content of parameters after a certain number,
specifically 400. This let’s us craft a request with 400 parameters with a value that
does not trigger any ModSecurity rule and put our payload in the 401st parameter
to bypass the WAF and exploit SQL Injection, as we can see from Figure 5.8. As we

Figure 5.8: WAF bypass and SQL Injection exploitation using an high number of parameters

can see, using a different bypass technique, we are able to exploit the SQL Injection
vulnerability and obtain the same result as the one shown in Section 5.2.

55

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

Mitigation

In order to mitigate this vulnerability it is possible to write a ModSecurity rule that
blocks requests with more than 400 URL parameters:

SecRule &ARGS_NAMES "@gt 400"

"id:<id>,

phase:2,

block,

t:none,t:utf8toUnicode,t:urlDecodeUni,

msg:’Too many parameters’"

Once this rule is configured, the same bypass technique is now blocked, as shown in
Figure 5.9.

Figure 5.9: WAF bypass mitigation

5.4 Stored XSS Through Custom HTTP Header

The OWASP Juice Shop provides a functionality to see the last IP from which the
user logged in, as we can see from Figure 5.10.

Figure 5.10: Functionality to see the last login IP

The last login IP can be modified using the True-Client-IP HTTP header, which is

56

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

a custom one provided by the OWASP Juice Shop, by calling the /rest/saveLoginIP
API, as we can see in Figure 5.11. The application doesn’t perform any checks on

Figure 5.11: Modifying the last login IP using a custom header

the value of this header, allowing an attacker to insert anything, including the Cross-
Site Scripting payload <iframe src="javascript:alert(1)>", as we can see from
Figure 5.12. By looking at Figure 5.12 we immediately see how the WAF wasn’t

Figure 5.12: Inserting an XSS payload using an HTTP custom header

able to detect this payload as malicious, even if we did not use any encoding or
obfuscation technique. This happens because the Core Rule Set rules to detect XSS
payloads only inspect the User-Agent and, in some cases, the Referer headers, as
we can see from Figure 5.13.

57

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

Figure 5.13: CRS XSS payload detection rule example

This means that, if the attacker is able to inject a payload inside one of the
headers that are not inspected, it can exploit a vulnerability in the web applica-
tion entirely bypassing the WAF protection, as we have seen in this case with the
True-Client-IP custom header. As we can see from Figure 5.14, after having sub-
mitted the payload, when visiting the page that should display the last login IP, the
XSS payload is triggered.

Figure 5.14: XSS payload triggered

Mitigation

This bypass showed us how, sometimes, the attacker doesn’t need to find complex
payloads or use sophisticated encoding or obfuscation techniques to bypass the WAF,
they would just need to find an injection point that is not analyzed by it because of
configuration errors made by the developers.

In this specific case, to mitigate the vulnerability it is enough to add the
True-Client-IP among the headers inspected by the Core Rule Set. For example,
in the rule showed in Figure 5.13 the list of arguments should become:

REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/|REQUEST_COOKIES_NAMES|

REQUEST_HEADERS:User-Agent|ARGS_NAMES|ARGS|XML:/*|REQUEST_HEADERS

:True-Client-IP

Once the custom header has been added to the rules, the same payload would be
blocked, as shown in Figure 5.15.

58

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

Figure 5.15: XSS payload blocked by ModSecurity

5.5 The Business Logic Problem

Up until now, we focused on techniques to bypass a WAF to exploit vulnerabilities
that require payloads with specific formats and keywords such as SQL Injection
and Cross-Site Scripting. Even if in many cases it is possible to find a technique
to avoid the payloads being detected, as we have demonstrated in this chapter and
Chapter 4, it is also possible to change the WAF configuration or write new rules
to make those techniques ineffective. However, as we repeatedly said in this thesis,
Web Application Firewalls are not able to block every possible attack. In particular,
they fail to protect web applications from vulnerabilities that do not require specific
payloads to be exploited, like, for example, business logic ones. So, even if an
attacker is not able to exploit an SQL injection because of the WAF, they still can
cause damage to the application through the vulnerabilities that the WAF isn’t able
to mitigate.

For example, let’s consider the OWASP Juice Shop functionality to register a
new user. Figure 5.16 shows the HTTP request made by the application when
registering a user.

Figure 5.16: Normal user registration process

59

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

As we can see, the new user has the role customer, this means that they can not
access administrative functionalities, as shown in Figure 5.17. An attacker could

Figure 5.17: Customer can not access administrative page

modify the request to register a user adding the "role":"admin" payload to the
normal request and, as we can see from Figure 5.18, they get a user with admin
privileges.

Figure 5.18: Modifies request to register an admin user

Now that the attacker controls an admin user, they can access all the administra-
tive functionalities of the application and, potentially, compromise the entire web
application’s security.

Mitigation

As we have seen in this example, the WAF is not able to stop the attacker exploiting
a business logic vulnerability that gives them the possibility to gain administrative
access to the web application without injecting specific payloads. Furthermore, it
would be quite difficult to foresee every possible attack path in order to write specific
rules to prevent all the business logic vulnerabilities.

In order to make WAFs better at detecting these kinds of attacks, it is necessary
to add functionalities that are able to recognize strange behavioural patterns from

60

CHAPTER 5. HANDS-ON WAF EVASION AND MITIGATIONS

the users. To do this, it would be possible to leverage on artificial intelligence
techniques to identify behaviours that differ from the standard and intended ones
in order to stop them. However, this evolution of the WAFs can not be treated in
this thesis and could be a good starting point for future research to further improve
web applications security.

61

CHAPTER 6

CONCLUSIONS

In this thesis, we described how Web Application Firewalls are good security tools
to improve web application’s security and how they are able to stop attackers when
they try to exploit vulnerabilities such as SQL Injection and Cross-Site Scripting.

We have also seen how attackers are able to leverage upon configuration errors, bugs
in the Web Application Firewall software and encoding and obfuscation techniques
to be able to bypass the WAF protection and exploit web applications vulnerabili-
ties even when these tools are used. Furthermore, we have seen how WAFs are not
able to mitigate every possible vulnerability, especially those that can be exploited
without using specific syntax and payloads, such as business logic ones.

So, the conclusion for this thesis is that adopting a Web Application Firewall solu-
tion is a good measure to improve the security of web applications, but it can not
completely replace other security principles such as periodical testing and using best
coding practices. In addition, it should not be enough to deploy a WAF in front
of a web application to automatically feel more secure, but a proper configuration,
periodical updating and constant monitoring are necessary to make it as effective
as possible.

6.1 Possible Future Evolutions

In this thesis, particular attention was put on techniques to bypass the WAFs to
exploit vulnerabilities such as SQL Injection and Cross-Site Scripting (XSS). While
these evasion techniques can be mitigated either by changing the configuration of
the WAF or writing new rules to block specific payloads, we have also seen that Web
Application Firewalls are not able to protect web applications from the exploitation
of vulnerabilities, such as business logic ones, that do not require payloads with an
easily identifiable structure.

A possible evolution to further improve Web Application Firewalls detection ca-
pabilities would be to implement artificial intelligence solutions to identify strange
behavioural patterns and stop them if they are considered malicious. For example,
for business logic vulnerabilities, it would be possible to use an AI model trained
with legitimate HTTP requests that inspects every request form the users and as-
signs them a score that identifies how much they deviate from the normal usage of

62

CHAPTER 6. CONCLUSIONS

the application. Then, the WAF could be configured to block requests with a score
higher than a specified threshold.

63

BIBLIOGRAPHY

[1] Adam Volle, Web Application, Encyclopedia Britannica, https://www.britan
nica.com/topic/Web-application

[2] Daniel Landers, A Brief History of the Web, Medium, https://blog.keepsit
e.com/a-brief-history-of-the-web-809509ba23df

[3] Jesse James Garrett, Ajax: A New Approach to Web Applications, https://we
b.archive.org/web/20061107032631/http://www.adaptivepath.com/publi

cations/essays/archives/000385.php

[4] Maria Gusarova, What is an API? Explained in simple terms, Medium, https:
//medium.com/@data.science.enthusiast/what-exactly-is-an-api-exp

lained-in-simple-terms-2a9015c1a1a1

[5] What Is A Web Application?, Stack Path, https://www.stackpath.com/edge
-academy/what-is-a-web-application/

[6] OWASP Top 10, Open Web Application Security Project, https://owasp.or
g/Top10/

[7] Vulnerability, NIST, https://csrc.nist.gov/glossary/term/vulnerability

[8] Security Risk, NIST, https://csrc.nist.gov/glossary/term/risk

[9] Common Weakness Enumeration, MITRE, https://cwe.mitre.org/about/in
dex.html

[10] SQL Injection, Port Swigger Academy, https://portswigger.net/web-sec
urity/sql-injection

[11] Cross-Site Scripting, Port Swigger Academy, https://portswigger.net/we
b-security/cross-site-scripting

[12] Web Application Firewalls - How do they even work?, Thexssrat, Medium, ht
tps://medium.com/codex/waf-web-application-firewalls-3373d520385f

[13] Web Application Firewalls, Rapid7, https://www.rapid7.com/fundamental
s/web-application-firewalls/

[14] What is the Difference between Whitelisting vs Blacklisting WAF?, Haltdos,
Medium, https://medium.com/@haltdos.com/what-is-the-difference-b
etween-whitelisting-waf-vs-blacklisting-waf-63f53b88dda4

64

https://www.britannica.com/topic/Web-application
https://www.britannica.com/topic/Web-application
https://blog.keepsite.com/a-brief-history-of-the-web-809509ba23df
https://blog.keepsite.com/a-brief-history-of-the-web-809509ba23df
https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php
https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php
https://web.archive.org/web/20061107032631/http://www.adaptivepath.com/publications/essays/archives/000385.php
https://medium.com/@data.science.enthusiast/what-exactly-is-an-api-explained-in-simple-terms-2a9015c1a1a1
https://medium.com/@data.science.enthusiast/what-exactly-is-an-api-explained-in-simple-terms-2a9015c1a1a1
https://medium.com/@data.science.enthusiast/what-exactly-is-an-api-explained-in-simple-terms-2a9015c1a1a1
https://www.stackpath.com/edge-academy/what-is-a-web-application/
https://www.stackpath.com/edge-academy/what-is-a-web-application/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://csrc.nist.gov/glossary/term/vulnerability
https://csrc.nist.gov/glossary/term/risk
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/cross-site-scripting
https://medium.com/codex/waf-web-application-firewalls-3373d520385f
https://medium.com/codex/waf-web-application-firewalls-3373d520385f
https://www.rapid7.com/fundamentals/web-application-firewalls/
https://www.rapid7.com/fundamentals/web-application-firewalls/
https://medium.com/@haltdos.com/what-is-the-difference-between-whitelisting-waf-vs-blacklisting-waf-63f53b88dda4
https://medium.com/@haltdos.com/what-is-the-difference-between-whitelisting-waf-vs-blacklisting-waf-63f53b88dda4

BIBLIOGRAPHY

[15] Web Application Firewall: 3 Types of WAF and Key Capabilities, HackerOne,
https://www.hackerone.com/knowledge-center/web-application-firew

all

[16] ModSecurity Reference Manual, SpiderLabs, GitHub, https://github.com/S
piderLabs/ModSecurity/wiki/Reference-Manual-(v3.x)

[17] OWASP Core Rule Set, OWASP CRS, https://coreruleset.org/

[18] CRS Anomaly Scoring, OWASP CRS, https://coreruleset.org/docs/con
cepts/anomaly_scoring/

[19] CRS Paranoia Levels, OWASP CRS, https://coreruleset.org/docs/conce
pts/paranoia_levels/

[20] Origin IP found, WAF Cloudflare Bypass, Mrrobot, Hackerone, https://hack
erone.com/reports/1536299

[21] Cloudflare WAF bypass via Origin IP, Navdeep Khubber, Medium, https:
//medium.com/@navdeepkhubber/cloudflare-waf-bypass-via-origin-i

p-d456705693c7

[22] WAF Bypass with Unicode Compatibility, Jorge Lajara, GitLab, https://jl
ajara.gitlab.io/Bypass_WAF_Unicode

[23] JSFuck, aemkei, GitHub, https://github.com/aemkei/jsfuck

[24] Imperva WAF Bypass, TechAnarchy, https://www.techanarchy.net/imperv
a-waf-bypass/

[25] Base64, Wikipedia, https://en.wikipedia.org/w/index.php?title=Base6
4&oldid=1212044126

[26] An Interesting XSS-Bypassing WAF, Cognisys Labs, https://labs.cognisy
s.group/posts/An-Intresting-XSS-Bypassing-WAF/

[27] Bypassing the AWS WAF with an 8kB bullet, Riyaz Walikar, Kloudle, https:
//kloudle.com/blog/bypassing-the-aws-waf-protection-with-an-8kb-b

ullet/

[28] ModSecurity v3 WAF bypass (severity HIGH), OWASP CRS Team, https:
//owasp.org/www-project-modsecurity/tab_cves

[29] WAF bypasses via 0days, Terjanq, Medium, https://terjanq.medium.com/w
af-bypasses-via-0days-d4ef1f212ec

[30] AWS WAF Bypass: invalid JSON object and unicode escape sequences, Andrea
Menin, Sicuranext, https://blog.sicuranext.com/aws-waf-bypass/

65

https://www.hackerone.com/knowledge-center/web-application-firewall
https://www.hackerone.com/knowledge-center/web-application-firewall
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v3.x)
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v3.x)
https://coreruleset.org/
https://coreruleset.org/docs/concepts/anomaly_scoring/
https://coreruleset.org/docs/concepts/anomaly_scoring/
https://coreruleset.org/docs/concepts/paranoia_levels/
https://coreruleset.org/docs/concepts/paranoia_levels/
https://hackerone.com/reports/1536299
https://hackerone.com/reports/1536299
https://medium.com/@navdeepkhubber/cloudflare-waf-bypass-via-origin-ip-d456705693c7
https://medium.com/@navdeepkhubber/cloudflare-waf-bypass-via-origin-ip-d456705693c7
https://medium.com/@navdeepkhubber/cloudflare-waf-bypass-via-origin-ip-d456705693c7
https://jlajara.gitlab.io/Bypass_WAF_Unicode
https://jlajara.gitlab.io/Bypass_WAF_Unicode
https://github.com/aemkei/jsfuck
https://www.techanarchy.net/imperva-waf-bypass/
https://www.techanarchy.net/imperva-waf-bypass/
https://en.wikipedia.org/w/index.php?title=Base64&oldid=1212044126
https://en.wikipedia.org/w/index.php?title=Base64&oldid=1212044126
https://labs.cognisys.group/posts/An-Intresting-XSS-Bypassing-WAF/
https://labs.cognisys.group/posts/An-Intresting-XSS-Bypassing-WAF/
https://kloudle.com/blog/bypassing-the-aws-waf-protection-with-an-8kb-bullet/
https://kloudle.com/blog/bypassing-the-aws-waf-protection-with-an-8kb-bullet/
https://kloudle.com/blog/bypassing-the-aws-waf-protection-with-an-8kb-bullet/
https://owasp.org/www-project-modsecurity/tab_cves
https://owasp.org/www-project-modsecurity/tab_cves
https://terjanq.medium.com/waf-bypasses-via-0days-d4ef1f212ec
https://terjanq.medium.com/waf-bypasses-via-0days-d4ef1f212ec
https://blog.sicuranext.com/aws-waf-bypass/

	Introduction
	Web Applications Security
	Brief history of web applications
	How does a web application work?
	Web applications vulnerabilities
	OWASP top 10
	SQL Injection
	Cross-Site Scripting (XSS)
	Business logic vulnerabilities

	Web Application Firewalls

	Web Application Firewalls: ModSecurity and the OWASP Core Rule Set
	Web Application Firewalls Explained
	WAF classification

	ModSecurity
	Configuration Directives
	Processing Phases
	Writing Rules

	OWASP Core Rule Set (CRS)
	Anomaly Scoring
	Paranoia Levels

	WAF Evasion Techniques
	Finding The Server's Real IP Address
	The Bypass
	The Mitigation

	Payload Obfuscation
	Unicode Compatibility
	Javascript Obfuscation
	Base64 Encoding

	Exploiting a Misconfiguration/Vulnerability
	Submitting Very Large Requests
	Exploiting a Bug

	Impedance Mismatch
	Content-type confusion
	JSON Duplicate Keys
	The Mitigation

	Hands-on WAF Evasion And Mitigations
	Building The Test Environment
	SQL Injection Through Impedance Mismatch
	SQL Injection Through Parameters Overflow
	Stored XSS Through Custom HTTP Header
	The Business Logic Problem

	Conclusions
	Possible Future Evolutions

