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Abstract

Upper limbs play an important role in everyday life, enabling a variety of activ-
ities beyond mere object manipulation or grasping, as allowing communication,
productivity, creativity, and physical health through writing, drawing, sports and
recreation. It is evident, then, that the loss of upper limb functions deeply impacts
individuals’ daily lives and quality of life.

Despite extensive research to replicate upper limb capabilities with prosthetic
devices, users often face challenges in adapting to their prosthesis, leading to high
rejection rates. Addressing this challenge requires prosthetics that not only restore
functionality but also offer natural control and autonomy for daily activities.

In particular, prostheses often demonstrate inadequate sensory feedback and
limited proprioceptive information. This deficiency in sensory perception leads
to poor slip control, difficulties in adjusting grip force, complications with object
manipulation, and decreased dexterity. These factors, together with a heavy reliance
on visual cues, prevent an easy integration of prosthetic devices into daily routines
and challenge users’ acceptance.

In line with these goals, this master’s thesis seeks to enhance grasping safety
by introducing a machine-learning algorithm capable of interpreting sensory in-
formation from tactile sensors embedded within the prosthetic hand. The work
involves a comprehensive overview of existing non-invasive feedback mechanisms
and tactile sensor technologies, alongside an in-depth exploration of experimental
methodologies for detecting and predicting slippage.

Afterwards, to build and train the machine learning algorithm, a comprehensive
dataset was collected, incorporating various actions categorized into three main
groups: grasp, risky and non-risky. These actions involved interacting with objects
of different shapes and textures. The data was gathered using a commercially
available prosthesis, specifically the Michelangelo hand, equipped with six tactile
sensors embedded on its fingers.

Finally, an experimental validation was conducted, involving external partici-
pants interacting with the prosthetic hand. This validation served to evaluate the
accuracy of the algorithm’s predictions and gather feedback for potential enhance-
ments. Through this iterative process of data collection, algorithm development,
and experimental validation, this thesis aims to predict slippage to ensure grasping
safety.





Resumen

Los miembros superiores juegan un papel importante en la vida cotidiana, permi-
tiendo una variedad de actividades más allá de la mera manipulación u agarre de
objetos, al posibilitar la comunicación, productividad, creatividad y salud física a
través de la escritura, dibujo, deportes y recreación. Es evidente, entonces, que la
pérdida de funciones de los miembros superiores impacta profundamente en la vida
diaria y calidad de vida de los individuos.

A pesar de la extensa investigación para replicar las capacidades de los miembros
superiores con dispositivos protésicos, los usuarios a menudo enfrentan desafíos
en la adaptación a su prótesis, lo que lleva a altas tasas de rechazo. Abordar este
desafío requiere prótesis que no solo restauren la funcionalidad, sino que también
ofrezcan control natural y autonomía para las actividades diarias.

En particular, las prótesis a menudo muestran retroalimentación sensorial in-
adecuada e información propioceptiva limitada. Esta deficiencia en la percepción
sensorial conduce a un control insuficiente del deslizamiento, dificultades para ajus-
tar la fuerza de agarre, complicaciones en la manipulación de objetos y disminución
de la destreza. Estos factores, junto con una gran dependencia de las señales
visuales, dificultan la integración fácil de los dispositivos protésicos en las rutinas
diarias y desafían la aceptación de los usuarios.

En línea con estos objetivos, esta tesis de Master busca mejorar la seguridad en
el agarre al introducir un algoritmo de aprendizaje automático capaz de interpretar
información sensorial de sensores táctiles integrados dentro de la mano protésica.
El trabajo implica una visión general exhaustiva de los mecanismos de retroali-
mentación no invasivos existentes y las tecnologías de sensores táctiles, junto con
una exploración en profundidad de metodologías experimentales para detectar y
predecir el deslizamiento.

Posteriormente, para construir y entrenar el algoritmo de aprendizaje automático,
se recopiló un conjunto de datos exhaustivo, que incorpora varias acciones catego-
rizadas en tres grupos principales: agarre, riesgoso y no riesgoso. Estas acciones
implicaron interactuar con objetos de diferentes formas y texturas. Los datos se
recopilaron utilizando una prótesis disponible comercialmente, específicamente la
mano Michelangelo, equipada con seis sensores táctiles integrados en sus dedos.

Finalmente, se llevó a cabo una validación experimental, que involucró a par-
ticipantes externos interactuando con la mano protésica. Esta validación sirvió
para evaluar la precisión de las predicciones del algoritmo y recopilar comentarios
para posibles mejoras. A través de este proceso iterativo de recopilación de datos,
desarrollo de algoritmos y validación experimental, esta tesis tiene como objetivo
predecir el deslizamiento para garantizar la seguridad en el agarre.
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Chapter 1

Introduction

In everyday life, as individuals interface with the external environment, the re-
markable capabilities of the human senses are often overlooked. From simple tasks
like shaking hands with a friend, zipping up or catching a ball, to more complex
actions such as putting shoes on in the dark; beneath the surface of these seemingly
ordinary interactions, the ability to perceive and manipulate objects relies heavily
on sensory feedback. [1]

It is this combination of tactile perception and proprioception, that is the basis
of what is called haptic feedback, a concept that is gaining great importance in the
prosthetic sector. The term ’haptic’ finds its origins in the Greek word meaning
"related to the sense of touch" [2]; enclosing not only the perception of objects
through tactile sensations but also proprioceptive manipulation. This definition is
consistent with the one coined by Gibson in 1966 as "the individual’s sensitivity to
the world adjacent to his body" [3], underlining so the enduring importance of this
concept.

In the human experience, sensorimotor feedback serves as a constant source of
information about the surrounding environment, directing actions and interactions.
Consequently, it can be deduced that the absence of this information, even during
the most basic daily activities (ADLs), poses a significant challenge for prosthetic
users, and presents individuals with a range of obstacles, encompassing physical
limitations and psychological impacts. [4] [5].

To this end, in recent decades, prosthetic devices have played a pivotal role in
restoring both mobility and functionality to individuals who have undergone limb
loss due to a variety of factors, such as traumatic injury, congenital conditions, or
medical amputations. Moreover, the development and implementation of prosthetic
solutions have been able to adapt to the severity of these amputations, which can
vary greatly, ranging from partial to complete loss of limb, each presenting its own
set of unique challenges.

As prosthetic technology has evolved over time, there has been a notable
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transition from rudimentary wooden structures to highly sophisticated devices
incorporating cutting-edge materials and technologies. [6]. However, despite these
advancements, a significant proportion of existing prosthetic systems still lack
adequate somatosensory feedback, making prosthetic users often rely heavily on
visual cues for functionality. This deficiency in sensory information, coupled with
the over-reliance on visual feedback, is one of the main causes of rejection, as
individuals may find the prosthetic experience unnatural or uncomfortable, and
has contributed to rejection rates for prosthetic hands reaching as high as 40% [7].

Recognizing this problem, researchers have explored various approaches to
enhance user experience and improve functionality of prosthetic limbs, and one
promising approach that has garnered increasing attention is the one of shared
control. Shared control refers to a symbiotic interaction between the user and
the prosthetic device, where both parties contribute to the control of movement
and manipulation tasks [8]. By integrating elements of both user intention and
automated control algorithms, shared control seeks to bridge the gap between
human intuition and machine precision, ultimately enhancing the user’s sense of
agency and control over the device.

While shared control holds immense promise in revolutionizing prosthetic tech-
nology, it is not without its challenges. One notable limitation is the potential
for delays in information processing, which can arise due to factors such as sensor
latency, computational complexity, and communication bandwidth constraints [9].
Moreover, achieving seamless integration between user intention and automated
control algorithms poses a considerable technical and algorithmic challenge. These
problems can impact the real-time responsiveness of the prosthetic system, leading
to suboptimal user experiences and reduced overall performance.

1.1 Thesis’ objectives
Despite the challenges, the potential benefits of shared control in enhancing pros-
thetic functionality and user satisfaction are undeniable. With this objective in
mind, by addressing the limitations of existing prosthetic systems, this work seeks
to develop a novel method that combines user intention with a machine-learning
algorithm to improve grip stability and object manipulation in real-world scenarios.

Central to this endeavour is the introduction of an unexplored approach that
goes beyond traditional prosthetic control paradigms. Specifically, this research
focuses on distinguishing between safe and risky slips in everyday actions, offering
a deeper understanding of grasping dynamics. Later on, through the integration
of an advanced machine learning algorithm capable of interpreting tactile sensory
data, the system aims to recognize, and potentially prevent, risky slip occurrences,
thereby elevating grasping safety and user confidence.
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By prioritizing the development of sensory feedback mechanisms through ad-
vanced sensor technology and the implementation of a machine learning algorithm,
this thesis project aims to enhance the functionality and safety of prosthetic limbs.
While current myoelectric prostheses have focused on motor function, integrating
advanced sensor technology has the potential to revolutionize the user-prosthesis
experience. Such integration is not an option but an essential requirement in
prosthetic design, representing a pivotal element in improving overall quality of life
and fostering independence among amputees.

1.2 Thesis’ outline
The thesis is structured as follows:

Chapter 2:
This chapter introduces the theoretical foundation of slip detection. Initially, it

discusses the significance of non-invasive sensory feedback methods and outlines the
required sensors. Subsequently, it directs attention towards the primary objectives
of this thesis project: slip detection and shared control with an exploration of the
latest methodologies in these fields.

Chapter 3:
The chapter introduces the proposed Shared-Autonomy Control Method, exam-

ining the Friction Cone and Bandpass Filter Methods’ advantages and limitations.
Later on, it suggests the approach used to enhance grasping stability and finally, a
Random Forest Classifier for machine learning-based slip detection is implemented.

Chapter 4:
This chapter specifically explores the initial phase of this work, concentrating

on the examination of pre-recorded data to achieve a thorough comprehension of
the subject matter.

Chapter 5:
This chapter introduces and explains the hand and sensors used in the project’s

development, also offering a brief overview of the final structure before addressing
sensor calibration. Following, once confirmed the feasibility of this study in the
previous chapter, attention shifts to implementing and refining the chosen method
and creating a dataset aligned with the study’s scope. Finally, two participants
will interact with the robotic hand to validate the model.

Chapter 6:
This chapter presents the comprehensive results of the offline analysis, online

analysis, and the human study. It encapsulates results from the previous chapter,
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highlighting outcomes of the implemented methods, the effectiveness of the devel-
oped dataset, and the validation process involving participant interaction with the
robotic hand.

Chapter 7:
This chapter critically examines the results obtained from the study, delving into

their implications and broader significance. It also identifies potential limitations
and areas for improvement, paving the way for future works and developments.

Chapter 8:
In the concluding chapter, the study’s key findings are summarized, providing

closure to the research endeavour.
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Chapter 2

State of the Art

Delving deeper into the topic of slip detection necessitates an understanding of
non-invasive sensory feedback methods. In this chapter, tactile and mechanotactile
feedback will be explored as a starting point. Following this, an overview of the
sensors required to enhance sensory experiences will be provided. Lastly, the focus
will shift towards the core objectives of the thesis project: slip detection and shared
control, along with an examination of current state-of-the-art methodologies.

2.1 Upper-limb Prostheses
Over the years, there has been notable evolution in upper limb prostheses, employing
technological advancements to boost functionality and elevate the quality of life for
those with upper-limb loss. This short chapter delves into the recent advancements
and trends in upper limb prosthetics, examining different types of prosthetic devices,
their hardware elements and control mechanisms.

2.1.1 Body Powered Prostheses
Conventional upper limb prostheses have long been the cornerstone of prosthetic re-
habilitation, providing essential functionality for individuals with limb loss. Among
these, body-powered prostheses remain a widely used option. Controlled through
mechanical cables and harnesses, these prostheses rely on the movement of the resid-
ual limb to generate tension, enabling basic tasks such as grasping and lifting [10].
While cheaper, durable, reliable and requiring easy maintenance, body-powered
prostheses are limited in their range of motion and dexterity so considered more
suited to manual labour [11].

Within the realm of conventional prostheses, socket design is of paramount
importance [12]. The socket serves as the interface between the residual limb and
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the prosthetic device, playing a pivotal role in ensuring comfort, stability, and
proper transmission of control signals.

Figure 2.1: A body-powered prosthesis with highlighted
principal components, from [13].

2.1.2 Modern Myoelectric Prostheses

In recent years, advances in technology have guided everyone into a new era of
upper limb prosthetics, with myoelectric prostheses leading the way. Myoelectric
prostheses utilize electromyographic signals generated by residual muscles to con-
trol a specific movement of the prosthetic limb. These algorithms, interpreting
electromyographic signals to generate precise movements, offer users more intuitive
and precise control, allowing for a wider range of movements and tasks without the
need for mode switching [14]. Moreover, advancements in materials science coupled
with the progress in the realm of 3D printing have resulted in the production of
lightweight and long-lasting prosthetic components, which significantly improved
comfort and usability for users [15].

Advanced prosthetic limbs, such as myoelectric prostheses, often incorporate
sophisticated hardware components and control mechanisms. Socket design remains
crucial, ensuring optimal fit and comfort for users [12]. Additionally, advanced
prostheses may feature more complex sensor arrays, including inertial sensors and
advanced feedback mechanisms to enhance functionality [16].
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(a)

(b)

Figure 2.2: Figure a) illustrates the user-device interaction in an Upper Limb
Prosthesis (ULP) system. The left panel showcases the user’s perspective, en-
compassing input signals, sensory feedback, and external factors. The right panel
depicts the device level, featuring control commands and feedback collected by
the end-effector. The bidirectional exchange of information between the user and
the device is highlighted. Image from [16]. Figure b) highlights components of a
below-elbow myoelectric prosthesis, including the socket, electrodes, control unit
with battery pack, friction wrist, and electric hand. Image from [17].

2.1.3 Open Challenges

Recent advancements in upper limb prosthetics have guided a new era of innovation,
offering a range of promising design options and approaches. Decades of research
on myoelectric prostheses have yielded a plethora of solutions, both invasive and
non-invasive, for interfacing with body signals. These advances have significantly
enhanced prosthetic capabilities, particularly in terms of control strategies and
functional achievement.

Machine learning techniques hold promise for interpreting user intentions in
prosthetic devices via non-invasive interfaces, augmenting control and usability.
Short-term solutions, mainly surface electromyography (sEMG), offer advantages
such as affordability and intuitive control. Nevertheless, often encounter issues
with robustness due to susceptibility to various artifacts, thereby driving the
need for continuous research and enhancement. Also worth mentioning, wearable
technologies are promising, particularly for daily living activities. Conversely,
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long-term invasive solutions offer direct bidirectional interaction with the nervous
system, thereby enhancing device functionality and usability.However, persistent
challenges such as electrode invasiveness, signal quality, and stability continue to
necessitate ongoing research endeavors aimed at optimizing physical interfaces and
refining filtering processes. While brain-based approaches are still experimental
and challenges remain, research in both academic and non-academic contexts
(companies like Neuralink, Facebook Reality Labs, and Google DeepMind) is
pushing the boundaries of neuroprosthetics, with the potential to revolutionize
everyday life for amputees. [16] [18]

A further obstacle involves the biomechanical integration of artificial limbs with
the body. Despite recent advancements in materials and high levels of customization
in these technologies, the current options for sockets remain largely unsatisfactory
for patients. Osseointegration emerges as a promising clinical alternative, directly
attaching the prosthetic limb to residual skeletal structures. This approach alleviates
discomfort and pain associated with pressure on soft tissues. [19]

Lastly, serving also as the foundation of this thesis project, there are feedback
methods. These strategies play a crucial role in improving the acceptability and
performance of robotic prosthetic hands. However, numerous commercial devices
lack sensory feedback, causing users to heavily rely on visual inputs, leading to
fatigue and potential errors. As a response, researchers are actively investigating
tactile feedback mechanisms to offer users more intuitive and natural sensory
experiences. [20] [21] [22]

2.2 Sensory feedback

2.2.1 Tactile Feedback
Tactile feedback enables us to experience textures and shapes, feeling the details of
everything that surrounds us.

The replication of tactile sensations within prosthetic devices can be approached
through two primary modes: vibrotactile feedback and electrotactile feedback.

• Vibrational feedback employs small, commercially available vibrators, typically
compact and lightweight. These are applied to the skin surface, activating the
Pacinian corpuscle mechanoreceptors, responsible for detecting touch, pressure
or vibration changes. As users become familiar with the association between
the vibration at that site and the sensory input from their prosthetic hand, a
portable vibratory haptic feedback system integrated into the prosthesis has
the potential to improve the grip force accuracy and gripping technique of
upper-limb prosthetic users during daily life tasks [23].
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Nevertheless, there are certain limitations associated with vibrational feedback.
One noteworthy is the delay in stimulation, which can impact the sense of
embodiment [24] [25].
Moreover, experiments showed that when grasping tasks are performed under
visual control, the enhanced proprioception offered by a vibrotactile system is
practically not exploited [26].

• In contrast to vibrational feedback, electrotactile feedback consists in the use
of electrical stimulation applied directly to the skin. This method has found
vast application in sensory restoration for prosthetic hands, thanks to its
advantages, including non-invasive, decoupled parameters, compact electronics
and a different number of electrode pads that can be strategically arranged.
However, it is essential to acknowledge potential concerns about electrotactile
feedback. Indeed, while effective, someone may find it uncomfortable, con-
sidering factors such as pain thresholds and placement positions. Moreover,
it may require re-calibration in case of prolonged use, since it can lead to
desensitisation of the person using it. Nonetheless, dual-parameter modulation
can be used to substantially improve the performance in spatial localization
of the stimulated tactile sensation [27].
Another problem could be EMG interference. Several solutions were proposed
to avoid that, for example, O time-division multiplexing [28] assures that
myoelectric control and electrotactile stimulation are never occurring at the
same time; or also, utilizing artifact blanking - or a minimal reduction in
performance - it is possible to eliminate the negative influence of the stimulation
artifact on EMG pattern classification in a broad range of conditions, thus
allowing to close the loop in myoelectric prostheses using electrotactile feedback
[29].

2.2.2 Mechanotactile Feedback
One of the methods of delivering sensory information is called “modality matching”
[30], meaning the sensation’s production in the user is similar to the type of
information to be transmitted. One way to go through this approach involves using
mechanotactile feedback to provide tactile sensations or feedback to a user.

Preliminary tests conducted by Aziziaghdam and Samur in [31] showed that
an object’s softness or hardness could be identified by analyzing the acceleration
response obtained when tapping an object.

Moreover, it was verified in [32] that mechanotactile sensory feedback might not
only be useful for improving the sense of ownership and location but also may have
a modulating effect on the sense of agency when provided asynchronously during
active motor control tasks.
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However, it’s important to note that this feedback was not statistically significant
compared to visual feedback. Also, early implementations of mechanotactile
feedback devices often were quite large and provided unnecessary bulk to prosthetic
devices.

2.2.3 Others Indirect Feedback
Beyond these direct forms of sensory feedback, there are also other types of indirect
feedback, each of which has a unique role to play in enhancing the haptic experience
within prosthetic devices.

• Thermal feedback, introduces the perception of warmth and coldness,
contributing to a more comprehensive sensory experience when interacting
with the external environment. However, since it is not a priority to occur
by itself, a potential focus of research would be to incorporate temperature
feedback with another feedback method so that they occur simultaneously [7].

• Audio feedback complements tactile and pressure feedback, providing au-
ditory cues to communicate robotic hand movements. For example in [33]
the variance in volume represented the level of grasping force and the varying
frequency corresponded with the location of two different regions of the hand,
or in [34] a triad identified the movement of different fingers. However, each
of these audio feedback experiments was conducted within the laboratory so
it needs further testing to understand the usability given environmental noise.

• Augmented reality, with its capacity to overlay digital information onto
the physical world, adds yet another layer to the haptic experience, but while
effective, it also requires increased cognitive load from users and this high
level of cognitive effort may affect the overall user experience [7].

Each of these feedback methods has its distinctive characteristics and applications,
making them suitable for specific scenarios and user preferences. However, it is
being studied the possibility to combine them, even if testing was only conducted
on able-bodied subjects. [35] [36]

2.3 Tactile sensors
Sensors are what can be identified as the bridge between the physical world and users’
sensory experiences. In prosthetic devices, indeed, sensors play an essential role,
enabling users to regain perception and a deeper connection to their surroundings.

This section tries to shortly explain the role of sensors and how they work, in
order to comprehend how they create a more adjusted sensory experience for those
relying on prosthetic devices.
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2.3.1 Resistive sensor
Resistive sensors operate on the principle of electrical resistance, which changes
when strain is applied, enabling them to detect mechanical pressure and deformation.
An example of a resistive sensor in prosthetic technology is found in [37], where a
stretchable prosthetic skin is equipped with an ultra-thin single crystalline silicon
nanoribbon (SiNR) strain, pressure and temperature array, with the integration of
stretchable humidity and heater sensors (Figure 2.3).

Figure 2.3: An exploded view of a resistive sensor. From [37].

This array of sensors exhibits a variety of geometric configurations, spanning
from linear (S1) to progressively increasing curvature (S6), see Figure 2.4. By
using this design strategy, the response to highly variable external environments
is dramatically enhanced, providing the highest spatio-temporal sensitivity and
mechanical reliability.

Utilizing a motion capture system, they could identify distinct hand zones
undergoing various ranges of motion to strategically position sensors equipped with
different SiRN strain gauges, as shown in Figure 2.4a.

To evaluate how strains impact various SiNR sensor designs, it was observed that
as applied strains increased, SiNR strain gauges with minimal curvature underwent
significantly higher strain levels than those with greater curvature. Yet, while
the latter could endure more substantial applied strains, they exhibited reduced
sensitivity. This phenomenon was examined by measuring relative resistance
(∆R/R) in relation to applied strain. Thus, it was determined that SiNR S1 is best
suited to locations with limited stretching, while SiNR S6 is better suited to areas
subjected to more significant stretching, as illustrated in Figure 2.4b and 2.4c.

While the temperature sensor should ideally be unaffected by mechanical de-
formations, the divergence between I-V curves under different strains is notably
reduced as sensor curvature increases. Figure 2.4d displays calibration curves for a
specific current value. While S1 design shows significant shifts in response to strain,
the S6 design remains stable. Deducing that S6-designed temperature sensors
will be used to minimize the effects of mechanical deformations, ensuring reliable
temperature monitoring under varying pressures.

11



State of the Art

(a) (b)

(c) (d)

Figure 2.4: Image a) displays the fabricated site-specifically designed SiNR strain
gauge arrays attached to the back of the hand. Magnified views of each design
are shown on the right. Figure b) shows SiNR strain gauges (top frames) under
different applied strains, along with corresponding FEA results (bottom frames).
Figure c) shows on the left the resistance changes for different curvatures of SiNR,
depending on the applied strain, and on the right, temporal resistance changes of
different curvatures of SiNR under cyclical stretching. Finally, d) shows calibration
curves of SiNR temperature sensors for representative designs (S1: graph on the
left and S6: graph on the right) under stretched and unstretched conditions. All
images are from [37]

In conclusion, the adaptability of this electronic skin was monitored in various
real-life scenarios, including typing on a keyboard, catching a ball, handling hot/cold
objects, touching diapers, and simulating body temperature. Each of these scenarios
revealed improved functionality and high performance.

2.3.2 Capacitive sensor
Capacitive sensors measure changes in capacitance, a property that varies with
the proximity of the two plates. These sensors play a significant role in detecting
touch and interaction because they are small, compact and with high sensitivity.
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Generally, their main problem is related to hysteresis and temperature sensitivity,
but in the example proposed in [38] they present a novel solution using a thin
layer of 3D fabric glued to a conductive and a protective layer (clothing industry
techniques). Moreover, the capacitors used are insensitive to pressure so they can
be used for temperature compensation (2 taxels inside FPCB).

(a)

(b) (c)

Figure 2.5: In a) a vertical section of the structure of the tactile module. Figure
b) displays fabrics that will constitute the new dielectric for the sensor. Finally, c)
shows the integration of a mesh of sensors on a prosthetic forearm. All images are
from [38].

The sensor used in this study is built on a flexible PCB, with a conductive
area forming the first capacitor plate. On top of the FPCB, there’s a deformable
dielectric (changing with applied pressure) and a conductive layer, which acts
as the second plate and serves as a common ground plane to protect against
electromagnetic interference.

The FPCB has a triangular shape and accommodates 12 sensors (2 taxels
embedded in the FPCB + 10) and a Capacitance-to-Digital Converter (CDC,
AD7147 from Analog Devices), which measures the capacitance of each sensor,
performs analog-to-digital conversion and transmits values via a serial line.

Multiple triangles can be interconnected to create a mesh of sensors covering
the desired area; moreover, being flexible, they can adapt to curved surfaces.

In conclusion, in [38] the objective was to assess the sensor’s performance,
specifically in terms of repeatability, sensitivity, hysteresis, and spatial resolution.
They will demonstrate that the sensor exhibits satisfactory performances, with
particular emphasis on its minimal hysteresis (an improvement from the previous
sensor). Additionally, it will be shown the effective use of the introduced thermal
sensors in the FPCB for compensating drift caused by temperature changes.
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2.3.3 Inductive sensor
Inductive sensors operate based on electromagnetic induction to detect the presence
of objects. These sensors have found applications in prosthetic devices as described
in [39], with initial improvements detailed in [40] and subsequent enhancements in
[41].

The sensor under consideration utilizes a single MLX90393 chip capable of
providing 3-axis magnetic and temperature data. It is embedded within a soft
material, specifically silicone rubber, with a small magnet placed approximately
5mm above it, as illustrated in Figure 2.6.

Figure 2.6: Design of an inductive sensor. From [39].

In the first study, two tests were conducted: one for measuring normal force
and the other for assessing both normal and shear forces. Both tests yielded
positive results, demonstrating the sensor’s ability to detect normal and shear
forces, particularly in the y and z axes. However, some unexpected readings were
observed in the x-axis, which could be attributed to misalignment or crosstalk
between axes.

While the initial work presented only preliminary results with the sensor, subse-
quent papers offered a more comprehensive characterization of the sensor.

These subsequent studies encompassed three tests: evaluating thermal drift,
hysteresis, and load capacity. In the thermal drift assessment, it was found that
the z-axis was the most affected by temperature variations. After implementing
linear regression and temperature compensation, the results improved significantly.
Further enhancements can be achieved with the use of a high-pass filter.

The second test focused on hysteresis, which is partly attributed to the silicone
covering the sensor. However, the study did not primarily focus on the choice of
optimal materials.
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As for the last test, both normal and shear forces were found to have good
correspondence, after calibration, of course. Additionally, the study assessed the
sensor’s capability to detect a minimal load of approximately 1 gf along the z-axis.

The integration of distributed sensors into the limited space of robot hands
presents a significant challenge. To enhance the work described earlier regarding
inductive sensors, a customized printed circuit board (PCB) equipped with 16
Hall-effect sensor chips has been developed (Figure 2.7) [41]. Each taxel is capable
of measuring the applied 3D force vector using a Hall effect sensor and a magnet
with an I2C digital output. Remarkably, each sensor module, consisting of 16
taxels, requires only seven wires.

Figure 2.7: Design of a customized PCB equipped with 16 Hall-effect sensors.
From [41].

Forthcoming examinations will assess the measurement of normal and shear
forces, examine potential crosstalk between the chips, and ensure sensor stability
by applying repetitive force.

Similar to the previous tests, when only normal forces were applied, displacements
were detected in the x-axis and y-axis, and vice versa when solely shear forces
were applied displacements were detected also in the z-axis; probably due to a
slight misalignment of the magnet. A crosstalk test was conducted to estimate
any magnetic field interference between the sensors, and the results affirmed the
sensors’ robust functionality. Additionally, the final test confirmed the reliability
of the sensors.
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Integration

For what concerns the integration of the sensors, in this document will only be
cited what regards the inductive sensor, being the one that will be successively
used and implemented for experiments, see Chapter 5.1.2.

Several examples illustrate different approaches to sensor integration. One
notable example employs customizable and scalable silicone bands [42], presented
in Figure 2.8a, with two variations: a ring-shaped design for individual sensors
and a band-shaped version to cover the palm. These silicone bands offer flexibility
by fitting various finger and palm dimensions accurately. Additionally, a ribbed
texture is incorporated to enhance friction between the silicone and the fingers.

(a)

(b) (c)

Figure 2.8: Depicted in a) a design for customizable and scalable silicon bands
containing one Hall-effect sensors, conceived to precisely fit a wider range of subjects.
From [42]. b) Illustrate the casting process aimed at integrating various types of
sensors on the fingertip. From [43]. And c) shows an Allegro Hand integrated with
customized PCBs each equipped with 16 Hall-effect sensors, covered with skins
(top finger). From [41].

Another approach demonstrated in [43], involves securing PCBs to each finger
and encasing tactile sensors in silicone rubber. This process is depicted in Figures
2.8b left and center. Furthermore, an extra layer of silicone rubber, as shown in
Figure 2.8b right, covers the entire finger pad to enhance stability. The design
integrates holes and canals with undercuts into the fingertip to ensure stability;
moreover, having a large part of the finger cast in silicone allows for a greater
number of sensors and improved grasping capabilities.

For a hybrid solution, as seen in [41], a PCB with 16 Hall-effect sensors is
utilized. After creating the silicone module, it is fitted onto the finger phalanges’
motors, and a silicone band is employed to encircle the fingers (Figure 2.8c).
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2.4 Slip Detection
Slip detection in the human hand relies on a sophisticated interplay of somatosensory
feedback from mechanoreceptors to sense grip changes during object manipulation.
This process encompasses distinct phases, including ’stuck,’ ’partial slip,’ and ’full
slip’ (Figure 2.9a). Various tactile units react to skin deformation, pressure, and
vibration, aiding in slip detection, moreover, factors such as skin hydration and
surface irregularities also affect slip dynamics. Collectively, these mechanisms
enable humans to maintain a secure hold on objects and respond to slippage.[44]

Humans also possess a frictional memory system that adjusts the force applied
to slippery objects based on past experiences with similar frictional characteristics
[45]. However, replicating this mechanism in a prosthetic hand is challenging
due to the complexity of the human body. The SensorHand Speed is the first
commercially available prosthetic hand that attempts slip prevention by increasing
grip force proportionally when tangential forces exceed predetermined values [46].
Nevertheless, this approach has limitations, as it does not adapt to varying friction
conditions and can lead to object crushing or slippage.

In [47], three slip-prevention algorithms are introduced and experimentally
evaluated. The first two are the sliding mode slip prevention (SMSP) controller and
the integral sliding mode slip prevention (ISMSP) controller. They are compared
to the proportional derivative (PD) shear force feedback slip prevention controller.
Additionally, these controllers are compared to a sliding mode controller without
provisions for preventing object slip.

The adaptive SMSP control system is designed to address potential object
slipping during grasping. It introduces a slip-dependent state (eS) into the error
equation, allowing slip events to influence the error state. Slip detection relies on
strain gauges on the prosthesis, which detect vibrations generated during slip at
the hand-object interface. Band-pass filters amplify these vibrations, with different
frequencies indicating various slip events (Figure 2.9b). The controller also checks
the amplitude of shear and normal forces to ensure reliable slip detection. When
slip is detected, grip force is increased to prevent further slipping.
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(a) (b)

Figure 2.9: In (a) a schematic quantification of shearing strain of the fingertip
(shear strain), slip-to-stick ratio, and vibration, represented on a 5-point scale
during each of the three slippage phases. The contact area between the fingertip
and the object is highlighted in violet. The slip-to-stick ratio progressively declines
from 0 (no slip) to 1 (full slip) as partial slip develops over time. Below is a
relation between grip force (GF, in red), shear and load force (SF and LF, in
green and blue) during each slippage phase. Image from [44]. Additionally, (b)
depicts the effectiveness of band-pass filters resonating at 20 Hz and 50 Hz, with
the superposition of seven slip-detection filters between 20 Hz and 50 Hz, proving
to be highly effective in detecting slips. Image from [47]

Determining the appropriate increase in grip force when slip is detected is a real
challenge. One approach involves defining the slip error state as eS = Cβ. This way,
the controller increases grip force each time it detects slip events. However, this
approach can lead to rapid and excessive grip force increases, potentially crushing
the object (Figure 2.10a). An alternative method, the Integral Sliding Mode Slip
Prevention (ISMSP) controller, integrates the slip signal upon detection, resulting
in a smoother increase in grip force to prevent object slip (Figure 2.10b). This
approach minimizes deformation, maintains control over position and velocity, and
avoids excessive force spikes.
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(a) (b)

Figure 2.10: (a) Demonstration of the SMSP control algorithm. The SMSP
controller increases the grip force in discrete, predetermined amounts during each
of the three detected slip events. This often results in a larger grip force than
is necessary. (b) Demonstration of the ISMSP control algorithm. The ISMSP
controller integrates the slip signal to smoothly increase the grip force until the
grasped object stops slipping. Thus, the minimal required grip force is applied to
prevent more slip. Images from [47]

Both of these controllers were compared with a PD shear force feedback slip
prevention controller. This controller operates by adjusting the applied grip
force based on the measured shear forces, using positive feedback to achieve this.
However, it may inadvertently crush objects, even when they don’t slip, and might
not effectively prevent slip in cases of low friction. This method resembles a
commercially available scheme, OttoBock’s SensorHand Speed.

As previously mentioned, the ISMSP controller significantly reduces manipulan-
dum deformation as disturbances are applied, effectively preventing object dropping
in all experiments. It is statistically different from the SMSP and PD controllers
in terms of deformations (Figure 2.11). All three controllers allow minimal slip
(less than 2 mm), with no significant difference in slip distance. In contrast, the
sliding mode controller permits significant slip due to the absence of provisions for
increasing grip force, resulting in object slippage in many cases (20 out of 25).
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Figure 2.11
Figure 2.12: Deformation results for SMSP, ISMSP and PD controllers. [47]

Alternative approaches involve the use of force sensing resistors (FSR) sensors
to identify slip occurrences through the analysis of the rate of force change, which
is then compared to a predefined threshold. For instance, in [48] slip detection is
accomplished by employing an FSR and the discrete wavelet transform (DWT) to
monitor alterations in grasping force and identify slipping based on high-frequency
signal changes. Another example can be found in [49]. This strategy combines
proportional-integral (PI) and proportional-derivative (PD) control to manage
finger positions, detect slip events, and uphold grip stability. FSR sensors play a
key role in detecting slip by analysing the rate of force change and comparing it
against a predefined threshold in this system.

In [50] a method called friction cone analysis, which assesses the stability of a
grasp by ensuring that contact forces remain within a designated cone, is presented.
However, ensuring the reliability of slip detection requires setting a minimum
threshold for the measured force, as noise could yield erroneous γ values. This
threshold varies based on the material combination and the specific grasp executed.

A distinct methodology, highlighted in [51], emphasizes the potential of optical
sensors in tackling grip control challenges in prosthetic devices. Here, the focus is
on an optical-based sensor commonly utilized in optical computer mice, Fig.2.13a.
Selected for its compact size, low power consumption, and reliability, this sensor
exhibits promising abilities in detecting object displacement across diverse surface
properties encountered in everyday life, including roughness, curvature, and re-
flectivity. However, challenges persist in reliably detecting slips on transparent
surfaces, indicating a limitation that necessitates further investigation.
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Another different strategy is outlined in [52], presenting a flexible slip microsensor
relying on thermo-electrical phenomena, Fig.2.13b. Unlike conventional methods
that hinge on mechanical vibrations or friction coefficient estimation, this novel
sensor operates on thermo-electrical principles, eliminating the necessity for vibra-
tion detection. Its design permits integration onto curved or deformable surfaces,
rendering it suited for applications in robotic fingertip prosthetics. By sidestepping
the susceptibility to mechanical noise intrinsic in traditional slip detection methods,
the thermo-electrical approach offers enhanced reliability. Experimental findings
substantiate the sensor’s precise discrimination of slip events, underscoring its
potential to augment tactile feedback in hand robotic prostheses.

(a) (b)

Figure 2.13: (a) Prototype of the solid model of the protective case enclosing the
optical sensor and lens on the right. From [51]. (b) The flexible slip microsensor
based on thermo-electrical phenomena. From [52].

2.5 Shared control
What is shared control? At its core, shared control involves congruent interaction
between a human and intelligent agent(s) in a perception-action cycle, jointly
executing dynamic tasks typically performed by humans [53] (Figure 2.14a). It’s
important to note that shared control doesn’t imply that both entities focus on
exactly the same aspects. Human beings bring inventiveness, adaptability, and
problem-solving skills to the table, while the intelligent agent contributes precision,
repeatability, and crucially, inexhaustibility, eliminating issues related to human
fatigue and thereby enhancing safety.

Shared control entails keeping humans in the decision-making loop, with the
provision for humans to override control when necessary. As outlined in [26],
shared control delineates a collaboration between a high-level controller (HLC),
responsible for interpreting user intentions, and a low-level controller (LLC), which
executes the prosthetic hand’s actions (Figure 2.14b). Meaning that transitions
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between different states, identified by the LLC, enable automatic control, whereas
those identified by the HLC facilitate interactive control based on user intentions.
Furthermore, this study explores three hierarchical control strategies (M1, M2,
and M3) with varying degrees of shared control to strike a balance between the
user’s ability to achieve successful grasps and the cognitive effort required during
operation. Ultimately, users favoured M2 (Figure 2.14c), which offers a valuable
compromise between functionality and ease of use, resulting in improved grasp
success in subsequent trials.

(a)

(b) (c)

Figure 2.14: Figure (a) shows a light-hearted image on shared control. Figure (b)
is a scheme of a prosthetic hand system. Here it is explained that the LLC loop is
primarily responsible for grasp stability and the HLC system loop is responsible
for selecting grasp configuration and force level requested by the user. From [26].
Finally, on the right, image (c) is an FSM diagram for control strategy M2. Circles
represent states, with C0–C3 denoting EMG commands. User-selectable grasps
include cylindrical grasp (S1) or lateral grip (S2) initiated by flexor or extensor
contractions. Closure is arrested by a second flexor contraction, and the hand
applies user-dependent force closure on the object (state S3). The hand reopens
after an extensor contraction (S0), with stability and pre-shaping managed by LLC
and force closure by HLC. From [26].
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The evolution of shared control is also evident in [54], introducing an adap-
tive prosthetic training gripper with a variable stiffness differential mechanism
and a vision-based shared control system (Lightmyography, LMG, for triggering
grasps). This innovation empowers users to efficiently grasp a wide array of objects,
enhancing accessibility and functionality in the realm of prosthetic devices.

For upper-limb amputees, shared control represents a transformative leap in
prosthetic technology, as elaborated in [55]. This study highlights significant
benefits, such as improved grip security, reduced cognitive effort, and a remarkable
49% decrease in muscle activity (and, consequently, physical effort), enhancing
prosthetic control and the quality of life for those with upper-limb amputations.

(a) Framework integrating an RGB camera-based object
detection scheme to select grasp types based on predeter-
mined grasping affordances, along with an LMG-based
grasp triggering scheme. From [54]

(b) Block diagram illustrating a human-
machine shared control system. Com-
ponents include (a) first-person view
on grasp pattern recognition, (b) visual
feedback, and (c) movement decoding.
Form [56]

Figure 2.15: Two examples of shared-control systems for dexterous prostheses.

In summary, shared control is a groundbreaking concept in the field of prosthetic
technology. Through a hybrid human-machine intelligence, the shared control
methods could address the control problem of dexterous prostheses [56], as well as
enhance functionality and user-friendliness. This collaborative approach has the
potential to revolutionize the lives of individuals with limb loss, offering improved
grip security, reduced cognitive and physical demands, and a user-centered design
that optimizes the interaction between users and their prosthetic devices, but also
with the environment.
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Chapter 3

Proposed Shared-Autonomy
Control Method

3.1 Slip Detection
In Chapter 2.4, diverse strategies aimed at detecting slip were examined and
briefly described. Naturally, each of these strategies comes with its own set of
advantages and limitations. Subsequently, the advantages and limitations of the
two primary papers on which this thesis project is based will be dissected, to
provide a comprehensive understanding of their applicability and efficacy.

The study referenced as [50] sheds some light on the friction cone concept,
which emerges as particularly apt in addressing real-world scenarios. This method,
thanks to its quick response time and its resilience against external disturbances, is
highly desirable for practical applications. However, its effectiveness depends upon
variables such as surface texture, as well as the weight and shape of the object being
grasped. While constructing a model for the friction cone may be feasible within
industrial settings characterized by repetitive tasks and controlled environments,
its translation into everyday life encounters obstacles due to the need for extensive
pre-analysis of each object and its surrounding environment before interaction.

In contrast, the bandpass method, also elucidated in [47], offers a straightforward
implementation process, negating the necessity for prior knowledge regarding the
object being grasped. Nevertheless, this approach is markedly more susceptible to
problems arising from movement and environmental vibrations, posing challenges
to its reliability in real-world applications.

Recognizing the inherent limitations of both methodologies, it becomes evident
that a unified approach of these two approaches to slip detection holds great
potential for enhancing grasping stability. By leveraging the strengths of each
method while addressing their respective weaknesses, a more robust and reliable
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detection mechanism can be devised. One of the key aspects of this integrated
strategy lies in the identification and utilization of critical points derived from the
combination of these two methodologies. These critical points serve as pivotal
indicators, encapsulating nuanced information about the interaction between the
grasping surface and the object. By appropriately labeling these critical points, it
becomes feasible to leverage them as input features for training a machine-learning
model.

In this context, a random forest classifier emerges as a promising tool for machine-
learning-based slip detection. By employing such a classifier, it becomes possible to
harness the collective power of numerous decision trees, each trained on a subset of
the dataset, to collectively reach a comprehensive understanding of the grasping
dynamics and associated instability.

3.1.1 Friction Cone
Friction, in mechanics, plays an important role in understanding the behaviour of
objects in contact. In particular, the friction cone stands out as a geometric repre-
sentation essential for comprehending the dynamics of rigid bodies. However, before
delving into the intricacies of the friction cone, it’s crucial to distinguish between
static and dynamic friction, or better static and dynamic friction coefficients.

Static friction arises when two surfaces are in contact but not moving relative to
each other. It acts to prevent the initiation of motion, effectively keeping objects
stationary or resisting the onset of motion. On the other hand, dynamic friction,
also known as kinetic friction, comes into play when the surfaces are sliding past
each other. It opposes the relative motion of the surfaces, acting tangentially to
the contact area [57].

The coefficient of friction is a dimensionless scalar value. It is a ratio of the force
of friction between two bodies (shear force) and the force pressing them together
(normal force), in formulas 3.1 and 3.2. Both static and kinetic coefficients of
friction depend on the pair of surfaces in contact. However, for a specific surface,
the coefficient of static friction is always larger than the one of kinetic friction since
it has to avoid motion.

Fshear = µs · Fnormal (3.1)

µs = tan γ0 (3.2)

The friction cone, instead, is a geometric representation that delineates all the
possible frictional forces at a contact point between two surfaces.

In two dimensions, the friction cone appears as a cone-shaped region around
the normal force vector, see Fig.3.1, which is perpendicular to the contact surface.
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This cone encompasses all possible directions in which frictional forces can act
tangentially to the contact surface. And, if the contact force stays inside the friction
cone, the grasp is known to be stable [50].

(a) Friction cone shown in the contact point
plane, where N describes the normal force,
Ff the friction force, and Fc the contact
force [50].

(b) Friction cone shown in the contact point
plane, where F is the applied force, F · cos θ
the normal force and F · sin θ the friction
(or shear) force [58].

Figure 3.1: Friction cone explanation in 2-dimensions.

From Fig. 3.1b, it is possible to obtain :

F · cos θ = Fnormal (3.3)

And, using the formula 3.3 together with 3.1 it is possible to obtain formula 3.4:

Fshear = µs · F · cos θ (3.4)

Theoretically, from this, it is possible to deduce that when the pulling force has
θ /= 0◦, the friction exists, and it will decrease when θ increases. Therefore, a small
θ is expected for sufficient friction, otherwise the object will slip [58].

In three dimensions, the friction cone becomes more complex, as frictional
forces can act in various directions around the contact point. Nevertheless, the
fundamental principle remains the same: the friction cone represents the range of
possible frictional forces within a certain angular boundary relative to the normal
force vector.

In the robotics field, friction cone is important for ensuring stability and control
in robot motion. Robots often interact with their environment through physical
contact, whether it’s grasping objects or walking; friction cone provides valuable
insights into the permissible range of forces and moments that the robot’s actuators
can exercise to maintain stability and achieve the desired motion.
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In this study, the friction cone will help optimize the recognition of different
actions that the Michelangelo hand will do. To achieve this, it was decided to
apply the concept of the friction cone to the first principal component, leveraging
a strategic approach that combines statistical analysis with practical application.

With six sensors capturing data from various points of contact, each corre-
sponding to different fingers of the Michelangelo hand, the task of applying the
friction cone becomes inherently more intricate. One of the primary challenges
arises from an intrinsic variability in how each finger interacts with the object. Due
to differences in finger morphology, mobility and contact dynamics, the distribution
and magnitude of forces sensed by each sensor may vary significantly. Moreover,
analyzing and interpreting data from six sensors simultaneously requires a robust
analytical framework capable of processing and synthesizing information from
multiple sources effectively.

To mitigate these challenges, focusing on the first principal component offers a
pragmatic solution, converging the six sensors’ readings into a holistic representation
of the system dynamics.

Upon applying the first principal component, I computed the friction coefficient
for both shear forces, Fshearx/Fnormal and Fsheary/Fnormal. Such analysis grants
valuable insights into the nature and magnitude of frictional forces acting upon the
robotic hand during different actions. Indeed, the outcome of this computation,
in Fig. 3.2, displays two lines characterized by distinct peaks representing critical
points of interest.

Figure 3.2: Results of friction cone analysis. On the left, the friction coefficients
are plotted and the highlighted points indicate where the experimentally determined
threshold is exceeded. On the right, the same results are visualized on the first
component analysis x, y and z to visualize a global frame. The result shown is the
ones obtained for the basket-ball passing action.

Selecting the point(s) exceeding an experimentally chosen threshold has been the
criteria elected for identifying critical moments during the execution of actions by
the Michelangelo hand. As an added measure of robustness, another criterion has
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been introduced to enhance the robustness of this analysis, considering the potential
influence of sensor noise on results, see Fig.3.3. To mitigate the risk of unwanted
peaks interfering with the training of our model, in addition to the friction coefficient
surpassing the designated threshold, it was incorporated a requirement for the
variation of the z-coordinate to exceed a predefined threshold. This additional
criterion serves as a filter, ensuring that only those peaks indicative of significant
frictional interactions are considered for further analysis.

Figure 3.3: Results of friction cone analysis, as for 3.2. In this case, the result
corresponds to the hard-ball putting-down action. Despite noise interference, due
probably to the hardness of the object that causes some unwanted peaks, critical
points were still accurately detected using the criteria outlined in this chapter.
Note: for clarity also the critical points obtained with the Bandpass Filter are
shown.

3.1.2 Bandpass Filtering

As already mentioned in Chapter 2.4, slip generates vibrations at the interface
between the hand and the object, characterized by high-frequency oscillations.
These high-frequency vibrations that occur during slip can be amplified by band-
pass filtering the measured shear force derivative.

Indeed, in this study, a fifth-order digital filter will be employed. Initially, the
signal undergoes differentiation via a high-pass filter, eliminating low-frequency
components (steady state). Subsequently, the signal undergoes double filtration
through two second-order bandpass filters, resonating near ωn. This amplifies the
vibrations, crucial for slip detection. Lastly, a low-pass filter with a cut-off frequency
near 75 Hz attenuates high-frequency noise, ensuring accurate slip detection under
varying conditions.

Following, all the formulas used are computed, starting from the transfer function
in equation 3.5.
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It was opted for the bilinear transform, formula 3.6, over the Euler method
for mapping our continuous-time filter to the discrete-time domain. The bilinear
transform offers great accuracy and stability preservation. Its accuracy ensures
faithful preservation of frequency response characteristics, while stability preserva-
tion guarantees a stable filter response. Despite introducing frequency warping,
the bilinear transform remains manageable and predictable, making it well-suited
for this filter design.
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Using 3.5, 3.6 and considering that K = 2/T , it is possible to obtain the
difference equations respectively for the high-pass filter:

Hhp(z) = K
1 − z−1

1 + z−1 −→ y[n] = K(x[n] − x[n − 1]) − y[n − 1] (3.7)

for the band-pass filter:
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and for the low-pass filter:

Hlp = 75 · 2π(1 + z−1)
(75 · 2π − K)z−1 + K + 75 · 2π

ylp[n] = 75 · 2π(xlp[n] + xlp[n − 1]) − (75 · 2π − K)ylp[n − 1]
75 · 2π + K

(3.9)

The derived formulas were directly translated into code for implementation.
The bandpass filter was applied in parallel at 10 different frequencies ranging from
10 Hz to 55 Hz with 5 Hz increments. It’s worth noting that a cut-off frequency
was strategically selected at 75 Hz, taking into account the potential influence of
characteristic axis compression when employing the bilinear transform.

Subsequently, by employing a predetermined threshold, tailored to the specific
object and action under consideration, the critical point detection phase could start.
Since the parallel filtering of 12 input signals (x and y for 6 sensors) produced 120
elements, information from the filtered data at the 10 different passband filters was
fused for each sensor. At this point, if at least one of these values surpassed the
predetermined threshold, a critical point was detected. This concept is shown in
Fig. 3.4.

Given the discernible presence of tails accompanying the peaks in the filtered
data, only the first point of each peak surpassing the threshold was considered as
a critical point. This meticulous methodology ensured a precise identification of
critical events, optimizing subsequent analysis and decision-making processes.
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Figure 3.4: Results of bandpass filter analysis. The first row displays the values of
x, y, z for each of the six sensors, along with vertical lines indicating critical points.
These critical points are derived from the second and third rows of plots, where
the filtered signal is plotted alongside the threshold. When the signal surpasses
the threshold, a critical point is detected. The results shown are the ones obtained
for the full plastic bottle putting-down action.

Figure 3.5: Plot showing the values of x, y, and z for one of the six sensors. The
results from both the friction cone analysis and the bandpass filter analysis are
represented, respectively as light blue vertical dashed lines and black vertical dashed
lines. When both approaches detect a critical point, preference is given to the one
occurring earlier. Critical points chosen for model training are highlighted with
vertical red dotted lines. The red band, referred to as ’window’, will be elaborated
in Chapter 3.3.
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3.2 Safe and Risky Slip
As discussed in Chapter 2.4, there are various methods and sensors available for
recognizing slipping. However, this thesis project distinguishes itself through its
entirely innovative approach. The primary objective is not only to recognize slips
but to categorize them by risk. The aim is to differentiate between risky slips, such
as an object falling or suddenly being pulled from someone’s grasp, and safe slips,
such as normal object handling or positioning.

This differentiation is crucial as it enables a possible introduction of shared
control. In the event of a risky slip being anticipated with sufficient warning,
the prosthesis would be capable of reacting autonomously, without requiring
visual intervention from the user. This could not only enhance human-prosthesis
integration but also increase grip safety. The ability to distinguish slips requiring
action from those that do not, adds a level of complexity and utility to the system.
It means not only predicting an imminent slip but also determining whether
intervention is necessary to prevent or manage it appropriately.

The potential practical applications of this project are manifold. For instance,
in a household setting, it could be used to prevent accidents in the kitchen or
bathroom, where slippery objects are common. In an industrial setting, it could
enhance workplace safety by reducing the risk of material damage or worker injuries
caused by slips.

To realize this project, four main classes of actions have been considered:

• Nothing: This class includes moments when the robotic hand and sensors
are not in contact with anything. The instants have been selected from the
extremes of actions and have not been obtained through friction cone or
band-pass filter analysis.

• Grasp: This class includes not only the exact moment when the object is
grasped but also subsequent instants considered grip-keeping moments. These
latter instants have been manually added as they were not recognized by the
algorithms, while the former were correctly recognized by the algorithms.

• Safe Slip: This class includes those moments correctly recognized by the
friction cone and/or the band-pass filter analysis, which are related to actions
of passing, putting-down or releasing objects. These are considered safe slips
because they are voluntary moves, and therefore do not require any action.

• Risky Slip: This class includes those moments correctly recognized by the
friction cone and/or the band-pass filter analysis, which are related to actions
such as falling or pulling objects. These are considered risky slips because
they are involuntary moves, and therefore require action to avoid them.
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To increase the accuracy and inclusivity of classification, a total of eight classes
have been created, considering both light-weight (4 classes) and heavy-weight
(4 classes) objects. Given the impossibility of considering all possible object
characteristics, this was deemed the best choice. Five objects of varying sizes,
weights, shapes, and friction surfaces have been selected for this project, as will be
detailed in Chapter 5.2.

3.3 Shared Autonomy Control
Lastly, armed with all the necessary insights, it is possible now to delve into the
potential of shared autonomy within the framework of our project.

As previously noted, shared autonomy seeks to empower individuals by aug-
menting their capabilities through intelligent automation. This collaboration is
particularly pertinent in scenarios where human judgment and machine precision
converge, as is the case with everyday task execution of our project.

As depicted in the scheme in Figure 3.6, the actions are done according to human
intention and thanks to predictive insights coming from the machine learning model
the prosthesis will know in real-time the situation, and just in case of risky slip
autonomous execution of tasks to avoid it. Of course with the possibility for the
user to overwrite it at every moment.

Figure 3.6: Representation of a proposed Shared-Autonomy Control framework
for this project.

Illustrated in Figure 3.6, this scheme delineates how actions are executed based
on human intention, supported by real-time predictive insights obtained from the
machine learning model. This symbiotic relationship ensures that the prosthetic
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device remains aware of the current situation, executing tasks autonomously in
case of potential risks, such as slips. Importantly, users keep the ability to override
autonomous actions at any given moment, maintaining ultimate control and agency.

To realize the idea of shared autonomy control in this project, the reliance is on
a trained machine learning model. However, before we delve into the specifics of
model training and testing, it is crucial to introduce the concept of a ’window’.

In the context of training and testing machine learning models, it is essential
to ensure that all data elements have uniform dimensions. To achieve this, a
"training window" has been defined to ensure consistency in data dimensionality
across different samples. As mentioned in the previous chapters, these windows can
represent various actions and will be labelled accordingly. In the specific case of our
model, these windows will cover a time interval ranging from 0.10 seconds before
the critical point to the critical point itself (included), as illustrated in Figure 3.7.
This approach allows us to ensure that this system can recognize different actions
and, furthermore, may be capable of predicting them, even anticipating them by a
few milliseconds.

Figure 3.7: Illustration of the window concept in graphical form. Specifically,
depicting the basketball passing action, the two critical points derived from the
application of the friction cone theory are respectively the grasping action and the
passing action. For each of these points, the window will consist of 5 sampling
steps before the critical point till the critical point itself.

With the concept of the training window clarified, we are ready to send our data
to the algorithm to train the model. Every single sample sent will be represented
by matrices of dimensions 18x6, each corresponding to a training-window. However,
before proceeding with training, there is still an important step to take.

Despite having collected a large dataset of 5194 elements, all of them cannot be
used for training, as the dataset needs to be balanced. Balancing will be done using
a random method, ensuring a representative and balanced dataset. This balancing
process will ensure that our model is exposed to a variety of cases during training,

34



Proposed Shared-Autonomy Control Method

thereby improving its generalization ability and predictive performance. With a
few attempts, it was possible to obtain a trained model with satisfactory results
that would be challenging to replicate given the randomness of the element chosen.

Upon successfully training our model, the testing phase will follow, The results
of which will be elaborated upon in Chapter 6, providing insights into the practical
applicability and effectiveness of this shared autonomy control framework.
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Chapter 4

Preliminary Offline Analysis

In the upcoming chapters, it is delineated the step-by-step process used to enhance
the offline analysis to its peak effectiveness. This chapter, in particular, will
delve into the initial phase, focusing on analyzing pre-recorded data to gain a
comprehensive understanding of the topic.

4.1 Data
The primary objective of this phase is to fully understand the nature of the available
data in terms of type and structure and to determine the best strategy to maximize
the effectiveness of the study.

The first step involved understanding the type of data required to train a
machine learning algorithm. To do this, three distinct cases were considered, each
characterized by specific peculiarities that allowed exploration of various aspects of
the problem under study. However, before examining these cases, it is important
to introduce the data used. This dataset was previously collected for an internship-
project [59], and included the use of 20 Hall-effect sensors on a robotic hand, the
Soft Hand, different from that used in the current work, see chapter 5.1.1. The
available data is saved in .csv files, each representing a specific action, listed in
Fig. 4.1, and each containing many rows as the sampling steps and 61 columns.
The first column represents time, while the other 60 contain force values along the
three axes for all 20 sensors.
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Figure 4.1: Explanation of the tasks executed and the elements manipulated
within the existing dataset.

4.2 Application
The identification of various actions was considered most suitable through the
utilization of a machine learning model integrated with classification algorithms.
However, a meticulous and precise data analysis was necessary to determine the
most fitting methodological approach among the initially proposed ones.

As previously mentioned, three distinct cases were investigated, each distin-
guished by specific characteristics simplifying the exploration of diverse character-
istics of the underlying problem. Prior to delving into these cases, it is essential to
re-propose the concept of ’window’, already explained in Chapter 3.

As noted earlier, it is imperative that all samples, for both training and testing,
adhere to the same dimensionality. To ensure this consistency, we employed what
we refer to as the ’train-window.’ These windows, as detailed in Chapter 3.3, denote
various actions. However, in the initial phase of our study, the categorization
is simply between ’safe’ (0) and ’risky’ (1) actions. These windows encompass
the critical moments, which, at this juncture, are determined solely through the
application of the Friction Cone Theory outlined in Chapter 3.1.1, without the
inclusion of the bandpass filter method not yet introduced in our study. Furthermore,
the presence of the critical point within the window denotes our focus on slip
detection rather than prediction at this early stage. Specifically, an interval of
approximately 0.05 milliseconds before and after the critical point will be considered.
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Figure 4.2: Illustration of the window concept in graphical form. Specifically, in
depicting the basketball passing action, the two critical points derived from the
application of the friction cone theory are respectively the grasping action and the
passing action. For each of these points, the window will consist of three sampling
steps prior to and three following the critical point.

With a clear understanding of this concept, it is possible to return to the three
cases under consideration. The first case entailed the utilization of the x, y, z
coordinates of all 20 sensors to train the algorithm, resulting in data of size (7,
60), where 7 represents the window size (including 3 sampling steps before and 3
after the critical point), and 60 comes from considering the 3 coordinates for all 20
sensors.

The second case involved the use of the friction cone not only for recognizing
the critical point but also as data for model training, incorporating both fx/fz and
fy/fz. This yielded a training sample of size (7, 40), where 40 represents the ratio
between the shear force and the normal force for both shear forces x and y across
the 20 sensors.

Lastly, the utilization of the first principal component was contemplated, incor-
porating the length and direction of the first principal component alongside the z
coordinate, producing a training sample of size (7, 3).

The next step was to carefully examine the results obtained by applying various
machine learning methods, known for their ability to handle complexity and extract
information from large volumes of data. The results are presented in the following
table.
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Random Forest
Classifier

K-Nearest
Neighbors Naive Bayes Gradient Boosting

Machines Neural Network

Case 1 86.25% 78.57% 64.64% 82.32% 84.57%
Case 2 48.39% 53.57% 49.11% 50.89% 49.29%
Case 3 45.58% 53.85% 43.27% 46.15% 42.12%

Table 4.1: Average accuracy, firsts considerations. The rows of the table represent
the different cases considered (1,2, and 3, previously explained), while the columns
display the various machine-learning models taken into consideration. The values
within each cell denote the average accuracies obtained for that specific combination
of case and machine learning model, calculated over a total of 5 subsequent
iterations.

After an initial evaluation, k-nearest Neighbors and Naive Bayes were excluded
as they did not demonstrate the ability to provide reliable results. Furthermore,
the decision was made to focus attention on case 1, which seemed to be the most
accurate, probably because it included the largest number of data fed to the model,
which were also in their elementary form, thus offering a greater opportunity for
the model to reprocess the data thoroughly and therefore obtain more precise
predictions.

At this point, two additional cases emerged to expand the study. The first
involved extending or shifting the considered time interval, considering a period
of time preceding the critical instant of even just one millisecond. This further
investigation aimed to verify if the adopted methodology was able to anticipate and
therefore predict slipping, thus adding a temporal prediction element to the analysis
process. The second action involved experimenting with a wider variety of classes.
This would allow for the exploration and comparison of different contexts and
conditions, increasing the richness of the obtained information and the robustness
of the conclusions drawn from the study.

Therefore, to expand this preliminary study, a fourth and fifth case were intro-
duced involving greater complexity. The fourth case was essentially identical to the
first one, with the only difference being that the considered time window ranged
from -7 to -1 sampling steps. The fifth case, on the other hand, in addition to also
having a window from 7 to 1 sampling steps before the critical point, introduced a
differentiation into four classes instead of two. These classes were identified as "safe
slip", "grasp", "not slipping under disturbances", and "slipping". Please note, this
more detailed subdivision of situations was intended to capture and distinguish
various conditions and events more precisely, allowing for a more thorough and
detailed analysis of the collected data; however, these classes are not those that
will be used in this study, as it was already explained in Chapter 3.2.
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4.3 Results
After further evaluation of the confusion matrices of these two new cases, within
Tab. 4.2, the decision was made to adopt the Random Forest Classifier. This choice
was motivated by the ability of this classification method to provide reliable and
robust results, regardless of the quantity or diversity of the data, thus proving to
be an optimal option for this study context.

Random Forest
Classifier

Gradient Boosting
Machines Neural Network

Case 4 84.42% 83.85% 80.58%
Case 5 73.49% 71.16% 67.91%

Table 4.2: Average accuracy, seconds considerations. The rows of the table
represent the different cases considered (4 and 5, previously explained), while the
columns display the various machine-learning models taken into consideration. The
values within each cell denote the average accuracies obtained for that specific
combination of case and machine learning model, calculated over a total of 5
iterations.

This phase played a fundamental role in defining the overall methodological
approach of this study, providing a solid foundation on which to build and guiding
the decisions made in the subsequent phases of the study. Thanks to the satisfactory
results obtained, it was possible to proceed to the second phase of the work,
explained in Chapter 5.
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Chapter 5

Experimental Validation

This Chapter introduces the hand and sensors utilized in this project’s development,
followed by an overview of the final structure. Calibration of the sensors is discussed
before detailing the study’s execution, including objects, actions, and methodologies,
setting the stage for subsequent phases. Finally, the reliability and precision of this
study will be verified.

5.1 Experimental Setup
5.1.1 Michelangelo Hand
The Michelangelo Hand 8E500 (in Fig. 5.1), developed by Ottobock, is a cutting-
edge prosthetic designed to restore numerous functions and aspects of the natural
hand. It integrates the innovative Axon-Bus system, a self-contained data trans-
mission system derived from safety-related systems in aviation and automobile
industries. This system ensures communication between components, virtually elim-
inating losses in terms of data transmission, speed and functionality, offering users
increased safety and reliability while reducing sensitivity to external interference —
a crucial aspect for research involving reaction time analysis.
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Figure 5.1: Michelangelo Hand 8E500, developed by Ottobock. [60]

The Michelangelo Hand is a multi-articulated hand-wrist system that utilizes
standard myoelectric control via two electrodes, capturing forearm muscle con-
tractions for flexion and extension movements. Weighing approximately 150 g
(excluding the Axon Rotation adapter and cosmetic glove), the hand offers a wide
opening width of 120 mm and can withstand maximum loads of up to 10 kg over
actively operated fingers (index and middle) in an open position, and 20 kg when
closed.

It offers three main grip modes - opposition, lateral, and neutral - each with
varying maximal grip strengths (70N, 60N, and 15N respectively), for a total of
seven grip options.

(a) Natural Mode (b) Lateral Power
Grip

(c) Lateral Pinch (d) Fingers Abduc-
tion/Adduction

(e) Tripod Pinch (f) Opposition Power
Grip

(g) Open Palm

Figure 5.2: The seven grip options the Michelangelo Hand can reproduce. [60]
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Providing users with a natural appearance and ease of use, the hand automati-
cally returns to a relaxed, neutral position 5.2a upon relaxation of the myosignal.

The hand’s main drive is responsible for the gripping movements and force.
Actively driven elements are the thumb, index finger and middle finger while the
ring finger and little finger passively follow the other fingers. This design allows
for lateral power grip 5.2b and lateral pinch 5.2c, with the thumb moving laterally
toward the index finger to facilitate various holding positions for objects of different
shapes and dimensions.

The thumb drive enables electronic positioning, allowing for diverse grip configu-
rations from a wide open palm 5.2g, by rotating the thumb outward, to opposition
power grip 5.2f and tripod pinch 5.2e, thereby enhancing the hand’s adaptability
in grasping objects. Additionally, finger abduction/adduction 5.2d allows for the
secure clamping of flat, thin objects between fingertips by closing the hand.

In conclusion, the Michelangelo Hand stands as a remarkable achievement in
prosthetic design, offering users advanced functionality and control while providing
researchers with a reliable platform for studying human-machine interaction with
an ergonomic design and versatile grip options.

5.1.2 Hall-effect sensors
If a current-carrying conductor crosses a magnetic field, a remarkable phenomenon
known as the Hall-effect occurs.

Figure 5.3: Single-axis Hall-effect sensor principle [61]. The output signal from a
Hall-effect sensor is a function of the magnetic field density around the device.

When the conductor is subjected to a magnetic field perpendicular to the current
flow, a specific voltage, termed the Hall voltage, emerges across the conductor. This
voltage manifests due to the influence of the Lorentz force exerted on the current
by the magnetic field, disrupting the uniform current distribution and generating
a potential difference across the conductor. This effect, a fundamental principle
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underpinning the functionality of Hall effect sensors, arises from the interaction
between the flowing current and the magnetic field. [62]

(a) Exploded view of the im-
plemented ring sensor. This
includes a magnet, silicone
cover, PCB and Hall sensor
(TMAG5273).

(b) Image showing the place-
ment of the magnet, located
0.7 mm above the Hall sen-
sor.

(c) Band design, used for the
palm areas. It integrates the
same components of the ring
design.

Figure 5.4: Hall-effect sensors design. [42]

Each force sensor features a TMAG5273 magnetic sensor (Texas Instruments,
USA), which includes three independent Hall-effect sensing elements, enabling
the measurement of magnetic flux along three axes. The TMAG5273 sensor was
configured with a range of ±40 mT for the x and y axes and a range of ±80
mT for the z axis. To ensure accurate readings, a small printed circuit board
(PCB) was designed following the sensor’s datasheet specifications. Temperature
compensation was set at 0.12%/°C, aligning with the temperature coefficient of
neodymium magnets. The update rate for the sensor was optimized to achieve
the best signal-to-noise ratio (SNR), averaging every 32 samples. An experimental
comparison led to the selection of silicone with a shore hardness of 35A and an
N45 disc magnet (diameter 1.5 mm; height 0.5 mm) with axial magnetization. [42]

As explained before, by applying some force on the sensor the relative position
between the magnet and the integrated circuit (IC) will change, resulting in a
change in the magnetic field and thus a digital signal output.

Instead of conventional gloves, customizable and scalable silicone bands are used,
to accommodate a wider range of subjects. These silicone bands were designed
in two variations: a ring shape and a band shape; and, a ribbed texture was
incorporated into the design to enhance friction between the silicone ring and the
finger, ensuring stable sensor placement.
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Figure 5.5: Updated version of the Hall-effect sensor utilized for this research
investigation. This enhanced sensor model has been specifically designed and
implemented to mimic the characteristics of a real finger, highlighting reduced
protrusion for enhanced functionality and usability.

In this study, only the ring-shaped variant, designed to accommodate a single
sensor and tailored to fit seamlessly on any finger, was employed. This design
minimizes both translation and rotation of the force sensors, thereby reducing
potential errors in shear force measurements. However, we opted for a slightly
modified version of the sensor depicted in Figure 5.4a, as showcased in Figure 5.5.
This variant features a shape more closely resembling a real finger and exhibits less
protrusion, allowing for a more embedded integration into prosthetic devices.

5.1.3 Sensors’ Calibration
To ensure accurate calibration accounting for manufacturing tolerances (manual
fabrication) and potential cross-talk between axes, each sensor underwent individual
calibration. as showed in figure 5.6, this calibration process was facilitated by a
Panda robotic arm (Franka Emika, Germany) paired with an FT AXIA 80-M20 6
DoF sensor (ATI Industrial Automation, USA), providing ground truth data.

The calibration procedure involved three main phases. Initially, normal force
increments were applied, ranging from 1 N to 14 N, with a 3-second holding time
per step. Subsequently, forces were applied at 90° and 45° angles, using two different
levels of normal force (5 N and 14 N) in the second and third phases.
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(a) Franka robot. (b) FT AXIA 80-M20 6 DoF sensor.
[Photo from ATI Industrial Automation
official page]

Figure 5.6: Setup for the calibration process.

5.1.4 Mechanical and Sensor Integration
Hand support

In this project, hand actions were chosen to be recognized while keeping the
hand in a fixed position. This approach simplified recognition since all forces
remained consistently directed. To facilitate this elaboration, a support structure
was designed in SolidWorks, and then 3D-printed, to securely hold the hand in
place (Fig. 5.7a). This support would then be attached to a profile on one side
and to the table on the other.

(a) SolidWorks view of the
support.

(b) Image of the 3D-printed
support. ABS and QSR sup-
port materials were used.

(c) Final structure. The hand
connected in this way was
then used to record all trials.

Figure 5.7: Hand-support design.
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The profile was 3D-printed, Fig. 5.7b, using a Stratasys F170 printer and then
attached to both the hand and the profile. Everything was tested to ensure that
the hand could be held securely in place during the experiments, as shown in Fig.
5.7c. Finally, the support structure proved to be effective and reliable, allowing
the project to move forward.

Sensors’ Placement

In the final design, each fingertip was equipped with a single sensor, except for the
thumb, where two sensors were placed to provide more accurate force measurements,
as the thumb is often the point of contact in most tasks. Sensors’ Placement is
shown in the following Fig. 5.8.

Figure 5.8: Sensors’ placement in the final design of the robotic hand. Each
fingertip is equipped with a single sensor, except for the thumb, where two sensors
are positioned to enhance force measurement accuracy, considering the thumb’s
frequent contact in various tasks.

This decision was based on findings from previous studies, which presented
heatmaps illustrating the average contribution of normal and shear forces across
various trials and subjects (Fig. 5.9). Additionally, it was determined that using
six sensors in total would be optimal to avoid too low sampling time.
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Figure 5.9: Heatmaps of the average force contribution of sensors placed on a
hand. Panel (a) shows the normal force contribution of each sensor to the total
force. Panel (b) shows the average contribution of shear forces (sum of x and y
forces) of each sensor to the total force. [42]

Altogether, this placement was proven to be the most suitable to provide a
comprehensive view of the finger’s movement.

5.2 Preliminary Implementation of the Proposed
Method

After confirming the feasibility of the study in Chapter 4, the focus moved to the
implementation and refinement of the selected method, as well as the development
of a new dataset that was consistent with the scope of the study both in terms
of selected movements and type of robotic hand used, the Michelangelo Hand,
previously discussed in Chapter 5.1.1.

Firstly, the objects to be used were chosen: three balls of different weights,
an empty plastic bottle and a full one, see Fig. 5.10. A description, with also
dimensions and weights of these objects, is reported in Table 5.1.
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(a) Soft-ball (b) Empty plastic bottle (c) Basket-ball

(d) Hard-ball (e) Full plastic bottle

Figure 5.10: The 5 objects used for this study. (Not in scale)

Description Weight

Soft-ball Soft and squeezable plastic spherical ball with 69 mm
diameter 15.1 g

Empty bottle Empty plastic bottle with 63 mm diameter
(at the gripping point) and 230mm high 21.2 g

Basket-ball Plastic spherical ball with 60 mm diameter 83.1 g

Hard-ball Hard plastic spherical ball (3d printed) with 60 mm
diameter 197.9 g

Full bottle Full plastic bottle with 63 mm diameter
(at the gripping point) and 230mm high 517.3 g

Table 5.1: This table provides a comprehensive overview of the objects utilized in
the project, including their descriptions, dimensions, and weights. The dimensions
are specified in millimeters (mm), while the weights are presented in grams (g).
Note: Dimensions and weights are approximate and may vary slightly.
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Secondly, some time was spent identifying key actions that would contribute
to the understanding of the problem, and, then, the recording and analysis of the
actions were carried out, the details of which will be illustrated in Table 5.2.

Object used Task Description Quantity

1

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the soft-ball
handled by the collaborator, then the
ladder slowly removes it from the
front.

40

2

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the soft-ball
handled by the collaborator, then the
ladder quickly removes it from the
front.

40

Soft-ball
3

The Michelangelo hand is in a resting
state, kept horizontally by the
collaborator. The user close the hand
grasping the soft-ball from the table
and putting it in the air, then the
ladder smashes the ball on the
table and finally release it.

40

4

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the empty
plastic bottle, which is still
held up by the collaborator, then
the ladder slowly removes it
from the front.

40

5

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the empty
plastic bottle, which is still
held up by the collaborator, then
the ladder quickly removes it
from the front.

40
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Table 5.2 continued from previous page

Empty
plastic
bottle 6

The Michelangelo hand is in a resting
state, kept horizontally by the
collaborator. The user close the hand
grasping the empty plastic bottle
from the table and putting it in the air,
then the ladder smashes the bottle
to the table and finally release it.

40

7

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the basket-ball
handled by the collaborator, then the
ladder slowly removes it from the
front.

40

8

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the basket-ball
handled by the collaborator, then the
ladder quickly removes it from the
front.

40

Basket-ball
9

The Michelangelo hand is in a resting
state, kept horizontally by the
collaborator. The user closes the hand
grasping the basket-ball from the
table and putting it in the air,
then the ladder smashes the ball on the
table and finally release it.

40

10

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the hard-ball
handled by the collaborator, then the
ladder slowly removes it from the
front.

40

11

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the hard-ball
handled by the collaborator and they
continue holding it up, then the
ladder quickly removes their hand
and the ball should fall.

40
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Table 5.2 continued from previous page

Hard-ball
12

The Michelangelo hand is in a resting
state, kept horizontally by the
collaborator. The user close the hand
grasping the hard-ball from the table
putting int in the air, then the ladder
smashes the ball on the table
and finally release it.

40

13

The Michelangelo hand is vertical on
the table in a resting state. The user
close the hand grasping the full
plastic bottle, which is still
held up by the collaborator, then
the ladder slowly removes it
from the front.

40

14

The Michelangelo hand is in a resting
state, kept horizontally by the
collaborator. The user close the hand
grasping the full plastic bottle
from the table and keeping it in the air,
then the user opens slowly the hand
to make the bottle slowly fall.

40

Full
plastic
bottle 15

The Michelangelo hand is in a resting
state, kept horizontally by the
collaborator. The user close the hand
grasping the full plastic bottle
from the table and putting it in the air,
then the ladder smashes the bottle
to the table and finally release it.

40

Table 5.2: This table provides a comprehensive overview of all actions recorded
during the initial phase of this project realization. Each action is listed along with
relevant details such as description, quantity and object used. In this table, even
if they are the same person, the one using the EMG to control the prosthesis is
referred to as user and the one interacting with the prosthesis is the collaborator.

At this point, a specific approach was outlined to identify critical points. In
addition to the friction cone already mentioned, see Chapter 3.1.1, it was decided
to use a combination of techniques, so the ’bandpass filter’ was added, following
what was explained in Chapter 3.1.2, in order to achieve greater precision and
reliability in data analysis.

Once all these technical aspects were defined, the dilemma of determining the
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number and type of classes to consider in this model was addressed. This decision
was influenced by a series of factors, including the complexity of the problem, the
availability of data, and the computational resources at our disposal. A pragmatic
approach was adopted, seeking a balance between the complexity of the model and
its predictive capability. For this reason, various implementations and optimizations
were experimented to improve the performance of the model.

Below are some ideas that were followed for various implementations, the one
that will be chosen, as already explained in Chapter 3.2, is the last one.

Figure 5.11: Various routes that were followed to understand which and how
many classes suited better the study.

In conclusion, this preliminary implementation of the proposed method was
characterized by intensive implementation and refinement work, during which a
specific methodological approach was developed and optimized to address the
challenges of this research.

5.3 Final Implementation of the Proposed Method
In the final phase of this study, the model was refined and optimized through a
series of iterations and improvements.

A key objective of this final implementation was to ensure that the collected
data were accurate and homogeneous. To this end, the action recording process
ensured that all actions were performed in the same position and under the same
conditions, ensuring consistency and comparability of the data without moving the
hand during and/or between recordings, thereby avoiding interference or different
values on the three axes of the collected force. To achieve this, a support for the
hand was designed using SolidWorks and then 3D printed, more details can be
found in Chapter 5.1.4. In Fig. 5.12a is displayed the primary hand position for
various actions such as passing, pulling, and falling. However, it’s notable that
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for the action of putting-down objects, specifically for the balls (smaller items), a
different hand position is required, showed in Fig. 5.12b. This necessity arises due
to a structural constraint: the smaller size of the ball compared to the hand’s one
prevents the ball from making contact with a surface when the hand is positioned on
its side, avoiding so a good recording of the putting-down action. In this scenario,
the lower part of the hand obstructs the ball by touching the surface, rendering the
typical hand position ineffective. Interestingly, it was found that this adjustment
did not adversely affect the performance of the algorithm.

(a) Side-position of the
Michelangelo hand, used for
almost all the actions.

(b) Down-position of the
Michelangelo hand, specifi-
cally used for the action of
putting-down.

Figure 5.12: Two distinct hand positions used for the recording of the actions.

Thereafter, a series of actions, detailed in Table 5.3, were recorded and their
performances were carefully examined to identify possible areas of improvement.
During this process, a thorough analysis of the results obtained was conducted,
focusing particularly on evaluating the confusion matrix. After this, some additional
actions were recorded to assess the impact that greater data could have on the
final outcome.
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Note: all actions will be recorded with the Michelangelo Hand in the position
shown in Fig. 5.12a. However, regarding the put-down of the soft-ball,
basket-ball, and hard-ball, there is an exception, and the Michelangelo Hand
will be positioned as shown in Fig. 5.12b.

Object used Task Description Initial
quantity

New
quantity

1

The user closes the hand grasping
the soft-ball handled by the
collaborator, then the ladder
slowly removes it.

40 60

2

The user closes the hand grasping
the soft-ball handled by the
collaborator, then the ladder
quickly removes it.

40 80

Soft-ball
3

The user closes the hand grasping
the soft-ball, then the ladder
smashes the ball on a moving
box and then they release it.

40 60

4

The user closes the hand grasping
the empty plastic bottle
handled by the collaborator, then
the ladder slowly removes it.

40 60

5

The user closes the hand grasping
the empty plastic bottle
handled by the collaborator, then
the ladder quickly removes it.

40 80

Empty
plastic
bottle 6

The user closes the hand grasping
the empty plastic bottle, then
the ladder smashes the bottle on a
moving box and then they
release it.

40 60

7

The user closes the hand grasping
the basket-ball handled by the
collaborator, then the ladder slowly
removes it.

40 60

8

The user closes the hand grasping
the basket-ball handled by the
collaborator, then the ladder
quickly removes it.

40 80
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Table 5.3 continued from previous page

Basket-ball
9

The user closes the hand grasping
the basket-ball, then the ladder
smashes the ball on a moving box
and then they release it.

40 60

10

The user closes the hand grasping
the hard-ball handled by the
collaborator, then the ladder
slowly removes it.

40 60

11

The user closes the hand grasping
the hard-ball handled by the
collaborator who continues
keeping the ball, then the ladder
quickly removes their hand
and the ball should fall.

40 80

Hard-ball
12

The user closes the hand grasping
the hard-ball, then the ladder
smashes the ball on a moving box
and then they release it.

40 60

13

The user closes the hand grasping
the empty plastic bottle
handled by the collaborator,
then the ladder slowly removes it.

40 60

14

The user closes the hand grasping
the full plastic bottle handled
by the collaborator who continues
keeping the bottle, then the ladder
quickly removes their hand and
the bottle should fall.

40 80

Full
plastic
bottle 15

The user closes the hand grasping
the empty plastic bottle, then
the ladder smashes the bottle on a
moving box and then
they release it.

40 60

Table 5.3: This table provides a comprehensive overview of all actions recorded
during the final phase of this project realization. Each action is listed along with
relevant details such as description, quantity and object used. In this table, even
if they are the same person, the one using the EMG to control the prosthesis is
referred to as user and the one interacting with the prosthesis is the collaborator.
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In conclusion, this phase represented the culmination of the offline part of
this study. During this period, considerable effort was dedicated to refining and
optimizing the model through a series of iterations and little improvements. This
phase enabled a comprehensive evaluation of the performance of this methodological
approach, thus providing a solid foundation for addressing the more complex part
of the study: the recognition and, potentially, real-time prediction of actions
performed by prostheses’ users. It is important to note that while slightly lower
results are expected, compared to those obtained during the offline study, this is a
natural consequence of the additional challenges present in everyday life.

5.4 Human Study
This chapter focuses on the crucial phase of ensuring the reliability and accuracy
of this work. The validation of the model involves the direct interaction of two
individuals with the robotic hand. Specifically, the author of this thesis project will
manipulate the prosthetic hand using myoelectric sensors, mimicking the actions
of a prosthesis user, while the participants engage with it.

Figure 5.13: Setup for Human Study - Validation Experiment.

The experiment’s procedure commenced with an explanation of the study’s
objectives, followed by the collection of personal information and obtaining signed
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consent forms, including consent for video recording. The experimental procedure
remained consistent for each participant: they were presented with a 30-second
video demonstrating the author’s interaction with the prosthesis to familiarize
them with the actions. Subsequently, they were tasked with replicating the actions
demonstrated in the video three times each, aiming for as close a resemblance as
possible.

The outcomes of their interactions will be subsequently analyzed in Chapters
6.3.1 and 6.3.2.

Participant 1 is a 25-year-old male with no prior experience in interacting with
prostheses. Participant 2, aged 24, also lacks prior experience with prostheses.
The inclusion of participants with no prior exposure to prosthetic devices aims to
simulate a scenario where users approach the robotic hand with fresh perspectives,
providing authentic feedback on its usability and effectiveness. As will be explained
in Chapter 7, their participation offers an additional perspective on the ease of
integration and functionality of this model in real-world scenarios.

Figure 5.14: Participant 1 and participant 2 interacting with the prosthesis.
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The validation process adhered to a meticulously designed protocol outlined
in the forthcoming table 5.4. This protocol ensures consistency and rigour in the
assessment of the model’s performance.

Before the study

- Prepare excel-file with a list of participants. In the same
excel-file you will register participant demographics
(name, gender, age, previous experience, etc)
- Print informed consent
- Prepare room and tripod

Phase Time Description Material ToDo

0 – Preparation 2 min

Explain the
objective of the
study, get personal
info, get consent
form signed and
ask consent for
videos

Consent Form
and pen

Explain
what
the goal
of the
experiment
is

1 min Allow questions

1 – Mounting 1 min Put on
EMG-sensors

2 – Training with
basketball 1 30 sec

Show video of
passing action
with basketball

Video
Explanation

Start
recording
video

30 sec Allow questions
3 - Testing with
basketball 1 2 min Record the action

3 times Basketball

4 – Training with
basketball 2 30 sec

Show video of
pulling action
with basketball

Video
Explanation

30 sec Allow questions
5 - Testing with
basketball 2 2 min Record the action

3 times Basketball

6 – Training with
basketball 3 30 sec

Show video of
putting-down
action
with basketball

Video
Explanation

30 sec Allow questions

7 - Testing with
basketball 3 2 min Record the action

3 times
Basketball
+ box

Stop
recording
video
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Table 5.4 continued from previous page

8 – Training with
softball 1 30 sec

Show video of
passing action
with softball

Video
Explanation

Start
recording
video

30 sec Allow questions
9 - Testing with
softball 1 2 min Record the action

3 times Softball

10 – Training with
softball 2 30 sec

Show video of
pulling action
with softball

Video
Explanation

30 sec Allow questions
11 - Testing with
softball 2 2 min Record the action

3 times Softball

12 – Training with
softball 3 30 sec

Show video of
putting-down
action
with softball

Video
Explanation

30 sec Allow questions

13 - Testing with
softball 4 2 min Record the action

3 times
Softball
+ box

Stop
recording
video

14 – Training
with empty
plastic bottle 1

30 sec

Show video of
passing action
with
empty plastic bottle

Video
Explanation

Start
recording
video

30 sec Allow questions
15 - Testing
with empty
plastic bottle 1

2 min Record the action
3 times

Empty
plastic bottle

16 – Training
with empty
plastic bottle 2

30 sec

Show video of
pulling action
with
empty plastic bottle

Video
Explanation

30 sec Allow questions
17 - Testing
with empty
plastic bottle 2

2 min Record the action
3 times

Empty
plastic bottle
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Table 5.4 continued from previous page

18 – Training
with empty
plastic bottle 3

30 sec

Show video of
putting-down
action with
empty plastic bottle

Video
Explanation

30 sec Allow questions
19 - Testing
with empty
plastic bottle 1

2 min Record the action
3 times

Empty
plastic bottle
+ box

Stop
recording
video

20 – Training with
hardball 1 30 sec

Show video of
passing action
with hardball

Video
Explanation

Start
recording
video

30 sec Allow questions
21 - Testing with
hardball 1 2 min Record the action

3 times Hardball

22 – Training with
hardball 2 30 sec

Show video of
pulling action
with hardball

Video
Explanation

30 sec Allow questions
23 - Testing with
hardball 2 2 min Record the action

3 times Hardball

24 – Training with
hardball 3 30 sec

Show video of
putting-down
action
with hardball

Video
Explanation

30 sec Allow questions

25 - Testing with
hardball 3 2 min Record the action

3 times
Hardball
+ box

Stop
recording
video

26 – Training with
full plastic bottle 1 30 sec

Show video of
passing action
with
full plastic bottle

Video
Explanation

Start
recording
video

30 sec Allow questions
27 - Testing with
full plastic bottle 1 2 min Record the action

3 times
Full
plastic bottle

28 – Training
with full
plastic bottle 2

30 sec

Show video of
pulling action
with
full plastic bottle

Video
Explanation
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Table 5.4 continued from previous page
30 sec Allow questions

29 - Testing
with full
plastic bottle 2

2 min Record the action
3 times

Full
plastic bottle

30 – Training
with full
plastic bottle 3

30 sec

Show video of
putting-down
action with
full plastic bottle

Video
Explanation

30 sec Allow questions
31 - Testing
with full
plastic bottle 3

2 min Record the action
3 times

Full
plastic bottle
+ box

Stop
recording
video

Total time 49 minutes
Table 5.4: Protocol for conducting Human study. This table outlines the protocol
followed to conduct the study, each step describes the specific procedure or action
taken during the experimental process with the timing and the objects needed.
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Chapter 6

Results

This chapter presents the outcomes of the three main phases of the project. Initially,
the offline analysis reveals findings from two distinct cases differing in the quantity
of recorded data. Subsequently, the online analysis showcases results obtained
from testing the trained machine learning model, considering new actions obtained
by making interact with the prosthesis the same person who recorded the actions
used to train the model. Finally, outcomes from the human study, involving two
participants attempting to replicate the same action, are discussed.

6.1 Offline Analysis
An element of great relevance of this offline phase was the assessment of result
variability, which was explored through a careful analysis of the confusion matrix.
As highlighted in Figure 6.1, significant variations were observed in some classes
considering some iterations of the model training.

Notably, while the majority of the classes exhibited variability of not over 10%,
which is still acceptable; Class 6 (Risky Slip Light) demonstrated a substantial
change of approximately 25%, revealing significant instabilities. This phenomenon
was attributed to the small size of the dataset produced, which was not sufficiently
large to ensure stable results. It is important to emphasize that although machine
learning techniques require extensive datasets, our data availability was time-
limited.
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(a) (b)

Figure 6.1: Confusion matrices from the same reduced dataset.

Having recognized that result variability is an intrinsic aspect of this small study,
it was decided to expand the dataset by adding additional experiments of the
already chosen actions. This approach allowed to assess the impact that greater
data could have on the final outcome and explore possible strategies to reduce the
observed variability. The resulting confusion matrices are shown in Fig. 6.3.

(a) (b)
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(a) (b)

(c)

Figure 6.3: Confusion matrices generated from the same full dataset and obtained
by 5 subsequent iterations. Each matrix illustrates the performance of the model
across different iterations, providing insights into its consistency over time, which
got better after expanding the dataset.

As evident from the matrices, the variability of almost all classes across 5 trials
is now within 10%.
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6.2 Online Analysis

6.2.1 Ground Truth
Prior to showcasing the results derived from testing with the trained machine-
learning model, as elaborated in Chapter 3, it is essential to outline the anticipated
outcomes, serving as the ground truth for each action under consideration, i.e. pass,
pull, fall, and putdown. These will be depicted in Figure 6.4.

All recorded actions are detailed in Table 5.3. For the action termed ’pass’,
the expected outcome includes nothing initially and at the end, common to every
action, along with a yellow segment denoting grasp and a green segment indicating
safe slip, specifically for the passing action. Regarding ’pull’ or ’fall’ actions, an
initial yellow phase representing grasp is followed by a red phase corresponding to
risky slip. As for the action of ’put-down’, as previously explained in Chapter 5.3,
it entails 2 yellow intervals (representing grasp) and 2 green intervals (indicating
safe slip), alternating between each other. This depicts the initial grasp followed
by the putdown, referred to as safe slip, followed again by grasping due to the
ongoing nature of the action. Finally, it concludes with the release, also considered
a safe slip. Note: Of course, these images are figurative and the dimension of these
intervals will depend on the actual actions.

(a) Pass (b) Pull/Fall

(c) Put-down (d) Zoomed legend

Figure 6.4: Ground truths of the action recorded.

A singular case occurs in the ’pass’ action when dealing with a full plastic bottle.
In this scenario, besides the difficulty of replicating the object passage while holding
the hand slightly wider (as the heavy object tends to slip, simulating more of a
’fall’ action than a ’pass’), it was decided to replicate the actual passing of a heavy
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object in everyday life. This involves handing the object to another person and
then releasing it when it is felt that the other person has actually taken it. It was
attempted to replicate this dynamic by gently lifting the weight of the bottle during
the intermediate phase before releasing it. In this way, the ground truth graph is
very similar to that of ’put-down’, and to be precise, it can be seen in Figure 6.5.

(a) Put-down (b) Zoomed legend

Figure 6.5: Pass for plastic bottle.

Please be advised that this legend will remain applicable throughout the entire
analysis of results, even if not explicitly displayed.

6.2.2 Object 1 - Soft-ball
Pass

In figures 6.6 and 6.7, it is possible to observe the results obtained from applying
the trained machine learning model to the passing actions using the soft-ball. Image
6.6 shows an excellent result, nearly identical to the ground truth depicted in 6.4a.
However, in image 6.7, a discrepancy is evident. Here, it can be observed that if
a slight jerk occurs at the beginning or end of the passing action, the algorithm
categorizes it wrongly as a risky situation.
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Figure 6.6: Test result after applying the trained machine-learning model to ’pass’
action with the soft-ball.

Figure 6.7: Test result after applying the trained machine-learning model to ’pass’
action with the soft-ball.

Pull

In Figure 6.8, it is possible to see the results obtained from applying the trained
machine learning model to the pulling actions using the soft-ball. In this case,
as with all other analyses conducted for this action, the risky slip was correctly
identified.
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Figure 6.8: Test result after applying the trained machine-learning model to ’pull’
action with the soft-ball.

Put-down

In Fig. 6.9, the results obtained from applying the trained machine learning model
to the soft-ball putting-down action can be observed. In this case, as with all other
analyses conducted for this action, the result is only partially correct. Indeed, the
phases of ball putting-down and release are identified, but the interval between
these two phases is not recognized as a grasp phase. See image 6.5a for reference.

Figure 6.9: Test result after applying the trained machine-learning model to
’put-down’ action with the soft-ball.
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6.2.3 Object 2 - Empty plastic bottle
Pass

In Figure 6.10, the results obtained from applying the trained machine learning
model to the passing actions for the empty plastic bottle can be observed. The
result obtained in this image is excellent, identical to the ground truth depicted
in Fig.6.4a. However, similar to what was found for the soft-ball, if a slight jerk
occurs at the beginning or end of the passing action, the algorithm recognizes it as
a risky situation.

Figure 6.10: Test result after applying the trained machine-learning model to
’pass’ action with the empty plastic bottle.

Pull

In Figure 6.11, it is possible to observe the results obtained from applying the
trained machine learning model to the pulling actions using the empty plastic
bottle. In this case, as with all other analyses conducted for this action, the risky
slip was correctly identified as in 6.5b.
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Figure 6.11: Test result after applying the trained machine-learning model to
’pull’ action with the empty plastic bottle.

Put-down

In figures 6.12 and 6.13, the results obtained by applying the trained machine
learning model to the putting-down actions for the empty plastic bottle can be
observed.

Figure 6.12: Test result after applying the trained machine-learning model to
’put-down’ action with the empty plastic bottle.
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The result obtained in image 6.12 is excellent, identical to the ground truth
depicted in figure 6.5a. However, even the result obtained in figure 6.13, although
not identical to the ground truth, can be considered correct since the phases of
putting-down and release are correctly identified.

Figure 6.13: Test result after applying the trained machine-learning model to
’put-down’ action with the empty plastic bottle.

6.2.4 Object 3 - Basket-ball
Pass

In figures 6.14 and 6.15, it is possible to observe the results derived from applying
the trained machine learning model to the passing actions for the basket-ball.
Image 6.14 exhibits an excellent result, matching the ground truth shown in figure
6.4a. However, as previously noted for the soft-ball and the empty plastic bottle, a
discrepancy is evident in image 6.15. Here, it is observed that if a slight jerk occurs
at the beginning or end of the passing action, the algorithm classifies it as a risky
situation.
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Figure 6.14: Test result after applying the trained machine-learning model to
’pass’ action with the basket-ball.

Figure 6.15: Test result after applying the trained machine-learning model to
’pass’ action with the basket-ball.

Pull

In Figure 6.11, it is possible to observe the results obtained from applying the
trained machine learning model to the pulling actions using the basket-ball. In this
case, as with all other tests conducted for this action, the risky slip was correctly
identified as in 6.5b.
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Figure 6.16: Test result after applying the trained machine-learning model to
’pull’ action with the basket-ball.

Put-down

In figures 6.12 and 6.13, the results obtained by applying the trained machine
learning model to the putting-down actions for the basket-ball can be observed.
The result obtained in image 6.17 is excellent, identical to the ground truth depicted
in Fig. 6.5a.

Figure 6.17: Test result after applying the trained machine-learning model to
’put-down’ action with the basket-ball.
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6.2.5 Object 4 - Hard-ball
Pass

In Figure 6.18, it is possible to observe the results obtained from applying the trained
machine learning model to the passing actions using the hard-ball. Differently from
all the previous object testing for the passing action, in this case, as with all other
tests conducted for this action, the safe slip was correctly identified as in 6.5b.

Figure 6.18: Test result after applying the trained machine-learning model to
’pass’ action with the hard-ball.

Fall

In figures 6.19 and 6.20, the results obtained by applying the trained machine
learning model to the fall actions for the hard-ball can be observed. The result
obtained in figure 6.19 is excellent, identical to the ground truth depicted in the
figure 6.5b. However, even the result obtained in figure 6.20, although not identical
to the ground truth, can be considered correct since the phase of falling is correctly
identified.
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Figure 6.19: Test result after applying the trained machine-learning model to
’fall’ action with the hard-ball.

Figure 6.20: Test result after applying the trained machine-learning model to
’fall’ action with the hard-ball.

Put-down

In Figure 6.21, the results obtained from applying the trained machine learning
model to the hard-ball putting-down action can be observed. In this case, as with
all other analyses conducted for this action, the result is only partially correct.
Indeed, the phase of ball release is correctly identified together with the grasping
phases, but put-down is not recognized. See image 6.5a for reference.
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Figure 6.21: Test result after applying the trained machine-learning model to
’put-down’ action with the hard-ball.

6.2.6 Object 5 - Full plastic bottle
Pass

In figures 6.22 and 6.23, the results obtained by applying the trained machine
learning model to the passing actions for the full plastic bottle can be observed.
Remember that this action was performed differently form the other pass actions
with different objects. The result obtained in image 6.22 is excellent, almost
identical to the ground truth depicted in the figure 6.5. However, even the result
obtained in figure 6.20, although not identical to the ground truth, can be considered
correct since the phase of passing is correctly identified.
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Figure 6.22: Test result after applying the trained machine-learning model to
’pass’ action with the full plastic bottle.

Figure 6.23: Test result after applying the trained machine-learning model to
’pass’ action with the full plastic bottle.

Fall

In Figure 6.24, it is possible to observe the results obtained from applying the
trained machine learning model to the falling actions using the full plastic bottle.
In this case, as with all other tests conducted for this action, the risky slip was
correctly identified as in 6.5b.
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Figure 6.24: Test result after applying the trained machine-learning model to
’fall’ action with the full plastic bottle.

Put-down

In figures 6.25 and 6.26, the results obtained by applying the trained machine
learning model to the putting-down actions for the full plastic bottle can be
observed.

Figure 6.25: Test result after applying the trained machine-learning model to
’put-down’ action with the full plastic bottle.
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The result obtained in image 6.25 is excellent, identical to the ground truth
depicted in the figure 6.5a. However, even the result obtained in figure 6.26,
although not identical to the ground truth, can be considered correct since the
phase of put-down and the release are correctly identified.

Figure 6.26: Test result after applying the trained machine-learning model to
’put-down’ action with the full plastic bottle.

6.2.7 Unknown Object
To assess the validity of the model, not only was a human-study conducted, the
findings of which will be detailed in Chapter 6.3, but trials were also recorded using
an object unknown to the model. The object in question is a toy apple, visible in
Figure 6.27, whose dimensions and weight are expressed in Table 6.1.
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Figure 6.27: Apple used to test the model with an unknown object.

Descriprion Weight

Apple
Plastic toy 86.5 mm tall, neither hard nor squezable
with a smooth surface. The upper diameter is 77 mm,
while the lower one is 56 mm.

20.3 g

Table 6.1: This table provides a comprehensive overview of the unknown object,
including its descriptions, dimensions, and weights. The dimensions are specified in
millimeters (mm), while the weights are presented in grams (g). Note: Dimensions
and weights are approximate and may vary slightly.

Pass

In Figure 6.28, it is possible to observe the results obtained from applying the
trained machine learning model to the passing actions using the unknown object.
In this case, as with all other tests conducted for this action, the safe slip was
almost correctly identified.
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Figure 6.28: Test result after applying the trained machine-learning model to
’pass’ action with the unknown object.

Pull

In Figure 6.29, it is possible to observe the results obtained from applying the
trained machine learning model to the pulling actions using the unknown object.
In this case, as with all other tests conducted for this action, the risky slip was
almost correctly identified.

Figure 6.29: Test result after applying the trained machine-learning model to
’pull’ action with the unknown object.
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Put-down

In Figure 6.30, it is possible to observe the results obtained from applying the
trained machine learning model to the putting-down actions using the unknown
object. In this case, as with all other tests conducted for this action, the put-down
and the release were correctly identified, but there were also a lot of additional safe
slips.

Figure 6.30: Test result after applying the trained machine-learning model to
’put-down’ action with the unknown object.
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6.3 Human study
6.3.1 Participant 1
Object 1 - Soft-ball

Pass

In Figure 6.31, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the soft-ball, accomplished by
Participant 1. In this case, as with all other analyses conducted for this action, the
safe slip was correctly identified.

Figure 6.31: Test result for participant 1 after applying the trained machine-
learning model to ’pass’ action with the soft-ball.

Pull

In Figure 6.32, it is possible to see the results obtained from applying the trained
machine learning model to the pulling actions using the soft-ball, accomplished by
Participant 1. In this case, the risky slip was not correctly identified; the same
happened for all other analyses conducted for this action.
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Figure 6.32: Test result for participant 1 after applying the trained machine-
learning model to ’pull’ action with the soft-ball.

Put-down

In Figure 6.33, it is possible to see the results obtained from applying the trained
machine learning model to the putting-down actions using the soft-ball, accom-
plished by Participant 1. In this case, the put-down and the release were correctly
identified, however, according to the ground truth in Fig. 6.5a, a grasp keeping is
mistaken for a risky slip.

Figure 6.33: Test result for participant 1 after applying the trained machine-
learning model to ’put-down’ action with the soft-ball.
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Object 2 - Empty plastic bottle

Pass

In Figure 6.34, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the empty plastic bottle,
accomplished by Participant 1. In this case, the safe slip was not correctly identified;
the same happened for all other analyses conducted for this action.

Figure 6.34: Test result for participant 1 after applying the trained machine-
learning model to ’pass’ action with the empty plastic bottle.

Pull

In Figure 6.35, it is possible to see the results obtained from applying the trained
machine learning model to the pulling actions using the empty plastic bottle,
accomplished by Participant 1. In this case, the risky slip was not correctly
identified; the same happened for all other analyses conducted for this action.
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Figure 6.35: Test result for participant 1 after applying the trained machine-
learning model to ’pull’ action with the empty plastic bottle.

Put-down

In figures 6.36 and 6.37, it is possible to see the results obtained from applying
the trained machine learning model to the putting-down actions using the empty
plastic bottle, accomplished by Participant 1. For what it concerns Fig.6.36 the
putting-down action was correctly recognised. However, the result also showed Fig.
6.37 which differently from the latter is not correctly identified.

Figure 6.36: Test result for participant 1 after applying the trained machine-
learning model to ’put-down’ action with the empty plastic bottle.
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Figure 6.37: Test result for participant 1 after applying the trained machine-
learning model to ’put-down’ action with the empty plastic bottle.

Object 3 - Basket-ball

Pass

In Figure 6.38, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the basket-ball, accomplished
by Participant 1. In this case, as with all other analyses conducted for this action,
the safe slip was not correctly identified, as always mistaken for a risky slip.
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Figure 6.38: Test result for participant 1 after applying the trained machine-
learning model to ’pass’ action with the basket-ball.

Pull

In Figure 6.39, it is possible to see the results obtained from applying the trained
machine learning model to the pulling actions using the basket-ball, accomplished
by Participant 1. For what interests Fig.6.36 the pulling action was correctly
recognised, however, other cases of the same action showed results similar to the
ones of the pulling action for the soft-ball.

Figure 6.39: Test result for participant 1 after applying the trained machine-
learning model to ’pull’ action with the basket-ball.
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Put-down

In Figure 6.40, the results obtained from applying the trained machine learning
model to the pulling actions using the basket-ball, accomplished by Participant 1,
can be observed. The outcome is really good, and additionally, other attempts at
the same action, while not as successful, can still be deemed acceptable.

Figure 6.40: Test result for participant 1 after applying the trained machine-
learning model to ’put-down’ action with the basket-ball.

Object 4 - Hard-ball

Pass

In Figure 6.41, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the hard-ball, accomplished
by Participant 1. In this case, as with all other analyses conducted for this action,
the safe slip was not correctly identified, as always mistaken for a risky slip.
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Figure 6.41: Test result for participant 1 after applying the trained machine-
learning model to ’pass’ action with the hard-ball.

Fall

In Figure 6.42, it is possible to see the results obtained from applying the trained
machine learning model to the falling actions using the hard-ball, accomplished by
Participant 1. In this case, as with all other analyses conducted for this action, the
risky slip was not correctly identified, as the only prediction shown is the grasping
one.

Figure 6.42: Test result for participant 1 after applying the trained machine-
learning model to ’fall’ action with the hard-ball.
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Put-down

In Figure 6.43, the results obtained from applying the trained machine learning
model to the putting-down actions using the hard-ball, accomplished by Participant
1, can be observed. The outcome is not perfect but it can still be considered correct,
also other attempts at the same action can be considered acceptable.

Figure 6.43: Test result for participant 1 after applying the trained machine-
learning model to ’put-down’ action with the hard-ball.

Object 5 - Full plastic bottle

Pass

In figure 6.44, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the full plastic bottle, ac-
complished by Participant 1. As for this image, the passing action was correctly
recognised, recalling that the ground truth for this action is the one from Fig. 6.5.
Nevertheless, other cases of the same action showed wrong results.
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Figure 6.44: Test result for participant 1 after applying the trained machine-
learning model to ’pass’ action with the full plastic bottle.

Fall

In figure 6.45, it is possible to see the results obtained from applying the trained
machine learning model to the falling action using the full plastic bottle, accom-
plished by Participant 1. In this case, as with all other analyses conducted for this
action, the risky slip was correctly identified.

Figure 6.45: Test result for participant 1 after applying the trained machine-
learning model to ’fall’ action with the full plastic bottle.
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Put-down

In figure 6.45, it is possible to see the results obtained from applying the trained
machine learning model to the putting-down action using the full plastic bottle,
accomplished by Participant 1. In this case, as with all other analyses conducted
for this action, the put-down and the release were correctly identified, even if not
perfectly as 6.5a.

Figure 6.46: Test result for participant 1 after applying the trained machine-
learning model to ’put-down’ action with the full plastic bottle.
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6.3.2 Participant 2
Object 1 - Soft-ball

Pass

In Figure 6.47, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the soft-ball, accomplished
by Participant 2. As for this image, the passing action was correctly recognised.
Nevertheless, other cases of the same action showed wrong results, mistaking the
safe slip with a risky one.

Figure 6.47: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the soft-ball.

Pull

In Figure 6.48, it is possible to see the results obtained from applying the trained
machine learning model to the pulling action using the soft-ball, accomplished by
Participant 2. In this case, as with all other analyses conducted for this action, the
risky slip was correctly identified. However, Figure 6.49 reveals a misplaced safe
slip. Despite this, the trial is not deemed incorrect, and the rationale behind this
will be elaborated on in the discussion.
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Figure 6.48: Test result for participant 2 after applying the trained machine-
learning model to ’pull’ action with the soft-ball.

Figure 6.49: Test result for participant 2 after applying the trained machine-
learning model to ’pull’ action with the soft-ball.

Put-down

In Fig. 6.50, it is possible to see the results obtained from applying the trained ma-
chine learning model to the putting-down actions using the soft-ball, accomplished
by Participant 2. In this case, as with all other analyses conducted for this action,
the put-down and the release were correctly identified, even if not perfectly as 6.5a.
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Figure 6.50: Test result for participant 2 after applying the trained machine-
learning model to ’put-down’ action with the soft-ball.

Object 2 - Empty plastic bottle

Pass

In Figure 6.51, it is possible to see the results obtained from applying the trained
machine learning model to the passing action using the empty plastic bottle,
accomplished by Participant 2. In this case, the passing was correctly identified,
even if not perfectly as 6.5a. However, in one trial no action other than grasping
was registered.
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Figure 6.51: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the empty plastic bottle.

Pull

In Figure 6.52, it is possible to see the results obtained from applying the trained
machine learning model to the pulling action using the empty plastic bottle,
accomplished by Participant 2. In this case, the risky slip was correctly identified.
However, in one trial no risky slip was registered.

Figure 6.52: Test result for participant 2 after applying the trained machine-
learning model to ’pull’ action with the empty plastic bottle.
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Put-down

In Figure 6.53, it is possible to see the results obtained from applying the trained
machine learning model to the putting-down actions using the empty plastic bottle,
accomplished by Participant 2. In this case, as with all other analyses conducted
for this action, the put-down and the release were correctly identified, even if not
perfectly as the ground truth in 6.5a.

Figure 6.53: Test result for participant 2 after applying the trained machine-
learning model to ’put-down’ action with the empty plastic bottle.

Object 3 - Basket-ball

Pass

In Figure 6.54, it is possible to see the results obtained from applying the trained
machine learning model to the passing action using the basket-ball, accomplished
by Participant 2. In this case, the safe slip was correctly identified. However,
another trial fro the same action in Figure 6.55 reveals a misplaced risky slip.
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Figure 6.54: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the basket-ball.

Figure 6.55: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the basket-ball.

Pull

In Figure 6.56, it is possible to see the results obtained from applying the trained
machine learning model to the pulling action using the basket-ball, accomplished
by Participant 2. In this case, as with all other analyses conducted for this action,
the risky slip was correctly identified.
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Figure 6.56: Test result for participant 2 after applying the trained machine-
learning model to ’pull’ action with the basket-ball.

Put-down

In Figure 6.57, it is possible to see the results obtained from applying the trained
machine learning model to the putting-down actions using the basket-ball, accom-
plished by Participant 2. In this case, the put-down and the release were correctly
identified. However, in other trials of the same action, as the example in Fig. 6.58,
the model is not able to recognize the put-down.

Figure 6.57: Test result for participant 2 after applying the trained machine-
learning model to ’put-down’ action with the basket-ball.
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Figure 6.58: Test result for participant 2 after applying the trained machine-
learning model to ’put-down’ action with the basket-ball.

Object 4 - Hard-ball

Pass

In Figure 6.59, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the hard-ball, accomplished by
Participant 2. In this case, the safe slip was almost correctly identified. However,
in other trials of the same action, as the example in Fig. 6.60, the model is not
able to recognize anything other than grasp.
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Figure 6.59: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the hard-ball.

Figure 6.60: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the hard-ball.

Fall & Put-down

In figures 6.61 and 6.62, it is possible to see the results obtained from applying the
trained machine learning model to the falling and putting-down actions using the
hard-ball, accomplished by Participant 2. In these two cases, the only prediction
shown is "nothing". An explanation for this will be given in the discussion.
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Figure 6.61: Test result for participant 2 after applying the trained machine-
learning model to ’fall’ action with the hard-ball.

Figure 6.62: Test result for participant 2 after applying the trained machine-
learning model to ’put-down’ action with the hard-ball.
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Object 5 - Full plastic bottle

Pass

In Figure 6.63, it is possible to see the results obtained from applying the trained
machine learning model to the passing actions using the full plastic bottle, accom-
plished by Participant 2. In this scenario, the safe slip was not accurately identified,
as evidenced by the ground truth depicted in Fig. 6.5. Nevertheless, no risky slip
was detected, leading to the conclusion that the outcome is partially corrected.
This outcome is consistent with all trials for the same action.

Figure 6.63: Test result for participant 2 after applying the trained machine-
learning model to ’pass’ action with the full plastic bottle.

Fall

In Figure 6.64, it is possible to see the results obtained from applying the trained
machine learning model to the falling action using the full plastic bottle, accom-
plished by Participant 2. In this case, the risky slip was not correctly identified in
any of the trials for this same action.
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Figure 6.64: Test result for participant 2 after applying the trained machine-
learning model to ’fall’ action with the full plastic bottle.

Put-down

In Figure 6.57, it is possible to see the results obtained from applying the trained
machine learning model to the putting-down actions using the full plastic bottle,
accomplished by Participant 2. In this case, the put-down and the release were
correctly identified in all the trials for this same action.

Figure 6.65: Test result for participant 2 after applying the trained machine-
learning model to ’put-down’ action with the full plastic bottle.
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Chapter 7

Discussion & Future Works

After a careful analysis of the results, it emerged that the experiment produced
promising outcomes, although they could be subject to improvements. Observing
individual actions such as passing, it can be noted that for each object the action
was correctly recognized at least once. However, a problem identified concerns
the speed of passing: if executed slightly faster than expected, with a sudden
movement at the beginning or end of the action, there is a chance of erroneously
identifying a risky slip. This phenomenon appears to primarily affect lightweight
objects such as the soft-ball, basket-ball, and empty plastic bottle, while no risky
slips were observed in heavy objects like the hard-ball and full plastic bottle. This
discrepancy could be attributed to how the model identifies risky slipping with
pulling for lightweight objects and with falling for heavy ones, making pulling easily
misunderstood with passing if too much force is exerted.

Regarding the pulling and falling actions, they were correctly recognized for
all objects and recorded cases. However, the visual results concerning these risky
actions may slightly differ from the ground truth in 6.5b. This discrepancy does
not compromise the recognition of the risky action, as during slipping, there may
be ambiguous moments that do not affect the correct identification of the risky
action, because as soon as the risky action is recognized, the shared control will
react accordingly, and therefore what comes after is not considered important.

Finally, concerning the put-down action, the situation is more complex. For
objects like the basket-ball, empty plastic bottle, and full plastic bottle, the results
are acceptable with correct recognition of both put-down and release, although,
some instances might be erroneously identified as safe slips instead of grasps,
probably due to insufficiently stable grip. However, since safe slip does not require
intervention, this discrepancy does not pose a problem. As for the soft and
hard balls, the situation is somewhat different. For the former, the model can
recognize the disturbance during putting-down and release but fails to distinguish
the variation after the object’s put-down, preventing it from exiting the safe slip
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state. For the hard-ball, the lack of intensity in the put-down prevents the model
from recognizing it. Nevertheless, as mentioned earlier, since no risky slips were
observed, the put-down recognition is considered satisfactory in all cases.

After analyzing the collected data with the trained model, it was important
to check for any biases in the machine-learning model. As a first step, an object
unknown to the model was tested; the author of this project performed the same
movements but this time with a toy apple. The results were quite good and in line
with expectations. The pass was correctly recognized in all cases, as well as the
pull. However, aware of the program’s sensitivity, the pass was executed carefully
to avoid sudden movements, which worked. However, in the development of a
shared control, this aspect will certainly require further attention and improvement.
Regarding the put-down, the results obtained were, in no case, identical to the
ground truth due to the recognition of numerous small safe slips. Nevertheless,
as anticipated, since no risky slips were observed, the results are not considered
erroneous.

As for the human study, the situation differs significantly for the two participants.
After viewing the explanatory videos, the first participant did not replicate exactly
what was shown, while the second followed the instructions carefully. Let’s now
compare the results.

Regarding the passing action, the results for the second participant are very
similar to those obtained by the author, with the only exception of passing for
the full plastic bottle, which shows slightly different results from the others. This
action, as explained in Chapter 6.2.1, has a slightly different execution and was not
correctly identified because the weight of the bottle was not sufficiently attenuated,
and consequently, only a minimal variation is visible in the plots of the various
sensors, Fig. 6.63. Conversely, for the first participant, no cases of safe slip were
correctly recognized for the basket-ball, the empty plastic bottle, and the heavy-ball.
Regarding the soft-ball, the safe slip was correctly recognized without any risky
slips observed in any case. Finally, for the full plastic bottle, the safe slip was
correctly recognized in one case but erroneously labelled as risky in another. This
happens due to a lack of correct execution of the action; indeed, while participant
1 did not exert enough force in lifting the bottle, participant 2 used an excessive
amount, enough to move the bottle. At this point, it seems correct to say that
the action was labelled as ’risky slip’ because it was a reproduction of the pulling
action.

As for the pulling and falling actions, the results for the first participant were
quite inaccurate for all objects except for the full bottle. This could be due to the
fact that the first participant performed the pulling action so quickly that in almost
all cases the model, trained on a more controlled pull, was unable to recognize it.
As for the full plastic bottle, the fall was recognized in all cases. For the second
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participant, the results for lightweight objects are similar to those of the author,
correctly recognizing the risky slip. For heavy objects, the situation is particular:
for the hard-ball, it predicts "nothing", as will happen for the put-down action,
probably due to its incorrect positioning during the pulling action. Indeed, the
hard-ball, due to its shape, weight, and hardness, was the most difficult object to
study. As for the full plastic bottle, from the figure 6.64, it is very evident that
slipping is occurring, but it is probably labelled only as a safe slip because it is
extremely slow and controlled.

Regarding the put-down, the results for the second participant, following the
overall trend, were good for all objects except for the hard-ball, as anticipated. In
general, the model was able to recognize the pulling and release actions at least once
for each object. However, it is important to note that in some cases, the put-down
action was not recognized. Regarding the first participant, the recognition of
put-down and release was better than the previous actions. However, due to the
excessive force with which the put-down was executed, as already explained for
passing the full plastic bottle, many cases were erroneously recognized as risky.
The only object for which the put-down was never recognized as risky is the full
plastic bottle because, after viewing the video, it was emphasized not to apply
excessive force. This was simply to avoid damaging the sensors, as they are very
delicate and the object used was the heaviest in the project.

After analyzing all the results from the online test and the human study, an
additional step was taken to further validate the efficacy of slip detection methods
employed in this study. The data used for testing underwent the two traditional
methods used for slip detection, namely friction cone and bandpass filtering, which
until now were only employed to identify critical points for training the machine
learning model. The results were remarkably satisfactory. For all objects in the
online study except the soft-ball, in at least one trial, the machine learning model
successfully predicted the risky slip, as evidenced by Figure 7.1a. Even for the
soft-ball, although the results were not as strong, the model consistently identified
the critical point alongside to the traditional methods. Moreover, this success
extended to the unknown object, as depicted in Figure 7.1b. Finally, in the context
of the human study, similar positive outcomes were observed, albeit with a focused
analysis only on the objects previously identified as correctly recognized. For
Participant 1, this encompassed the full plastic bottle, while for Participant 2, it
included all lightweight objects.
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(a) This figure showcases the outcomes regarding the basket-ball, utilized within the
context of the online test. Demonstrating the capabilities of the machine learning model
developed in this study, it exhibits the model can anticipate risky slips moments before
the traditional method.

(b) This figure showcases the outcomes regarding the apple, an unknown object added to
the online test. Demonstrating the capabilities of the machine learning model developed in
this study, it exhibits the model can anticipate risky slips moments before the traditional
method.

(c) This figure showcases the outcomes regarding the soft-ball, utilized within the context
of the human study for Participant 1. Demonstrating the capabilities of the machine
learning model developed in this study, it exhibits the model can anticipate risky slips
moments before the traditional method.

Figure 7.1: Figures illustrating the comparison between traditional slip detection
methods alongside the method developed in this project. Each figure focuses
specifically on one of the six sensors, precisely sensor 4, positioned on the middle
finger.
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From the results obtained from the study, which highlight both strengths and
weaknesses, several roads for future improvement of this work emerge. Initially, it
is evident that the quantity of data used to train the model is insufficient. This
is particularly critical in the passing action, which could benefit from considering
a greater variety of cases. It is important to emphasize that the accuracy of
predictions made by machine-learning algorithms is usually directly proportional
to the size and diversity of the dataset used for training.

Another crucial aspect to consider concerns the sensors. During the recording of
actions, there were repeated instances of magnets detaching. This not only caused
practical inconveniences but also influenced the performance of the sensors, which
could not be re-calibrated with every occurrence. Integrating the sensors directly
into the prosthesis could significantly enhance the authenticity and reliability of
the actions performed. Another solution, which maintains the external structure of
the sensors, could be to encapsulate the chip and the magnet and introduce an air
gap between them to mitigate the uncompressibility of silicone and glue.

Furthermore, for future developments, the inclusion of EMG recognition along
with the study of Hall-effect sensor outputs could be evaluated for a more compre-
hensive study. Additionally, expanding the study to include various positions in
which the hand interacts with the external environment could be beneficial. Indeed,
this multi-directional approach could more accurately reflect the challenges and
dynamics encountered in real life.

Finally, instead of implementing a shared control, an option to consider could
be the use of vibrational feedback to assess the performance of the study. This
could provide a more direct and immediate method for evaluating the response and
interaction of the prosthesis with the user.
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Conclusions

During the course of this project, an innovative approach was developed to predict
slipping using tactile sensors and a machine-learning model. The proposed method
has proven effective in distinguishing slipping from grasping and recognizing various
types of slipping, differentiating between safe and risky situations. However, while
the preliminary results are promising, it has become clear that there is still room
for improvement.

The human study and the study with an unknown object have certainly allowed
us to understand that the model is capable of recognizing movements even when
performed with unstudied objects, but it is very susceptible to changes in the way
these actions are developed.

In the discussion phase of future work, several critical points requiring further
development have been identified. For example, in the passing action, the analysis
revealed a lack of sufficient data for model training, suggesting the need to acquire
more cases to improve the accuracy and reliability of predictions. Furthermore, the
stability of the sensors used is another area requiring improvement. The occasional
detachment of magnets has influenced the sensor’s performance, indicating the
need for technical solutions to enhance their structural and functional integrity.

Despite these challenges, the proposed approach has proven capable of correctly
predicting the situation in many cases, highlighting satisfactory results. Nonetheless,
there remains an opportunity to enhance the system’s performance. Consequently,
potential changes and new directions for future developments are discussed in
Chapter 7.
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Appendix A

Code used to train the
machine-learning model

1000 import pandas as pd
import matp lo t l i b . pyplot as p l t

1002 import numpy as np
import seaborn as sns

1004 import os
import p i c k l e

1006 from s c i p y import s i g n a l , i n t e r p o l a t e
from numpy . l i n a l g import e igh

1008 import sys
import math

1010 import random
from s c i p y . s i g n a l import butter , l f i l t e r , s o s f i l t , s o s f r e q z , f i l t f i l t

1012 import time
from p a t h l i b import Path

1014
from s k l e a r n . decomposit ion import PCA

1016 from s k l e a r n . p r e p r o c e s s i n g import StandardScaler , PolynomialFeatures

1018 from s k l e a r n . ensemble import RandomForestClass i f i e r
from s k l e a r n . met r i c s import ConfusionMatrixDisplay , confusion_matrix ,

accuracy_score
1020 from s k l e a r n . mode l_se lect ion import t r a i n _ t e s t _ s p l i t

1022 import j o b l i b

1024 # CLASS TO PROCESS DATA FROM EXCEL FILES

1026 c l a s s DataProcessor_fromExcel :
de f __init__ ( s e l f , f i l e p a t h ) :

1028 s e l f . f i l e p a t h = f i l e p a t h
s e l f . t r i a l _ d a t a = None

1030
de f load_data ( s e l f ) :

1032 s e l f . t r i a l _ d a t a = pd . read_csv ( s e l f . f i l e p a t h )

1034 de f correct_magnet_or ientat ion ( s e l f ) :
f o r column in s e l f . t r i a l _ d a t a . columns [ 1 : ] :
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1036 i f s e l f . t r i a l _ d a t a [ column ] . i l o c [ 0 ] < 0 and column [ 0 ] == ’Z ’ :
s e l f . t r i a l _ d a t a [ column ] = s e l f . t r i a l _ d a t a [ column ] ∗ −1

1038
de f c o r r e c t _ o f f s e t ( s e l f ) :

1040 f o r column in s e l f . t r i a l _ d a t a . columns [ 1 : ] :
o f f s e t = np . mean( s e l f . t r i a l _ d a t a [ column ] . i l o c [ : 5 ] )

1042 s e l f . t r i a l _ d a t a [ column ] = s e l f . t r i a l _ d a t a [ column ] − o f f s e t

1044 de f apply_moving_average ( s e l f , window_size=5) :
f o r column in s e l f . t r i a l _ d a t a . columns [ 1 : ] :

1046 s e l f . t r i a l _ d a t a [ column ] = s e l f . t r i a l _ d a t a [ column ] . r o l l i n g ( window=
window_size ) . mean ( )

1048 de f clean_data ( s e l f ) :
s e l f . t r i a l _ d a t a = s e l f . t r i a l _ d a t a . dropna ( ) . reset_index ( drop=True )

1050
de f normalize_time ( s e l f ) :

1052 s e l f . t r i a l _ d a t a [ ’Time ’ ] = ( s e l f . t r i a l _ d a t a [ ’Time ’ ] − s e l f . t r i a l _ d a t a [ ’Time
’ ] . i l o c [ 0 ] )

1054 de f process_data ( s e l f ) :
s e l f . load_data ( )

1056 s e l f . normalize_time ( )
data=s e l f . t r i a l _ d a t a . i l o c [ : , 1 : ]

1058 time=s e l f . t r i a l _ d a t a . i l o c [ : , 0 ]

1060 r e turn data , time

1062 de f p r o c e s s _ a l l _ f i l e s ( s e l f , fo lder_path , num_fi les ) :
a l l_data = [ ]

1064 al l_t ime_steps = [ ]

1066 f o r f i le_number in range (1 , num_fi les +1) :
f i l ename = f ’ t r i a l _ { fi le_number } . csv ’

1068 f i l e p a t h = os . path . j o i n ( folder_path , f i l ename )

1070 data_processor = DataProcessor_fromExcel ( f i l e p a t h )
data , t ime_steps = data_processor . process_data ( )

1072
a l l_data . append ( data )

1074 al l_t ime_steps . append ( time_steps )

1076 r e turn al l_data , a l l_t ime_steps

1078
# CLASS CONTAINING BANDPASS FILTER FOR ALL SENSORS AND ALL FILES

1080
c l a s s BandpassFi l te r :

1082 de f __init__ ( s e l f ) :

1084 #Resonance Frequenc ie s f o r the bandpass
s e l f .w=[10 , 15 , 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55 ]

1086
#F i l t e r B u f f e r s

1088 s e l f . in_b =[ ]
s e l f . hp_b=[ ]

1090 s e l f . bp_b1=[ ]
s e l f . bp_b2=[ ]

1092 s e l f . lp_b =[ ]

1094 #Sampling per iod
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s e l f . f s =150
1096 s e l f .T=1/ s e l f . f s

s e l f .K=2/ s e l f .T
1098

#Qual i ty Factor
1100 s e l f . g=0.1

1102 #LP frequency
s e l f . f c =75

1104
#i n i t i a l i z e b u f f e r s

1106 f o r _ in range (3 ) :
a =[0 ]

1108 s e l f . in_b . append ( a )
s e l f . hp_b . append ( np . z e r o s ( np . shape ( a ) ) )

1110 temp =[ ]
f o r _ in range ( l en ( s e l f .w) ) :

1112 temp . append ( np . z e r o s ( np . shape ( a ) ) )
s e l f . bp_b1 . append ( temp )

1114 s e l f . bp_b2 . append ( temp )
s e l f . lp_b . append ( temp )

1116 s e l f . in_b . pop (0)
s e l f . bp_b2 . pop (0)

1118

1120 de f h ighpass ( s e l f ) :
input_minus_2 = np . array ( s e l f . in_b [ −2])

1122 input_minus_1 = np . array ( s e l f . in_b [ −1])
hp_minus_1 = np . array ( s e l f . hp_b[ −1])

1124
output = s e l f .K ∗ ( input_minus_1 − input_minus_2 ) − hp_minus_1

1126 s e l f . hp_b . append ( output )
s e l f . hp_b . pop (0 )

1128

1130 de f bandpass1 ( s e l f ) :
temp =[ ]

1132 f o r i , w in enumerate ( s e l f .w) :
w0=2∗w∗np . p i

1134 a=( s e l f .K∗∗2)+2∗ s e l f . g∗w0∗ s e l f .K+(w0∗∗2)
b=w0∗∗2

1136 value=(b∗ s e l f . hp_b[ −1] + 2∗b∗ s e l f . hp_b[ −2] + b∗ s e l f . hp_b[ −3] − (2∗b
−2∗( s e l f .K∗∗2) ) ∗ s e l f . bp_b1 [ −1 ] [ i ] − ( s e l f .K∗∗2−2∗ s e l f . g∗w0∗ s e l f .K+b) ∗ s e l f .
bp_b1 [ −2 ] [ i ] ) /a

temp . append ( value )
1138 s e l f . bp_b1 . append ( temp )

s e l f . bp_b1 . pop (0)
1140

de f bandpass2 ( s e l f ) :
1142 temp =[ ]

f o r i , w in enumerate ( s e l f .w) :
1144 w0=2∗w∗np . p i

a=( s e l f .K∗∗2)+2∗ s e l f . g∗w0∗ s e l f .K+(w0∗∗2)
1146 b=w0∗∗2

temp . append ( ( b∗ s e l f . bp_b1 [ −1 ] [ i ]+2∗b∗ s e l f . bp_b1 [ −2 ] [ i ]+b∗ s e l f . bp_b1
[ −3 ] [ i ] −(2∗b−2∗( s e l f .K∗∗2) ) ∗ s e l f . bp_b2 [ −1 ] [ i ] −( s e l f .K∗∗2−2∗ s e l f . g∗w0∗ s e l f .K+b)
∗ s e l f . bp_b2 [ −2 ] [ i ] ) /a )

1148 s e l f . bp_b2 . append ( temp )
s e l f . bp_b2 . pop (0)

1150
de f lowpass ( s e l f ) :

116



Code used to train the machine-learning model

1152 f c=s e l f . f c ∗2∗np . p i
a=s e l f .K+f c

1154 temp =[ ]
f o r i , w0 in enumerate ( s e l f .w) :

1156 temp . append ( ( f c ∗( s e l f . bp_b2 [ −1 ] [ i ]+ s e l f . bp_b2 [ −2 ] [ i ] ) −( fc −s e l f .K) ∗ s e l f
. lp_b [ −1 ] [ i ] ) /a )

s e l f . lp_b . append ( [ abs ( va lue ) f o r va lue in temp ] )
1158 s e l f . lp_b . pop (0)

1160
de f apply_bandpass_f i l ter ( s e l f , data , time_steps , num_sensors ) :

1162 f i l t e r e d _ d a t a = [ ]

1164 f o r sensor_idx in range ( num_sensors ) :
sensor_data = data . i l o c [ : , sensor_idx ∗ 3 : ( sensor_idx + 1) ∗ 3 ]

1166 f i l t e r e d _ s e n s o r _ d a t a = [ ]
f o r i in range ( l en ( sensor_data ) ) :

1168 s i g n a l = sensor_data . i l o c [ i ] . va lue s
# Update f i l t e r s t a t e s

1170 s e l f . in_b . append ( s i g n a l )
s e l f . in_b . pop (0)

1172 s e l f . h ighpass ( )
s e l f . bandpass1 ( )

1174 s e l f . bandpass2 ( )
s e l f . lowpass ( )

1176
# Get the output from the lowpass f i l t e r f o r each f requency

component
1178 r e s u l t = np . array ( s e l f . lp_b [ −1])

r e s u l t = r e s u l t . f l a t t e n ( )
1180 f i l t e r e d _ s e n s o r _ d a t a . append ( np . i n s e r t ( r e s u l t , 0 , t ime_steps .

i l o c [ i ] ) )

1182 f i l t e r e d _ d a t a . append ( np . array ( f i l t e r e d _ s e n s o r _ d a t a ) )

1184 r e turn np . array ( f i l t e r e d _ d a t a )

1186 de f f ind_peaks ( s e l f , data , t h r e s h o l d ) :
peaks = [ ]

1188 peak_start = None

1190 f o r i in range (1 , l en ( data ) ) :
i f data [ i ] > t h r e s h o l d :

1192 i f peak_start i s None :
peak_start = i

1194 e l i f data [ i ] <= t h r e s h o l d and peak_start i s not None :
peak_end = i − 1

1196 peaks . append ( ( peak_start , peak_end ) )
peak_start = None

1198
i f peak_start i s not None :

1200 peaks . append ( ( peak_start , l en ( data ) − 1) )

1202 r e turn peaks

1204 de f ca l cu la te_s l ip_po ints_bp_tresho lds ( s e l f , data , f i l t e r e d _ d a t a , time_steps ,
num_sensors , t r e s h o l d ) :

s l ip_bp =[ ]
1206 f i l t e r ed_data_s ing l e_f req_x = [ [ ] f o r _ in range (6 ) ]

f o r _ in range (6 ) :
1208 f o r __ in range ( l en ( f i l t e r e d _ d a t a [ 0 ] [ : , 0 ] ) ) :
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f i l t e r ed_data_s ing l e_f req_x [_ ] . append ( [ ] )
1210

f i l t e r ed_data_s ing l e_f req_y = [ [ ] f o r _ in range (6 ) ]
1212 f o r _ in range (6 ) :

f o r __ in range ( l en ( f i l t e r e d _ d a t a [ 0 ] [ : , 0 ] ) ) :
1214 f i l t e r ed_data_s ing l e_f req_y [_ ] . append ( [ ] )

1216
f o r j in range (0 , num_sensors ) :

1218 f o r i in range ( l en ( f i l t e r e d _ d a t a [ j ] [ : , 0 ] ) ) :
f i l t e r ed_data_s ing l e_f req_x [ j ] [ i ]=0

1220 f i l t e r ed_data_s ing l e_f req_y [ j ] [ i ]=0
f o r k in range (0 , 10 ) :

1222 i f f i l t e r e d _ d a t a [ j ] [ i , k∗3+1]> f i l t e r ed_data_s ing l e_f req_x [ j ] [ i
] :

f i l t e r ed_data_s ing l e_f req_x [ j ] [ i ]= f i l t e r e d _ d a t a [ j ] [ i , k
∗3+1]

1224 i f f i l t e r e d _ d a t a [ j ] [ i , k∗3+2]> f i l t e r ed_data_s ing l e_f req_y [ j ] [ i
] :

f i l t e r ed_data_s ing l e_f req_y [ j ] [ i ]= f i l t e r e d _ d a t a [ j ] [ i , k
∗3+2]

1226
f o r j in range (0 , num_sensors ) :

1228 value_slip_bp = np . z e r o s ( ( f i l t e r e d _ d a t a . shape [ 1 ] ) )
peaks_x0=0

1230 peaks_y0=0
peaks_x=s e l f . f ind_peaks ( np . array ( f i l t e r ed_data_s ing l e_f req_x [ j ] ) ,

t r e s h o l d )
1232 peaks_y=s e l f . f ind_peaks ( np . array ( f i l t e r ed_data_s ing l e_f req_y [ j ] ) ,

t r e s h o l d )

1234 f o r n in range ( l en ( peaks_x ) ) :
i=peaks_x [ n ] [ 0 ]

1236 i f i−peaks_x0 >15:
i f t ime_steps [ i ] > 0 .5 and time_steps [ l en ( time_steps )−1]−

t ime_steps [ i ] > 0 . 5 :
1238 value_slip_bp [ i ] = 1

peaks_x0=peaks_x [ n ] [ 1 ]
1240 f o r n in range ( l en ( peaks_y ) ) :

i=peaks_y [ n ] [ 0 ]
1242 i f i−peaks_y0 >15:

i f t ime_steps [ i ] > 0 .5 and time_steps [ l en ( time_steps )−1]−
t ime_steps [ i ] > 0 . 5 :

1244 value_slip_bp [ i ] = 1
peaks_y0=peaks_y [ n ] [ 1 ]

1246
s l ip_bp . append ( np . array ( value_slip_bp ) )

1248
# putt ing t oge t he r a l l the r e s u l t s f o r d i f f e r e n t f r e q u e n c i e s and d i f f e r e n t

s e n s o r s
1250 s l ip_bp=np . array ( s l ip_bp )

s l ip_bp_s ing le=np . z e r o s ( l en ( time_steps ) )
1252 f o r sensor_num in range ( num_sensors ) :

f o r i in range ( l en ( time_steps ) ) :
1254 i f s l ip_bp [ sensor_num ] [ i ]==1:

s l ip_bp_s ing le [ i ]=1
1256

count_1 = 0
1258 count_t=0

f o r i in range ( l en ( s l ip_bp_s ing le ) ) :
1260 i f s l ip_bp_s ing le [ i ] == 1 :
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# Reset counter a f t e r i n t e r v a l cons ide r ed
1262 i f i > count_t +30:

count_1 = 0
1264

i f count_1 == 0 :
1266 count_1 += 1

count_t=i
1268 e l s e :

# s e t to 0 f o l l o w i n g 1 in the i n t e r v a l
1270 s l ip_bp_s ing le [ i ] = 0

1272 r e turn slip_bp , s l ip_bp_s ing le

1274
de f ca lcu late_s l ip_points_bp ( s e l f , data , f i l t e r e d _ d a t a , time_steps ,
num_sensors , d i r e c t o r i e s ) :

1276 t r e s h o l d =5000

1278 i f ’ b a s k e t b a l l \ pass / ’ in d i r e c t o r i e s :
t r e s h o l d =450

1280 e l i f ’ b a s k e t b a l l \ p u l l / ’ in d i r e c t o r i e s :
t r e s h o l d =1450

1282 e l i f ’ b a s k e t b a l l \putdown/ ’ in d i r e c t o r i e s :
t r e s h o l d =1400

1284
e l i f ’ s o f t b a l l \ pass / ’ in d i r e c t o r i e s :

1286 t r e s h o l d =800
e l i f ’ s o f t b a l l \ p u l l / ’ in d i r e c t o r i e s :

1288 t r e s h o l d =1500
e l i f ’ s o f t b a l l \putdown/ ’ in d i r e c t o r i e s :

1290 t r e s h o l d =1000

1292 i f ’ emptybott le \ pass / ’ in d i r e c t o r i e s :
t r e s h o l d =500

1294 e l i f ’ emptybott le \ p u l l / ’ in d i r e c t o r i e s :
t r e s h o l d =1500

1296 e l i f ’ emptybott le \putdown/ ’ in d i r e c t o r i e s :
t r e s h o l d =1000

1298
e l i f ’ h a rdb a l l \ pass / ’ in d i r e c t o r i e s :

1300 t r e s h o l d =500
e l i f ’ h a rdb a l l / f a l l / ’ in d i r e c t o r i e s :

1302 t r e s h o l d =750
e l i f ’ h a rdb a l l \putdown/ ’ in d i r e c t o r i e s :

1304 t r e s h o l d =950

1306 e l i f ’ c o l a b o t t l e \ pass / ’ in d i r e c t o r i e s :
t r e s h o l d =450

1308 e l i f ’ c o l a b o t t l e / f a l l / ’ in d i r e c t o r i e s :
t r e s h o l d =405

1310 e l i f ’ c o l a b o t t l e \putdown/ ’ in d i r e c t o r i e s :
t r e s h o l d =1500

1312
# p r i n t ( t r e s h o l d )

1314
sl ip_bp , s l ip_bp_s ing le= s e l f . ca l cu la te_s l ip_po int s_bp_tresho lds ( data ,

f i l t e r e d _ d a t a , time_steps , num_sensors , t r e s h o l d )
1316

r e turn slip_bp , s l ip_bp_s ing le
1318
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1320 # CLASS TO CALCULATE FIRST PRINCIPAL COMPONENT AND FRICTION CONE RATIO ( f o r s l i p
po int ) => CREATION OF WINDOWS

c l a s s PCABasedFeatureExtraction :
1322 de f __init__ ( s e l f , num_selected_sensors=None ) :

s e l f . num_selected_sensors = num_selected_sensors
1324

de f apply_pca ( s e l f , data_x , data_y , data_z ) :
1326 sc = StandardSca ler ( )

sc . f i t ( data_x )
1328 scaled_data_x = sc . trans form ( data_x )

1330 sc . f i t ( data_y )
scaled_data_y = sc . trans form ( data_y )

1332
sc . f i t ( data_z )

1334 scaled_data_z = sc . trans form ( data_z )

1336 cov_matrix = np . cov ( scaled_data_y , rowvar=False )

1338 egnvalues , egnvec to r s = np . l i n a l g . e igh ( cov_matrix )

1340 tota l_egnva lues = sum( egnva lues )
var_exp = [ ( i / tota l_egnva lues ) f o r i in s o r t ed ( egnvalues , r e v e r s e=True ) ]

1342
cum_sum_exp = np . cumsum( var_exp )

1344 i f s e l f . num_selected_sensors i s None :
s e l f . num_selected_sensors = np . argmax (cum_sum_exp >= 0 . 8 5 ) + 1

1346
pca = PCA( n_components=s e l f . num_selected_sensors )

1348 data_pca_x = pd . DataFrame ( pca . f i t_t rans fo rm ( scaled_data_x ) , columns=range
(1 , s e l f . num_selected_sensors + 1) )

data_pca_y = pd . DataFrame ( pca . f i t_t rans fo rm ( scaled_data_y ) , columns=range
(1 , s e l f . num_selected_sensors + 1) )

1350 data_pca_z = pd . DataFrame ( pca . f i t_t rans fo rm ( scaled_data_z ) , columns=range
(1 , s e l f . num_selected_sensors + 1) )

1352 r e turn data_pca_x , data_pca_y , data_pca_z

1354 de f c a l c u l a t e _ s l i p _ p o i n t s ( s e l f , pca_data_x , pca_data_y , pca_data_z , t ime_steps
) :

mi_x = np . d i v i d e ( pca_data_x . i l o c [ : , 0 ] , pca_data_z . i l o c [ : , 0 ] )
1356 mi_y = np . d i v i d e ( pca_data_y . i l o c [ : , 0 ] , pca_data_z . i l o c [ : , 0 ] )

va lue_s l ip = np . z e r o s ( l en ( time_steps ) )
1358 value = 0

1360 f o r i in range (1 , l en ( time_steps ) ) :
i f t ime_steps [ i ] > 1 and time_steps [ l en ( time_steps )−1]−t ime_steps [ i ] >

1 :
1362 i f ( abs (mi_y . i l o c [ i ] − mi_y . i l o c [ i −1]) > 1 and abs ( pca_data_y . i l o c

[ i +15, 0]−pca_data_y . i l o c [ i −15, 0 ] ) > 2) or \
( abs (mi_y . i l o c [ i ] − mi_y . i l o c [ i −1]) > 1 and abs ( pca_data_y

. i l o c [ i , 0]−pca_data_y . i l o c [ i +15, 0 ] ) > 2) or \
1364 ( abs (mi_y . i l o c [ i ] − mi_y . i l o c [ i −1]) > 5 and abs (

pca_data_z . i l o c [ i −5, 0]−pca_data_z . i l o c [ i +5, 0 ] ) > 2) :
i f t ime_steps [ i ] − t ime_steps [ va lue ] <= 0 . 5 :

1366 # Check i f the cur rent va lue i s h igher than the p r e v i o u s l y
recorded maximum

i f abs (mi_y . i l o c [ i ] ) > abs (mi_y . i l o c [ va lue ] ) :
1368 va lue_s l ip [ va lue ] = 0

value = i
1370 va lue_s l ip [ i ] = 1
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e l s e :
1372 value = i

va lue_s l ip [ i ] = 1
1374

1376 e l i f ( abs (mi_x . i l o c [ i ] − mi_x . i l o c [ i −1]) > 1 and abs ( pca_data_x .
i l o c [ i +15, 0]−pca_data_x . i l o c [ i −15, 0 ] ) > 2) or \

( abs (mi_x . i l o c [ i ] − mi_x . i l o c [ i −1]) > 1 and
abs ( pca_data_x . i l o c [ i , 0]−pca_data_x . i l o c [ i +15, 0 ] ) > 2) :

1378 i f t ime_steps [ i ] − t ime_steps [ va lue ] <= 0 . 5 :
# Check i f the cur rent va lue i s h igher than the p r e v i o u s l y

recorded maximum
1380 i f abs (mi_x . i l o c [ i ] ) > abs (mi_x . i l o c [ va lue ] ) :

va lue_s l ip [ va lue ] = 0
1382 value = i

va lue_s l ip [ i ] = 1
1384 e l s e :

va lue = i
1386 va lue_s l ip [ i ] = 1

1388
r e turn va lue_s l ip , mi_x , mi_y

1390
de f c reate_interva l_data ( s e l f , data , start_index , end_index ,
va lue_s l ip_so f thard ) :

1392 # S u b l i s t conta in ing the r e l e v a n t data
inte rva l_data =[ ]

1394 in te rva l_data = pd . DataFrame ( data . i l o c [ s tart_index : ( end_index + 1) , : ] .
va lue s . t o l i s t ( ) )

#p r i n t ( ’ in te rva l_data ’ , np . shape ( inte rva l_data ) )
1396 in te rva l_data [ ’ Value ’ ] = va lue_s l ip_so f thard

#p r i n t ( ’ in te rva l_data ’ , np . shape ( inte rva l_data ) )
1398 #p r i n t ( ’ s l i p _ i n t e r v a l s ’ , l en ( s l i p _ i n t e r v a l s ) , s l i p _ i n t e r v a l s [ 0 ] . shape )

re turn inte rva l_data
1400

de f create_sl ip_windows ( s e l f , data , time_steps , va lue_s l ip , s l ip_bp_single ,
d i r e c t o r i e s , s l i p _ i n t e r v a l s , g r a s p _ i n t e r v a l s ) :

1402
zero , uno , two , three , four , f i v e , s ix , seven = 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

1404 basketba l l_grasp , basketba l l_pass , basketba l l_pu l l , b a s k e t b a l l _ f a l l ,
basketball_putdown , b a s k e t b a l l _ r e l e a s e = 0 ,0 , 0 , 0 , 0 , 0

so f tba l l_gra sp , s o f t b a l l _ p a s s , s o f t b a l l _ p u l l , s o f t b a l l _ f a l l ,
softbal l_putdown , s o f t b a l l _ r e l e a s e =0 ,0 ,0 ,0 ,0 ,0

1406 emptybottle_grasp , emptybottle_pass , emptybottle_pull , emptybott l e_fa l l ,
emptybottle_putdown , emptybott l e_re l ease = 0 ,0 ,0 , 0 , 0 , 0

heavybal l_grasp , heavybal l_pass , heavybal l_pul l , h e a v y b a l l _ f a l l ,
heavyball_putdown , h e a v y b a l l _ r e l e a s e = 0 ,0 ,0 , 0 , 0 , 0

1408 cola_grasp , cola_pass , co la_pul l , c o l a _ f a l l , cola_putdown , c o l a _ r e l e a s e =
0 ,0 ,0 , 0 , 0 , 0

basketbal l_nothing , so f tba l l_noth ing , emptybottle_nothing ,
heavybal l_nothing , cola_nothing = 0 ,0 ,0 ,0 ,0

1410
basketbal l_grasp_pass , so f tba l l_grasp_pass , emptybottle_grasp_pass ,

heavyball_grasp_pass , cola_grasp_pass = 0 ,0 ,0 ,0 , 0
1412 basketbal l_grasp_pass_keep , softbal l_grasp_pass_keep ,

emptybottle_grasp_pass_keep , heavyball_grasp_pass_keep , cola_grasp_pass_keep=
0 ,0 ,0 ,0 , 0

basketbal l_grasp_pul l , so f tba l l_grasp_pu l l , emptybottle_grasp_pull ,
heavybal l_grasp_pull , co la_grasp_pul l= 0 ,0 ,0 ,0 , 0
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1414 basketbal l_grasp_pull_keep , so ftbal l_grasp_pul l_keep ,
emptybottle_grasp_pull_keep , heavyball_grasp_pull_keep , cola_grasp_pull_keep=
0 ,0 ,0 ,0 , 0

baske tba l l_grasp_fa l l , s o f t b a l l _ g r a s p _ f a l l , emptybott le_grasp_fal l ,
heavyba l l_grasp_fa l l , co l a_grasp_fa l l= 0 ,0 ,0 ,0 , 0

1416 basketba l l_grasp_fa l l_keep , so f tba l l_grasp_fa l l_keep ,
emptybottle_grasp_fal l_keep , heavybal l_grasp_fal l_keep , co la_grasp_fal l_keep=
0 ,0 ,0 ,0 , 0

basketball_grasp_putdown , softball_grasp_putdown ,
emptybottle_grasp_putdown , heavyball_grasp_putdown , cola_grasp_putdown=
0 ,0 ,0 ,0 , 0

1418 basketball_grasp_putdown_keep , softball_grasp_putdown_keep ,
emptybottle_grasp_putdown_keep , heavyball_grasp_putdown_keep ,
cola_grasp_putdown_keep= 0 ,0 ,0 ,0 , 0

basketbal l_grasp_re lease_keep , so f tba l l_grasp_re lease_keep ,
emptybottle_grasp_release_keep , heavybal l_grasp_release_keep ,
cola_grasp_release_keep= 0 ,0 ,0 ,0 , 0

1420
s l i p p e r y s l i p=np . z e r o s ( l en ( time_steps ) )

1422 f o r i in range ( l en ( t ime_steps ) ) :
i f s l ip_bp_s ing le [ i ]==1 or va lue_s l ip [ i ]==1:

1424 s l i p p e r y s l i p [ i ]=1
count_1 = 0

1426 count_t=0
f o r i in range ( l en ( s l i p p e r y s l i p ) ) :

1428 i f s l i p p e r y s l i p [ i ] == 1 :
i f t ime_steps [ i ] > 1 and time_steps [ l en ( time_steps )−1]−t ime_steps [

i ] > 1 :
1430 i f i > count_t +25:

count_1 = 0
1432

i f count_1 == 0 :
1434 count_1 += 1

count_t=i
1436 e l s e :

s l i p p e r y s l i p [ i ] = 0
1438

1440 f o r i in range ( l en ( va lue_s l ip ) ) :

1442 i f s l i p p e r y s l i p [ i ] == 1 :
# Extract data with in the range

1444 s tart_index = max(0 , i − 5)
end_index = min ( l en ( time_steps ) , i )

1446
i f ’ b a s k e t b a l l \ pass / ’ in d i r e c t o r i e s :

1448 i f t ime_steps [ i ] < 7 :
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)

#grasp
1450 two += 1

basketbal l_grasp_pass+=1
1452 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 0 ] [ 0 ] . append ( inte rva l_data )

1454 e l i f t ime_steps [ i ] >= 7 :
va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)

# pass ing
1456 f our += 1

basketba l l_pass+=1
1458 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
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s l i p _ i n t e r v a l s [ 0 ] [ 2 ] . append ( inte rva l_data )
1460 e l i f ’ b a s k e t b a l l \ p u l l / ’ in d i r e c t o r i e s :

i f t ime_steps [ i ] < 7 :
1462 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)

# grasp
two += 1

1464 basketba l l_grasp_pul l+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1466 g r a s p _ i n t e r v a l s [ 0 ] [ 2 ] . append ( inte rva l_data )

e l i f t ime_steps [ i ] >= 7 :
1468 va lue_s l ip_so f thard = [ 6 ] ∗ ( end_index − s tart_index + 1)

# tak ing away
s i x += 1

1470 b a s k e t b a l l _ p u l l+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1472 s l i p _ i n t e r v a l s [ 0 ] [ 3 ] . append ( inte rva l_data )

e l i f ’ b a s k e t b a l l \putdown/ ’ in d i r e c t o r i e s :
1474 i f t ime_steps [ i ] < 7 :

va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)
# grasp

1476 two += 1
basketball_grasp_putdown+=1

1478 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

g r a s p _ i n t e r v a l s [ 0 ] [ 6 ] . append ( inte rva l_data )
1480 e l i f t ime_steps [ i ] >= 7 and time_steps [ i ] < 10 :

va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# putt ing down

1482 f our += 1
basketball_putdown+=1

1484 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 0 ] [ 5 ] . append ( inte rva l_data )
1486 e l i f t ime_steps [ i ] >= 10 :

va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# r e l e a s e

1488 f our += 1
b a s k e t b a l l _ r e l e a s e+=1

1490 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 0 ] [ 6 ] . append ( inte rva l_data )
1492

1494 e l i f ’ s o f t b a l l \ pass / ’ in d i r e c t o r i e s :
i f t ime_steps [ i ] < 7 :

1496 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)
# grasp

two += 1
1498 so f tba l l_grasp_pass+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1500 g r a s p _ i n t e r v a l s [ 1 ] [ 0 ] . append ( inte rva l_data )
e l i f t ime_steps [ i ] >= 7 :

1502 va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# pass ing

four += 1
1504 s o f t b a l l _ p a s s+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )
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1506 s l i p _ i n t e r v a l s [ 1 ] [ 2 ] . append ( inte rva l_data )
e l i f ’ s o f t b a l l \ p u l l / ’ in d i r e c t o r i e s :

1508 i f t ime_steps [ i ] < 7 :
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)

# grasp
1510 two += 1

s o f t b a l l _ g r a s p _ p u l l+=1
1512 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 1 ] [ 2 ] . append ( inte rva l_data )

1514 e l i f t ime_steps [ i ] >= 7 :
va lue_s l ip_so f thard = [ 6 ] ∗ ( end_index − s tart_index + 1)

# tak ing away
1516 s i x += 1

s o f t b a l l _ p u l l+=1
1518 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
s l i p _ i n t e r v a l s [ 1 ] [ 3 ] . append ( inte rva l_data )

1520 e l i f ’ s o f t b a l l \putdown/ ’ in d i r e c t o r i e s :
i f t ime_steps [ i ] < 7 :

1522 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)
# grasp

two += 1
1524 softbal l_grasp_putdown+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1526 g r a s p _ i n t e r v a l s [ 1 ] [ 6 ] . append ( inte rva l_data )
e l i f t ime_steps [ i ] >= 7 and time_steps [ i ] < 10 :

1528 va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# putt ing down

four += 1
1530 softbal l_putdown+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1532 s l i p _ i n t e r v a l s [ 1 ] [ 5 ] . append ( inte rva l_data )
e l i f t ime_steps [ i ] >= 10 :

1534 va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# s a f e r e l e a s e

four += 1
1536 s o f t b a l l _ r e l e a s e+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1538 s l i p _ i n t e r v a l s [ 1 ] [ 6 ] . append ( inte rva l_data )

1540
e l i f ’ emptybott le \ pass / ’ in d i r e c t o r i e s :

1542 i f t ime_steps [ i ] < 7 :
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)

# grasp
1544 two += 1

emptybottle_grasp_pass+=1
1546 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 2 ] [ 0 ] . append ( inte rva l_data )

1548 e l i f t ime_steps [ i ] >= 7 :
va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)

# pass ing
1550 f our += 1

emptybottle_pass+=1
1552 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
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s l i p _ i n t e r v a l s [ 2 ] [ 2 ] . append ( inte rva l_data )
1554 e l i f ’ emptybott le \ p u l l / ’ in d i r e c t o r i e s :

i f t ime_steps [ i ] < 7 :
1556 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)

# grasp
two += 1

1558 emptybottle_grasp_pull+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1560 g r a s p _ i n t e r v a l s [ 2 ] [ 2 ] . append ( inte rva l_data )

e l i f t ime_steps [ i ] >= 7 :
1562 va lue_s l ip_so f thard = [ 6 ] ∗ ( end_index − s tart_index + 1)

# tak ing away
s i x += 1

1564 emptybott le_pul l+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1566 s l i p _ i n t e r v a l s [ 2 ] [ 3 ] . append ( inte rva l_data )

e l i f ’ emptybott le \putdown/ ’ in d i r e c t o r i e s :
1568 i f t ime_steps [ i ] < 7 :

va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1)
# grasp

1570 two += 1
emptybottle_grasp_putdown+=1

1572 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

g r a s p _ i n t e r v a l s [ 2 ] [ 6 ] . append ( inte rva l_data )
1574 e l i f t ime_steps [ i ] >= 7 and time_steps [ i ] < 10 :

va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# putt ing down

1576 f our += 1
emptybottle_putdown+=1

1578 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 2 ] [ 5 ] . append ( inte rva l_data )
1580 e l i f t ime_steps [ i ] >= 10 :

va lue_s l ip_so f thard = [ 4 ] ∗ ( end_index − s tart_index + 1)
# r e l e a s e

1582 f our += 1
emptybott l e_re l ease+=1

1584 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 2 ] [ 6 ] . append ( inte rva l_data )
1586

1588 e l i f ’ h a rd ba l l \ pass / ’ in d i r e c t o r i e s :
i f t ime_steps [ i ] < 7 :

1590 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1)
# grasp

three += 1
1592 heavybal l_grasp_pass+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1594 g r a s p _ i n t e r v a l s [ 3 ] [ 0 ] . append ( inte rva l_data )
e l i f t ime_steps [ i ] >= 7 :

1596 va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)
# pass ing

f i v e += 1
1598 heavybal l_pass+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )
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1600 s l i p _ i n t e r v a l s [ 3 ] [ 2 ] . append ( inte rva l_data )
e l i f ’ h a rd ba l l / f a l l / ’ in d i r e c t o r i e s :

1602 i f t ime_steps [ i ] < 7 :
va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1)

# grasp
1604 three += 1

heavyba l l_grasp_fa l l+=1
1606 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 3 ] [ 4 ] . append ( inte rva l_data )

1608 e l i f t ime_steps [ i ] >= 7 :
va lue_s l ip_so f thard = [ 7 ] ∗ ( end_index − s tart_index + 1)

# f a l l i n g ( r i s k y )
1610 seven += 1

h e a v y b a l l _ f a l l+=1
1612 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
s l i p _ i n t e r v a l s [ 3 ] [ 4 ] . append ( inte rva l_data )

1614 e l i f ’ h a rd ba l l \putdown/ ’ in d i r e c t o r i e s :
i f t ime_steps [ i ] < 7 :

1616 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1)
# grasp

three += 1
1618 heavyball_grasp_putdown+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1620 g r a s p _ i n t e r v a l s [ 3 ] [ 6 ] . append ( inte rva l_data )
e l i f t ime_steps [ i ] >= 7 and time_steps [ i ] < 10 :

1622 va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)
# putt ing down

f i v e += 1
1624 heavyball_putdown+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1626 s l i p _ i n t e r v a l s [ 3 ] [ 5 ] . append ( inte rva l_data )
e l i f t ime_steps [ i ] >= 10 :

1628 va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)
# r e l e a s e

f i v e += 1
1630 h e a v y b a l l _ r e l e a s e+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1632 s l i p _ i n t e r v a l s [ 3 ] [ 6 ] . append ( inte rva l_data )

1634
e l i f ’ c o l a b o t t l e \ pass / ’ in d i r e c t o r i e s :

1636 i f t ime_steps [ i ] < 7 :
va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1)

# grasp
1638 three += 1

cola_grasp_pass+=1
1640 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 4 ] [ 0 ] . append ( inte rva l_data )

1642 e l i f t ime_steps [ i ] >= 7 and time_steps [ i ] < 10 :
va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)

# pass ing
1644 f i v e += 1

cola_pass+=1
1646 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
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s l i p _ i n t e r v a l s [ 4 ] [ 2 ] . append ( inte rva l_data )
1648 e l i f t ime_steps [ i ] >= 10 :

va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)
# s a f e r e l e a s e

1650 f i v e += 1
c o l a _ r e l e a s e+=1

1652 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 4 ] [ 6 ] . append ( inte rva l_data )
1654 e l i f ’ c o l a b o t t l e / f a l l / ’ in d i r e c t o r i e s :

i f t ime_steps [ i ] < 7 :
1656 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1)

# grasp
three += 1

1658 co la_grasp_fa l l+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1660 g r a s p _ i n t e r v a l s [ 4 ] [ 4 ] . append ( inte rva l_data )

e l i f t ime_steps [ i ] >= 7 :
1662 va lue_s l ip_so f thard = [ 7 ] ∗ ( end_index − s tart_index + 1)

# f a l l i n g
seven += 1

1664 c o l a _ f a l l+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1666 s l i p _ i n t e r v a l s [ 4 ] [ 4 ] . append ( inte rva l_data )

e l i f ’ c o l a b o t t l e \putdown/ ’ in d i r e c t o r i e s :
1668 i f t ime_steps [ i ] < 7 :

va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1)
# grasp

1670 three += 1
cola_grasp_putdown+=1

1672 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

g r a s p _ i n t e r v a l s [ 4 ] [ 6 ] . append ( inte rva l_data )
1674 e l i f t ime_steps [ i ] >= 7 and time_steps [ i ] < 10 :

va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)
# putt ing down

1676 f i v e += 1
cola_putdown+=1

1678 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 4 ] [ 5 ] . append ( inte rva l_data )
1680 e l i f t ime_steps [ i ] >= 10 :

va lue_s l ip_so f thard = [ 5 ] ∗ ( end_index − s tart_index + 1)
# s a f e r e l e a s e

1682 f i v e += 1
c o l a _ r e l e a s e+=1

1684 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 4 ] [ 6 ] . append ( inte rva l_data )
1686

e l i f ’ nothing / ’ in d i r e c t o r i e s :
1688 va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

# nothing at the beg inning
zero += 1

1690 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

s l i p _ i n t e r v a l s [ 0 ] [ 1 ] . append ( inte rva l_data )
1692

e l s e :
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1694 break

1696
# sample window in the middle to r e p r e s e n t steady grasp

1698 s tart_index = max(0 , i − 5)
end_index = min ( l en ( time_steps ) , i )

1700 i f ’ b a s k e t b a l l \ pass / ’ in d i r e c t o r i e s :
i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:

1702 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #
grasp

two += 1
1704 basketbal l_grasp_pass_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1706 g r a s p _ i n t e r v a l s [ 0 ] [ 1 ] . append ( inte rva l_data )
e l i f ’ b a s k e t b a l l \ p u l l / ’ in d i r e c t o r i e s :

1708 i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #

grasp
1710 two += 1

basketbal l_grasp_pul l_keep+=1
1712 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 0 ] [ 3 ] . append ( inte rva l_data )

1714 e l i f ’ b a s k e t b a l l \putdown/ ’ in d i r e c t o r i e s :
i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.02:

1716 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #
grasp

two += 1
1718 basketball_grasp_putdown_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1720 g r a s p _ i n t e r v a l s [ 0 ] [ 7 ] . append ( inte rva l_data )
e l i f 10−t ime_steps [ i ]>0 and 10−t ime_steps [ i ] <0 .02 :

1722 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #
grasp

two += 1
1724 basketba l l_grasp_re lease_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1726 g r a s p _ i n t e r v a l s [ 0 ] [ 8 ] . append ( inte rva l_data )

1728 e l i f ’ s o f t b a l l \ pass / ’ in d i r e c t o r i e s :
i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:

1730 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #
grasp

two += 1
1732 softbal l_grasp_pass_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1734 g r a s p _ i n t e r v a l s [ 1 ] [ 1 ] . append ( inte rva l_data )
e l i f ’ s o f t b a l l \ p u l l / ’ in d i r e c t o r i e s :

1736 i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #

grasp
1738 two += 1

softba l l_grasp_pul l_keep+=1
1740 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 1 ] [ 3 ] . append ( inte rva l_data )

1742 e l i f ’ s o f t b a l l \putdown/ ’ in d i r e c t o r i e s :
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i f 7−t ime_steps [ i ]>0 and 7−t ime_steps [ i ] <0 .02 :
1744 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #

grasp
two += 1

1746 softball_grasp_putdown_keep+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1748 g r a s p _ i n t e r v a l s [ 1 ] [ 7 ] . append ( inte rva l_data )

e l i f 10−t ime_steps [ i ]>0 and 10−t ime_steps [ i ] <0 .02 :
1750 va lue_s l ip_so f thard = [ 7 ] ∗ ( end_index − s tart_index + 1) #

grasp
two += 1

1752 so f tba l l_grasp_re l ease_keep+=1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1754 g r a s p _ i n t e r v a l s [ 1 ] [ 8 ] . append ( inte rva l_data )

1756
e l i f ’ emptybott le \ pass / ’ in d i r e c t o r i e s :

1758 i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #

grasp
1760 two += 1

emptybottle_grasp_pass_keep+=1
1762 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 2 ] [ 1 ] . append ( inte rva l_data )

1764 e l i f ’ emptybott le \ p u l l / ’ in d i r e c t o r i e s :
i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:

1766 va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #
grasp

two += 1
1768 emptybottle_grasp_pull_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1770 g r a s p _ i n t e r v a l s [ 2 ] [ 3 ] . append ( inte rva l_data )
e l i f ’ emptybott le \putdown/ ’ in d i r e c t o r i e s :

1772 i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.02:
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #

grasp
1774 two += 1

emptybottle_grasp_putdown_keep+=1
1776 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 2 ] [ 7 ] . append ( inte rva l_data )

1778 e l i f 10−t ime_steps [ i ]>0 and 10−t ime_steps [ i ] <0 .02 :
va lue_s l ip_so f thard = [ 2 ] ∗ ( end_index − s tart_index + 1) #

grasp
1780 two += 1

emptybottle_grasp_release_keep+=1
1782 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 2 ] [ 8 ] . append ( inte rva l_data )

1784

1786 e l i f ’ h a rdb a l l \ pass / ’ in d i r e c t o r i e s :
i f 7−t ime_steps [ i ]>0 and 7−t ime_steps [ i ] <0.015 :

1788 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #
grasp

three += 1
1790 heavyball_grasp_pass_keep=1
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in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1792 g r a s p _ i n t e r v a l s [ 3 ] [ 1 ] . append ( inte rva l_data )
e l i f ’ h a rdb a l l / f a l l / ’ in d i r e c t o r i e s :

1794 i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:
va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #

grasp
1796 three += 1

heavybal l_grasp_fal l_keep+=1
1798 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 3 ] [ 5 ] . append ( inte rva l_data )

1800 e l i f ’ h a rdb a l l \putdown/ ’ in d i r e c t o r i e s :
i f 7−t ime_steps [ i ]>0 and 7−t ime_steps [ i ] <0 .02 :

1802 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #
grasp

three += 1
1804 heavyball_grasp_putdown_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1806 g r a s p _ i n t e r v a l s [ 3 ] [ 7 ] . append ( inte rva l_data )
e l i f 10−t ime_steps [ i ]>0 and 10−t ime_steps [ i ] <0 .02 :

1808 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #
grasp

three += 1
1810 heavybal l_grasp_release_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1812 g r a s p _ i n t e r v a l s [ 3 ] [ 8 ] . append ( inte rva l_data )

1814
e l i f ’ c o l a b o t t l e \ pass / ’ in d i r e c t o r i e s :

1816 i f 7−t ime_steps [ i ]>0 and 7−t ime_steps [ i ] <0 .02 :
va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #

grasp
1818 three += 1

cola_grasp_pass_keep+=1
1820 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 4 ] [ 1 ] . append ( inte rva l_data )

1822 e l i f 10−t ime_steps [ i ]>0 and 10−t ime_steps [ i ] <0 .02 :
va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #

grasp
1824 three += 1

cola_grasp_release_keep+=1
1826 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
g r a s p _ i n t e r v a l s [ 4 ] [ 8 ] . append ( inte rva l_data )

1828 e l i f ’ c o l a b o t t l e / f a l l / ’ in d i r e c t o r i e s :
i f t ime_steps [ i ]−7>0 and time_steps [ i ] −7 <0.015:

1830 va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #
grasp

three += 1
1832 co la_grasp_fal l_keep+=1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1834 g r a s p _ i n t e r v a l s [ 4 ] [ 5 ] . append ( inte rva l_data )
e l i f ’ c o l a b o t t l e \putdown/ ’ in d i r e c t o r i e s :

1836 i f 7−t ime_steps [ i ]>0 and 7−t ime_steps [ i ] <0 .02 :
va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #

grasp
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1838 three += 1
cola_grasp_putdown_keep+=1

1840 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

g r a s p _ i n t e r v a l s [ 4 ] [ 7 ] . append ( inte rva l_data )
1842 e l i f 10−t ime_steps [ i ]>0 and 10−t ime_steps [ i ] <0 .02 :

va lue_s l ip_so f thard = [ 3 ] ∗ ( end_index − s tart_index + 1) #
grasp

1844 three += 1
cola_grasp_release_keep+=1

1846 in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

g r a s p _ i n t e r v a l s [ 4 ] [ 8 ] . append ( inte rva l_data )
1848

# sample window at the end to r e p r e s e n t nothing
1850 i f i == len ( time_steps ) −65: # or i == len ( time_steps ) −43:

s tart_index = max(0 , i − 5)
1852 end_index = min ( l en ( time_steps ) , i )

1854 i f ’ b a s k e t b a l l \ pass / ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

1856 zero += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1858 s l i p _ i n t e r v a l s [ 0 ] [ 0 ] . append ( inte rva l_data )

basketba l l_noth ing+=1
1860 e l i f ’ b a s k e t b a l l \ p u l l / ’ in d i r e c t o r i e s :

va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)
1862 zero += 1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1864 s l i p _ i n t e r v a l s [ 0 ] [ 0 ] . append ( inte rva l_data )
basketba l l_noth ing+=1

1866 e l i f ’ b a s k e t b a l l \putdown/ ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

1868 zero += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1870 s l i p _ i n t e r v a l s [ 0 ] [ 0 ] . append ( inte rva l_data )

basketba l l_noth ing+=1
1872

1874 e l i f ’ s o f t b a l l \ pass / ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

1876 zero += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1878 s l i p _ i n t e r v a l s [ 1 ] [ 0 ] . append ( inte rva l_data )

s o f t b a l l _ n o t h i n g+=1
1880 e l i f ’ s o f t b a l l \ p u l l / ’ in d i r e c t o r i e s :

va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)
1882 zero += 1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1884 s l i p _ i n t e r v a l s [ 1 ] [ 0 ] . append ( inte rva l_data )
s o f t b a l l _ n o t h i n g+=1

1886 e l i f ’ s o f t b a l l \putdown/ ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

1888 zero += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
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1890 s l i p _ i n t e r v a l s [ 1 ] [ 0 ] . append ( inte rva l_data )
s o f t b a l l _ n o t h i n g+=1

1892

1894 e l i f ’ emptybott le \ pass / ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

1896 zero += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1898 s l i p _ i n t e r v a l s [ 2 ] [ 0 ] . append ( inte rva l_data )

emptybottle_nothing+=1
1900 e l i f ’ emptybott le \ p u l l / ’ in d i r e c t o r i e s :

va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)
1902 zero += 1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1904 s l i p _ i n t e r v a l s [ 2 ] [ 0 ] . append ( inte rva l_data )
emptybottle_nothing+=1

1906 e l i f ’ emptybott le \putdown/ ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 0 ] ∗ ( end_index − s tart_index + 1)

1908 zero += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1910 s l i p _ i n t e r v a l s [ 2 ] [ 0 ] . append ( inte rva l_data )

emptybottle_nothing+=1
1912

1914 e l i f ’ h a rd ba l l \ pass / ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 1 ] ∗ ( end_index − s tart_index + 1)

1916 uno += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1918 s l i p _ i n t e r v a l s [ 3 ] [ 0 ] . append ( inte rva l_data )

heavybal l_nothing+=1
1920 e l i f ’ h a rd ba l l / f a l l / ’ in d i r e c t o r i e s :

va lue_s l ip_so f thard = [ 1 ] ∗ ( end_index − s tart_index + 1)
1922 uno += 1

inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1924 s l i p _ i n t e r v a l s [ 3 ] [ 0 ] . append ( inte rva l_data )
heavybal l_nothing+=1

1926 e l i f ’ h a rd ba l l \putdown/ ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 1 ] ∗ ( end_index − s tart_index + 1)

1928 uno += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1930 s l i p _ i n t e r v a l s [ 3 ] [ 0 ] . append ( inte rva l_data )

heavybal l_nothing+=1
1932

1934 e l i f ’ c o l a b o t t l e \ pass / ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 1 ] ∗ ( end_index − s tart_index + 1)

1936 uno += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1938 s l i p _ i n t e r v a l s [ 4 ] [ 0 ] . append ( inte rva l_data )

cola_nothing+=1
1940 e l i f ’ c o l a b o t t l e / f a l l / ’ in d i r e c t o r i e s :

va lue_s l ip_so f thard = [ 1 ] ∗ ( end_index − s tart_index + 1)
1942 uno += 1
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in te rva l_data=s e l f . c reate_interva l_data ( data , start_index ,
end_index , va lue_s l ip_so f thard )

1944 s l i p _ i n t e r v a l s [ 4 ] [ 0 ] . append ( inte rva l_data )
cola_nothing+=1

1946 e l i f ’ c o l a b o t t l e \putdown/ ’ in d i r e c t o r i e s :
va lue_s l ip_so f thard = [ 1 ] ∗ ( end_index − s tart_index + 1)

1948 uno += 1
inte rva l_data=s e l f . c reate_interva l_data ( data , start_index ,

end_index , va lue_s l ip_so f thard )
1950 s l i p _ i n t e r v a l s [ 4 ] [ 0 ] . append ( inte rva l_data )

cola_nothing+=1
1952

ml_classes= [ zero , uno , two , three , four , f i v e , s ix , seven ]
1954 a c t i o n s = [ [ basketbal l_nothing , so f tba l l_noth ing ,

emptybottle_nothing , heavybal l_nothing , cola_nothing ] , \
[ basketbal l_grasp , so f tba l l_gra sp , emptybottle_grasp ,

heavybal l_grasp , cola_grasp ] , \
1956 [ basketba l l_pass , s o f t b a l l _ p a s s , emptybottle_pass ,

heavybal l_pass , cola_pass ] , \
[ basketba l l_pu l l , s o f t b a l l _ p u l l , emptybottle_pull ,

heavybal l_pul l , co la_pul l ] , \
1958 [ b a s k e t b a l l _ f a l l , s o f t b a l l _ f a l l , emptybott l e_fa l l ,

h e a v y b a l l _ f a l l , c o l a _ f a l l ] , \
[ basketball_putdown , softbal l_putdown , emptybottle_putdown

, heavyball_putdown , cola_putdown ] , \
1960 [ b a s k e t b a l l _ r e l e a s e , s o f t b a l l _ r e l e a s e , emptybott le_re lease

, heavyba l l_re l ease , c o l a _ r e l e a s e ] ]

1962 grasps = [ [ basketbal l_grasp_pass , so f tba l l_grasp_pass ,
emptybottle_grasp_pass , heavyball_grasp_pass , cola_grasp_pass ] , \

[ basketball_grasp_pass_keep , softbal l_grasp_pass_keep ,
emptybottle_grasp_pass_keep , heavyball_grasp_pass_keep , cola_grasp_pass_keep
] , \

1964 [ basketba l l_grasp_pul l , s o f tba l l_grasp_pu l l ,
emptybottle_grasp_pull , heavybal l_grasp_pul l , co la_grasp_pul l ] , \

[ basketbal l_grasp_pull_keep , so f tbal l_grasp_pul l_keep ,
emptybottle_grasp_pull_keep , heavyball_grasp_pull_keep , cola_grasp_pull_keep
] , \

1966 [ ba ske tba l l_grasp_fa l l , s o f t b a l l _ g r a s p _ f a l l ,
emptybott le_grasp_fal l , heavyba l l_grasp_fa l l , co l a_grasp_fa l l ] , \

[ basketba l l_grasp_fa l l_keep , so f tba l l_grasp_fa l l_keep ,
emptybottle_grasp_fal l_keep , heavybal l_grasp_fal l_keep , co la_grasp_fal l_keep
] , \

1968 [ basketball_grasp_putdown , softball_grasp_putdown ,
emptybottle_grasp_putdown , heavyball_grasp_putdown , cola_grasp_putdown ] , \

[ basketball_grasp_putdown_keep ,
softball_grasp_putdown_keep , emptybottle_grasp_putdown_keep ,
heavyball_grasp_putdown_keep , cola_grasp_putdown_keep ] , \

1970 [ basketbal l_grasp_re lease_keep ,
so f tba l l_grasp_re lease_keep , emptybottle_grasp_release_keep ,
heavybal l_grasp_release_keep , cola_grasp_release_keep ] ]

1972 r e turn s l i p p e r y s l i p , s l i p _ i n t e r v a l s , g ra sp_inte rva l s , ml_classes , ac t i ons ,
g rasps

1974
# CLASS TO BALANCE THE DATA FOR THE MACHINE LEARNING ALGORITHM

1976
c l a s s DatasetBalancer :

1978 de f __init__ ( s e l f , s l i p _ i n t e r v a l s , g r a s p _ i n t e r v a l s ) :
s e l f . s l i p _ i n t e r v a l s = s l i p _ i n t e r v a l s
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1980 s e l f . g r a s p _ i n t e r v a l s = g r a s p _ i n t e r v a l s

1982 de f balance_dataset ( s e l f ) :
a l l _ s l i p _ i n t e r v a l s =[ ]

1984 s i z e = [ [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

1986 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

1988 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

1990 [ 0 , 0 , 0 , 0 , 0 ] ]

1992 s i z e 1 = [ [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

1994 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

1996 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

1998 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2000 [ 0 , 0 , 0 , 0 , 0 ] ]

2002 f o r s u b l i s t 1 in s e l f . g r a s p _ i n t e r v a l s :
f o r s u b l i s t 1 a in s u b l i s t 1 :

2004 random . s h u f f l e ( s u b l i s t 1 a )

2006 f o r s u b l i s t 2 in s e l f . s l i p _ i n t e r v a l s :
f o r s u b l i s t 2 a in s u b l i s t 2 :

2008 random . s h u f f l e ( s u b l i s t 2 a )

2010 # to check i f s i z e s are a l r i g h t
p r i n t ( ’ Check i f t h i s matrix i s the same as b e f o r e : ’ )

2012 f o r i in range ( l en ( s e l f . s l i p _ i n t e r v a l s ) ) :
f o r j in range ( l en ( s e l f . s l i p _ i n t e r v a l s [ i ] ) ) :

2014 s i z e [ j ] [ i ] = l en ( s e l f . s l i p _ i n t e r v a l s [ i ] [ j ] )
s i z e = pd . DataFrame ( s i z e )

2016 column_names = [ " b a s k e t b a l l " , " s o f t b a l l " , " emptybott le " , " ha rd ba l l " , " c o l a
b o t t l e " ]

row_names = [ " nothing " , " grasp " , " pass " , " p u l l " , " f a l l " , " putdown " , "
r e l e a s e " ]

2018 s i z e . columns = column_names
s i z e . index = row_names

2020 p r i n t ( s i z e )

2022 p r i n t ( ’ Check i f t h i s matrix i s the same as b e f o r e : ’ )
f o r i in range ( l en ( s e l f . g r a s p _ i n t e r v a l s ) ) :

2024 f o r j in range ( l en ( s e l f . g r a s p _ i n t e r v a l s [ i ] ) ) :
s i z e 1 [ j ] [ i ] = l en ( s e l f . g r a s p _ i n t e r v a l s [ i ] [ j ] )

2026 s i z e 1 = pd . DataFrame ( s i z e 1 )
column_names = [ " b a s k e t b a l l " , " s o f t b a l l " , " emptybott le " , " ha rd ba l l " , " c o l a

b o t t l e " ]
2028 row_names = [ " grasp_pass " , " grasp_pass_keep " , " grasp_pul l " , "

grasp_pull_keep " , " g r a s p _ f a l l " , " grasp_fa l l_keep " , " grasp_putdown " , "
grasp_putdown_keep " , " grasp_release_keep " ]

s i z e 1 . columns = column_names
2030 s i z e 1 . index = row_names

p r i n t ( s i z e 1 )
2032

l i m i t s =[ [125 , 125 , 125 , 125 , 1 2 5 ] ,
2034 [ 27 , 0 , 0 , 0 , 0 ] ,

[ 88 , 94 , 92 , 110 , 6 2 ] ,
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2036 [ 86 , 87 , 109 , 0 , 0 ] ,
[ 0 , 0 , 0 , 115 , 1 1 0 ] ,

2038 [ 60 , 60 , 60 , 59 , 5 9 ] ,
[ 61 , 59 , 60 , 63 , 8 0 ] ]

2040

2042 f o r i in range ( l en ( l i m i t s ) ) :
f o r j in range ( l en ( l i m i t s [ i ] ) ) :

2044 p r i n t ( ’ i , j , k = ’ , i , ’ , ’ , j , ’ , ’ , l i m i t s [ i ] [ j ] )
f o r k in range ( l i m i t s [ i ] [ j ] ) :

2046 a l l _ s l i p _ i n t e r v a l s . append ( np . array ( s e l f . s l i p _ i n t e r v a l s
[ j ] [ i ] [ k ] ) )

2048
l im i t s_grasp =[ [ 30 , 30 , 30 , 30 , 3 0 ] ,

2050 [ 30 , 50 , 30 , 30 , 4 0 ] ,
[ 30 , 30 , 30 , 0 , 0 ] ,

2052 [ 25 , 25 , 25 , 0 , 0 ] ,
[ 0 , 0 , 0 , 30 , 3 0 ] ,

2054 [ 0 , 0 , 0 , 25 , 2 5 ] ,
[ 30 , 30 , 30 , 30 , 3 0 ] ,

2056 [ 60 , 60 , 60 , 60 , 6 0 ] ,
[ 60 , 66 , 65 , 60 , 1 0 0 ] ]

2058
f o r i in range ( l en ( l im i t s_grasp ) ) :

2060 f o r j in range ( l en ( l im i t s_grasp [ i ] ) ) :
p r i n t ( ’ i , j , k = ’ , i , ’ , ’ , j , ’ , ’ , l im i t s_grasp [ i ] [ j ] )

2062 f o r k in range ( l im i t s_grasp [ i ] [ j ] ) :
a l l _ s l i p _ i n t e r v a l s . append ( np . array ( s e l f . g r a s p _ i n t e r v a l s [ j ] [ i ] [

k ] ) )
2064

z e ro _ i nd i c e s = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s ) i f
in te rva l_data [ 0 , −1] == 0 ]

2066 uno_indices = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s ) i f
in te rva l_data [ 0 , −1] == 1 ]

two_indices = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s ) i f
in te rva l_data [ 0 , −1] == 2 ]

2068 t h r e e _ i n d i c e s = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s )
i f in te rva l_data [ 0 , −1] == 3 ]

f o u r _ i n d i c e s = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s ) i f
in te rva l_data [ 0 , −1] == 4 ]

2070 f i v e _ i n d i c e s = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s ) i f
in te rva l_data [ 0 , −1] == 5 ]

s i x _ i n d i c e s = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s ) i f
in te rva l_data [ 0 , −1] == 6 ]

2072 seven_ind ices = [ i f o r i , in te rva l_data in enumerate ( a l l _ s l i p _ i n t e r v a l s )
i f in te rva l_data [ 0 , −1] == 7 ]

2074 random . s h u f f l e ( z e r o _ in d i c e s )
random . s h u f f l e ( uno_indices )

2076 random . s h u f f l e ( two_indices )
random . s h u f f l e ( t h r e e _ i n d i c e s )

2078 random . s h u f f l e ( f o u r _ i n d i c e s )
random . s h u f f l e ( f i v e _ i n d i c e s )

2080 random . s h u f f l e ( s i x _ i n d i c e s )
random . s h u f f l e ( seven_ind ices )

2082
t ra in_zero = z e ro _ i nd i c e s

2084 train_uno = uno_indices
train_two = two_indices

2086 t ra in_three = t h r e e _ i n d i c e s
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t ra in_four = f o u r _ i n d i c e s
2088 t r a i n _ f i v e = f i v e _ i n d i c e s

t r a i n _ s i x = s i x _ i n d i c e s
2090 tra in_seven = seven_ind ices

2092 ba lanced_tra in_inte rva l s = ( [ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in t ra in_zero ] +
[ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in train_uno ] +

2094 [ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in train_two ] +
[ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in t ra in_three ]+

2096 [ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in t ra in_four ] +
[ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in t r a i n _ f i v e ] +

2098 [ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in t r a i n _ s i x ]+
[ a l l _ s l i p _ i n t e r v a l s [ i ] f o r i in tra in_seven ] )

2100
random . s h u f f l e ( ba lanced_tra in_inte rva l s )

2102
ba lanced_tra in_inte rva l s = np . array ( ba lanced_tra in_inte rva l s )

2104
t r a i n = ba lanced_tra in_inte rva l s [ : , : , : − 1 ]

2106
t r a i n _ t a r g e t = ba lanced_tra in_inte rva l s [ : , : , − 1 ] . astype ( i n t )

2108
r e turn t ra in , t r a i n _ t a r g e t

2110

2112 # MACHINE LEARNING ALGORITHM

2114 c l a s s MLModelTrainer :
de f __init__ ( s e l f ) :

2116 s e l f . c l f _ r f = RandomForestClass i f i e r ( n_est imators =100 , random_state=0)

2118 de f reshape_data_for_ml ( s e l f , t ra in , t r a i n _ t a r g e t ) :
t r a i n = np . reshape ( t ra in , ( t r a i n . shape [ 0 ] , t r a i n . shape [ 1 ] ∗ t r a i n . shape

[ 2 ] ) )
2120 t r a i n _ t a r g e t = t r a i n _ t a r g e t [ : , 0 ] . astype ( i n t )

# p r i n t ( np . shape ( t r a i n ) , np . shape ( t r a i n _ t a r g e t ) )
2122

r e turn t ra in , t r a i n _ t a r g e t
2124

de f train_and_save_random_forest ( s e l f , a l l_data , a l l _ t a r g e t s , path=r ’D: \
u n i v e r s i t à\TUM\Python\ d e f i n i t i v o _ t e s i \MLmodels/ ’ ) :

2126 x_al l = al l_data
y_al l = a l l _ t a r g e t s

2128
# Train the model us ing a l l your data

2130 s e l f . c l f _ r f . f i t ( x_all , y_al l )

2132 # Save the t r a i n e d model to a f i l e
j o b l i b . dump( s e l f . c l f _ r f , path+’ model_x . pkl ’ )

2134
p r i n t ( "Random Forest model t r a i n e d and saved . " )

2136

2138
# MAIN

2140
i f __name__ == "__main__" :

2142 fo lder_path = r ’D: \ u n i v e r s i t à\TUM\Python\ d e f i n i t i v o _ t e s i / t r a i n / ’
d i r e c t o r i e s = [ ’ b a s k e t b a l l \ pass / ’ , ’ b a s k e t b a l l \ p u l l / ’ , ’ b a s k e t b a l l / f a l l / ’ , ’
b a s k e t b a l l \putdown/ ’ ,\
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2144 ’ s o f t b a l l \ pass / ’ , ’ s o f t b a l l \ p u l l / ’ , ’ s o f t b a l l / f a l l / ’ , ’ s o f t b a l l
\putdown/ ’ ,\

’ emptybott le \ pass / ’ , ’ emptybott le \ p u l l / ’ , ’ emptybott le / f a l l / ’ ,
’ emptybott le \putdown/ ’ ,\

2146 ’ h a rdb a l l \ pass / ’ , ’ ha rd ba l l \ p u l l / ’ , ’ h a rd ba l l / f a l l / ’ , ’ ha rdba l l
\putdown/ ’ ,\

’ c o l a b o t t l e \ pass / ’ , ’ c o l a b o t t l e \ p u l l / ’ , ’ c o l a b o t t l e / f a l l / ’ , ’
c o l a b o t t l e \putdown/ ’ ,\

2148 ’ nothing / ’ ]
num_sensors = 6

2150 num_fi les_per_directory = [ 6 0 , 80 , 0 , 60 ,\
60 , 80 , 0 , 60 ,\

2152 60 , 80 , 0 , 60 ,\
60 , 0 , 80 , 60 ,\

2154 60 , 0 , 80 , 60 ,\
1 ]

2156 a l l _ f i l t e r e d _ d a t a = [ ]
all_pca_data_x = [ ]

2158 all_pca_data_y = [ ]
all_pca_data_z = [ ]

2160 a l l_data = [ ]
a l l_t ime_steps = [ ]

2162 a l l _ s l i p _ i n t e r v a l s = [ [ ] f o r _ in range (5 ) ]
f o r _ in range (5 ) :

2164 f o r __ in range (7 ) :
a l l _ s l i p _ i n t e r v a l s [_ ] . append ( [ ] )

2166 a l l _ g r a s p _ i n t e r v a l s = [ [ ] f o r _ in range (5 ) ]
f o r _ in range (5 ) :

2168 f o r __ in range (9 ) :
a l l _ g r a s p _ i n t e r v a l s [_ ] . append ( [ ] )

2170 t o t a l=0
ml_classes = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

2172 a c t i o n s = [ [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2174 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2176 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2178 [ 0 , 0 , 0 , 0 , 0 ] ]
g rasps = [ [ 0 , 0 , 0 , 0 , 0 ] ,

2180 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2182 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2184 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ,

2186 [ 0 , 0 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , 0 , 0 ] ]

2188 t r a i n = [ ]
t r a i n _ t a r g e t = [ ]

2190 t e s t = [ ]
t e s t _ t a r g e t = [ ]

2192
data_processor = DataProcessor_fromExcel ( None )

2194 bpf = BandpassFi l te r ( )
pca_fe = PCABasedFeatureExtraction ( )

2196 ml_trainer=MLModelTrainer ( )

2198 f o r d i r e c t o r y , num_fi les in z ip ( d i r e c t o r i e s , num_fi les_per_directory ) :
p r i n t ( d i r e c t o r y , num_fi les )
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2200 all_data_prov , al l_time_steps_prov = data_processor . p r o c e s s _ a l l _ f i l e s (
fo lder_path + d i r e c t o r y , num_fi les )

2202 f o r f i le_number in range ( num_files ) :
data = all_data_prov [ f i le_number ]

2204 a l l_data . append ( data )
time_steps = all_time_steps_prov [ f i le_number ]

2206 al l_t ime_steps . append ( time_steps )

2208 f i l t e r e d _ d a t a = bpf . apply_bandpass_f i l ter ( data , time_steps ,
num_sensors )

slip_bp , s l ip_bp_s ing le = bpf . ca l cu late_s l ip_points_bp ( data ,
f i l t e r e d _ d a t a , time_steps , num_sensors , d i r e c t o r y )

2210
force_data_x = data . i l o c [ : , : : 3 ]

2212 force_data_y = data . i l o c [ : , 1 : : 3 ]
force_data_z = data . i l o c [ : , 2 : : 3 ]

2214
# Apply PCA

2216 pca_data_x , pca_data_y , pca_data_z = pca_fe . apply_pca ( force_data_x ,
force_data_y , force_data_z )

all_pca_data_x . append ( force_data_x )
2218 all_pca_data_y . append ( force_data_y )

all_pca_data_z . append ( force_data_z )
2220

# Calcu la te s l i p p o i n t s
2222 s l i p _ f c , mi_x , mi_y = pca_fe . c a l c u l a t e _ s l i p _ p o i n t s ( pca_data_x ,

pca_data_y , pca_data_z , t ime_steps )

2224 i f any ( va lue == 1 f o r va lue in s l i p _ f c ) or any ( value == 1 f o r va lue in
s l ip_bp_s ing le ) :

s l i p p e r y s l i p , a l l _ s l i p _ i n t e r v a l s , a l l_gra sp_inte rva l s , ml_classes1
, ac t ions1 , grasps1 = pca_fe . create_sl ip_windows ( data , time_steps , s l i p _ f c ,
s l ip_bp_single , d i r e c t o r y , a l l _ s l i p _ i n t e r v a l s , a l l _ g r a s p _ i n t e r v a l s )

2226
f o r i in range ( l en ( ml_classes ) ) :

2228 ml_classes [ i ] += ml_classes1 [ i ]

2230 a c t i o n s 1=np . array ( a c t i o n s 1 )
f o r i in range ( l en ( a c t i o n s ) ) :

2232 f o r j in range ( l en ( a c t i o n s [ 0 ] ) ) :
a c t i o n s [ i ] [ j ] += a c t i o n s 1 [ i ] [ j ]

2234
grasps1=np . array ( grasps1 )

2236 f o r i in range ( l en ( grasps ) ) :
f o r j in range ( l en ( grasps [ 0 ] ) ) :

2238 grasps [ i ] [ j ] += grasps1 [ i ] [ j ]

2240 p r i n t ( f ’ F i l e number { f i le_number+1} in d i r e c t o r y { d i r e c t o r y } −
DONE! ’ )

2242 a c t i o n s = pd . DataFrame ( a c t i o n s )
column_names = [ " b a s k e t b a l l " , " s o f t b a l l " , " emptybott le " , " ha rd ba l l " , " c o l a
b o t t l e " ]

2244 row_names = [ " nothing " , " grasp " , " pass " , " p u l l " , " f a l l " , " putdown " , " r e l e a s e " ]
a c t i o n s . columns = column_names

2246 a c t i o n s . index = row_names
p r i n t ( ’ Total number o f a c t i o n s : ’ )

2248 p r i n t ( a c t i o n s )

2250 grasps = pd . DataFrame ( grasps )
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column_names = [ " b a s k e t b a l l " , " s o f t b a l l " , " emptybott le " , " ha rd ba l l " , " c o l a
b o t t l e " ]

2252 row_names = [ " grasp_pass " , " grasp_pass_keep " , " grasp_pul l " , " grasp_pull_keep " ,
" g r a s p _ f a l l " , " grasp_fa l l_keep " , " grasp_putdown " , " grasp_putdown_keep " , "

grasp_release_keep " ]
g rasps . columns = column_names

2254 grasps . index = row_names
p r i n t ( ’ Total number o f grasps : ’ )

2256 p r i n t ( grasps )

2258 p r i n t ( f " Shape o f a l l_data : ({ l en ( a l l_data ) } ,{ np . shape ( a l l_data [ 0 ] ) }) " )
#p r i n t ( f " Shape o f s l ip_bp : {np . shape ( s l ip_bp ) } " )

2260 p r i n t ( f " Shape o f all_pca_data_y : ({ l en ( all_pca_data_y ) } ,{ l en ( all_pca_data_y
[ 0 ] ) }) " )
#p r i n t ( f " Shape o f s l i p _ f c : {np . shape ( s l i p _ f c ) } " )

2262
p r i n t ( ’ [ zero , uno , two , three , four , f i v e , s ix , seven ] : ’ , ml_classes )

2264
# Assuming you have a l l _ s l i p _ i n t e r v a l s and a l l _ g r a s p _ i n t e r v a l s as your input
data

2266 dataset_balancer = DatasetBalancer ( a l l _ s l i p _ i n t e r v a l s , a l l _ g r a s p _ i n t e r v a l s )
t ra in , t r a i n _ t a r g e t = dataset_balancer . balance_dataset ( )

2268
p r i n t ( ’ Shape o f t r a i n datase t : ’ , np . shape ( t r a i n ) , ’ and shape o f t r a i n t a r g e t s
: ’ , np . shape ( t r a i n _ t a r g e t ) )

2270
# Random Forest model

2272 t ra in , t r a i n _ t a r g e t = ml_trainer . reshape_data_for_ml ( t ra in , t r a i n _ t a r g e t )

2274 p r i n t ( ’ Shape o f reshaped t r a i n datase t : ’ , np . shape ( t r a i n ) , ’ and shape o f
reshaped t r a i n t a r g e t s : ’ , np . shape ( t r a i n _ t a r g e t ) )

2276 ml_trainer . train_and_save_random_forest ( t ra in , t r a i n _ t a r g e t )

content/machine_learning_training_def.py
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