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Summary

Introduction
The advent of 5G technology brings higher data rates, stricter latency requirements,
and greater connectivity, presenting significant challenges for the deployment of
future communication networks. As traffic volumes rise, concerns over the energy
consumption and efficiency of mobile access network infrastructures intensify. These
infrastructures are designed to meet peak demands but often remain underutilized
most of the time, leading to substantial energy waste and financial costs. This
thesis introduces a novel strategy known as network sharing (NS), where two or
more mobile network operators (MNOs) agree to collaboratively share their radio
access network (RAN) infrastructure. This approach aims to reduce energy usage
by minimizing the active periods of infrastructure during off-peak traffic demand,
thereby maximizing energy efficiency without significantly compromising the quality
of service.

The thesis delves into network sharing dynamics within telecommunication
infrastructure management, focusing on cooperative operations among base stations
for optimal resource utilization. By deactivating specific base stations and leveraging
the capacity of neighboring units to handle the mobile traffic offloaded from the
switched-off network nodes, the study seeks to achieve energy efficiency and reduce
operational costs. A case study involving base stations owned by two different
MNOs illustrates the asymmetric sharing dynamics, highlighting the impact of
variable capacities on the feasibility and efficiency of network sharing arrangements.

Methodology
This study adopts a data-driven methodology to evaluate network sharing (NS)
potential and efficiency, aiming for energy conservation and financial savings across
diverse urban and rural settings. Utilizing the real normalized mobile traffic profiles
from the NetMob dataset provided by a French mobile operator, this research
encompasses a broad range of digital activities over 77 days. The data, capturing
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traffic loads from more than 68 mobile services, are organized by geographical tiles
and documented for each 15-minute interval of the day. This extensive dataset
facilitates a nuanced analysis of traffic distribution patterns critical for network
sharing feasibility and optimization.

The methodological approach involves several key stages, beginning with data
aggregation and preprocessing of a month’s worth of traffic load data. Selection
criteria for mobile network operators and geographic areas focus on stations operated
by major providers across demographically diverse regions. Traffic load time series,
that are available on a per-tile basis are allocated to the nearest base station using
the Euclidean distance method, enabling the construction of individual base station
aggregated traffic traces. The feasibility of network sharing is then evaluated by
analyzing base station capacity and a preset threshold for sharing initiation (this
threshold defines the maximum saturation level of the capacity of the BS hosting
the offloaded traffic), determining the time slots that could implement NS while
maintaining service quality.

A predefined power consumption model calculates potential energy and economic
savings, expanding from dual to triple base station configurations to further enhance
energy savings . Additionally, the frequency of base station on/off switching
operations is critically examined for the feasibility and practicality of NS strategies.
Performance metrics and predictive analysis using machine learning techniques to
forecast future traffic patterns allow for proactive NS arrangements.

The dataset’s depth allows for exploring NS policies based on actual data about
base station locations and traffic loads. Through a careful process, traffic data
from each specified block are aligned to its corresponding base station, considering
both the precise locations of the base stations and the regional traffic load data.
The study’s focus on modeling raw traffic traces, determining NS thresholds,
defining base station capacity, and delineating area-specific strategies highlights
the comprehensive nature of this methodology. It integrates the principles of the
power consumption dynamics of base stations, particularly focusing on Remote
Radio Heads (RRHs), where a near-linear relationship between RF output power
and power consumption is established.

This methodology represents a significant step toward realizing network shar-
ing within base station infrastructure, providing a foundation for evaluating the
energy savings attributable to NS. By synthesizing traffic prediction models like
LSTMs, XGBoost, and ARIMA, the study navigates the intricacies of traffic load
forecasting, leveraging these insights to optimize network sharing arrangements
and contribute significantly to telecommunications infrastructure’s energy efficiency
and sustainability.
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Results and Discussion
• This thesis has made significant contributions to the understanding and

strategic planning and management of mobile network infrastructure, with
a particular emphasis on the analysis of base station traffic traces and their
geographical distribution, which will influence the NS potential. It aimed to
improve network planning and infrastructure sharing in scenarios with both
double and triple base station pairs owned by different operators.

– In the context of double base station (BS) Network Sharing, the findings
indicate that NS is feasible for 60-80% of the time, yielding power savings
in the range of 25% to 35%. A derived linear regression model, represented
by the equation power saving = 0.48 · NS percentage - 0.04, provides a
quantitative basis for estimating the impact of NS utilization on energy
conservation.

– The triple BSs NS with two saturation thresholds improves the NS per-
centage to 90% and increases power savings by 15% compared to the
same BS with double NS. The resultant substantial energy savings have
the potential to significantly reduce electrical costs, contributing towards
broader energy conservation efforts.

• The frequency of switch operations is thought as a critical factor in evaluating
the practicality of implementing a NS strategy in real-world scenarios. This
section’s research will focus on developing strategies to reduce the frequency
of these operations, hence preventing fast degradation of network nodes.

– The fixed period strategies that first minimize rapid switch operations
in network sharing (NS), introduces "forbidden fast changes" to extend
NS duration to at least 30 minutes, effectively eliminating short-term
switching patterns. This approach significantly reduces the frequency
of state changes, maintaining the efficacy of NS utilization. Further
enhancements included setting limits on switch operations within each 6
hours period (each day is divided into four six-hour periods: 00:00-06:00,
06:00-12:00, 12:00-18:00, and 18:00-24:00), ensuring that after a certain
number of switches, the NS status is uniformly set to inactive for the
remainder of the period. These measures not only simplify NS operations
but also maintain the feasibility of network sharing among mobile network
operators (MNOs).

– Another method has been discovered, which is based on the concept of a
sliding window that moves across NS state time intervals. If the frequency
of status changes during that window exceeds a predefined threshold,
all statuses until the sliding window ends are changed to a state that
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terminates NS. When comparing the energy trade-off parameter, the fixed
period strategy appears to be the better option, maintaining the majority
of the energy savings while limiting switch operations. Furthermore,
fixed-period strategies provide a consistent operational schedule, making
it easier to adjust to real-time data.

• Furthermore, the investigation has utilized time series machine learning tech-
niques, including LSTM, XGBoost, and ARIMA, to forecast traffic loads and
subsequent network sharing utilization.

– Among these methods, ARIMA showed marginally superior performance
in predicting peak traffic loads.

– The predictive accuracy for NS utilization was approximately 85%, an
analysis was conducted to quantify the traffic load at points of false
negatives and determine their excess over the capacity of the base station
that is set in our NS strategy, which is traditionally set at 80% of the base
station capacity. If the traffic load during false negative occurrences falls
within the 80%-100% range, it suggests that while traffic slightly exceeds
the saturation threshold, it does not exceed the BS’s capacity, making NS
viable without risk of overload, these are acceptable prediction results,
and after adjusting ’fake false positives’, the accuracy could potentially
increase to around 93%.

– These findings emphasize the accuracy of ML methods in forecasting NS
applicability and network management, which ensures consistent delivery
of high-quality services to users and at the same time improves the
operational feasibility of NS strategies.

The findings from this research offer valuable insights into the optimization of
network infrastructure and emphasize the viability of infrastructure sharing as a
sustainable and efficient approach for the future of mobile networks. This thesis
not only addresses key challenges in mobile network management but also lays a
foundation for more sustainable and efficient telecommunications infrastructures.
The strategies and methodologies proposed herein promise to revolutionize network
sharing practices.
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Chapter 1

Introduction

1.1 Overview

The advent of 5G technology marks a significant progress in mobile communication,
offering unprecedented access to information and data transfer speeds. This
advancement, however, comes with its own challenges. The deployment of 5G
requires a greater number and density of base stations (BSs) than its predecessor,
4G. It is predicted that by 2025, there will be about 13.1 million BSs in the
world, and the BS energy consumption will reach 200 billion kWh. [1] Additionally,
the power consumption per base station increases by nearly 70% over a base
station deploying a mix of 2G, 3G, and 4G radios, all of which leads to increased
resource consumption and concerns about the sustainability of communication
systems. Hence, even a 10 percent reduction in cellular network power consumption
represents a savings of 20 billion kWh, which would save about US$5.8 billion—a
substantial amount. [2] Given that base station infrastructures are designed to
meet peak demands and often remain underutilized during 75%-90% of the time,
this underutilized period presents an ideal opportunity to implement green network
strategies.

Building on the concept of base station sleep mode for single Mobile Network
Operator (MNO) base stations, this thesis examines the feasibility and advantages
of an innovative approach to base station infrastructure sharing among different
MNOs. The traditional model of network operation, where each MNO indepen-
dently manages its Radio Access Network (RAN) infrastructure, is not optimized
for energy efficiency. The motivation of this thesis is to propose a novel strat-
egy for network sharing (NS) among MNOs to address the challenges of energy
consumption and inefficiency in base station infrastructure. By collaborating
to share RAN infrastructures that are geographically proximate, and effectively
cover the same regions, it is possible to maintain Quality of Service (QoS) while
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Introduction

dynamically offloading traffic from one base station to another during off-peak
hours. A threshold for infrastructure capacity is set to determine the feasibility of
implementing the sharing strategy at any given time. After offloading, one base
station can be temporarily deactivated, allowing the traffic originally managed by
two operators to be supported by a single operator’s base station. While satisfying
users’ QoS requirements, this strategy aims to reduce the operational time of
underutilized infrastructure, particularly during off-peak hours, thereby enhancing
energy efficiency and curtailing unnecessary financial expenditures.
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Chapter 2

Background and related
work

5G networks are expected to provide excellent quality of service (QoS) to a large
number of devices, enable flawless functionality during user mobility, and improve
energy efficiency when compared with previous communication technologies [3] [4].
Currently, 5G technology is in its early commercialization stages [4]. However, we
continue to experience relevant challenges in the actual realization of the 5G era,
which is defined by the widespread penetration of extremely demanding communica-
tion services based on massive Machine Type Communication, Ultra Reliable Low
Latency Communications enhanced Mobile Broadband service categories, and the
need for edge caching and computing to support smart mobility [5]. The advanced
BS sleeping mode is a key method for reducing energy consumption. Some papers
have already researched the efficiency and feasibility of the BS sleeping model,
demonstrating that it could be a solution for a green and sustainable network.
[6] [7] Another promising solution to the energy consumption problem is energy
harvesting (EH), which involves collecting energy from renewable sources such as
solar panels and wind turbines. Solar and wind energy are the most encouraging,
environmentally friendly, and rapidly expanding clean and renewable energy sources
for addressing such energy issues and saving the environment. [8][9]

In this context, sharing network resources among different MOs may play an
important role in improving the energy efficiency and resilience of future mobile
networks [5] [10] [11]. The goal of our research activity is to investigate the potential
benefits in terms of sustainability and resilience derived from sharing Base Station
(BS) usage among different MOs[12], which is similar to the idea of [13] in a
macro-cell system with a number of small cells, and to propose a Distributed Base
Station On/Off Control Mechanism (D-OCM) for reducing the network’s power
consumption. Using D-OCM, an inactive small base station (SBS) can be activated
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Background and related work

by either an active SBS or the macro base station (MBS), while an active SBS can
be deactivated by the active SBS itself, both in a distributed manner.

Before the research, some background of base station distribution is researched.
Our dataset is a geographical distribution traffic load that represents for each small
block in the metropolitan area. To analyze base station infrastructure sharing, we
need to distribute the traffic load to base stations to build a traffic trace. The spatial
distribution of base stations (BSs) and traffic demands is critical for effective network
planning and infrastructure sharing, both of which are important components of
green cellular networking. The distribution pattern of BS locations and neighbor
distances was analyzed using massive real data of BS locations in a representative
French metropolis. Using Delaunay triangulation and fine classification, the BS
distribution is shown to be non-Poisson, with repulsive interaction between BS. The
Strauss-Hardcore point process is the closest model to the actual BS distribution.
[14] Another study discovered that the spatial distribution of BSs exhibits not
only high nonuniformity across a region, but also diverse patterns in different
regions, implying that the widely used homogeneous Poisson point process can only
approximate BS patterns in a small area. As a result, the inhomogeneous PPP
(IPPP), specifically the Cox point process with spatially varying intensity, is used
to model the BS distribution at all spatial scales.[15]

And, in order to prepare operational adjustments in advance rather than in
real time, some machine learning method should be used to predict traffic traces.
The network traffic load prediction on base stations was modelled as a time series
forecasting problem. Recurrent neural networks, such as LSTMs and GRUs,
typically offer better performance and Clustering base stations based on their
behavior before using time series forecasting methods to predict their loads can
significantly improve load forecasting accuracy when there are enough records in
each cluster.[16] Another research Using the SARIMA model, the most accurate
prediction techniques for time series traffic load are presented. [17] During my
research, various ML methods are used to determine which model is best for our
traffic trace.
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Chapter 3

Description of network
sharing scenarios

3.1 Definition and Operational Framework of
Network Sharing

Network sharing represents a strategic approach within telecommunication infras-
tructure management, wherein multiple base stations optimize resource utilization
through cooperative operations. This entails the selective deactivation of specific
base stations to leverage the capacity of neighboring units, thus achieving energy
efficiency and reducing operational costs without significantly compromising quality
of service.

3.2 Case Study: Operational Dynamics between
Base Stations A and B

Consider base stations A and B as entities within this framework. The sharing
dynamic between A and B is asymmetric; specifically, A and B’s arrangement
involves deactivating B to utilize A’s operational capacity. This asymmetry arises
due to the variable capacities inherent to each base station, which in turn affects
the feasibility and efficiency of network sharing arrangements.

3.3 Network sharing distance potential analysis
In the context of optimizing the coverage of 4G cellular networks, the geometric
coverage model of a base station is assumed to be circular, with a radius extending
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Description of network sharing scenarios

up to 3 km. This model facilitates the examination of coverage overlap and
network resilience, particularly in scenarios where redundancy is minimized without
significantly compromising service availability. To achieve a coverage objective
wherein 95% of users originally served by a pair of base stations remain within
service range upon the deactivation of one station, a spatial analysis was conducted.
The figure 3.1 indicate that pairs of base stations positioned no more than 472
meters apart satisfy this coverage criterion under ideal, unobstructed conditions.
This spatial arrangement ensures that the operational base station can effectively
cover 95% of the combined user base.

Figure 3.1: Analysising for the appropriate distance for network sharing

However, urban environments introduce complex variables that necessitate a
departure from this idealized model. Factors such as building density, urban
topology, and human activity concentrations significantly affect signal propagation,
leading to the requirement for a denser network of base stations. Specifically, in
city center areas, where obstacles are more prevalent and user density is higher,
the analysis recommends a reduced separation distance between base station pairs.
A threshold of 50 meters is proposed for these densely populated urban cores to
maintain optimal service coverage. Conversely, for suburban areas, where user
density decreases and line-of-sight conditions improve, a separation distance of
100 meters between base station pairs is deemed sufficient. This differentiated
approach to base station deployment underscores the importance of tailoring
network infrastructure to the specific characteristics of the serviced area. By
adjusting the density of base stations in response to environmental and demographic
factors, network operators can achieve a balanced trade-off between coverage
efficiency and infrastructure cost.
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Description of network sharing scenarios

3.4 Expected Outcomes
This thesis aims to contribute to the understanding and strategic planning of mobile
network infrastructure, particularly focusing on the analysis of base station traffic
traces and their geographical distribution. It aims to optimize network planning
and facilitate infrastructure sharing for scenarios involving pairs of double and triple
base stations. By implementing predefined strategies that set appropriate thresholds
for switch operations, the study seeks to augment the practicality and efficiency of
Network Sharing (NS) strategies. Furthermore, the research employs time series
machine learning techniques to preemptively predict the utilization of network
sharing, thereby enabling more informed and proactive network management
decisions. This proactive approach is intended to ensure the consistent delivery of
high-quality service to users.
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Chapter 4

Workflow and methodology

4.1 Workflow
This study proposes a data-driven methodology to evaluate the efficiency of network
sharing, focusing on energy conservation and financial savings across different urban
and rural settings. The workflow is divided into several stages, each contributing to
the overall goal of optimizing network resource utilization through strategic sharing
arrangements between mobile network operators. The stages are as follows:

1. Data Aggregation and Preprocessing: The study first aggregates a
month’s worth of traffic load data, which includes 29 different categories that
are gathered tile-by-tile. This detailed data collection facilitates a complete
analysis of traffic distribution patterns, crucial for later processing phases.

2. Selection of Mobile Network Operators and Geographic Areas: The
analysis targets base stations operated by two major telecommunications
providers, Orange and Bouygues, across three demographically diverse regions:
city centers, suburban areas, and rural locales. This selection ensures a compre-
hensive assessment of network sharing’s potential across varied environments.

3. Traffic Load Allocation via Euclidean Distance: Using the Euclidean
distance method, traffic loads for each tile are allocated to the nearest base
station, yielding individual base station traffic traces. This approach reflects
the unique operational footprint of each provider, resulting in operator-specific
traffic profiles.

4. Evaluation of Network Sharing Feasibility: The feasibility of network
sharing is evaluated by analyzing base station capacity and a preset threshold
for sharing initiation. This determines the percentage of time slots that could
implement network sharing while maintaining service quality.
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Workflow and methodology

5. Energy and Economic Savings Calculation: A predefined power consump-
tion model estimates potential energy savings from network sharing. These
savings are then translated into financial benefits, indicating the financial
viability of network sharing.

6. Expand the Strategy and Optimize Practicality: The study explores an
evolution from dual to triple base station (BS) network sharing configurations
to enhance energy savings. Additionally, the frequency of switching operations,
critical to the feasibility and practicality of network sharing strategies, is
examined.

7. Performance Metrics and Predictive Analysis: A range of performance
metrics is defined to assess network sharing efficiency. Machine learning
techniques forecast future traffic patterns, improving operational efficiency by
allowing proactive network sharing arrangements.

4.2 Methodology
4.2.1 Dataset
Overview

In this study, the research into base station (BS) uses the real normalized mobile
traffic derived from the NetMob dataset [18], offered by a French mobile operator.
This dataset represents a high-resolution cartography of multi-region, service-
level mobile data traffic spanning 77 days. Data collection intervals occur every
15 minutes, featuring a spatial resolution of 100×100 square meters across 20
metropolitan areas in France. This huge amount of data captures traffic loads from
more than 68 popular mobile services, covering a wide variety of digital activities
such as social media engagement, video streaming, app downloads, web services,
cloud computing, gaming, and music streaming. The dataset, accessible in text
format via the official website, documents daily service-specific application data
within a given region. Structurally, the dataset is organized such that the initial
column records the tile number, indicative of the geographical location of a specific
tile. Subsequent columns, totaling 96, enumerate the normalized traffic load for
each 15-minute interval throughout the day. The example of the dataset is shown
in figure 4.1. It is important to note that the row count varies by region, and due to
the irregular boundaries of these areas, tile identifiers may not follow a consecutive
sequence.

Complementing this dataset, the second source of data contains the geographical
distribution of sites hosting mobile base stations. This includes detailed information
on the mobile technology employed and the identity of the network operator (e.g.,
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Bouygues, Free Mobile, Orange, SFR) associated with each base station. The
example is shown in figure 4.2. Data for this component of the study are sourced
from public datasets provided by the Agence Nationale des Frequences (ANFR)
[19].

Figure 4.1: Example of dataset of traffic load

Future studies will investigate network sharing policies based on actual data
about base station locations and traffic loads in the area. In order to ensure a
realistic representation of network demand, this calls for a methodical approach that
aligns the allocation of traffic data from each specified block to its corresponding
base station. Appropriate distribution of network load should be made based on
the understanding of both the precise locations of the base stations and the regional
traffic load data.

Figure 4.2: Example of dataset of base stations

Data Process and preparation

Initially, Lyon was selected as the focal region for this study, chosen for its moderate
size, which accurately reflects the urban dynamics of a typical city. The preliminary
step involved translating the dataset’s tile data into column and row indices to
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determine the precise locations and corresponding traffic loads within the region.
Formal dimension data revealed that Lyon covers a total of 426 rows and 287
columns. Through this conversion process, Figure 4.3 was generated, illustrating
the distribution of YouTube traffic volume across Lyon at a specific time point. This
visualization employs a color gradient, with warmer areas such as red indicating
higher normalized traffic volumes, while cooler shades denote regions with lower
traffic activity. Figure 4.3 shows that traffic volumes vary across different areas,
with notably higher traffic loads in central locations. Regarding the base station
data, an initial filtering step was to isolate in-service 4G base stations operated
by the four main French telecommunications providers: Orange, SFR, Bouygues
Telecom, and Free Mobile. This filtration was essential to streamline the focus of
the study. The resulting data encompassed base stations within the geographical
bounds of Lyon, defined by a longitude (x) range of approximately 4.6924 to 5.0603
and a latitude (y) range of approximately 45.5571 to 45.9392. A computational
formula was subsequently developed to align the real-world positions of these base
stations with the tile index system used in the dataset. The latitude span is 0.3821
which represents 287 columns and the longitude span is 0.3679 which represents
426 rows. The conversion of tile numbers to their corresponding row and column
indices is achieved through the following operations:

• The row_index is obtained by taking the integer division of tile_id by the
number of columns (n_cols):

row_index = int
A

tile_id
n_cols

B

• The col_index is determined by computing the remainder of tile_id divided
by n_cols, effectively capturing the integer remainder of the division:

col_index = int (tile_id mod n_cols)

For the base stations, conversion from geographical coordinates to row and
column indices is achieved as follows:

• The row_index for base stations is calculated based on the latitude:

row_index =
A

base station latitude − 45.5571
0.3821/287

B

• The col_index for base stations is calculated based on the longitude:

col_index =
A

base station longitude − 4.6924
0.3679/426

B
11
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Figure 4.3: YouTube traffic volume across Lyon at a specific time point

After this synchronization of location definitions proceed a clear understanding
of the base station distribution relative to the city’s tiles, laying the groundwork
for more detailed subsequent analyses.

Modeling the raw traffic traces

To realize the concept of network sharing within base station infrastructure, the
foundational step involves acquiring the traffic trace data for each base station. The
traffic volume data we possess is characterized by a spatial resolution of 100 × 100
square meters. However, in practice, not every spatial tile may house a base
station, and in densely populated areas such as city centers, a single block might
contain multiple base stations. This uneven distribution of base stations requires
the adoption of more sophisticated methods to accurately assign traffic data to
specific base stations.

Under ideal conditions with no physical obstacles, the distance between a block
and a base station—which is primarily defined by Euclidean distance—becomes an
important consideration during the allocation procedure.

12
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To address this, we employ an Euclidean distance-based method to efficiently
allocate traffic volumes to the nearest base station. Specifically, we aim to map the
traffic volume traces, spread across an n × n grid of tiles, to the respective base
stations, denoted by Op1, within the area of Lyon.

Let L = {L1, L2, . . . , Ln×n} represent the set of traffic time series for the specified
area, and B = {B1, B2, . . . , Bm} the set of base stations operated by Op1. The
traffic volume corresponding to each time series Li from tile i is allocated to
the nearest base station Bj, minimizing the Euclidean distance dij. Figure 4.4
illustrates the mapping of traffic volumes from each tile to the base stations within
a given urban area at a specific time interval, with the intensity of color indicating
the level of traffic volume in the corresponding tile for a sample time slot.

Figure 4.4: "Euclidean method" for distributing block traffic load to BSs

Finally, the actual traffic trace managed by each base station Bi is evaluated
through the aggregation of traffic data series allocated to it via the aforementioned
strategy.
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4.2.2 Network Sharing strategies

Threshold Determination for Network Sharing

A critical aspect of implementing network sharing is the establishment of a traffic
load threshold which is Cth, set at 80% for this analysis most of time. 80% is a
conservative number that will not overload the base station. Cth stipulates that
network sharing becomes viable when the sum of offloaded traffic from a deactivated
base station (e.g., A) and the traffic from the active origin base station does not
exceed 80% of the capacity of the receiving station (e.g., B). If the cumulative
traffic load passes Cth, both base stations must remain operational to fulfill the
demand requirements adequately. Then the Analysis of Threshold Variability is
researched to investigates the impact of varying Cth, with 5% intervals ranging
from 50% to 80%, on the proportion of achievable network sharing and associated
reductions in power consumption. This analysis elucidates the relationship between
Cth settings and network sharing efficiency.

BS Capacity Definition and Optimization

A notable challenge in this domain is the accurate definition of base station
capacity, particularly given that available traffic volume data are normalized rather
than real-world quantities. It was not practical to define capacity based on 90%
of the maximum traffic volume that was observed at first. This was because
unusual traffic peaks caused capacity estimates to be significantly overvalued
sometimes up to six times the average load. Regarding the design capacity of base
stations to accommodate peak traffic demands, a factor of six times the average
load is often cited as a benchmark for robust network design. However, for the
purposes of this research, a more conservative approach is adopted to estimate
the requisite capacity. Therefore, a refined methodology involves identifying the
10th highest traffic volume as a more representative peak and calculating 90%
of this value to determine base station capacity. This adjustment mitigates the
influence of extreme outliers, facilitating a more pragmatic and reliable framework
for network sharing parameterization. In our study of base station pairs engaged
in network sharing, we use a strategy in which the station with lower capacity
is consistently deactivated, supposing the station with higher capacity is active
to ensure longer network sharing and larger energy savings. This NS status
framework is quantified using a binary status indicator: ’1’ signifies the feasibility
and activation of network sharing, whereas ’0’ indicates periods when network
sharing is not operational. This binary representation facilitates clearer research
analysis and simplifies calculations, allowing for an intuitive examination of network
sharing’s efficiency and sustainability impact.
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Area definition

In the context of city planning and telecommunications infrastructure, the spatial
distribution of base stations and population density across various city sectors
are not the same. Consequently, the demand for network bandwidth and traffic
volume exhibits considerable variability, underscoring the potential region-specific
research to inform network sharing strategies. Commercial districts, for example,
are likely to experience peak traffic volumes during working hours and lunch
breaks, attributable to the high concentration of economic activities and employee
presence. Conversely, residential zones typically see a surge in network usage during
evening hours, reflecting the population’s engagement in leisure and communication
activities after work hours. Mixed-use areas, on the other hand, may demonstrate
a blend of these patterns or maintain a relatively consistent level of network usage
throughout the day. The variability extends to different days of the week as well;
weekdays are characterized by traffic loads concentrated around workplaces during
business hours, while weekends witness increased network activity in residential
and commercial zones, driven by leisure and entertainment purposes. Therefore, I
propose a categorization of the Lyon metropolitan area into three distinct zones
based on base station density. This classification serves as a foundational framework
for subsequent case studies,

• City Center: Characterized by a base station density exceeding 3 units per
square kilometer.

• Suburban: Defined by a base station density ranging from 1.5 to 3 units per
square kilometer.

• Rural: Identified by a base station density less than 1.5 units per square
kilometer.

Based on these three regions’ constraints, the subsequent case study looks into
whether there are any variations in the network sharing outcomes for them.

Methodological Approaches for Evaluating Power consumption of base
station

This section focuses on the methodological framework adopted for assessing the
power consumption dynamics of base stations, specifically focusing on Remote
Radio Heads (RRHs). The analysis is grounded in the principles outlined in the
paper [20] which posits a near-linear relationship between the Radio Frequency
(RF) output power (Pout) and the base station’s power consumption (Pin).

In the context of RRHs, the power consumption model is articulated as follows:

Pin = NTRX × (P0 + δp × Pout)
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where:

• Pout denotes the relative RF output power, constrained by 0 < Pout ≤ Pmax,

• Pout is directly proportional to the traffic load-to-capacity ratio of the base
station,

• NTRX represents the number of transceiver modules,

• P0 is the power consumption at zero RF output power (a fixed linear model
parameter),

• δp signifies the slope of the load-dependent power consumption.

Given the specifications for RRH, with NTRX = 6, Pmax = 20W , P0, and δp = 2.8,
the power output (Pout) is mathematically represented by the ratio of the traffic
load to the base station’s capacity, scaled by Pmax:

Pout = ( traffic load
capacity of base station) × Pmax

Comprehensive Power Consumption Model
Incorporating these parameters, the comprehensive model for calculating the

base station’s power consumption emerges as:

Pin = 504 + 16.8 × ( traffic load
capacity of base station) × 20

This formula offers a precise quantification of energy usage based on fluctuating
traffic loads and the inherent capacity of the RRH base station. Subsequently, the
model serves as a primary tool for evaluating the energy savings attributable to
network sharing. By comparing the power consumption under scenarios involving
network sharing strategy against standard operational scenarios, a respectable
result could be obtained to highlight the potential for significant energy efficiency
benefits within telecommunications infrastructure sharing.

4.2.3 Switch operation
Switch operation definition

The concept of switch operation can be alternatively described as changes in NS
status, which is predetermined as a binary value—1 or 0. Here, a status of 1
indicates that network sharing is active during a given time period, implying that
one base station remains operational while the other is deactivated. Conversely, a
status of 0 denotes that both base stations are active. A transition from 1 to 0 or
vice versa is counted as a single switch operation.
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Switch efficiency definition

Switch efficiency is identified as a critical metric in NS, illustrating the importance
of evaluating switch operations not only by quantity but also by their impact on
NS utilization. This metric indicates how many minutes that a single state change
may provide for NS. Ideally, each switch operation should maximize the amount of
NS time it brings.

The analytical formula is shown as follow:

Switching efficiency = period_share × 15min
switch state change

4.2.4 Traffic prediction
LSTMs introduction

Long Short-Term Memory (LSTMs) networks are a special kind of Recurrent Neural
Network (RNN) capable of learning long-term dependencies in data sequences.
Unlike traditional RNNs, which struggle to capture long-term temporal relation-
ships due to the vanishing gradient problem, LSTMs are designed with a unique
mechanism. This mechanism allows them to effectively remember information over
extended periods and forget irrelevant data, making them particularly suited for
time series prediction tasks where understanding past context is crucial. In the
context of traffic load prediction, LSTMs offer several benefits. Firstly, their ability
to process sequential data makes them ideal for analyzing time series where the
sequence of data points is significant. Traffic patterns are naturally sequential and
have temporal dependencies, which LSTMs can detect and model. Second, LSTMs
can deal with variability and seasonality in traffic data, learning from daily, weekly,
and even yearly patterns to make accurate predictions. Finally, their ability to
handle different lengths of input sequences enables the modeling of traffic loads
with varying historical data lengths, as well as accommodating sudden changes in
traffic patterns caused by special events.

XGBoost introduction

XGBoost, short for Extreme Gradient Boosting, is an advanced and optimized
gradient boosting framework that is skilled at regression and classification. It
stands out for its efficiency, flexibility, and cross-platform compatibility. XGBoost
improves prediction accuracy by sequentially building decision trees, with each
tree attempting to correct the mistakes of its predecessors, thereby effectively
reducing loss and improving results. When applied to traffic load prediction,
XGBoost proves advantageous due to its: effortlessly handling missing values
and discrepancies, ensuring accurate predictions even with incomplete datasets.

17



Workflow and methodology

Its ability to perform feature importance analysis aids in understanding and
ranking the factors that influence traffic load, allowing for the development of
targeted management strategies. XGBoost’s speed-focused design allow it to
efficiently process large datasets, making it ideal for real-time traffic load prediction.
Furthermore, XGBoost uses regularization to prevent overfitting, allowing the
model to generalize to previously unseen data while ensuring its robustness and
forecasting accuracy. XGBoost’s precision and efficiency in learning from complex
traffic data sets make it a powerful tool for forecasting, facilitating effective traffic
management and resource optimization.

ARIMA introduction

The ARIMA (Autoregressive Integrated Moving Average) model is a classic sta-
tistical technique for forecasting time series data, combining autoregression (AR),
differencing (I), and moving average (MA). It’s highly regarded in traffic load
prediction for its ability to capture the dependencies between observations, handle
seasonal variations, and offer flexibility by adjusting its parameters (p, d, q). De-
spite its simplicity, ARIMA excels in producing accurate forecasts, especially for
well-understood time series, making it ideal for analyzing traffic patterns. Its em-
phasis on stationarity through data differencing not only ensures precise short-term
forecasts but also facilitates a deeper analysis of traffic data. This makes ARIMA a
valuable tool for improving traffic management and optimizing network resources.
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Chapter 5

Traffic load and base station
characterization

5.1 Traffic load analysis
The NetMob dataset comprises data from 68 widely utilized mobile services,
representing a broad spectrum of applications fundamental to modern life. These
include offerings from major platforms such as the Apple App Store, Facebook,
Google’s suite of applications, Netflix, YouTube, Spotify, and the PlayStation
network. For this analysis, a focused subset of 29 applications was chosen as table
5.1 shows. These applications were subsequently classified into distinct traffic load
types, namely video streaming, social media, application store downloads, web-
related services, cloud services, gaming, and music streaming. This classification
aimed to enable a nuanced examination of traffic distribution across different types
of digital services in daily use.

Amazon Web Services Apple App Store Apple iCloud Apple Music
Apple Video DailyMotion Dropbox EA Games
Facebook Facebook Live Fortnite Google Drive
Google Meet Microsoft Store Netflix Orange TV
PlayStation Pokemon GO Skype Spotify
Telegram Twitch Twitter Web Downloads
Web Games Web Streaming WhatsApp Wikipedia
YouTube

Table 5.1: List of Applications

The findings from figure 5.1 reveal that video streaming services account for
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the majority of data traffic, representing over half of total consumption. This is
followed by significant contributions from social media platforms and application
stores, highlighting the extensive role of social media Subsequent research sought
to analyze peak and off-peak usage times for the two dominant traffic categories,
investigating whether usage patterns for these application types exhibit different
cycles. The figure 5.2 indicated that social media usage peaks around 13:00-13:15,
aligning with typical lunch break times, suggesting a tendency for individuals
to engage with the internet post-lunch. Conversely, video streaming activities
figure 5.3 peak between 22:00-22:45, reflecting common pre-sleep routines where
individuals consume TV programs or movies as a form of relaxation.

Figure 5.1: Percentage of different types of traffic load

The analysis also identified a uniform off-peak period for both application types
between 04:00-06:00, a period when most people are asleep and thus digital activity
is minimized. This period is ideal for putting network sharing strategies into
practice, taking advantage of the decreased demand to maximize the effectiveness
and allocation of network resources.
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Figure 5.2: Social media traffic pattern analysis

Figure 5.3: Video streaming traffic pattern analysis

5.2 BS traffic trace analysis
After analyzing the traffic profiles for each base station (BS) operated by Operator
1 (Op1), a specific interest was developed concerning the traffic load patterns of
Orange base stations. This investigation employed the K-means clustering method
to categorize the base stations based on traffic volume, without prior knowledge
of the cluster count. The initial step involved determining the optimal number of
clusters (K) using the Elbow method, which identifies the "elbow" point where the
rate of decrease in the Within-Cluster Sum of Squares (WCSS) begins to diminish.
The analysis figure 5.4 suggested that K = 4 is an appropriate choice.

Subsequently, Orange base stations were segmented into four distinct clusters,
with the traffic volume serving as the classification criterion. Notably, the average
traffic volume for base stations in each successive cluster (i + 1) was approximately
ten times greater than that of the preceding cluster (i). Table 5.2 presents the
observed count of base stations in each cluster alongside the normalized average

21



Traffic load and base station characterization

Figure 5.4: Elbow method for determining K

traffic volume per base station. Furthermore, Figure 5.5 illustrates the spatial
distribution of base stations across Lyon, differentiated by cluster.

Cluster ID 0 1 2 3
Number of BSs 265 118 34 8
Normalized traffic
volume per BS 0.31 3.33 30.91 288.63

Table 5.2: BS clusters number and normalized volumn

The analysis revealed that clusters 2 and 3 comprised a smaller number of
base stations, each handling high to extremely high traffic volumes and dispersed
sparsely across the region. This pattern indicates a relatively low potential for
network sharing due to the higher demand at these nodes. Conversely, a significant
number of base stations were classified under Cluster 1, characterized by lower
traffic volumes. This cluster, coupled with a denser distribution of base stations
that likely results in overlapping coverage areas, suggests a higher feasibility for
implementing network sharing strategies. The greatest potential for network sharing
was identified within Cluster 0, which consists of many base stations experiencing
extremely low traffic loads. These stations are densely situated, predominantly in
urban centers, to supplement capacity during periods of peak demand, thereby
indicating optimal conditions for network sharing.
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Figure 5.5: The spatial distribution of base stations across Lyon in different
clusters

5.3 Base station distribution analysis

This part I provide a preliminary evaluation of the network sharing potential
analyzing how the BSs from different mobile operators are distributed in the city
of Lyon

5.3.1 Nearest Neighbor Analysis

This method measures the distances between each point and its nearest neighboring
point. A smaller average distance indicates a more clustered pattern. Table
5.3 reports the average intra-operator BS distance, corresponding to the average
distance between each BS and the nearest BS belonging to the same operator. A
lower average distance reflects a more clustered pattern of BS distribution, possibly
indicating a focus of the mobile operator on a denser BS deployment in the Lyon
region, like in the case of SFR.
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Orange Bouygues SFR Free
Telecom Mobile

Distance [m] 791 733 697 832

Table 5.3: Intra-operator BS distance

5.3.2 Huff Model
The Huff Model will help us understand the probability of the base stations of one
operator to be located near the base stations of another operator. Table 5.4 shows
the average inter-operator Huff Model probability for spatial interactions between
base stations of different operators, reflecting the likelihood that the BSs owned by
a given operator are located near the BSs belonging to another operator. The Huff
Model is typically adopted in spatial analysis to evaluate the probability for a user
to visit a site, based on the distance of the site, its attractiveness, and the relative
attractiveness of alternatives.

Huff Model Probability
Orange-Bouygues Telecom 0.473
Orange-SFR 0.463
Orange-Free Mobile 0.558
Bouygues Telecom-SFR 0.492
Bouygues Telecom-Free Mobile 0.531
Free Mobile-SFR 0.505

Table 5.4: Huff Model probability for all pairs of MOs.

Based on the Huff Model, the probability that a BS at location xi will interact
with any BS in set Y due to its closeness The normalized Huff Model Probability,
P (xi → Y ), the probability that a BS at location xi will interact with any BS in
set Y due to its closeness. For each base station xi in set X is calculated as follows:

P (xi → Y ) = M1qM2
j=1

3
M2

(dij+1×10−10)λ

4
+ M1

(5.1)

where:

• M1 and M2 are the number of base stations for each operator.

• dij represents the Euclidean distance between base station i from set X and
base station j from set Y .

• λ is a given sensitivity to distance parameter.
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To calculate the mean Huff Model Probability, PH , for all base stations in set
X interacting with any base station in set Y , the formula is:

PH = 1
R

RØ
i=1

P (xi → Y ) (5.2)

where R is the number of base stations in set X. The pair Orange-Free Mobile
features the highest Huff Model probability, suggesting a stronger spatial closeness
between BSs from these two operators, possibly highlighting a higher potential for
network sharing that may derive from the cooperation between these two operators
in this region.

5.3.3 Ripley’s K-function and G-function
From the paper "Characterizing Spatial Patterns of Base Stations in Cellular Net-
works point analysis", Ripley’s K-function and G-function are utilized to determine
whether the base station distribution is uniform or exhibits a clustered pattern.
These two coefficients enable the analysis of base station distribution across various
areas. Different operators exhibit distinct coefficients, introducing variability into
these measures, and necessitate definitions for urban and rural areas.

Ripley’s K-function
Ripley’s K-function is a statistical tool used in spatial analysis to quantify

the degree of spatial clustering or dispersion of points within a specified area. It
serves as a measure of spatial homogeneity and provides insights into the patterns
of distribution—whether points are randomly dispersed, uniformly spaced, or
clustered—over a range of scales.

The mathematical expression for Ripley’s K-function, denoted as K(t), for a set
of points within a bounded region A is given by:

K(t) = λ
Ø
i /=j

I(dij < t)
|Aij|

where:

• t represents the scale of analysis or the distance of interest.

• λ is the intensity of the point process, defined as the average number of points
per unit area.

• dij is the distance between points i and j.

• I is the indicator function that equals 1 if the condition within its argument
is true (i.e., dij < t) and 0 otherwise.
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• |Aij| accounts for edge effects by adjusting the contribution of each pair of
points based on their proximity to the boundary of the region A.

Ripley’s G-function
Ripley’s G-function is a significant statistical tool that analyzes the spatial

patterns by focusing on the nearest-neighbor distance distribution within a point
pattern.

The G-function, G(d), can be defined as the cumulative distribution function
(CDF) of the nearest-neighbor distances in a point pattern. Mathematically, it is
expressed as:

G(d) = P (D ≤ d)

where D represents the nearest-neighbor distance for a randomly selected point,
and d is a specific distance of interest. The value of G(d) indicates the proportion
of point pairs whose nearest-neighbor distance is less than or equal to d.

The interpretation of the G-function revolves around understanding the spatial
closeness of points within the pattern. A higher G(d) value at a particular distance
d suggests a greater level of clustering or aggregation at that scale, as more points
have their nearest neighbors within this distance. In contrast, lower G(d) values
indicate a more dispersed or regular distribution, with points being farther apart
from their nearest neighbors.

A larger K-function value suggests a more clustered distribution of base stations
in city centers, as shown in figure 5.6. Because of the increased demand for mobile
network services brought on by larger populations and more concentrated urban
activities, it appears that base stations are distributed more widely. Furthermore,
the G-function for cities shows a sharp increase in the nearest neighbor clustering.
Simultaneously, the G-function for the rural area gradually increases, suggesting a
more uniform distribution of nearest neighbors.

Implications for Network Sharing: The spatial distribution shown by Ripley’s
K-function may have an impact on the viability and possible advantages of sharing
infrastructure in network sharing strategies. Closely spaced base stations from
various operators could make sharing arrangements easier and more advantageous
in city centers, which could result in significant cost savings and efficiency benefits.
The viability of sharing in rural areas may be influenced more by geographical
positions because base stations are more widely distributed there.
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Figure 5.6: The Ripley’s K-function and Ripley’s G-function of Orange BSs in
urban area and rural area
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Chapter 6

Double base stations
network sharing

6.1 Double Base Station Network Sharing Per-
formance Evaluation in Different Areas

This part of the study concentrates on where base stations (BS) are close to
each other, operated by two mobile operators (MOs), namely Orange (Op1) and
Bouygues Telecom (Op2). These operators are scrutinized across three distinct
geographic contexts: urban, suburban, and rural settings which were mentioned
before, each offering unique operational challenges and opportunities for network
sharing (NS). Utilizing time-variant BS traffic trace data which is integrated
before, the research first quantifies the fraction of time slots amenable to NS
implementation, symbolized as fT . The critical variable under investigation is the
threshold Cth, which delineates the maximum allowed saturation of BS capacity
for offloading traffic to initiate NS. The dependency of fT on varying Cth values
is meticulously analyzed through traffic patterns observed across different days of
the week, highlighting the temporal dynamics of NS applicability. The findings
in Figures 6.1 and 6.2, with each curve representing a different day of the week
(with Monday corresponding to Day 1), illustrate a noteworthy positive correlation
between the fT and the threshold Cth, with higher thresholds expanding the scope
of NS applicability, with the fT surpassing 90%. A notable disparity in fT values
is observed between weekdays and weekends, especially in urban and suburban
locales, likely due to high traffic demands on these areas on weekdays. This variance
underscores the potential of NS to adapt to changing network demands, as opposed
to weekends where NS strategies are feasibly employed for extended durations, even
under minimal Cth configurations.
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Figure 6.1: Fraction of NS time slots in urban area
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Figure 6.2: Fraction of NS time slots in suburban area

In contrast, rural areas, as shown in Figure 6.3, display minimal daily variability,
with no obvious distinction between weekdays and weekends. Remarkably, even
with Cth thresholds as low as 50%, NS application extends to at least one-third of
the day across all regions, peaking at nearly 80% in suburban areas. These findings
underscore the significant leeway mobile operators possess in mitigating network
capacity overload risks. Conservative Cth settings still permit the deactivation of
superfluous radio resources for considerable periods, presumably leading to sub-
stantial reductions in energy consumption and operational expenditures. Moreover,
the analysis reveals a substantial overlap in the time slots during which either of
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Figure 6.3: Fraction of NS time slots in rural area

Figure 6.4: Fraction of NS time slots considering three different area types.

the co-located BSs within each pair might be deactivated, suggesting periods or
usage patterns where NS is broadly feasible.

Furthermore, the study investigates the implications of Cth settings on the
frequency of BS activation and deactivation operations. Figure 6.8 depicts the
occurrence of BS activation/deactivation operations for increasing values of Cth

during the different days of the week in the three area types. Frequent BS operations
will reduce the life of the switch and make network sharing inconvenient for
operators. Contrary to fT ’s behavior, this metric exhibits greater variability and
lacks a consistent pattern across different days, A higher operation suggests that
traffic patterns may include either multiple short low-traffic intervals or fewer
longer off-peak periods. Notably, significant fT achievements come at the cost of
frequent BS switching operations, especially in urban areas, raising concerns over
operational acceptability due to high switching frequencies. These critical aspects
should be taken into account in defining the proper threshold configuration, since it
may be convenient to limit the maximum allowed frequency of switching operations
or to introduce some hysteresis by setting the threshold on the BS operations,
to avoid too frequent switching operations, hence preserving the BS from faster
degradation. This is done in the following chapter research.

Furthermore, another research is to focus on energy consumption. Figure 6.12
shows that the strategic application of NS could facilitate substantial energy savings,
potentially exceeding 40% compared to scenarios of no NS implementation. The
results illustrate the empirical findings related to energy conservation achieved
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Figure 6.5: Switch operations in urban area
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Figure 6.6: Switch operations in suburban area

through NS across various geographic settings, employing a representative sample
of base station (BS) pairs. The analysis delineates the correlation between energy
savings and the Cth settings, applied uniformly across each day of the week. It is
observed that elevating the Cth threshold contributes to increased energy savings,
albeit with notable fluctuations dependent on daily traffic loads and user interaction
patterns. The figure for the fraction of NS time slots and the figure of energy
saving shows the same pattern which means that there may be a linear correlation
between the energy saved and fT .

In rural areas, the disparity in energy conservation between weekdays and
weekends is not obvious, suggesting a uniform potential for savings each day.
Remarkably, even under a low Cth configurations, a minimum energy saving of
10%—and in some cases, up to 35%—can be realized across all examined areas. This
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Figure 6.7: Switch operations in rural area

Figure 6.8: Switch operations considering three different area types.

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Threshold

15
20
25
30
35

En
er

gy
 S

av
in

g 
[%

] Mon
Tue
Wed
Thu
Fri
Sat
Sun

Figure 6.9: Energy saving in urban area

finding emphasizes the capability of NS to balance the objectives of a sustainable
green network with the maintenance of the quality of service (QoS).
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Figure 6.10: Energy saving in suburban area
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Figure 6.11: Energy saving in rural area

Figure 6.12: Energy saving considering three different area types.
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Chapter 7

Network sharing
performance metrics

In the domain of network sharing, it is essential to conduct the evaluation of its
performance outcomes, focusing on aspects such as energy savings, the feasibility
of implementing sharing configurations across base station pairs, and the optimal
frequency of base station switch operations. This kind of analysis is essential for
defining the real-world advantages and operational sustainability of network sharing
in the context of managing telecommunications infrastructure. Furthermore, it
becomes crucial to carefully examine how frequently infrastructure switch operations
occur. The idea behind these operations in practical application is to minimize
their frequency as much as feasible. This method is motivated by the knowledge
that excessive switching might cause base station components to start degrading
more quickly, which would be harmful to the network infrastructure’s resilience and
operational lifespan. Here are the detailed analysis of different metric parameters:

7.1 Base station remaining percentage
This metric examines the utilization patterns of active base stations within network
sharing configurations, aiming to delineate the daily usage trends of base station
resources. The formula for calculating the remaining percentage of base station
capacity at each time point is defined as:

Base Station Remaining Percentage = capacity-tfcurr
capacity

Where "Capacity" refers to the total capacity of the active base station, and
"Current Traffic Flow" utilizes data from the operational base station within a
network sharing pair.
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Analysis of the figure 7.1 and figure 7.2 yields distinct patterns of base station
capacity utilization across different regions. In urban centers, the remaining
capacity of base stations during weekdays is notably low, with a marked increase
over weekends. This pattern suggests that base stations in these areas predominantly
serve workplaces, experiencing peak traffic loads after lunch, a trend that aligns
with prior analyses focusing on social media traffic loads. In such contexts, social
media traffic constitutes a significant portion of the total network load.

Figure 7.1: Base station remain percentage for rural area

Figure 7.2: Base station remain percentage for city center area

Conversely, rural regions exhibit a different pattern, characterized by minimal
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fluctuations in remaining capacity during morning and afternoon hours, and a
sharp decrease in the evening as people engage in home-based activities. This
observation aligns with previous findings, suggesting that rural areas, likely serving
residential communities, experience traffic patterns influenced by evening activities,
such as streaming videos or communicating with social media for entertainment and
information. This indicates that base stations in residential areas face increased
load pressures during evening hours. All these observations underscore a close
relationship between base station usage patterns and the daily life activities of
individuals in different regions. In order to account for these variations, it is crucial
to dynamically adjust network sharing strategic arrangements.

7.2 Traffic load transfer
The concept of traffic load transfer is quantified as the proportion of network load
that is offloaded from a deactivated base station to an active counterpart within a
network sharing arrangement. This metric serves as an indicator of the offloading
capability inherent to a pair of base stations. The study embarks on a comparative
analysis across various geographic regions and among different network operators
to ascertain potential correlations between the traffic load transfer rate and the
specific characteristics of regions or operators.

The analytical model for calculating the traffic load transfer is expressed by the
formula:

Traffic load transfer =
qn

i=1 tfi · sharing_statusiqn
i=1 tfi

Here, tfi represents the traffic load at the base station that is temporarily deacti-
vated, and sharing_statusi denotes the binary status of network sharing at each
time point (with ’1’ indicating active sharing and ’0’ representing periods without
sharing). The variable n corresponds to the total number of time points under
consideration in the analysis. The table 7.1 7.2 7.3 provides averages for network
sharing efficacy in different regions and between operators, as well as the density
of two operators’ base stations in three distinct regions.

The outcomes of this case study, particularly focusing on the suburban region,
indicate a significant potential for enhanced traffic load transfer between base
station pairs in a network sharing arrangement. It is observed that, within both
city center and suburban areas, the traffic load transfer from Orange to Bouygues
Telecom exhibits a slight increase. However, this increase does not manifest a
clear correlation with the density of the operators’ base station infrastructure.
The geographical distribution of base stations and the average traffic load during
intervals amenable to network sharing emerge as pivotal factors. These results
imply that it is really complicated to understand the potential factors for network
sharing performance.
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Region Average

Region Average
City Center 0.689170337
Suburban 0.749352319
Rural 0.715044377

Table 7.1: Regions’ average traffic load transfer

Operator Average

Transfer Average
City Center Orange to Bouygues 0.861828366
City Center Bouygues to Orange 0.602841322
Suburban Orange to Bouygues 0.761416507
Suburban Bouygues to Orange 0.713159754
Rural Orange to Bouygues 0.675950492
Rural Bouygues to Orange 0.73459132

Table 7.2: Operators’ average traffic load transfer

The Density of Two Operators in Three Regions

Region Orange Base Stations/km2 Bouygues Base Stations/km2

City Center 6.25 6.375
Suburban 2.5 2
Rural 0.875 1

Table 7.3: The Density of Two Operators in Three Regions

7.3 Percentage of network sharing fT

Regarding the conceptual framework of network sharing, it is characterized by two
distinct states, predicated on the activation status of a secondary base station. The
proportion of time during which network sharing is operational is quantified by the
formula:

fT = Number of period_share
Total periods number

This study approaches the analysis from two perspectives. Initially, the day is
segmented into four periods: 00:00-06:00, 06:00-12:00, 12:00-18:00, and 18:00-
24:00, (total 720 small time intervals for each period in one month)to assess
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potential fluctuations in network sharing throughout the day. Table 7.4 suggests a
noticeable decline in fT as the day progresses, irrespective of geographic region. This
trend could be attributed to the surge in social media usage and video streaming
activities, particularly between 18:00 and 24:00, which dominate the traffic volume,
consequently reducing the feasibility of network sharing during these hours. The
evaluation of fT across different mobile network operators, with findings presented
as table 7.5 shows:

ID_Sharing P1_NS P2_NS P3_NS P4_NS
city_center 716 645.75 472.5 385.875
sub_urban 714.6 641.7 478.7 479.1
rural 717.2 676.7 525.5 435
avg fT 0.994 0.909 0.684 0.602

Table 7.4: NS percentage for different periods in one day

These results indicate a pronounced correlation between fT and specific time
periods rather than the operators themselves or their respective regions. Across
various contexts, the fT remains consistently high, ranging from 60% to 90%,
underscoring the operational viability of network sharing. This stability suggests
that base stations typically operate under low-load conditions, enabling a single base
station within a shared pair to support the combined traffic without exceeding its
capacity limits. Therefore, network sharing appears as a sustainable and practicable
strategy for green networking concepts, demonstrating its feasibility across diverse
temporal and landscapes.

7.4 Power percentage saved
Building upon the power consumption model mentioned in the previous chapter,
the power utilization for each time interval can be accurately evaluated. The
adoption of network sharing enables the temporary deactivation of a base station
(BS), thereby conserving energy that would otherwise be expended during these
periods. Consequently, a revised calculation of power consumption is undertaken,
incorporating the combined traffic load of the network-sharing BS pair and the
operational capacity of the active BS. The efficiency of this strategy is quantified
through the calculation of the power percentage saved, defined as the reduction
in power usage relative to the scenario where both BSs remain operational. The
formula is expressed as:

Power percentage saved = total power of bs1 and bs2 − power_shared
total power of bs1 and bs2
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Location and Operator NS Percentage
City Center Orange 0.715
City Center Bouygues 0.9425
Suburban Orange 0.812
Suburban Bouygues 0.827
Rural Orange 0.833
Rural Center Bouygues 0.786

Table 7.5: NS Percentage for different regions and operators

And the result is presented in table 7.6 indicating a positive correlation between the
power percentage saved and the percentage of network sharing, demonstrating that
network sharing strategies facilitate significant energy conservation, potentially
exceeding 40% compared to non-sharing scenarios.

Location and Operator Power Percentage Saved Percentage of NS
City center Orange open 0.305 0.715
City center Bouygues open 0.427 0.9425
Suburban Orange open 0.358 0.812
Suburban Bouygues open 0.366 0.827
Rural Orange open 0.367 0.833
Rural center Bouygues open 0.339 0.786

Table 7.6: Power Percentage Saved with respect to Network Sharing Percentages.

To further quantify this relationship, a linear regression analysis was employed,
aiming to evaluate the linear correlation between the percentage of network sharing
fT (x) and the average power savings (y) across BS pairs in each area. After
excluding outliers, the resultant linear equation shown in figure 7.3: y = 0.48x−0.04
reveals a positive correlation coefficient of 0.48. This coefficient suggests that
increases in fT directly contribute to energy saving. The findings from this regression
analysis confirm the existence of a linear relationship between fT and power savings,
positing that maximal network sharing could yield energy savings at approximately
44%. Such huge energy conservation underscores the potential for significant
reductions in electricity costs, particularly within urban settings, confirming the
environmental and economic benefits of network sharing.
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Figure 7.3: Linear regression result of the average power savings with respect to
the percentage of NS

40



Chapter 8

Triple base station network
sharing analysis

To enhance the applicability and effectiveness of network sharing (NS) strategies,
this chapter explores the transition from dual to triple base station (BS) NS config-
urations. Notably, the covering time of NS is significantly high, this observation
raises the idea of the feasibility of implementing NS strategies involving three base
stations from three closely situated Mobile Network Operators (MNOs), a scenario
commonly encountered in city center regions where three base stations are either
co-located or positioned within a 50-meter radius of one another, as the previously
established threshold. Certain BS pairs have been identified for in-depth analysis.

8.1 One threshold triple BSs NS strategy
This approach mirrors the dual strategy, wherein a single base station with the
largest capacity remains active while two others are deactivated when the traffic
load of three BSs falls below a pre-defined threshold Cth is set as 80% of capacity as
before. Consequently, the traffic load from the two inactive stations is transferred
to the operational station, thereby optimizing infrastructure utilization. The focus
of this analysis encompasses two primary aspects: the comparative reduction in
NS usage vis-à-vis dual BS configurations and the correlation between energy
savings and NS usage. Closing two base stations obviously leads to enhanced power
conservation. Figure 8.1 shows the daily trend of NS utilization. Employing triple
BS NS configurations, with respect to dual configurations, results in a reduction
exceeding 10% during peak traffic periods, such as lunchtime and evening, while
maintaining a relatively high NS usage (over 65%) during all periods. This stability
can be attributed to the design of base stations, which often possess capacities
far exceeding average demands, thereby ensuring adequate residual capacity to
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support the combined traffic load of three stations.

Figure 8.1: Trend of NS across the periods for double and triple NS

Data from table 8.1 comparing the NS frequency and monthly power savings
(in watts) for both dual and triple BS configurations indicate that triple BS NS,
despite a substantial reduction in NS usage (sometimes nearly 30%), still achieves
a 5%-10% increase in monthly energy savings compared to dual-station scenarios.
These findings suggest that triple BS NS could be a viable strategy when the
inter-station distances among the three MNOs meet specified criteria.

Configuration NS Usage Power Saved Per Month
307173_double 0.788889 1209193(0.2272)
307173_triple 0.467361 1411063(0.2651)
236358_double 0.804861 1197605(0.2301)
236358_triple 0.520833 1537951(0.2955)
209633_double 0.588194 853962.8(0.1596)
209633_triple 0.395833 1175818(0.2198)

Table 8.1: Network Sharing Usage and Power Consumption Saved Per Month

To quantitatively assess this relationship, a linear regression analysis similar
to previous studies was conducted to examine the linear correlation between NS
frequency (x) and average power savings (y) across BS pairs in each area. The
analysis, illustrated in figure 8.2, reveals a steeper slope for the triple base station
scenario, indicating a more efficient power saving relative to NS frequency. However,
practical implementation must consider operational constraints and the willingness
of additional operators to engage in shared agreements.
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Figure 8.2: Linear function conclusion of double and triple BS NS

8.2 Dual threshold triple BSs NS strategy

Following the previous research, it was observed that the fT of triple NS appears
to be relatively low. This finding suggests an opportunity to enhance the network
sharing framework by introducing a dual-threshold strategy, which could potentially
yield a more optimized system. The proposed two-threshold strategy functions as
follows: when the traffic volume is beneath the lower threshold—defined here as
the "small traffic volume" threshold—network demand can be met by maintaining
a single base station, specifically the one with the highest capacity, in active mode.
This approach capitalizes on periods of low traffic, maximizing energy savings while
still catering to service requirements. Conversely, if the traffic volume surpasses
the first threshold yet remains below a higher secondary threshold, the strategy
calls for keeping the two base stations with the largest capacities operational. This
intermediate step ensures that moderate increases in traffic can be accommodated
without fully activating all network resources. Finally, should the traffic volume
exceed the second, higher threshold, the strategy dictates that all three base stations
remain operational to adequately handle periods of peak demand.

The analytical formulation for determining the operational thresholds based on
the traffic load (Ta, Tb, Tc) for base stations A, B, and C, respectively, is articulated
as follows:
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1. If Ta + Tb + Tc < max(Ca + Cb + Cc) × 0.8, then opening a single base station
is sufficient to manage the entire traffic load.

2. If max(Ca + Cb + Cc) × 0.8 < Ta + Tb + Tc < max(Ca + Cb + Cc) × 0.8 +
medium(Ca + Cb + Cc) × 0.8, then two base stations should be operational.

3. If Ta + Tb + Tc > max(Ca + Cb + Cc) × 0.8 + medium(Ca + Cb + Cc) × 0.8,
then all three base stations need to be open to accommodate the traffic load.

Adopting a dual-threshold strategy allows for a more efficient utilization of
infrastructure, especially during periods when traffic volume falls within a moderate
range. With a two-threshold system, one base station can remain inactive in the
middle traffic interval, potentially yielding greater energy savings and enhancing
the fT that NS is viable. When researching on this strategy, our research focuses
on three problems

• Optimal Traffic Load Distribution: Determining the most effective method
for distributing the traffic load across two active base stations during the
traffic load in intermediate range to ensure NS efficiency.

• NS Percentage Optimization: Evaluating how the proposed dual-threshold
strategy influences the overall NS percentage, particularly in comparison to a
dual base station NS setup.

• Energy Savings Correlation: Determining the linear relationship between
the energy conservation and the NS percentage, or the number of base stations
in operation.

8.3 Traffic flow strategy (How to calculate ideal
power for the two base station condition)

Assuming Ca is the maximum capacity among the three base stations (BSs), Cb is
the second highest capacity, X represents the traffic load assigned to base station
A, and T denotes the current combined traffic load of the three base stations, such
that T = Ta + Tb + Tc, we have the following:

Note:

• BS power consumption Pin = 504 + 16.8 · Pout (W), where Pout is the relative
RF output power.

•
Pout =

A
traffic load

capacity of base station

B
· Pmax
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The objective function is defined as:

min
3

X

Ca

+ T − X

Cb

4
Subject to the constraints:

0 < X ≤ Ca < T,

0 < Cb ≤ Ca.

The derivative of the objective function with respect to X is 1
Ca

− 1
Cb

.
When Ca > Cb, the derivative is less than 0, indicating that the objective

function is decreasing. Thus, the minimum occurs at the maximum value of X,
which is X = Ca.

The objective function then simplifies to:

1 + T − Ca

Cb

The final power calculation for two base stations becomes:3
1 + T − Ca

Cb

4
· Pmax · 16.8 + 504 · 2

If Ca = Cb, the derivative of the objective function with respect to X is 0,
indicating that the distribution of traffic load does not impact the total power
consumption.

In our predefined configuration, each base station (BS) possesses a distinct
capacity. Consequently, the computation of our dual-threshold strategy assumes an
ideal scenario wherein the traffic load from the deactivated base station is initially
offloaded to the base station with the greatest capacity. Subsequently, the residual
traffic is transferred to another active base station. Employing this method of
calculation allows us to estimate the power consumption under an optimal NS
arrangement and to determine the corresponding energy savings. The table 8.2
presents a comparison of various BS across three distinct NS strategies. When
employing a three-base station NS strategy with two thresholds, as opposed to the
dual base station setup or the initial triple base station approach with a single
threshold, we observe a significant enhancement in network sharing efficiency. In
particular, there is a 10% improvement over the triple base station strategy with a
single threshold and an approximate 15% increase in monthly energy savings over the
dual base station scenario. According to these results, the dual-threshold approach
for three base stations performs better in terms of energy saving and NS efficiency.
This seems to be the best NS strategy, assuming that the BS infrastructure is
distributed in a way that makes triple base station NS configurations easier to
perform.
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Configuration NS Usage Power Saved Per Month
307173_double 0.788889 1209193 (0.2272)
307173_triple_1threshold 0.467361 1411063 (0.2651)
307173_triple_2threshold 0.9424 2000254 (0.3759)
236358_double 0.804861 1197605 (0.2301)
236358_triple_1threshold 0.520833 1537951 (0.2955)
236358_triple_2threshold 0.9271 2036901 (0.3914)
209633_double 0.588194 853962.8 (0.1596)
209633_triple_1threshold 0.395833 1175818 (0.2198)
209633_triple_2threshold 0.8934 1703452 (0.3183)

Table 8.2: Comparison of Network Sharing Usage and Power Consumption Savings
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Chapter 9

Switch operation
optimization

As previous chapter mentioned, the frequency of switch operations are thought as
a critical factor in evaluating the practicality of implementing a NS strategy in
real-world scenarios. The underlying objective is to minimize the frequency of these
operations. Several metrics will be introduced and defined to investigate more
effective constraints on switch operations, with the aim of simplifying operational
complexity and enhancing the feasibility of NS strategy. This research of switch
operations is conducted within the dual base station scenarios.

9.1 Switch parameters

The table 9.1 displays results of the switch efficiency in the 3 areas, segmented
into various periods over the span of a day. For the purposes of this analysis, each
day is divided into four six-hour periods: 00:00-06:00, 06:00-12:00, 12:00-18:00,
and 18:00-24:00. This division makes it easier to evaluate possible changes in the
frequency and efficiency of switch operation at different times of the day.

ID_SharingPair P1_SE P2_SE P3_SE P4_SE
City Center 1221.505 272.4136 100.6467 71.38559
Suburban 852.37 167.895 74.01043 75.09637
Rural 1240.466 352.4975 106.7782 66.55757
Average 1104.78 264.2687 93.81176 71.01318

Table 9.1: Switch Efficiency Across Different Periods and Locations

47



Switch operation optimization

Although the results cannot conclude the relationship between switching effi-
ciency and specific geographic regions due to the limited sample of regions, there
is a clear correlation found in relation to the time of day. In particular, switch
efficiency shows a noticeable decrease during the day, and periods 3 (12:00-18:00)
and 4 (18:00-24:00) require special attention. These intervals show a pattern of
discontinuous network sharing, characterized by instances where the traffic load
approaches or exceeds the network capacity, resulting the activation or deactivation
of a base station (switch state operation). The observable decrease in switch
efficiency during the latter half of the day underscores the critical nature of these
periods, during which the traffic load frequently fluctuates around the capacity
threshold. The observed trend indicates that switch operation management must
be implemented strategically to effectively improve the practicality of NS.

9.2 Fix period constraints
After dividing one day into four distinct periods, it is observed that the frequency
of state changes varied across each interval. A preliminary strategy to enhance
switch efficiency involves ensuring that once NS is initiated, it should be sustained
for a minimum duration of 30 minutes (2 time periods). This strategy, known
as "forbidden fast changes," seeks to eliminate the occurrence of short-term "010"
patterns, which are marked by abrupt NS status switching. Switch efficiency
has been clearly increased by putting this strategy into practice when compared
to previous metrics. This quick switch (only 15 minutes of NS) is not what’s
considered ideal for MNOs. When this strategy is applied, Table 9.2 and table 9.3
compares the results and shows that switch operations (state changes SC in table)
are significantly reduced while most of the usage of NS is maintained. Building on
this, the following step is establishing an upper limit for switch operations within
a single period. By setting a thoughtful threshold for the number of permissible
state changes:

• When detecting the fourth state change within a period, subsequent actions
depend on the state of the switch. If the transition is from NS active (1) to NS
inactive (0), all subsequent states within that period are set to 0. For instance,
from an original sequence of ‘011101110’, following the final switch to state 0,
all remaining NS statuses for that period would similarly be adjusted to 0.

• Conversely, if the switch is from NS inactive (0) to NS active (1) and occurs
for the fifth time within a period, all states following this fifth transition are
set to 0. An illustrative sequence might transform from ‘111011101111’ to
‘1110111011110000’ after adjustment.
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ID_pair P3_SC P3_NS P3_SE P4_SC P4_NS P4_SE
307189_622919 207 413 29.92754 179 289 24.21788
535932_211336 52 679 195.8654 77 655 127.5974
550114_218981 71 669 141.338 83 654 118.1928
682471_340649 46 687 224.0217 122 619 76.10656

Table 9.2: NS and SE Original

ID_pair P3_SC P3_NS P3_SE P4_SC P4_NS P4_SE
307189_622919 145 381 39.41379 120 261 32.625
535932_211336 48 677 211.5625 61 647 159.0984
550114_218981 63 665 158.3333 69 647 140.6522
682471_340649 40 684 256.5 106 611 86.46226

Table 9.3: NS and SE After Forbidden Fast Changes

9.3 Switch trade off parameters

To evaluate the effectiveness of different operational constraints strategies, it
is important to introduce a metric that quantifies the balance between energy
conservation and the reduction in switch operations. This metric, referred to as
the Average Trade-off, is calculated as follows:

Average Trade-off = energy saved reduced due to the strategy
switch operation reduced

The objective is to minimize this metric, with the optimal scenario being a
significant reduction in switch operations without a corresponding decrease in
energy savings. This metric serves as a benchmark for comparing the effectiveness
of two NS strategies: the fast forbidden changes strategy and a strategy that sets
upper bounds on the fast forbidden changes framework. The comparative analysis
of these strategies, particularly their trade-offs, is presented in table 9.4:

The analysis’s conclusions show that the adopted strategy is effective, as shown
by the low average trade-off seen in the city center region. Moreover, this trade-off
value shows a trend of decreasing as upper bounds are established. These findings
support the fixed period method as an effective strategy for improving operational
viability.
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Strategy City Center Suburban Rural
Forbidden “010” 0.13 0.5735 0.5013
Forbidden “010” and add “upper bounds” 0.06 0.4376 0.4978

Table 9.4: Average trade off after setting Upper Bounds

9.4 Sliding window constraints
After investigating the previously mentioned switch operational strategy, a more
flexible and dynamic method is discovered. It is based on the idea of a sliding
window that moves across the NS state time intervals. To be more precise, if the
frequency of status changes during that window exceeds a predefined threshold:
all statuses until the sliding window ends are changed to a state that stops NS
(referred to as the 0 state). The sliding window setting is defined by two key
parameters: the length of the window and the operation threshold. A figure 9.1
is presented to clarify the effects of these parameters, particularly state changes
caused by reaching the operational threshold (known as cooling state changes).
Cooling state changes occur when the original active NS period (indicated by 1) is
forced to become inactive (indicated by 0) because of the sliding window cooling
strategy.

The figure quantifies the impact of this strategy on NS time points, indicating
how many of them are affected. The analysis reveals that larger window sizes
are more sensitive to detecting changes that trigger the cooling strategy, because
they pass more data points. For each window size, as the threshold increases, the
average cooling changes generally decrease. Conversely, smaller windows and lower
thresholds demonstrate greater reactivity, adjusting more frequently to immediate
changes, whereas larger windows and higher thresholds adopt a more conservative
stance. The optimal window size and threshold combination is determined by the
cooling strategy’s specific objectives. For example, if the goal is to value significant
changes, using larger window sizes and higher thresholds may be beneficial. This
strategic flexibility enables adapted adjustments to NS operations, increasing
network management efficiency and adaptability. To assess the effectiveness of this
strategies, the same metric parameters used in the fixed period strategy were used
for comparison analysis. Within a six-hour period, with a time window size of 24,
up to four state changes are permitted.

9.5 Comparision results
The results from table 9.5 enables a comparative evaluation. Both the sliding
window and fixed period strategies resulted in an increase in switch efficiency over
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Figure 9.1: Impact of window size and threshold on cooling strategy

the initial conditions. This shows that each switch operation contributes to a
longer period of network sharing. However, switch efficiency alone is insufficient
to determine whether one strategy is better than another. This is mainly because
reducing switch operations tends to result in a significant decrease in NS duration.

For instance, specific base station pairs, such as those with IDs 307189 and
622919, in sliding window scenario experienced a reduction in NS percentage to
between 1/4 and 1/2 of the original levels. Conversely, the fixed period strategy
typically resulted in NS percentages being maintained at approximately 3/4 of their
initial values. The sliding window strategy has the potential to significantly reduce
the NS percentage and frequency of switch operations. Therefore, this approach
would have a larger energy saving trade offs, resulting in the calculation of Switch
Trade-off parameters as shown in table 9.5:

The fixed period strategy appears to be wiser for several reasons. First, it
has a lower energy trade-off, retaining the majority of the energy savings while
limiting switch operations. Furthermore, fixed period strategies provide a consistent
operational schedule, it is generally simpler, reducing the complexity in adjusting
to real-time data. When setting the upper bound of the switch, the sliding window
strategy may have a greater tradeoff for energy savings. That could be because
the sliding window approach is sometimes too sensitive to short-lived fluctuations,
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ID_SharingPair Sliding Window Fix Period
307189_622919 0.034501 0.015308
535932_211336 0.046847 0.021014
550114_218981 0.057317 0.019444
682471_340649 0.053495 0.020833

Table 9.5: Average Trade-off Comparison of Sliding Window and Fix Period

resulting in the loss of more potential sharing opportunities. (For example, if there
is a fluctuation at 23:00, the method will give up the network sharing opportunities
at midnight, but the fix strategy method will not have this concern because the
threshold refreshes at 24:00.)
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Chapter 10

Prediction of traffic load and
status of NS

Predicting traffic loads at BSs is an important aspect of this research, especially
for prepared operational adjustments rather than real-time reactions. The essence
of ’advance’ adjustments implies the need to forecast future data points within
the traffic series using historical data. This predictive capability allows for the
determination of whether network sharing (NS) can be activated at upcoming
time intervals, thereby increasing the practicability of the NS strategy. For such
predictive analysis, various machine learning methods for forecasting the combined
traffic load of base station pairs may be used. This preliminary step is critical
for determining the feasibility of implementing the NS strategy in the future. By
accurately predicting traffic load, the system can adjust NS parameters ahead of
time, ensuring peak network performance and resource utilization.

10.1 Base station traffic load prediction with
LSTMs

10.1.1 Prediction with small training size
By employing the Long Short-Term Memory (LSTMs) methodology, the initial
attempt utilizes data from a singular pair of combined base stations for prediction
purposes, with the parameters configured as follows:

• train_size = 672, means that we use one week’s data as the training set,
one week’s data could contain a complete trend of traffic trace.

• test_size = 96, the testing set is one day to see whether the trend fits the
origin.
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• look_back = 24 means that use every 6 hours’ data to predict the subsequent
time period.

Hyperparameters:

• epochs = 50,

• batch_size = 16,

• optimizer = Adam,

• learning_rate = 0.001.

It is important to note that look back refers to the number of prior time intervals
utilized as input variables to predict the subsequent time period in a time series.
The findings of this investigation reveal a Test RMSE of 0.117, a Test R2 of 0.638,
and a Test MAPE of 50.212%. These results, illustrated in figure 10.1 and detailed
above, indicate a less than ideal prediction performance, with an R2 value of only
0.638 suggesting the model’s limited accuracy and its inability to capture more
than the general trend.

Figure 10.1: LSTMs traffic load prediction with the smaller size of training set

10.1.2 Prediction with larger training size
The training dataset’s insufficient size is likely the reason for the initial lack of
prediction accuracy, as it does not fully capture the entire periodic characteristics
of the data. Following optimizations, the training dataset was increased to include
information from four pairs of combined base stations (one pair was used as the
test set), all of which were located in city centers. The updated configurations are:
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• test_size = 2832 one month data of one pair BS has 2880 time periods and
total number of time periods – look_back= test_size

• look_back = 48

Hyperparameter

• epochs=50, batch_size=16

• optimizer = Adam

The results: RMSE: 0.0860 R2: 0.816
Figure 10.2 illustrates the significant improvement in the improved predictions.
However, a persistent challenge is the model’s failure to accurately predict peak
traffic volumes. This limitation indicates a potential bias in the model toward lower
traffic scenarios, which might have arisen from the proportion of low-traffic cases
represented in the training data during the middle of the night. The inability to
accurately predict the peak value may influence the determination of whether NS
can be used. An analysis of predicted versus original NS usage, segmented into
twelve two-hour periods throughout a day. The analysis presented in figure 10.3
reveals a tendency to overestimate network sharing (NS) usage across the evaluated
time points. This overestimation is particularly pronounced during Periods 6 and 9,
corresponding to the intervals of 12:00-14:00 and 18:00-20:00, respectively. These
periods are critical as the traffic load approaches the operational threshold Cth,
effecting the accuracy of predictions. Minor deviations in forecasting can lead to
incorrect predictions regarding the activation of NS, underscoring the challenges in
predicting traffic loads near threshold levels.

The analysis of 2832 time points reveals some inconsistent points in NS status
predictions, with a total of 423 instances where the predicted status differed from
the original status—either predicting NS status is 1 or vice versa. Despite this,
the predictive model identified 2371 time points as suitable for NS, compared to
the actual data of 2228, yielding an 85.1% accuracy. This performance metric
demonstrates the machine learning (ML) approach’s ability to accurately forecast
NS applicability. The ML method is practical and beneficial for simplifying operator
operations and real-time monitoring steps, completing policy deployment ahead
of time, and achieving the goal of sustainable green networks through shared
infrastructure.

10.1.3 Prediction with second half day’s data
An experiment was carried out focusing on the prediction of the combined traffic
load of base stations using only data from the latter half of the day to address
potential biases towards lower traffic loads that exist in the data. This approach
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Figure 10.2: LSTMs traffic load prediction with larger size of training set

Figure 10.3: NS usage prediction and original

was predicated on the assumption that the variability and peak loads characteristic
of afternoon and evening traffic (12:00 to 24:00) could provide a more challenging
dataset for predictive analysis.

For the analysis, traffic load data from the afternoon and evening over one month
were aggregated and then subjected to max-min normalization. This preprocessing
step ensures that the data values are scaled within a specific range, facilitating
more efficient learning by the LSTM model. The experiment was structured with
four pairs of combined base station data serving as the training set and one pair as
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the test set, all selected from base stations located within city center areas.
Hyperparameter settings for the experiment were as follows:

• Epochs: 30,

• Batch size: 16,

• Optimizer: Adam,

• Learning rate: 0.001,

• Look back: 96.

Upon completion of the training process, the model yielded an RMSE of 0.1226
and a Test R2 of 0.3526. The notably low R2 value underscores the model’s
difficulty in accurately predicting traffic loads during these periods, attributed to
the afternoon and evening hours’ notable fluctuation and peak traffic volumes. The
model’s overall predictive accuracy was clearly impacted by excluding morning
data from the analysis, which is typically more uniform and predictable. This
highlights the difficulty of forecasting in the presence of notable fluctuations and
peaks in traffic load.

10.1.4 Prediction of network sharing status
The subsequent phase explores the prediction of network sharing (NS) status,
focusing specifically on binary outcomes (1 meaning NS is allowed, 0 meaning NS
is not allowed). The goal is to predict future states by utilizing past NS utilization
patterns. But it’s important to recognize that every base station (BS) pair displays
different NS usage patterns. For this reason, the analysis employs data from a
singular pair of combined base stations, with 70% of the data allocated for training
and the remaining 30% for testing. The look_back parameter is set to 96.

The predictive analysis utilized Random Forest and Long Short-Term Memory
(LSTMs) models, with the outcomes presented as follows:

• Logistic Regression Accuracy: 0.7667464114832536
Classification Report:

– For status 0: Precision of 0.52, Recall of 0.73, and F1-Score of 0.61.
– For status 1: Precision of 0.90, Recall of 0.78, and F1-Score of 0.83.

• Method: LSTMs Accuracy: 0.7168458781362007
Classification Report:

– For status 0: Precision of 0.74, Recall of 0.60, and F1-Score of 0.66.
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– For status 1: Precision of 0.71, Recall of 0.81, and F1-Score of 0.76.

Even though it achieved a remarkable accuracy rate of approximately 0.767,
using only the binary status to predict NS ability might not be the most effective
approach. This results from the model’s learning from the binary status pattern,
which ignores the critical role of real traffic load, which is the main variable
influencing the NS status. For this reason, there’s a chance that the model will
become overfit to past patterns of status changes and miss the real dynamics
guiding these changes.

10.2 Base station traffic load prediction with
other ML method

In addition to exploring Long Short-Term Memory (LSTMs) models, this research
extends its analysis to incorporate other machine learning (ML) methods for
predicting base station traffic loads. Specifically, we explore the applications of
Extreme Gradient Boosting (XGBoost) and Autoregressive Integrated Moving
Average (ARIMA) methodologies.

10.2.1 Base station traffic load prediction with XGBoosts
The XGBoost model was applied using data from three pairs of combined base
stations as the training set and data from an additional pair for testing, all selected
from city center locations. The configuration for this model was as follows:

• Prediction size was set to 2784, indicating the total number of predictions the
model was expected to make.

• WINDOW_SIZE, established at 96, signifies the quantity of consecutive data
points employed to generate a single model input. This parameter illustrates
the implementation of a sliding window technique for feature generation, where
the previous 96 observations are utilized to forecast the subsequent data point.

• PREDICT_AHEAD is designated as 1, specifying that the model’s forecast
horizon spans one future time step. This suggests an emphasis on short-term
prediction, aiming to estimate the traffic load at the next immediate point by
analyzing the data within the preceding WINDOW_SIZE interval.

The obtained results were as follows:

• MAPE (Mean Absolute Percentage Error): 19.4488%,

• R2 (Coefficient of Determination): 0.8021,
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• Accuracy: 84.1%.

The predictive performance depicted in the resulting figure 10.4 shows good overall
curve alignment with actual data trends. However, it also reveals a limitation
in accurately capturing peak traffic fluctuations, implying that while XGBoost
effectively models the general traffic pattern, it challenges to accurately predict
peak load variations.

Figure 10.4: XGBoost traffic load prediction results

10.2.2 Base station traffic load prediction with ARIMA
In furtherance of the study on base station traffic load prediction, an exploration
was conducted using the Autoregressive Integrated Moving Average (ARIMA)
model, focusing on a single pair of combined base station traffic data. The analysis
was structured around specific configurations:

The ARIMA model’s hyperparameters were carefully selected as follows:

1. p (Autoregressive Order): Set to 1, this parameter quantifies the extent to
which the model accounts for the immediate past value in its predictions,
essentially capturing the series’ momentum or trend.

2. d (Differencing Order): Also set to 1, indicating a single differencing step
to achieve stationarity within the series, thereby mitigating any potential
variability in the overall trend over time.

3. q (Moving Average Order): Established at 1, it incorporates the forecast error
from the preceding time step into the model, aiding in the refinement of future
predictions.
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The WINDOW_SIZE = 96 and STEP_SIZE = 1 settings are related to the
structure of the dataset being used for the ARIMA model rather than the model
itself:

• WINDOW_SIZE is commonly used to denote the number of historical data
points used to make a prediction. In this case, the last 96 observations are
used, which could mean the last 96 time intervals given the frequency of data
collection.

• STEP_SIZE usually refers to the increment at which the sliding window
moves forward across the time series. A STEP_SIZE of 1 implies that after
each prediction, the window moves one interval forward.

The outcomes of the ARIMA model were quantified as follows:

• Mean Absolute Percentage Error (MAPE): 22.372%,

• Coefficient of Determination (R2): 0.7617,

• Accuracy: 84.1%.

The ARIMA model performs well in forecasting peak traffic loads, as shown in the
figure 10.5. Regardless of the inherent challenge in predicting these fluctuations, the
ARIMA model’s performance demonstrates a strong ability to model traffic trends
effectively, pointing out its practicality in accurately forecasting peak demand
periods.

Figure 10.5: ARIMA traffic load prediction
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10.3 Base station network sharing prediction
The precision of our predictive models is assessed using the formula:

Accuracy = total predicted number of points − mismatch of status of NS
total predicted number of points .

In predicting traffic load and network sharing (NS) status, a critical metric is false
positives, which occur when time points that were not originally suitable for NS
(status 0) are incorrectly forecasted to be suitable (status 1). Overestimations
may exceed the predetermined threshold (Cth), making the base station (BS)
unable to manage the high traffic volume, affecting quality of service (QoS) and
user satisfaction.False negatives, where NS is feasible but predictions indicate
otherwise, simply represent a missed opportunity for energy savings without risking
BS capacity or quality of service.

An analysis was conducted to quantify the traffic load at points of false negatives
and determine their excess over the Cth set in our NS strategy, which is traditionally
set at 80%. If the traffic load during false negative occurrences falls within the
80%-100% range, it suggests that while traffic slightly exceeds the Cth, it does not
exceed the BS’s capacity, making NS viable without risk of overload. These are
known as ’acceptable prediction results’ or ’fake false positives.’

The actual issue is ’real false positives,’ which occur when traffic load predictions
exceed 100% of the BS’s capacity, making such predictions unacceptable. According
to the figure 10.6, traffic load at false positive points is mainly between 80% and
90% capacity. Only about 15% of these, or about 40 out of 2750 monthly time
points, exceed the BS’s capacity. This finding highlights the accuracy of ML
methods in forecasting NS applicability, which improves the operational feasibility
and adaptability of NS strategies.

10.4 Time series prediction method comparison
The evaluation of three advanced forecasting methodologies— LSTMs, XGBoost,
and ARIMA—provides important insights into their applicability and performance
in predicting network sharing viability using traffic load data. Each model achieves
noteworthy accuracy from table 10.1, exceeding 80%, in predicting network sharing
status, demonstrating the utility and efficiency of using time series prediction
methods for operational decision-making in network management frameworks.
Notably, XGBoost comes as a strong general predictor across the dataset, with
the lowest Mean Absolute Percentage Error (MAPE), demonstrating its predictive
capabilities.

The metrics for each method are close, but we are more concerned with peak
traffic load prediction. The ARIMA model, while achieving the lowest MAPE or
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Figure 10.6: Distribution of ARIMA false positive prediction corresponds to the
real percentage of BS capacity

Model MAPE R2 Prediction Accuracy FP Real FP
LSTMs 20.356% 0.816 85.1% 283 45
XGBoost 19.4488% 0.8021 84.1% 288 41
ARIMA 22.372% 0.7617 84.1% 283 31

Table 10.1: Performance Metrics comparison

R2, has the least false and real false positive, and offers significant advantages in
peak demand forecasting. This means that ARIMA is slightly better for scenarios
where accurate identification of peak periods is required. It also offers ease of use
and understanding, particularly for precise peak forecasting.
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Chapter 11

Conclusion

This thesis has made significant contributions to the understanding and strategic
planning of mobile network infrastructure, with a particular emphasis on the
analysis of base station traffic traces and their geographical distribution, which will
influence the NS potential. It aimed to improve network planning and infrastructure
sharing in scenarios with both double and triple base station pairs. In the context
of double base station (BS) Network Sharing, the findings indicate that NS is
feasible for 60-80% of the time, yielding power savings in the range of 25% to 35%.
A derived linear regression model, represented by the equation power saving =
0.48 * NS percentage - 0.04, provides a quantitative basis for estimating the impact
of NS utilization on energy conservation. The triple BSs NS with two thresholds
improves the NS percentage to 90% and increases power savings by 15% compared
to the same BS with double NS. The resultant substantial energy savings have
the potential to significantly reduce electrical costs, contributing towards broader
energy conservation efforts. And then the approximate result by predefined fixed
period strategies that define appropriate thresholds for switch operations, this study
has enhanced the practicality and efficiency of Network Sharing (NS) strategies.

Furthermore, the investigation has utilized time series machine learning tech-
niques, including LSTM, XGBoost, and ARIMA, to forecast traffic loads and
subsequent network sharing utilization. Among these methods, ARIMA showed
marginally superior performance in predicting peak traffic loads. The predictive
accuracy for NS utilization was approximately 85%, and after adjusting ’fake
false positives’, the accuracy potentially increases to about 93%. These predictive
outcomes enable proactive network management, ensuring the consistent delivery
of high-quality services to users.

The findings from this research offer valuable insights into the optimization of
network infrastructure and underscore the viability of infrastructure sharing as a
sustainable and efficient approach for the future of mobile networks. This thesis
not only addresses key challenges in mobile network management but also lays a
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foundation for more sustainable, and efficient telecommunications infrastructures.
The strategies and methodologies proposed herein promise to revolutionize network
sharing practices.

11.1 Future work
Future research directions involve expanding the network sharing strategies across
larger geographic regions to gain more comprehensive insights. Graph theory may
reveal more efficient methodologies for allocating traffic loads across base stations,
increasing the granularity and precision of traffic trace analysis. Furthermore,
classifying base stations into distinct clusters based on traffic load characteristics
allows for the adaptation of NS strategies to each cluster’s specific needs. This
approach aims to improve NS planning by transitioning it to a more universally
applicable framework that can accommodate the diverse operational dynamics of
mobile networks.
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