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Chapter 1

Introduction

Quantum computation is at the forefront of technological advancements, it ex-
ploits the principles of quantum mechanics to perform complex calculations by
manipulating quantum bits (qubits).

Unlike classical bits, qubits can exist in superposition states, allowing expo-
nentially fewer computational steps than the most efficient classical algorithm for
certain problems.

Quantum logic operations applied to qubits are called quantum gates. Quantum
gates are unitary transformations that operate on qubits in a quantum system. A
sequence of quantum gates forms a quantum circuit.

Classical reinforcement learning (RL) is a branch of machine learning where an
agent learns to make decisions through interaction with an environment. The agent
takes actions, receives feedbacks in the form of rewards or penalties, and aims to
learn an optimal strategy, called policy, to maximize cumulative rewards over time.

Quantum reinforcement learning is the intersection between reinforcement learn-
ing and quantum computing, and arises from the need to address challenges
associated with quantum computations, such as the efficient preparation of quan-
tum circuits. Designing optimal quantum circuits by minimizing the number of
quantum gates represents a key aspect in quantum computing. In this thesis, it
is presented an overview of the employment of quantum data within classical RL
algorithms to explore problem-solving in quantum contexts.

In particular Chapter 1 presents an overview of the density matrix quantum
formalism that is the most suitable to deal with quantum circuits. It provides also
an introduction to the fundamentals of quantum computation, that are: qubits,
quantum gates and the universality of quantum gates which is a condition required
to perform quantum computations.

Chapter 2 illustrates Reinforcement Learning technique and some methods to
solve the optimization problems that arise. These methods are then used to train
an agent to design a quantum circuit - employing the smallest as possible number
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Introduction

of gates - which transforms an initial state vector associated to a quantum system
into a target state of interest. For example to prepare entangled states of N qubits,
such as a |00...0> + b |11...1>, starting from the initial state |00...0>.
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Chapter 2

Quantum Mechanics and
Quantum Computation

The goal of this chapter is to introduce quantum computation and in particular the
quantum circuits model and its main implications. To do so it has been conveniently
defined the density matrix formalism.
Quantum mechanics was born in the early 1900s, and made it possible to justify
some phenomena, otherwise inexplicable classically, revealing itself as the most
complete and accurate description of the world.
In recent years, there has been an increasing interest in building "quantum comput-
ers", processing information by controlling atoms and photons. Also, it is interesting
to explore the link between this new kind of computing and AI/Machine Learning,
for which ever greater computational resources are required. A key aspect to achiev-
ing "quantum supremacy" is entanglement, a characteristic property of quantum
systems correlated to each other, without a classical analogue. Entanglement can
be seen as a new type of physical resource, indispensable for new applications such
as quantum teleportation, fast quantum algorithms, and quantum error-correction.

2.1 Density operator
A convenient formulation of quantum mechanics dealing with compound systems is
provided by the density operator or density matrix formalism [1]. Let us consider a
system in the state |ψi⟩ with probability pi, then to the ensemble of pure states
{pi, |ψi⟩} is associated the density operator:

ρ =
Ø
i

pi|ψi⟩⟨ψi| (2.1)
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Assuming that the time evolution of a closed system is described by a unitary
operator U , the time evolution of the density operator of the system, which
is initially in state |ψi⟩, will be:

ρ =
Ø
i

pi|ψi⟩⟨ψi|
U−→

Ø
i

piU |ψi⟩⟨ψi|U † = UρU † (2.2)

2.1.1 Measurements in the density operator formalism
Consider performing a measurement described by operator Mm. The probability of
obtaining m, given an initial state |ψi⟩ , is:

p(m|i) = ⟨ψi|M †
mMm|ψi⟩ = tr(M †

mMm|ψi⟩⟨ψi|) (2.3)

where the equation tr(A|ψ⟩⟨ψ|) = ⟨ψ|A|ψ⟩ has been used. To obtain this last
equality, the Grand-Schmidt procedure has been implemented in order to extend
|ψ⟩ to an orthonormal basis |i⟩ that has |ψ⟩ as former element:

tr(A|ψ⟩⟨ψ|) =
Ø
i

⟨i|A|ψ⟩⟨ψ|i⟩ = ⟨ψ|A|ψ⟩ (2.4)

where |ψ⟩ is a unit vector and A an arbitrary operator.
Exploiting the total probability law:

p(m) =
Ø
i

p(m|i)pi

=
Ø
i

pitr(M †
mMmρ|ψi⟩⟨ψi|)

= tr(M †
mMmρ)

(2.5)

After having obtained m from a measurement, the state |ψi⟩ is:

|ψmi ⟩ = Mm|ψi⟩ñ
⟨ψi|M †

mMm|ψi⟩

Hence, after a measurement produces an outcome m, there is an ensemble of states
|ψmi ⟩ with associated probabilities p(i|m). The corresponding density operator is:

ρm =
Ø
i

p(i|m)|ψmi ⟩⟨ψmi | =
Ø
i

p(i|m)Mm|ψi⟩⟨ψi|M †
m

⟨ψi|M †
mMm|ψi⟩

Noticing that p(i|m) = p(m, i)/p(m) = p(m|i)pi/p(m) and replacing with (3) and
(5) we obtain:

ρm =
Ø
i

pi
Mm|ψi⟩⟨ψi|M †

m

tr(M †
mMmρ)

= MmρM
†
m

tr(M †
mMmρ)
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2.1.2 Pure states and mixed states
If a quantum system state |ψ⟩ is perfectly known, then the system is in a pure
state. The corresponding density operator is: ρ = |ψ⟩⟨ψ|. Otherwise ρ will be in a
mixed state.
There is a simple criterion to establish if a state is pure or mixed:

pure state: tr(ρ2) = 1

mixed state: tr(ρ2) < 1

Consider a quantum system in state ρi with probability pi. Suppose that ρi
derives from some ensemble {pij, |ψij⟩} of pure states. It is possible to prove that
the density operator is:

ρ =
Ø
i

pipij|ψij⟩⟨ψij| =
Ø
i

piρi (2.6)

ρ is called mixture of states ρi with probabilities pi. The concept of mixture is
widely used in analysis problems like those concerning quantum noise, in which
noise causes an uncertainty about the quantum state.
For example, one can imagine having lost track of the outcome of a measurement
m, but it is possible to have a state ρm with probability p(m), without knowing
the value of m. The density operator that describes such a state is then:

ρ =
Ø
m

p(m)ρm =
Ø
m

tr(M †
mMmρ)

MmρM
†
m

tr(M †
mMmρ)

=
Ø
m

MmρM
†
m (2.7)

2.1.3 Properties of the density operator
An operator ρ is the density operator associated to a generic ensemble {pi, |ψi⟩} if
and only if it satisfies the following conditions:

Trace condition: the trace of ρ must be equal to one.
Being ρ = q

i pi|ψi⟩⟨ψi| :

tr(ρ) =
Ø
i

pitr(|ψi⟩⟨ψi|) =
Ø
i

pi = 1

Positivity condition: ρ is a positive operator. Considering an arbitrary vector
|ϕ⟩ in the space of states:

⟨ϕ|ρ|ϕ⟩ =
Ø
i

pi⟨ϕ|ψi⟩⟨ψi|ϕ⟩ =
Ø
i

pi|⟨ϕ|ψi⟩|2 ≥ 0
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Then, considering an arbitrary operator ρ that satisfies the above conditions, since
ρ is positive, it has a spectral decomposition

ρ =
Ø
j

λj|j⟩⟨j|

where the vectors |j⟩ are orthonormal, and λj are the real non-negative eigenvalues
of ρ.
From the trace condition follows that q

j λj = 1. Thus a system in state |j⟩ with
probability λj will have ρ as density operator. In other words, {λj|j⟩} is a set of
states that defines the density operator ρ.

2.1.4 Reduced Density Operator
Let us consider a system made of two subsystems A e B, described by density
operator ρAB. The reduced density operator of A is defined as:

ρA ≡ trB(ρAB) (2.8)

with trB defined as:

trB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) ≡ |a1⟩⟨|a2|tr(|b1⟩⟨b2|) (2.9)

with |a1⟩, |a1⟩ and |a1⟩, |a1⟩ being vectors in spaces A e B respectively, and trB is
called the partial trace over the state B.

2.1.5 Schmidt decomposition and purification
The Schmidt decomposition is a powerful and useful tool in order to describe
composite systems:

Theorem 1 Let us consider the pure state |ψ⟩ of a composed system AB. There
are orthonormal states |iA⟩ referred to system A, and |iB⟩ for B, such that:

|ψ⟩ =
Ø
i

λi|iA⟩|iB⟩ (2.10)

where λi ∈ ℜ, λi ≥ 0 are called Schmidt coefficients and satisfy q
i λ

2
i = 1.

The states |iA⟩ and |iB⟩ are called the Schmidt bases for A and B, respectively, while
the non-zero Schmidt coefficient λi are called Schmidt numbers for the state |ψ⟩,
that can be seen, for compound quantum systems, as a measure of entanglement
between two systems.
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Another important tool for studying composite systems is purification. Purification
is a mathematical procedure where a mixed state can be view as part of a pure
state in a higher-dimensional Hilbert space. Mathematically, given the quantum
state ρA, it is possible to introduce another system |ψ⟩ such that ρA = trB(|ψ⟩⟨ψ|).
We can say that |ψ⟩ purifies ρA if

trB(|ψ⟩⟨ψ|) = ρA (2.11)

To prove the above formula we can define |ψ⟩ , through the Schmidt decomposi-
tion, as:

|ψ⟩ =
Ø
i

√
pi|iA⟩|iB⟩ (2.12)

Therefore

trB(|ψ⟩⟨ψ|) =
Ø
ij

√
pipj|iA⟩⟨jA|tr(|iB⟩⟨jB|)

=
Ø
ij

√
pipj|iA⟩⟨jA|δij

=
Ø
i

pi|iA⟩⟨iA|

= ρA

2.1.6 Postulates of quantum mechanics
Summarizing, it is possible to formulate the quantum mechanics postulates by
means of the density matrix:

• Postulate 1: A complex vector space with internal product (Hilbert space),
known as states space, is associated to any isolated physical system. The
system is completely described by its density operator, which is a positive
operator with trace equal to one, and that acts on the system state space. For
a quantum system in state ρi with probability pi, the corresponding density
matrix is ρ = q

i piρi.

• Postulate 2: The time evolution of a closed quantum system is described by
a unitary transformation. Meaning that the state ρ of the system at time t1
will evolve into a state ρ′ of the system a time t2 through a unitary operator
U that depends only on times t1 and t2 : ρ′ = UρU †

• Postulate 3: Quantum measurements are described by a set of operators
{Mm}, where indices m are the possible outcomes of a measurement. If the

7



Quantum Mechanics and Quantum Computation

quantum state in the instant before the measurement is ρ, then the probability
that m is measured is given by: p(m) = tr(MmM

†
mρ). The state after the

measurement will be MmρM
†
m/tr(MmM

†
mρ).

The measurement operator satisfies the completeness relation q
mM

†
mMm = Id,

where Id is the identity matrix.

• Postulate 4: The space of the states of a composite system is the tensor
product of the component spaces.
Furthermore for n systems, such that the i-th system is in state ρi, the joint
quantum state composed of n states is: q

k1...kn
pk1−knρ

k1
1 ⊗ ...ρkn

n .

2.2 Quantum Computation
As for classical computation, we have quantum-type logic circuits, simply called
"quantum circuits", which are the basis of the theory of quantum computation.

The language of quantum circuits is fundamental for the description of quantum
algorithms. Quantum circuits are composed of an ordered sequence of components,
mostly quantum gates, measurements and resets, concepts that will be introduced
in the following chapter.

2.2.1 Qubit and entanglement
A bit is the fundamental conceptual basis for classical computation, it can take
value 0 or 1.
The Qubit is instead a basic unit of quantum information. It can exist in a
continuum of states between 0 and 1, until it is observed. It is as well possible to
create linear combinations of states, called superpositions:

|ψ⟩ = α|0⟩ + β|1⟩ (2.13)

with α , β ∈ C and |0⟩, |1⟩ called computational basis states.
The qubit is a two-state quantum system that can exist in any quantum superposi-
tion of two independent states. For example a qubit can be in state

|0⟩ + |1⟩√
2

and when measured can give as output 0 or 1 with the same probability (1/2).
Let us consider a system of two qubits:

|ψ⟩ = |01⟩ − |10⟩√
2

(2.14)
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This is an entangled state, in which spin measurements can take value 0 or 1.
Suppose to perform spin measurements along v⃗ axis for both qubits, that is
measure the observable v⃗ · σ⃗ for each particle defined as:

v⃗ · σ⃗ = v1σ1 + v2σ2 + v3σ3 (2.15)

which will give as result -1 or +1 for each particle. Independently from the
choice of v⃗, the results of the measurements on the two particles will be always
opposite. To prove this let us consider the eigenstates |a⟩ e |b⟩ of v⃗ · σ⃗. Hence
there exist α, β, γ, δ complex numbers such that:

|0⟩ = α|a⟩ + β|b⟩ (2.16)
|1⟩ = γ|a⟩ + δ|b⟩ (2.17)

Substituting, one gets:

|01⟩ − |10⟩√
2

= (αδ − βγ) |ab⟩ − |ba⟩√
2

(2.18)

But (αδ − βγ) is the determinant of a unitary matrix for a change of basis, then it
is equal to a not observable global phase factor eiθ. Hence it is possible to write:

|01⟩ − |10⟩√
2

= |ab⟩ − |ba⟩√
2

(2.19)

Consequently, measuring v⃗ · σ⃗ on both particles, a result of +1(-1) on the first spin
implies a result of -1(+1) on the second one. Therefore, it is always possible to
guess the outcome of a measurement of one of the particles in a specific basis if it
is known the spin measurement of the other correlated particles in the same basis.
A useful geometrical representation for the pure state space of a qubit is the Bloch
sphere. This representation arises from the fact that the total probability of a
system of being in a pure state |ψ⟩ is ⟨ψ|ψ⟩ equal to 1 and then ∥|ψ⟩∥2 = 1. This
constrain allows to rewrite |ψ⟩ as

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ (2.20)

with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. This allows to uniquely represent all the possible
states of ϕ through a point a⃗ on the surface of a sphere of unitary radius, similarly
to the spherical coordinates:

a⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) = (u, v, w) (2.21)

9
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Figure 2.1: Bloch Sphere

2.2.2 Quantum Gates

Quantum logic gates are the building blocks for quantum circuits. An important
feature of quantum gates, unlike classical logic gates, is that they are always
reversible. This property can be visualized as a rotation around the Bloch sphere.
The quantum gates acting on n qubits can be represented mathematically by
2n × 2n unitary matrices. They preserve the norm |a|2 + |b|2 = 1 for all states
|Φ⟩ = a|0⟩ + b|1⟩.
In principle there is an infinite number of gates. Some of the most important
quantum gates, operating on a single-bit, are the Pauli gates (X, Y, Z). We can think
at these gates as a rotation by π radians around the x, y and z-axis, respectively,
of the Bloch sphere. The X-gate is also often called a NOT-gate, referring to its
classical analogue.

X ≡
C
0 1
1 0

D
;Y ≡

C
0 −i
i 0

D
;Z ≡

C
1 0
0 −1

D
. (2.22)

Other important gates, operating on a single qubit, are phase shift gates that
modify the phase of the quantum state. These gates represent rotations along the
z-axis on the Bloch sphere by θ. They have a matrix representation:

P (θ) =
C
1 0
0 eiθ

D
(2.23)
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Some common examples are:

Z =
C
1 0
0 eiπ

D
=

C
1 0
0 −1

D
= P (π)

S =
C
1 0
0 i

D
=

C
1 0
0 −1

D
= P (π2 ) =

√
Z

T =
C
1 0
0 e(iπ/4)

D
= P (π4 ) = 4

√
Z

Another quantum gate widely used in literature acting on a single qubit is the
Hadamard gate. It performs a rotation of π about the axis (âx+ âz)/√2 at the Bloch
sphere. The Hadamard gate maps the computational basis |0⟩ and |1⟩ into a two
states superposition with equal weight:

H = |0⟩ + |1⟩√
2

⟨0| + |0⟩ − |1⟩√
2

⟨1|

. In the matrix notation:

H = 1√
2

C
1 1
1 −1

D
; (2.24)

An interesting fact is that H = (X + Z)/
√

2.
Exponentializing the Pauli Matrix we can define:

Rx(θ) = e−iθX
2 = cos θ2I − i sin θ2X =

C
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

D
(2.25)

Ry(θ) = e−iθ Y
2 = cos θ2I − i sin θ2Y =

C
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

D
(2.26)

Rz(θ) = e−iθZ
2 = cos θ2I − i sin θ2Z =

C
e−i θ

2 0
0 ei

θ
2

D
(2.27)

Generalizing in three dimensions, we can define the rotation by θ around the
n̂ = (nx, ny, nz) axis as:

Rn̂ ≡ exp(−iθn̂ · σ⃗/2) = cos θ2I − i sin θ2(nxX + nyY + nzZ) (2.28)

Theorem 2 Suppose U is a unitary matrix on a single qubit. Then there exist real
numbers α, β, γ, δ such that:

U = eiαRz(β)Ry(γ)Rz(δ) (2.29)

11



Quantum Mechanics and Quantum Computation

This theorem implies an important corollary in quantum computation: Suppose
U is an arbitrary unitary gate acting on a single quibit. Then ∃A,B,C ∈ C2x2

unitary operators on a single qubit and α ∈ R overall phase factor such that
ABC = I, U = eiαAXBXC

Controlled operations

Controlled operations, of the type "If A, then B", are very common in classical
computation. In general, in a quantum computation, a controlled operation is a two
qubit operation in which if the first qubit (control qubit) is set then an arbitrary
unitary operation U is applied to the second qubit (target qubit), otherwise the
second qubit is left unchanged: |c⟩|t⟩ → |c⟩U c|t⟩.

Figure 2.2: Controlled-U operation. The top line represents the control qubit,
and the bottom line represents the target qubit. The timeline goes from left to
right

One typical controlled operation is the controlled-NOT gate, also called CNOT
gate. The action of the CNOT gate is: if the control qubit is set to "1" then the
target qubit is flipped.

CNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.30)

Figure 2.3: CNOT gate in circuit representation
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We can express a controlled operation substituting, as we have seen above, an
arbitrary unitary operation U with three single qubit operations A,B,C, some
NOT-gate X and a phase shift. The basic idea to build a first circuit implementing
controlled-U operation is substituting U = eiαAXBXC and the NOT gate with
the C-NOT gate: if the controlled qubit is set then eiαAXBXC = U is applied
on the control qubit, otherwise the operation ABC = I is applied on the control
qubit that keeps its state unchanged.

Figure 2.4: Circuit implementing controlled U-operation for single qubit.

It is possible to expand the previous results to control multiple qubits. Having
n+ k qubits, and U unitary operation over k qubits, we can define the controlled
operation Cn(U) as:

Cn(U)|x1x2...xn⟩|ψ⟩ = |x1x2...xn⟩UX1X2...Xn|ψ⟩ (2.31)

For simplicity we assume k = 1. We can define V unitary operation such that
V 2 = U with U single quibit unitary operator. Defining V ≡ (1 − i)(I + iX)/2 ,
where V 2 = X, the resulting C2(U) operation implements the Toffoli gate.

Figure 2.5: Circuits for C2(U) gate. The special case V ≡ (1 − i)(I + iX)/2
corresponds to the Toffoli gate .

The Toffoli gate is a reversable universal logic gate in a classical setting, that
flips the third bit if and only if the first two bits are both set to 1. So the previous
result shows that it is possible to perform all classical computations on a quantum
computer using only one and two qubits operations. This important result does

13
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not mean that Toffoli gate is universal for quantum computation, but rather that
classical computation is a subset of quantum computation.

Universal quantum gates

In a classical setting we say that a set of gates is universal if they can be used
to compute an arbitrary function. In quantum computation we refer as universal
quantum gates to any finite sequence of gates, among a set of quantum gates,
through which it is possible to express a unitary matrix with arbitrary accuracy.
The goal of quantum computation is to find the best sequence of gates (unitary
transformations) that can be performed efficiently, because in principle there is an
infinite number of gates and combinations of them.
In practice it is often enough to use the classic reversible gates, such as the Toffoli
gate, for universal quantum computation, as a weaker kind of universality. But
furthermore it is possible to demonstrate that an arbitrary unitary matrix acting
on a system of n qubits may be written as the product of at most n two-level
unitary matrices.

Theorem 3 Two level gates are universal for quantum computation.
∀U ∈ C3x3 unitary matrix ∃Ui ∈ C3x3 : Ui = U

′
i ⊗ 1 , U ′

i ∈ C3x3 unitary matrix
with i ∈ {1,2,3} such that:

U = U †
1U

†
2U

†
3

or
U3U2U1U = I.

Proof:

U =

a b c
d e f
g h i



if b = 0 U1 ≡

1 0 0
0 1 0
0 0 1

 if b /= 0 U1 ≡


a∗√

|a|2+|b|2
b∗√

|a|2+|b|2
0

b√
|a|2+|b|2

−a√
|a|2+|b|2

0
0 0 1


Noting that U1 is a two-level unitary matrix: U1U =

a
′ d′ g′

0 e′ h′

c′ f ′ j′



if c1 = 0 U2 ≡

a
′∗ 0 0
0 1 0
0 0 1

 if c1 /= 0 U2 ≡


a

′∗√
|a′ |2+|c′ |2

0 c
′∗√

|a′ |2+|c′ |2

0 1 0
c

′
√

|a′ |2+|c′ |2
0 −a′

√
|a′ |2+|c′ |2


14
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U2U1U =

1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′


Since U ,U1 and U2 are unitary, it follows that U2U1U is unitary =⇒ d′′ = g′′ = 0.

Finally setting U3 ≡

1 0 0
0 e

′′∗ f
′′∗

0 f
′′∗ j

′′∗

 =⇒ U3U2U1U = I which proves the statement.

Similarly for higher dimensions:
Let U ∈ Cdxd be an arbitrary unitary matrix =⇒ ∃U1, U2, U3..., UN with N ≤ d(d−1)

2
such that:

∃U = U1U2...UN .

In other words an arbirtary unitary matrix can be written as a product of at most
2n−1(2n − 1) two-level unitary matrices.

2.2.3 Universality of CNOT and single qubit gates
Theorem 4 Any unitary gate acting on a n-qubit can be implemented with single
qubit and CNOT gates, therefore they are universal for quantum computation.

Thanks to the previous results, it is sufficient to prove the theorem for a two
level unitary matrix, which acts not trivially on two qubits. Suppose U is an
arbitrary two-level unitary matrix, that acts not trivially on two qubits s and t.
For instance, we define unitary matrix U with dimension d = 8 = 23 as:

U =



a 0 0 0 0 0 0 b
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d



with a, b, c, d ∈ C. U can be reduced to a d = 2 × 2 unitary matrix Ũ =
C
a b
c d

D
Note that U acts not trivially only on the states s = |000⟩ and t = |111⟩. Let us
define the Gray code connecting s and t, as a sequence of binary numbers, starting
from s and ending with t, such that adjacent members differ only by one bit and

15



Quantum Mechanics and Quantum Computation

thus if s and t differ in n bits, the shortest Gray code will have n+ 1 members. In
the example:

A B C
g1 = 0 0 0
g2 = 1 0 0
g3 = 1 1 0
g4 = 1 1 1

The idea to implement U is to find the sequence of gates that transforms state
|g1⟩ into state |g3⟩ through |g1⟩ → |g2⟩ → |g3⟩, then apply the controlled operation
Ũ on the last qubit which is represented by a superposition of states |g3⟩ and
|g4⟩ , and then go back to the initial state performing the inverse operations
|g3⟩ → |g2⟩ → |g1⟩.

Figure 2.6: Circuits implementing the two-level operation U in the example.

Generalizing we require at most 2(n− 1) controlled operations to change the
state |g1⟩ → |g2⟩ → ... → |gm − 1⟩ and go backwards |gm−1⟩ → |gm−2⟩ → ... → |g1⟩,
this can be implemented with O(n) qubits and CNOT gates. Considering that
the number of qubits necessary to implement Ũ is of order O(n), it follows that
the number of qubit to implement U is O(n2). Consider also, as seen before, that
an arbitrary unitary matrix U ∈ Cn×n on n qubits can be written as a product
of O(22n) = O(4n) unitary operations. Finally, taking into account the various
contributions, we obtain that to compute an arbitrary unitary operation on n
qubits we require O(n24n) single qubits and CNOT gates. Unfortunately there are
not easy error correction methods to implement all of these gates. But there exist
some sets of gates that can be used for universal quantum computation.

2.2.4 Universality of Hadamard + phase + CNOT + π/8
gates

Given U and V two unitary operators acting on the same state space, we define
the error of approximation in implementing V instead of U as:

E(U, V ) ≡ max|ψ⟩||(U − V )|ψ⟩||
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By definition:
E(U2U1, V2V1) = ||(U2U1 − V2V1)|ψ⟩||
= ||(U2U1 − V2U1)|ψ⟩ + (V2U1 − V2V1)|ψ⟩||
≤ ||(U2U1 − V2U1)|ψ⟩|| + ||(V2U1 − V2V1)|ψ⟩||
≤ E(U2, V2) + E(U1, V1)
Generalizing, by induction, for a sequence of m unitary gates:

E(UmUm−1...U1, VmVm−1...V1) ≤
mØ
j=1

E(Uj, Vj) (2.32)

So the error increases linearly with m.
Any unitary single qubit operation can be approximated to an arbitrary precision
by a discrete set of gates. In particular Hadamard gate H, phase gate S, CNOT
gate, π/8 gate are universal for quantum computation. Alternately it is possible to
replace π/8 gate with Toffoli gate to obtain another universal set of gates.
Thanks to the previous results, considering the gate T that is a rotation by π/4
radians around the ẑ axis on the Bloch sphere, and the sequence of gates HTH
that is a rotation by π/4 radians around the x̂ axis on the Bloch sphere, we can
define:

exp(−iπ8Z)exp(−iπ8X) = [cos π8 I − i sin π8Z][cos π8 I − i sin π8X] (2.33)

= cos2 π

8 I − i[cos π8 (X + Z) + sin π8Y ] sin π8 (2.34)

= Rn̂(θ). (2.35)

That is the rotation of the Bloch sphere by an angle θ, defined as cos(θ/2) ≡ cos2 π/8,
around the axis n⃗ = (cos π

8 , sin
π
8 , cos π

8 ).
Noting that θ is an irrational multiple of 2π, we can iterate on Rn̂(θ) to approximate
to an arbitrary accuracy δ > 0 any rotation Rn̂(α).
For any α holds: HRn̂(α)H = Rm̂(α), with m̂ = (cos π

8 ,− sin π
8 , cos π

8 ).
Moreover ∀ U ∈ C2x2 unitary operator, ∃ α, β, γ, δ ∈ R such that: U =
eiαRn̂(β)Rm̂(γ)Rn̂(δ).
Then for any arbitrary unitary operator U and any accuracy ϵ > 0, we have that
there exist n1, n2, n3 ∈ N such that the error in approximation using a circuit
composed only of Hadamard and π/8 gates is:

E(U,Rn̂(θ)n1HRn̂(θ)n2HRn̂(θ)n3) < ϵ (2.36)

A "fast" convergence for the number of gates to approximate an arbitrary unitary
operation is given thanks to the Solovay-Kitaev theorem.
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Theorem 5 (Solovay-Kitaev theorem) Any quantum circuit containing m CNOTs
and single qubit gates can be approximated with accuracy ϵ using O(m logc(m/ϵ))
gates from a discrete set, where c → 2.

Furthermore, it can be proved that there is a unitary transformation U on n
qubits that can be approximated by V with Ω(2n log(1/ϵ)/ log(n)) operations such
that E(U, V ) ≤ ϵ. To conclude, combining the previous results, to approximate
an arbitrary unitary operation U on n qubits within an accuracy ϵ, we require
O(n24n logc(n24n/ϵ)) gates.
The unitary operation that can be computed efficiently in a quantum circuit model
is still an open question.

2.3 Distance Measures

In quantum information, we are interested in distance measures to quantify how
close two quantum states are (static measure), and how well information is preserved
trough a quantum channel (dynamic measure).
First of all, in classical information, an information source can be seen as a
random variable: the probability distribution of its values is computed over all the
population. Such probability distributions are useful to define distance measures
for quantum information.
The trace distance and fidelity are static measures of the distance between two
fixed probability distributions. Given two probability distributions px and qx, we
define the trace distance between them as

D(px, qx) ≡ 1
2

Ø
x

|px − qx| (2.37)

and the fidelity as

F (px, qx) ≡
Ø
x

√
pxqx (2.38)

To evaluate how well the information is preserved by an evolution we need a
dynamic measure, that can be derived from a special case of static trace distance.
Given a pair (X, X̃), composed by the random variable X and a copy of it X̃ = X,
assuming now that X passes through a noisy channel becoming the random variable
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Y , we can evaluate how close (X̃,X) is to (X, Y ) as:

D((X̃,X), (X, Y )) = 1
2

Ø
xx′

|δxx′p(X = x) − p(X̃ = X, Y = x′)|

= 1
2

Ø
x/=x′

p(X̃ = X, Y = x′) + 1
2

Ø
x

|p(X = x) − p(X̃ = X, Y = x′)|

= 1
2

Ø
x/=x′

p(X̃ = X, Y = x′) + 1
2

Ø
x

(p(X = x) − p(X̃ = X, Y = x′))

= p(X̃ /= Y ) + 1 − p(X̃ = Y )
2

= p(X /= Y ) + p(X̃ /= Y )
2

= p(X /= Y )

Hence the trace distance between the probability distributions (X̃,X) and (X, Y ) is
equal to the probability that X is not equal to Y : p(X /= Y ). A similar procedure,
considering quantum states rather than classical variables, can be used to derive a
dynamic measure of how well information has been preserved across a channel.
In the quantum scenario, given two quantum states ρ and σ, we define their trace
distance as:

D(ρ, σ) ≡ 1
2tr|ρ− σ| (2.39)

and the fidelity as:

F (ρ, σ) ≡ tr
ñ
ρ1/2σρ1/2 = max

|ψ⟩,|ϕ⟩
|⟨ψ|ϕ⟩| (2.40)

where the last equality is given thanks to the Uhlmann’s theorem.
These two measures are strictly connected one to the other, indeed they have
opposite behaviors: when the trace distance increases, while two states become
more distinguishable, the fidelity decreases and vice versa. In many applications
these measures lead to equivalent results, for this reason they are both widely used
in quantum computation.
A significant result that makes these measures so important, is that no physical
process ever increases the distance between two quantum states. This result is
known as the strong convexity property of the trace distance, or in the same way
strong concavity property of the fidelity distance.
Another important measure, of the closeness between probability distributions, is
the relative entropy. Given two probability distributions px and qx on the same
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index set x, we define the relative entropy of px to qx as:

H(px||qx) ≡
Ø
x

px log px
qx

≡ −H(X) −
Ø
x

px log qx (2.41)

As done for the fidelity and the trace distance we can define a quantum version
of the relative entropy. Given two density operators ρ and σ, we can define the
quantum relative entropy of ρ to σ as:

S(ρ||σ) ≡ tr(ρ log ρ) − tr(ρ log σ) (2.42)
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Chapter 3

Quantum Reinforcement
learning

In the wide world of artificial intelligence, Reinforcement Learning (RL) [2] repre-
sents one of the most promising fields of innovation. One of the possible applications
of reinforcement learning is to improve computing techniques within quantum com-
puters.

The scope of this chapter is to give an overview on the intersection between
quantum computers and reinforcement learning.

3.1 Reinforcement Learning

Reinforcement Learning is a Machine Learning technique that, unlike the other
kinds of machine learning methods (supervised and unsupervised learning) is based
on the idea that, as humans learn from experience to make decisions, a machine
learns through iterative interactions with the environment and receives positive or
negative feedbacks based on its actions.

At its core, this paradigm revolves around the concept of an agent navigating
an environment, learning optimal actions through a system of trial and error, and
being rewarded or penalized based on the consequences of its decisions.
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Figure 3.1: Agent-Environment interaction loop.

Figure 3.1 illustrates the RL problem and highlights the interaction between the
environment and the agent, underlining the importance of mapping environmental
situations into optimal actions to maximize the reward signal.

The RL problem can be formally defined through the following elements:

• Agent: is a physical system in the environment that interacts with it through
actions, observations and rewards. The actions performed by the agent can
influence the state of the environment.

• Environment: denoted as ϵ, is the context in which the agent operates,
representing the external system with which the agent interacts. It provides
to the agent a state or observation st at each time step t. The environment
can be classified as completely observable or partially observable depending on
the amount of information that the agent can receive from it. If the agent can
completely know the state of the environment it is called full. Otherwise, if
some information is omitted, it is called partial.

• Action: is the decision that the agent can make at each time step t. The set
of all possible actions is called action space A. The agent chooses an action at
at each time step.

• State: st represents the current observation of the environment to make
decisions about the viable actions at the next time step t+ 1.

• Reward: is a scalar that determines how good an action taken by the agent
at each time step is. It takes a central role in defining the agent goal: to
maximize the cumulative reward in one episode. An episode is a complete
sequence of interactions, which begins when the agent is in an initial state
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and continues until a predetermined termination condition occurs.

Rt =
TØ
t′=t

γt
′−trt (3.1)

• Policy: π is the strategy or behavior of the agent, mapping states into
actions. Finding the policy that maximizes the cumulative reward is the
agent’s goal and can be represented as a mathematical function or a decision
rule π : S × A → [0,1],π(a, s) = Pr(At = a | St = s).

• Value Function: is a function that provides the expected cumulative future
reward that can be obtained from a certain state-action pair, given the policy
π.

• History: the term denotes the chronological sequence of observations, ac-
tions, and rewards encountered by an agent during its engagement with an
environment over a period. The history up to time t is often denoted as
Ht = (O1, R1, A1, ..., Ot, At, Rt)..

In a fully observable environment scenario, reinforcement learning can be for-
mulated as a Finite Markov Decision Process (MDP). MDP is a discrete-time
stochastic control process that extends, in the field of optimization problems, the
concept of Markov chains. Markov chains are memory-less stochastic processes in
which the state of the system at time t+ 1 depends only on the state at time t, so
its evolution is independent of the history of states, this statement represents the
Markov condition and can be expressed mathematically as:

P (Xt+1 = j | Xt = i,Xt−1 = it−1, . . . , X0 = i0) = P (Xt+1 = j | Xt = i). (3.2)

In other words, the probability of moving from one state to another depends only
on the current state and the action taken, not on the complete sequence of previous
states and actions.
The environment of an RL algorithm is typically stated in the form of a Markov
Decision Process (MDP) with a 4-tuple (S,A, Pa, Ra) where:

• S: is the set of states.

• A: is the set of actions.

• Pa: Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) is the state transition function,
and represents the probability of moving from state s to s′, given the action a
at time t.

• Ra(s, s′): is the immediate reward function, and represents the numerical
values to state-action pairs assigned after the transition from state s to state
s′, taking the action a
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The goal in a MDP, as for the RL, is therefore to find the optimal policy π∗

which maximizes the expected value of cumulative rewards over time, as defined
for RL. The agent achieves this by exploring and learning from its interaction
with the environment over time. Reinforcement Learning (RL) algorithms, such
as Q-learning, Policy Iteration, and Value Iteration, are often used to learn the
optimal policy in an MDP.
Therefore Reinforcement Learning is a hard non-linear, non convex optimization
problem, where the aim is to optimize the policy π(s, a) = Pr(a = a|s = s). In
particular, a commonly used method method used for policy evaluation and policy
optimization is dynamic programming.
Dynamic programming refers to a category of algorithms used to solve optimization
problems that relies on dividing the complex problem into more manageable
sub-problems and iteratively solving them. Two main approaches are evaluation
iteration and policy optimization iteration, both based on the Bellman equation
[3].

3.1.1 Q-learning algorithm
Q-learning is a model-free reinforcement learning algorithm to learn the value of
an action in a particular state. "Model-free" means that does not require a model
of the environment [4].
For any finite Markov decision process, Q-learning finds an optimal policy max-
imizing the expected value of the total reward over any and all successive steps,
starting from the current state. Q-learning converges an optimal policy for any
given finite Markov decision process, given infinite exploration time and a partially
random policy [5].

To account for the reward associated with an action/state pair, a reward matrix
Q is employed, where each row corresponds to a state and each column to an
action.
The element Q(s, a) represents the goodness of the pair (state s/action a) and is
defined through the Bellman equation:

Q(st, at) = R(st, at) + γmax
a

[Qπ(st+1, a)] (3.3)

R is the immediate reward for st and at, γ ∈ (0,1) is the discount factor that
usually is taken near to 1 to favor the next reward, it multiplies the maximum
value of reward associated with all the possible actions that can be made at t+ 1
given that st is chosen at t.
Starting from the initial model based on the policy π, which could be random,
the Bellman equation is used to enhance the reward matrix Q for each possible
state/action pair in an iterative manner until the initial policy π converges to the
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optimal policy π∗.

Other techniques used for optimization problems are:

• Differential Programming: It refers to an approach that includes differential
calculus in solving optimization problems. In reinforcement learning the
calculation of derivatives can be used to update the parameters of a model in
order to minimize or maximize an objective function.

• Monte Carlo: this methodology is based on the sampling of complete episodes.
The agent performs several interactions within the environment, acquires
experiences, and estimates state or action values based on the total rewards
obtained.

• Temporal difference: it is a model free method - so it does not require any model
of the system - and combines Monte Carlo methods and Dynamic programming.
The agent learns by bootstrapping the estimation of the current value of the
objective function and updating it by considering the difference between the
current estimates and the new information just obtained.

• Exploration/Exploitation: it balances the exploration of the environment
(state space) and the exploitation of the knowledge acquired from the previous
steps.

• Policy iteration: it is an algorithm whose aim is to find all optimal policies
through an iteration loop where first a policy evaluation and then a policy
improvement are performed.

• Gradient descent: it is a minimization algorithm based on finding the optimal
parameters that minimize the objective function, by computing its gradient.

These techniques are really effective for a fully observable environment, whereas
in a partially observable environment a local minimum can be chosen in place of
the optimal minimum, hence the initial state distribution plays a crucial role.

3.2 Quantum Reinforcement Learning setting
There are three possible ways to combine quantum and RL frameworks: employing
quantum data and classical algorithms, classical data and quantum algorithms
or quantum data and algorithms. The last one is almost an unexplored field,
hence this work focuses on the former one. Quantum reinforcement learning is the
intersection between reinforcement learning and quantum computing, and arises
from the need to address challenges associated with quantum computations, such
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as the efficient preparation of quantum circuits.
In this thesis, it is presented an overview of the employment of quantum data
within classical RL algorithms to explore problem-solving in quantum contexts.
This involves modeling complex quantum environments and seeking optimal policies
within quantum settings.
State preparation is a very general and fundamental problem in quantum comput-
ing. We want to train a agent to design a quantum circuit, which transforms an
initial state vector associated to a quantum system into a target state of interest,
minimizing the number of quantum gates used. For example to prepare entangled
states of N qubits, such as a|00...0⟩+b|11...1⟩, starting from the initial state |00...0⟩.
The control problem can be centered in designing optimal quantum circuits by
minimizing the number of quantum gates that can be useful for several reasons
in quantum computation to improve reliability, reduce costs and make the imple-
mentation of quantum algorithms in experimental and computational reality more
feasible. In particular, some of reasons why it is important to minimize the number
of quantum gates are explained in the following:

• Decoherence and errors, as stated by one of the DiVincenzo’s criteria ,
a set of five criteria proposed by David P. DiVincenzo in 2000 [6], represent-
ing the features that a quantum computer should possess to be universally
usable and practical, minimizing the number of quantum gates is crucial to
reduce the probability of errors and maintaining quantum coherence. Indeed
each quantum gate, represented by a unitary transformation, adds noise and
interference to the circuit.

• Computational complexity. Gates increase computational complexity and
require more physical resources. The practical implementation of quantum
gates often involves significant computational costs and requires the application
of complex error correction techniques. Reducing the number of quantum
gates helps reduce hardware and software resource requirements, thus making
the implementation of quantum algorithms more accessible and feasible. This
optimization not only improves computational efficiency, but also reduces
the complexity of the necessary error correction strategies, helping to make
quantum systems more robust and reliable.

• Quantum Parallelism: The intrinsically parallel nature of quantum com-
putation allows many calculations to be performed simultaneously through
quantum superposition. However, an excessive number of quantum gates can
increase computational complexity, undermining the advantage of parallelism.

We then proceed to deal with a preparation setting for a quantum target state
where the policy is focused on minimizing the gates used [7]. Subsequently, other
techniques are introduced for the preparation of target states, in which the number
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of gates is less crucial, for example in the context of quantum control. Here the
goal is to prepare states with the highest possible level of fidelity, maximizing the
performance of the quantum system, minimizing unwanted effects and ensuring
that the system reaches certain states or performs specific desired operations.

3.3 Quantum State preparation minimizing the
number of quantum gates

A general N qubit quantum state, as discussed in the previous chapter, can be
represented as a superposition of all computational basis states:

|ψ⟩ =
Ø

(q1,q2,...,qN )∈{0,1}
aq1,q2,...,qN

|q1⟩ ⊗ |q2⟩ ⊗ ...⊗ |qN⟩ (3.4)

where aq1,...,qN
∈ C are the amplitudes for each state, each qubit qi ∈ {0,1}, and

the normalization condition is || q
(q1,q2,...,qN )∈{0,1} aq1,q2,...,qN

||2 = 1.
In this setting, amplitudes represent the states of the agent, and in order to use
only real numbers, they can be expressed as a couple of real numbers composed by
the real and imaginary part, by:

s = [ℜ(a00...0),ℜ(a00...1), ...,ℜ(a11...1),ℑ(a00...0),ℑ(a00...1), ...,ℑ(a11...1)] (3.5)

It must be considered that the number of terms increases exponentially with the
number of qubits N, so that the number of coefficients is 2N+1 (taking into account
that each coefficient is written as couple of real numbers).
The action consists then in choosing a quantum gate to update the amplitudes
from a set of gates. The application of a quantum gate on the state of N qubits,
on the k-st qubit, is given by:

|ψ′⟩ = (I ⊗ . . . ⊗ U ⊗ . . . ⊗ I)|ψ⟩ (3.6)

where U is the unitary matrix ∈ C2Nx2N and is in the k-st position of the tensor
product.
Hence according to (2.3):

|ψ′⟩ =
Ø

(q1,q2,...,qN )∈{0,1}
aq1,q2,...,qN

Uk|q1⟩ ⊗ |q2⟩ ⊗ . . .⊗ |q′
k⟩ ⊗ . . .⊗ |qN⟩ (3.7)

For example in case of a quantum state of N=2 qubits, U is defined as:

U =
C
u00 u01
u10 u11

D
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and the updates of the amplitudes are computed as follows:
For the first qubit:

(U ⊗ I)
Ø

(q1,q2)∈{0,1}
aq1,q2 |q1⟩ ⊗ |q2⟩ (3.8)


u00 0 u01 0
0 u00 0 u01
u10 0 u11 0
0 u10 0 u11



a00
a01
a10
a11

 =


u00a00 + u01a10
u00a01 + u01a11
u10a00 + u11a10
u10a01 + u11a11

 (3.9)

While for the second qubit:

(I ⊗ U)
Ø

(q1,q2)∈{0,1}
aq1,q2|q1⟩ ⊗ |q2⟩ (3.10)


u00 u01 0 0
u10 u11 0 0
0 0 u00 u01
0 0 u10 u11



a00
a01
a10
a11

 =


u00a00 + u01a01
u10a00 + u11a01
u00a10 + u01a11
u10a10 + u11a11

 (3.11)

Then to find the optimal policy the Q-Learning Alogorithm is used. In this case the
discount factor γ of the cumulative reward is set to 0 or near 0. This reflects the
fact that, unlike what was said previously, the agent will place greater importance
on immediate rewards rather than on long-term ones. Thus the agent will be more
oriented towards maximizing immediate rewards rather than considering future
benefits. This is consistent with the fact that we want to reach the target state
using the smallest possible number of actions. For the same reason a fully greedy
approach was chosen, which consists in always choosing the action corresponding
to the maximum value of q obtained from the Bellman equation. This choice limits
the exploration of the environment and tends to maximize the immediate reward.
Alternatively, an espilon-greedy approach can be used, in which the agent chooses
the optimal action (the one with the maximum value according to its Q function)
with a probability 1 − ϵ , or choose a random action (explore) with a probability ϵ.

a =
random action with probability ϵ

argmaxaQ(s, a) with probability 1 − ϵ
(3.12)

Given a two-qubit initial state of the type |ϕ⟩ =| 00⟩, this setup works well to
reach as a target state one of the four Bell states, where the set of gates employed in
the algorithm are CNOT plus the rotation operators of an angle θ ∈ {π, 2π

3 ,
π
2 ,

π
3 ,

π
4 }

around the three axis x̂, ŷ, ẑ [7]. At each step, to check if the desired final state is
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reached, the fidelity F between the target vector and the final vector is computed:
F (ψ′, ψ(t)) =| ⟨ψ′ | ψ(t)⟩ |2. Where F ∈ [0,1]. However F = 1 in general is not
achievable through a finite set of gates, hence a tolerance parameter ζ is defined.
A state ψ′ is then considered a final state if its fidelity F ∈ [1 − ζ,1].
Simulation results can be tested on a quantum computer through IBM quantum
lab, a cloud service that give access to a real quantum device [8]. Ideally the final
state of the simulation should match the one of the real device, but since the second
one is affected by noise, a distance measure (fidelity or trace distance) must be used.
Therefore it is necessary to reconstruct the quantum state (or the density matrix).
To do so, a possible approach is quantum state tomography [9] that consists in
estimating the density matrix from a set of measured quantities. But the density
matrix ρ obtained in this way does not respect the trace and positivity conditions.
To overcome this problem a maximum likelihood technique is adopted. It requires
numerical optimization but it is able to produce density matrices that are always
non-negative definite. The basic idea is to use the likelihood function:

L(X⃗ | ρ) =
nÙ
i

fρ(xi) (3.13)

where f can be considered a normal distribution assuming that the noise is Gaussian,
and ρ is the density matrix that can be expressed through a tunable matrix T as:

ρ = T TT

tr(T TT ) (3.14)

Moreover noise modeling can be included within the algorithm to improve the
fidelity and mitigate the effect of noise.

Another promising approach, which has ample room for improvement, for
the quantum state preparation is the Difference-Driven Reinforcement Learning
[10]. The basic idea is to use an adaptive ϵ-greedy action selection strategy and a
weighted diversity dynamic reward function. This approach leads to an increase
in convergence speed and an improvement in fidelity for the preparation of a
two-qubits system.
In this setting the total reward is divided in internal and external reward rt =
rextt + rintt .
The internal reward is set "by considering the differences between the current
quantum state, the real next quantum state and the predicted next quantum state
and the target quantum state at the same time, and according to this difference,
the possible reward for the agent to perform a quantum operation is dynamically
set"[10]. The external reward is instead manually set.
The adaptive epsilon is updated by introducing a λ parameter as follows:

ϵ = ϵmin + (ϵmax − ϵmin)e− λ
C (3.15)
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where C represents the updated cardinality that depends on the task.

3.4 Conclusion
The Machine Learning sector can be referred to as "experimental", since attempting
various techniques to see which one works better usually precedes the theoretical
analysis. Very complex algorithms often lead to an effective solution to a problem
without exploring and fully understanding the logical/theoretical process behind it.
Quantum Mechanics as well is a very abstract matter whose mechanisms are beyond
everyday experience and thinking processes. The combination of Machine Learning
and Quantum Mechanics therefore leads to the deployment of very abstract tech-
niques, that require trial and error approaches as it has been discussed in this thesis.
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