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Chapter 1

Introduction

Out of the infinitely many physical phenomena that permeate the universe, out-
of-equilibrium processes play a very special and pervasive role. In fact, at any
given moment, anyone is surrounded by out-of-equilibrium processes (e.g. traffic
flow, electrical or heat transport) and is even host for some of them (think of
biological transport inside our bodies). Among the many instances in which out-
of-equilibrium physics arises, a very important category of interesting problems is
that of transport phenomena. Be it in the realm of biology or rush hour traffic, a
lot of things have to be transported to make life and the world work as we know it.
In the present thesis, we use statistical mechanics to deal with a model developed
in the context of biological transport, with the purpose of finding information on
its steady states, i.e. the situations for which its macroscopic behaviour does not
change over time. In the domain of non-equilibrium statistical mechanics, there
is no well-established theory to study, therefore, some models have been proposed
as a means of capturing the relevant physical properties of multi-particle out-of-
equilibrium systems. One of these tools, called TASEP, is the paradigmatic one
used especially as a toy model for the one-dimensional driven motion of a set of
particles. TASEP stands for ‘Totally Asymmetric Simple Exclusion Process’, and
is defined as a one-dimensional lattice consisting of L sites governed by a specific
set of rules. In its simplest configuration, the fundamental features of the model
are:

• particles are only as big as one site,

• sites can be either empty or occupied by only one particle,

• particles can hop only to their first neighbouring site and only in a set direc-
tion (for example, rightward),

• only one particle at a time moves.
As previously stated, there is a biological background behind the TASEP. In fact,
in 1968, Macdonald et al. [1] proposed it as a model for the so-called ‘translation’
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Introduction

part of protein biosynthesis, consisting of the motion of ribosomes along mRNA.
Protein biosynthesis is the process in a cell in which a genetic code encrypted in
DNA is translated into the production of proteins, biomolecules that have a huge
variety of roles inside living things. This process starts with a ‘transcription’ phase
where a messenger RNA (mRNA) is created from DNA and later ejected out of the
cell nucleus into the cytoplasm, where the ‘translation’ phase occurs (as shown in
fig. 1.1).

Figure 1.1: Visual representation of protein synthesis. The picture was taken from
[2].

During this phase, a set of ribosomes binds to one mRNA molecule at a specific
location called starting codon1. Then, these ribosomes move along the mRNA, in
a set direction, translating each codon into a specific amino acid. The biochemical
mechanics that govern ribosomes’ movement are the ones responsible for driving
the system out of equilibrium. We can see that the main features of ribosome
kinetics justify the modelling via TASEP2:

• the movement of ribosomes on the mRNA molecule looks like the motion of
particles on a one-dimensional track;

• the ribosomes couple with codons and move from one codon to the next,

1We remind that a codon is a group of three consecutive nucleotides.
2Some features of the kinetics are not captured in the modelling because of the unitary particle

size and the uniform hopping rates in the TASEP.
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which can be viewed as the one-dimensional track having a lattice structure
where codons are the sites;

• there cannot be two ribosomes coupled to the same codon at once, thus a
‘simple exclusion’ rule is satisfied.

After this first instance, the TASEP acquired, for non-equilibrium processes, a role
comparable to that of the Ising model for equilibrium processes. Therefore, it
has been implemented as a modelling tool in many different fields, both biological
(e.g. to represent the movement of myosin or the transport of cellular material
performed by kinesin and dynein) and not (vehicular traffic phenomena, among
others). Of course, when dealing with difficult and multifaceted problems, there
is always more complexity to be dealt with. The TASEP, as we described it, is
a very simplified way to model the basic behaviour of certain systems. However,
a deeper understanding of the complicated dynamics of a particular system under
investigation can be reached by modifying the features of the ‘simple’ TASEP and
introducing some new ones. For example, one often deals with biological or other
physical systems in which the resources are limited. In the context of protein
synthesis, the finite resources correspond to a finite number of ribosomes available
for translation. This prompts the study of lattice models that are closed. In
the literature, many of such systems have been investigated, a lot of them being
idealized ones, not necessarily associated with a specific physical system [3–7]. This
area of research is still active and in this thesis work we aim at investigating one
of such models. We will analyse a closed system composed of a TASEP inserted
between two reservoirs that interact with each other by exchanging particles at some
given fixed rates. Naturally, this imposes a conservation of the overall number of
particles. For this particular system, an exact solution is not known. So, we will
utilise both approximate semi-analytical methods and computer simulations to find
some results about the steady-state behaviour we are interested in.

The thesis is organised as follows: In Chapter 2 we introduce the main results
and methods used to tackle the study of ‘simple’ TASEP (sections 2.1, 2.2) and
specify the features of the specific system we consider in this thesis (section 2.3).
In Chapter 3 we first describe how to build up a numerical algorithm for simulating
our problem using the kinetic Monte Carlo method (section 3.1). Then, we proceed
to write the governing equations of the system under a Mean Field approximation
and we show how they can guide us in understanding the steady states of the
model (sections 3.2, 3.3). We use the name ‘constraints analysis’ for section 3.3
because, as it will be shown later, we will use some specific constraints on the
reservoirs’ populations to extract information on the admitted phases for the system
at stationarity. In Chapter 4 we thoroughly report the results obtained by the
previously presented methods. In Chapter 5 we briefly summarize the findings of
this thesis work and mention possible future developments.
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Chapter 2

Models

As stated in the introduction, the TASEP is a model defined, in its simplest form,
on a one-dimensional lattice composed of L sites in which particles can move only
from a certain site to its right adjacent one, as long as the latter is empty, with unit
rate. Given the length L of the lattice, it is customary to label the sites, starting
from the left border, with i = 1, . . . L, and introduce the random variables nt

i = 0,1
which relay the information concerning the occupation of a site i at a certain time,
e.g. if the site i is empty (full) at time t, then nt

i = 0(1). For the effective study
of the model, the local densities of particles are introduced ρt

i = ⟨nt
i⟩. Here, the

notation ⟨.⟩ means ‘expectation value’ and stands for the ensemble average over all
the possible outcomes of the stochastic process at any time.

From this simple setup, one can introduce a variety of complications and obtain
a plethora of interesting models with different behaviours. Among the most famous
ones, are the ‘Partially Asymmetric Simple Exclusion Processes’ in which particles
can jump in both directions (with different rates)[8], the TASEP with Langmuir
kinetics, in which attachment and detachment of particles can occur at any site [9],
the one with particles occupying more than one lattice site [10] or with site-wise
disorder [11] and many others.

However, for any model or complication one wants to tackle, and even in its most
simple version, the TASEP has an important degree of freedom that one needs to
specify, the boundary conditions. The first and most important ones considered
in the literature are periodic (PBC) and open (OBC) boundary conditions. As
explained in the introduction, this thesis work will focus on a TASEP (related to
the OBC case) connected to two weakly coupled reservoirs (more details later).
Therefore, in this chapter, we will first briefly analyze the paradigmatic case of
PBC, which will serve as a first introduction to some machinery and way of thinking
needed in future sections, then we are going to introduce the main features of the
model with OBC and in the end we will concisely show how considering two coupled
reservoirs modifies the picture. A detailed and extensive analysis will follow in the
next chapters.
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2.1 TASEP with periodic boundary conditions
For the TASEP, the requirement of periodic boundary conditions makes it so that
our one-dimensional lattice takes the shape of a ring where site L is connected to
site 1 and a particle can hop from the former to the latter (provided the latter is
empty). The following figure should show clearly what we mean.

Figure 2.1: Visual representation of a simple TASEP with PBC.

As a consequence of the topology of the system, particles cannot enter or exit
the ring and the total number of particles present in the initial state will not vary.
This number therefore will be conserved during the dynamics. We denote this by
writing

N =
L∑︂

i=1
nt

i =
L∑︂

i=1
n0

i . (2.1)

Now let us delve deeper into the dynamics of the system. Let us take a certain
configuration of the system with N particles and denote by k the number of clusters
of adjacent particles present at a certain time t. The rules of the motion prevent
from moving any particle that is not the rightmost one of a cluster. Therefore
there are exactly k possible transitions to a different configuration. For the same
consideration, there are also exactly k configurations from which the present state
can be reached through a transition. This reasoning allows us to draw the conclusion
that the stationary state probability is a non-zero constant for every configuration
that has precisely N particles and is zero otherwise. We can sum up this information
by writing:

P (nt) = const · δ∑︁L

i=1 nt
i,N

. (2.2)
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2.1 – TASEP with periodic boundary conditions

Now to find this constant one just needs to use normalisation. In fact, having N
particles in a lattice of L sites means that the ways in which one can distribute
those N particles into the L sites are given by the simple combinatorial result(︂

L
N

)︂
= L!

N !(L−N)! . Therefore

P (nt) = N !(L − N)!
L! · δ∑︁L

i=1 nt
i,N

. (2.3)

Following the previous considerations, it ensues that the probability flux into and
out of a certain configuration at time t with k clusters will be k times the previously
stated constant, and the stationarity condition given by the master equation of the
process is satisfied:

d

dt
P (nt) = k

N !(L − N)!
L! − k

N !(L − N)!
L! = 0 (2.4)

Armed with these results one can derive stationary state densities and correlations.
Firstly, the probability of having a particle at a certain site i can be obtained with
the easy combinatorial consideration1

ρ = ⟨ni⟩ = P (ni = 1) =

(︂
L−1
N−1

)︂
(︂

L
N

)︂ =
(L−1)!

(N−1)!(L−N))!
L!

N !(L−N)!
=

(L−1)!
(N−1)!(L−N))!

L(L−1)!
N(N−1)!(L−N)!

= N

L
(2.5)

and one can clearly see that this stationary density is independent of the specific
lattice site considered. For the correlations, one can see an emerging pattern. Let
us start with the two-point correlation, which can also be restated as the probability
of finding a particle at j /= i, given that there is a particle at i. We can write

⟨ninj⟩ = P (ni = 1, nj = 1) = P (nj = 1|ni = 1)P (ni = 1) = N(N − 1)
L(L − 1) (2.6)

using the same kind of reasoning as before. The three-points correlation will have
form ⟨ninjnk⟩ = N(N−1)(N−2)

L(L−1)(L−2) and the general form for any order emerges recursively
as

⟨ninj . . . nk⟩⏞ ⏟⏟ ⏞
R sites

=
R−1∏︂
m=0

(N − m)
(L − m) . (2.7)

Now the remarkable feature of this result is that, by taking the thermodynamic
limit, i.e. having N, L → +∞ such that N

L
remains constant, the correlations and

the stationary state probability factor into products of single node marginals

⟨ninj⟩ = ρ2, ⟨ninjnk⟩ = ρ3, . . . , (2.8)

1The probability of having a particle in site i is equal to all the ways in which the N − 1
remaining particles can be distributed in the L − 1 sites left divided by all the possible ways to
distribute N particles in L sites.
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thus making a mean field assumption exact. In this stationary state, the particle
current can be written as

J(ρ) = ⟨ni(1 − ni+1)⟩ = ρ(1 − ρ). (2.9)

This current describes how fast is the motion of particles in the TASEP with respect
to the particle density in the thermodynamic limit. The plot J vs ρ is known as
fundamental diagram:

Figure 2.2: Fundamental diagram of TASEP with PBC.

We can see that J(ρ) is zero for particle density 0 and 1, corresponding to the
lattice being totally empty or totally full, and it is maximal (J = 1

4) for the optimal
density ρ = 1

2 . In this introduction, we were only concerned with the stationary
state of the system. A full non-stationary solution was found in 2003 by Priezzhev
[12].

2.2 TASEP with open boundary conditions

In this subsection, we go over the main features and the important results for the
TASEP with OBC, with unitary and uniform transition rates. In its simplest form,
we consider particles to be injected at the first site of the TASEP (given that it
is empty) with constant rate α and extracted from the last site L (provided it
is occupied) with rate β. It is interesting to notice that a completely equivalent
description can arise assuming that the TASEP is in contact with two infinite
reservoirs of fixed densities α,1 − β which respectively inject and extract particles
at unit rate. A schematic representation of the whole system is given in figure 2.3.
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2.2 – TASEP with open boundary conditions

Figure 2.3: TASEP with open boundary conditions, injection rate α and ejection
rate β.

The fascinating feature of this system is that the macroscopic behaviour of the
steady state is strictly determined by the parameters at the boundaries. In fact, by
fine-tuning the values of α and β one can induce a modification of the stationary
density profile that can be described with the language of phase transitions. We
can call α and β the control parameters and the bulk (uniform) density ρ the order
parameter. Depending on the values of the control parameters, the stationary state
of the system can be in three different phases, characterised by different behaviours
of the order parameter:

• With α < β and α < 1
2 the bulk density is ρ = α < 1

2 and one describes the
TASEP as being in a Low Density (LD) Phase.

• With β < α and β < 1
2 the bulk density is ρ = 1 − β > 1

2 and one describes
the TASEP as being in a High Density (HD) Phase.

• With α, β > 1
2 the bulk density is ρ = 1

2 and one describes the TASEP as
being in a Maximal Current (MC) Phase

As previously stated, it is interesting to notice that the value of the bulk density
ρ, describing the system at a macroscopic level, is the result of the behaviour of
the TASEP at the boundaries. While this is unusual, it is intuitively clear how, in
the specific case at hand, the TASEP can be in a low density phase (so there are,
on average, not many particles inside at any given moment) when particles exit
faster than they enter (α < β) and, vice versa, it can be in a high density phase
when particle enter faster than they exit. The maximal current phase is maybe less
transparent but it can be described as the situation for which, as its name suggests,
the boundary parameters are permitting the ‘fastest possible passage’ of particles
going through the TASEP. It is also important to remark that the boundary between
HD and LD phases is delimited by the so-called coexistence line, namely for α = β
with α, β < 1

2 . On this line, the system shows a linear density profile that connects
low local densities close to the injection border to high local densities close to the
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ejection border. In this situation, see fig. 2.5, one obtains a domain wall (or shock)
profile via mean field approximation. The exact solution is recovered considering
that in the limit L → +∞ the domain wall can be anywhere and an infinite number
of solutions appear, whose average gives the linear profile mentioned before. We
thus say, for the coexistence line, that there is a ‘delocalised’ domain wall. Lastly,
one can notice that the transition between low and high density phases through
the coexistence line is characterised by a jump in the bulk density. This transition
is named discontinuous (or 1st order). Conversely, the transitions between a high
(low) density phase and the maximal current phase present a smooth transition in
ρ. This is said to be a continuous (or 2nd order) phase transition.

Figure 2.4: Phase diagram for TASEP with open boundary conditions and unitary
hopping rates.

We extensively listed the characteristics of this simple model, let us quickly go
over how one can find these results. The simplest idea (which we will also use
in future sections for the extended model under study in this thesis work) is to
consider a Mean Field approximation where, motivated by the promising results
of the TASEP with PBC, one assumes that at each time t the joint probability
distribution factors into single-site marginals. This approximation allows one to
write the local currents as

J t
i = P t

i (1,0) = ρt
i(1 − ρt

i+1) i=1,. . . L − 1 (2.10)

and the continuity equations describing the time evolution of the local densities as

ρ̇t
i = J t

i−1 − J t
i = ρt

i−1(1 − ρt
i) − ρt

i(1 − ρt
i+1) i=2,. . . L − 1 (2.11)
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2.2 – TASEP with open boundary conditions

with boundary conditions:

ρ̇t
1 = α(1 − ρt

1) − ρt
1(1 − ρt

2) (2.12)
ρ̇t

L = ρt
L−1(1 − ρt

L) − βρt
L (2.13)

In principle, we could numerically solve these equations and look for solutions at
a sufficiently long time for which a stationary state is reached. Otherwise, given
that we are only looking for information on the stationary state of the model, we
can also equate to zero the right hand sides of the previous equations. What we
obtain is a set of L equations in L unknowns to be solved at given values of the
parameters α and β. Whatever the path one decides to take, for the TASEP with
OBC the mean field approximation yields a phase diagram containing all the correct
phases and transitions and satisfying results for the bulk densities. However, the
full density profiles obtained in Mean field turn out to be incorrect, especially near
the boundaries for HD, LD and MC phases, and as a whole on the coexistence line,
as shown in the figure below.

Figure 2.5: Comparison of full density profiles computed exactly and through Mean
Field approximation for the TASEP with OBC.

The exact solution for this model was found in the early 1990s by Derrida et al.
[13–16]. For a generic extension of the model, like the one we are analysing in this
thesis, there is no established method to use and one needs to start tackling the
problem in different directions. One of the first ideas that comes to mind is trying
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a Mean Field approximation, which we will in fact use. For this reason, we have
briefly presented it here for the case of a simple TASEP OBC. Another method
could be that of using computer simulations to study the system, for example via
Monte Carlo Method. We will also make use of this tool, therefore, to close this
section, we want to convey its power by showing below an example of the full
density profile of a simple TASEP with OBC, L = 50, α = 0.2, β = 0.3 obtained
via Mean Field approximation and via Monte Carlo simulation and then comparing
them with the exact result. One can clearly see in the figure that the full profile
obtained via simulation perfectly matches the exact one.

Figure 2.6: Comparison of a full density profile computed exactly, through Mean
Field approximation and via Kinetic Monte Carlo simulation.

2.3 TASEP connected to two coupled reservoirs
We can now describe the model on which we focus in this thesis. This is, as
anticipated before, an extension of the system presented in the previous section.
We know that a complete description of the TASEP with OBC is obtained by
considering the lattice in contact with two non-interacting and infinite reservoirs
with fixed densities. In the present work, we will focus on a system for which the
injection and extraction mechanisms of the TASEP are linked to two interacting
reservoirs of finite sizes [17]. A sketch of the model is shown in figure 2.7.

The system is made up of a one-dimensional TASEP of L sites connected to
two reservoirs R1 and R2. The particles in the first reservoir can enter the TASEP,
provided that the first site is empty. Then, inside the lattice, the particles follow the
usual rules of hopping only one place rightward, with unitary rate and only if the
next site is empty. When a particle reaches the last site, it can leave by entering the
second reservoir. The reservoirs can be described as points without spatial extent
or internal dynamics. Moreover, the reservoirs can exchange particles between
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2.3 – TASEP connected to two coupled reservoirs

Figure 2.7: Schematic of the system.

them directly. This is done in order to ensure a steady current in the system since
the flow through the TASEP is unidirectional and thus would stop shortly after
the depletion of particles in R1. To model this phenomenon, the instantaneous
diffusion rates k1 and k2 are defined. With this particle exchange mechanism in
place, one easily understands that the global number of particles in the system is
a conserved quantity. This conservation rule can be written as

NT OT = N1 + N2 + NT (2.14)

Where NT OT is the global number of particles in the system, N1 and N2 are the
number of particles in R1 and R2, and NT denotes the number of particles in the
TASEP (NT = ∑︁L

i=1 ni, with ni the occupation number of site i). We will further
require that the reservoirs’ capacities be bounded. More precisely, the model is
defined such that N2 ≤ L and N1 ≤ NT OT . Let us now be more precise about
the interactions among the TASEP and the reservoirs. We are used to having two
fixed parameters α and β that regulate injection and extraction. In the current
model, we do not want to have fixed but dynamic rates. We would like to see that
the injection to the TASEP increases its rate the more particles are present in R1
and that the extraction from the TASEP lowers its rate the more particles are in
R2. To achieve the wanted behaviour, we introduce, as done in [17], the effective
reservoir population-dependent injection and extraction parameters:

αEF F = α
N1

L
βEF F = β(1 − N2

L
) (2.15)

Here, α and β are control parameters that can take any positive value. These
control parameters are multiplied by suitably chosen functions of N1 and N2 that
are, respectively, monotonically increasing and decreasing non-negative functions,
that permit to respect the requirements stated before on the exchange flows we want
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the TASEP to have2. Moreover, a parameter called the filling factor is defined
as µ = NT OT

L
. This parameter gives us information on how populated the total

system is, in relation to the size of the TASEP. In the end, the model has five
parameters (α, β, µ, k1, k2) which control its behaviour. Lastly, as the title of this
thesis suggests, we remind that in this work we will focus our investigation of the
present system in a regime that corresponds to having the two reservoirs weakly
coupled. We will be more precise about what this entails in the next chapter.

2In principle, one could choose more complicated functions that respect the same physical
and mathematical requirements. Nevertheless, these simple choices are sufficient to observe some
interesting behaviour in the system.
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Chapter 3

Methods

In this work, we used two main techniques. Guided in spirit by the efficacy of mean
field approximation in correctly predicting the stationary states of the TASEP with
both PBC and OBC and by the extraordinary insights and power of simulation
methods, we use a mixture of both analytical and numerical tools to understand
the system under study and to interpret its behaviour. In the following sections,
we are going to describe in detail how.

3.1 Kinetic Monte Carlo
This technique consists of implementing an algorithm, first developed by Gillespie in
the late seventies [18] (therefore it is also known as Gillespie algorithm), to efficiently
simulate continuous time Markov processes. The main feature of this algorithm,
which is also what prompted us to utilise it, is that it is a rejection-free Monte Carlo
method. In fact, during the simulation, the program draws at random what the next
transition will be and when it will occur, instead of trying and accepting/rejecting
a transition at each temporal step. Thus, this generation method is 100% efficient.
Let us now briefly see how this method works. Consider a generic system under
study at an initial time t in a predetermined initial configuration. If one lets the
system naturally evolve, a new configuration will be reached at a certain time, where
both the new configuration and the elapsed time are controlled by the stochastic
dynamics of the system. Now, if one calls Wi the transition rate between two
configurations (where i is an index spanning the set S of allowed transitions),
then the probability that this transition occurs in the infinitesimal time interval
(t + τ, t + τ + dτ), is

P (τ, i)dτ = P0(τ)dτWi (3.1)

with P0(τ) being the probability that no transition occurs in the interval (t, t + τ),
where t is the time at which the last transition occurred. P0(τ) can be computed by
dividing the interval (t, t + τ) in m sub-intervals ∆τ = τ

m
, considering no transition
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should happen in all these sub-intervals, and taking the limit m → +∞; giving

P0(τ) =
⎛⎝1 − τ

m

∑︂
l∈S

Wl

⎞⎠m

→ e−τ
∑︁

l∈S Wl . (3.2)

This result means that
P (τ, i) = Wie

−τ
∑︁

l∈S Wl . (3.3)
Now, to specify what transition will occur and when, one needs to sample a pair

(τ, k) from a set described by P (τ, k). Gillespie shows that this can be achieved
by generating two random numbers ξ1, ξ2 from a unit-interval uniform distribution
and then by plugging them into the formulas below:

τ = − 1∑︁
l∈S Wl

ln ξ1 (3.4)

k−1∑︂
l=0

Wl < ξ2
∑︂
l∈S

Wl ≤
k∑︂

l=0
Wl (3.5)

The computer algorithm we have written to simulate the system under study
consists of four main steps:

1. Set the values for the control parameters (α, β, µ, k1, k2) and the lattice length
L. Set the initial time t = 0 and define a maximum number of transitions T .
Specify an initial configuration for the NT OT = µ · L particles in the system.
We decided (after verifying it did not impact the results for the stationary
states of the system1) this initial configuration to be one where all the particles
are in the first reservoir R1. Furthermore, assign the initial rates Wi.

2. Generate a random number ξ1, use equation (3.4) to compute τ and update
the total time elapsed to t + τ .

3. Generate a second random number ξ2 and choose the next transition k by
checking the integer for which the inequalities in (3.5) are satisfied. Depend-
ing on the specific case, the transition could be the hopping of a particle
into/inside of/out of the TASEP, or the transferring of a particle from one
reservoir to the other.

4. Update the state of the system (which, in this case, corresponds to updating
the variables associated with the occupation numbers of the sites/reservoirs
involved in the hopping) and all the transition rates Wi referring to the neigh-
bourhood of where the transition took place. Then, the algorithm goes back

1As one would expect, since the independence of the stationary states from the specific starting
configuration is a general property of an irreducible Markov chain.
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3.1 – Kinetic Monte Carlo

to step 2 and performs repeatedly this sequence 2-4 until the established
number of transitions T is reached.

At the end of the simulation, we obtain the density of particles for each site of
the TASEP and the occupation numbers of the reservoirs as an average over their
respective occupation variables computed before each transition, weighted by the
time elapsed before the successive transition:

ρi = 1
tT − tT0

T −1∑︂
j=T0

n
tj

i · (tj+1 − tj) (3.6)

⟨N1⟩ = 1
tT − tT0

T −1∑︂
j=T0

N
tj

1 · (tj+1 − tj) (3.7)

⟨N2⟩ = 1
tT − tT0

T −1∑︂
j=T0

N
tj

2 · (tj+1 − tj) (3.8)

As one usually does in these simulations, the sum starts not from the first tran-
sition to avoid ‘polluting’ the measurements by the transient to the steady state.
Therefore, we introduce a proper starting time T0, set to 0.1T after testing.

Armed with this algorithm, we will use the simulations as a counterpart to our
analytical approximations during our search for the stationary states of the sys-
tem.
Before moving on, let us be a little more precise about the different transitions
that can occur in the system and what they mean, in the algorithm, for the vari-
ables associated with the occupation numbers of sites/reservoirs and the rates Wi.
Remember we are dealing with a lattice of L sites connected to two interacting
reservoirs in the fashion of fig. 2.7. We called nt

i ∈ {0,1} the occupation numbers
for the lattice sites and N t

1, N t
2 the number of particles in the reservoir, at time t.

We define nt = {nt
1, . . . , nt

L}, nt+τ = {nt+τ
1 , . . . , nt+τ

L } the TASEP configurations at
two successive times. We have L + 3 possible processes:

• a particle leaves R1 and occupies the first site of the TASEP with rate
W 0

nt+τ ,nt = αEF F (1 − nt
1) = α

Nt
1

L
(1 − nt

1);

• L − 1 processes inside the TASEP in which a particle hops from one site to
the next one, with rates W i

nt+τ ,nt = nt
i(1 − nt

i+1), 1 ≤ i ≤ L − 1;

• a particle exits the last site of the TASEP and enters R2 with rate W L
nt+τ ,nt =

βEF F nt
L = β(1 − Nt

2
L

)nt
L;

• a particle leaves R1 to go towards R2 with rate W L+1
nt+τ ,nt = k1N

t
1;

• a particle leaves R2 to go towards R1 with rate W L+2
nt+τ ,nt = k2N

t
2.
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As stated before, as a consequence of transitioning to a new state during the run
of the algorithm, the system configuration and the rates of the transition processes
(involving both the sites targeted by the hopping process and their neighbourhood)
need to be updated. Let us give two examples:

• hopping process from a generic site i to site i + 1 inside the TASEP. We had
nt

i = 1, nt
i+1 = 0 and we update these occupation numbers to nt+τ

i = 0, nt+τ
i+1 =

1. The new rates are W i−1
nt+τ ,nt = nt+τ

i−1 , W i
nt+τ ,nt = 0 and W i+1

nt+τ ,nt = 1 − nt+τ
i+2 .

• ejection of a particle from node L to R2. We had nt
L = 1, N t

2 particles in R2
and we update the configuration to have nt+τ

L = 0, and N t+τ
2 = N t

2 + 1. The
new rates are W L−1

nt+τ ,nt = nt+τ
L−1, W L

nt+τ ,nt = 0 and W L+2
nt+τ ,nt = k2N

t+τ
2 .

3.2 Mean Field
Having written an algorithm that allows us to tackle the system under investigation
from the computational side, we would also like to obtain some analytical results.
The first idea that comes to mind is to try to describe the system’s behaviour by
means of a mean field approximation. It should not surprise the fact that one can
easily draw some similarities between the TASEP in our model and the one with
OBC presented in section 2.2. In fact, to be more precise, the internal dynamics
of the two models are exactly the same. What differs is the behaviour of the
injection/ejection parameters, which in the present case are effective parameters
not fixed in time, see equations (2.15). While we can expect this modification to
change the steady state behaviour of the system, it should not modify the structure
of the mean field equations for the TASEP. As we know, a mean field approach
consists of neglecting correlations between particles. Its effects are the same as
for the simpler OBC case on the local currents of our system, see equation (2.10).
Thus, one could write the continuity equations describing the time evolution of the
local densities as

dρt
i

dt
= J t

i−1 − J t
i = ρt

i−1(1 − ρt
i) − ρt

i(1 − ρt
i+1) with i = 2, . . . L − 1 (3.9)

with boundary conditions:

dρt
1

dt
= αt

EF F (1 − ρt
1) − ρt

1(1 − ρt
2) = α

N t
1

L
(1 − ρt

1) − ρt
1(1 − ρt

2)

dρt
L

dt
= ρt

L−1(1 − ρt
L) − βt

EF F ρt
L = ρt

L−1(1 − ρt
L) − β(1 − N t

2
L

)ρt
L.

(3.10)

This, however, is not a closed set of equations that allows us to analyse the system
dynamics under the chosen approximation. We still lack equations for the number of
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particles in the reservoirs that appear in equations (3.10). Considering the currents
entering/exiting through the reservoirs, we can write:

dN t
1

dt
= k2N

t
2 − k1N

t
1 − α

N t
1

L
(1 − ρt

1)

dN t
2

dt
= k1N

t
1 − k2N

t
2 + β(1 − N t

2
L

)ρt
L

(3.11)

With these, we obtained a closed set of equations in the corresponding set of vari-
ables (ρt

i, N t
1, N t

2). We can now write a computer algorithm which solves the previ-
ous set of equations. This algorithm consists of four main steps:

1. Set the values for the control parameters (α, β, µ, k1, k2) and the lattice length
L. Set the initial time t = 0. Specify the initial values for the variables in the
system. We decided to opt for an initialisation that corresponds to having all
the particles in the first reservoir R1 (this fixes ρ0

i = 0, N0
2 = 0, N0

1 = NT OT =
µ · L).

2. Compute the values for the local currents Ji = ρt
i(1 − ρt

i+1) for i=1,. . . L − 1,
J0 = α

Nt
1

L
(1 − ρt

1), JL = β(1 − Nt
2

L
)ρt

L.

3. Update the values for the local densities and the number of particles in the
reservoirs after a time interval of duration ∆. To do so, use a discrete-time
version of equations (3.9)-(3.10)-(3.11). To be clearer:

ρt+∆
i = ρt

i + ∆(J t
i−1 − J t

i ) (3.12)

and same for N1, N2. Update the time as tNEW = t + ∆

4. Repeat steps 2-3 until convergence.

We still need to specify what convergence means for this algorithm. We want the
system to be sufficiently close to the steady state. We then define a parameter
ζ = |Nt

1
L

− Nt−∆
1
L

| + ∑︁L
i=1

|ρt
i−ρt−∆

i |
L

that can quantify how close we are to stationarity
and we stop the iterations of the algorithm when ζ is less than a certain value, that
we specified to be 10−12.

With this algorithm, we explore the space of control parameters to find infor-
mation on the system. This will be done in the next chapter. However, we can give
here some preliminary considerations. Following the ideas of [17] we can clearly see
that the minimum value for the filling factor corresponds to not having particles
in the system, so µMin = 0 and the particle current inside the TASEP is obviously
zero. We can then ask what is µMax, and how it depends on the other parameters
of the system. We can imagine that µ = µMax when the particle density in each site
of the TASEP is its maximum allowed value, one. This means that the TASEP is
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full and the density current must be zero since there is no way for particles to flow.
Given that µ is maximum and the TASEP is full (NT = L) we expect the reservoirs
to be in the situation where they are at their maximum values. By looking at
equations (3.11) at stationarity and considering the injection/ejection currents to
be zero for the previous reasons, one gets that

N1Max

N2Max

= k2

k1
→ N1Max

= k2

k1
L (3.13)

Taking the equation for particle number conservation (2.14) and inserting what we
just found we get

µMax = 2 + k2

k1
, (3.14)

and we see that the ratio k2
k1

is the one controlling the maximum value of the filling
factor. We notice that, since said ratio lives in (0, +∞), µMax ∈ (2, +∞). With
these first considerations, we can see that k1, k2 will play a major role in defining
the behaviour of the system. We will proceed, in the next chapter, to investigate
the space of the control parameters α, β, for fixed k1, k2 and µ. Before moving
on, though, we must add that two different regimes for the diffusion parameters
k1,2 can be identified. It should be apparent that, with µ fixed, N1 and N2 should
increase with L, while the current inside the TASEP and at its boundaries should
not. Then, looking at equations (3.11) one can see that, at stationarity, in the
thermodynamic limit L → +∞, the injection and extraction currents become neg-
ligible with respect to the diffusion currents. Thus, it is asymptotically true that
k1N1 = k2N2. This means that the population in the reservoirs is simply fixed by
k2
k1

and we can say that diffusion dominates the system. This regime can be called
the ‘Strong Coupling’ limit. A more interesting case would be to focus on a situa-
tion where the diffusion mechanism and particle hopping are comparable. This is
ensured by using a ‘mesoscopic’ scaling for which k1,2 = κ1,2

L
, with κ1, κ2 ∼ O(1).

This is the ‘Weak Coupling’ limit and will be, as stated before, the focus of this
thesis. Standing on the ground of these considerations, we proceed in using the
algorithm previously described to investigate the system. We find correct infor-
mation on its steady states, which are also supported by the simulations and will
be presented later. However, we realise that, while we obtained a coherent de-
scription of the system at stationarity, the previous algorithm is not well suited to
describe the evolution towards it. In fact, there is a problem in the dynamics of
equations (3.11), in that they do not always respect the constraints for the maxi-
mum/minimum number of particles in the reservoirs. This means that we need to
find new equations to describe the behaviour of the reservoirs if we want to explore
the full dynamics of the system. What we need to do is to substitute equations
(3.11) with two new sets of equations, one for each reservoir, that describe the time
evolution of the probabilities for R1,2 to be in a state with a specific number of
particle r. We call these probabilities p1,2(r). In their equations, the information
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3.3 – Constraints analysis

on the constraints for the maximum/minimum number of particles in the reservoirs
can be included. Also, with the new probabilistic viewpoint for the reservoirs, in
equations (3.10) and in the injection/extraction currents inside this same new sets
of equations, one has to substitute N1,N2 with their averages ⟨N1⟩,⟨N2⟩ computed
using p1,2(r). The form of the set of equations for the time evolution of p1,2(r) is
a little bit cumbersome. We can write a more compact formulation by using the
complementary cumulative distributions, defined as:

P1(n) =
NT OT∑︂
r=n

p1(r) (3.15)

P2(n) =
L∑︂

r=n

p2(r) (3.16)

These allow us to write, for n = 1, . . . NT OT :

dP1(n)
dt

= d

dt

NT OT∑︂
r=n

p1(r) =

− p1(n)
(︃

k1 · n · (1 − p2(L)) + n

L
α(1 − ρ1)

)︃
+ p1(n − 1)k2⟨N2⟩,

(3.17)

and, for n = 1, . . . L:

dP2(n)
dt

= d

dt

L∑︂
r=n

p2(r) =

− p2(n) · k2 · n · (1 − p1(NT OT )) + p2(n − 1)
(︃

k1⟨N1⟩ + βρL

(︃
1 − n − 1

L

)︃)︃ (3.18)

Notice that the n = 0 cases are trivial since P1(0) = P2(0) = 1 so their derivatives
vanish. This new formulation allows us, in combination with equations (3.9)-(3.10),
to use an algorithm equivalent to the one presented before to recover the same
information on the steady state previously acquired and to also examine the full
dynamics of the system.

3.3 Constraints analysis
We stated, in the previous section, that equations (3.11) have the problem that the
constraints on the number of particles in the reservoirs are not respected during
the transient to stationarity. However, these equations are pretty simple and we
would like to use them, together with (3.9)-(3.10), to investigate the possible steady
states of the system. This is possible because, as we said before, at stationarity,
the aforementioned constraints can be respected. To justify this claim, we start by
restating the equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρi

dt
= ρi−1(1 − ρi) − ρi(1 − ρi+1) with i = 2, . . . L − 1

dρ1
dt

= αN1
L

(1 − ρ1) − ρ1(1 − ρ2)
dρL

dt
= ρL−1(1 − ρL) − β(1 − N2

L
)ρL

dN1
dt

= k2N2 − k1N1 − αN1
L

(1 − ρ1)
dN2
dt

= k1N1 − k2N2 + β(1 − N2
L

)ρL

We omitted the temporal dependence of the variables for easier readability. Now
we can impose the stationarity conditions: dρi

dt
= 0, ∀i and dN1,2

dt
= 0. We then

define the reservoir densities ϕ1,2 = N1,2
L

and use the scaling k1,2 = κ1,2
L

to reshape
the previous equations into:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi = ρi−1
1−ρi+1+ρi−1

= g(ρi−1, ρi+1) with i = 2, . . . L − 1
ρ1 = αϕ1

1−ρ2+αϕ1
= g1(ρ2, ϕ1)

ρL = ρL−1
β(1−ϕ2)+ρL−1

= gL(ρL−1, ϕ2)
ϕ1 = κ2ϕ2

κ1+α(1−ρ1) = w1(ρ1, ϕ2)
ϕ2 = κ1ϕ1+βρL

κ2+βρL
= w2(ρL, ϕ1)

(3.19)

We can thus see that, in mean field approximation, at stationarity, it is true that
the steady state is a solution of a fixed-point equation, namely

(ρ1, ρ2 . . . ρL, ϕ1, ϕ2) = G(ρ1, ρ2 . . . ρL, ϕ1, ϕ2),

where G is just a compact way of restating the information on the fixed-point
iterations (3.19). Therefore, in order to prove that such a solution satisfies the
physical constraints, we need to be sure that the variables obtained through the
transformation G satisfy the same constraints as the original variables. These
constraints are:

ρi ∈ [0,1]; 0 ≤ ϕ1 ≤ κ2
κ1

; 0 ≤ ϕ2 ≤ 1.
We note that the inequalities for ϕ1, ϕ2 clearly follow from the ones for N1, N2.

We also remind that the parameters α, β, κ1, κ2 are non negative.
• We start with ρi, with i = 2 . . . L − 1 and see that:

ρi = ρi−1

1 − ρi+1 + ρi−1

(1)
≤ 1

2 − ρi+1

(2)
≤ 1

2 − 1 = 1.

Where in (1) we used the fact that ρi−1 ≤ 1 and in (2) that ρi+1 ≤ 1. Also,

ρi = ρi−1

1 − ρi+1 + ρi−1

(1)
≥ ρi−1

1 + ρi−1

(2)
≥ 0.

In (1) we used ρi+1 ≥ 0 and in (2) ρi−1 ≥ 0. We can proceed to do a similar
check on the other variables.
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• For ρ1:

ρ1 = αϕ1

1 − ρ2 + αϕ1

(1)
≤ αϕ1

1 − 1 + αϕ1
= 1

Using ρ2 ≤ 1 in (1).

ρ1 = αϕ1

1 − ρ2 + αϕ1

(1)
≥ αϕ1

1 + αϕ1

(2)
≥ 0

Using ρ2 ≥ 0 in (1) and ϕ1 ≥ 0 in (2).

• For ρL:

ρL = ρL−1

β(1 − ϕ2) + ρL−1

(1)
≤ 1

β(1 − ϕ2) + 1
(2)
≤ 1

Using ρL−1 ≤ 1 in (1) and ϕ2 ≤ 1 in (2).

ρL = ρL−1

β(1 − ϕ2) + ρL−1

(1)
≥ ρL−1

β + ρL−1

(2)
≥ 0

Having used ϕ2 ≥ 0 in (1) and ρL−1 ≥ 0 in (2).

• For ϕ1:

ϕ1 = κ2ϕ2

κ1 + α(1 − ρ1)
(1)
≥ κ2ϕ2

κ1 + α

(2)
≥ 0

Where in (1) ρ1 ≥ 0 and in (2) ϕ2 ≥ 0 were used.

ϕ1 = κ2ϕ2

κ1 + α(1 − ρ1)
(1)
≤ κ2ϕ2

κ1

(2)
≤ κ2

κ1

Using, respectively, ρ1 ≤ 1 and ϕ2 ≤ 1 in (1) and (2).

• Lastly, for ϕ2:

ϕ2 = κ1ϕ1 + βρL

κ2 + βρL

(1)
≥ βρL

κ2 + βρL

(2)
≥ 0

Where we used ϕ1 ≥ 0 in (1) and ρL ≥ 0 in (2).

ϕ2 = κ1ϕ1 + βρL

κ2 + βρL

(1)
≤ ✚✚κ1

κ2

✚✚κ1
+ βρL

κ2 + βρL

= 1

The constraint ϕ1 ≤ κ2
κ1

was used in (1).

This procedure has shown that, at steady state, equations (3.11), together with
(3.9)-(3.10), allow the system to maintain stationary states for which the constraints
on the number of particles in the reservoirs are satisfied. We can then use these
equations to obtain some information on the allowed stationary states that satisfy
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the constraints. In fact, we would like to analyse the steady state behaviour of
the system given that the constraints are satisfied and for various values of the
control parameters (α, β, µ, k1, k2). Interestingly, it is actually these constraints on
the number of particles in the reservoirs that can guide us in this analysis. We
will explain here how to do it, for the Weak Coupling case. The results will be
presented in the next chapter.

Let us define the average density inside the TASEP as ρ = NT

L
. We can use this

definition, together with the ones for the reservoir densities and that of the filling
factor, to restate the equation for the conservation of the number of particles in the
system, eq.(2.14), as

µ = ϕ1 + ϕ2 + ρ. (3.20)
We can also rewrite equations (3.11) in terms of the reservoir densities as

dϕ1

dt
= k2ϕ2 − k1ϕ1 − α

L
ϕ1(1 − ρ1)

dϕ2

dt
= k1ϕ1 − k2ϕ2 + β

L
(1 − ϕ2)ρL

(3.21)

At stationarity, inside the TASEP, it is true that all the density currents are equal:
Ji = J, ∀i = 0, . . . L. This means that in (3.21) we can rewrite the injection/ex-
traction terms as J . Also, obviously, we have dϕ1

dt
= dϕ2

dt
= 0. By combining this

information with the scaling k1,2 = κ1,2
L

, one can write a balance equation for the
currents at stationarity

J + κ1ϕ1 − κ2ϕ2 = 0. (3.22)
Combining this equation with (3.20) we can obtain two equations for the reservoir
densities

ϕ1 = κ2(µ − ρ) − J

κ1 + κ2

ϕ2 = κ1(µ − ρ) + J

κ1 + κ2

(3.23)

Considering that between the two reservoirs there is a pure TASEP, we can param-
eterise the density current as J = ρ(1 − ρ), with ρ ∈ [ 0, 1

2 ] , the smallest between
the two possible bulk densities ρ± = 1±

√
1−4J
2 that are coherent with J . We can

therefore write

ϕ1 = κ2(µ − ρ) − ρ(1 − ρ)
κ1 + κ2

= f1(ρ, ρ)

ϕ2 = κ1(µ − ρ) + ρ(1 − ρ)
κ1 + κ2

= f2(ρ, ρ)
(3.24)

What we have just obtained is a description of the reservoir densities in terms of the
average density in the TASEP ρ, the bulk density ρ and three control parameters.
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This description is important because we can use it to understand, depending on
µ, κ1, κ2, what physical phases the TASEP can be in. In order to do so, let us first
remind what phases are allowed in the TASEP, in terms of ρ, ρ, and the effective
injection/extraction parameters (αEF F , βEF F ):

• LOW DENSITY (LD). Bulk density ρ < 1
2 controlled by injection, ρ− = ρ =

αEF F and ρ = ρ. Boundary layer localised at the extraction side.

• HIGH DENSITY (HD). Bulk density 1−ρ > 1
2 controlled by extraction, with

ρ− = ρ = βEF F and ρ = 1 − ρ. Boundary layer localised at the injection side.

• COEXISTENCE REGION (DW), which can also be called Domain Wall
phase. Two bulk densities ρ(< 1

2) and 1 − ρ(> 1
2), controlled by injection

and extraction, respectively. It is true that ρ− = αEF F = βEF F and ρ =
xDW ρ + (1 − xDW )(1 − ρ), where xDW is the position of the domain wall that
separates the two bulk densities.

• MAX CURRENT (MC). Two boundary layers and unique bulk density ρ =
ρ = 1

2 .

In the convenient plane representation below, we can easily see a summary of what
we just listed:

Figure 3.1: Allowed phases in the TASEP in (ρ, ρ) plane. Phase tags are defined
in the text.

We know that the reservoir densities have to abide by certain constraints.
Namely:

0 ≤ ϕ1 ≤ κ2
κ1

; 0 ≤ ϕ2 ≤ 1.
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By substituting (3.24) into these constraints we get four inequalities that are used
to create a surface in (ρ, ρ) that can be superimposed on the plane representation of
fig. 3.1 and can tell us the allowed phases that the TASEP can be in at stationarity,
depending on the values of µ, κ1, κ2. We analysed these inequalities and produced
a Wolfram Mathematica code that allows us to show a visual representation of the
permitted phases for any combination of the control parameters. We will present
these results in the next chapter.

If we briefly retrace the steps up to here, we can see that we started with
some mean field equations to describe, in that approximation, the behaviour of the
system TASEP+Reservoirs. Then, we showed that these equations can be used
to analyse the stationary state of the system because they respect, at stationarity,
the constraints on the number of particles in the reservoirs. After that, we used
these constraints to guide us into understanding how to recover the phases that the
TASEP can find itself in, at stationarity, depending on the values of µ, κ1, κ2. What
is left to analyse is the role of the injection/extraction parameters α, β. It should
be easily understandable that, while a chosen combination of µ, κ1, κ2 restricts
the space of allowed steady states, the specific phase among the permitted ones
that the system reaches is fixed by these last two parameters. Obviously, α and
β are parameters that can be tuned a priori and independently from the others.
However, we will show that the specific combination of µ, κ1, κ2 is responsible for
the delimitation of different regions of behaviours, in the (α, β) plane. This makes
sense since, as we know, the TASEP under investigation is characterised by some
effective injection/extraction parameters

αEF F = αϕ1

βEF F = β(1 − ϕ2)
(3.25)

and these effective parameters are influenced by the reservoir densities that can
be expressed as (3.24). We will now show how to use the previous information
to distinguish the different regions of the (α, β) plane associated with each of the
permitted phases.

Let us start with the coexistence or domain wall phase. I know that ρ = ρ− =
αEF F = βEF F and thus

ρ = αEF F = αDW ϕ1 = αDW f1(ρ, ρ)
ρ = βEF F = βDW (1 − ϕ2) = βDW (1 − f2(ρ, ρ))

(3.26)

Hence,

αDW (ρ, ρ) = ρ

f1(ρ, ρ) = ρ(κ1 + κ2)
κ2(µ − ρ) − ρ(1 − ρ)

βDW (ρ, ρ) = ρ

1 − f2(ρ, ρ) = ρ(κ1 + κ2)
(κ1 + κ2) − κ1(µ − ρ) − ρ(1 − ρ)

(3.27)
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If we now set the condition ρ = ρ, true for the low density phase, we obtain a
parametric expression (with parameters ρ ∈ [ 0, 1

2 ] , µ, κ1, κ2) for the boundary line
between the low density and the domain wall phases in the (α, β) plane:

αDW −LD(ρ) = αDW (ρ, ρ) = ρ(κ1 + κ2)
κ2(µ − ρ) − ρ(1 − ρ)

βDW −LD(ρ) = βDW (ρ, ρ) = ρ(κ1 + κ2)
(κ1 + κ2) − κ1(µ − ρ) − ρ(1 − ρ)

In low density it is true that ρ = ρ and also that

ρ = ρ− = αEF F = αLDϕ1 = αLDf1(ρ, ρ) (3.28)

This means that αDW −LD = ρ
f1(ρ,ρ) is not only valid at the boundary between low

density and domain wall but everywhere in the low density phase. Also, it means
that this expression could be used to express the inverse relationship between α
and the bulk density (ρ = ρ). Hence,

αLD(ρ) = αDW −LD(ρ) = ρ(κ1 + κ2)
κ2(µ − ρ) − ρ(1 − ρ) (3.29)

We know that we have the possibility, given the last equation, to associate a specific
value for α for any value of the bulk density ρ ∈ [ 0, 1

2 ] . We also know that the
transition between the low density phase and the max current one is smooth, in that
there is no jump in the bulk density at the transition. Therefore, if we set ρ = 1

2
in αLD(ρ) we can obtain the value of the injection parameter α at the transition
between the low density and max current phases:

αLD−MC = αLD

(︃1
2

)︃
=

1
2(κ1 + κ2)

κ2(µ − 1
2) − 1

4
. (3.30)

Looking back at (3.27), if we now set the condition ρ = 1 − ρ, true for the high
density phase, we obtain a parametric expression for the boundary line between
the high density and the domain wall phases:

αDW −HD(ρ) = αDW (ρ,1 − ρ) = ρ(κ1 + κ2)
κ2(µ − 1 + ρ) − ρ(1 − ρ)

βDW −HD(ρ) = βDW (ρ,1 − ρ) = ρ(κ1 + κ2)
(κ1 + κ2) − κ1(µ − 1 + ρ) − ρ(1 − ρ)

Similarly to the low density case, we can extend the DW-HD boundary result to
the entire high density phase and, recalling now that ρ = 1 − ρ, we can obtain

βHD(ρ) = βDW −HD(1 − ρ) = (1 − ρ)(κ1 + κ2)
(κ1 + κ2) − κ1(µ − ρ) − (1 − ρ)ρ (3.31)
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If we set ρ = 1
2 in βHD(ρ) we can obtain the value of the ejection parameter β at

the transition between the high density and max current phases:

βHD−MC = βHD

(︃1
2

)︃
= (κ1 + κ2)

(3 − 2µ)κ1 + 2κ2 − 1
2

(3.32)

We see that, as we claimed, we obtained expressions that define regions of the
(α, β) plane for which, given a specific combination of µ, κ1, κ2, different steady
state phases are obtained. We combined these expressions and wrote a Wolfram
Mathematica code that can, for any combination of µ, κ1, κ2, produce a phase
diagram in the (α, β) plane. These results are presented in the next chapter.
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Chapter 4

Results

In this section, we are going to present and discuss the results obtained about the
stationary state of the model in the Weak Coupling limit by means of the methods
we have introduced previously. We remind that, with the term ‘Weak Coupling’ we
refer to the situation in which diffusion between the reservoirs does not dominate
the system dynamics and is in fact comparable with the hopping processes inside
the TASEP. As explained in section 3.2, we ensure so by having the diffusion rates
scale with the lattice size L like k1,2 = κ1,2

L
, with κ1,2 ∼ O(1).

4.1 Role of the constraints and admitted phases
In section 3.3, we have shown how we can obtain a set of equations for the reservoir
densities (3.24), starting from some mean field considerations. We then explained
how, given that the reservoir densities have to satisfy certain constraints, one can
get a set of inequalities that can provide information on the allowed phases that
the TASEP can be in at stationarity. These inequalities are:

1. ϕ1 ≥ 0 −→ ρ ≤ µ − ρ(1−ρ)
κ2

2. ϕ2 ≥ 0 −→ ρ ≤ µ + ρ(1−ρ)
κ1

3. ϕ2 ≤ 1 −→ ρ ≥ µ − 1 − κ2
κ1

+ ρ(1−ρ)
κ1

4. ϕ1 ≤ κ2
κ1

−→ ρ ≥ µ − 1 − κ2
κ1

− ρ(1−ρ)
κ2

Of these inequalities, only the first one and the third one are considered, given that
the other two are less restricting. We then wrote a Wolfram Mathematica code
that can delimit a region in ρ, ρ, starting from the inequalities, and superimpose it
on the plane representation of fig. 3.1. We show below an example of the output
of this code.
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Figure 4.1: The coloured area denotes the allowed phase region at stationarity for
the TASEP with parameters κ1 = κ2 = 0.95, µ = 0.5.

As one can see, by fixing the values for the parameters κ1, κ2, µ, the resulting
region created by the inequalities is laid over (and coloured in green) the diagram
representing the possible phases of the TASEP. In this particular example, one
infers that, for κ1 = κ2 = 0.95, µ = 0.5, the allowed phases at stationarity are only
the low density and the domain wall ones.

We also previously explained how we managed to obtain a series of expressions
representing the separation lines among different phases in the (α, β) plane and
wrote a Wolfram Mathematica code that can graphically depict a phase diagram.
It is convenient to also show here an example of the output of this code, for the
same parameters κ1 = κ2 = 0.95, µ = 0.5.

Figure 4.2: Phase diagram at stationarity in (α, β) for the TASEP with parameters
κ1 = κ2 = 0.95, µ = 0.5.

We could increase the limits of the previous diagram to show higher values of
α, β but, as we would expect from the previous result, only the low density and
domain wall phases would still appear.

We will use these codes, together with the Gillespie algorithm of section 3.1 and
the numerical solution of the mean field equations of section 3.2 to investigate the
rich and complex stationarity landscape of the system.
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A first and important result we recover is that there is a necessary but not
sufficient condition for the presence of a Maximal Current phase. The condition is
that the diffusion rate κ2 is higher than a critical value κC

2 = 0.25. The reason we
believe this condition arises is that this rate is the one that effectively participates
in ‘closing the circuit’ formed by TASEP and reservoirs allowing the re-entry of
particles (through R1) at the beginning of the lattice and preventing a stop to
the motion of the particles. One could expect that if this mechanism is not fast
enough a situation of maximal current, i.e. maximal velocity of particles through
the TASEP, cannot be sustained. We will show where one can extract this condition
in a few paragraphs.

We can therefore now distinguish the cases for which Maximal Current can and
cannot be present.

We find that when κ2 < 0.25, the behaviour of the TASEP at stationarity is
the following:

1. If 0 < µ < 1 the admitted phases are Low Density and Domain Wall;

2. If 1 < µ < 1 + κ2
κ1

the TASEP can be in every phase beside the Maximal
Current one;

3. If 1 + κ2
κ1

< µ < 2 + κ2
κ1

= µMax the admitted phases are High Density and
Domain Wall.

The separation values (1,1 + κ2
κ1

) are found by examining the intersection of the
surface created by the constraints on the diagram in fig. 3.1 for ρ ∼ 0. Let us
combine the Mathematica codes explained before to investigate, as an example, a
situation with κ2 = κ1 = 0.1 < 0.25, for various values of µ (µ = 0.75, 1.3, 2.4).
We can show, in figure 4.3, for these values of these control parameters, what are
the admitted phases and the phase diagrams for the TASEP. One can see that,
for µ = 0.75 < 1 (on the left side of fig. 4.3), the allowed phases are only the
low density and the domain wall ones and the phase diagram is coherent with this
notion. Increasing the value of µ, the LD-DW separation line rises up until the limit
value µ = 1, where its asymptotic behaviour changes from ‘horizontal’ to ‘vertical’
in the (α,β) plane. After µ = 1, we enter the range in which the HD phase can
appear. For µ = 1.3 (in the middle of fig. 4.3) we have a coexistence of the three
phases, as seen both on the phase diagram in (ρ, ρ) and (α, β). For higher values of
µ the LD-DW separation line flattens on the β axis and the HD-DW boundary line
rises. This happens up to the limit value µ = 2, where the asymptotic behaviour
of the HD-DW separation line changes from ‘horizontal’ to ‘vertical’ in the (α,β)
plane and after which the Low Density phase disappears. For µ = 2.4 > 2 (on the
right side of fig. 4.3) the allowed phases are only the High Density and the Domain
Wall ones. While µ increases up until µMax the HD-DW separation line flattens on
the β axis.
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Figure 4.3: Phase diagrams at stationarity with κ2 = κ1 = 0.1 for various values of
µ

Despite having considered, in the previous example, a case for which we had
κ1 = κ2, the stationarity behaviour with µ does not qualitatively change (but there
are quantitative differences, for example the limit value 1 + κ2

κ1
) when the diffusion

rates are different (as long as κ2 < 0.25).
Let us now look at the more complicated situation of κ2 > 0.25, i.e. when a

Maximal Current phase is possible:

1. If 0 < µ < 1
2 + 1

4κ2
the Low Density and Domain wall phases are present in

the phase diagram. The High Density phase is admitted only if 1
2 + 1

4κ2
> 1

for values of µ between these two limits;

2. If 1
2 + 1

4κ2
< µ < 3

2 + κ2
κ1

− 1
4κ1

, all phases are admitted;

3. If 3
2 + κ2

κ1
− 1

4κ1
< µ < 2 + κ2

κ1
the High Density and Domain wall phases

are present in the phase diagram. The Low Density phase is present only if
3
2 + κ2

κ1
− 1

4κ1
< 1 + κ2

κ1
for values of µ between these two limits.

When the limit value µ = 1 (µ = 1 + κ2
κ1

) lies inside the range of existence for
the Maximal Current phase (1

2 + 1
4κ2

< µ < 3
2 + κ2

κ1
− 1

4κ1
), its effect is that of

a topological change, in the phase diagram, for the behaviour of the HD(LD)-
DW separation line. More precisely, for that specific value of µ, the line starts
(ceases) to pass through the origin of the axes in the (α, β) plane. We will make
this comment clearer with some examples later. It is now a good time to show
where the limits (1

2 + 1
4κ2

;3
2 + κ2

κ1
− 1

4κ1
) come from and, by consequence, where we

can see a justification for the existence of the critical value κ2 = κC
2 = 0.25. If we

look back at equations (3.30)-(3.32), we see that these are the parametric equations
(with parameters µ, κ1, κ2) representing the critical values for the injection/ejection
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parameters α/β at the transition between Low/High density and Maximal Current.
We know that, for the existence of a Maximal Current phase, these two values must
both exist and be positive. The two inequalities that follow from these requirements
give, when combined, the range 1

2 + 1
4κ2

< µ < 3
2 + κ2

κ1
− 1

4κ1
. The prescription that

1
2 + 1

4κ2
< 3

2 + κ2
κ1

− 1
4κ1

, when solved, gives the condition κ2 > 0.25 that we stated
as our first result as a necessary condition for the presence of a Maximal Current.

As we mentioned before, the present landscape (with κ2 > 0.25) is more com-
plicated and there are various different situations one can encounter for different
combinations of κ1, κ2. First and foremost, we can produce some phase diagrams in
µ, κ2 for some fixed values of the ratio κ2

κ1
. We find this representation to be quite

interesting in that it can, at a glance, contain all the information on the different
phases allowed. It can also contain information for the κ2 < 0.25 case. Moreover,
we note that it would be very impractical to try to read a three-dimensional dia-
gram in µ−κ1 −κ2 containing all this information together. So, while not optimal,
fixing the ratio κ2

κ1
and considering diagrams in µ, κ2 seems to be our best practical

solution to try to grasp the complexity we are dealing with. We show in the figure
below that there are quite a few differences between various scenarios for the ratio
κ2
κ1

, be it less than, equal to, or bigger than one.

Figure 4.4: Phase diagrams in µ, κ2 for κ2
κ1

= 0.33,1,3.

As one can see, there is a plethora of different situations that can arise. We
can now take some combinations of parameters, one for each of the different ratios
of fig. 4.4, and see what happens to the admitted phases and the phase diagram
in (α, β) for increasing values of µ in an equivalent manner to what we did for
κ2 = κ1 = 0.1 before.

37



Results

Let us start with κ1 = κ2 = 0.95, which corresponds to focus on a certain
combination of parameters in the bottom diagram of fig. 4.4.

For µ = 0.5 < 1
2 + 1

4κ2
∼ 0.76 only the Low density and the Domain wall

phases are admitted and therefore present in the phase diagram (see fig. 4.5a).
Increasing µ, the domain wall region gets bigger, while there are still only these
two phases, right up to the critical value µ ∼ 0.76, for which High Density and
Maximal Current phases begin to appear. For µ = 0.9 < 1 the four phases are
present but the HD-DW separation line does not pass through the origin of the
axes (see fig. 4.5b).

(a) µ = 0.5 (b) µ = 0.9

Figure 4.5: Phase diagrams for κ2 = κ1 = 0.95.

We can see in the figure below, that for µ = 1.5 > 1, the four phases are
present and the HD-DW separation line passes through the origin of the axes. This
topological change seems to happen instantaneously when crossing the limit µ = 1.

Figure 4.6: Phase diagram for κ2 = κ1 = 0.95, µ = 1.5.

For µ = 2.1 > 1+ κ2
κ1

= 2 the four phases are present but the LD-DW separation
line no longer passes through the origin of the axes (see fig. 4.7a). This has
happened when crossing the limit line µ = 2 in an opposite manner to the HD-DW
separation line before. For µ = 2.5 > 3

2 + κ2
κ1

− 1
4κ1

∼ 2.24 we exited the range that
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allowed the presence of a Maximal Current phase and only the Domain Wall and
the High density phases are present.

(a) µ = 2.1 (b) µ = 2.5

Figure 4.7: Phase diagrams for κ2 = κ1 = 0.95.

Before moving on we would like to mention the fact that when κ1 = κ2 the
system has a particle-hole symmetry. This is manifest in the fact that the phase
diagrams we presented are symmetrical with respect to µ = 1.5 which is exactly
half of µMax = 2 + κ2

κ1
= 3 in this case. What we mean by symmetrical is that,

if one looks at the couples of values of µ equidistant to 1.5, like the shown cases
of µ = 0.9,2.1 or µ = 0.5,2.5, it can be seen that, under the exchanges α ↔ β,
µ ↔ 3 − µ, the LD-MC phase boundary can be interchanged with the HD-MC
one and LD-DW phase boundary can be exchanged with the HD-DW one and
the resulting diagrams are identical. Also, the phase diagram in µ − κ2 is clearly
symmetrical with respect to 1.5.

We can now move on to the case κ2 = 0.9, κ1 = 0.3, which corresponds to focus
on a certain combination of parameters in the top right diagram of fig. 4.4.

For µ = 0.5 < 1
2 + 1

4κ2
∼ 0.78 only the Low Density and the Domain Wall

phases are admitted and therefore present in the phase diagram (see fig. 4.8a). For
µ = 0.85 < 1 the four phases are present and the HD-DW separation line does not
pass through the origin of the axes, as we would expect.

(a) µ = 0.5 (b) µ = 0.85

Figure 4.8: Phase diagrams for κ2 = 0.9, κ1 = 0.3.
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When we increase µ up from 0.9 the HD region increases its size and the HD-
DW phase boundary lowers itself closer to the α axis. Then at µ = 1 there is the
topological change and we can see for µ = 1.01 the HD-DW phase boundary passes
through the origin (see fig. 4.9a). If one keeps increasing µ the DW region gets
smaller and we get the situation for µ = 2.4 (see fig. 4.9b).

(a) µ = 1.01 (b) µ = 2.4

Figure 4.9: Phase diagrams for κ2 = 0.9, κ1 = 0.3.

Starting from µ = 2.4 and increasing µ one can assist to a shift of the Maximal
Current region for higher values of β up until µ = 3

2 + κ2
κ1

− 1
4κ1

∼ 3.7, where the
region disappears and we are left with just three phases as we can see on the left
side of the figure below for µ = 3.8. If we then cross the limit 1 + κ2

κ1
= 4 we are

left only with HD and DW phases, which we can see on the right side of the figure
below for µ = 4.1.

(a) µ = 3.8 (b) µ = 4.1

Figure 4.10: Phase diagrams for κ2 = 0.9, κ1 = 0.3.

Lastly, we consider the case κ2 = 0.33, κ1 = 0.99, which corresponds to focus
on a certain combination of parameters in the top left diagram of fig. 4.4.

As one can see in the image below, for µ = 0.5 < 1, only the Low Density and
the Domain Wall phases are admitted and therefore present in the phase diagram.
For 1 < µ = 1.1 < 1

2 + 1
4κ2

∼ 1.26 the High Density phase is now allowed.

40



4.1 – Role of the constraints and admitted phases

(a) µ = 0.5 (b) µ = 1.1

Figure 4.11: Phase diagrams for κ2 = 0.33, κ1 = 0.99.

When we cross the boundary line 1
2 + 1

4κ2
∼ 1.26 we know we enter the range

of values for which all the phases are allowed and that is shown in the next figure.
We have two interesting features to notice in this diagram. First of all, we can
look at the shape of the LD-DW boundary line and see that evidently something
is happening. What we are seeing is simply the modification of this boundary line
that, as we get closer to the limit value µ = 1+ κ2

κ1
= 1.33, changes its shape to then

perform the topological jump we talked about before and stops passing through the
origin. Secondly, we see that the HD-DW boundary line looks to be split into two
branches and this looks unfamiliar, we will comment more about it later.

Figure 4.12: Phase diagram for κ2 = 0.33, κ1 = 0.99, µ = 1.28.

When crossing the limit µ = 1+ κ2
κ1

= 1.33 but staying inside the region in which
Maximal Current is allowed we have four phases and now the LD-DW boundary
line no longer passes through the origin, as one can see from the left side of the next
image. As for the HD-DW boundary line, we now have a more common situation
of having only one continuous line. In the end, increasing µ, we enter the zone
where only High Density and Domain Wall are allowed and that is what we see on
the phase diagram.
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(a) µ = 1.43 (b) µ = 1.7

Figure 4.13: Phase diagrams for κ2 = 0.33, κ1 = 0.99.

To conclude this section, we would like to make a few comments. First of all,
the investigation of this thesis has taken place keeping in mind the work [17], which
we already mentioned quite a few times previously. It is sensible that we try to put
the results we obtained into perspective and compare them with this work. When
examining the situation for which κ1 = 0.01, κ2 = 0.95 (pag. 8 of the article), the
authors stated that, for big values of µ, for example µ = 30 and up to µMax, the
only admitted phases (given their mean field calculations) are the High Density
and Maximal Current ones. Their simulations seem to give four phases but, as
we will explain later, we do not seem to agree quantitatively with any of their
simulations. It seems from our analysis instead, that this situation is akin to the
previous case where we had κ2 > κ1 (top right side of fig. 4.4). We find that for
µ = 30 and increasing µ until the limit 3

2 + κ2
κ1

− 1
4κ1

(= 71.5) we have four phases.
When 3

2 + κ2
κ1

− 1
4κ1

< µ < 1 + κ2
κ1

we do not have the maximal current phase. In
the end, for 1 + κ2

κ1
< µ < 2 + κ2

κ1
(so 96 < µ < 97) only the High Density and

Domain Wall phases are present. We can show here the phase diagram we obtain
for κ1 = 0.1, κ2 = 0.95, µ = 30.

Figure 4.14: Phase diagram for κ2 = 0.95, κ1 = 0.01, µ = 30.

Another comment we want to make regards a topologically interesting case for
the phase diagram that we already encountered in fig. 4.12. If we consider the
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situation κ2 = 0.7, κ1 = 0.3, µ = 1.01 in the figure below we notice something
interesting.

Figure 4.15: Phase diagram for κ2 = 0.7, κ1 = 0.3, µ = 1.01.

We can see, looking in the (ρ, ρ) plane, that there is a zone of the High Density
phase of non-admitted values contained between two zones of admitted values. The
effect in the (α, β) plane is that of having two different branches for the parametric
line that separates the Domain Wall and two detached zones of High density phases.
Slightly increasing µ we can come to a more familiar situation for which all the
high density values are admitted and the separation line is constituted by a unique
branch that passes through the origin. Also, for values of 1

2 + 1
4κ2

< µ < 1 we
had a single branch that did not pass through the origin. In the majority of the
previous examples we did not have a similar situation, we instantaneously passed
from a configuration for which the HD-DW separation line did not pass through
the origin to one for which it did. This situation happens for other combinations
of parameters, like the case presented before with κ1 = 0.99, κ2 = 0.33, µ = 1.28.
However, while we wanted to mention this specific phenomenon, we do not yet have
a clear understanding of when and why it could arise or if there can be an equivalent
situation with the LD-DW boundary phase. We will mention it more explicitly in
the conclusions but it seems clear to us that the richness and complexity of the
stationarity landscape for the system under investigation require more study that
could bring enrichment to the phase diagrams obtained in this thesis.

We now move on to the next section where we will show how the Gillespie algo-
rithm and the numerical solution of the mean field equations will show agreement
with the phase diagrams presented here.
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4.2 Stationary States: Mean Field and Kinetic
Monte Carlo

Having obtained numerous phase diagrams while exploring the role of the con-
trol parameters on the possible existence of different stationary states, it is now
paramount to show how qualitatively and quantitatively the mean field and kinetic
Monte Carlo results that we produced agree with those predictions. Of course, we
expect the mean field results to perfectly agree with the previous ones, obtained
in the same approximation. The following results are obtained, if not stated oth-
erwise, with a lattice size L = 100. Also, we let the system evolve for at least
T = 107 transitions when running our Gillespie algorithm. Finally, we remind that
the parameter ζ, defined in section 3.2 and used in our mean field code to indicate
when stationarity is sufficiently close, stops the algorithm when its value stays be-
low 1 · 10−12. It must be noted that it is obviously not computationally feasible
to re-obtain the previous phase diagrams point by point and with precise transi-
tion lines just by running some codes that can provide information on the specific
stationary states given a defined set of control parameters. Therefore, what we
will do in the following is to limit ourselves to overlay a specific grid of points on
certain phase diagrams from the previous section and use this rough discretisation
to run the codes on a finite number of points that, albeit small, could support
our claims on the different regions and the boundaries between them in the (α, β)
diagrams. Also, we will show what happens to the particle density profiles in the
various cases. In principle, this analysis could be done for any combination of the
control parameters. We performed it on all the cases of section 4.1, but, to avoid
redundancy, we chose just a few examples to be shown here. Also, so as not to be
repetitive, we decided to use different examples to showcase different facets of our
investigation.

Let us start with the case for which a Maximal Current phase cannot be present,
i.e. when κ2 < 0.25, and consider κ2 = κ1 = 0.1, as we did in figure 4.3.

Figure 4.16: Phase diagrams at stationarity with κ2 = κ1 = 0.1 for µ =
0.75, 1.3, 2.4. The coloured solid lines are the boundaries obtained in the previ-
ous section while the discrete points represent the phases obtained with MF and
KMC codes.
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As we can see, we can approximately reconstruct entire phase diagrams by
discretising the phase space and using our codes to infer what steady state is reached
for certain combinations of the control variables. Obviously, we are in control of
both the number of grid points considered and their (in principle uneven) spacing
and we can tune these parameters to our advantage to minimise the computations
required while still checking the predictions of the theoretical results. A priori, one
should be careful and use different markers for the stationary states obtained using
our numerical mean field calculations and the Monte Carlo simulations. However,
and we will talk more about it later, we merge the notation since we never found
disagreement (in terms of stationary phase predicted by the two codes) between
the results of the two methods. Of course, we find quantitative differences in
the density profiles, though limited to the boundary layers and in the vicinity of
the shock profile (Domain Wall phase). We use figure 4.17 to show the output
obtained, both in mean field and through simulations, for the particle density for
three different points, one for each possible phase, in the previous diagrams.

Figure 4.17: MF and KMC density profiles compared with (MF) theoretical bulk
density for κ2 = κ1 = 0.1. Left panel: µ = 0.75, α = 2.6, β = 0.28. Center panel:
µ = 1.3, α = 0.7, β = 0.26. Right panel: µ = 2.4, α = 0.15, β = 0.2.

As expected, no matter the particular phase or diagram considered, the different
methods yield the same results in terms of the specific stationary state that they
predict. In each panel in figure 4.17, we notice that there are three lines. Two cor-
respond to the density profile obtained with the MC and MF codes, while the third
is the theoretical bulk value that mean field predicts for those specific combinations
of control parameters. We barely touched upon it, but in section 3.3 we mentioned
that equation (3.29) could be inverted to express the relationship between αLD and
the bulk density. By doing so one can then find the bulk density ρ as a function
of αLD, µ, κ1, κ2. The same can be done for the High Density and then Domain
Wall phase, while the bulk density predicted in the MC case is trivially ρ=0.5. We
can clearly see, in these examples, that there are quantitative differences between
the density profiles obtained with the two methods around the shock for the DW
phase and in general near the boundaries of the TASEP, as one could expect when

45



Results

comparing simulations and mean field approximations. We could decide to inves-
tigate whether the bulk density shows a convergence to the theoretical value when
increasing the size of the system, both for the MF and the KMC codes. This is
certainly the way to proceed. In the spirit of not repeating ourselves and using
different examples to show the different techniques we used, we will do this proce-
dure for the next example. Finally, for this case, we should add that while here we
plotted just a few particle densities and referred to figure 4.16 to show the various
phase transitions in (α, β), there are other ways to do so. For example, we could
produce a single graph containing various particle densities for different values of
α and β, possibly along the line of a ‘path’ in the phase diagram, that could show
the changes between phases. We will do so later in the section, for another phase
diagram.

Moving on, let us analyze a case for κ2 > 0.25. We consider here κ2 = κ1 = 0.95,
with µ = 1.5, so that we can compare our results with those in [17].

(a) Picture produced by the author. The
coloured solid lines are the boundaries
obtained theoretically while the discrete
points represent the phases obtained with
MF and KMC codes.

(b) Picture taken from [17]. The coloured
regions separated by solid black lines are ob-
tained in mean field. The discrete coloured
points represent the phase boundaries ob-
tained with Monte Carlo simulations.

Figure 4.18: Phase diagrams with κ2 = κ1 = 0.95 and µ = 1.5.

First, we can again notice the excellent agreement between the theoretical pre-
dictions on the different steady states, with their respective regions on the phase
diagram 4.18a, and the numerical and computational evaluations. This seems to be
a remarkable improvement on the results obtained in [17]. The authors, as shown
in 4.18b, state that their mean field predictions and Monte Carlo simulations do
not quantitatively agree on the boundaries between the different phases. In some
other examples, they find that the two sets of results also disagree on the number
of phases present in the same diagram. They attribute this, and we quote (page
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17), to ‘stronger fluctuations in the weak coupling limit of the model’. However, we
do not agree with the evidence they present to support this claim since, while we
are only showing one example here, we reproduced all the phase diagrams present
in the article and always seemed to find an optimal match between mean field ap-
proximations and the simulations. We can also use the example we just presented
to show how the bulk density can converge to the theoretical value expected when
one increases the size of the system, thus reducing the influence of finite-size effects.
This should be self-evident through figure 4.19, where one can see, on the left side,
the particle density as a function of the scaled position variable i/L obtained, for
various L, using the code to numerically solve the mean field equations. On the
right, instead, the same quantities are produced through Monte Carlo simulations.
We chose two combinations of parameters close enough to the transition lines in
figure 4.18a, bearing in mind the increasing difficulties of reaching numerical con-
vergence the closer one gets to the transitions. Noticeably, the top row case in
figure 4.19 corresponds to a set of parameters for which the authors in [17] find
disagreement between their MF and MC results, at odds with what we can see.

Figure 4.19: Particle densities obtained by mean field (left side) and Gillespie (right
side) algorithms for different TASEP sizes as a function of the scaled position
variable i/L. Top row: HD phase, α = 2, β = 1.25. Bottom row: DW phase,
α = 0.74, β = 0.5. The black dashed lines denote the infinite-size (hydrodynamic)
limit, obtained by the mean-field theory.
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Lastly, let us consider the combination of parameters κ2 = 0.95, κ1 = 0.01,
and µ = 2, which is also one of the many cases for which the numerical and
computational results in [17] disagree.

Figure 4.20: Phase diagram for
κ2 = 0.95, κ1 = 0.01, µ = 2

We have sketched, in the phase diagram of fig-
ure 4.20, some paths in the (α, β) plane along
which we have highlighted a few specific points,
in such a way as to sample the parameter space
in every region while also looking closely at the
boundaries between them. In figure 4.21, we show
the behaviour of the particle densities along these
paths, both in mean field and through simulations.
While, of course, the results just presented are not
nearly enough to reconstruct a phase diagram, we
again emphasize here both the coherence of the two
methods and, most importantly, the power they
hold in how they can be, and have been, used to
support the correctness of the phase diagrams ob-
tained theoretically via the means previously de-
scribed in sections 3.3-4.1.

Figure 4.21: Particle densities obtained with mean field (dashed lines) and Gillespie
(solid lines) algorithms for different combinations of the control parameters.
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4.3 Full dynamics in Mean Field
Having discussed at length the stationary states of the system and after having
shown agreement between the mean field approach and the simulations, we can
now focus on the full dynamics. To do so we use an algorithm equivalent to that
presented in section 3.2, based on equations (3.9)-(3.17)-(3.18). We choose as initial
condition specific values for the variables that correspond to having an empty lattice
and all the particles in the first reservoir at time t = 0, so ρi = 0 ∀i, p1(NT OT ) = 1,
p2(0) = 1. This can be done without loss of generality, given that the stationary
state is unique. We choose, for the examples below, L = 50 in order to not com-
pletely hide any finite-size effects. Also, in the figures of this section, the highest
time shown is the one that corresponds to reaching stationarity. Let us consider
the phase diagram of fig. 4.6, obtained for κ2 = κ1 = 0.95, µ = 1.5. We will show
the full dynamics to any possible stationary phase, through different combinations
of α and β. In principle, we could do the same for every phase diagram of section
4.1, but we would find qualitatively similar behaviours.

We start with α = 0.5, β = 2. For this choice of parameters, the stationary
state is in the Low Density phase. In figure 4.22 we show the density profile at
various times up to stationarity.

Figure 4.22: Density profile, at various times, for α = 0.5, β = 2 (Low Density
phase).

We can see, for short times, that the particles start entering the lattice from
R1 and the density profiles have a clear bump on the left side and then decay to
zero since the particles have not had the time to travel a larger distance inside the
lattice. After the time elapsed is of the order of the system size, the first particles
entered will hit the right boundary of the lattice and start to move to R2. We must
now remind that the governing parameters of the TASEP in our system are the
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effective injection/extraction ones αEF F , βEF F , defined in equations (2.15). Those
parameters depend on the reservoir densities ϕ1,2 = N1,2

L
, which vary over time.

Therefore the dynamics is not as straightforward as that of a TASEP connected to
infinite non-interacting reservoirs. In that simpler system the filling of the lattice,
in a Low Density case, corresponds to having a region of constant density α that
gets larger with time up to the right boundary, where then a shock profile forms.
Here, instead, given the initial condition, we have a surplus of particles near the
entrance of the lattice that produces a bump in the density profile in that zone.
With time, the number of particles in the first reservoir decreases and that of the
second reservoir increases and this makes it so the injection and ejection processes
are slowed down. The bump caused by the initial surplus of particles flattens and
the system settles into the stationary situation for which the reservoir densities and
therefore the effective injection/extraction parameters remain constant with time.
On the right side, a shock profile is formed and connects the bulk density to the
boundary value 1 − βEF F . The shock does not move since its velocity is positive.

We have seen how the profile density behaves during the complete dynamics to
stationarity in this Low Density case. We can show what happens to the reservoir
densities during this time. In figure 4.23 we can see two examples. On the left, we
have the situation corresponding to the previous example of figure 4.22. Right until
the time is of the order of the system size we can say that the diffusion mechanism
dominates the filling of R2, then the lattice ejection starts to contribute more until
the system reaches stationarity.

Figure 4.23: Time evolution of the reservoir densities for different values of the
control parameters.

On the right, we have the dynamics of the reservoir densities for κ2 = 0.95, κ1 =
0.01, µ = 1, α = 0.5, β = 0.9, which also corresponds to a Low Density state. As
we can see, for short times, below the order of the system size, the filling of R2 is
extremely slow, since the particles have not had enough time to reach the right side
of the TASEP and the diffusion from R1 plays a negligible role, given the tiny value
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of κ1. Also, we notice that the decrease of ϕ1 is slower in time, for short times,
compared to the previous case, because of the value of κ1. Despite the chosen
initial condition and resulting steady state, those represented in the picture are
qualitatively the only two situations which can occur, i.e. either at stationarity the
more filled reservoir is the same as the one at t = 0 or the opposite. We must stress
that, theoretically, through mean field analysis and also thanks to the simulations,
we already knew the values for the density profiles and the reservoir densities at
stationarity. However, since we have here the full dynamics for these quantities,
there is more work that can be done in the future concerning the time and the way
in which stationarity is reached. We will mention this again in the conclusions.

Let us now return to the representation of the full dynamics of the various
possible stationary states. We set α = 3, β = 2, for which we expect a Maximal
Current phase. We can see in figure 4.24a the evolution towards it and that no
shock is present.

(a) MC phase, for α = 3, β = 2. (b) DW phase, for α = 0.5, β = 0.5.

Figure 4.24: Density profile, at various times, for two different phases.

Conversely, if we take α = 0.5, β = 0.5, the resulting stationary state, which we
called Domain Wall phase, can be viewed as a coexistence of a Low Density and
a High Density phase. There is a localised shock, clearly visible in figure 4.24b,
whose position depends on the control parameters α, β, κ1, κ2, µ.

In the end, let us look at the evolution towards a High Density phase. We
consider α = 1.5, β = 0.5. We see in figure 4.25 that a shock is formed at the
extraction side and then moves to the left until it reaches the left boundary where
it settles, connecting the bulk density to the boundary value αEF F . One could argue
that the shock velocity, similarly to what happens in the infinite non-interacting
reservoirs case, depends on the injection/extraction parameters as |vs| = βEF F −
αEF F and thus now depends on time. However, further analysis must be done to
effectively prove this statement and we reserve it for future works.
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Figure 4.25: Density profile, at various times, α = 1.5, β = 0.5 (High Density
phase).

We might also add that when we increase the value of α we come to a situation
for which the full shock dynamics seem to be practically independent of this pa-
rameter, as shown in figure 4.26. This reminds us of the situation, occurring in the
simpler case of the TASEP with OBC (section 2.2), for which one can define some
lines in the phase diagram that represent so-called ‘dynamical transitions’, after
which this same kind of behaviour is present. These transitions do not correspond
to any stationary state change, but separate regions within the same phase for which
the relaxation towards stationarity has different characteristics. Nevertheless, this
is all speculation at this stage and requires more investigation.

Figure 4.26: Full density profiles at different times for various values of α
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Before moving on to the conclusions, we would like to expand on a comment we
made in section 3.2. We explained that the first dynamics we proposed, and the
associated code to numerically solve the corresponding equations, resulted in having
a good representation of the system at stationarity, while not being appropriate to
describe the evolution towards it. In fact, we noticed a problem in the dynamics in
that the constraints for the number of particles in the reservoirs were not always
respected. This prompted us to revise the equations and write a second code. We
did, and the results presented in this section were derived using said algorithm. It
would be useful to show here the different behaviours of the two approaches in a case
for which with the first dynamics we assist to an example of the aforementioned
violations of the constraints. In figure 4.27 we can see the full density profiles
at different times with control parameters set to κ1 = 1, κ2 = 0.1, µ = 1.7, α =
1.5, β = 0.6, obtained using the two different dynamics. In figure 4.27a we can see
that, when the time is of the order of magnitude of the system size, some densities
close to the ejection side of the TASEP start to have values greater than 1. In figure
4.27b, output of the improved code, this problem is not present and the dynamics
keep satisfying the physical constraints during its full evolution. In figure 4.28 we
can extract the same information but now from the point of view of the reservoir
densities. We see that the density of the second reservoir, theoretically bound
to be less than one, exceeds this value when using the incorrect dynamics, while
remaining below the threshold while using the correct one. We can also see that,
as we pointed out before, the two dynamics are converging on the same stationary
values, albeit we are cutting off the plot to better show the different transient
behaviours that interested us in this discussion.

(a) We can see that, for certain times, a por-
tion of the profile density exceeds 1, which
is not physically possible.

(b) We can see that, during the dynamics,
the profile density always assumes permit-
ted values.

Figure 4.27: Density profile, at various times, for κ1 = 1, κ2 = 0.1, µ = 1.7, α =
1.5, β = 0.6, obtained with the two different codes.
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Figure 4.28: Time evolution of the reservoir densities obtained with the two different
dynamics proposed. We can see that, for certain times, the incorrect dynamics let
ϕ2(t) > 1. During the correct dynamics, instead, the constraint ϕ2(t) < 1 is always
respected.
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Chapter 5

Conclusions

In this thesis, we have considered an out-of-equilibrium closed system composed of
a TASEP connected to two finite-sized interacting reservoirs. Although these types
of models are usually proposed in the statistical physics literature as a modelling
tool in various contexts, such as biological transport with finite resources, we have
detached from the association to a specific real situation and focused on investi-
gating an idealised system. We have worked out an approximate analytical theory,
combined with numerical methods, to investigate how the interplay among a limited
number of particles moving in a lattice with non-constant input/output parameters
from and to two reservoirs and the process of diffusion between these reservoirs
contribute to determining the macroscopic behaviour of the steady state of the
aforementioned system. More specifically, the model under investigation is made
up of a one-dimensional lattice, whose internal behaviour is that of a TASEP with
unitary and uniform transition rates, connected at its end to two reservoirs R1 and
R2 of different finite capacities that can mutually exchange particles, permitting a
non-zero steady state current in the system. The control parameters characterising
the model are the entry/exit rates of the TASEP (α, β), the diffusion rates between
the reservoirs (k1, k2) and the filling factor µ, which gives us information on how
populated the total system is, in relation to the size of the lattice. Moreover, we
decide to make the injection/extraction processes reservoir population-dependent
by defining the effective rates αEF F = αN1

L
, βEF F = β(1 − N2

L
), where L is the size

of the TASEP and N1,2 represent the number of particles present in R1,2, at any
given moment. This adjustment is meant to represent the idea that the injection
(extraction) process can be facilitated (hindered) by a larger number of particles
present in R1 (R2). We have used a mixture of both analytical and numerical tools
(mean field theory and Kinetic Monte Carlo simulations), to obtain results concern-
ing the Weak Coupling limit of the model. In this limit, the diffusion mechanism
between the reservoirs and particle hopping inside the TASEP are comparable.
This can be guaranteed by the following scaling for the diffusion rates k1,2 = κ1,2

L
,

with κ1, κ2 ∼ O(1). The situation in which the diffusion overwhelms the TASEP
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current is called the Strong Coupling limit. The choice of focusing our analysis on
the former scenario was due to the latter one being deemed less interesting and
already thoroughly treated in [17]. In the same article, the authors suggest instead
the Weak Coupling limit to give rise to an interesting steady state landscape, but
the results they present show some unexpected disagreements between theory and
simulations and suggested the need for a deeper analysis.

Concerning the results of this thesis work, we have been able to produce phase
diagrams representing the steady state behaviour of the system, given any possible
combination of the five control parameters listed before, in a Weak Coupling limit,
while also obtaining a mean field approximation of the bulk particle densities and
steady state reservoir densities. Firstly, we found the critical condition κ2 = 0.25
that divides the phase space into two different regions where a Max Current Phase
can or cannot be present. We then obtained what seems to be a complete physical
landscape in the case κ2 < 0.25 where we have seen how, depending upon the value
of µ, the model can either be in two or three phases, as shown in the example of
figure 4.3. Then we moved to examine the more complicated situation for κ2 > 0.25
where we were able to see how, depending upon the value of µ, the model can be
in two, three or four phases and we distinguished the existence of at least three
different families of behaviours in µ depending on whether the ratio κ2

κ1
is smaller,

equal or greater than 1. The threshold values of µ for the existence of the various
phases have been identified. During this analysis, we also noted that the model
admits a particle-hole symmetry for κ1 = κ2 and we showed how this symmetry
reverberates from the equations to the phase diagrams. We must stress again the
fact that all these results have not been proven exactly but obtained in a mean
field approximation. However, they have been fully backed quantitatively by the
corresponding Kinetic Monte Carlo results. This convincingly suggests that despite
the necessary limitations of a mean field approach, most of the relevant physics can
be nonetheless contained in this simplified description. Finally, we were able to
obtain the full dynamics behaviour of both the particle densities and the reservoir
densities in mean field, which can lead to a detailed description of the system’s
evolution towards stationarity.

Before ending this section, let us list some lines of investigation that we deem
worth pursuing as a continuation of this thesis project. First of all, we have men-
tioned before that a topologically interesting situation arises for certain combina-
tions of the control parameters for which there seem to be separate High Density
regions in the (α, β) phase diagrams, following the splitting into two branches of
the parametric line that separates this phase and the Domain Wall one. Evidently,
one would like to come to a physical understanding of exactly when, in terms of
the control parameters, and why this situation could appear. Also, it is natural to
wonder whether a symmetric situation can be present for the Low Density phase
and whether this may depend on the control parameters. Following these consider-
ations, one should read the diagrams in figure 4.4 as a first draft that, while surely
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containing relevant information for the steady state landscape of the model, could
probably be improved with other lines indicating some sort of dynamical transitions
within the different regions that in this work we have not been able to see. Another
important deep dive could be made in terms of analysis of the full dynamics to
stationarity in mean field. While we collected all the data, it would be interesting
to make a more specific examination of the relaxation towards the steady state,
considering the time and way in which these different states are reached and how
the control parameters quantitatively influence the relevant variables that can de-
scribe this process, like the shock velocities, the relaxation time, and many others.
Lastly, we think that there are some slight modifications that can be performed
on the system we studied in this work to which our MFT and KMC analysis can
be easily extended which would be interesting to consider. The first that comes
to mind is to have more than one TASEP connecting two or more reservoirs with
the same type of diffusion mechanism. Secondly, one could reconsider the choice
of the effective rates αEF F , βEF F . For these rates, we considered specific functions
of the numbers of particles in the reservoirs to obtain the population-dependent
behaviour we wanted for the injection and extraction mechanisms. One could ex-
pect that by changing those specific functions while maintaining the characteristics
to be respectively monotonically increasing and decreasing in their arguments and
fixing the finite size of the reservoirs, some qualitatively similar results to the one
obtained in this work should hold. Ultimately, in the present work, we considered
a TASEP channel with unitary and uniform transition rates and without disorder.
One or more of these assumptions could be relaxed in considering more complicated
internal lattice dynamics while maintaining the same two reservoirs, injection/ex-
traction effective parameters and diffusion mechanism.
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