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Abstract

A generic quasi two-dimensional superfluid confined in a rotating circular trap could present
quantum vortices. According to the Point Vortex model, each vortex is effectively described
as a point-like particle around which the superfluid flows with quantized circulation. It
has been proven that at equilibrium the vortex-array is a composition of concentric regular
polygonal structures. Non-trivial excitations of these stable configurations are the so called
Tkachenko modes, microscopically associated to elliptical precessions of each vortex around
its equilibrium position, representing a macroscopic deformation of the vortex-crystal.
Recently it has been also proposed a model for point-like vortices hosting in their cores
massive particles. The goal of this thesis is the characterization of the main effects ensuing
from the “vortex mass” on the formation of the vortex crystal depending on the rotation
rate of the trap and on the creation of their non-trivial excitations. Principal consequences
of such a massive description are the centrifugal forces acting on each massive vortex core
and the typical cyclotronic-like orbits characterizing their dynamics. The study was carried
out in an analytical way, and was based on the minimization of system free energy, as well
as on the study of the equations of motions of many-vortex systems.
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Introduction
The liquefaction of helium, realized by Heike Kamerlingh Onnes in 1908, has been a
crucial step in the study of the fundamental physical properties of materials at very
low temperatures. Exploiting the liquid helium refrigerant power to cool mercury (Hg),
below 4 K (Kelvin), Onnes was the first to observed the Superconductivity, a physical
state characterized by electrical currents flowing without resistance. Further studies on
liquid helium showed the presence in the heat capacity curve of a discontinuous phase
transition, the so called “lambda” transition [1], around a temperature of 2.2 K. Such a
behaviour highlights the existence of two different liquid phases for the helium according
to a critical temperature value Tλ: a 3He phase for T > Tλ and a 4He phase for T < Tλ.
In particular the latter low temperature phase, corresponding to bosonic isotopes, shows
some peculiar non classical physical properties of liquid helium, such as remaining liquid
even at temperatures very close to 0 K (the absolute zero), reluctance to boil and an
extremely high internal mobility, that makes it flow with no viscosity.
Due to the analogy with Superconductivity, in 1938 Kaptiza defined this 4He liquid phase
as “superfluid”, introducing for the first time the technical term Superfluidity. In the
same year the 1925 Einstein’s model for ideal gases of bosons was taken into account by
London, in order to explain this non classical physical state. Such a model predicted
the Bose-Einstein condensation effect (we will discuss about it in section 1.1), meaning
that a significant number of the particles should condense in a unique quantum state
and the remaining particles should act conventionally, and showing the presence of a
discontinuity in the heat capacity, very similar to the one observed in the liquid helium
(further information in Ref. [2]). This led to the so called two-fluid model [3], where
Tizsa and Landau described the 4He as it is composed by a nonviscous superfluid and a
viscous “normal fluid” (obeying the classical physics). However since the Bose-Einstein
condensation restricted the explanations of the Superfluidity only bosonic systems (such as
4He atoms), at first it was not so clear if and how such a phenomenon could be responsible
for the Superconductivity, where electrons flow with no internal resistance. Indeed electrons
are fermionic particles obeying to the Pauli exclusion principle, which prevents two identical
fermions to occupy the same quantum state. It was thanks to the BCS theory, by Bardeen,
Cooper and Schreiffer, that it was proposed the concept of the Cooper pairs, consisting in
the coupling of two electrons mediated by positive ions in the lattice, which correspond to
composite bosons (bosonic quasi-particles). Such a paring mechanism was later confirmed
in 1972 with observation the superfluid behaviour in fermionic helium isotope 3He, at
temperatures around 2 mK.
So superfluid helium and superconductors are both manifestations of Bose-Einstein con-
densation, since they arise from the condensate, the macroscopic quantum state occupied
by a large fraction of particles, and they represent examples of quantum fluids, fluids of
particles governed by quantum mechanics laws. However, these kind of systems are much
more complicated than an ideal gas described by the Einstein’s model, because of the
presence of strong interactions between particles, typical of fluids and solids.
The most important hallmarks characterizing a superfluid include its capacity to flow
without viscosity (nonviscous fluid), the existence of a break down of the superflow occur-
ring above a certain critical velocity, a persistent flow, Josephson currents associated to
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macroscopic tunnelling, and the presence of vortices around which the flow shows quantized
circulation. Further information on Superconductivity, Superfluidity and Bose-Einstein
condensates can be found in Ref. [4].
It was only in the 1995 that the first gaseous Bose-Einstein condensate was realized by
cooling a gas of rubidium atoms (87Rb) down to 200 nK (nano Kelvin) [5]: above the critical
temperature Tc the atomic particles presented a wide/broaden momentum distribution,
corresponding to an energetic and thermal gas; while approaching Tc a narrow peak appears
in the momentum distribution, indicating the condensation of a large portion of atoms
into a almost zero energy and momentum quantum state. Nowadays the most common
atomic species used in the formation of Bose-Einstein condensates (with typically 99% of
condensed atoms) are the rubidium (87Rb) and the sodium (23Na) [6]. It is also possible
to obtain multi-component condensates, i.e. two-component Bose-Einstein condensates [7],
and fermionic Bose-Einstein condensates, i.e. using a ultracold gas of potassium atoms
(40K) [8].

Ever since Feynman’s seminal article [9] about the quantum properties of liquid he-
lium has been published, the scientific community has been vividly interested in the
appearance of quantum vortices in superfluids. They are topological defects consisting in a
depletion effect of the quantum fluid density, strictly associated to a phase shift: in fact one
can imagine them as whirlpools around which the fluid flows with quantized vorticity (this
will be discussed in section 2.2). At the beginning they were observed only in superfluid
helium [10], but after the realization of the first ultracold atomic Bose-Einstein condensate
[5], quantum vortices were also observed in such a new class of superfluids, [7, 11, 12].
The dynamics of quantum vortices (with empty cores) in a superfluid confined in quasi
two-dimensional domains is defined by the Helmholtz-Kirchhoff equations, containing no
inertial term and corresponding to first order differential dynamical equations (see Ref.
[13] and section 4.1).
Recently it has been proposed that whenever the core of a vortex, that is usually empty,
may behave as a potential well, massive particles could be trapped by a quantum vortex
[12]. Such a non-zero core mass introduces a second order time derivative derivative in
the motion equation, which makes their description significantly different from that of
their massless counterpart. In particular a generalized point-like dynamical model has
been developed within a time-dependent variational approach [14, 15], which has predicted
as effect of the core mass the presence of small amplitude transverse radial oscillations
affecting the well-known vortex trajectories [13] (this will be discussed in subsection 4.1).
The reason for such a “massive” modeling lays on the fact that in the past few years
it has been (accidentally and/or deliberately) realized how, in real world experiments,
quantum vortices almost always host some massive particles. These particles, localized
in the vortex cores, are generally related to the (realistic) presence of atomic impurities,
thermal, tracer atoms, or atoms from a different bosonic component: i.e. a concrete
experimental example can be find in Ref. [12]. Since the presence of quantized vortices is
a distinctive signature of a superfluid system, such as the liquid helium, the Bose-Einstein
condensates, the fermionic superfluids and the so called quantum fluids of light, the study
about the properties of massive vortices is of fundamental importance nowadays. The
goal of this thesis is to characterize the effects of the core mass both on the formation of
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vortex crystals at equilibrium, and on the creation of their non-trivial excitations. More
precisely, the considered analysis focuses on the simple case of a quasi two-dimensional
uniform condensate bounded in a rotating circular domain, presenting point-like vortices
of vanishingly small core size compared to the typical system size. The study has been
based on the semi-analytical global minimization of the system free energy, as well as on
the study of the equations of motions for many-vortex systems.

In the following we will present some generic information about the organization of
the main topics discussed in this thesis work.

Chapter 1 represents a general review of systems of bosonic particles. Through the
analysis of the non interacting regime, we will introduce the Bose-Einstein condensation
effect, and consequently we will describe a Bose gas in the regime of weak interactions,
within the main assumption of a dilute gas at very low temperatures. In the end, by
considering a mean field approach, we will present and properly discuss the Gross-Pitaevskii
model of the Bose-Einstein condensate.

Chapter 2 is devoted to show the deep link between the fluid dynamics and the Gross-
Pitaevskii model describing a condensate. We will firstly analyze the Hydrodynamic
picture of this model, discussing the superfluid dynamics equations. Then, within this
interpretation, we will mainly focus on the nature of quantum vortices characterizing
a superfluid, analyzing their point-like description in both cases of infinitely large and
confined quasi two-dimensional condensates. The end of the chapter is dedicated to the
introduction of the concept of “massive” quantum vortices and of their effective point-like
modeling.

In Chapter 3, we will face the problem of the global minimization of the system’s
free energy in order to reproduce at first the well-known absolute stable equilibrium pat-
terns of quantum vortices with empty cores, formed in a quasi two-dimensional condensate
confined in a circular rotating trap. After this initial verification, we will investigate the
main effects ensuing from the presence of a non-zero small core mass on the formation of
such equilibrium many-vortex configurations.

Chapter 4 focuses on the analysis of the dynamics of quantum vortices within the
Point-Vortex model, highlighting the main characteristics and properties of the dynamical
equations, which define the motion of quantum vortices, both in the “massless” and in
“massive” vortex descriptions. The second part of this chapter will be centered on the
non-trivial excitations of vortices around their equilibrium positions in a stable vortex
crystal, analyzing in particular the effect of the core mass on the well-known Tkachenko
modes, which define the excitations of massless vortex crystals.
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Chapter 1

Bose-Einstein condensates and
their modeling

This first chapter consists in a general and introductory review of systems of bosonic
particles. Starting from the analysis of the ideal Bose gas, a system of non interacting
bosons, we will introduce the effect of the Bose-Einstein condensation. Consequently, we
will describe a Bose gas in the weak interactions regime, within the main assumption of
a dilute gas at very low temperatures. Finally by considering the mean field approach,
we well present and properly discuss the Gross-Pitaevskii model of the Bose-Einstein
condensate.

1.1 Ideal Bose gas
A system of bosonic particles, which do not interact, obeys the Bose-Einstein statistics. In
such a gas, particles (of identical mass m) are distributed according to the Bose distribution
function and can be treated in a Grand Canonical ensemble (we have considered as
references Ref. [16, 17, 18]): we can consider a set of possible values for the particle
momentum p⃗, which essentially labels the occupied states with energy (per mode p⃗) ϵp⃗

ϵp⃗ = (p⃗)2

2m , with p⃗ = ℏk⃗ (k⃗ the wave vector). (1.1)

Then the Grand Canonical partition function ZB associated to a system of indistinguishable
bosonic quantum particles assumes the form of

ZB =
Ù

p⃗

1
1 − eβ(µ−ϵp⃗) =

Ù
p⃗

1
1 − ze−βϵp⃗

, z = eβµ (fugacity), (1.2)

where β = 1/kbT (being kb the Boltzmann constant) and µ the chemical potential. If the
number of particles at a certain mode p⃗ is np⃗ and the total number of bosons is just

q
p⃗ np⃗,

then exploiting ZB it is possible to compute the average values of these quantities as

N = ⟨N⟩ = −∂µ [kBT ln ZB] =
Ø

p⃗

ze−βϵp⃗

1 − ze−βϵp⃗
=
Ø

p⃗

⟨np⃗⟩ . (1.3)

1
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Furthermore, assumed that the gas occupies a volume V at a pressure P and temperature
T , the state equation results to be:

PV = kBT ln ZB = −kBT
Ø

p⃗

ln
è
1 − ze−βϵp⃗

é
. (1.4)

In the thermodynamic limit (where N, V −→ ∞, but V/N = constant), the summation
over a non zero discrete momentum vector (p⃗ /= 0) could be transformed into an integral in
the reciprocal space over a continuous momentum vector,

q
p⃗ /=0 −→ 4πV

h3

s∞
0 dp⃗ p2, allowing

us to write equations (1.3) and (1.4) in the following form:

N = z

1 − z
+ 4πV

h3

Ú ∞

0
dp⃗ p2 ze−βϵp⃗

1 − ze−βϵp⃗
(1.5)

PV

kBT
= − ln(1 − z) − 4πV

h3

Ú ∞

0
dp⃗ p2 ln

è
1 − ze−βϵp⃗

é
(1.6)

These two formulas are obtained by first isolating the zero mode p⃗ = 0 from the rest of
the sum, and then going on with the integrations we finally write:

N = z

1 − z
+ V

λ3 g3/2(z), g3/2(z) =
∞Ø
i

zi

i3/2 ; (1.7)

PV

kBT
= − ln(1 − z) + V

λ3 g5/2(z), g5/2(z) =
∞Ø
i

zi

i5/2 , (1.8)

with λ =
ð

2πℏ2/(mkBT ) and v = V/N the volume per particle.

These two last equations are of fundamental importance, because they intrinsically contain
a relation between the thermodynamical quantities V, P and T defining a special purely
quantum regime apart from the high temperature (low density) and low temperature (high
density) regimes. Let us focus our attention to equation (1.7) expressed in terms of the
system volume per particle v as

1
v

= z

V (1 − z) + 1
λ3 g3/2(z), (1.9)

and considering the ratio λ3

v to be a function F (z) of the fugacity (or better of the chemical
potential), so that using the equation (1.9) one finds

λ3

v
:= F (z) = g3/2(z)

N
N+1(1 − z)

N
N+1 − z

. (1.10)

Observe that, in order to be N and P meaningful physical quantities, the range of fugacity
must be 0 ≤ z < 1, with divergent behaviour of λ3/v for z −→ N/N + 1 implied by equation
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(1.10). Thus, by directly comparing the functions g3/2(z) and λ3

v := F (z), we are capable
of defining the two following regimes (still the in thermodynamic limit):

1) z −→ N

N + 1 ≃ 1 with λ3

v
:= F (z) −→ ∞, g3/2( N

N + 1) ≃ g3/2(1) = 2.612 (1.11)

2) 0 ≤ z <
N

N + 1 with λ3

v
:= F (z) ≃ g3/2(z) ≤ g3/2(1) (1.12)

Since the average population of the zero mode ⟨n0⟩ = z/(1 − z), using formula (1.7) it can
be written as

⟨n0⟩
N

= 1 − V

λ3 g3/2(z), (1.13)

consequently we find in the case
1

λ3

v > g3/2(1)
2

a non zero fraction of particles populating
the zero mode (corresponding to the lowest energy state ϵ0 = 0). In this way at the Ground
state a significant amount of condensed particles form a macroscopic many-body, known
as the condensate.

1)
⟨n0⟩
N

≃ 1 − v

λ3 g3/2(1),
A
λ3

v
> g3/2(1)

B
; 2)

⟨n0⟩
N

= 0,
A
λ3

v
≤ g3/2(1)

B
(1.14)

Notice that the zero mode average population ⟨n0⟩ /N , known as the condensate fraction
for the case 1), strictly depends on the temperature and volume and in fact and therefore
it is possible to obtain the following equation

⟨n0⟩
N

≃ 1 − v

λ3 g3/2(1) = 1 −
3

T

Tc(v)

4 3
2

with Tc(v) = 2πℏ2

mkB

1
vg3/2(1)

2− 2
3
, (1.15)

where Tc(v) is the critical temperature (depending on the volume per particle v),
which actually represents the driving parameter of this phenomenon, known as the Bose-
Einstein condensation.

Figure 1.1: a) Occupation of the energy levels in the Ideal Bose gas at temperature
T . The Figure has been taken from Ref. [2]. b) Curve of condensate fraction ⟨n0⟩ /N at
the Ground state as function of temperature fraction T/Tc according to equation (1.15)
(picture taken from Ref. [16]).
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In fact, at T = 0 all the N particles in the gas are in the lowest energy level E = ϵp⃗ = 0,
corresponding to the Ground state (the zero mode p⃗ = 0 state). As the temperature
increases the number of exited particles increases, so for 0 < T < Tc(v) the Ground
state is still macroscopically occupied, but its fraction of the condensed bosons decreases,
up to T = Tc(v) where all the particles are excited and the Ground state is completely
depleted. In Figure 1.1, the left panel a) shows the bosonic occupation of the energy levels
according to the temperature T of the gas, while the right panel b) shows the profile of
the condensate fraction of bosons ⟨n0⟩ /N at the Ground state according to (1.15).
In the end, it is also possible to identify a critical volume per particle vc, describing the
phase transition from a thermal gas to a Bose-Einstein condensate (BEC) in the (T, v)
plane:

vc = 1
g3/2(1)

A
2πℏ2

mkB

B 3
2 1
T 3/2 . (1.16)

As already anticipated above for this discussion we took as references Ref. [2, 16, 17, 18,
19], where it is possible to achieve furter information about the Bose-Einstein statistics and
the mathematical relations involving other important physical quantities, characterizing
the ideal Bose gas.

1.2 Weakly interacting Bose gas
In general when dealing with many-body systems composed of bosonic interacting particles
subjected to the action of an external field, a proper description lays on the Bosonic
Quantum Field Theory based on the Second Quantization formalism [18, 20, 21].
Within this representation, each boson at a certain position r⃗ and time instant t is identified
by the bosonic field operators of creation and annihilation Ψ̂+(r⃗, t), Ψ̂(r⃗, t), which obey
the canonical commutation relationè

Ψ̂(r⃗, t), Ψ̂+(s⃗, t)
é

= δ3(r⃗ − s⃗). (1.17)

The total average number of bosons N in the system (occupying a volume V ) is given by
the associated total number operator N̂ , which is defined as

N̂ =
Ú

V
dr⃗ Ψ̂+(r⃗, t)Ψ̂(r⃗, t); (1.18)

then the volumetric average density is just n = N/V , while the average interparticle
distance is d = n−1/3.

Considering the system generally confined by an external (time-independent) potential
V (r⃗), the field Hamiltonian Ĥ is defined as the sum of two different functional integrals:
Ĥ0 the functional associated to the non-interacting regime and Û the one associated to
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the many-body bosonic interactions [18]. Thus being

Ĥ = Ĥ0+Û , Ĥ0 =
Ú
dr⃗ Ψ̂+(r⃗, t)H0(r⃗)Ψ̂(r⃗, t) =

Ú
dr⃗ Ψ̂+(r⃗, t)

C
− ℏ2

2m∇2 + V (r⃗)
D

Ψ̂(r⃗, t),

(1.19)
in principle it is possible to write the bosonic fields as a linear combination of the energy
eigenstates ϕα(r⃗) of the non interacting Hamiltonian function H0(r⃗) (corresponding to
take a complete set of orthonormal wavefunctions

Ψ̂(s⃗, t) =
Ø

α

aα(t)ϕα(r⃗), Ψ̂+(s⃗, t) =
Ø

α

a+
α (t)ϕ∗

α(r⃗). (1.20)

with aα, a
+
α the bosonic ladder operators. In the particular case of a gas confined into a

cubic box of volume V = L3 with periodic boundary conditions, the eigenstate is nothing
but the plane-wave ϕk(r⃗) {ϕα(r⃗)}) [21]:

V (r⃗) =
I

0 r⃗ ∈ V

∞ else
; ϕk(r⃗) = eik⃗·r⃗

√
V
, k⃗ = 2π

L
(nx, ny, nz) nx, ny, nz = 0,±1,±2, . . .

(1.21)

The interaction functional Û , contributing to the field total field Hamiltonian Ĥ as in
equation (1.19), is defined by the energy potential function associated to the many-body
interactions between the bosons in the system. When the interparticle forces, governing
the overall interacting regime of the bosonic gas, are characterised by a spatial range
r0 much smaller then the average interparticle distance d, meaning r0 ≪ d, the gas is
said to be very dilute (or rarefied). In such a regime only two-body interactions are
significant [18, 21], all the others many-body interactions are negligible, and then the
interaction potential function U(|r⃗ − s⃗|) associated to two bosons (at two generic positions
r⃗, s⃗) enables us to write the interaction functional Û as:

Û = 1
2

Ú
dr⃗

Ú
ds⃗ Ψ̂+(r⃗, t)Ψ̂+(s⃗, t) U (|r⃗ − s⃗|) Ψ̂(r⃗, t)Ψ̂(s⃗, t). (1.22)

A further consequence is the possibility to describe the relative motion of two bosons (e.g.
at r⃗, s⃗) through a wavefunction in an asymptotic expression Φ(r⃗ − s⃗) depending on the
scattering amplitude f(θ):

Φ(R⃗) = Φ(r⃗ − s⃗) = eik⃗·(r⃗−s⃗)) + f(θ)
|r⃗ − s⃗|

eik|r⃗−s⃗|, R⃗ = r⃗ − s⃗. (1.23)

If in addition we also consider the gas to be at very low temperature T (close to 0 K),
then we are for sure in the low energy regime far below the critical temperature value Tc

(T ≪ Tc) for the Bose-Einstein condensation and the particle momentum typical value p
undergoes the following:I

E = p2/(2m) ≈ 3/2 kBT

d2 ≈ (πℏ2)/(mkBTc)
=⇒ pr0

ℏ
≪ pd

ℏ
=
ó

3πT
Tc

≪ 1 =⇒ pr0

ℏ
≪ 1. (1.24)
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For such p values, indicating slow particles, the Standard Scattering Theory ensures that
the scattering amplitude f(θ) only depends on the s-wave scattering length as and by
means of the first order Born approximation we have:I

f(θ) ≃ −as

f(θ) ≃ − m
4πℏ2

s
dR⃗ U(R⃗)

=⇒ U(|r⃗ − s⃗|) = g δ3(r⃗ − s⃗), g = 4πℏ2

m
as. (1.25)

In the end the approximation scheme used allows us to consider two-body potential U as
nothing but a contact potential [21] of amplitude g depending on the s-scattering wave
length as.

The total field Hamiltonian for such a weakly-interacting Bose gas finally becomes

Ĥ =
Ú
dr⃗ Ψ̂+(r⃗, t)

C
− ℏ2

2m∇2 + V (r⃗)
D

Ψ̂(r⃗, t) + g

2

Ú
dr⃗

1
Ψ̂+(r⃗, t)

22 1
Ψ̂(r⃗, t)

22
, (1.26)

leading to the following field dynamical equation (with H0(r⃗) as in (1.19)):

iℏ∂tΨ̂ =
è
Ψ̂, Ĥ

é
=⇒ iℏ∂tΨ̂(r⃗, t) = H0(r⃗)Ψ̂(r⃗, t) + gΨ̂+(r⃗, t)Ψ̂2(r⃗, t), (1.27)

where the right hand side term of the equation on the left, is nothing but the commutator
of the field operator Ψ̂ with the field Hamiltonian Ĥ, which leads to the final equation
on the right by considering the canonical commutation relation (1.17) and the form of Ĥ
given by (1.26).

Note that the very low temperature condition, T ≪ Tc, should imply that the zero
mode k⃗ = 0 state (at energy ϵk = ℏ2k2/(2m) = 0), corresponding to the Ground state of
the system, is macroscopically occupied. Such an observation agrees with the Bose
Einstein condensation effect, previously introduced within the ideal non interacting model
in subsection 1.1, and in fact, by considering nk⃗ the average number of bosons per mode k⃗,
the total average number of particles N results the sum of two different contributions (see
Ref. [21, 22]):

N =
Ø

k⃗

nk⃗ = n0 +
Ø
k⃗ /=0

nk⃗ , N ≃ n0 ≫ 1 for n0 ≫ nk⃗ ∀k⃗ /= 0 (1.28)

where n0 is the average number of particles condensed at the Ground state.
The latter assumption taken in the formula above sets the bases of the Bogoliubov
Approximation, where the zero mode bosonic ladder operators a0 and a+

0 are seen as
commuting operators and can be written as a0 =

√
Neiη, a+

0 =
√
Ne−iη. In this way

equation (1.20) for the case V = 0 becomes

Ψ̂(r⃗, t) = a0(t)ϕ0(r⃗) +
Ø
k⃗ /=0

ak⃗ϕk⃗(r⃗) ≃
√
Neiηϕ0(r⃗) + ∆ψ, ∆ψ =

Ø
k⃗ /=0

ak⃗ϕk⃗(r⃗) (1.29)

which applied to the field dynamical equation (1.27) gives η = gN
V ℏ t showing how this

approximation is a quite reasonable solution for this case.

6



Bose-Einstein condensates and their modeling

However when the system generically couples to an external potential V (r⃗), then the
expansion (1.20) done with respect to the set of the Hamiltonian H0 eigenstates does
not match with the Bogoliubov approximation. Indeed, in these cases it is required the
Generalized Bogoliubov approach [21, 22], where basically the previous approximation
scheme is extended by considering the following new form of the field operator:

Ψ̂(r⃗, t) =
Ø

ℓ

Aℓ(t)ϕℓ(r⃗) = ψ(r⃗, t) + ∆ψ(r⃗, t), (1.30)

ψ(r⃗, t) = A0(t)ϕ0(r⃗) =
√
Nϕ0(r⃗), ∆ψ(r⃗, t) =

Ø
ℓ /=0

aℓϕℓ(r⃗). (1.31)

This expansion for the bosonic field operator Ψ̂ is done with respect to both unknown basis
{ϕℓ(r⃗)} and mode operators {Aℓ(t)} satisfying the Bogoliubov approximation property#
A0, A

+
0
$

≃ 0.

This picture enables us to reduce the bosonic field operator into a single-particle wave-
function ψ(r⃗, t), known as the condensate wavefunction (or order parameter), with
an operator ∆ψ(r⃗, t) associated to the vanishing number of excited bosons out of
the Ground state. In particular the statistical average ⟨∆ψ⟩ of this last operator (done
with respect |E0⟩ the energy ground eigenstate) regards both the quantum fluctuations
and thermal fluctuations which are negligible since the gas is ultracold and very diluted.
At T = 0 and at thermodynamic limit (N, V −→ ∞, n = const) it follows

⟨∆ψ⟩ −→ ⟨E0| ∆ψ(r⃗, t) |E0⟩ ≃ 0 =⇒
e
Ψ̂
f

−→ ⟨E0| Ψ̂(r⃗, t) |E0⟩ ≃ ψ(r⃗, t). (1.32)

In the light of all of this (see Ref. [21, 22]), taking the expectation value of both side of
the dynamical equation (1.27), we firstly can consider

iℏ∂t

e
Ψ̂(r⃗, t)

f
= H0(r⃗)

e
Ψ̂(r⃗, t)

f
+ g

e
Ψ̂+(r⃗, t)Ψ̂2(r⃗, t)

f
, (1.33)

and after some mathematical manipulations exploiting formulas (1.31) and (1.32) we derive
the Gross-Pitaevskii equation (GPE)

iℏ∂tψ(r⃗, t) = H0(r⃗)ψ(r⃗, t) + g|ψ(r⃗, t)|2ψ(r⃗, t). (1.34)

It is important to notice how, thanks to this Mean field procedure, the model in Sec-
ond Quantization formalism for a weakly-interacting Bose gas in the purely
quantum regime of Bose-Einstein condensation can be reduced to a model
in First Quantization scheme with a single-particle wavefunction ψ(r⃗, t) describing
the condensate as a unique macroscopic body. In particular we can also see that the
dynamical equation (1.34) is nothing but a Schrodinger equation (which well describes the
non interacting regime) with an additional cubic non linear term, which indeed describes
the quantum regime of the fully and macroscopically occupied lowest-energy quantum
state.

7
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1.3 The Gross-Pitaevskii model of the condensate
The Gross-Pitaevskii model of a condensate, based on the GPE (1.34), avoids to describe
it as a many-body system, composed by N weakly-interacting bosonic particles of mass m
at ultracold temperatures and governed by a many-body Schrödinger equation associated
to a many-body wavefunction ψ(r⃗1, . . . , r⃗N , t) [2]. In fact, the whole system is instead
considered a “unique macroscopic body”, described by a single-particle wavefunction ψ(r⃗, t),
with the following normalization rule:

N =
Ú
dr⃗ |ψ(r⃗, t)|2, M = mN (the total condensate mass). (1.35)

Such a condensate wavefunction ψ(r⃗, t), as seen before in subsection (1.2), is the solution
of the the Gross-Pitaevskii equation (GPE), defined in equation (1.34), which can be
written in its following extended form by considering the non interacting Hamiltonian H0
according to (1.19):

iℏ∂tψ(r⃗, t) = − ℏ2

2m∇2ψ(r⃗, t) + V (r⃗, t)ψ(r⃗, t) + g|ψ(r⃗, t)|2ψ(r⃗, t); (1.36)

with on the right hand side receptively the kinetic, (time-dependent) external potential and
interaction energetic terms. Remind that the cubic non-linear term, defined by the interac-
tion amplitude g, derives from the two-body mean field interactions between extremely
close atoms (in presence of the contact potential U (1.25) due to the weakly-interacting
regime we are considering, see section 1.2).
Considering its definition (1.25), g depends on the atomic species of the condensate with
its own s-wave scattering length value as (e.g. 23Na as = 2.8 nm), and the interactions are
repulsive for g > 0, attractive for g < 0 and absent when g = 0.

This model implies also that the field Hamiltonian Ĥ, defined within the Second Quantiza-
tion scheme in equation (1.19), here corresponds to the following functional integral H [2,
10, 21] associated to the condensate wavefunction ψ(r⃗, t) (instead of the field operators
ψ̂, ψ̂+):

H =
Ú
dr⃗

C
ℏ2

2m |∇ψ(r⃗, t)|2 + V |ψ(r⃗, t)|2 + g

2 |ψ(r⃗, t)|4
D

= Ekin + Epot + Eint. (1.37)

where Ekin, Epot, Eint are respectively the kinetic, the potential and the interaction energies
of the whole system.

Note that the condensate wavefunction ψ(r⃗, t) is a complex function and it is possi-
ble to express it in terms of the condensate real valued (numerical) density and phase
distributions functions n(r⃗, t), S(r⃗, t), equivalently also called fields:

ψ(r⃗, t) =
ñ
n(r⃗, t) eiS(r⃗,t), with |ψ(r⃗, t)|2 = n(r⃗, t) (1.38)

Such a formula, called Madelung Transform, is crucial whenever the condensate is described
as a fluid, within a fluid dynamics interpretation of the Gross-Pitaevskii equation, as we
will see in chapter 2 and on Ref. [2].
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1.3.1 The time-independent Gross-Pitaevskii equation
The entire following discussion is based on Ref. [2].

In the particular case of a time-independent external potential V (r⃗, t) = V (r⃗),
the solution of the GPE ψ(r⃗, t) can be assumed to satisfied the following condition

ψ(r⃗, t) = ψ(r⃗) e−iµt/ℏ, n(r⃗, t) = |ψ(r⃗)|2 (constant in time) (1.39)

where ψ(r⃗) is the time-independent solution of the GPE and µ = const is the chemical
potential (the phase freely evolves with time and uniformly in the system).
Applying this ansatz to the GPE (1.36), we recover the Time-independent Gross-
Pitaevskii equation

µψ(r⃗) = − ℏ2

2m∇2ψ(r⃗) + V (r⃗)ψ(r⃗) + g|ψ(r⃗)|2ψ(r⃗), (1.40)

from which by first multiplying both sides by ψ∗(r⃗) and then integrating and looking to
(1.37) we obtain that energy eigenvalue of the time-independent GPE µ [2] is:

µ = 1
N

(Ekin + Epot + 2Eint) with N =
Ú
dr⃗ n(r⃗, t) (1.41)

Nowadays, several experimental studies on atomic condensates have been based on bowl-
like confining potential V (r⃗). Here the following of this subsection would like to analyse
some trivial but important cases of time-independent (stationary) external potentials.

If there is no external trapping potential, V = 0, the system is considered to be of
infinite extension and governed by the time-independent GPE (1.40) which is now

µψ(r⃗) = +g|ψ(r⃗)|2ψ(r⃗) =⇒ n(r⃗) = |ψ(r⃗)|2 = µ/g = const. (1.42)

This way, since the parameters µ, g are defined as constants, then also the square norm
of the stationary solution needs to be a constant implying that this last ψ(r⃗) is a real
valued function representing an infinitely large uniform condensate with

ψ(r⃗) = ψ0 =
ñ
µ/g, n = n0 = |ψ0|2 = µ/g, (1.43)

and mass density ρ = ρ0 = mµ/g (Ref. [2]).

The insertion of a hard domain wall in a such configuration would correspond to the
case of a semi-infinite confined condensate. Considering for the sake of simplicity a
one-dimensional trapping potential V (x)

V (x) =
I

∞ x < 0
0 x ≥ 0

, (1.44)

we can note how the (one-dimensional) GPE in equation (1.42) is still valid, but only
for x ≥ 0 and presents two important conditions: at x = 0 no particle exists, ψ(0) = 0,
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while far away from the wall (x −→ ∞) ψ −→ ψ0. So such a system is governed by following
one-dimensional time-independent GPE

µψ(x) = − ℏ2

2m
∂2ψ(x)
∂x2 + g|ψ(x)|2ψ(x) for x ≥ 0 (1.45)

correctly solved by
ψ(x) = ψ0 tanh

3
x

ξ

4
, ψ0 =

ò
µ

g
. (1.46)

The complex wavefunction is said to heal at the boundary according to the parameter ξ,
called healing length, which represents the characteristic scaling of the spatial changes
of the wavefunction ψ, and then also of the density n [2]. Thus by balancing the scaling of
each term on the right-side of equation (1.45) ξ is defined as:

ξ = ℏ
√
gmn0

, (1.47)

highlighting the fact that the condensate presents repulsive (g > 0) interparticle interac-
tions.

Such a confinement could be extended to the case of an infinite one-dimensional square
potential well, composed by two infinite domain walls. For sake of simplicity, let us consider
the potential well centered in x = 0, with the two walls respectively at a distance ±L
(width of 2L) much larger than the healing length ξ. Then here, the equations (1.45) and
(1.46) describes the local behaviour of the wavefunction ψ(x) near each wall (x = ±L)
allowing us to write:

ψ(x) =


ψ0 −L < x < L,

ψ0 tanh [(L− x)/ξ] x ≃ +L,
ψ0 tanh [(L+ x)/ξ] x ≃ −L.

(1.48)

Figure 1.2: Profile of the condensate wavefunction ψ (in terms of ψ0) as function of the
position x (in terms of ξ) in the case of a one-dimensional infinite square potential well
(here of width 20ξ centered in x = 0). Dashed curve for g = 0 and solid curve for g > 0.
Figure taken from Ref. [2].
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These conditions underline that, far from the two domain walls the profile of ψ would be
flat (for −L < x < L) recovering its bulk value ψ0, while as approaching to the boundaries
(for x ≃ ±L) it would quickly tend to zero, as an hyperbolic tangent tanh [(L± x)/ξ] ,
according on healing length ξ (much smaller than L). Such a profile for the wavefunction
ψ is quite different from the one describing a non-interacting condensate, correspond-
ing to g = 0, analogously confined between two hard walls: the ground state would be
ψ ∼ sin(πx/L) (given by the Schrödinger equation). Then as one can see in Figure 1.2,
the presence of interparticle interactions broaden and flatten the condensate wavefunction
profile and consequently also the density one.

1.3.2 Stationary solutions in different harmonic potentials
The entire following discussion is based on Ref. [2].

So far we have considered just a trivial stationary potential (V = 0), but in general
one of the most common ways of confining a condensate lays on the use of a (time-
independent) harmonic trap.

Considering in particular the spherically symmetric case, the trapping potential V (r⃗)
at a frequency ωr is of the form

V (r⃗) = 1
2mω

2
rr

2 with r =
ñ

|r⃗|2 =
ñ
x2 + y2 + z2 (1.49)

characterized by the harmonic oscillator length ℓr (its characteristic length scale)

ℓr =
ó

ℏ
mωr

. (1.50)

It also possible to take into account the so called interaction parameter Nas

ℓr
which allows

us to better identify the three physical interactions regimes: no interactions (g = 0), strong
repulsive interactions (Nas

ℓr
≫ 1) and weak interactions (

---Nas

ℓr

--- ≪ 1).

The strong repulsive interactions have the main effect (similarly to the one-dimensional
infinite square well case, visible in Figure 1.2) of broadening and flattening the condensate
wavefunction profile. For such a case a good analytic solution is given by the Thomas-Fermi
approximation which neglects the spatial variations represented by the ∇2ψ(r⃗) term of the
GPE giving:

µψ(r⃗) = 1
2mω

2
rr

2ψ(r⃗) + g|ψ(r⃗)|2ψ(r⃗). (1.51)

The definition of the density field n(r⃗) (1.38), entailing that it is positive valued, allows us
to write

n(r⃗) = |ψ(r⃗)|2 = µ

g

A
1 − mω2

rr
2

2µ

B
for µ ≥ 1

2mω
2
rr

2; otherwise n(r⃗) = 0, (1.52)
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or equivalently in terms of the Thomas-Fermi radius Rr = ( 2µ
mω2

r
) 1

2 [2] as

n(r) =
I
mω2

r (R2
r − r2)/(2g) r ≤ Rr

0 r > Rr

. (1.53)

Note that this density profile corresponds to an inverted parabola and approximates very
well the true numerical solution, which differs only at the boundaries where the neglected
term here is significant reaching zero values through an inversion of the slope.

When the harmonic potential V is anisotropic in the three-dimensional space, with a
frequency ω̄ = (ωxωyωz) 1

3 , and can be written as

V (x, y, z) = m

2 (ω2
xx

2 + ω2
yy

2 + ω2
zz

2), ℓ̄ =
ó

ℏ
mω̄

, (1.54)

with ℓ̄ the characteristic length, then we could generalize the Thomas-Fermi approxima-
tion for Nas/ℓ̄ ≫ 1 considering an ellipsoidal surface of the three Thomas-Fermi Radii
Rx, Ry, Rz such that:

µ = 1
2mω

2
xR

2
x = 1

2mω
2
yR

2
y = 1

2mω
2
zR

2
z (1.55)

n(x, y, z) =
I

(µ/g)
#
1 − (x/Rx)2 − (y/Ry)2 − (z/Rz)2$ only within the ellipsoid

0 otherwise
.

(1.56)

Meanwhile the weak interactions (either positive or negative) case can be studied through
a variational approach [2]. In the limit of no interactions g = 0 the GPE is just the
(stationary) Schrödinger equation presenting a Gaussian ground state harmonic oscillator
solution

ψ(r⃗) = ψ(r) =
3

N

π3/2ℓ3
r

41/2
exp

A
− r2

2ℓ2
r

B
. (1.57)

So for the weakly interacting confined condensate we can consider the following Gaussian
trial wavefunction of width σℓr, with σ the variational parameter and ℓr the harmonic
oscillator length (1.50):

ψ(r⃗) = ψ(r) =
3

N

π3/2σ3ℓ3
r

41/2
exp

A
− r2

2σ2ℓ2
r

B
. (1.58)

Note that this method, coherently to equation (1.57), requires g = 0 for σ = 1 and
calculating the energetic functional integral (1.37) we obtain the following energy spectrum

E(σ) = ℏωrN

C
3

4σ2 + 3σ2

4 + σ−3
√

2π

3
Nas

ℓr

4D
. (1.59)
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The variational solution is nothing but the lowest energetic variational state, corresponding
to the minimum of E(σ) and associated to the variational parameter σmin. It is possible
to plot the energetic spectrum function E(σ) (1.59) for some values of the interaction
parameter Nas/ℓr, as in Figure 1.3, in order to show the different behaviours according to
where the interactions are repulsive or attractive [2]:

• repulsive interactions have a spectrum E(σ) diverging to infinity for σ −→ 0 due
to the first kinetic energy term and the third interaction energy term, and also for
σ −→ ∞ due to the second potential energy term. Being E(1) = 3/2 Nℏωr the non
interacting ground state energy, the condensate size enlarges increasing g and σmin.

• attractive interactions presents a divergence to minus infinite of the E(σ) as
σ −→ 0 due to the third negative term. Despite this limit corresponds to unstable
ground state (a wavepacket of zero width), for weak attractions

---Nas

ℓr

--- ≪ 1 at non
zero width there exists a stable condensate of finite size, corresponding to a energy
spectrum local minimum. Instead stronger attractions makes the condensate narrower
and more peaked up to some critical value attraction value, after which there are no
more stable solutions and all the states collapse to zero width.

Figure 1.3: Profiles of the energy E/(Nℏωr) as function of the variational parameter
σ according to formula (1.59), for different fixed interaction parameter Nas/lr, here
{−1, −0.75, −0.67, −0.5, −0.25, 0, 0.5, 1} from top to bottom. Dashed curve for
Nas/lr = −0.67, representing the critical point. Figure taken from Real Ref. [2].

Condensates of reduced dimensionality.
At this point we could conclude this section by recalling that the form of the trapping
potential gives the shape to the condensate: we have analyzed the case of a spherical
bounded condensate and the more generalized one of an ellipsoidal condensate.
In particular it is worth to mention that by exploiting the different possible anisotropies
of a harmonic potential V defined as equation (1.54) we could obtain a description of
a condensate in a reduced dimensionality. Indeed when in a highly elongated harmonic
trap (i.e. ωx, ωy ≫ ωz) the transverse potential energy scale is ℏ(ωxωy)1/2 ≫ µ the
chemical potential, the only dominating dynamics is along the z direction, with effective
reduction to a one-dimensional condensate. Similarly in a highly flatten harmonic trap
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(i.e. ωx, ωy ≪ ωz) when ℏωz ≫ µ the condensate is two-dimensional.
In the following, we briefly show how to obtain a GPE in both reduced dimensions.
Let us first consider a generic representation of the wavefunction confining the condensate
along a direction where essentially it is locked: a suitable form is the already used the
Gaussian ground harmonic oscillator state here written as:

Gxi(xi) = 1
(πℓ2

xi
)1/4 e

−x2
i /(2ℓxi )2

, ℓxi =
ó

ℏ
mωxi

, for (x, y, z) = (x1, x2, x3). (1.60)

At this point we can assumeI
ψ(x, y, z, t) = ψz(z, t)Gx(x)Gy(y) with N =

s
dz|ψz|2 if ωx, ωy ≫ ωz

ψ(x, y, z, t) = ψ⊥(x, y, t)Gz(z) with N =
s
dxdy|ψ⊥|2 if ωx, ωy ≪ ωz

(1.61)

and by applying them to the GPE and manipulating a little bit the results we can write
down the one-dimensional time-independent GPE,

µ1Dψz(z) = − ℏ2

2m
d2ψz(z)
dz2 + g1D|ψz(z)|2ψz(z) + 1

2mω
2
zz

2ψz(z), (1.62)

with g1D = g

2πℓxℓy
, µ1D = µ− ℏωx

2 − ℏωy

2 , (1.63)

and the two-dimensional time-independent GPE

µ2Dψ⊥ = − ℏ2

2m

A
d2ψ⊥

dx2 + d2ψ⊥

dy2

B
+ g2D|ψ⊥|2ψ⊥ + 1

2m(ω2
xx

2 + ω2
yy

2)ψ⊥, (1.64)

with g2D = g√
2πℓz

, µ2D = µ− ℏωz

2 . (1.65)

Notice that the physical quantities µ and g, respectively the chemical potential and the
amplitude of the contact potential associated to the two-body interactions, are now in
such model of a reduced dimensionality identified by the subscript 1D or 2D according to
which model we are going to consider, a one-dimensional model or a two-dimensional one.
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Figure 1.4: Representation of the most common shapes for a BCE, realizable by meas of
an asymmetric harmonic trapping potential: (a) cigar (quasi one-dimensional) condensate
for ωx, ωy > ωz, (b) spherical condensate for ωx = ωy = ωz, and (c) pancake (quasi
two-dimensional) condensate for ωx, ωy < ωz. Picture taken from Ref. [2].
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Chapter 2

Superfluid vortices and
Point-Vortex Model

This chapter focuses on showing the deep connection existing between the Gross-Pitaevskii
model for a condensate and the fluid dynamics. We will firstly analyze the Hydrodynamic
picture of this model discussing the superfluid dynamics equations. Then, within this
interpretation, we will mainly focus on the nature of quantum vortices characterizing
a superfluid, analyzing their point-like description in both cases of infinitely large and
confined quasi two-dimensional condensates. The end of the chapter is dedicated to the
introduction of the concept of “massive” quantum vortices and of its effective point-like
modeling.

2.1 Fluid dynamics interpretation of the GPE
The modeling of the condensate through the Gross-Pitaevskii equation (discussed in section
1.3) exhibits a deep connection with a fluid dynamical representation, such that we can
talk about the Hydrodynamic picture of the condensate.

The starting point of this interpretation lays on the equation (1.38), regarding the complex
valued condensate wavefunction ψ(r⃗, t): such a formula is better known as the Madelung
transform and implies a physical description of the system in terms of the numerical
density n(r⃗, t) and the phase S(r⃗, t) functions (both real valued),

ψ(r⃗, t) =
ñ
n(r⃗, t) eiS(r⃗,t). (2.1)

Taking into account the definition of the velocity field v⃗(r⃗, t) associated to the flow of the
condensate we obtain

v⃗(r⃗, t) = ℏ
2πm|ψ|2

(ψ∗∇ψ − ψ∇ψ∗) = ℏ
m

∇⃗S(r⃗, t), (2.2)
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while the functional Hamiltonian, defined in (1.37) and associated to the condensate
wavefunction ψ, within this notation reduces to the following energy integral H [2]:

H =
Ú
dr⃗

C
ℏ2

2m(∇
√
n)2 + mnv2

2 + V n+ gn2

2

D
(2.3)

Note that the first kinetic energy term Ekin of equation (1.37) here corresponds to the sum
of first two contributions: the first is the quantum kinetic energy, vanishing for uniform
condensate and coming from the zero-point motion of the system, instead the second term
is the kinetic energy due to the flow of the fluid.

At this point the dynamics of the system within this picture could be derived, by applying
the definition (2.1) to the Gross-Pitaevskii equation (1.36) and splitting the real part from
the imaginary one. Thus, the so called superfluid hydrodynamic equations (Ref. [2,
21]) are of following form:

∂n

∂t
+ ∇⃗ · (nv⃗) = 0, m

∂v⃗

∂t
= −∇⃗

A
mv2

2 + V + gn− ℏ2

2m
∇2√

n√
n

B
(2.4)

The first equation is the well known classical continuity equation, expressing the
conservation of the total number of bosons N =

s
dr⃗ |ψ(r⃗, t)|2 in the system.

Instead, in the second equation the term ∇2√
n/

√
n is strictly related to the quantum

pressure P ′, which differs from the (classical) pressure P according to the following
definitions:

P ′ = − ℏ2

4mn∇2(lnn), P = gn2

2 . (2.5)

Notice that the pressure P depends only on the density n, meaning that the condensate is
a barotropic fluid [2]: constant pressure surfaces are also surfaces of constant density.
Considering such equations for the two different pressures, the second superfluid dynamic
equation can be written in the equivalent following form:

mn

3
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

4
= −∇⃗(P + P ′) − n∇⃗V (2.6)

The quantum pressure P ′, created by the zero-point motion of the fluid, contrasts any
effect of condensate squashing or bending and it goes as:

P ′ ∼ ℏ2n

mξ2 , (2.7)

with ξ the healing length (1.47), which is the characteristic length scale governing the
spatial variations of the density n. From the latter formula it is evident how the quantum
pressure is negligible (P ′ ≪ P ) whenever the healing length ξ is much smaller
then the typical length scale of the system, meaning that the condensate is approx-
imately uniform (coherently to equation (2.5)). In particular, the typical ξ value in an
atomic BEC is ξ ∼ 10−6 m, and in superfluid helium (4He) ξ ∼ 10−10 m.
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If in addition to the latter approximation we also consider an external potential V = 0, it
follows that the superfluid hydrodynamic equation (2.6), of the form,

mn

3
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

4
= −∇⃗P (2.8)

reduces to the classical Euler equation, with describes a nonviscous fluid.

2.2 Quantized vortices and their point-like description
In this section we will focus on the studying, within the previous discussed Hydrodynamic
picture, one of the most important distinctive features of a superfluid, i.e. the presence of
quantized vortices.

First of all, the fact that the condensate wavefunction ψ is a single valued complex
function implies that the integrated variations of the phase ∆S along an arbitrary closed
path γ (being d⃗l the integration line element) results to be

∆S =
j

γ
∇⃗S · d⃗l = 2πq, q = 0,±1,±2, . . . (2.9)

This formula shows the existence, for q /= 0, of a singular behaviour of the phase S: there
must be a phase defect [2] in the region encircled by the path γ. Furthermore, its main
consequence is the quantization of the circulation (see Ref. [10, 23]) defined as the
following integral:j

γ
v⃗ · d⃗l = ℏ

m
∆S = q

h

m
, k = q

h

m
, q = 0,±1,±2, . . . (2.10)

where the h/m is the quantum of circulation. Coherently to the Semiclassical Bohr-
Sommerfeld quantization rule, this purely quantum effect provides the circulation of a
topological meaning: classes of topologically-inequivalent closed paths γ, characterized
by an index n (homotopy index), could be defined. The nature of this singularity (or
topological excitations) is strictly related to the concept of the formation of a quantized
vortex line in the condensate, as a response to the rotation of the system. A valid descrip-
tive picture for the vortex is the one of an empty tube (a hole in the condensate) around
which the fluid particles flow rotating in a direction defined by the sign of the discrete
valued vortex charge q, or equivalently vortex strength k (k = qh/m). In particular
the radius of the depleted region in the condensate is called vortex core radius, here
indicated as a0 [2]. Generally speaking the vortex line could be bent or more specifically
could be straight, allowing in this last case to treat the vortex as a point in a 2 dimensional
plane perpendicular to the vortex line, since the vortex appears to be the same in all its
perpendicular planes (see Figure 2.1).

From now on we will consider the case of straight vortex line parallel to the z axis,

18



Superfluid vortices and Point-Vortex Model

Figure 2.1: Left: Representation of a three-dimensional straight vortex line lying on the z
axis as a tube of radius a0, representing the vortex core. Middle: Point-like representation
on the xy plane of the previous straight line vortex. Right: Scheme of a generic three-
dimensional bent vortex line. This figure has been taken from Ref. [2].

modeling the vortex as point in a two-dimensional xy plane.

Let us consider in an infinitely large planar condensate (no trapping potential,
V = 0) a circular closed path γ of radius r, centered at the vortex position r⃗0 = (0, 0),
which corresponds to the center of the xy plane (simplified case). Expressing the posi-
tion vector r⃗ = (x, y) in polar coordinates (r, θ) and considering equation (2.10) for the
circulation, we obtain

Ú 2π

0
dθ r v⃗ · êθ =⇒ vθ(r) = v⃗ · êθ = qh

2πm
1
r

; (2.11)

showing how the azimuthal component vθ of velocity field v⃗ decreases as moving towards
regions far from the singularity (i.e. vθ −→ 0 for r −→ ∞) and increases as approaching it [2,
10, 23].

Please note that such an hyperbolic divergence of the velocity as r → 0, would never be
reached because of the depletion effect (for r < a0) of the condensate around the vortex
axis: then there is no fluid particle flowing at infinite velocity.

Going back to Cartesian coordinates and considering êz (or equivalently ẑ) the unit
vector of z axis perpendicular to the xy plane, we can write the velocity field v⃗ from
equation (2.11) as:

v⃗(r⃗) = k

2π êz × r⃗

|r⃗|2
, k = q

h

m
, q = 0,±1,±2, . . . . (2.12)

But being v⃗ defined with respect to the phase field S (2.2), the vortex velocity filed presents
another equivalent definition in terms of the potential flow function A(r⃗):
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v⃗(r⃗) = k

2π êz × r⃗

|r⃗|2
= ℏ
m

êz × ∇⃗A(r⃗),

∇⃗S = êz × ∇⃗A, A(r⃗) = q

2 ln
A
x2 + y2

a2
0

B
.

(2.13)

However, by comparing its two definitions (2.2) and (2.13), the velocity field leads to an
apparent contraction affecting the local rotation of the fluid, that is defined by the
vorticity field ω⃗ = ∇ × v⃗:

ω⃗ ∝ ∇ × (∇⃗S) = 0 vs ω⃗ ∝ ∇ × (êz × ∇⃗A(r⃗)) = −∇ × [∇ × (A(r⃗) êz)] /= 0. (2.14)

The first condition, coming form equation (2.2), contains a the gradient of the phase
function S, which is singular for r⃗ = 0. Then ∇⃗S is not an actual gradient but a pseudo-
gradient, meaning that the vorticity ω⃗ is zero almost everywhere, expect for the singular
point (r⃗ −→ 0) of the phase

ω⃗ = kδ2(r⃗) êz, with the Dirac’s delta function δ2(r⃗) (2.15)

Therefore the considered condensate is an irrotazional fluid but with isolated vortex
line singularities. Additionally, since we are talking about a pseudo-gradient, the
incompressibility condition for the fluid ∇⃗ · v⃗ = 0 strictly relates to the scaling of the spatial
variations of the density function n (governed by healing length ξ) [2].
More precisely, in such a case the depletion effect associated to the presence of the quantized
vortex corresponds to a condensate density field going to zero, as approaching the vortex
(here at the center (0, 0)), with a characteristic profile given by the vortex core radius
a0. Typically the vortex core size is of the order of the healing length, meaning that a0 is
a tiny multiple of ξ. But, since we are in an unconfined static condensate (V = 0), the
vortex density profile n heals back to the background density n0 = const (density of the
uniform condensate without vortices) according to ξ: here the characteristic healing profile
is wider than the one given by equation (1.46) seen in section 1.3.1 (Figure 2.2). Such a
slower density relaxation is due to the presence of an outwards centrifugal force generated
by the flow circulating around the vortex.

However, considering a single charged point-like vortex in an unconfined homogeneous
two-dimensional condensate and the healing length ξ, the whole density field profile can
be approximated [2] as:

n(r⃗) = n0

3
1 − 1

1 + (r⃗/ξ)2

4
, n0 = const background density. (2.16)

We remark the fact that this formula well approximates the condensate density profile,
whenever the vortex core radius a0 is of the order of the healing length ξ, which governs
the spatial variations of n.

Especially, being the condensate infinitely large and ξ vanishingly small (of the order
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Figure 2.2: Profile of the radial density n(r) in terms of the constant background density
n0 of an homogeneous condensate for a q = 1 vortex (solid line), compared to the healing
profile for a static condensate for V = 0 with a density pinned to zero (dashed line).
Picture taken from Ref. [2].

of micrometers), equation (2.16) gives n ∼ n0 = const, corresponding to a uniform
condensate, and at the same time the fluid is nonviscous (according to the end of
section 2.1).
It follows that in general it is realistic to consider the condensate to be incompress-
ible whenever the healing length ξ is much smaller than the size of the system.

Let us now, focus on the more generic many-vortex configuration for a two-dimensional
unconfined (V = 0) and uniform (n ∼ const since ξ vanishingly small) condensate.
Recall form what we have seen above that such a system is a nonviscous, irrotational and
incompressible fluid, and assuming the presence of Nv vortices, each placed at r⃗j = (xj , yj)
with charge qj (or strength kj = qjh/m), the associated velocity field r⃗ can be written as:

v⃗(r⃗) =
NvØ
i=1

ki

2π êz × r⃗ − r⃗i

|r⃗ − r⃗i|2
= ℏ
m
êz ×

NvØ
i=1

qi∇⃗Ai(r⃗) = ℏ
m
êz × ∇⃗A(r⃗) = ℏ

m
∇⃗S (2.17)

A(r⃗) =
NvØ
i=1

qiAi(r⃗) =
NvØ
i=1

qi

2 ln
C

(x− xi)2 + (y − yi)2

a2
0

D
, (2.18)

∇⃗S = êz × ∇⃗A(r⃗) ⇐⇒ S =
NvØ
i=1

qi arctan
3
y − yi

x− xi

4
, ∆S =

NvØ
i=1

2πqi. (2.19)

From these formulas which are respectively relative to the velocity field v⃗, the potential
flow function A(r⃗) and the phase S, it is clear that for a many-vortex configuration the
previous description (just for a vortex) formally is not changed but just generalized. Notice
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also that the last expression for the ∆S (many-vortex generalization of (2.9)) implies that
the circulation integral (2.10) is here generalized as [23]:

j
γ
v⃗ · d⃗l = ℏ

m
∆S =

NvØ
i=1

qi
h

m
=

NvØ
i=1

ki, qi = 0,±1,±2, . . . ∀i. (2.20)

Consequently, also the vorticity field ω⃗ = ∇ × v⃗ is here the many-vortex generalization of
equation (2.15), written as:

ω⃗ =
NvØ
i=1

kiδ
2(r⃗ − r⃗i) êz. (2.21)

Furthermore this system is energetically defined by the effective Hamiltonian, obtained
by considering the energy integral H (2.3), which apart from a constant (ensuing from the
interaction term) reduces to the kinetic energy related to the fluid flow (see Ref. [23]):

H∞(r⃗1, . . . , r⃗Nv ) = −mn0

4π
Ø

i

Ø
j /=i

kikj ln
5 |r⃗i − r⃗j |

a0

6
. (2.22)

Note that this H∞ contains all the kinetic contributions coming from two-body interac-
tions only, since the original assumption for the system is to be a diluted condensate (i.e.
negligible higher many-body interactions).

Whenever an external (time-independent) potential V (r⃗) acts on the condensates, confining
it into a finite-sized spatial region, the previous vortex analysis should be slightly modified.
In fact, the presence of a boundary implies zero velocity field at the border.
Among all the common types of confining potential (typically bucket-like or harmonic
ones), let us focus on the simple case of a circular circular trap of radius R, (much
bigger the ξ), defined by a bucket-like trapping potential V (r⃗) of the form:

V (r⃗) =
I

0 |r⃗|2 < R2,

∞ else.
(2.23)

In such a case, the presence of the domain wall can be treated as if, for each vortex
in the system, there is an opposite-charged virtual vortex symmetrically located (with
respect to the boundary) outside the bucket, ensuring that overall a purely the existence
of boundary-tangent velocity field v⃗: these are known as the “image vortices” (see Ref.
[2, 13]).
Therefore considering a configuration of Nv vortices, each at r⃗j = (xj , yj), each image
vortex would be at a position r⃗ ′

j = (x′
j , y

′
j) defined as:

r⃗ ′
j = (x′

j , y
′
j) = R2

x2
j + y2

j

(xj , yj), −→ xj = R2

x2
j + y2

j

xi, yj = R2

x2
j + y2

j

yj . (2.24)

It follows that the point-like vortex modeling including the presence of the image vortices,

22



Superfluid vortices and Point-Vortex Model

representing the boundary effects, is still formally equivalent to the one for an unbounded
system, but with the following potential flow function A(r⃗) and phase distribution S(r⃗):

A(r⃗) =
NvØ
j=1

qj ln
----- r⃗ − r⃗j

r⃗ − r⃗ ′
j

-----, (2.25)

∇⃗S = êz × ∇⃗A(r⃗) ⇐⇒ S =
NvØ
i=1

qi

5
arctan

3
y − yi

x− xi

4
− arctan

3
y − y′

i

x− x′
i

46
. (2.26)

By applying the two latter formula to the two possible and equivalent definitions for the
velocity field v⃗ of the system, both contained in (2.17), one can directly write the the
effective Hamiltonian H (2.3), still corresponding to the kinetic energy related to the flow
of the fluid [14]:

H(r⃗1, . . . , r⃗Nv ) = +
NvØ
i=1

mn0k
2
i

4π ln
A

1 − r2
i

R2

B

− mn0

4π
Ø

i

Ø
j /=i

kikj ln
C
R2 − 2r⃗i · r⃗j + r2

i r
2
j/R

2

r2
i − 2r⃗i · r⃗j + r2

j

D
.

(2.27)

The first energy contribution represents the interaction of all the vortices with only their
own images, while the second one contains the two-body interactions between each vortex
and all the others presents, included their own images.

Please remember that the two kinetic energy functions H∞ (2.22) and H (2.27) coin-
cide with the total effective Hamiltonians of the two different systems only apart from a
constant, because in both of the two cases, the two-dimensional condensate is assumed to
be uniform n ∼ n0 = const. Especially in the latter case of a circular trap, the presence
of the domain wall implies that the condensate density field n rapidly heals back to its
background value n0 according to equation (1.46), since the healing length ξ is vanishingly
small (as assumed before to guarantee the incompressability of the fluid).

Lagrangian formalism and massive vortices.
An equivalent description of such a system could be achieved by using the Lagrangian for-
malism [13, 15] and considering first of all the following functional Lagrangian L associated
to the Gross-Pitaevskii equation

L = iℏ
2

Ú 3
ψ∗(r⃗, t)∂ψ(r⃗, t)

∂t
− ∂ψ∗(r⃗, t)

∂t
ψ(r⃗, t)

4
d2r

−
Ú A ℏ2

2m |∇ψ(r⃗, t)|2 + V |ψ(r⃗, t)|2 + g

2 |ψ(r⃗, t)|4
B
d2r.

(2.28)

Indeed the Euler-Lagrangian equation for L corresponds to the GPE, defined in equation
(1.37), and furthermore the second term in the formula (2.28) is the function Hamiltonian
(of opposite sign) H (1.37).
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Recall that the considered case is the one of a 2D condensate trapped into a circu-
lar domain of radius R, defined by a bucket-like potential V (r⃗) as formula (2.23). In
particular we take into account ψ(r⃗, t) according to the Madelung Transform (2.1), making
the following time-dependent variational ansatz

n(r⃗) =
I
n = const |r⃗| < R,

0 |r⃗ − r⃗j | < ξ ∧ |r⃗| > R,

S(r⃗) =
NvØ
i=1

qi

5
arctan

3
y − yi

x− xi

4
− arctan

3
y − y′

i

x− x′
i

46 (2.29)

corresponding to the assumptions previously taken when dealing with the Hamiltonian
formalism. Notice that, being N the total number of fluid particles in the circle of radius
R, we can consider the constant planar numerical density n in (2.29) as N/(πR2). It is
also important to note that the vortex solution for the phase field S explicitly depends just
on positions r⃗ = r⃗(t) and r⃗j = r⃗j(t)’s: the time dependence implicitly enters only through
these variables since the flow actually acts on the vortices leading to a vortex dynamics,
which is related to the vortex velocities ˙⃗rj ’s as we wiil see in section 4.1.

Then the Effective Lagrangian L deriving from the functional (2.28) (for such a wavefunc-
tion ψ) results to be

L =
NvØ
j=1

C
kjmn

2 ( ˙⃗rj × r⃗j · ẑ)
r2

j −R2

r2
j

−
k2

jnm

4π ln
A

1 −
r2

j

R2

BD

−
NvØ

j>i=1

kikjnm

4π ln
C
R2 − 2r⃗i · r⃗j + r2

i r
2
j/R

2

r2
i − 2r⃗i · r⃗j + r2

j

D
.

(2.30)

that is

L =
NvØ
j=1

kjmn

2 ( ˙⃗rj × r⃗j · ẑ)
r2

j −R2

r2
j

−H (2.31)

As expected this description is completely equivalent to the one above since the effective
Lagrangian L correctly corresponds to the Effective Hamiltonian H (2.27). In particular
the Euler-Lagrange equations associated to such a Lagrangian L, would correspond to the
Helmholtz-Kirchhoff equations [13], governing the dynamics of these quantum vortices (see
section 4.1, dedicated to the dynamics of vortices).

The reason why this equivalent approach was introduced lays on the fact that it is a
useful tool in modeling the particular case of quantum vortices with cores filled by massive
particles.

The point-like vortex description, known also as the Point-Vortex model, has been based on
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the assumption of empty vortex cores, coherently also with the depletion effect. However,
recent studies suggest that the vortex core could constitute a potential well hosting massive
particles, e.g. when in a condensate there are some impurities [12]. The presence of massive
particles filling the vortex core allow us to describe the vortex as a massive point (we will
use the term massive vortex) [13, 14, 15, 24]. This massive description leads to some
intriguing effects due to the non-zero small core mass: i.e. the dynamics of a massive
vortex is characterized by the usual trajectories of a massless vortex with superimposed
small-amplitude transverse radial oscillations [13]. This effect would be later discussed in
details in section 4.1, where we will properly analyze the dynamics of a vortex in both the
pictures.
Instead in the following we will focus on deriving a suitable description for a system
presenting massive vortices.

Therefore the massive particles confined into the vortex cores could be thought to form a
new condensate: the entire system could treated as a two-component diluted BEC
condensate [14, 15]. Let think consider its a-component corresponding to the condensate
having Na particles, each of atomic mass ma, and Nv quantum point-like vortices with
empty cores, which is described by the wavefunction ψa, according to equation (2.1) and to
the time-dependent variational ansatz taken in (2.29). Instead the whole of non-rotating
particles of mass mb confined in the Nv vortex cores (each with Nb,j particles) constitutes
the b-component described by the wavefunction ψb. The vortices are spatially defined by
the position vectors r⃗1, . . . , r⃗Nv , which here we assume to also represent the positions of
all the impurity particles inside each core.

Then, the a-component is nothing but corresponding to the superfluid condensate confined
in the circular trap of radius R, which is irrational, nonviscous and incomprissible (this
is exactly the massless case analyzed before). Therefore the effective Lagrangian La,
associated to the a-component of the whole condensate, is equivalent to the one defined in
(2.30) and it is written as:

La =
NvØ
j=1

C
kjmana

2 ( ˙⃗rj × r⃗j · ẑ)
r2

j −R2

r2
j

−
k2

jnama

4π ln
A

1 −
r2

j

R2

BD

−
NvØ

j>i=1

kikjnama

4π ln
C
R2 − 2r⃗i · r⃗j + r2

i r
2
j/R

2

r2
i − 2r⃗i · r⃗j + r2

j

D
,

(2.32)

where na = Na/(πR2) is the constant numerical density of the superfluid a-component,
accordingly to the ansatz (2.29).
Considering the assumptions taken for the wavefunction b-component, the ψb could be
written a linear combination of Gaussian wave packets [13, 15]

ψb(r⃗, t) =
NvØ
j=1

ó
Nb,j

πσ2 e
−|r⃗−r⃗j (t)|2

2σ2 eir⃗·α⃗j(t), (2.33)

which its time dependence derives from the positions of the vortices and the time-dependent
variational parameters αj . This last ones provide the vortices of local flow velocities
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˙⃗rj = ℏα⃗j/mb j = 1, . . . , Nv. The parameter σ corresponds to the width of the Gaussian
and is much smaller than the distance separating two vortices (well separated vortices and
very small cores σ << |r⃗i − r⃗j | ). For further information about such a wavefunction for
the massive component see Ref. [15].
By taking into account the field Lagrangian L associated to the massive particles wave-
function ψb, the effective Lagrangian of the b-component results to be

Lb = 1
2

NvØ
j=1

Nb,jmb( ˙⃗rj)2, Mb,j = Nb,jmb (2.34)

implying that the total effective Lagrangian L = La + Lb is

L =
NvØ
j=1

C
Mb,j

2 ( ˙⃗rj)2 + kjmana

2 ( ˙⃗rj × r⃗j · ẑ)
r2

j −R2

r2
j

−
k2

jnama

4π ln
A

1 −
r2

j

R2

BD

−
NvØ
j>i

kikjnama

4π ln
A
R2 − 2r⃗i · r⃗j + r2

i r
2
j/R

2

r2
i − 2r⃗i · r⃗j + r2

j

B
.

(2.35)

Notice how, within such a massive vortex modeling, the presence of the non zero core mass
leads to an effective “massive” Lagrangian L (2.35), differing from the massless one (2.30)
only for an additional term depending on the vortex velocity and on the core mass as
Mb,j( ˙⃗rj)2. More precisely, such a core mass term is responsible for the appearance in the
associated Euler-Lagrange equations of a second time derivative of the vortex position, an
inertial term, distinguishing the dynamics of a massive vortex form a massless one (later
discussed in section 4.1).

26



Chapter 3

Equilibrium Vortex Patterns in
a rotating superfluid

After having discussed which physical quantity drives the equilibrium description of vortices
in a confined two-dimensional condensate, this chapter focuses on the analysis about the
variation of the number of the formed vortices and the stability of their equilibrium
configurations according to the external trap rotation. The first part is dedicated to the
analysis about the global minimization of the system free energy in order to obtain the
equilibrium configurations of massless vortices, corresponding to the well known vortex
crystals (or lattices). While in the second part we will extend such a semi-analytical study
to the generalized case of massive vortices, particularly focusing on the effects of the core
mass in the equilibrium configurations.

3.1 Stable configurations of massless vortices
In the end of section 2.2, we have discussed how to model a quasi two-dimensional conden-
sate characterized by the presence of point-like vortices. In particular, by exploiting the
time-dependent variational Lagrangian approach, we obtained the effective Lagrangian
defining such a system in both massless and massive vortex cases, respectively in equa-
tions (2.30) and (2.35). However, it is the system free energy F to play a crucial role
in determining the stability of the equilibrium configuration of the vortices formed in a
condensate confined in a rotating trap [2, 25].

Let us first consider that the trap is circular with a radius R sufficiently large
(meaning vortex core a ≪ R) and rotates at an angular velocity Ω around its center
O = (0, 0) (coinciding with the origin of the xy plane). According to the nature of
quantum vortices (see section 2.2), for sufficiently small rotations it is reasonable to expect
very few single charged vortices, or even none, which are parallel to rotation axis. Then as
the trap rotates faster and faster, the number of these vortices increases, up to reach for
sufficiently high velocity Ω values a system that instead behave classically, performing a
solid-body rotation [2, 25]. In general for both possible vortex descriptions, the stable
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equilibrium patterns are determined by globally minimizing the free-energy
function with respect to the spatial vortex coordinates {rj = (xj , yj)}N

j=1, having
previously fixed the number of vortices N and the value of rotational speed Ω.

Therefore the free-energy function F , associated to a rotating system, is of the form
F = E − ΩLz, with E the total mechanical energy and Lz the third component of the
angular momentum of the system. Both terms are derivable from the effective Lagrangian
L = L({rj , ṙj}N

j=1) defining the system, thanks to the following equation:

E ↔ H({rj , ṙj}N
j=1) =

NØ
j=1

A
∂L

∂ṙj
· ṙj

B
−L, Lz({rj , ṙj}N

j=1) =
NØ

j=1

A
rj × ∂L

∂ṙj

B
· ẑ, (3.1)

being ṙj = (ẋj , ẏj) the velocity of the jth vortex and H({rj , ṙj}N
j=1) the energy function

associated to the system and corresponding to a sort of Hamiltonian function, where the
momenta are expressed in terms of the velocities.
It is also convenient to change the reference frame moving from the laboratory frame
into the rotating reference frame of the trap {rj , ṙj}N

j=1 −→ {r′
j , ṙ′

j}N
j=1 and exploiting

the polar coordinates r′
j = (x′

j , y
′
j) = r′

j(cos θ′
j , sin θ′

j) with (r′
j = |r′

j |), the coordinates
become:

rj = r′
j

1
cos θ′

j cos (Ωt) − sin θ′
j sin (Ωt) , cos θ′

j sin (Ωt) + sin θ′
j cos (Ωt)

2
. (3.2)

In this way the effective Lagrangian L written as a function of this new working frame
variables could be named L′ = L′({r′

j , ṙ
′
j}N

j=1) and its associated energy function H ′ is

H ′ = H ′({r′
j , ṙ

′
j}N

j=1) =
NØ

j=1

A
∂L′

∂ṙ′
j

· ṙ′
j

B
− L′ = H({ṙ′

j , ṙ
′
j}N

j=1) − ΩLz({ṙ′
j , ṙ

′
j}N

j=1) (3.3)

where Lz({ṙ′
j , ṙ

′
j}N

j=1)) and H({ṙ′
j , ṙ

′
j}N

j=1) are respectively the angular momentum (3rd

component) and the energy function defined in (3.1) w.r.t the laboratory frame but with
r′

j = (x′
j , y

′
j) instead of rj = (xj , yj). Note that, since we are in the rotating reference

frame, in the derivation of the H ′ we must assume the velocities to be (ṙ′
j , θ̇j) = 0. Such

a derivation is coherent to the one present in Ref. [13] regarding the derivation of the
Hamiltonian function for a single vortex w.r.t. to the rotating reference frame.
Except for an additive constant N ln(R/a) indicating the creation of N vortices with core
radius a, the free energy F corresponds to the energy function H ′, defined in equation
(3.3), and for the sake of generality it can be expressed in term of energy units:

F = E − ΩLz = mnk2

4π f, f = E
4π

mnk2 − ω
2

mnkR2Lz, ω = 2πR2

k
Ω, (3.4)

where m, n, k = h
m are respectively the atomic mass and the numerical planar density of

the condensate and the quantum of circulation; instead f and ω are the dimensionless
free energy and dimensionless angular velocity. It is important to specify that in
such a rescaling we are considering 2πR2/k and R to be respectively the units of
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time and length.

Let us start our study of the equilibrium patterns taking into account first the already
well known case of empty vortex core in a such a way that we can secondly extend it to
the filled vortex cores case.

3.1.1 Minimization of the free energy and boundary effects issues
In the above introductory discussion, we have anticipated how at the equilibrium the
vortices formed in the confined condensate are characterized by unit charge (or equivalently
unit circulation). Indeed, recall that according to the energy function H (2.27), describing
a many-vortex configuration in an analogous trapped two-dimensional condensate, the
energetically favourite (massless) many-vortex configurations present vortex charges qj =
±1 ∀j, or equivalently (according to (2.20)) kj = qjh/m → kj = ±h/m = ±k ∀j, with
k = h/m the quantum of circulation.
Assuming for the sake of simplicity qj = +1, kj = k = h/m ∀j, the effective Lagrangian L
defined in equation “massless” (2.30) becomes:

L =
NØ

j=1

C
kmn

2 (ṙj × rj · ẑ)
r2

j −R2

r2
j

− k2nm

4π ln
A

1 −
r2

j

R2

BD

−
NØ

j>i

k2nm

4π ln
C
R2 − 2ri · rj + r2

i r
2
j/R

2

r2
i − 2ri · rj + r2

j

D
.

(3.5)

Then, according to the previously explained derivation (consisting in the equations (3.1),
(3.2), (3.3) (3.4)), we used this Lagrangian L in order to obtain the dimensionless free en-
ergy f expressed with respect to the rotating reference frame, considering |r′

j | = r′
j −→ Rrj .

This means that we rescaled the vortex variable r′
j in units of R, the trap radius, and we

dropped the prime symbol for the sake of brevity, i.e. 0 ≤ rj ≤ 1 (actually < 1 as we are
going to see in the following).

Therefore the dimensionless free energy f , coherently to (3.4), in the case of N point-like
vortices with empty cores (recall core size negligible compared to the size of the system
a ≪ R) assumes the following form:

f = −
NØ

j>i=1
ln[r2

i + r2
j − 2rirj cos(θi − θj)]

+ 1
2

NØ
i,j=1

ln[1 + r2
i r

2
j − 2rirj cos(θi − θj)] − ω

NØ
i=1

(1 − r2
i ) +N ln(R/a).

(3.6)

Notice that, as we expected, the first two terms corresponds to the dimensionless and
rescaled version of the energy function H we obtained in equation (2.27). In particular,
the first term refers to the (repulsive) interactions between any couple of “real” vortices,
the second one contains the (attractive) interactions of each “real” vortex with all the
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“image” vortices (not only its own image, but also all the other vortex images). Instead,
the ω term ensues from the trap rotation which generates apparent forces pulling
the vortices towards the trap center, since their overall energetic term is +

q
i ω r2

i .

Such a free energy f corresponds exactly to the free-energy function reported by Campbell
and Ziff in their article “Vortex patterns and energies in a rotating superfluid” [25], where
they have faced and discussed the same problem here considered.
Their most relevant observations are the following:

• at a fixed ω and for each possible value of N , the vortices at equilibrium form
configurations made up of concentric (exactly or almost) regular polygons,
called rings, around the center O = (0, 0) of the trap;

• as the rotation rate ω increases the distance of each ring from the center
O decreases and furthermore each N vortex pattern is a physically meaningful
stable pattern from a certain critical value ω∗,

• since the system is rotational invariant, configurations differing by a global
azimuthal rotation are equivalent.

In light of these fundamental observations, we firstly focused on minimizing the free energy
f in order to verify these results and in a second moment to consider them as a solid base
when studying the effects of core mass on these arrays (see section 3.2).

Since the number of massless vortices N strictly depends only on the trap rotation
rate ω, by varying ω in a discrete range of values, at each of these fixed values we firstly
performed the minimization of the free energy f with respect to the vortex polar coordi-
nates {rj , θj}N

j=1 for all the possible values of N , and we secondly determined the absolute
stable configuration and the associated value N at each ω value. Doing so, we were able
to identify for each kind of N vortex-array a rotation rate ω interval between
two critical values, out of which the considered pattern is no longer stable and the
system is stable only if it increases or decreases by one the number of vortices (N −→ N − 1
or N −→ N + 1).
Especially we considered N = 0, 1, . . . , Nmax and the range of the rotation rates was
taken as [0, ωmax], with very small steps and the top value ωmax depending on the Nmax

value: in principle it is possible to study both the curves of the energetic minima
and the equilibrium radial position of a vortex as a function of the rotation rate.

More precisely all the following analysis considered the vortex core radius a = 10−6

nm (nanometers) and the trap radius R = 50 × 10−6 =⇒ R ≫ a (in fact we are
neglecting the vortex core size and considering an uniform condensate density).

Analytic study for the “symmetric” configurations.
The previous predictions affirm that the vortex-array is a composition of rings presenting
almost or exactly a regular polygonal structure: then, for a small number N (N < 8),
it is reasonable that the vortices form a single regular N -polygon. Actually, according
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to the spatial configurations reported by Campbell and Ziff [25], the equilibrium vortex
pattern consists in a single ring for N ≤ 5, with a N -fold rotational symmetry (the regular
N -polygon), while for N > 5 but still sufficiently small, the ring admits a vortex in the
trap center O = (0, 0) with (N − 1)-fold symmetry (Ref. [26]). Referring to these simple
cases as “symmetric” configurations, the associated free energy f results be just a
function of a unique radial vortex variable, since ∀j r1 = rj and θj = 2π(j − 1)/N , and
with respect to which it can be analytically minimized. Note that the case N = 0
corresponds to f = 0, accordingly to the fact that there are no vortices, and that those
configurations with a vortex in the center are indicated as N = (N − 1) + 1. Here in the
following we show same simple example (up to 3 vortices) of the form for the symmetric
free energy f as function of the r1 (namely the vortex ring radius):

N = 1, Sym =⇒ f = ln (R/a) + ln(1 − r2
1) − ω(1 − r2

1),
N = 2, Sym =⇒ f = 2 ln (R/a) − ln(4r2

1) + 2[ln(1 − r2
1) + ln (1 + r2

1)] − 2ω(1 − r2
1),

N = 3, Sym =⇒ f = 3 ln (R/a) − 3 ln(3r2
1) + 3[ln(1 − r2

1) + 2 ln (1 + r2
1)] − 3ω(1 − r2

1).
(3.7)

Considering N = 0, 1, . . . , 7 (Nmax = 7), we analytically performed the global minimiza-
tion of the symmetric free-energy function f with respect to its unique variable r1 for an
ω in the discrete range [0, 15] (ωmax = 15) (with an ω step of 0.1). Figure 3.1 shows the
curve for the symmetric free-energy minima (left panel) and the curve for the values of
variable r1 minimizing the symmetric free energy f (right panel), both plotted according
the rotation rate ω.

As expected, in the left panel of Figure (3.1), we can observe how a spatial rearrangement
of 6 (or 7) vortices does not correspond to a regular hexagon (or heptagon), but to a
pentagon (or hexagon) with a vortex in the center. In addiction, the right panel shows

Figure 3.1: Left panel: profile of the symmetric free-energy absolute minima computed
with respect to the variable r1, identifying the radial position of all the vortices in the
symmetric ring configuration. Right panel: profile of the r1 values minimizing the symmetric
free energy f . Both curves are plotted according the rotation rate ω, which discretely
varies (steps of 0.1) between 0 and 15. Such analytical results show as the trap rotation is
increased the system is stable only increasing its number of vortices, corresponding to a
spatial configuration with a ring farther from the center.
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that, when the system changes its equilibrium configuration by adding a vortex, the radial
component of a vortex in the symmetric ring jumps to an higher value and then decreases
up to the successive critical value where it jumps again, accordingly to our expectations.
We also calculated analytically the ω values at which each N vortex pattern is no longer
the stable spatial configuration and a transition N −→ N + 1 occurs: 0 −→ 1 at ω = 3.9120,
1 −→ 2 at ω = 5.9955, 2 −→ 3 at ω = 7.2819, 3 −→ 4 ω = 8.7319, 4 −→ 5 at ω = 10.2021,
5 −→ 5 + 1 at ω = 11.6252 and 5 + 1 −→ 6 + 1 at ω = 12.5677.
Notice that such values coincide with the configuration transitions shown in Figure 3.1.

As further check for such results we also studied the profile of the symmetric func-
tion f according to the radial position r1, continuously varying in its domain [0, 1] at a
fixed rotation rate ω. Figure 3.2 compares of such free-energy profiles obtained for the
N = 0, 1, . . . , 7 at ω = 2.0 (left panel) and ω = 15.0 (right panel), showing in which
configuration the free energy has the lowest local minimum coherently to the results of the
global minimization done before.

Figure 3.2: Profile of the symmetric free-energy function f considering r1 ∈ [0,1], for
N = 0, 1, . . . , 7 at rotation rate ω = 2.0 (left) and ω = 15.0 (right). The curve with the
lowest local minimum gives corresponds to the absolute stable configuration N : at ω = 2.0
there are no vortices, while at ω = 15.0 the equilibrium configuration is a regular hexagon
with a vortex in the center.

The “symmetry” configuration case, so far analyzed, is quite instructive and it has enabled
us to analytically verify some of the previously announced results. In fact due to its
complexity, the free-energy function f (3.6) could be analytically minimized only for not
large number vortices N (perhaps N < 9).
This is why we need to approach the problem from a numerical point of view, considering
that the free energy f depends on the 2N vortex variables, {rj , θj}N

j=1. However this
dependence can be reduced to 2N − 1, by fixing at zero one of the angles θj ’s, since at each
N there are many equilibrium patterns that are equal to each other except for a global
rotation around the trap centre O = (0,0).

Approximation for negligible boundary effects.
Furthermore, according to the concept of “image” vortices introduced in section 2.2, recall
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that all the equilibrium configurations of N vortices, deriving from such a free
energy minimization problem, are physically meaningful if and only if none of them
is too close to the border, otherwise the vortex would collide at the wall with
its respective image vortex and undergo to annihilation.
But at the same time, the previous analytic analysis clearly shows in Figure 3.2 that the
symmetric free energy f profile presents for r1 −→ 1 a vertical asymptote towards negative
values which grows as higher trap rotation velocities are explored. This means that the
system should present less energy values when vortices go towards the domain wall, which
is nonphysical. Such an undesired effect, which also appears for the more generic and
complicated free energy, complicates a lot the determination of the physically meaningful
stable patterns of vortices at the equilibrium.

It is then clear that the presence of the images vortices in our descriptions leads to
undesired issue, but at the same time (see Ref. [25]) their energetic contributions in the
free-energy function f are very small and overall do not affect so much the resulting spatial
configurations at equilibrium. Coherently to the approximation taken into account by
Campbell and Ziff, we can assume assume negligible boundary effects, or equivalently
no image vortices in the system, defining a new dimensionless free energy f0 describing
the system, related to f (3.6) in the following way:

f0 =f − 1
2

NØ
i,j=1

ln[1 + r2
i r

2
j − 2rirj cos(θi − θj)]

= −
NØ

j>i=1
ln[r2

i + r2
j − 2rirj cos(θi − θj)] − ω

NØ
i=1

(1 − r2
i ) +N ln(R/a).

(3.8)

Within this approximation, since this function f0 only contains the contribution of the
repulsive interactions between vortices and the term associated apparent centripetal force
(apart from the constant N ln(R/a)), the new free-energy profile should present at fixed
ω and N values some local minima with respect to the vortex coordinates without the
previous registered divergence towards the domain wall.

In order to ensure this and also to verify the validity of such an approximated func-
tion f0, once again we firstly focus again on the “symmetric” configuration cases of regular
polygonal vortex patterns for N ≤ 7. Then, the previous equations for the symmetric free
function f (3.7) for N = 1, 2, 3 here become:

N = 1, Sym =⇒ f0 = ln (R/a) − ω(1 − r2
1),

N = 2, Sym =⇒ f0 = 2 ln (R/a) − ln(4r2
1) − 2ω(1 − r2

1),
N = 3, Sym =⇒ f0 = 3 ln (R/a) − 3 ln(3r2

1) − 3ω(1 − r2
1).

(3.9)

It is evident how all the logarithmic image-vortex interaction terms have been excluded.
Repeating exactly the previously seen (for the function f) analytic procedure for the
symmetric dimensionless free energy f0, we obtain the graphs in Figure 3.3: not only the
function f plotted with respect to r1 ∈ [0, 1] presents just a global minima without the
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(a)

(b)

Figure 3.3: (a) Left: curve of minima of the symmetric free energy f0, computed with
respect to the radial vortex position r1 in the symmetric ring. Right: Curve of the r1 values
minimizing the symmetric f0 as function of ω. Both curves plotted according to rotation
rate in the discrete interval ω ∈ [0, 15] (with 0.1 steps). (b) Profile of the symmetric
free-energy function f0 considering r1 ∈ [0,1], for N = 0, 1, . . . , 7 at rotation rate ω = 2.0
(left) and ω = 15.0 (right). The curve with the lowest local minimum gives corresponds to
the absolute stable configuration N : at ω = 2.0 there are no vortices, while at ω = 15.0
the equilibrium configuration is a regular hexagon with a vortex in the center. Note that,
contrary to Figure 3.2, the free-energy function f0 (for negligible boundary effects) does
not have any vertical asymptote for r1 → 1.

asymptotic divergence for r1 −→ 1 (Figure 3.3b), the transitions of the equilibrium vortex
configurations occur at ω values very close to the critical ones calculated for the (non
approximated) symmetric function f (Figure 3.3a).

Numerical study about the absolute stable vortex patterns.
After this simple and analytic case has been analysed, we can proceed by numerically
solving the global minimization problem in order to obtain the equilibrium vortex
patterns at a certain angular velocity of the circular trap.
The free-energy function f0 must be minimized, at a fixed ω value, according to the 2N
vortex coordinates rj ’s and θj ’s: actually as seen for the function f , we could fix one of the
θj ’s, i.e. θ1 = 0, reducing the dependence to 2N − 1 variables. In particular to ensure that
the solution corresponds to a global minimum at certain ω value, we need to considering
the following:
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• for each possible value of N , the lowest local minimum of the f0 is the smallest of
the ones computed considering a finite set of different initial random configurations
of non-overlapping vortices;

• being N = 0, 1, . . . , Nmax, from the (Nmax + 1) lowest minima obtained before
at the ω value considered, we extract the absolute minimum of the free-energy, its
associated spatial configuration and the corresponding value N ;

• we repeat these two previous steps for all the values of the rotation rate that we
consider.

By considering for Nmax = 21 and for ω varying in a discrete range between 0 and
ωmax = 30 with steps of 0.3, we plotted the obtained global minima of the free energy f0
according to the rotation angular velocity ω as in Figure 3.4a.

(a)

(b)

Figure 3.4: (a) Curves of the global minima of free energy f0, computed numerically
with respect to the radial vortex polar coordinates rj ’s and θj ’s, and plotted according to
the rotation rate ω ∈ (0, 30) (with 0.3 steps). (b) Curves of the radial position rmax of
the farthest vortex from the center (living into the outermost ring in the corresponding
equilibrium pattern) globally minimizing the f0 with respect ω ∈ (0, 30) (with 0.3
steps). Note that in both subfigures we have considered on the left N = 0, 1, . . . , 9 and
N = 10, . . . , 21 to highlight through the colors the corresponding equilibrium patter N ,
whose ring structure is reported in the table below.
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Meanwhile, in the Figure 3.4b we plotted, with respect to the same ω range, the values
of the radial position of the farthest vortex from the center O = (0, 0) in the obtained
equilibrium spatial configurations, essentially corresponding to the radial position of the
outermost ring.
As expected, we find that for small angular velocity the resulting equilibrium vortex pattern
is an array of few vortices: we also can note that the transitions between two subsequent
configurations occurs around the critical values of ω found analytically.
We also find, for sufficiently large values of N , that not always the respective equilibrium
pattern can rearrange the vortices in the same rings exactly at the same radial distances
and the single vortex on the center O, due to the intrinsic asymmetry of the array: for this
reason we assumed two vortices i and j to live on the same shell if their radial distances
ri, rj satisfy |ri − rj | ≤ 2% for N < 50, coherently to Ref. [25] (while |ri − rj | ≤ 5% for
N > 50, not treated in this work).

Figure 3.5: Equilibrium vortex patterns assumed by the system at rotation rate ω values
close to each transition of the internal structure, for N = 1, . . . , 21. Each pattern N is
obtained by considering an ω value in the interval where it is the absolute stable spatial
configuration according to Figure 3.4.

Furthermore, considering the same notation used by Campbell and Ziff in Ref. [25], for
each equilibrium pattern, here indicated by the number of present vortices N , we can
associated a sequence of numbers, called ring numbers, representing the vortices composing
each (exactly or almost) regular polygon: for example the configuration 1, 5, 11 associated
to N = 17 means that there is a vortex in the center, surrounded by pentagon and an
outermost (regular) polygon formed by the remaining 11 vortices.

The equilibrium spatial configurations of a vortex-array found for N = 1, . . . , 21, plotted
in Figure 3.5, are grouped in the following table:
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N Rings N Rings N Rings N Rings N Rings N Rings

1 1 2 2 3 3 4 4 5 5 6 1, 5

7 1, 6 8 7, 1 9 1, 8 10 2, 4, 4 11 3, 8 12 3, 3, 6

13 4, 9 14 4, 10 15 4, 11 16 5, 11 17 1, 5, 11 18 1, 6, 11

19 1, 6, 6, 6 20 1, 6, 13 21 1, 7, 13

These vortex-crystal configurations exactly coincide with the ones reported Campbell
and Ziff in their article [25]. It is important to notice that in such an analysis are treated
only cases with a moderate N for sake of simplicity. However if N is large enough the
equilibrium patterns are in particular triangular vortex lattice (further information in Ref.
[11, 25]).

3.2 Stable configurations of massive vortices
In the assumption that in the confined condensate the vortices could trap in their cores some
impurity atoms, we expect that the vortex masses must affect somehow the equilibrium
spatial configurations of massless vortices well discussed in section [3.1].
According to the modeling considered in section 2.2 for a system of N massive vortices in
a trapped condensate of radius R, we consider that each vortex j hosts in its core Nb,j

atomic particles of mass mb: then each total vortex mass is Mb,j = Nb,jmb.
Since the aim of the study is studying the properties of the system according the value
of this mass, for the sake of simplicity we consider that each vortex is trapping the same
number of atoms (∀j Nb,j = Nb) and that the atomic species of the impurity particles is
the same of the superfluid one (choice suggested also by Ref. [12]). The latter assumption
means that the atomic mass of the superfluid m is equal to the impurity atomic mass mb,
leading to a total mass of a generic vortex to be defined as:

M
.= Mb,j = Nbm −→ Nb = M

m
. (3.10)

Please note that the actual driving parameter in our description is Nb.

The effective Lagrangian L describing such a system is given by the formula (3.11):

L =
NØ

j=1

C
M

2 (ṙj)2 + kjmn

2 (ṙj × rj · ẑ)
r2

j −R2

r2
j

−
k2

jnm

4π ln
A

1 −
r2

j

R2

BD

−
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j>i=1

kikjnm

4π ln
A
R2 − 2ri · rj + r2

i r
2
j/R

2

r2
i − 2ri · rj + r2

j

B
,

(3.11)

with n the planar numerical density of the condensate, kj = qj
h
m the vortex strength

associated to qj the vortex charge.
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Note that since this “massive” effective Lagrangian differs from the “massless” one (2.30)
only for the term

qN
j=1

M
2 (ṙj)2, the associated “massive” effective Hamiltonian, apart from

the M term, corresponds to the (massless) effective Hamiltonian H defined in equation
(2.27): it follows that all the massive vortices in an energetically favored configuration
are single charged ones, and coherently to the massless case we consider ∀j qj = +1 and
k
.= h

m .
By applying this “massive” L to the derivation of the free energy of the system (consisting
in equations (3.1), (3.2), (3.3) (3.4)), we can find the dimensionless free energy f associated
to such a massive description.
More precisely, as done in the massless case, we consider the following condition |r′

j | =
r′

j −→ Rrj , where we rescal the vortex variable r′
j in units of R, the trap radius, and we

drop the prime symbol for the sake of brevity, i.e. 0 ≤ rj < 1 (we are excluding the
nonphysical case of vortices colliding to the domain wall).

Then, the “massive” dimensionless free energy f assumes the following form:

f = −
NØ

j>i=1
ln[r2

i + r2
j − 2rirj cos(θi − θj)] + 1

2

NØ
i,j=1

ln[1 + r2
i r

2
j − 2rirj cos(θi − θj)]

− ω
NØ

i=1
(1 − r2

i ) − Mω2

2mπnR2

NØ
i=1

r2
i +N ln(R/a)

(3.12)

Looking to the free-energy function (3.6) for the massless description, we can say that the
massive free energy f corresponds to the massless but with the additional term proportional
(for each vortex i) to −Mω2r2

i . This energetic contribution signalises the effect of a
centrifugal force acting on the impurity atoms in each vortex, which is radially
directed towards the circular boundary.
According to this observation, the case of no trapped impurity particles Nb = 0 is expected
to correspond to the massless case and the resulting equilibrium vortex patterns must
coincide for with the ones previously obtained in subsection 3.1 (or equivalently to the
ones reported in Ref. [25]).

Approximation of negligible boundary effects
Since the free energy f (3.12) is just a “massive” generalization of the massless free-energy
function (3.6), the previously seen vertical asymptote of f as a vortex approach the
boundary is still present. Then, let us consider the approximation of negligible
boundary effects (no image vortices) also for this generalized case, obtaining that the
approximated massive dimensionless free energy f0 is:

f0 = −
NØ

j>i=1
ln[r2

i + r2
j − 2rirj cos(θi − θj)]

− ω
NØ

i=1
(1 − r2

i ) − Mω2

2mπnR2

NØ
i=1

r2
i +N ln(R/a).

(3.13)
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Please note that the f0 function is still dimensionless since the ratio in the new massive term
contains: M/m = Nb (just the number of particles per vortex) from (3.10), πR2n = Na

the number of particles in the superfluid condensate.

Analytic study for the “symmetric” configurations In order to properly analyze this
massive version of global minimization problem, already discussed for the massless case,
we will firstly focus on the analytic case of “symmetric configurations” for N ≤ 7, few
vortices in the system, but at different Nb values.
Such cases are described by a symmetric free-energy function f0, depending only on a unique
radial vortex variable, i.e r1, indicating the radial position of all the vortices rearranged in
a regular polygonal ring (see subsection 3.1). Here the symmetric massive free energy f0
for the symmetric example seen before corresponds just to a massive generalization of the
equations (3.9):

N = 1, Sym =⇒ f = ln (R/a) − ω(1 − r2
1) − Mω2r2

1
2πR2mn

,

N = 2, Sym =⇒ f = 2 ln (R/a) − ln(4r2
1) − 2ω(1 − r2

1) − 2 Mω2r2
1

2πR2mn
,

N = 3, Sym =⇒ f = 3 ln (R/a) − 3 ln(3r2
1) − 3ω(1 − r2

1) − 3 Mω2r2
1

2πR2mn
.

(3.14)

At first, the symmetric f0 can be plotted as a function of its only variable r1 varying
in its domain [0,1), considering the number of possible vortices N (in particular for
N = 0, 1, . . . , 7), at a fixed values of both the ω rotation rate and the number of trapped
atoms Nb (Nb = 0, 1000, 2500).

Figure 3.6: Profile of the symmetric free-energy function f0 according its unique position
variable r1, varying in its domain r1 ∈ [0,1), for N = 0, 1, . . . , 7 at rotation rate ω = 15.0
and for a number of massive trapped particle per vortex Nb = 1000, 25000. The curve
with the lowest local minimum gives corresponds to the absolute stable configuration
N : Nb = 1000 the equilibrium configuration is a regular hexagon with a vortex in the
center, similarly to the massless case, while at N = 25000 there is no stable symmetric
configuration at this rotation rate.
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Taking ω = 15.0, such a profile coincide with the analogous massless one in Figure
3.3b when Nb = 0, while in the other two cases we it corresponds to the ones shown in
Figure 3.6: we note how, as the number of massive trapped particles per vortex Nb in-
creases, the free-energy function does not present anymore any local minima, meaning that
all the symmetric configurations here analysed are no longer stable at rotation frequency
ω = 15.0.

Figure 3.7: The panels on the left column represents the minima of symmetric free energy
f0, computed with respect to the unique vortex polar coordinate r1, plotted according to
the rotation rate ω ∈ [0, 15] (with 0.3 steps), for N ≤ 7 and for Nb = 0, 1000, 10000.
Meanwhile the panels on the right column are the curves associated to the r1 minimizing
the symmetric function f0. Note as the Nb is increased at sufficiently large rotations
configurations with many vortices become stable for lower ranges.
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Secondly we can plot the obtained global minima of the symmetric free-energy function f0,
computed w.r.t. its only r1 variable, and the r1 values that minimize f0, both according
to ω in the discrete range [0, 15] (with 0.1 steps) for N ≤ 7 and Nb = 0, 1000, 10000
(Figure 3.7).

From all these analytical results it is important to remark the following observations:

• we note not only a shift of the critical ω ranges towards smaller values but
also an enlargement of the ring of vortices, which become significant as the core
mass increases (effect visible in Figure 3.7);

• in the free-energy function profile for the analytic symmetric configurations, Figure
3.6, there seems to be a shift of the local minimum towards larger values of the
position r1 of the (symmetric) vortices, until a “critical value” of the trapped
particle per vortex Nb such that, at both higher ω rate and N number of vortices, the
function has no longer any minima as clearly visible for case ω = 15.0, Nb = 25000.

Then, all these observations suggest the existence, for each N value of possible vortices, of
some critical value of the vortex mass M (or of Nb), after which it should be
impossible to find a stable massive vortex-array at the equilibrium.

In order to verify this hypothesis, a useful study consists in focusing on the symmetric
case of two vortices (N = 2) and analytically analyzing the dimensionless angular velocity
ω of the trap as a function of the radial position r of the two symmetric vortices. So by
varying the number of trapped particles Nb per vortex and considering the dimensional
rotational velocity Ω plotted according to dimensional distance x from the center (0,0) we
obtained Figure 3.8. Such a graph highlights that as the vortex mass increases, that is
for large Nb, the trap admits only lower Ω values for reduced distance between the two
vortices, that is 2x: in particular for Nb > 45400 there are no longer Ω physical values,

Figure 3.8: Analytic plots of the rotational velocity Ω profiles as a function of the distance
x from the center O = (0,0) of one of the two symmetric vortices, (N = 2) computed at
different number Nb of trapped particles per vortex.
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meaning that the forces acting on the two vortices are not longer balanced and then the
symmetric N = 2 configuration is no longer stable.

Numerical analysis for the equilibrium patterns of massive vortices.
Since the analytic approach enables us to investigate only up to few vortices on the system,
also in this massive version it is obviously convenient to numerically solve the global
minimization problem.
The function to minimize is the free energy f0 defined by the equation (3.13), which
contains an additional parameter M = mNb, representing the total mass of the Nb particles
trapped in each of the N formed vortices.
This is why, the numerical global minimization procedure we considered for this
massive description is identical to the one applied for the massless one and
discussed in details in section 3.1, but we repeated it at different fixed values of M
(or equivalently Nb).

(a)

(b)

Figure 3.9: (a) Curves of the global minima of free energy f0, computed numerically
with respect to the radial vortex polar coordinates rj ’s and θj ’s, and plotted according to
the rotation rate ω ∈ (0, 30) (with 0.3 steps). (b) Curves of the radial position rmax of
the farthest vortex from the center (living into the outermost ring in the corresponding
equilibrium pattern) globally minimizing the f0 with respect ω ∈ (0, 30) (with 0.3
steps). Note that Nb = 1000 and that in both subfigures we have considered on the left
N = 0, 1, . . . , 9 and N = 10, . . . , 21 to highlight through the colors the corresponding
equilibrium patter N , whose ring structure is reported in the table of Figure 3.11.
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Taking Nmax = 21 as the maximum possible value of the number N of the formed
vortices, we computed the global minima of the massive free energy f0 at Nb = 0, 1000
and plotted these values and the radial component rmax of the outermost vortex minimizing
the function, both according to the rotation rate ω.
Coherently to our predictions, such curves associated to Nb = 0 are nothing but the graphs
in Figure 3.4 obtained within the massless description; while the ones obtained for the
case Nb = 1000 are shown in Figure 3.9.

Then, the corresponding spatial equilibrium configuration for the Nb = 0 coincide with the
ones in Figure 3.5, instead for Nb = 1000 are those reported in Figure 3.10.

Figure 3.10: Equilibrium vortex patterns assumed by the system at rotation rate ω
values close to each transition of the internal structure, for N = 1, . . . , 21 and each vortex
hosting Nb = 1000. Each pattern N is obtained by considering an ω value in the interval
where it is the absolute stable spatial configuration according to Figure 3.4.

A fundamental evidence coming from these results is that the structure of the an absolute
stable pattern, presenting N massive vortices at a certain rotational velocity of the trap,
shares with the corresponding well known massless vortex patter N the same
concentric rings composition, (the 2% approximation is still valid). This can be also
seen on the table in Figure 3.11 reporting the ring numbers obtained for N = 1, . . . , 21
both for Nb = 0 and Nb = 1000.

Furthermore, we can also confirm the presence of a shift of the critical ω ranges
towards values smaller than the massless ones, structurally corresponding to higher
N massless stable pattern with radially drifted vortices towards the wall.

Such results are clearer if we directly compare at a certain fixed rotation rate the vortex
patterns evaluated for the two considered cases and also the ones ensuing from the further
case of Nb = 2000. Doing this as shown in Figure 3.12 at both we ω = 15.1, 24.1, we
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Figure 3.11: Table of the resulting ring numbers for absolute stable configurations
N = 1, . . . , 21 for Nb = 0 (massless case) and for Nb = 1000 (massive case) particles
filling each vortex core. Each sequence represents the number of vortices composing each
(exactly or almost) regular polygon: for example the configuration 1, 5, 11 associated
to N = 17 means that there is a vortex in the center, surrounded by pentagon and an
outermost (regular) polygon formed by the remaining 11 vortices.

observe that at sufficiently large fixed ω values as the number Nb of particles
in each vortex core increases, the system actually increases its number N of
possible vortices at equilibrium:
- ω = 15.1 =⇒ Nb = 0 −→ 1, 7; Nb = 1000 −→ 1, 8; Nb = 2000 −→ 2, 8;
- ω = 24.1 =⇒ Nb = 0 −→ 5, 11; Nb = 1000 −→ 1, 6, 13.

The fact that in the comparison taken into account at ω = 15 a vortex-array for Nb = 2000
does not appear is strictly related to the nature of the considered massive description.
Indeed let us recall that such registered deviations from the massless results lay on the
centrifugal energetic term depending on −

qN
j=1 Mω2r2

i (3.13): then when dealing with
high values of vortex mass M at sufficiently large rotation rate ω, the higher the corre-
sponding number N of vortices is, the stronger the centrifugal radial drift is, perhaps
leading to energetically favored configurations with outermost vortices too close to the
boundary. Such possible results are nothing but numerical artifacts corresponding to
nonphysical solutions, where the vortices tend to annihilate with corresponding images
just at the other side of the boundary.

A reasonable way to bypass this numerical issue could be either to reduce the maxi-
mum number Nmax of possible formed vortices according to both the rotational velocity ω
at which the circular trap rotates and to the number of trapped particles per vortex (Nb),
or more in general to chose a trade of for these value such that the product in

qN
j=1 Mω2r2

i

is sufficiently small.
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Figure 3.12: Caparison, at fixed trap rotation rate ω, between the equilibrium spatial
configurations of massive vortices for different number of identical massive particles Nb

filling each vortex. Left panel: at ω = 15.1 it is visible how from a massless case Nb = 0
with N = 8 vortices (1, 7 = an heptagon with one vortex in the center), we move to a
configuration N = 9 (1, 8 = an octagon with one vortex in the center) for Nb = 1000 and
to N = 10 (2, 4, 4 = two symmetric inner vortices surrounded by two external squares)
for Nb = 2000. Right panel: at ω = 24.1 for massless case (Nb = 0) a N = 16 configuration
(5, 11 = pentagon surrendered by a hendecagon), while for Nb = 1000 (1, 6, 13 = a vortex
surrounded by an hexagon and an external tridecagon). Note that here no configuration
for Nb = 2000 because of numerical artifacts.

Here in the following we have taken into account Nmax = 10 since it enables to ana-
lyze a wider set of vortex mass values, without encountering numerical issues: in particular
have considered Nb = 0, 1000, 1500, 2000, 3000, 3500, 4000.

The curves regarding the minima of the dimensionless free energy f0 and of radial distance
rmax of the outermost vortex, shown in Figure 3.14, plotted according to ω, finally ensure
the validity of all the expected effects of particles filling vortex cores discussed in this
section.
As further verification, in the end we also compared each massless (Nb = 0) equilibrium
configuration N obtained from the numerical global minimization (results in Figure 3.13)
with the ones having the same value of N , but obtained at a different Nb /= 0, in order
to graphically show that, apart from a global rotation and the centrifugal force action,
each massive pattern N (for all the massive cases analyzed) still presents the same ring
composition of the corresponding massless one.
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Figure 3.13: Table of the ring numbers associated to the absolute stable configurations
N = 1, . . . , 10 for different values of the number Nb of massive particles filling each vortex
core. Each sequence represents the number of vortices composing each (exactly or almost)
regular polygon: for example the configuration 1, 8 associated to N = 9 refers to an
octagon with a vortex in the center. This table shows as in the assumption of negligible
boundary effects the geometry of the massless vortex patterns at equilibrium is formally
maintained in the case of massive vortices.
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Figure 3.14: Left panels) Curves of the global minima of free energy f0 (3.13), com-
puted numerically with respect to the radial vortex polar coordinates rj ’s and θj ’s, and
plotted according to the rotation rate ω ∈ (0, 30) (with 0.3 steps) for different massive
cases (number of massive particles Nb per vortex). Right panels) Curves of the radial
position rmax of the farthest vortex from the center (living into the outermost ring in the
corresponding equilibrium pattern) globally minimizing the f0, plotted according to ω.
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Figure 3.15: Comparison between all the equilibrium patterns containing the same
number of massive vortices N , but at different values of the trapped massive particles Nb

in each core. Note that except for a global rotation and an enlargement of the rings due
to the centrifugal force acting on the particles, formally the geometry of the equilibrium
vortex patters in the massive case results the same (more precisely in this approximation
of negligible boundary effects).
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Chapter 4

Excitations of the Equilibrium
Vortex Patterns

In this chapter we will discuss the dynamics of point-like quantum vortices in a superfluid,
particularly focusing on the case of a trapped condensate in a circular domain. The first
part is dedicated to the derivation of the dynamical equations defining the motion of
vortices, especially exploiting the Lagrange formalism, both in the “massless” and “massive”
descriptions, where in particular we will present the main difference among the two cases.
While the second part focuses on the effect ensuing from the vortex mass on the non-trivial
excitations of vortices around their equilibrium positions, discussed in Chapter 3, known
as the Tkachenko modes.

4.1 Superfluid vortex dynamics
So far we have seen how to deal with quantum vortices in a generic superfluid, especially
focusing on their point-like modeling in both cases of infinite large and confined quasi
two-dimensional systems, also treating the scenario of filled vortex cores (see the section
2.2), but the study about their dynamics has not yet been deepened.
At first let us recall that the whole system could be described, within then Hydrodynamic
picture, by means of a complex and single valued wavefunction ψ depending on the (real
valued) density n and phase S fields as the Madelung transform ψ =

√
neiS (section

2.4). From the section 2.2, we also know that, considering an unbounded and planar
system (no external trapping potential) with vanishingly small spatial variations of the
density n (n ≈ const and negligible vortex core size), the fluid is nonviscous, irrotational
and incompressible and associated to a velocity field v of the two completely equivalent
following forms, according to equations (2.2) and (2.13):

v(r) = ℏ
m

∇S(r), v(r) = ℏ
m
êz × ∇A(r) = − ℏ

m
∇ × [êzA(r)] , (4.1)

where r = (x, y), m the superfluid particle atomic mass, the phase filed S plays the role of
a velocity potential and the potential flow function A corresponds to the stream function.
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In order to be equivalent, this two expressions leads to the Cauchy-Reimann conditions for
the two functions S and A

∇S = −∇ × [êzA] =⇒ ∂S

∂x
= −∂A

∂y
,
∂S

∂y
= ∂A

∂x
. (4.2)

Please note that here the velocity field depends explicitly on the spatial positions r, rj ’s,
according to the equations (2.13) and (2.17): it depends on time only implicitly since the
positions are time dependent r = r(t). This is why we consider the phase field as S(r).

It is possible to describe the flow of the fluid taking into account the complex po-
tential F (as done in Ref. [13]) in the complex plane according to z = x + iy defined
as:

F (z) = A(r) + iS(r), F ′(z) = ∂A

∂x
+ i

∂S

∂x
= ∂S

∂y
− i

∂A

∂y
, (4.3)

with F ′(z) the complex derivative of F , corresponding by combing it with the formulas in
(4.2) to F ′(z) = (m/ℏ) (vy + ivx). From this, the complex velocity of a generic vortex at
z0 = x0 + iy0 could be obtained from

iż∗
0 = ẏ0 + iẋ0 = ℏ

m
lim

z−→z0

5
F ′(z) − 1

z − z0

6
, (4.4)

being z∗ the complex conjugate of z0. Therefore this equation can be used to find the
equations of the motion of each vortex in the systems and giving in particular first order
differential dynamical equations, coherently to the fact that here the vortices are massless
objects.

Dynamics of massless vortices in an infinitely large system.
In the case of N vortices in an infinitely large condensate, notice that such a method to
derive the dynamics of the massless vortices takes into account equations (2.18) and (2.19)
for the phase filed S and the potential flow function (stream function) A, which are

S(r) =
NØ

i=1
qi arctan

3
y − yi

x− xi

4
, A(r) =

NØ
i=1

qi

2 ln
A

(x− xi)2 + (y − yi)2

a2
0

B
, (4.5)

with qi’s the (integer) vortex charges and a0 the vortex core radius. Then applying these
definitions to the equation (4.4) ones find that each vortex at point rj has a velocity ṙj of
the form

ṙj =
Ø
i /=j

qi
ℏ
m

êz × rj − ri

|rj − ri|2
. (4.6)

Such dynamical equations are known as the Helmholtz-Kirchhoff equations and are
nothing but first order differential equations depending just on the vortex position rj ’s
and vortex velocities ṙj ’s.

Whenever the system has only two point-like vortices at a distance d ≫ a0 of charges q1, q2,
the resulting configuration of the couple would corresponds either to a vortex-antivortex
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pair or to a corotating pair .
A vortex-antivortex pair consists in a vortex with positive charge around which the flow
is counterclockwise and another with negative charge, said antivortex, associated to a
clockwise flow. In particular in Figure 4.1 we can note that on the mid-point of the two
vortices the two flow fields are directed along the same directions, and thus the resulting
superposition effect leads to a couple of vortices travelling along the same direction.

Figure 4.1: Scheme on the xy plane of two straight vortex lines of opposite circulation.
The right panel shows as the vortex (on the left) and the antivortex (on the right) flow fields
are directed along the same directions on the mid-point of the two vortices: the resulting
superposition effect leads to a couple of vortices travelling along the same direction. Figure
taken from Ref. [2].

While a corotating pair corresponds to two vortices or two antivortices, for which the
resulting net effect is a co-rotation of the vortices around their mid-point. In the case of
two single charged vortices at large distance they appears as a unique vortex of double
charge (or in general q1 + q2).

Dynamics of massless vortices in a condensate confined in a circular trap.
Let us now move to the case of a quasi two-dimensional condensate confined in a circular
bucket of radius R by means of a bucket-like trapping potential V , see equation (2.23).
In such a case we already know that the boundary effect on each vortex is described by
means of the image vortex, a virtual vortex of opposite charge and placed outside the trap
at position r′

0 given by equation (2.24). Considering a configuration of N massless vortex,
now the stream function A and the phase field S, according to (2.25) and (2.26), become:

A(r⃗) =
NvØ
j=1

qj ln
----- r⃗ − r⃗j

r⃗ − r⃗ ′
j

-----, S(r) =
NØ

i=1
qi

5
arctan

3
y − yi

x− xi

4
− arctan

3
y − y′

i

x− x′
i

46
, (4.7)

leading then to a complex potential F , defined in (4.3), as

F (z) =
NØ

i=1
qi ln

3
z − zi

z − z′
i

4
, with z′

i = x′
i + iy′

j . (4.8)
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Therefore by considering such a function F into the equation (4.4) we find that the velocity
of each vortex j at a position rj = (xj , yj) satisfies the following equation of motion

0 = êz × ṙj + qjℏ
m

rj

R2 − r2
j

+
Ø
i /=j

qiℏ
m

C
rj − ri

|rj − ri|2
+ R2ri − r2

i rj

R4 − 2R2ri · rj + r2
i r

2
j

D
. (4.9)

This equation is correctly a first order differential equation, where the terms depending on
the radius of the trap R are respectively related to the interactions of the vortex with its
own image and with all the rest of image vortices. Indeed if R −→ ∞, this equation would
correspond to the motion equation (4.6) for a vortex in an infinitely large planar condensate.

Dynamics of massive vortices by means of the Lagrangian Equations.
Such a way of achieving the equations of motion does not fit well when we want to consider
the possibility of vortex cores hosting massive particles. As proposed in Ref. [13], in order
to study the dynamics of vortices in this “massive” generalization we can exploit the La-
grangian formalism seen in section 2.2 with the goal of solving the Euler-Lagrange equations.

Let us start by focusing on the simple case of a unique massless singled charged vor-
tex (q0 = 1) in a trapped system at a position r0 = (x0, y0), for which according to a
wavefunction ψ =

√
n exp(iS) within the time-dependent variational ansatz (2.29), the

effective Lagrangian L (2.30) reduces to

L = ℏnπ(ṙ0 × r0 · ẑ)r
2
0 −R2

r2
0

− ℏ2nπ

m
ln
C
1 − r2

0
R2

D
. (4.10)

The resulting Euler-Lagrange equation associated to this system’s L is

0 = êz × ṙ0 + ℏ
m

r0

R2 − r2
0
, (4.11)

which is manifestly equivalent to the first order differential motion equation derivable
from the more generic motion equations (4.9). In particular it describes a uniform circular
motion [13] of the vortex around the center (0, 0) of the trap and whose radius corresponds
to r0 and whose precession rate Ω0 (that is its angular velocity) is given by

Ω0 = ℏ
m(R2 − r2

0) . (4.12)

Meanwhile considering the more generalized description for massive vortices discussed at
the end of section 2.2, we know that the particles hosted in the vortex cores can be treated
as a different condensate allowing the whole system to be described as a two-component
BEC. Indeed according to equations (2.32), (2.33), (2.34) and (2.35) the confined planar
condensate, with a single charged massive vortex at r0 hosting Nb atomic particles of mass
mb stuck in its core (core mass Mb = Nbmb), is described by an effective Lagrangian L of
the following form

L = 1
2Mbṙ

2
0 + ℏnaπ(ṙ0 × r0 · êz)r

2
0 −R2

r2
0

− ℏ2naπ

ma
ln
C
1 − r2

0
R2

D
, (4.13)
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where we have used the subscript a for the physical quantities related to the massless
component of the condensate, and the subscript b for the massive particles. Recall that here
due to the immisciability of the two components, we are considering the vortex variable r0
in the a-component wavefunction ψa to denote also the position of b-component inertial
particles (see section 2.2 or Ref. [13, 15, 24]).

Notice that such an effective Lagrangian L is nothing but a massive generalization of the
massless one in (4.10), containing an additional term depending on the Mbṙ

2
0, which is

responsible for the appearance of an inertial term (a second order time derivative) on
the dynamical equations. Indeed the Euler-Lagrange equation describing the motion of a
massive vortex in circular confined superfluid system is

Mbr̈0 = 2πnaℏ
5
êz × ṙ0 + ℏ

ma

r0

R2 − r2
0

6
, (4.14)

which as expected is a second order differential equation depending not only on the
vortex coordinates and velocities but also on the vortex accelerations r̈j ’s, meaning that
the total number of dynamical variables associated to system compared to the massless
case is doubled. Note also that it correctly reduces to the first order Helmholtz-Kirchhoff
motion equation (4.11) as Mb −→ 0.

Among all the possible different kind of solutions of the (massive) dynamical equation
(4.14), there is one which corresponds to a massive vortex in uniform circular motion [13]
given by

r0 = r0(cos (Ω0t), sin (Ω0t)), (4.15)
being Ω0 the precession frequency (or equivalently the angular velocity) depending on
both the radius of the circular orbit r0 and on the core mass Mb = Nbmb. By rescaling
the considered physical quantities as r̃0

.= r0/R, Ω̃0
.= Ω0ℏ/(maR

2) and µ
.= Mb/Ma =

(Nbmb)/(naπR
2ma), the two possible solutions corresponds to angular frequencies Ω̃(+)

0
and Ω̃(−)

0

Ω̃(+)
0 =

ñ
1 − 2µ/(1 − r̃2

0)
µ

,

Ω̃(−)
0 = 2/(1 − r̃2

0)ñ
1 − 2µ/(1 − r̃2

0)
.

(4.16)

Observe how, in the limit of very small vortex mass µ −→ 0, we obtain an unphysical
solution corresponding to the divergent frequency Ω̃(+)

0 ∼ 2/µ −→ ∞ and the physical
meaningful frequency Ω̃(−)

0 −→ (1 − r̃2
0)−1 equivalent to the dimensionless version of the

massless solution obtained in (4.12). In addition, since the mass should be sufficiently
small, we can say that such a uniform circular orbit defining the trajectory of the single
massive vortex exits only if the parameter µ satisfies the following condition:

µ < µΩ
.= (1 − r̃2

0)
2 . (4.17)
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Thus we can conclude (such a discussion based on Ref. [13]) that, among the possible
physical meaningful trajectories defining the dynamics of a single massive vortex of unit
charge, uniform circular orbits are admitted if the core mass satisfying the above regime,
but on the other hand there exists also orbits, which consist in circular orbit with
superimposed small-amplitude oscillations along transverse radial directions,
also known as cyclotron normal modes. Such trajectories can be clearly seen in Figure
4.2, where we can observe, at fixed value of µ = 4 × 10−2, both a circular uniform orbit
(the green curve) and circular orbit presenting the typical cyclotron-like corrections (red
curve), obtained (from the first one) for tiny perturbations of the initial conditions, while
at µ = 0.5 we observe a vortex colliding with the domain wall, since (4.17) is violated.

Figure 4.2: Plot of three possible trajectory of a massive vortex in a circular domain of
radius R. Green curve obtained considering r0(0)/R = (0.5, 0) and ṙ0(0)/R =

1
0, r0Ω(−)

0

2
,

while red curve by considering small perturbations of the previous initial conditions (both
curves at µ = 4 × 10−2). Blue curve, obtained for µ = 0.5, shows a massive vortex colliding
at the domain wall with its respective image outside the system. Figure taken from [13].

.

At this point we could generalize our discussion to the many-vortex configurations, con-
sidering for the sake of simplicity the case of N = 2 massive vortices of generic charge
q1, q2 (for the moment) and respectively with core masses Mb,j = mbNb,j for j = 1, 2.
Being such a system identified by an effective Lagrange L ensuing from equation (2.35)
and corresponding to

L =
NØ

j=1

C
Mb,j

2 ṙ2
j + kjmana

2 (ṙj × rj · êz)
r2

j −R2

r2
j

−
k2

jnama

4π ln
A

1 −
r2

j

R2

BD

−
N=2Ø
j>i

kikjnama

4π ln
A
R2 − 2ri · rj + r2

i r
2
j/R

2

r2
i − 2ri · rj + r2

j

B
.

(4.18)

54



Excitations of the Equilibrium Vortex Patterns

where N = 2, kj = qjh/ma and the last term represents the two-vortex interaction.
Therefore the Euler-Lagrange equations (for i, j = 1, 2 and i /= j) are written as

Mb,j r̈j = kjmana êz × ṙj + manakj

2π

C
ki(rj − ri)
|rj − ri|2

+ kjrj

R2 − r2
j

+ ki(R2ri − r2
i rj)

R4 − 2R2ri · rj + r2
i r

2
j

D
.

(4.19)

Figure 4.3: Plot on the xy plane of the trajectories associated to the motion of a
symmetric vortex-antivortex pair, q1 = +1, q2 = −1, (left panel) and of a symmetric
corotating pair (right panel), q1 = +1, q2 = +1. Blue curves represent the massless cases
and the red ones the massive case of cores trapping Nb = 500 atoms of the same species
of the superfluid particles. Results obtained by solving the dynamical equations (4.19)
for R = 50 × 10−6 m (meters), sodium (23Na) atomic condensate and initial conditions
x1(0) = −x2(0) = 45 × 10−6 m , y1(0) = y2(0) = 0 m, and for the massive case also for
ẋi(0) = ẏi(0) = 0 m/s (meters per seconds) for i = 1,2. Note the cyclotron excitation
modes characterizing the massive case.

An instructive example, especially in view of the study of the excitations of a vortex
crystal, is the analysis of two symmetric vortices (with respect to the origin O = (0, 0))
both in the cases of opposite unit circulations (q1 = +1, q2 = −1) and same unit circula-
tions (q1 = q2 = +1). From the Helmholtz-Kirchhoff dynamical equations (4.9) we expect
that in the case of a massless symmetric vortex-antivortex couple moving in a circularly
confined system (R the radius trap), the two real vortices would move together when they
are sufficiently close to each other and at the same time sufficiently far from the boundary
(this corresponds to the effect seen in Figure 4.1): in fact as they approach the border,
the vortex-image attractions become significant and the two vortices would separate and
circulate in circular orbits near the domain wall until they would be again sufficiently close.
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Such a motion in the simple massive case of vortices trapping the same number Nb of
particles with same atomic species of the condensate (mb,j = m, j = 1,2) still remains but
in addition we have superimposed some small-amplitude oscillations along transverse radial
directions. Meanwhile in the case of a symmetric corotating pair we observe a circular
precession motion around the trap center arising both from the repulsion between the two
vortices ad the vortex-image attractions near the border and in the massive case (the previ-
ous one) we find the cyclotron-like oscillations. These two examples are shown in Figure 4.3.

Electromagnetic equivalence.
It is important to highlight the fact that such dynamical equations, extendable to higher
values of N just considering the sum for i /= j, formally coincide with the motion equations
for massive charged living in two-dimensional domains in the presence of magnetic fields.
The latter equivalence, i.e called Electromagnetic equivalence, can be shown through the
following mapping, based on k′

j = −kj and r′
j = R2rj/r

2
j the image vortex coordinate

from (2.24), for i, j = 1, 2 and i /= j:

Mb,j r̈j = kj ṙj × (−manaêz) + mana

2π

C
kjk

′
j

rj − r′
j

|rj − rj |2
+ kikj

rj − ri

|rj − ri|2
+ kjk

′
i

rj − r′
i

|rj − r′
i|

2

D
.

(4.20)

The above equation is completely equivalent to Mb,j r̈j = Fj the second Newton’s law for
defining the resulting total force acting on a charged particle of non zero small mass Mb,j

in an electromagnetic field: the force Fj acting on vortex j is a the sum of Lorentz-like
force (the first term on the r.h.s.), perpendicular to ṙj the vortex velocity and producing a
zero work, and a total Coulomb-like force coming from the superposition of all the “electric
fields” generated by all the other “charges” (both real and virtual ones)in system. However,
note that despite the electric charge like vortex description, the latter force similar to
a Coulomb one scales with respect to the inter-vortex distance as 1/(rj − ri), which is
typical of two-dimensional electrostatic problems, instead of scaling as 1/(rj − ri)2 which
is typical for two electric charges in three dimensions.
Furthermore, since kj ṙj × (−manaêz) behaves similarly to a Lorentz, it follows that the
effective magnetic field B, related to an effective vector potential A, is defined as

B
.= −manaêz = ∇ × A, A

.= mana

2 (y, −x), (4.21)

according to the planar matter density nama of the superfluid; while the effective electric
field ensues from the inter-vortex interactions and from the geometric boundaries.

4.2 Excitations of a vortex lattice around its equilib-
rium positions

After having briefly described the dynamics of quantum vortices especially for the massive
case (as in section 4.1), it is possible to study the motion of N excited vortices around
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their equilibrium positions (w.r.t. to rotating bucket’s frame), given by the corresponding
N stable vortex pattern configuration (see chapter 3). In particular, the main focus of the
following discussion would be centered on visualize the principal effects on such vortex
oscillations ensuing from the presence of a small non-zero core mass.

First of all, recall that up to now our whole point-like modeling for quantum straight
vortex lines in a superfluid has been based on the assumption of dealing with an incom-
pressible, irrotational and nonviscous superfluid, in particular a quasi two-dimensional
weakly interacting atomic BEC. In addition, it has also been assumed infinitesimal vortex
core size (= 2a0 the core diameter), compared to the typical length scale of the system
size, and negligible fluid density filed spatial variations, namely uniform condensate.

Let us consider once again the case in which the system is confined in the usual cir-
cular trapping domain of radius R and rotating at the angular velocity Ω. For such
a physical scenario, in section 3.1 we have shown the way we obtained the well-known
equilibrium vortex patterns: more precisely for sake of simplicity in this work we have
presented only the study up to a moderate number of vortices N and then up to a moderate
rotation rate ω. In high rotating Bose-Einstein condensates the equilibrium vortex patterns
are triangular lattices (or crystals) with a large number of vortices, for more information
Ref. [11, 25].

In such an ideal scenario for an irrotational and irrotational condensate it is well know
that transverse vortex-displacement waves propagating on the equilibrium lattice can be
observed: these are known as Tkachenko modes (see Ref. [27, 28]). Such normal excita-
tion modes are microscopically characterized by an elliptical precession motion against
the trap rotation of each vortex about its equilibrium position, which on a macroscopic
level result in harmonic distortions shearing the vortex lattice and causing a rotation that
alternately slows down and speeds up.
For further information give a look to Ref. [27, 28, 29].

Therefore we could investigate the excitation of these motion by solving the proper
Euler-Lagrange equations for tiny random perturbations of the initial vortex equilibrium
positions given by the corresponding crystal configuration. To do so, we followed the
sequent procedure.

Tkachenko modes and core mass.
As a starting point, let us approached the above considered confined system in the gener-
alized massive description for quantum vortices of small vortex mass, within the double
assumption (3.10) of atomic species of the massive particles trapped in the cores equal
to the superfluid condensate and all vortices of same core mass. In this way the massive
effective Lagrangian L (2.35), describing such a system, reduces to the form (3.11) which
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is

L =
NØ
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(4.22)

where m,n are respectively the atomic mass and the numerical planar density of the
superfluid, M = Nbm the total mass of the Nb impurity particle per vortex core and
ki = qih/m −→ k = h/m since vortex charge qi = +1 ∀j (see section 3.2).

Furthermore due to the fact that in chapter 3 we have have obtained the equilibrium
many vortex configurations requiring the approximation for negligible boundary effects
ensuing from the geometric trapping of the system, i.e. no image vortices, we should solve
dynamical equations of the type

M r̈j = −kṙj × (−mnẑ) + mnk2

2π
Ø
i /=j

rj − ri

|rj − ri|2
for j = 1, . . . , N (4.23)

corresponding to dynamical equations (4.20) (N > 2 version) for no image vortices and
vortex positions of magnitude 0 ≤ rj < R (not ≤ R to avoid nonphysical configurations).

Especially, to be coherent with dimensionless formalism used in section 3.2, we can
move once again to the reference frame of the trap rotating at (dimensionful) angular
velocity Ω x′Oy′ where, being r′

j = (x′
j , y

′
j) = rj(cos θ′

j , sin θ′
j) the vortex position in the

new frame expressed in terms of polar coordinates r′
j ’s and θ′

j ’s, the old vortex coordinate
vortex coordinate rj becomes

rj = r′
j

1
cos θ′

j cos (Ωt) − sin θ′
j sin (Ωt) , cos θ′

j sin (Ωt) + sin θ′
j cos (Ωt)

2
. (4.24)

Then, by first writing the system’s Lagrangian L (4.22) w.r.t this new reference frame
and taking its dimensionless version by multiplying for 4π/(mnk2) according to equation
(3.4) (L is dimensionally an energy), and finally by subtracting the dimensionless image
vortices contribution (exactly as done in (3.13) for the free-energy function), we obtained
a dimensionless approximated effective Lagrangian L̃. Note that in such a derivation,
before the subtraction we change the notation considering the vortex coordinates as
{r′

j , θ
′
j} −→ {Rrj , θj}, where now 0 ≤ rj < 1 and 0 ≤ θj ≤ 2π are the dimensionless

position variables of the jth vortex and both its dimensionless radial and angular velocities
ṙj , θ̇j are derived as {ṙ′

j , θ̇
′
j} −→ {k/(2πR) ṙj , k/(2πR2) θ̇j}. Thus, the Lagrangian L̃

is a function depending on the position variables rj ’s, θj ’s and velocities variables ṙj ’s,
θ̇j ’s of the N present massive vortices, with as further parameters the total core vortex
mass M (or equivalently on Nb the number of trapped massive particles per vortex), the
atomic mass and planar numerical density m, n of the superfluid and on the dimensionless
rotation frequency ω .= (2πR2)/k Ω.

58



Excitations of the Equilibrium Vortex Patterns

It follows that such an equation would lead to a total of 2N Euler-Lagrange equations,
whose dimensionful version written in terms the laboratory reference frame Cartesian
coordinates rj = (xj , yj) coincides to the (compact notation) N dynamical ones in formula
(4.23).
For our analysis we have considered a trap of radius R = 50 × 10−6 meters (in particular
50 times larger than core radius a0), and 2 × 105 particles of ultracold sodium 23Na (m is
the corresponding atomic mass) of a planar density n = (2 × 105)/(πR2).

Especially in order to verify at first the validity of our procedure we analyzed the massless
case Nb = 0 of N = 21 vortices, characterized by an equilibrium lattice configuration as
in Figure 3.5 (1, 7, 13 in ring numbers notation according to section 3.1). Taking as
rotation rate ω = 29.2 (counterclockwise rotation) and as initial condition a configuration
obtained by perturbing all the vortex angular equilibrium positions θj ’s randomly in a
small range up to 5 degrees, we found that the excited vortices move clockwise according
the trajectories shown in Figure 4.4.

Figure 4.4: Plot of the trajectories of N = 21 massless vortices around their equilibrium
crystal configuration (see Figure 3.5), each representing a combination of many Tkachenko
modes. In fact, the excited vortices move clockwise against the trap rotation direction
(which is counterclockwise since positive rotation rate ω). The considered initial configura-
tion was obtained by perturbing the vortex angular equilibrium positions randomly in a
small range up to 5 degrees.

Such vortex excitations do not present elliptical orbits as expected from what we have
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previously declared about a Tkachenko mode. In fact the obtained results actually cor-
respond to a superposition of more than one different Tkachenko modes for each vortex,
ensuing from having activated the oscillations by means of tiny random perturbations of
the equilibrium configuration.

After having verified that through this procedure we are activating the Tkachenko modes
for massless vortex, let us go further focusing on the study of the core mass effects. First of
all, looking back to the description of the dynamics of a massive vortex (see 4.1), one could
expect to find the excitations similar to the one seen before, but at the same time affected
by the typical cyclotron-like orbit corrections depending on the value of the small mass.
Therefore, for such an analysis we focus on the case of fewer vortices, i.e. N = 10, for
which we already have studied the equilibrium configuration (see 3.2) in the cases Nb = 0,
1000, 1500, 2000, 3000, 3500, 4000 (number of massive particles per each vortex core). In
particular, the associated dynamical equations for each of these Nb values are solved, by
taking a trap rotation rate ω value so that the N = 10 equilibrium vortex lattice (2, 4, 4
in ring notation) corresponds to the energetically favored configuration. Then, as done in
Figure 4.5, we chose just one vortex in the system and plot its trajectories associated to
the different massive cases.

Figure 4.5: Plots of the trajectory of a single excited vortex oscillating around its
equilibrium position in a vortex lattice for N = 10. Each curve has been obtained for
different values of the number Nb of massive particles per vortex, considering a suitable
rotation rate ω such that the crystal with N = 10 corresponds to the equilibrium pattern.
Note that each trajectory is travelled clockwise (opposite direction of the trap rotation),
and corresponds to a linear combination of many Tkachenko modes and according to Nb

of the cyclotron modes, which becomes significant as the core mass is increased.
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Looking to this picture, as expected we visualize some overall oscillation orbits clockwise
travelled, which are given by the superposition of two different contributions: the first is
the linear combination of many Tkachenko modes for a single vortex, corresponding to
a motion of the vortex; while the second one coincide with the cyclotron-like excitation
modes, the small-amplitude transverse oscillations along the radial direction ensuing from
the small vortex mass.
Notice that when the number of trapped particles per each vortex is very small, i.e.
Nb = 10, the vortex should behave as massless one, coherently to the generalized massive
description (discussed in the previous subsection 4.1). Indeed, in Figure 4.5, the case
Nb = 10 identically reproduces the massless case Nb = 0. Instead as the vortex mass is
increased, the cyclotron-like orbit corrections present a lowered frequency, then becoming
more evident.
In light of such observations we suggest that in general there should exist a sufficiently
large value of core mass at which one may observe the hybridization of the two different
families of normal modes.
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Chapter 5

Summary and conclusions

Ever since it has been realized that the vortex cores may host massive particles, the
scientific community has been vividly interested in analyzing the properties of vortices in
such a new “massive” configuration. The main reason for such an interest lays on the fact
that quantized vortices represents a distinctive feature of Superfluidity, and thus the study
about massive vortices becomes crucial to further investigate superfluid systems, such as
mixtures of Bose-Einstein condensates also including the fermionic condensates and the so
called quantum fluids of light.
Therefore, in the past few years it has been proposed an effective Point-Vortex model for
massive vortices, which is a generalization of the well-known model describing the vortices
in a quasi two-dimensional superfluid as point-like massless particles: in particular this
model consider the massive particles strictly localized in the vortex cores.

In this thesis project we have investigated, within such a theoretical model, the main effects
of the core masses on the static and dynamic properties of the vortex crystals formed in a
rotating two-dimensional superfluid. More precisely we focused on the case of a nonviscous,
irrotational, imcompressible and homogeneous two-dimensional condensate confined in
a circular rotating trap. Furthermore we have assumed the length scales of the system
(here corresponding to the trap radius size) much larger than the spatial variations of the
condensate density due to both the vortex cores and the boundaries effects.
We firstly focused on correctly reproduce, at least up to a moderate number of massless
vortices, the well-known equilibrium patterns (in the rotating reference frame) of single
charged vortices consisting in concentric (almost or exactly) regular polygons, by globally
minimizing the system free energy with respect to the vortex positions. Unfortunately
the presence of the boundaries, represented by the image vortices, leads to nonphysical
solutions corresponding to vortices colliding at the domain wall and annihilating with their
own images. This is why we have also assumed negligible boundary effects. Solving such
a minimization problem, within this approximation, in some discrete ranges of the trap
rotational velocity, we have been able to achieve, for each resulting equilibrium pattern of
N vortices, not only the expected configuration but also a range of rotational velocities in
which it corresponds to the globally stable vortex-array among all the possible ones.
Once we have completed the study for the massless case, we repeated the same global
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minimization procedure for the case of massive vortices. For the sake of simplicity, in
such analysis we have considered all the vortices hosting the same number of identical
particles (meaning same core mass) of the same atomic species of condensate. We have
obtained a free-energy function in the approximation of negligible boundary effects which
is essentially a generalization of the massless one containing just an additional term related
to the centrifugal apparent forces acting on the core masses. Such a term is responsible for
the following effects that we have observed in the equilibrium massive vortex patterns:

• in the limit of zero massive particles in each vortex core, the resulting equilibrium
vortex-arrays coincide with the mass less one;

• as the core mass increases there is a significant shift towards lower values in the
rotation-rate ranges defining the stability of equilibrium configurations with numerous
vortices, meaning that at a fixed rotational velocity the massive array has more vortices
if compared to corresponding massless one;

• the geometry of each massive equilibrium pattern is formally the same to the one of
the massless configurations, expect for an enlargement of all the rings towards the
wall;

• there should exists some critical value of the core mass such that for sufficiently large
rotational velocities there are no longer stable spatial configurations, meaning that
the free energy does not present any local minima.

In light of such observations we also remark that this semi-analytical procedure strictly
depends on the maximum number of possible vortices in the system and on the considered
range of the rotational velocities.
As far as the dynamic properties of a crystal of vortices, we have studied the effect of the
core mass on the well-known Tkachenko modes representing the non-trivial excitations of
a massless vortex-array around its equilibrium (crystal) configuration. They consist in a
precession motion of each vortex around its equilibrium position along elliptical trajectories
travelled in opposite direction to the trap rotation one: on a macroscopic level they causes
harmonic distortions shearing the vortex lattice and causing a rotation that alternately
slows down and speeds up.
The considered Point-Vortex for massive vortices shows that, by means of the Euler-
Lagrange equations, the dynamical equations are no longer the (first order differential)
Helmholtz-Kirchhoff equations which describe the motion of massless vortices. In fact the
presence of the core mass is responsible for an additional second order time derivative which
leads to some particular dynamical solutions: motion characterized by small-amplitude
transverse radial oscillations, superimposed to the well-known trajectories of massless
vortices. Such oscillations are cyclotron-like excitation modes and they should affect the
trajectories of the non-trivially excited vortices in a vortex crystal.
We have been able to see the superposition of such two different families of normal modes,
by solving the dynamical equations in the approximation of negligible boundary effects
considering as initial configurations small random perturbations of the equilibrium vortex
patterns. Doing so we actually have found a linear combination of Tkachenko modes per
each vortex and the expected superimposed cyclotron-like orbits, which was more evident
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as the core mass was increased. We suggest that in general there should exist a sufficiently
large value of core mass at which one may observe the hybridization of the two different
families of normal modes.

The presented study can be further developed by investigating the actual boundary
effects on the globally stable equilibrium patterns of massive vortices: one may study if
the presence of the images would significantly influence the vortex rearrangement on the
system. Another interesting application could be to consider a Bose-Hubbard model for
these systems presenting massive vortices, where the trapped massive particles can tunnel
among the different vortices.
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