
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Traffic sign recognition algorithm: a deep
comparison between Yolov5 and SSD

Mobilenet

SUPERVISORS

Prof. Stefano Malan

Dott. Davide Faverato

CANDIDATE

Paola Migneco

April 2024





Summary

The current personal transportation scenario presents one of the most significant and
complex challenges of our time: making the driving experience completely effortless.
Autonomous driving, with its attributes of safety, mobility and sustainability,
stands as a milestone on this ambitious path. In this perspective, the importance
of selected algorithms plays a crucial role, enabling vehicles to make immediate and
accurate decisions and opening the way to a future of innovative transportation.
The constant search for increasingly accurate models is one of the most significant
goals and challenges in the automotive industry. Road safety and the efficiency of
autonomous driving depend largely on the ability of these algorithms to learn and
adapt to situations in real time.
The research presented here focuses on the comparison of two models in the context
of traffic signal detection through object detection: SSD MobileNet and YoloV5.
The goal is to determine the optimal model in the context of autonomous driving,
and the models will be tested on a specific hardware, the NVIDIA Jetson Nano, a
compact yet high-performance computer characterized by a low power consumption.
This project is part of a larger work aimed at the realization of autonomous driving
of a ROSMASTERX3, that is an educational robot based on the robot operating
system compatible with Jetson NANO, enabling performance simulation in the
context of the overall project. In the implementation of this work, I had the
opportunity to benefit from the valuable technical support provided by the MCA
company. Their expertise and assistance were critical to the success of the project.
The MobileNet SSD model uses convolutional neural networks for object detection
and classification in images, characterizing itself as lightweight and fast. It leverages
the MobileNet architecture for feature extraction and the Single Shot Detector
algorithm for real-time detection, making it ideal for mobile applications and
contexts where fast and efficient detection is required. The YOLO (You Only Look
Once) object detection algorithm represents a significant advance in computer vision.
Based on a unified convolutional neural network, it is capable of predicting bounding
box positions and object classes in real time on complete images, highlighting itself
for its speed and generalization capability. Version 5, considered in this project,
presents an innovative approach to detection without the use of predefined bounding
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boxes, providing a balance between speed and accuracy.
The project is developed through several phases, framed in the context of vehicle
automation, with the ultimate goal of realizing autonomous driving on the road.
The initial phase involves the creation of a specially designed training dataset for
traffic signal recognition, with the thoughtful selection of a representative set of
signals to compose the training set. During this process, it was necessary to study
the dataset formats required by each model, namely the VOC format for the SSD
Mobilenet model and the .txt format for YOLOv5. The dataset includes four basic
classes: "Stop Sign", "Speed Limit", "Crosswalk" and "Traffic Light".
Next, both models were trained based on the chosen dataset. During this phase,
the parameters of the neural networks are studied to maximize performance, taking
into account limitations related to the available computing power, especially the
processing capacity. The results obtained are compared and evaluated through
simulations and empirical tests.
The entire process is implemented on an NVIDIA Jetson Nano board, equipped with
a high-definition ASTRA camera to capture detailed images. This configuration
enables accurate analysis of neural network performance in traffic signal detection.
The metrics used for comparison during training and testing were mAP (Mean
Average Precision), and FPS (Frames Per Second). MAP measure the performance
of a model that focuses on object detection tasks and information retrieval on
images. The mAP uses the ground-truth bounding box, compares it to the detected
box and returns a score. The higher the mAP score, the more accurate the model
detects and makes correct predictions. Indeed, FPS measures the performance and
frame capture rate in a video.
The models, SSD MobileNet and YOLOv5, exhibited different behaviors, both in
terms of performance and model portability. The initial comparison was conducted
through training on Colab, a platform developed by Google that enables the use
of resources running directly in the cloud. YOLOv5 clearly outperformed SSD
MobileNet, especially in some classes and in terms of training time; on Jetson
Nano the situation was more complex. The challenge of porting complex models
to hardware with limited resources required several solutions, such as expanding
RAM with a swap or having to compromise on various fronts. The MobileNet SSD
model was trained, again, directly on the Jetson. Indeed, despite all efforts, the
conversion to a format acceptable to Jetson itself was impractical. This resulted in
limitations related to the size and heterogeneity of the dataset and the parameters
adapted to Jetson RAM restrictions.
The results obtained are good, with excellent FPS reaching about 30 FPS, and a
mAP that is around 95%. However, the SSD MobileNet model is incomplete, as it
was trained only on "stop" signals of the four initially selected. A choice forced by
the restrictions due to the limitations of the Jetson Nano. The YOLOv5 model, in
contrast, was easily transferred to Jetson thanks to Ultralystic support. For this
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reason, training the model on Jetson, as had been planned at the outset, was not
necessary, and it was possible to proceed directly through testing. Although FPS
performance might initially have seemed concerning due to the heaviness of the
model on low-capacity hardware. It was necessary a conversion to .onnx format
with FP16 and FP32 configurations that greatly improved the performances. The
evaluation of these two formats aimed to assess the trade-off between precision and
FPS. In terms of accuracy, both setups exhibited outstanding signal recognition. A
decrease in image resolution was noted, aligning with predictions, yet the detection
capability remained uncompromised. Then, YOLOv5 model performed extremely
promisingly, with a mAP of 98%. Conversion to Jetson Nano using the DeepStream
library achieved nearly 14 FPS with the FP16 configuration. Although the FPSs
of the YOLOv5 model are significantly lower than those of SSD MobileNet, they
are still sufficient contextualizing these results to a domain in which the rover to
which the object detection model will be integrated does not reach speeds higher
than 30 km/h.
Tests with the ASTRA camera attached to Jetson Nano explored various situations,
such as extreme distances and obstacles partially covering the signals, to evaluate
the models performance in realistic scenarios. Both models responded excellently
to the empirical tests, confirming the validity of what was developed.
Finally, the model selected for future projects is YOLOv5 with batch − size = 32
and epochs = 300, that reported the best results, converted in FP16 format to .onnx
model. Its consistency with the expected goals and completeness of the work makes
it an ideal choice. Confidence curve and precision-recall analysis confirmed excellent
results, although the dataset has some challenges in the "crosswalk" class, which,
in fact, is the weakness in the dataset. This model will form the basis for future
projects, integrating the newly presented survey into a prototype rover capable of
moving autonomously, simulating autonomous driving. Its adaptability and high
degree of accuracy provide a solid basis for further developments and practical
implementations in the field of autonomous vehicles and road automation.
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Chapter 1

Introduction

1.1 About MCA
MCA is an international high-tech engineering and consulting company, provides
support to its talents in large-scale projects for major industrial groups. It was
founded in France but expanded its presence worldwide, eventually establishing in
Turin in 2016. Today, it provides consultancy services to the Turin region in the
fields of aerospace, biomedical, energy, industrial automation, and, notably, the
automotive industry.

1.2 Brief Overview
In a society where smart technology permeates every aspect of our lives, autonomous
driving stands as one of the most promising fields for the development of technologies
capable of redefining our approach to driving. What may have once seemed like a
futuristic vision is now an established reality, ready to take significant, but even
more decisive steps.

Autonomous driving brings with it a number of tangible benefits to everyone’s
lives. For example, 90% of road accidents are caused by human error, while
autonomous vehicles have the potential to significantly reduce the risk of accidents
by eliminating the human factor. In addition, this technology could provide people
with mobility disabilities with access to mobility, opening up new prospects for
inclusion.

These innovations promise a future in which roads are safer, cities less congested
and the environment better preserved, improving our quality of life overall.

When addressing the topic of autonomous driving, it is inevitable to consider the
Six Levels of Vehicle Autonomy. Especially in Europe, we are at level 2 - Partially
Automatic Driving - which involves advanced driver assistance systems (ADAS).
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Introduction

The integration of cutting-edge technologies, such as advanced sensors and machine
learning, represents a real breakthrough in the field of autonomous driving. These
innovations not only change the way we drive, but propel us from the current Level
2 to the upper layers of the Six Levels of Automated Driving. The importance of
embracing these technologies and their symbiotic relationship cannot be overstated.

To progress from Level 2 to the higher levels of automation, it is critical to
recognize the crucial role of advanced sensors and machine learning. Sensors such
as LiDAR, radar and cameras act as the eyes and ears of autonomous vehicles,
providing a real-time, data-rich view of their surroundings. This data is then
processed and interpreted by machine learning algorithms, enabling vehicles to per-
ceive, analyze and react to complex driving scenarios with a degree of sophistication
that was once unthinkable.

Machine learning in this context assumes a fundamental but highly sensitive
role, as decision making in driving situations can involve significant conflicts. The
constant search for increasingly accurate and precise models represents one of the
most significant goals and challenges in the automotive industry. Road safety
and the efficiency of autonomous driving depend largely on the ability of these
algorithms to learn and adapt to situations in real time.

1.3 Objectives

The main goal of this project is the developement and testing of two neural networks
through personalized training, with the aim of recognizing a variety of road signs.
This purpose is within the scope of vehicle automation, with the ultimate goal of
realizing autonomous driving on the road.

The first phase of the work involves creating a specially designed training model
for traffic-sign recognition, carefully selecting a set of representative signals to
compose the dataset.

Next, that training model will be tested on two well-known neural networks: SSD
MobileNet and YOLOv5. At this stage, the parameters of the neural networks will
be studied in order to maximize performance, considering the limitations imposed
by the available computing power, particularly the processing capacity of the GPU.
The results obtained will then be compared and evaluated by simulations.

The entire process will be implemented on an Nvidia Jetson Nano board,
equipped with a high-definition ASTRA camera to capture detailed images. This
configuration will allow accurate analysis of the performance of neural networks in
the area of traffic sign recognition to be conducted.
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1.4 Thesis Outline
The key steps of the work carried out are as follows:

• Study of the code and project architecture.

• Exploration of documentation related to the development of the two models.

• Examination, selection, and creation of a dataset for training purposes.

• Deployment of the best model in both neural networks and comparison of the
results.

• Final tests.
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Chapter 2

State of Art

In an ever-evolving smart society that strives to simplify every facet of life, the
paradigm of vehicle guidance demands a profound transformation, a transformation
that, as of now, remains partially realized due to a myriad of diverse challenges.
To enable vehicles to truly achieve full autonomy, a comprehensive examination of
techniques capable of ensuring an entirely secure and dependable driving experience
becomes imperative. Recent technological advances in cloud computing and the
accessibility of cloud-based high-performance Graphics Processing Units (GPUs)
have greatly accelerated the development of artificial intelligence algorithms.

As evidenced by the research conducted in Autonomous Car Driving Using Deep
Learning [1], the successful implementation of an autonomous driving system hinges
on several critical factors. These factors include the delivery of precise results
crucial for safety, reliability and cost-ffectiveness. To generate the initial dataset,
it was initially planned to manually collect data while driving on highways, but
this resulted in fuzzy and unclear data. As a result, an alternative was successfully
evaluated using the CARLA driving simulator. This simulator allows various
environments to be recreated and provides open digital resources such as urban
models, buildings, vehicles and more. CARLA is based on Unreal Engine 4 (UE4)
and is configurable for the use of agent sensors, although it is currently limited
to RGB cameras and dummy sensors for depth and semantic segmentation. In
this particular study, a U-Net Network Model was employed, utilizing a synthetic
dataset. U-Net is a convolutional neural network mainly developed for biomedical
image segmentation, but it does not currently achieve the level of reliability required
for real-world applications. This architecture is designed for semantic segmentation
and uses a contractive and an expansive path. The model, since it was trained on a
synthetic dataset, is not directly applicable in the real world, especially for smaller
objects such as lamps and traffic signals. Architectures with dilated convolutions
are being considered to address this challenge. Currently, the model makes limited
decisions, but the goal of the study is to expand them to include traffic light
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and lane change detection. Additional investigations, such as the one undertaken
by "Moving object detection in videos using principal components pursuit and
convolutional neural networks" [2] delve into the latest applications of Convolutional
Neural Networks (CNNs) in computer vision and object detection. In this context,
the study introduces a novel approach to address the substantial computational
cost associated with video processing. Specifically, Principal Component Pursuit
(PCP) is introduced as a pre-processing step, enabling the segmentation of moving
objects within videos. Tests were conducted on different platforms for image
classification in videos. The use of an image processing algorithm improved
performance on many videos, although some problems remain, such as loss of
objects with little visibility. The use of reduced images has lowed classification
times on all platforms, with improvements ranging from 2% to 25%. It is important
to note that PCP time depends only on image size, not on content. This innovative
strategy substantially reduces the computational burden and classification time, as
it necessitates processing fewer regions.

Another compelling solution emerges from the research in the paper "Autonomous
Driving Designed for Embedded Automotive Platforms" [3] . This work introduces
an end-to-end deep neural network tailored explicitly for autonomous driving. In
this contest, a neural network was trained on data collected while a human driver
was driving. This network learns to control the vehicle based only on camera images,
without further human interaction, this method is known as "behavior cloning".
The network predicts the steering angle, allowing the vehicle to drive autonomously
in the simulator. The goal is to constantly keep the vehicle on the track. Data
were acquired from three cameras during several manual driving sessions in order
to train the training model. In order to obtain good quality samples, the vehicle in
manual mode was driven following the same protocol as for autonomous vehicle
driving. Due to the limited size of the dataset, data augmentation techniques
such as image mirroring and steering angle inversion were implemented. These
techniques expanded the amount of data available for training and improved the
ability to handle turns. In addition, a system of three cameras was used for data
acquisition, each with a slightly different perspective. This choice resulted in an
increase in the amount of data available and improved the vehicle’s ability to
maintain its trajectory during any lateral deviations. Steering angle measurements
related to the side cameras were corrected to ensure proper correlation between
the images and the driving data. Finally, an image cropping process was used in
order to eliminate portions not relevant to autonomous driving, such as the sky,
vegetation and the vehicle hood. The core idea revolves around the development
of a neural network capable of seamless operation even within the constraints of
limited hardware resources. The proposed J-Net deep neural network was compared
with AlexNet and PilotNet, which were reimplemented in order to conduct an
objective performance evaluation of the new design. The models of all three network
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architectures were implemented, trained with the same dataset, and the trained
models were used for processing in a simulator for autonomous driving. The results
were compared in terms of performance, as the ability to drive successfully on
the representative track, and in terms of network complexity, as the number of
trainable parameters and size of the trained model. This endeavor aims to construct
a lightweight Deep Neural Network (DNN) that excels at the task of autonomous
driving on a representative track.

Furthermore, the field of autonomous driving embraces the powerful algorithm
known as YOLOv4, as elucidated in the paper Object Detection for Autonomous
Driving using YOLO algorithm [4]. This class of object detection algorithms play
a key role in object identification. Indeed, they can contribute significantly to
improving road safety by reducing accidents due to human error. This algorithm is
adeptly employed to custom-train models for object detection, with data sourced
from the extensive open images dataset via the OIDv4 toolkit, which boasts a stag-
gering repository of over 6 million images. Subsequent fine-tuning on a customized
dataset has yielded results that are nothing short of impressive. The model that
has been trained demonstrates the ability to identify various objects on the road
by delineating them with a bounding box and providing a category classification.
However, some reports of false positives and false negatives persist and require
further reduction, as they could lead to serious consequences in practical imple-
mentation. The occurrence of false positives, in particular, can cause potentially
fatal accidents, so significant resources are needed to mitigate this risk through
extensive image collection and thorough training.

The study "Impact of Image Corruptions on the Reliability of Traffic Sign
Recognition Using Machine Learning Technique" [5] focuses on the recognizability
of traffic signs by machine learning algorithms under conditions of image corruption.
Traffic signal recognition, indeed, is a complex process that requires considerable
accuracy and reliability. This task involves several significant challenges. First,
lighting conditions on roads can vary greatly, ranging from direct sunlight to
shadows, artificial lighting, and darkness at night. This variability affects the
visibility of traffic signals, making it difficult to identify them accurately. In
addition, traffic signals may be partially hidden by trees, vehicles or other objects,
which can hinder the detection and classification process. The perspective and scale
of signs vary with their distance from the camera, which can make determining their
apparent shape and size more complex. Another challenge concerns variations in
the geometry and shape of the signals themselves. These may have different shapes,
such as circles, triangles or rectangles, which requires considerable flexibility on the
part of recognition systems. Images captured by sensors may also contain noise or
be subject to distortions, such as blurring or perspective distortions, which reduce
image quality and complicate signal recognition. Therefore, it can be understood
that traffic sign recognition is crucial for the implementation of autonomous driving
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and driver assistance systems. However, the challenges go beyond simple image
corruption and include variations in weather conditions, lighting, distortions due
to vehicle motion, and wear and tear on traffic signals. Many algorithms have
been developed to address image correction, but it is important to assess how
these corruptions affect the overall accuracy of traffic sign recognition. The used
dataset includes a total of 62 categories of traffic signs, each represented by images
and numerical labels. To standardize the format of the images and make them
suitable for the training process using neural networks, all images were resized.
The model was trained using the entire training dataset in order to minimize the
overall classification error rate. This training was carried out through the use of
the TensorFlow toolkit. Next, the trained model was applied to the test dataset
and the classification error rates for training and testing were calculated, reporting
the percentage of correct prediction as the result. In order to evaluate the impact
of image corruption on the traffic sign recognition model, four different corruption
methodologies were applied by manipulating some pixels of the images. This study
examined how these may affect the ability of the traffic sign recognition model
and discussed the impact of such corruptions on machine learning techniques, with
the goal of aiding model adaptability in future contexts characterized by image
corruptions. In the case of uncorrupted images, 65.6% of the images were classified
correctly. The analysis showed that as the number of corrupted pixels increased,
different types of corruption produced different results. Removal of a continuous
section of pixels was more damaging than removal of scattered pixels, particularly
as the fraction of pixels removed increased. This study provides an interesting and
essential perspective on improving the correctness of traffic sign recognition by
examining how each variable in image corruption can affect the correctness of its
detection.

Another contribution comes from the work "Pedestrian Detection with YOLOv5
in an Autonomous Driving Scenario" [6] underscores the applicability of the YOLOv5
algorithm within the autonomous driving domain. The study focuses on pedestrian
detection, an important and challenging problem in autonomous driving systems
and a classic topic in the field of computer vision. Vision-based pedestrian detection
must address problems such as pedestrian size, posture, weather, illumination,
occlusion and truncation. Systems based on deep neural networks have been
widely used in image processing and provide high accuracy. However, to be used
on autonomous vehicles, the algorithms must combine high accuracy, real-time
processing efficiency and good generalization ability. Here, two datasets, PASCAL
VOC2012 and KITTI, were used for model training and evaluation. Several
experiments were performed to select the best hyperparameters for training the
model. In addition, the accuracy of pedestrian detection on test images was
evaluated, showing that the model provides accurate results. The YOLOv5 model,
trained with 75 epochs, proved to be the best option for pedestrian detection. It
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achieved high accuracy, offering real-time processing speed. The test images were
taken from the KITTI dataset, which has a different pedestrian distribution than
the PASCAL VOC2012 dataset. This shows that the YOLOv5 model has good
generalization ability and could be successfully applied in new environments, such
as autonomous vehicles on the road. Thus, this study showed that the YOLOv5
model is highly promising for pedestrian detection in autonomous driving scenarios.

"Real-time Traffic Light Detection and Recognition based on Deep RetinaNet for
Self Driving Cars" [7] focuses on the use of autonomous vehicles by concentrating
on some real-time problems related to autonomous driving, such as recognition of
traffic lights, traffic signals and pedestrians, are successfully addressed by state-
of-the-art algorithms based on deep learning. For real-time traffic light detection
and recognition, the paper proposes the use of RetinaNet, a deep neural network
architecture implemented with Keras and TensorFlow on Google Colaboratory’s
cloud platform. This model was trained and evaluated on the Bosch Small Traffic
Light dataset, containing traffic light images at four different classes and high
resolution. In particular, it contains traffic light images labeled as "off," "green,"
"red," and "yellow". The RGB image captured by the on-board camera system is
used as input to the RetinaNet network, which returns the location of the traffic
lights and their class. In this case no preliminary image processing is required.
The training process is described with specific parameters, including the stochastic
optimization used (Adam), the number of epochs, the learning rate, and the
types of losses used. The RetinaNet model achieved a weighted Mean Average
Precision (mAP) of 0.54. This model shows a significant improvement in accuracy
without compromising execution time. The proposed system allows traffic lights
to be detected and their status classified in RGB images using a single RetinaNet
network. The system is capable of real-time operation with improved accuracy,
which could play a key role in real-time control of self-driving cars by achieving
good detection and classification accuracy compared with other deep learning
methods for real-time operations. The performance of the system can be further
improved by training the network with an external dataset or creating additional
image samples by augmenting the existing dataset.

All of these studies exemplify the critical role played by deep learning techniques
and object detection algorithms in the journey toward fully autonomous vehicles,
promising safer, more efficient and more accessible transportation systems for the
future.

The article "The Future of Autonomous Driving" [8] provides a realistic picture of
the prospects for autonomous driving in the near future. It points out that despite
rising expectations, it will still be many years before we see fully autonomous
cars driving without the supervision of a human driver. This is due to the need
to bridge the transition between current assisted Level 1 and semi-autonomous
Level 2 driving technologies and Level 3 highly automated driving. The latter
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should already be a reality on some European roads, but unresolved legislative
challenges are slowing this transition. Europe does not yet have a common set
of regulations for Level 3 or higher automated driving, leaving member states
to issue specific laws and regulations and giving automakers responsibility for
the details of implementation. Countries at the forefront of this issue, including
Sweden, Germany, France and Belgium, allow testing of autonomous vehicles on
roads open to the public, while requiring the presence of a driver on board. There
are also signs of progress in Italy, but the lack of operational autonomous vehicles
is still a significant obstacle. Many automakers are setting ambitious short- and
medium-term goals for the introduction of Level 3 autonomous driving.
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Chapter 3

Neural networks for object
detection

3.1 Machine Learning and Neural Networks
Machine learning represents a sub-discipline of Artificial Intelligence (AI) that has
attracted considerable attention in recent years due to its transformative capabilities
in a variety of fields and applications.

It is defined as a set of methods that enable the automatic identification of
patterns in data and the use of those patterns to predict future events or to make
other forms of decisions under conditions of uncertainty.

Currently, the two main types of ML approaches are: the predictive or supervised
approach and the descriptive or unsupervised approach. The distinction between
these two types is defined by the way each algorithm learns from data to make
predictions.

The first type of algorithm is based on learning a mapping from inputs to
outputs, given a set of labeled input-output pairs, which is called training set. This
approach proves to be particularly valuable when there is a need to train a model
for making predictions on unfamiliar data, relying on the information furnished by
the training dataset.

In the second type of algorithm, instead, there are only inputs and the goal is
to identify "interesting patterns" in the data. This poses a more complex challenge,
as there is a lack of specific metrics to refer to. However, unsupervised learning can
results valuable when it comes to exploring and discovering hidden information in
the data, even if it is not immediately obvious what we are trying to find.

Therefore, ML automates the creation of analytical models, exploiting methods
based on neural networks, statistical models and operations research to trace hidden
information in data. A neural network draws inspiration from the workings of the
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human brain, constituting a processing system composed of interconnected, neuron-
like units. These units process information in response to external signals and
transmit related information between different units, thus creating a sophisticated
learning structure. [9]

Neural networks consist of interconnected nodes, or artificial neurons, organized
in layers. Each neural network has a few components in common: [10]

• Input - Data put into the model for learning and training purposes.

• Weight - Real values that help at organize the variables by importance and
impact of contribution.

• Transfer function - Also known as Summation Function, it has the function
of tying weights and inputs together.

• Activation function - introduces non-linearity in the model.

• Bias - Bias shifts the value given by the activation function.

The strength of neural networks lies in their ability to process massive amounts
of data, recognize intricate patterns, and make predictions or decisions based on
this information. This ability makes them particularly well suited for a wide range
of tasks, ranging from image and speech recognition to natural language processing
and autonomous driving.

It is precisely this versatility that characterizes neural networks, as they are
able to adapt and be used in heterogeneous and diverse applications. As a result,
different types of neural networks are available, each designed to address a specific
task or application domain.

Neurons are usually organized into independent layers. One example of neural
networks are feed-forward networks, where the data moves from the input layer
through a set of hidden layers only in one direction.

Every node in the system is connected to some nodes in the previous layer and
in the next layer. The node receives information from the layer beneath it, does
something with it, and sends information to the next layer.

Every incoming connection is assigned a weight. It is a number that the node
multiples the input by when it receives data from a different node. [11]

3.2 Convolutional Neural Network
Prominent among the various categories of neural networks is the Convolutional
Neural Network (CNN), which is particularly relevant when it comes to analyzing
text or images. This type of network represents a specific variant of the Multilayer
Perceptron (MLP), characterized by fully connected neurons with a type of nonlinear
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Figure 3.1: General Architecture of a Neural Network

activation function. A distinctive aspect of the CNN is its organization into at least
three layers, with the ability to distinguish data that are not linearly separable. A
general example architecture can be seen in Fig.3.1.

In detail, within the CNN, hidden units are endowed with local receptive fields,
similar to what is observed in the primary visual cortex. In addition, weights are
shared or connected between different portions of the image in order to reduce the
number of parameters. Intuitively, this sharing of spatial parameters allows useful
features identified in one part of the image to be reused throughout the model
without having to learn them independently. [9] [11]

3.3 YOLO
3.3.1 YOLO General Overview
The YOLO object detection algorithm, which stands for "You Only Look Once,"
represents a remarkable advancement in the field of computer vision. Its essence
is summarized by a unified convolutional neural network that can simultaneously
predict both the positions of bounding boxes - rectangles surrounding objects of
interest - and the probabilities of object classes in a clear and straightforward manner.
The architecture of this model can be observed in Fig.3.2. A distinctive aspect of
YOLO is its training on complete images, avoiding the need for pre-processing steps
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or extraction of regions of interest. This directly optimizes detection performance,
contributing to highly accurate object detection and recognition. The strength
of the YOLO algorithm lies in the small size of the model and its remarkable
computational speed. YOLO follows a "one-stage" approach, unifying object
location, identifying where they are in the image and object recognition, attributing
specific classes to them, in a single end-to-end process, minimizing computational
complexity. Thus, YOLO high speed enables real-time detection of objects on both
images and video. In addition, YOLO is distinguished by its use of the global
image in the detection process, capturing global information and reducing the error
in identifying the background as an object. An additional strength of YOLO lies
in its generalization capability, as it can learn highly generalized features that can
be transferred to different domains [12] [13].

YOLO can be compared, in part, to a traditional CNN, using convolutional
layers and max pooling for feature extraction from input images. However, there are
some significant differences that distinguish YOLO. The architecture consists of as
many as 24 convolutional layers. These layers work hierarchically to identify edges,
shapes, textures and other relevant features in the images. This deep layering
is crucial to YOLO ability to perform detection effectively. At the end of the
process, there are two Fully Connected (FC) layers that play a key role in sensing.
These layers are responsible for predicting the coordinates of bounding boxes
surrounding objects and the probabilities of object classes. A distinctive feature
of the architecture is the use of convolution kernels of size 1x1 alternating with
kernels of 3x3. This approach is aimed at extracting more abstract and complex
features from the input image, thus contributing to its ability to identify objects
accurately [12] [13].

Figure 3.2: YOLO Architecture

Several versions of YOLO have been developed over the years, characterized by
significant advances that have affected the accuracy, speed and versatility of the
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algorithm. The most significant steps will be briefly explained below: [14]

• YOLOv1 marked the introduction of a new paradigm in object detection,
allowing the detection of objects in a single pass through a neural network.
This innovation represented a breakthrough, but the architecture had some
limitations, including the difficulty in detecting objects close together and the
difficulty in adapting to objects of very different sizes. In addition, YOLOv1
did not impose constraints on bounding box predictions, resulting in an
unstable model, especially in the early iterations of learning, as bounding box
predictions could extend well beyond the edge of the reference grid cell.

• YOLOv2 addressed the initial limitations and made significant improvements.
This version introduced the concept of "bounding box priors" to handle objects
of different sizes and limited the location of anchor boxes with respect to the
relevant cell. In addition, it was trained on a combined dataset that included
even more object classes, remaining a real-time object detection system.

• YOLOv3 further refined object detection by adopting a deeper architecture
and employing different sizes of bounding boxes to capture objects of various
sizes. This version introduced multi-scale predictions and three different sizes
of detection kernels. Moreover, the feature extraction network, Darknet-19,
was revised through the use of additional convolutional layers and residual
layers, bringing the total to 53 layers. This version of YOLO represented a
significant performance improvement.

• YOLOv4 was characterized by its increased speed and accuracy, introducing a
set of optimizations, including data augmentation through the Mosaic method,
a new sensing head without anchor boxes, and a new loss function. This version
innovated through the use of Weighted-Residual-Connections (WRC), Cross-
Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN),
Self-adversarial-training (SAT), Mish-activation, Mosaic data augmentation,
DropBlock regularization, and CIoU loss.[15]

• YOLOv5 is known for its lightness and speed. This version introduced a
lean architecture designed to ensure efficient real-time detection. In addition,
YOLO v5 supports training on different image sizes and offers a number of ad-
vanced features, including hyperparameter optimization, built-in experimental
tracking, and automatic export to popular export formats.

3.3.2 YOLOv5
YOLO version 5 represents a major achievement in the field of computer vision and
machine learning, and is known for its outstanding object detection capabilities. In
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this section, we will delve into the analysis of YOLOv5, as this is one of the main
areas of study in this research work.

The salient features of YOLOv5 include:

• Easy installation: YOLOv5 requires only the installation of "torch" and some
lightweight Python libraries. This ease of installation makes it very accessible
to developers who wish to integrate machine vision technologies into their
applications.

• Fast training: YOLOv5 models train extremely fast, which helps reduce
experimental costs during model development.

• Working inference ports: YOLOv5 offers the ability to perform inference on
single images, sets of images, video streams or via webcam ports.

• Intuitive structure of the data file system: the structure of data file folders in
YOLOv5 is intuitive and easy to navigate during development, simplifying
the developer’s work.

• Easy implementation on mobile devices: YOLOv5 can be easily converted
from PyTorch weights to ONNX weights and then to CoreML for iOS, making
it suitable for implementation on mobile devices.

• "Anchor-free Split Ultralytics Head" adoption: represents a departure from
traditional object detection models, which rely on predefined bounding boxes
to predict the position of objects. This type of approach makes sensing more
flexible and adaptable, improving performance in a variety of scenarios.

YOLOv5 also challenges the typical trade-off between speed and accuracy. It
offers a calibrated balance that ensures real-time detections without compromising
accuracy. This feature is especially useful in applications that require rapid
responses, such as autonomous vehicles, robotics and real-time video analysis.

In addition, YOLOv5 provides a variety of pre-trained models, each of which is
optimized for specific tasks such as inference, validation or training. [16]

The architecture of YOLOv5 was developed theoretically and has been made
available through a repository on GitHub. Ultralytics implemented YOLOv5
using the PyTorch framework, one of the most widely used frameworks in the
artificial intelligence community. This architecture is only a preliminary basis that
researchers can adapt to their own needs, making adjustments such as adding layers,
removing blocks, integrating additional image processing methods and varying
optimization methods and activation functions.

It can be noted that YOLOv5 is an open source project that includes a set of
object identification models and algorithms based on the YOLO model, pre-trained
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on the COCO dataset. These models are accessible and offer a wide range of
applications in different fields.

Finally, YOLOv5 is available in several versions, as is possible to see in
Fig.3.3,each with increasing levels of accuracy and different training times. These
versions include Nano(n), Small (s), Medium (m), Large (l) and Extra Large (x),
this enables the selection of the one most suited to the project at hand.

Figure 3.3: YOLOv5 versions

3.4 SSD Mobilenet
In the context of the SSD Mobilenet model, Convolutional Neural Networks are
used for the detection and classification of objects in an input image. This model
is specially designed for the use of CNN in the context of classifying objects into
predefined classes. Its main feature is that it is a lightweight and fast model, which
exploits the MobileNet architecture for image feature extraction and the Single
Shot Detector (SSD) algorithm for real-time detection. This combination makes it
particularly suitable for mobile applications and situations where fast and efficient
object detection is critical.

The SSD model makes use of an architecture known as the "Single Shot Multibox
Detector", shown in Fig.3.4, based on a forward convolutional network. This
algorithm was developed with the goal of detecting objects in a single iteration by
exploiting a deep neural network. It operates at different scales and is capable of
detecting objects of varying sizes within the image. To achieve this, a basic network
is employed to extract features from the image. Then, additional convolution
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layers generate a series of feature maps with different sizes in order to facilitate the
detection process. In addition, a nonmaximal suppression technique is applied to
ensure that only a bounding box is maintained for each detected object.

The SSD approach adopts a multi-reference and multi-resolution detection
methodology. In other words, it establishes a series of anchored boxes with different
sizes and proportions at different positions in the image, thus providing for a
detection box based on these references. This method makes it possible to detect
objects at various scales and in different parts of the network. The SSD model
implements an algorithm that can detect different classes of objects in images by
generating a confidence score related to the presence of a category of objects in
each predefined field. Further corrections are made to the bounding boxes in order
to better fit them to the shape of the objects themselves. The particularity of this
network lies in its adaptation to real-time situations, since it does not require the
extraction of additional features based on assumptions about the bounding boxes.
The entire process takes place within a single deep neural network, and object
detection occurs at various scales, allowing objects of different sizes to be detected.
[17] [18]

Figure 3.4: SSD architecture

In parallel, the MobileNet model is a convolutional neural network architecture
designed specifically for mobile applications. Its structure is based on deep separable
convolutions, with the exception of the first layer, which employs a standard
convolution. Each layer is followed by batch normalization and the ReLU 6
function, with the exception of the last fully connected, nonlinearity-free layer,
which feeds a softmax layer for classification. The distinguishing feature of this
architecture is that it splits the standard convolution into a depth convolution
and a 1x1 convolution, known as point convolution. The in-depth convolution
applies a filter to each input channel, while the point convolution generates a 1x1
convolution to combine the outputs of the in-depth convolution. This partitioning
contributes greatly to reducing the overall computational cost and model size. Batch
normalization allows further data optimization by adjusting the learning parameters,
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learning rate, dropout ratio and limiting gradient vanishing. It should also be
noted that this architecture is able to take advantage of learning transfer, requiring
a minimal amount of computational power for both training and application.

The innovative combination of deep convolutions and point convolutions in the
MobileNet framework speeds up the learning process and reduces computation
time. Note that the model also has a residual connection, an element that improves
the accuracy of the architecture compared to those without residual connections.
[18] [19]

Regarding the versions of the MobileNet model there are two main variants, as
can be seen from the Fig.3.5 MobileNetV1 is in conjunction with SSD, this version
eliminates the last layers such as FC, Maxpool and Softmax. Instead, it exploits
the outputs of the last convolution layer in MobileNet, subjecting them to further
convolution operations to obtain a set of feature maps. These maps are, then, used
as inputs to the object detection process. The main feature of this version is the
adoption of depth-separable convolutions, which greatly helps to reduce the size
and computational cost of the model, making it suitable for situations with limited
computational resources. MobileNet-SSDV2 is the second edition of the MobileNet
family. An inverted residue structure is introduced to improve the modularity of
the model. This version has allowed the elimination of non-linearities present in
the narrow layers. The structure of the residual layers has been adapted based on
the ResNet architecture, allowing the accuracy of the deep convolution layers to be
improved without adding significant computational load. In addition, "bottleneck"
layers are used to reduce the input size, and an upper bound is applied to the
ReLU layer to limit the overall complexity. [20] [19]

3.5 SSDmobilenetv2 vs YOLOv5
In the scientific literature, elements of convergence and divergence have emerged
between the two models selected for this analysis, namely YOLOv5 and SSD
MobileNetv2. Both of these models fall into the category of "one-stage detectors",
in which object detection is a simple regression problem in which the model learns
the probability classes and bounding box coordinates.[21]

An example study conducted in "Object Detection using YOLO And Mobilenet
SSD: A Comparative Study" [22] analyzed the YOLO object detection model and
the MobileNet SSD model and evaluated their performance in different scenarios.
Each model has unique characteristics and is effective in their respective applications.
In particular, YOLO offers higher accuracy than MobileNetSSD, while the latter
stands out for higher detection speed, especially in the presence of small objects.

In another relevant contribution entitled "Comparison of Object Detection
Algorithms for Objects at the Street Level" [23] a detailed analysis of object detection
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Figure 3.5: MobileNet-V1 vs MobileNet-V2 architecture

algorithms including MobileNetv2 SSD and YOLOv5 - particularly the YOLOv5l
and YOLOv5s variants - focusing on object detection in street-level contexts is
presented. In this study, a modified Udacity Self Driving Car dataset was used,
which was further extended through various image enhancement techniques. The
results show that YOLOv5l is the most accurate algorithm, while SSD MobileNetv2
FPN-lite is one of the fastest in roadside object detection. However, further analysis
indicates that YOLOv5s is the ideal algorithm for real-time applications, such as in
the case of self-driving vehicles, as it offers relatively accurate results in reasonable
time.

Another study titled "Comparison of YOLOv3, YOLOv5s and MobileNet-SSD V2
for Real-Time Mask Detection" [19] focuses on evaluating different methodologies
for real-time mask detection. This study analyses three widely used machine
learning algorithms: YOLOv3, YOLOv5 and MobileNet-SSD V2. The results show
that YOLOv5s is the most suitable model for real-time applications, as it combines
accuracy and speed optimally. In contrast, MobileNet-SSD V2 offers similar speed
to YOLOv5s, but with a trade-off in accuracy.

These analyses highlight the importance of balancing accuracy and speed in
real-time object detection applications. The choice between models depends on the
specific needs of the application, with YOLO usually excelling in terms of accuracy
and MobileNet SSD generally in terms of speed.
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Hardaware and software
analysed tools

4.1 Environment
To conduct a more in-depth evaluation, we chose to run the training of the YOLOv5
and SSD MobileNet models in two separate contexts in order to explore their
limitations and evaluate their respective capacity.

4.1.1 NVIDIA® Jetson Nano™
The selection of the development environment was mainly oriented toward the
NVIDIA® Jetson Nano™, a choice motivated by its ability to support future
developments related to the evolution of this thesis. The device in question, showed
in Fig.4.1, represents a compact, yet high-performance computer characterized by a
low power consumption of only 5 watts. Such a platform enables the simultaneous
execution of several neural networks, making it particularly suitable for applications
such as image classification, object detection, segmentation and language processing.

The NVIDIA Jetson Nano operates in a Linux-based environment and enjoys
active support from a active community, with numerous open source projects
distributed across the network. This characteristic gives the device a particular
adaptability to academic approaches, providing a rich context for resources and
collaborations to carry out the present research.

Fig.4.2 shows the Jetson Nano technical specifications.
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Figure 4.1: NVIDIA® Jetson Nano™

Figure 4.2: Technical specifications NVIDIA® Jetson Nano™
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4.1.2 Google Colab
In this project, another platform, Google Colab, was used to conduct a more
detailed analysis of the two models.

Google Colab represents an environment in which code can be executed directly
on the Cloud. To take advantage of the features of this platform, a Google account
is required, through which one can log in and gain entry to the dedicated page.

Google Colab infrastructure is based on Jupyter Notebooks, interactive docu-
ments in which code can be written and executed. These documents allow code
to be divided into cells, each of which can contain informational text, possibly
formatted in markdown.

The use of such notebooks is convenient and widely used in the fields of data
science and machine learning. Through a single document, it is possible to perform
all the steps of an analytical or computing process, as well as describe its behavior
in natural language. Notebooks are an effective tool for explaining or illustrating
how an algorithm works.

Trough Google Colab, it is possible to import an image dataset, train an image
classifier and evaluate the model, all with just a few lines of code. Colab’s notepads
run the code on Google cloud servers, allowing you to use the power of Google
hardware, including GPUs and TPUs, regardless of the performance of your own
machine. [24] [25]

4.2 Dataset
The initial selected dataset had four different classes, "Traffic light", "Stop",
"Speedlimit", and "Crosswalk". The goal was to divide the dataset into train
(80%), test (10%), and validation (10%). The dataset was downloaded from
https://www.kaggle.com/datasets/andrewmvd/road-sign-detection and the
files were in .xml format. Since SSD MobileNetV2 and YOLOv5 required different
label formats, it was necessary to convert the .xml files into its corresponding .txt
format file using a Python script.

In the case of SSDMobileNetV2, the .xml format, as shown in Fig.4.3, includes
the following sections:

• <folder>: Name of the image folder.

• <filename>: Filename of the image file.

• <size>: Information about the size of the image (width, height, depth).

• <segmented>: Information about whether the object is part of a segmented
area.
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Figure 4.3: Label format xml

Figure 4.4: Label format txt

• <object>: Annotated object information, including name, pose, truncation,
occlusion, difficulty and bounding box with coordinates.

• <pose>: The location of the object.

• <truncated>: Shows whether the object is partially visible or cropped in the
image, 0 indicates that it is not truncated.

• <occluded>: Specifies whether the object is occluded by other objects, 0
indicates that it is not occluded.
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• <difficult>: Means whether the object is difficult to recognize, 0 means it is
not difficult.

In addition, the general file where all the labels are contained will be a .txt file,
as indicated in the Fig.4.4, where there will be a simple list containing the name of
each class.

Regarding YOLOv5, as can be seen in the Fig.4.5 the .txt format includes the
following information for each image:

• <class>: Label of the object class.

• <x_center>: X-coordinate of the center of the bounding box normalized to
the size of the image.

• <y_center>: Y coordinate of the center of the bounding box normalized with
respect to the size of the image.

• <width>: Normalized width of the bounding box relative to the image size.

• <height>: Normalized height of the bounding box relative to the image size.

Figure 4.5: Label format txt

Figure 4.6: Label format yaml

The .yaml configuration file for YOLOv5 specifies the training and validation
image paths, the total number of classes and the class names. Such as we can see
in Fig.4.6.
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4.3 Training model
In this section, we will proceed with the study and development of the training, as
well as the implementation on Jetson Nano, of the two models considered in the
analysis. The initial approach for both models involves training in a high-efficiency
environment, characterized by the absence of severe constraints on CPU and GPU
processing power, such as that provided by Google. Next, migration to the NVIDIA
device is planned in order to evaluate its performance, including frames per second,
through the use of the ASTRA camera.

During the study, especially in the case of SSD MobileNet, problems related to
the conversion phase emerged, which made it necessary to develop the training
directly on the device. This adaptation, however, potentially affected the overall
quality of the results obtained. Deeper details regarding these issues will be covered
in the next sections.

4.3.1 SSD MobileNet
As previously discussed, various approaches were explored both to comprehensively
study the models and due to necessary modifications made throughout the study.

Google Colab

Initially, the model was studied on the Google Colab platform. The choice was
motivated by the expectation of faster model training facilitated by Google GPU,
thereby minimizing the utilization of the computer CPU. This was particularly
advantageous when dealing with complex models. The initial plan was to conduct
the training on Colab and subsequently convert the model for testing on the
NVIDIA Jetson Nano.

The fundamental steps involved were as follows:

1. Prepare the dataset and upload it to the Google Colab folder.

2. Split images into train, validation, and test folders.

3. Create the labelmap, that is a structured mapping or dictionary that associates
class labels with numerical identifiers and it defines and organizes the categories
or classes that a model is trained to recognize. Each class is assigned a unique
numerical label, enabling the model to output predictions with corresponding
class identifiers.

4. Choose the batch size, that is the hyperparameter that defines the number of
samples to work through before updating the internal model parameters.
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5. Determine the number of steps; here, the term "steps" referred to the mini-
batches processed during training, and the choice was not expressed in terms
of epochs. The number of steps, on the other hand, refers to the number
of mini-batches that the training dataset is divided into. In each step, the
model processes one mini-batch of data. The number of steps is related to the
size of the dataset and the batch size. It is calculated as the total number of
examples in the dataset divided by the batch size. The formula for calculating
steps in relation to epochs is shown in equation (4.1).

Number of Steps =
A

Number of Examples
Batch Size

B
× Number of Epochs (4.1)

The Number of examples are data points or instances in the dataset. In the
case of image recognition or object detection, each example could be a distinct
image. Then, the total number of examples represents the size of the dataset.

6. Conduct the model training.

7. Calculate mean Average Precision (mAP). The mAP is a metric used to
measure the performance of a model that focuses on object detection tasks and
information retrieval on images. The mAP uses the ground-truth bounding
box, compares it to the detected box and returns a score. The higher the mAP
score, the more accurate the model detects and makes correct predictions.

mAP = 1
N

NØ
k=1

APk (4.2)

Where:

mAP Average of the mean accuracies for each class.
N Total number of classes.

APk Average accuracy for the class k.

AP =
Ø

n

(Rn − Rn−1)Pn (4.3)

Where Rn and Pn are the precision and recall at the nth threshold.

The SSD MobileNet model, being intricate due to the composition of two networks,
necessitated several hours of training.

Steps Number of training hours mAP
40000 6 69.16%
60000 8 74.52%
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The mAP, unfortunately, does not exhibit a high value, likely attributed to the
dataset utilized. Specifically, the dataset demonstrated excellent results for the
"Stop" and "Speedlimit" classes, reasonably good outcomes for "Crosswalk" and
notably poor performance for "Traffic Light". This discrepancy can be attributed
to the abundance of data for the first two classes, accompanied by empirically
superior quality in the corresponding images.

Upon scrutinizing individual classes where the number of training steps was set
to 40,000, the following outcomes were observed:

Class AP
Stop 85.53%
Speedlimit 80.73%
Crosswalk 67.61%
Traffic Light 42.77%

In the Fig.4.7 there are some test images where it is possible to notice the
performance of the model application. As mentioned above, even from these two
test images alone it is possible to see the goodness of the results of the "speedlimit"
class and, on the other hand, the fragility of the accuracy of the "crosswalk" class.

Figure 4.7: SSD Mobile Net detection of test images

The resulting model was in the .pb format. The .pb format, also known as proto-
col buffer (protobuf), is employed in TensorFlow to store models. Protocol buffers,
developed by Google, offer a systematic approach for data storage, enhancing data
transport efficiency and enforcing a structured format. The file saved_model.pb

27



Hardaware and software analysed tools

specifically stores the TensorFlow program or model, along with a series of named
signatures, each identifying a function that takes tensor inputs and produces tensor
outputs.[26]
The initial intention was to locally save this model and subsequently convert it
into a .onnx model compatible with Nvidia Jetson Nano, in order to evaluate its
functionality using the camera module. However, despite multiple attempts, the
conversion proved unattainable. Converting a TensorFlow model into an ONNX
model for Jetson Nano posed significant challenges due to the complexity of the
process. Consequently, this approach had to be abandoned. Although it pre-
sented a notable advantage in terms of CPU efficiency, the inability to validate its
functionalities rendered it impractical for further experimentation.

Jetson-inference folder

At a later stage, it was chosen to take advantage of the functionality offered by
the "jetson-inference" repository, developed by NVIDIA developer itself for educa-
tional and instructional purposes. This repository facilitates the utilization of a
customized dataset for training a model, followed by direct testing on the Jetson
device.
The jetson-inference repository serves as a robust inference and real-time vision
Deep Neural Network (DNN) library tailored for NVIDIA Jetson devices. Lever-
aging TensorRT, the project efficiently executes optimized networks on GPUs,
supporting both C++ and Python implementations. For model training, PyTorch
is employed, enhancing the versatility of the framework. Key DNN vision primitives
are supported, encompassing imageNet for image classification, detectNet for object
detection, segNet for semantic segmentation, poseNet for pose estimation, and
actionNet for action recognition. This comprehensive support caters to a wide
array of computer vision applications on Jetson devices. Moreover, the repository
includes illustrative examples demonstrating practical applications such as live
camera feed streaming, web application development utilizing WebRTC, and seam-
less integration with ROS/ROS2. [27]
In this situation, the strategy of "transfer learning", an approach that facilitates
the retraining of a DNN model on a new dataset, is adopted, requiring less time
than creating a network from scratch. Through transfer learning, the weights of an
already trained model are refined to classify a customized dataset. [28]

In order to compose a custom training of the model, the following steps must
be followed:

1. Initially, it is necessary to start the Docker container by running the dock-
er/run.sh command, as shown in Fig. 4.8. This command will automatically
download the correct version of the container from DockerHub, based on the
currently installed version of JetPack-L4T. In addition, the command will
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mount the relevant data directories and devices, enabling the use, for example,
of cams or displays within the container. [29]

Figure 4.8: Docker container start

2. Next, it is required to import or download the folder containing the images and
their labels intended for training your model. This process involves splitting
the data into training, validation and test sets.

3. By Running the python script train_ssd.py from the command line, as high-
lighted in Fig.4.9, it will be possible to start the model training process. At
this stage, you will need to specify the parameters of the number of batch
sizes, workers and epochs. In Table 4.1 [30], the descriptions of the functions
of each command are given concisely.

Figure 4.9: Training command

In this context, however, initial problems occurred due to a lack of CPU
memory, as evidenced by the error visible in Fig.4.10.
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Command Description
–data the Location of the dataset
–model-dir Directory to output the trained model checkpoints
–batch-size Number of training data used in a single iteration
–epochs Number of complete runs through the entire data set when training a model
–workers Number of data loader threads (0 = disable multithreading)

Table 4.1: Command-Line for training

Figure 4.10: OutOfMemory error

To address this issue, several approaches were explored to alleviate the load on
the Jetson CPU. Initially, it was decided to reduce the size of the dataset to a
single traffic signal, with the goal of making the dataset more manageable and
occupying as little memory space as possible. In particular, it was decided to
focus exclusively on the detection of the "Stop" signal to avoid overloading
the CPU.
Subsequently, attempts were made to address the problem by gradually re-
ducing the number of batch sizes 32 down to 2. However, even with minimal
batch sizes, problems of insufficient memory persisted.
In general, a larger batch size speeds up the training of the model for each
epoch. This is because, depending on available computational resources, the
machine can process much more than a single sample at a time. However, the
trade-off is that even if the machine can handle very large batches, the quality
of the model may degrade and it may have difficulty generalizing to previously
unseen data.
Reducing the batch size reduces the computational power required by the
Jetson, but this affects the performance of the algorithm. Despite these
adjustments, the problem of insufficient memory persisted.
Therefore, the option of setting the number of workers to 0 was considered,
even though this resulted in a reduction in model performance. However, even
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with this change, the problem remained.
The only remaining solution was to increase the memory of the Jetson. It
was suggested that an additional swap space of 4 Gigabytes be mounted to
provide more virtual memory during resource-intensive tasks, such as training
machine learning models.
The process to increase memory included disabling ZRAM, creating a per-
manent 4-gigabyte swap file, and using this additional swap space to prevent
running out of RAM during model training. This modification allowed suc-
cessful continuation of model training.

4. Later, the model will be archived and it will be possible to convert it to
the ONNX (Open Neural Network Exchange) format, as showed in Fig.4.11
that denotes an open standard created for representing machine learning
models. ONNX establishes a standard file format to allow artificial intelligence
developers to use models with different frameworks, tools, runtimes and
compilers.[31]

Figure 4.11: Convertion to ONNX model

5. After the conversion is done, it will be possible to employ the detectnet
command to conduct various tests, as shown in Fig.4.12, initiating access to
the camera by the appropriate command-line selection.
Tests and results will be discussed in the following chapter.

SSD MobileNet with COCO128

An alternative way to ensure dataset diversity is to use the pre-trained SSD-
MobileNet model, included in the jetson-inference directory, which exploits the
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Figure 4.12: Detectnet command

COCO128 dataset. We refer to this dataset as a subset of 128 images of the larger
COCO dataset. This subset reuses the training set for both validation and testing,
with the goal of demonstrating the suitability of its training process and ability to
fit this small dataset.
The COCO128 dataset includes images of complex scenes containing common
objects, and is annotated with bounding boxes and other relevant information. It
is an appropriate choice during the initial testing phase of a new model, especially
where the main problem is the lack of memory.
The full version of the dataset, in contrast, contains thousands of labeled images,
covering more than 80 object categories. However, it was necessary to customize
the object recognition phase so as to identify only those objects relevant to the
specific investigation, through an appropriate script in python. These objects do
not exactly match the initially selected dataset tested in the previous two cases.
The chosen classes include: "stop sign", "traffic signal" and "traffic light".
In this circumstance, the ObjectDetector was implemented, as seen in Fig.4.13,
which is designed to call the detectNet function within the jetson.inference package.
The Jetson Inference library is designed to run deep neural networks on NVIDIA
Jetson platforms. The detectNet class is specifically used for object detection.
In the context of this implementation, the detectNet function is called by providing
the name of the pre-trained model, specifically ssd-mobilenet-v2, which is the model
under study in this section. In addition, the threshold parameter is specified, which
is intended to establish a confidence threshold for object detection. Objects with a
detection confidence below this threshold are ignored. In the detect_objects method,
the image is converted from BGR color space to RGBA using the OpenCV library.
Then the array data is converted to float32. The converted array is then transferred
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to the GPU memory using the Jetson Inference library. Finally, the Detect method
of the detectNet object is called, passing the image, width and height. This will
return a list of detections containing information about the objects found in the
image. In the GetClassDesc method instead A mapping between class IDs and
their descriptions is defined. If the class is detected, it returns the corresponding
description.

Figure 4.13: Class Object Detector
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4.3.2 YOLOv5
Google Colab

During this phase, the initial dataset was trained, as previously outlined at the
beginning of the chapter, using the GPU available on Google Colab. To optimize
the training process for the traffic signals selected at the very beginning of the
project, the Colab ultralystics sheet provided directly by YOLO was used and
adapted for the purpose of this project.

Here are the main steps to train this model:

1. Prepare the dataset and upload it to the Google Colab folder.

2. Divide the dataset between training, validation and testing.

3. Download the folder directly from https://github.com/ultralytics/yolov5.

4. Prepare and upload the .yaml file containing the labels.

5. Start YOLOv5s training with the Python script called train.py by setting the
parameters in the Tab.4.2

Command Description
– img Sets the input image size during training
– batch Number of training data used in a single iteration
– epochs Number of complete runs through the entire data set when training a model
– data Specifies the YAML configuration file containing information about

the dataset, such as image path and labels
– weights Specifies the initial weights of the model. In this case,

the model begins training using the pre-trained weights for YOLOv5s
– cache This parameter enables caching of data during training,

which can speed up the training process

Table 4.2: Command-Line for training

Model selection was directed toward YOLOv5s, the second smallest and fastest
configuration within the available options. This decision was guided by finding
a balance between obtaining satisfactory results, network complexity, and, conse-
quently, efficiency in training time. In detail, in Figure 4.14, a comparative analysis
of the different versions of the model is provided, based on results obtained through
the COCO dataset. These results include metrics such as FPS, mAP and model
execution time expressed in milliseconds. [32]

Different combinations of batch-sizes and epochs were experimented with, as
detailed in Table 4.3. This study was conducted by taking into consideration the
training speed and simultaneously calculating the mean Average Precision.
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Figure 4.14: Yolo model comparison

Epochs Batch-size Training time mAP
100 16 35 min 97.7%
100 32 33 min 98.2%
100 64 32 min 98.9%
100 128 – CUDA out of memory
200 16 71 min 98.7%
200 32 65 min 97.5%
200 64 64 min 97.7%
300 16 80 min 98.2%
300 32 67 min 98.3%
300 64 97 min 97.6%

Table 4.3: Training results of YOLOv5 model in Google Colab

In the context of this analysis, significant improvements were found on all classes
considered. The results obtained were more than satisfactory for both "Stop" and
"Speed Limit" classes. This optimization was also extended to the other two classes,
namely "Traffic Light" and "Crosswalk." Despite the fact that the latter had a lower
number of images, a problem encountered in the previous model, performance was
found to be almost equivalent to the first two classes. This positively affected the
mean accuracy values, which were evaluated through various parameters such as
batch-size and training epochs. By virtue of these adjustments, the results achieved
were excellent, underscoring the effectiveness of the changes made to the model
under consideration. The validity of what has been stated is supported by the
outcomes found in Tables 4.4 and 4.5, which detail the AP for each class in the
best combinations of batch-size and epochs identified.
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Class AP
Stop 99.5%
Speedlimit 99.5%
Crosswalk 99%
Traffic Light 94.6%

Table 4.4: AP YOLOv5 model epochs = 300 batch − size = 32

Class AP
Stop 99.5%
Speedlimit 99.5%
Crosswalk 98.9%
Traffic Light 94.6%

Table 4.5: AP YOLOv5 model epochs = 300 batch − size = 16

The efficiency achieved is made possible by a faster training process, facilitated
by the leaner and more advanced architecture of the YOLO model, which proved
superior to the complexity of the previously used model. The default model includes
8 workers, a configuration that has been retained. This setup provides a clear idea
of the power of the model, due to the parallelization of processes, which is also
supported by the google GPU that enables such execution.

In the Tab.4.3 it can be seen that the batch-size increase beyond the value of 64
was prevented by the circumstance of CUDA memory exhaustion. This condition
indicates that the GPU used during the training process has reached its maximum
available memory capacity, preventing the execution of further operations and thus
requiring the batch-size to be reduced.

Considering that the model was trained in an online environment, the camera
view was impractical, so it was tested using a set of images. The confidence threshold
was configured to the value of 0.75, a parameter that sets the minimum probability
required for a prediction to be considered valid. The tests were performed using the
optimal configuration with batch−size = 32 and epochs = 300. However, it should
be noted that the results would not vary significantly with other configurations, as a
high level of performance was found under basically all conditions. In Fig.5.14 it can
be seen that the model is able to detect signals even under suboptimal conditions,
such as partially occulted signals or positioned at considerable distances.
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Figure 4.15: Tests performed with epochs = 300 and batch − size = 32

Yolo for Nvidia Jetson Nano

The YOLOv5 network model is implemented in the PyTorch framework, an open
source machine learning infrastructure based on the Torch library used for ap-
plications such as computer vision and natural language processing. However,
there was a drawback related to the Python requirements needed to run YOLOv5
on the Jetson Nano device. The documentation specifies the need for Python
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3.8, while Jetson Nano is configured by default with Python 3.6. Addressing this
disparity may involve creating a virtual environment or migrating the entire system
to Python3.8. However, the latter option can prove problematic since changing the
default Python version on the device can lead to technical difficulties and risks to
system integrity. The solution adopted was to download Python3.8 and create a
virtual environment with that version. This made it possible to clone the YOLOv5
directory belonging to Ultralystic, thus overcoming Python version limitations.
Python virtual environments were used as a tool to isolate the working environment
from other system components, providing an efficient approach to testing.

Performing object detection on traffic signals using YOLO on Jetson Nano can
be approached through several methods, as was also discussed with the previous
model. Indeed, one option could be to use the COCO128 dataset directly from the
default YOLO folder. However, considering that it is possible to import models
previously trained on Google Colab, one could opt to use a model trained specifically
for the four classes of interest: "Stop", "Traffic Light", "Crosswalk", and "Speed
Limit". The option of training a model directly on Jetson Nano could be considered,
but it should be noted that this approach could result in lower performance than
using already trained models. Moreover, training the model on Jetson could
require substantial demands on resources and time, particularly attributable to the
constrained RAM capacity inherent in the Nvidia Jetson Nano. For instance, the
necessity to reduce the maximum number of workers from the default value of 8
to 1 is influenced by RAM restrictions, consequently leading to a notable decline
in the results achieved compared to training the model on Colab. By utilizing
the detect.py script provided within the official GitHub repository of Ultralytics,
multiple configurable parameters become available. The tests conducted can be
seen later in the 5.2. The primary parameters are outlined in the following Tab.4.6.
However, a limitation can be identified in the use of the YOLO model on Jetson
Nano through the camera, manifested in the reduced frame rate per second, which
completely contrasts the goodness of the accuracy in detection.

It is possible to partially improve them by decreasing the quality of the camera,
which will, however, irretrievably worsen the recognition of signals, but still does
not reach the FPS we had in the other model. In particular, the parameter -
img-size is expressed in multiples of 32 pixels and is set to 640 by default. With
this parameter set as default we will have very good results in terms of accuracy,
but poor in terms of FPS. Different configurations were tried, to see how they
increased FPS, but without losing traffic sign detection, as can be seen from the
Tab.4.7.

The maximum allowable limit of −img − size = 96 was configured in order to
maintain the functionality of object detection. However, it is important to note
that with this setting, the ability to detect signals placed at a distance greater
than 20 cm is compromised. Therefore, it is recommended to consider using a
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Command Description
– img-size Image size during inference
– weights Specifies the custom trained YOLOv5 weights file
– conf Sets the confidence threshold
– device Specifies the device for inference

Table 4.6: Command-Line for detection

– img-size FPS
96 8
128 6
256 4
320 2.5

Table 4.7: YOLOv5 FPS on Jetson Nano

maximum value of − − img − size = 128 through the use of Ultralytic detect.py
script. However, the restrictions experienced in relation to the number of frames
per second do not allow for alternatives other than finding a solution aimed at
improving this performance, as will be discussed in more detail in the very next
section.

FPS improvement

The most effective strategy to mitigate the issue related to low frame per second
rate is to convert the model from a .pt to an .onnx format. Such conversion allows
the model to be used in conjunction with the DeepStream SDK library, making use
of the GitHub repository available at https://github.com/marcoslucianops/
DeepStream-Yolo.git. This resource is explicitly recommended by both the
official NVIDIA site and Ultralytic. [33]

The JetPack SDK, which powers the Jetson modules, stands out as the most
comprehensive solution, providing a complete development environment essential
for creating end-to-end accelerated AI applications. This robust toolkit significantly
reduces the time required to bring AI innovations to market.

JetPack includes Jetson Linux with bootloader, Linux kernel, Ubuntu desktop
environment and a wide range of libraries dedicated to GPU computation accelera-
tion, multimedia, graphics and computer vision. It also includes a repository of
examples, comprehensive documentation, and a suite of development tools designed
for both host computers and development kits. Significantly, JetPack supports
advanced SDKs such as DeepStream for video analysis, Isaac for robotics, and Riva
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for conversational AI. [34]
A notable feature is the unprecedented flexibility to run any Linux kernel, offering

a broad spectrum of Linux-based distros from Jetson ecosystem partners. NVIDIA
DeepStream is a streaming analytical toolkit for building artificial intelligence-
powered applications. It uses artificial intelligence and computer vision to analyze
streaming data from multiple sources, generating real-time insights.

The DeepStream SDK, with support for C/C++ and Python, offers hardware
acceleration, bidirectional security between edge and cloud, and integrates libraries
such as CUDA, TensorRT, Triton Inference Server. Optimized for NVIDIA GPUs, it
can be implemented on Jetson, as in the case of this project, or on edge/datacenter
GPUs. The graph architecture, based on GStreamer, includes more than 20
hardware-accelerated plugins. DeepStream handles output capture, decoding,
preprocessing, inference, tracking, and visualization, offering output options such
as streaming, local saving, or sending metadata to the cloud through various broker
protocols. It is possible to visualize a schema from the Fig.4.16. [35]

Figure 4.16: DeepStream Overview grapg architecture

The following are the main steps to enhance YOLOv5 in terms of FPS on
NVIDIA Jetson Nano:

1. Download the DeepStream SDK folder from the official NVIDIA Jetson
Nano website, considering compatibility with the version of JetPack cur-
rently in use. Specifically, for this study, the version of JetPack used is
4.6-b199. Therefore, it is essential to download DeepStream 6.0.1 for Jet-
son from the official website https://developer.nvidia.com/embedded/
deepstream-on-jetson-downloads-archived.

2. Next, download the repository at https://github.com/marcoslucianops/
DeepStream-Yolo.git, which facilitates the conversion of the file to the .onnx
format. This conversion can be performend on the Jetson device but it was
preferred to perform the conversion on Colab. This choice was made to avoid
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additional load on Jetson Nano CPU, saving time and resources by taking
advantage of Google GPU. As a result, the previously trained model with .pt
extension is converted to .onnx.

3. At this point, move the .onnx model and the .txt file containing the labels to
the previously downloaded folder on Jetson Nano.

4. Compile the CUDA library, selecting a version compatible with DeepStream
SDK 6.0.1, previously downloaded. In this case, the version to compile will be
CUDA 10.2.

5. After compiling the library, customize some configuration files, such as con-
fig_infer_primary_yoloV5.txt, where the model name and number of classes
are specified. Also, in the deepstream_app_config.txt file, specify the configu-
ration file in use and modify the internal code to establish a direct connection
to the camera for testing purposes. In the latter document, changes were
made to several parameters in order to customize their adaptation to both the
reference device and the previously developed network. The file in question is
shown in Fig.4.17, while a detailed explanation of the corresponding sections is
provided in Tab.4.8. In the specific context of [source0], a complete adaptation
was made in order to enable the Astra camera. This adaptation involved the
configuration of the parameters specified in Tab.4.9. [36] [37]

Group Configuration Group
Application Group Application configurations that are not related to a specific component.

Tiled-display Group Tiled display in the application.
Source-list Source URI provided as a list. There can be multiple sources.

OSD Group Specify properties and modify the on-screen display (OSD) component
that overlays text and rectangles on the frame.

Sink Group Specify properties and modify behavior of sink components
that represent outputs such as displays and files for rendering,

encoding, and file saving. The pipeline can contain multiple sinks.

Table 4.8: Configuration Group in deepstream_app_config.txt

6. Finally, run the command deepstream-app -c deepstream_app_config.txt. The
first time this command is run, the .engine file will be created; then the window
will open from which the detection can be viewed.

The original model in .pt format was previously converted into two onnx file
variants: one conforming to the FP32 standard and the other "simplified", which is
characterized by a lighter structure, thus being more suitable for FP16 configuration.
In addition, in order to generate the two files in .engine format, the correct setting
of certain parameters, such as batch-size and network mode, to be configured in
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Key Meaning Selected value
enable Enables or disables the source 1
type Choice of source type, other settings

will be set or not as a result. 1:
Camera (V4L2) 2: URI 3: MultiURI 4:

RTSP 5: Camera (CSI)

1

camera-width Width of frames to be requested from
the camera, in pixels. Valid when

type=1 or 5.

640

camera-height Height of frames to be requested from
the camera, in pixels. Valid when

type=1 or 5.

480

camera-fps-n Numerator part of a fraction specifying
the frame rate requested by the camera,
in frames/sec. Valid when type=1 or 5.

30

camera-fps-d Denominator part of a fraction
specifying the frame rate requested

from the camera, in frames/sec. Valid
when type=1 or 5.

1

camera-v4l2-dev-node Number of the V4L2 device node.
Valid when the type setting (type of

source) is 1.

1

Table 4.9: Configuration [source]

a different way, assumes particular importance. [37]The documents for the two
configurations can be examined in the figure

model-engine-file batch-size netework-mode
model_b1_gpu0_fp32.engine 1 0
model_b1_gpu0_fp16.engine 1 2

Table 4.10: YOLOv5.onnx FPS on Jetson Nano with DeepStream

Therefore, as mentioned just before, .engine file was generated in the FP16
and FP32 floating-point precision formats. These formats, known as half-precision
and single-precision floating-point, respectively, play a central role in defining the
numerical representation used during computational operations.

The FP32 format enjoys wide support and is a common choice in science and
artificial intelligence applications. It employs 32 bits for the representation of a
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Figure 4.17: deepstream_app_config.txt file

floating-point number, distributed into 1 bit for the sign, 8 bits for the exponent,
or magnitude, and 23 bits for the mantissa, or precision.

In contrast, the FP16 format is frequently adopted in deep learning applications
due to its lower memory occupancy and allegedly higher computational speed
compared to FP32. FP16 uses 16 bits, including 1 bit for sign, 5 bits for exponent
and 10 bits for precision. [38]

The comparison between these two formats was conducted in order to evaluate
the balance between precision and FPS. Regarding accuracy, both configurations
demonstrated excellent signal recognition, as illustrated in Fig.4.19. A reduction in
image resolution is observed, consistent with expectations and in line with what
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Figure 4.18: config_infer_primary_yoloV5.txt file for FP16 vs FP32 configura-
tion

was expected; however, the detection capability is not compromised. This result
can probably be attributed to the robustness of the previously trained model.

Regarding FPS, the FP16 configuration manifested a superior performance in
agreement with theoretical predictions, reaching nearly 14 FPS, as can be seen
from the results reported in Tab.4.11.

Figure 4.19: Detection of a signal FP16 vs FP32 configuration
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Configuration .engine file FPS
FP16 13.5
FP32 9.5

Table 4.11: YOLOv5.onnx FPS on Jetson Nano with DeepStream

4.4 Metrics of the final chosen model
Looking to design future developments on the Jetson Nano device, the YOLOv5
model comes closest to an ideal solution. Specifically, the model chosen is the one
trained with a number of epochs equal to 300 and a batch size of 32, subsequently
converted to .onnx and .engine formats using FP16 precision. This configuration
fully meets the identified requirements, avoiding overloads on the RAM of the
Jetson Nano device and ensuring adequate FPS, considering that the camera will
be attached to a rover with a maximum speed of 30 km/h.

In the context of this evaluation, a detailed analysis of some metrics associated
with this model is proposed. In particular, the focus is on the graphs of Mean
Average Precision (mAP) at 0.5 and 0.5:0.95, presented in Figure 4.20. These
graphs show stability at values of about 1 and 0.8, respectively, as early as epoch
200.

The metrics mAP0.5 and mAP0.5:0.95 are crucial in the context of object
detection and evaluate the average accuracy at different Intersection over Union
(IoU) thresholds. mAP0.5 represents the average accuracy at an IoU threshold of
0.5, while mAP0.5:0.95 represents the average accuracy over IoU thresholds ranging
from 0.5 to 0.95. These metrics are central to evaluating the accuracy of object
detection models against real data and in fact give us evidence that this model is
good and fully meets these requirements. [39] [40] It is possible to have a visual
feedback in the Fig.4.20.

The IoU parameter is defined as the ratio of the intersection area to the union
area between the predicted and actual bounding box. Examination of this formula
clearly reveals that Intersection over Union is a simple ratio. Numerator and
denominator quantify the area of overlap and the area encompassed by both
bounding boxes, respectively. [41]

The precision-recall curve, shown in Figure 4.21, provides a complete picture
of the model performance at different thresholds. This type of curve represents
accuracy versus recall, helping to visualize how the choice of threshold affects the
performance of the classifier. [42]

The accuracy metric, commonly known as positive predictive value, is expressed
by the following mathematical formula:
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Figure 4.20: MAP0.5 and MAP0.5:0.95 of YOLOv5 model with epochs = 300
and batch − size = 32

Precision = TP

TP + FP
(4.4)

Where TP represents the number of true positives and FP indicates the number of
false positives. Precision can be interpreted as the proportion of positive predictions
that are actually relevant to the positive class.

Recall, also referred to as sensitivity, is defined by the following expression:

Recall = TP

TP + FN
(4.5)

Where TP is the number of true positives and FN corresponds to the number
of false negatives. Recall can be interpreted as the fraction of positive predictions
relative to all positive instances in the dataset.

The F1 score, as a measure of model accuracy that takes into account precision
and recall, is presented in Figure 4.22. This metric, varying between 0 and 1,
represents the weighted harmonic mean of precision and recall. The F1 score
considers both false-positive and false-negative rates, providing an overall indicator
of model performance. The formula for F1 score is:
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Figure 4.21: PR curve YOLOv5 model with epochs = 300 and batch − size = 32

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(4.6)

The overall analysis of the metrics reveals excellent results, confirming the
validity of the YOLOv5 model under the specified conditions. It should be noted
that some differences between classes, as can be seen in both the images 4.21 and
4.22, can be attributed to various factors, such as an imbalance in the number of
training images and the inherent complexity of the classes themselves, as in the
case of the light blue line, that represents the traffic light class. In fact, this class
has significantly less performance than the others, although still good. However,
this does not heavily affect the final result, which is still very good, partly due to
the results obtained from the training of the other classes. Therefore, the overall
curves demonstrate a satisfactory performance of the model, solidifying its position
as a superior solution.

The final evaluation of the YOLOv5 model focuses on its loss function, which
consists of three main components. The results on the training sets, displayed
in Fig.4.23, show three types of loss: objectivity, bounding box and classification.
Objectivity measures the probability of an object presence in a proposed region,
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Figure 4.22: F1 curve YOLOv5 model with epochs = 300 and batch − size = 32

while bounding box loss assesses the accuracy of object location and coverage.
Classification loss reflects correctness in predicting the class of the object. [43]

In examining the model loss curves, there is a general trend of convergence
after the first 100 training epochs. At the initial stage, all loss functions manifest
a significant decrease, highlighting rapid learning of the model from the training
data.

Upon reaching 100 epochs, a stabilization of the curves is observed, suggesting
the achievement of an optimal convergence point. It is relevant to note that, in the
case of classification loss, the settling point occurs earlier, approximately as early
as epoch 50.

The results obtained are significant, recording extremely low values for all loss
function categories considered, indicating a high level of effectiveness during the
training phase.
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Figure 4.23: Train Loss functions YOLOv5 model with epochs = 300 and
batch − size = 32
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Chapter 5

Test results on the analysed
models

This section is devoted to analyzing the tests conducted using the models reviewed in
the previous chapter. The goal is to rigorously compare the two models, employing
the same signals and evaluation environment for testing.

5.1 SSD MobileNet
5.1.1 Jetson-inference folder
Several tests were performed in order to evaluate the performance of the model
trained by transfer learning. As previously mentioned, the dataset employed is
composed exclusively of a single class.

The "workers" parameter was consistently maintained at a value of 0. Otherwise,
increasing this parameter results in an almost instantaneous crash of the process,
accompanied by an error resulting from a lack of CPU resources. This issue is
highlighted in the Fig.5.1.

Figure 5.1: Dataloader Worker killed

Therefore, different models were tried with different batch sizes and epochs, as
shows the Tab.5.1 .

It would have been more appropriate to conduct network training for a signifi-
cantly larger number of epochs; under normal conditions, extending the process
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batch-size epochs training time mAP
2 10 45 min 82%
2 30 65 min 89%
4 10 80 min 93%
8 10 120 min 97%
16 10 killed process not available

Table 5.1: MAP results according to different batch-size and epochs

to 100 epochs would have been justified. However, the limitations of the Jetson’s
CPU had to be taken into account, despite the expansion of RAM. Nevertheless,
the use of the transfer learning method produced satisfactory results, especially
considering the limited amount of epochs employed.

The tests were performed empirically, using standard paper signals placed in
front of the camera. In this context, the frame per second of the camera was
remarkably satisfactory, ranging between 38 and 40 FPS. FPS represents the rate
at which a system, such as a camera or graphics software, can generate, display or
process frames in one second. In the context of video and images, a higher FPS
value generally results in a smoother and more realistic experience.

The number of traffic signals was also increased to test the system and evaluate
its ability to correctly distinguish between different signals. In all cases, the network
demonstrated adequate response.

A series of images illustrating the detection of stop signals, obtained by us-
ing models with variable parameters, follows. In accordance with expectations,
improved results are observed with higher batch sizes. Regardless, the detection
is implemented promptly. Even experimenting with right-to-left movements or
changing the distance between the signal and the camera, signal recognition persists,
keeping the detection procedure stable over time. This robustness is attributable,
in part, to the smoothness of the acquisition provided by the camera.

The images 5.2, 5.3 and 5.4 are the result of tests using models trained with
different parameters. Specifically, the first model was trained with batch − size = 2
and epochs = 30, the second with batch − size = 4 and epochs = 10, and the last
with batch − size = 8 and epochs = 10. As highlighted in the Tab.5.1, the optimal
configuration in this context manifests with batch − size = 8 and epochs = 10,
characterizing itself by an improved mAP. This is evidenced in the image 5.4, where
the confidence level is greater than 90%.

In various experiments, the use of the stop signal along with other signals has
been conducted in order to demonstrate the ability to accurately identify only the
said signal, without incurring confusion with the others. The results obtained were
remarkable, as the system is consistently able to correctly identify the stop signal

51



Test results on the analysed models

Figure 5.2: batch − size = 2 and epochs = 30

Figure 5.3: batch − size = 4 and epochs = 10

while managing to ignore the other signals with high confidence, as it is possible to
see in Fig.5.5.
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Figure 5.4: batch − size = 8 and epochs = 10

Figure 5.5: Stop sign detection at the expense of other traffic signals

5.1.2 SSD MobileNet with COCO128
Regarding this section, expectations were geared toward excellent results, consid-
ering the use of a pre-trained dataset such as COCO128. However, an additional
issue emerged, likely attributable to the limited memory capacity of the Jetson.

It was observed that categories related to "street signs", such as "One Way Sign",
"No Parking Sign" or "Do Not Enter Sign", were missing from the COCO dataset.
Despite several attempts with different street signs, the model proved unable to
detect them. In contrast, the recognition of signs such as "stop sign" and "traffic
light" was remarkably efficient, maintaining a good level of confidence level even
under different lighting conditions.

In this context, there is a decrease in the FPS rate compared to the previous
section, standing between 15 and 20 FPS. However, this result is still considered
satisfactory for an autonomous driving application.

As previously outlined, the adoption of this approach was motivated by the
prospect of taking advantage of the three classes relevant to the street category
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offered by the COCO dataset. However, after an initial series of tests, it became
apparent that the "street sign" section was only present among the labels, without
translating into concrete results. Although numerous attempts were made using
a variety of street signs falling into this category, none were detected. Some tries
are shown in the Fig.5.6. This finding suggests that the model in question did not
receive adequate training for the "street sign" class.

This judgment is supported by the fact that, in contrast, the other two classes,
namely "stop sign" and "traffic light", are detected quickly and with remarkable
confidence.

Figure 5.6: Street Sign missed detection

Using the above approach, the identification of the stop signal is achieved with
timeliness and clarity, without encountering specific problems. An example can be
found in the Fig.5.7, in which is possible to see a confidence level that can reach
98%.

In addition, it is possible to observe, as evidenced in Figures 5.7 and 5.8, the
system ability to clearly identify the signal, both when it is in close proximity and
when it is located at a greater distance, approximately 30 cm from the camera.

In addition, the model demonstrates the ability to discern the stop signal from
other signals that may have similarities, as shown in Fig.5.9, thus lending an
additional degree of accuracy to its performance.

A further experiment conducted is illustrated in Fig5.10, in which obstacles
were placed between the camera and the traffic signal under consideration. In the
case where only a limited portion of the signal is covered, the ability to detect the
signal persists; however, once recognition has occurred and subsequently one of the
letters of the "STOP" signal is fully covered, the ability to identify the signal is
impaired.

Traffic light detection is effective under a variety of lighting conditions, also
demonstrating remarkable accuracy in identifying a variety of traffic light types.
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Figure 5.7: Detection stop sign closely

Figure 5.8: Detection stop sign from a distance

Figure 5.9: Detection stop sign next to another traffic signal
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Figure 5.10: Stop signal detection with obstacles

Its confidence level remains high regardless of variations in light or diversity of
traffic light patterns considered, as it is possible to see in the pictures in Fig.5.11
and Fig.5.12.

Figure 5.11: Traffic Light detection

In Fig.5.13 is presented a test in which both targets were included. Again, the
model demonstrates effectiveness in detecting both the stop signal and the traffic
light with timely and remarkable confidence levels.
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Figure 5.12: Traffic Light detection with other types of semaphores

Figure 5.13: Traffic light and stop sign detection

5.2 YOLOv5
This section is reserved for examining the tests conducted on the customized
YOLOv5 model using the Astra Camera on Jetson Nano, employing standard traffic
signals in order to evaluate the effectiveness of the system. At the initial stage,
individual testing of each signal belonging to the four reference classes was performed
in order to evaluate its detection capability specifically and separately of the model
that reported the best mAP result, i.e. epochs = 300 and batch − size = 32, as
can be seen in Fig.5.14.

Next, the confidence level of the model in its ability to identify the "Speed Limit"
traffic signal was evaluated at two different distances from that seen in Fig.5.14: one
close, approximately 3cm from the camera, and one further away, approximately
40cm from the camera. In both cases, there was appreciable accuracy in identifying
the signal. However, as expected, the accuracy at a greater distance was lower and
showed a gradual increase as the camera approached the signal. The confidence
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Figure 5.14: Tests performed with epochs = 300 and batch − size = 32 with
signals through the camera

levels recorded at the three different distances, visible in Fig.5.14 and Fig.5.15 are
detailed in Table 5.2.

Distance between the road sign and the camera Confidence value
3cm 97%
20cm 89%
40cm 76%

Table 5.2: Confidence values variation according to the distance between road
sign and camera
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[] []

Figure 5.15: Speed Limit signal at different distances

Further experiments aimed at evaluating the accuracy of the model were con-
ducted by introducing obstacles placed near the traffic signal. The goal of this
approach is to simulate real situations in which recognition might be compromised
by replicating conditions of partial visibility of the signal. In this context, the
results obtained are encouraging, since despite covering a significant portion of the
signal, confidence levels between 80% and 95% could be achieved, as can be seen
from Fig.5.16.

Figure 5.16: Detection of Speed Limit signal with obstacles

A further procedure adopted to evaluate the accuracy of the model was the
introduction of an additional signal, not included in the dataset but characterized
by considerable similarities in color and shape to the "Stop" and "Speed Limit"
signals. As highlighted in Fig.5.17, the identification of the appropriate signals was
remarkably effective. The model was able to detect the two classified signals with
high confidence, completely ignoring the additional signal.
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Figure 5.17: Detection of Stop and Speed Limit signals near a sign similar in
shape and color

A further test conducted involved the analysis of traffic lights of less conventional
design and with various inclinations, in order to explore any limitations or difficulties
of the model in identifying them. As depicted in Fig.5.18, the results obtained
in this context were highly positive, showing a remarkable ability of the model
in dealing with situations where traffic lights have unconventional features or
particular inclinations.

Figure 5.18: Tests with different type of traffic lights

The last test performed involved simulating the simultaneous detection of
different classes of traffic signals by placing these signals at various distances
from the camera. Also in this circumstance, the model ability in signal detection
manifested highly positive results, with confidence values ranging from 88% percent
to 96%.
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Figure 5.19: Detection of all the signals all at once
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Chapter 6

Conclusions

6.1 Overview of the analysed models
The objective of this research was the development and comparison of two models,
SSD MobileNet and Yolov5, for the realization of an object detection system
targeted at traffic signals. The experimentation was conducted using the NVIDIA
Jetson Nano device, as part of a larger project aimed at developing a drone capable
of simulating autonomous driving.

The dataset employed includes four classes of traffic signals: "Stop," "Speed
Limit," "Traffic Light," and "Crosswalk." However, the RAM and memory limitations
of the NVIDIA device posed a significant challenge in implementing complex models.

In response to these limitations, differential approaches had to be taken for the
two models examined. The initial approach involved training the models on an
online GPU, specifically Google Colab, followed by adapting them to the context of
the Jetson Nano to ensure effective handling of external stimuli, expressed through
the key parameters of frames per second and mean average precision.

Regarding SSD MobileNet, an attempt to convert the model developed on
Google Colab into an NVIDIA device-compatible .onnx format was unsuccessful.
Therefore, a simplified model was trained on Jetson Nano, focusing exclusively
on the "Stop" class. Limited resources, particularly RAM, imposed compromises
on the number of epochs and other parameters; however, the simplified model
demonstrated satisfactory efficiency, with a speedup of about 40 FPS. Unfortunately,
the issue concerning operation restricted to only one category of traffic signals
persists. Despite achieving satisfactory mAP values of around 98%, the outcomes
initially desired during the study could not be fully achieved.

As for Yolov5, more positive results were obtained. The model was successfully
trained on Google Colab, and the results were extended to all classes. However,
transferring the model to the NVIDIA device generated FPS below the minimum
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requirements. Therefore, it was necessary to convert the model to .onnx format,
exploring FP32 and FP16 configurations. The first with a definitely better resolution
but reporting lower FPS, the other with a slightly lower resolution but reporting
higher FPS, which are acceptable in a context where the ultimate goal is autonomous
driving of a drone reporting a maximum speed of 30km/h. Moreover, the resolution
of the second model, although lower, did not go to compromise the detection of
road signals in any way. Therefore, the final choice was an FP16 .engine model
with epochs = 300 and batch − size = 32, providing an acceptable balance between
resolution and speed, approximately 14 FPS.

In conclusion, this research has successfully addressed the challenges associated
with implementing an object detection system on an embedded device, presenting
promising results, although some limitations related to device resources persist.
The considerations that emerged provide a basis for the future development of
applications related to autonomous driving.

6.2 Improvements and future works
The present work is a starting point that is susceptible to further development and
improvement. One option for enhancing the robustness of the model could involve
expanding the dataset to include a more diverse range of traffic signals, although
the potential impact on the computational complexity of the dataset itself should
be carefully considered.

In addition, methodologies to further increase the frames per second of the
YOLO model can be explored, possibly considering the use of alternative versions,
while still maintaining high definition to ensure efficient object detection. It is
crucial to take into account the limitations imposed by the hardware, accepting
the fact that the performance achievable in a simulated environment may differ
from what is actually achievable.

As previously mentioned, the present work is part of a larger context geared
toward the development of a drone capable of using object detection for navigation
in a road driving environment. Therefore, future research directions could include:

• Implement a Cruise Control and Lane Keeping system that manifests syner-
gistic coherence with signal recognition.

• Connect the NVIDIA Jetson Nano to a device that can provide mechanical
pulses for wheel management, implementing low-level control systems for
eMotors, sensors and actuators.

• Improve overall camera management and integrate the use of a LIDAR to track
the distance to potential obstacles, addressing the challenges of estimating the
distance and angle of objects.
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• Develop a Traction Control system (including possibly ASR and/or Torque
Vectoring) for traction and braking.

• Implement the State of Health (SoH) and State of Charge (SoC) of the battery
and develop the interface with the Battery Management System and Advanced
Driver Assistance System functions.
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