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Abstract

Reinforcement learning (RL), a branch of machine learning inspired by behavioral psy-
chology, focuses on training agents to make sequential decisions in dynamic environments.
RL algorithms, exploit a reward system to learn optimal strategies and have found ex-
tensive applications in various fields, including robotics, finance, and game theory.
Game theory, on the other hand, provides a framework for understanding strategic in-
teractions among rational decision-makers. One classic problem in game theory is the
El Farol Bar problem, which models the dilemma faced by individuals trying to decide
whether to attend a crowded bar, modeling any situation where individuals must make
decisions based on limited information and competition for resources.
This thesis investigates the application of RL algorithms in the context of the El Farol
Bar problem. By adapting an RL algorithm originally designed for potential stochastic
games to a non-stochastic scenario, we uncover intriguing dynamics characterized by two
distinct time scales. Through numerical analysis, we demonstrate that the relative speeds
of these time scales critically influence convergence behavior.
Specifically, when the Q-function evolves in a fast regime, the convergence favors the
unique symmetric mixed strategies Nash equilibrium. Conversely, if the fast scale gov-
erns the learning of strategies, the convergence shifts towards one of the pure strategies
Nash equilibria. This observation highlights the intricate interplay between learning dy-
namics in RL algorithms and the stability of equilibria, offering valuable insights into
their convergence properties.
This thesis aims at contributing to the understanding of RL algorithms in strategic
decision-making contexts, shedding light on their adaptability and convergence behavior.
It emphasizes the significance of considering the dynamics of learning processes in ana-
lyzing strategic interactions, paving the way for further exploration from a mathematical
formalization perspective.
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Chapter 1

Definitions, properties and notation in
games

Let’s start by introducing the main definitions and notations that will be used from now
on.

1.1 Normal-form games
A normal form game G is a tuple

(
I, A, u

)
, where:

• I = {1, 2, . . . , N} is a finite set of players.

• A = A1 × A2 × . . .× AN

• Ai is the set of strategies available to player i, for each i ∈ I. It can be both
countable or uncountable.

• u = {ui}i∈I , where ui : A → R, is the set of utility functions of player i, which
assign a real-valued payoff to each combination of strategies chosen by the players.

This defines the normal-form game G = (I, A, u)

Definition 1.1.1 (Pure strategy profile). A pure strategy profile is an element a ∈ A

So utility functions map pure strategy profiles into real values. When considering
utility function of player i the notation a = (ai, a−i) and a−i ∈ A−i will also be adopted.

Definition 1.1.2 (Mixed strategy). Let ∆(X) denote the set of probability distributions
defined over the set X. A mixed strategy for player i is an element πi ∈ ∆(Ai). A mixed
strategy profile will be an element in Π := ∆(A1)×∆(A2)× · · · ×∆(AN). So we will not
consider cases in which there is correlation between different strategy sets.

In the case of discrete set of strategies, the utility function ui can be extended as a map
defined over Π in the following way:

ui(π) :=
∑
a∈A

(∏
j∈I

πj(aj)
)
·ui(a)

(The continuous case can be equivalently extended involving integrals instead of summa-
tions, but it will not be a case of interest for this thesis so we are not going to treat it
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2 Definitions, properties and notation in games

in detail). It follows that a pure strategy ai can be seen as a mixed strategy with all
probability weight on ai. In this sense mixed strategies are an extension of pure ones that
can be seen as a subset of the former. So when not specified, strategy profile will refer to
a mixed strategy profile and it will be understood that also pure strategy profiles will be
considered this way.

Definition 1.1.3 (Nash equilibrium). A strategy profile π∗ is a Nash equilibrium iff
∀i ∈ I it holds:

ui(π
∗
i , π

∗
−i) ≥ ui(πi, π

∗
−i) ∀πi ∈ ∆(Ai)

Definition 1.1.4 (Best response). The best response of player i is a set-valued function
BRi : ∆(A−i)→ Ai defined by:

BRi(π−i) = {b ∈ Ai | ui(b, π−i) ≥ ui(c, π−i) ∀c ∈ Ai}

Proposition 1. If for the normal-form game G = (I, A, u) is such that:

• ∀i ∈ I is a non-empty, compact, convex subset of a Euclidean space

• ∀i ∈ I ui is continuous and its restriction to Ai is quasi-concave

=⇒ ∃ a pure strategy Nash equilibrium of the game.

1 is a consequence of the well known Kakutani’s fixed point Theorem, and the proof is
based on showing that a Nash equilibrium is a fixed point of the set of best response
funtions seen as a unique set-valued function, and in showing that the conditions in
1 are equivalent to the conditions of Kakutani’s fixed point theorem for this function.
Whatever game defined with discrete strategies sets does not fullfill the hypothesis of 1,
because no discrete set is concave. It is important to notice that 1 gives only a sufficient
contition for the existence of equilibria, not a necessary one. A strong consequenc of 1 is
the following:

Theorem Every finite normal-form game admits a mixed strategies equilibrium.

This is because each set ∆(Ai) is a closed and convex euclidean space (it is by defi-
nition the set of convex combinations of the elements of Ai), and if Ai is finite then
∆(Ai) is also bounded. But a bounded and closed euclidean space is compact and so the
extended game G̃ := (I,Π, {ui}i) fullfills the hypothesis of 1.

1.1.1 Method of equating payoffs

When considering Nash equilibria in mixed strategies the following has a fundamental
use from an operative point of view:

Proposition 2. Let πi and π−i be such that:

ui(πi, π−i) ≥ ui(π
′
i, π−i), ∀π′i ∈ ∆(Ai)

Let’s denote the support of πi by Supp(πi). Then ∀ai ∈ Supp(πi) it holds that ai ∈
BRi(π−i)
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Proof. ui(πi, π−i) =
∑

b∈Supp(πi)

πi(b)u(b, π−i). If c ∈ Supp(πi) is not in BR(π−i) then the

weight of πi(c) could be moved on any d ∈ BR(π−i) obtaining a greater payoff, which is
a contradiction. □

Notice that if two elements are in BR(π−i) then they must have the same payoff. So
in the hypothesis of the proposition it holds:

u(a, π−i) = u(b, π−i), ∀ a, b ∈ Supp(πi)

In particular this holds for Nash equilibria in which the condition of the proposition holds
mutually for all players. This gives a condition to impose in order to fix the value of a
mixed strategy in case of 2-player games or in case of symmetric mixed strategies with
more than 2 players.

Examples

Let’s present three prototipical 2-players normal-form game. 2-players settings allow
games to be represented as tables in which rows represent player 1 and columns represent
player 2. In each pair of numbers, the first one is the payoff obtained by the row player
(player 1) and the second one is the payoff obtained by the column player (player 2). The
first two games presented have pure strategies Nash equilibria, while the third one has
no pure strategies Nash equilibria.

Prisoner’s Dilemma

The Prisoner’s Dilemma is a classic game in game theory involving two prisoners arrested
for a joint crime. Each prisoner is offered the opportunity to cooperate with the other
(by remaining silent) or betray them by confessing to the crime. The possible combina-
tions of choices lead to different payoff outcomes for both prisoners. Despite cooperation
being in the collective interest, each prisoner has a personal incentive to betray the other,
resulting in a suboptimal outcome for both. Notable properties include the inefficiency
of the Nash equilibrium and the absence of cooperation.

Stay Silent Confess
Stay Silent (2, 2) (0, 3)

Confess (3, 0) (1, 1)

Battle of the Sexes

The Battle of the Sexes is a game that represents a situation where two players must
choose between two preferred activities differently. For example, a couple may have to
decide whether to go to the opera or watch a football match. Although both prefer to
spend time together, their divergent interests lead them to prefer different activities. The
game can lead to three possible outcomes: one where both agree on a preference, one
where they become "lonely followers," and one where they end up in different places.
Important properties include the presence of multiple Nash equilibria and the possibility
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coordination.

Opera Football
Opera (3, 2) (0, 0)

Football (0, 0) (3, 2)

Rock-Paper-Scissors
Rock-Paper-Scissors is a hand game where two players choose one of three symbols: rock,
paper, or scissors. The winner is determined by the rules: paper beats rock, rock beats
scissors, and scissors beat paper. The game is often played best out of three. There
are no Nash equilibria in pure strategies in this game, as no player has an option that
dominates the others in every circumstance. However, it can be approached using mixed
strategies, where players choose their moves with certain probabilities.

Rock Paper Scissors
Rock (0, 0) (−1, 1) (1,−1)
Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

Let’s use the method of equating payoff to determine the mixed strategies Nash equilib-
rium of the game: Let π1 =

(
p1, p2, 1 − (p1 + p2)

)
and π2 =

(
q1, q2, 1 − (q1 + q2)

)
. Let’s

take player 1:

u1(Rock, π2) = 0 · q1 − q2 + 1− q1 − q2 = 1− q1 − 2q2

u1(Paper, π2) = q1 − 0 · q2 − 1 + q1 + q2 = 2q1 + q2 − 1

u1(Scissors, π2) = −q1 + q2 + 0 · (1− q1 − q2) = q2 − q1

{
u1(Rock, π2) = u1(Scissors, π2)

u1(Paper, π2) = u1(Scissors, π2)
→

{
1− q1 − 2q2 = q2 − q1

2q1 + q2 − 1 = q2 − q1
→


q1 =

1

3

q2 =
1

3

So π2 = (
1

3
,
1

3
,
1

3
). One should do the same with player 2 in order to find p1 and p2

but by the symmetry of the table we get the same system of equations. So we conclude
that the mixed Nash equilibrium is

π∗ =
(
(
1

3
,
1

3
,
1

3
), (

1

3
,
1

3
,
1

3
)
)

1.1.2 maxmin and minmax strategies

Let G =
(
I, A, u

)
be a normal-form game:

Definition 1.1.5 (maxmin strategy/value). A maxmin strategy for player i against
players −i is:
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ai ∈ argmax
b∈Ai

min
c∈A−i

ui(b, c)

The corresponding maxmin value for players −i is:

v−i := max
b∈Ai

min
c∈A−i

ui(b, c)

Definition 1.1.6 (Minmax strategy/value). A minmax strategy for player i against play-
ers −i is:

ai ∈ argmin
c∈Ai

max
b∈A−i

u−i(b, c)

The corresponding minmax value for players −i is:

v−i := min
c∈Ai

max
b∈A−i

u−i(b, c)

Proposition 3. In a two-player normal-form game it holds:

∀ player i vi ≤ vi

Proof. The claim can be seen as a special case of the more general (and trivial) inequal-
ities:

∀a: min
c

ui(ai, c) ≤ ui(ai, a−i) ≤ max
b

ui(b, a−i)

□

Definition 1.1.7 (Value of the game/optimal strategies). If a two-player normal-form
game admits

vi = vi = v

• v is called value of the game

• The corresponding strategies are called optimal strategies

The very same definitions can be extended to the mixed strategy case, by minimizing
(resp. maximising) with respect to πi ∈ ∆(Ai)

1.1.3 Some special classes of games

Definition 1.1.8 (Two player 0-sum game). A two player normal-form game is 0-sum
if: u1(a) + u2(a) = 0, ∀a ∈ A

Example: Rock-Paper-Scissors.

Proposition 4. In a two-player 0-sum game: vi = −vj, ∀i ̸= j

Proposition 5. If a two-player game is zero-sum then ∃v value of the game in mixed
strategies.

Definition 1.1.9 (Potential game). A normal-form game is potential game if there exists
a function Φ : A→ R, called the potential function, such that for every player i and every
pair of strategy profiles a = (ai, a−i), a′ = (ai, a

′
−i) ∈ A (so differing only in the strategy

of player i), the following condition holds:

ui(a)− ui(a
′) = Φ(a)− Φ(a′)



6 Definitions, properties and notation in games

It follows that Nash equilibria are local maxima of the potential function Φ.

Proposition 6. Every finite potential game has a pure strategy Nash equilibrium

The strong properties of this class of games are way more and some of them will be of
central interest for this thesis: they will be introduced later in the context of learning
dynamics.

Definition 1.1.10 (Congestion game). A congestion game is defined by a tuple
(
I,R, A, c

)
game where:

• I = {1, 2, . . . , N} is a finite set of players.

• R = {1, 2, . . . , r} is the set of resources

• A = A1 × A2 × . . . × AN and ∀i ∈ I Ai ⊆ 2R\∅. So the available strategies for a
given player are subsets of R.

• c = {cr}r∈R where cr : {1, . . . , N} → R is the cost function relative to resource r

The resulting congestion game is the normal-form game (I, A, u) where each ui is defined
by:

ui(a) = ui(ai, a−i) := −
∑
r∈ai

cr
(
nr(a)

)
where nr(a) is the number of players playing a strategy which contains r.

Every congestion game admits a potential and is in fact a potential game. It is true
also the converse: every potential game shares the potential function with a suitable
congestion game.

Definition 1.1.11 (Symmetric game). A normal-form game (I, Ã, ũ) is symmetric if

• Ãi = Ãj ∀i, j ∈ I

• for every permutation of the set of players, σ : I → I, we have ũi(a1, a2, . . . , an) =
ũσ−1(i)(aσ(1), sσ(2), . . . , sσ(n)).

In low terms, the payoff is uniquely determined by the payoff of a single player, say player
1, and doesn’t change when permuting all other players actions. Let (a1, ..., an) be given.
We have

ũ1(a1, ...aj, ...an) = ũj(aj, ...a1, ...an)

Since there’s a unique set of strategies shared by all players a symmetric game is
specified by the tuple (I, A, u) and so the notation is slightly different from the one used
for other normal-form games. [? ]
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1.2 Repeated games
Repeated games are a generalization of normal-form games, in which a given normal-
form game is played repeatedly and the utility is defined in such a way to accumulate the
utilities obtained at each repetition of the game. The repeated game is then a discrete
time process. It can be given different equivalent definitions: the most formal way would
be to define it in terms of extensive form games, which are not of interest for this thesis.
So, to avoid unnecessarily burdening this work with definitions and notions that will
not be used, the choice was made to introduce repeated games in a direct and more
operational manner.

Definition 1.2.1 (Finitely repeated games). A finitely repeated game is a tuple (G, T, U,A)
where:

• G = (I, A, u) is a normal-form game also denoted as stage game of the repeated
game.

• T is a positive integer, denoting how many times the stage game is repeated

• A := ×N
i=1 where Ai :=

{
a
(·)
i : {1, 2, . . . , T} → Ai

}
. So strategies are maps from the

set of iterations (denoted times) to the strategies of the stage game, i.e. mapping
each time t to an element of Ai: t 7→ ati ∈ Ai. We can extend the definition to
mixed strategies straightforwardly: a mixed strategy for player i is a map: π

(·)
i :

{1, 2, . . . , T} → ∆(Ai)

• U := {Ui}Ni=1, where Ui(π) :=
T∑
t=1

ui(π
t)

The class of repeated games that will be of interest for this thesis are infinitely repeated
games, which can’t be simply defined as the limT→∞ of a finitely repeated game, because
the utility would give always infinities or zeros.

Definition 1.2.2 (Finitely repeated games). A finitely repeated game is a tuple (G, U,A)
where:

• G = (I, A, u) is a normal-form game.

• A := ×N
i=1 as in the finitely repeated games.

• U := {Ui}Ni=1, where Ui(π) is a bounded function ∀ sequence {ui(π
t)}∞t=1

Two forms of Ui often adopted are:

• Ui(π) =
1

T

∞∑
t=1

ui(π
t)

• Ui(π) =
∞∑
t=1

γt·ui(π
t) , where 0 < γ < 1 is the discount factor (notational ambiguity:

here γt means γ to the power of t, while in πt it is just a label for the strategy profile
at time t).
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The latter will be taken as the standard choice from now on. This form introduces a new
parameter, the discount factor, which represents a way to tune the weight or importance
that players assign to future payoffs compared to immediate payoffs. A higher discount
factor typically encourages more cooperative behavior in repeated games. This is because
players are more inclined to consider the long-term consequences of their actions and are
willing to cooperate to achieve mutually beneficial outcomes over time. Conversely, a
lower discount factor may lead to more short-term, self-interested behavior. Cooperation
can be sustained in infinitely repeated games when the discount factor is sufficiently high.
This is because players have a stronger incentive to maintain cooperative strategies, as
the future benefits of cooperation outweigh the short-term gains from defection.

We will focus on stationary strategies, i.e. such that πt = π ∀t. We can extend to
this class of strategies the notion of Nash equilibrium straightforwardly: the stationary
strategy profile π∗ is a Nash equilibrium of the repeated game iff

Ui(π
∗
i , π

∗
−i) ≥ Ui(π

′
i, π

∗
−i) ∀i ∈ I and ∀π′

i ∈ ∆(Ai)



Chapter 2

Learning in games

The study of learning in games plays a fundamental role in applying game theory to model
diverse contexts such as behavioral economics and evolutionary biology. It elucidates
how rational agents adapt their strategies over time in response to past experiences and
environmental feedback.

2.1 Fictitious play
This section concerning Fictitious Play is mainly based on [4].

2.1.1 The model

The Fictitious Play approach involves the assumption that each player believes their
opponent is using a fixed, yet unknown, steady strategy. The aim of the learner is to
infer such (fictitious) strategy and to play the best response against it. At each time step
the learner updates its belief about the opponent’s strategy using statistics extracted
from opponent’s previous strategies history up to the preceiding time step. At timestep
t = 0 a weight function κ0

i : A−i −→ R+ is assigned to each player i. Then at each
time step t such weights are updated as follows:

1. κt
i(a−i) = κt−1

i (a−i) + δ(at−1
−i , a−i)

Essentially κt
i(a−i) counts how many times strategy a−i has been played up to time

step t − 1 and up to a constant term κ0
i (a−i) which plays the role of a prior belief. The

belief δti ∈ ∆(A−i) is then naturally defined as:

2. δti(a−i) =
κt
i(a−i)∑

s∈A−i

κt
i(s)

The belief is interpreted by the learner as the best estimate of the opponent’s steady
(mixed) strategy in order to play the best response strategy against it.

Remark 1. δti is not just the empirical average unless one sets κ0
i = 0. In fact also the

empirical average itself will be taken into account, as specified later.

Because the best response function BRi: ∆(A−i) −→ Ai is generally a set-valued
function, specifying a Fictious Play model means (also) specifying a rule according to
which choosing a specific element in BRi(a−i). Traditionally in case of indifference be-
tween different strategies the rule consists in choosing one of them and not in randomizing
between them[Fudenberg].

9
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2.1.2 Convergence to a steady state

We can define the state of the Fictitious Play at time t as the strategy profile played
at time t. In case the process of the Fictitious Play converges to steady state then the
assumption of the model is consistent. Let’s consider the conditions under which the
Fictitious Play converges to a steady state. First of all it is necessary to define it.

Definition 2.1.1 (Steady state). A state ã is steady iff it exists a finite time T after
which ã is played in every time step.

At this point a first result is achieved through the following proposition:

Proposition 7. Let ã be a strict N.E..

• If strategy profile ã is played at time t then ã will be played at every later time

• If Fictitious Play reaches a steady state then it is a pure strategy N.E.

Proof.

• If a strict N.E ã is played at time t it means that ∀i: ãi ∈ BRi(δti) which means
that ∀ player i and ∀ai ∈ Ai: ui(ãi, δ

t
i) > ui(a, δti).

ã is a strict N.E. so ∀ player i and ∀ai ∈ Ai: ui(ãi, ã−i) > ui(a, ã−i).
According to 2 we see that δit+1(a−i) = αδ(ã−i, a−i) + (1− α)δit(a−i) with α ∈ [0, 1]
1. By linearity of the utility function it follows: ui(ai, δ

t+1
i ) = αu(ai, ã−i) + (1 −

α)ui(si, δ
i
t). So also for t+ 1 it is true that ãi ∈ BR(δt+1

i ) and it is unique because
the equilibrium is strict. So ã will be definitely played.

• If a steady state ã is reached it means that ∀ player i: lim
t→∞

δti(a−i) = δ(a−i, ã−i).

So if ã is not a N.E. ⇒ ∃j and ˜̃aj: uj(˜̃aj, ã−j) > uj(ãj, ã−j). So the Fictitious Play
would deviate to such strategy, which is a contradiction. So ã is a N.E. (and it is a
pure strategy one since states are pure strategy profiles).

□

It is important to highlight a direct consequence: since the only steady states the Ficti-
tious Play can converge to are N.E. , it means that it won’t converge in case of a game
with only mixed strategy N.E.

Definition 2.1.2. Let dit be the simple frequency count of the strategies played by i, which
can be defined using the opponents κ−i

t :

dit(ai) =
κt
−i(ai)− κ0

−i(ai)

t

Such frequency count will be referred to also as "empirical distribution", for obvious
reasons. We can now state the second result:

Proposition 8. If ∀ player i, dit converges to di, then σ̃ := (d1, d2) is a mixed strategy
N.E.

1α is a parameter depending on t: at t = 0 it is just α0 =
∑
s∈A−i

κ0
i (s), then it can be simply updated

as αt = α0 + t
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Proof. In case all dit converge to di, then it holds:

di = lim
t→∞

κt
−i − κ0

−i

t
= lim

t→∞

κt
−i

t+
∑
a∈Ai

κ0
i (s)

= lim
t→∞

δt−i

where, in the second equality, two terms have been added or subtracted as they don’t
depend on t and are negligible with respect to the other terms which are O(t). So also
δt−i converges and it converges to d. Asymptotically, at each stage player i plays the
best response to d−i and the sequences of choices as a whole must be a best response to
d−i, unless one could want to deviate, which is a contradiction with the fact that di is
stationary. As this holds for both players, then (d1, d2) must be a N.E. □

One may wonder if there are specific conditions that ensure convergence of the em-
pirical distribution. A few results can be found in literature:

Proposition 9. The empirical distributions converge if the game has generic payoffs2

and holds at least one of the following:

• the stage game is 2× 2

• the stage game is 0-sum

• the stage game is solvable by I.E.S.D.S

A fourth more technical case can be found in the literature.

2.2 Reinforcement learning

[6] [8] Very generally speaking, reinforcement learning (RL) is a type of machine learning
paradigm where an agent learns to make decisions by interacting with an environment in
order to achieve certain goals or maximize some notion of cumulative reward (in the case of
learning in games the goal is maximizing the utility function). Unlike supervised learning
where the model learns from labeled input-output pairs or unsupervised learning where
the model learns patterns in data without explicit supervision, reinforcement learning is
based on trial and error learning through exploration and exploitation of the environment:
exploitation means that the agent uses the information accumulated during the learning
in order to "adapt" optimally its behaviour, while exploration means that the agent never
remains rigidly constrained to the strategy/behavior currently considered optimal, but
always seeks, at least in part, to explore new paths. In reinforcement learning, the agent
observes the current state of the environment, takes an action, and then receives feedback
in the form of a reward signal indicating how good or bad that action was in the given
state. As already mentioned, in the case of interest for this thesis, the goal of the agent
is to learn a policy (a mapping from states to actions) that maximizes the cumulative
reward over time.
Key components of reinforcement learning include:

1. Agent/agents: The entity/entities that learn and make decisions based on the
interactions with the environment.

2def of generic payoff
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2. Environment: The external system or process with which each agent interacts.
With multiple agents, the other agents are part of the environment.

3. State: A representation of the current situation or configuration of the environ-
ment.

4. Action: The decision or behavior chosen by the agent based on the current state.

5. Reward: The feedback signal provided by the environment to evaluate the action
taken by the agent.

6. Policy: The strategy or rule that the agent follows to select actions based on states.

7. Value Function: A function that estimates the expected cumulative reward of
being in a certain state or taking a certain action in a given state.

Multi-agent reinforcement learning is (not surpsisingly) more complex than single-agent,
since: the environment, of which the other agents are part, is actively interacting and
the resulting dynamics is more difficult to predict. What’s more, it is not straightforward
what the goal of a learning process should be as in general no univoque solution concept
is defined: one could try to find an equilibrium, or to maximize the global utility and
these are just two examples. Therefore, we will introduce the basic idea underlying all the
RL approaches that will be explored in this thesis (Q-learning) in the context of single
agent learning, then look naturally at the multi-agent versions as generalizations.

2.2.1 Markov decision process and Bellman equation

A natural way to introduce Q-learning is starting from a stochastic processes context,
in which self-consistent equations concerning the optimal value of an agent arises. Let’s
start by briefly recalling what a Markov process is. A discrete time Markov process
is a stochastic model used to describe a sequence of events or states over discrete time
intervals, where the future state depends only on the current state and not on the sequence
of events that preceded it.
Formally, let {st} be a sequence of random variables representing the states of the process
at discrete time instants t = 0, 1, 2, . . .. The process is said to satisfy the Markov property
if the conditional probability of transitioning to a future state st+1 given the current state
st and all previous states st−1, st−2, . . . depends only on st. This can be expressed as:

P (st+1 = j|st = i, st−1, st−2, . . .) = P (st+1 = j|st = i)

for all states i and j, where P is the transition matrix. The following shorthand notation
will be adopted: P (st+1 = j|st = i) = Pst,st+1

In other words, the future behavior of the process is determined solely by its current
state, and not by the history of how it arrived at that state. This property is also known
as memorylessness.

A Markov decision process (MDP) is a generalization of a discrete time Markov process,
in which at each timestep an agent has to choose an action, receiving a reward dependent
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on the action chosen. From the point of view of the process, several transition matrices
are defined and the agent’s choices consist essentially in choosing on of such transition
matrices at each time step. Formally a MDP is univocally defined by:

• A set of states S

• An action set A

• A utility function u: S × A −→ R

• A transition function T : S ×A −→ ∆(S) which ∀a ∈ A defines a transition matrix
P a
s,s′ with s, s′ ∈ S

In this context, a strategy for the agent can be seen as a policy:

Definition 2.2.1 (Policy). We define a policy to be a mapping from the set of states S
to the set of probability distributions over the actions set A:

π : S → ∆(A)

s 7→ πs

Through πs the definition of T and u on A can be extended to ∆(A):

P πs

s,s′ :=
∑
a∈A

πs(a)P
a
s,s′

u(s, πs) :=
∑
a∈A

πs(a)u(s, a)

Given a policy π, at each possible sequence of states {st}∞t=0 a probability measure
P
(
{st}∞t=0

)
can be associated. Given a discount factor γ ∈ [0, 1], the purpose of the

agent is to maximize the expected discounted payoff:

U
(
π
)
:= EP

[ ∞∑
t=0

γt · u(st, at)
]

Let’s define the optimal value V (s) of the process as the maximum over the set of policies
of expected discounted payoff given the initial state s:

V (s) := max
π

U(π)
∣∣
s0=s

V (s) must obey the following self-consistent equation:

V (s) = max
πs

[
u(s, πs) + γ

∑
s′∈S

P πs

s,s′V (s′)

]
in which the optimal value associated to state s has been decomposed into the immediate
reward obtained and the discounted value of the future states reachable from that state.
This equation is the so called Bellman equation and in the context of Markov decision
processes has a very simple structure due to the Markov property.
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The Bellman equation can be rewritten by explicitly expressing the average over the
probability distribution of the policy:

V (s) = max
πs

[∑
a∈A

πs(a)

(
u(s, a) + γ

∑
s′∈S

P a
s,s′V (s′)

)]

From which one can define a state-action quality function Q(s, a) := u(s, a)+γ
∑
s′∈S

P a
s,s′V (s′)

Hence the Bellman equation can be written in terms of Q


Q(s, a) = u(s, a) + γ

∑
s′∈S

P a
s,s′V (s′)

V (s) = max
πs

(∑
a∈A

πs(a)Q(s, a)

)

This is the formulation of the Bellman equation on which Q-learning is based.

2.2.2 Q-learning

From the still purely mathematical formulation of the optimal solution of the MDP
there is an interest in developing effective numerical methods for optimizing decision-
making. Q-learning, one of the main reinforcement learning algorithms, addresses this
request: the algorithm’s objective is to iteratively refine the state-action quality function
Q enabling an agent to make decisions that maximize the expected payoff over time. It
is important to underline that Q-learning does not refer to a single, specific algorithm: in
fact, it represents a general framework for reinforcement learning methods that share the
fundamental objective of refining the state-action quality function to optimize decision-
making.
Given the MDP defined by (S, A, u, T ), algorithm 1, taken from [6] is a possible specific
but still general formulation of a Q-learning algorithm. The learning rate α tunes how
much the algorithm trusts new observations with respect to past history: it can be fixed
or another possible choice is to initialize α = 1 and let it decrease up to 0, in a way
specified by αt. The explore parameter, tunes how often the algorithm will deviate from
the current policy estimate, in order to ensure an adequate exploration of the policies
space.

Remark 2. 1 does not use the Markov matrix of the process in the learning, only in the
simulation of the process: it means that it does not suppose the agents to know anything
about the probabilistic process, only the states. This kind of approach will be referred to as
"model-free" from now on. This kind of models use the observation of the current state
at time t + 1 in order to update all the values concerning time t, and use V (st+1) as an
estimator for

∑
s∈S

Pst,sV (s)
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Algorithm 1 Q-learning
Initialize

· Value function V (s), ∀s ∈ S

· Action-value function Q(s, a), ∀s ∈ S, ∀a ∈ A

· Policy π(s, a) =
1∣∣A∣∣ , ∀s ∈ S, ∀a ∈ A

· Initial learning rate α = 1

· Deviation probability explore ∈ [0, 1]

· Discount factor γ ∈ [0, 1]

Repeat

· With probability explore choose uniformly an action at from A.
Otherwise observe current state st and choose an action at with probability distri-
bution π(st, ·).

· Observe new state st+1

· Update Q, V, π and α:

Q(st, at) ←− ·Q(st, at) + α ·
(
u(at, st) + γV (st+1)−Q(st, at)

)
V (st+1) ←− max

p∈∆(A)

∑
a∈A

p(a) ·Q(st+1, a)

π(st+1, · ) ←− argmax
p∈∆(A)

∑
a∈A

p(a) ·Q(st+1, a)

α ←− αt

Notice that the maximization step can be very demanding from a numerical point of view
when the cardinality of A grows: often the choice is to perform analitically the maxi-
mization by introducing a temperature parameter, that allows an easy computation of the
argmax and at the same time induces exploration (in the version above the exploration
is manually inserted through the explore probability parameter):

π(st+1, · ) ←−
exp
(Q(st+1, b)

τ

)
∑
b∈A

exp
(Q(st+1, b)

τ

)
This update is equivalent to modifying algorithm 1 in such a way that rhe third step in
the repeat section is

π(st+1, · ) ←− argmax
p∈∆(A)

(∑
a∈A

p(a) ·Q(st+1, a)− τ
∑
a∈Ai

p(a) · logp(a)
)
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i.e. the maximization leads to selecting p that maximizes the expected Q but also max-
imize an entropy term tuned by τ . This can be obtained by simply adding the entropy
term in the argmax step, or by adding it in the definition and update of V :

V (st+1) ←− max
p∈∆(A)

(∑
a∈A

p(a) ·Q(st+1, a)− τ
∑
a∈A

p(a) · logp(a)
)

2.2.3 Q-learning in repeated games

The same idea of optimizing a Q-function can also be applied in the context of repeated
games. One perhaps needlessly convoluted way of viewing this is by noting that a re-
peated game can be seen as an MDP (Markov Decision Process) where the set of states is a
singleton. However, unlike MDPs, repeated games are multiple agents decision processes,
so the simplification introduced by no longer having a dependence on states (and effec-
tively not having a stochastic process, except for the stochasticity associated with mixed
strategies) is offset by the fact that there is no longer a unique criterion for optimizing the
Q-function (a criterion which in the single-agent case was simply to maximize). Clearly,
just as each agent is associated with a different utility function, each agent will be associ-
ated also with a different Q-function. But some attention has to be payed: RL for MDP
allows a single agent to maximize a delayed reward in a stochastic but stationary environ-
ment. Convergence to the optimal policy is guaranteed with sufficient experimentation.
Multi-agent reinforcement learning extends beyond MDPs, incorporating dependencies
between agents’ policies, so the environment is not stationary anymore.
Reinforcement learning enables single-agent optimal behavior through trial-and-error.
However, when multiple learners act in a shared environment, traditional approaches not
necessarily work. Assumptions for convergence are often violated in the multi-agent set-
ting, requiring coordination even when objectives align. With opposing goals, achieving
equilibrium becomes crucial.

Remark 3. As already stated in the previous section, if not specified differently we are
going to consider pure strategies as a subset of mixed strategies. So whenever a solution in
terms of mixed strategies is searched, or a maximization over the possible mixed strategies
is performed, the very same can be done in terms of pure strategies: it is sufficient to
restrict the search or the maximization to the subset of mixed strategies which are delta
distributed. When referring to a strategy, the term "mixed" will be used only to recall
that in the most general case it is a probability distribution and not to exclude the pure
strategies subset.

Base case

One of the simplest algorithm incorporating the main features of RL is the one proposed
in [5]:

qi(a
t
i)←− qi(a

t
i) + ui(a

t)

πi(ai)←−
qi(ai)∑

b∈Ai

qi(b)
∀ai ∈ Ai
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At each time step an action is chosen using π, then the realized payoff is used in a
very simple way to update the value function at the chosen action, finally the whole π
is updated. It is evident that a positive payoff obtained when choosing ati will lead to
increase the corresponding probability. The exploration has to be "inserted" by choosing
at random a strategy (instead of following π). Alternatively one could use a softmax
update of π using the temperature parameter to tune exploration

Bellman equation inspired approach

Let’s look at an analogous of the Bellman equation for this mult-agent stateless setting:{
Qi(a) = ui(a) + γ · Vi

Vi = F
(
πi, Qi

)
Here F is a functional substituting (and in some sense generalizing) the maximization
of the orginal Bellman equation, and is the one characterizing the different Q-learning
approaches. In defining it, one has to keep in mind that for each player i it should lead
to a maximization of the Qi function (which is directly related to the utility function of
player i), and possibly (not necessarily) using the structure of the game in doing that.
Common choices are:

• F
(
πi, Qi

)
= max

πi

min
a−i

∑
a∈A

πi(ai) · Qi(a) i.e. each player maximizes over its own

strategies after minimizing over opponent’s pure strategies. This is a well suited
approach in case of 2-player zero-sum games that, as shown in section 1.1 are
strongly related with the maxmin structure.

• F
(
πi, Qi

)
= max

πi

∑
a∈A

πi(ai) · π−i(a−i) · Qi(a) of course this is only a theoretical

definition but in practice it makes no sense for agent i to be aware of what the
strategies of its opponents are: in practice instead of π−i a belief µi (see fictitious
play) about the opponents strategies is used. This version of Q-learning can be
formulated in such a way that the belief µi is built up in the same way as in the
classical fictitious play. This approach has the advantage to exploit the strenght of
the fictitious play approach.

In both cases the considerations on the numerical difficulties of maximizing over prob-
ability distributions and of using a direct update introducing a temperature parameter
hold.

Another class of approaches comes from the idea of studying the dynamics of an av-
eraged version of the Q-function:

qi(ai) := Eπ−i
[Qi(a)] =

∑
a−i∈A−i

π−i(a−i) ·Qi(a)

This way the Q-function does not depend anymore on opponent’s action and the Bellman
equation has the same form of the single agent setting (but with no states), and is
straightforwardly obtained by averaging the equation for Q(a):
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qi(a) = Eπ−i
[ui(a)] + γVi

Vi = max
πi∈∆(Ai)

∑
ai∈Ai

πi(ai) · qi(ai)

where again one can add the entropy term in the definition of Vi or only in the argmax
step of the algorithm. Despite the formal definition, in practice the term Eπ−i

[ui(a)] is
replaced by the actually realized payoff.

A paradigmatic formulation of RL using this approach that will be set as reference point
of this thesis from now on is:



qi(a
t
i)←− qi(a

t
i) + α

(
ui(a

t) + γ
(∑
b∈Ai

πi(b)qi(b)
)
− qi(a

t
i)

)

πi(ai)←−
exp
(qi(ai)

τ

)
∑
b∈Ai

exp
(qi(b)

τ

) ∀ai ∈ Ai

(2.1)

Remark 4. Notice that the update of πi makes
∑
b∈Ai

πi(b)qi(b) a noisy estimator of Vi

Remark 5. Notice that in (2.1) , qti is updated only at the effectively realized action ati.
Clearly the same cannot be done for the πt

i . This kind of update is known as asyncronous
update, since different components of the qi evolve at different speeds being updated less
frequently. In order to compensate this asymmetry, often the learning rate α is also

proportional to
1

πi(ati)
, because less chosen actions correspond to less frequently updated

components and we want to have a qi that evolves uniformly. In the case of learning
rates decreasing in time (presented for the stochastic games generalization in section 3.1)
the compensation can be obtained by having a different learning rate for each action and
taking into account also for difference in the frequency of an action.

Some insights on the convergence of such algorithms have been found analyzing them
in the context of evolutionary game theory, that we are going to introduce in the next
section.

2.3 Evolutionary game theory
[12][3] Evolutionary game theory is a game theory framework that studies the evolu-
tion of strategies in populations of interacting agents over time. It combines principles
from game theory and evolutionary biology to understand how behaviors, represented
as strategies, emerge and persist in dynamic environments. Evolutionary game theory
undergoes three significant shifts from "traditional" game theory. Firstly, the notion of
strategy is reinterpreted: while classical game theory involves players selecting strategies
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from predefined sets, the idea is introduced that species possess sets of strategies, or geno-
typic variants, inherited or acquired through mutation. This concept can be extended to
human culture, where society harbors a variety of cultural forms from which individuals
choose or inherit.
Secondly, the evolutionarily stable strategy (ESS) was introduced as an alternative to the
Nash equilibrium. An ESS refers to a strategy that, when adopted by an entire popu-
lation, remains resistant to invasion by a minority group with a mutant genotype. This
concept also applies to cultural forms within societies, ensuring stability against invasion
by alternative cultural forms.

Consider a symmetric normal-normal form game (I, A, u) (recall that here A is the set of
strategy available to each player). Essentially the re-interpretation of strategies consists
in the following: in classical game theory, a mixed strategy πi for player i is a probability
distribution over A: so πai is the probability that player i chooses action ai ∈ A.

In evolutionary game theory we can start by considering the same distribution πi over
A, where now A represents the set of features available to each agent in a given popula-
tion, population which is supposed to be very large (cardinality >> 1, we never specify
a value) and well-mixed: more precisely, each agent can be of a certain type, and this
type is specified by ai ∈ A. For the moment the index i has no meaning: there is not a
correspondence between agents (which are in a very large number and may be considered
even uncountable) and the label i, so we take it just as part of the name. π(ai) is the
fraction of agents in this population having the feature ai (or of the type ai). Let for
the moment consider (I, a, u) to be a 2-player symmetric normal form game: u(a, b) is,
in this interpretation, a measure of the fitness that an individual of the type a has when
interacting with an individual of the type b. In a N -player setting so, u(a1, ..., aN) is the
fitness that an individual of the type a1 has when interacting with other N−1 individuals
of the type a2, .., aN . So in this context, the "old" number of player is now the grade of
interactions. This explains also the choice of setting in a symmetric game.

The mathematical tools are the same, so the utility functions in this framework still
have the linearity properties that allowed the extension of their definition from pure to
mixed strategies (see section 1.1). Conversely the point of view has completely changed,
since the randomization over pure strategies coming from rationality hypothesis has been
replaced by a purely mechanistic process of selection. What’s more, the game is in some
sense internal: in its simplest formulation, the aim is to model an evolutionary process
leading to a stable strategy from an evolutionary perspective, where it’s important to
note that strategy, in this context, has to be intended as the proportion of subpopula-
tions with a specific feature.

So we can finally re-introduce labels i and −i with much care: u(ai, a−i) has to be
intended as the fitness of an individual of type spcified by ai interacting with individuals
specified by types a−i = (a1, ..., ̸ ai, ..., aN). Being in a symmetric game, such fitness
doesn’t depend on the order of the latter. Even more attention has to be paid when
dealing with pupulation distributions (the old mixed strategies):

Consider a symmetric mixed strategy π̃, i.e. such that πi = πj = y ∀i, j ∈ I. We adopt
the notation π = (y, yN−1) in order to highlight the symmetry.
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•

u(y, yN−1) =
∑

(a1,...,aN )

(∏
i∈I

y(ai)

)
u(a1, ..., aN)

is interpreted as the mean fitness of the individuals belonging to a population
distributed according to y.

• Consider the same symmetric strategy y

u
(
y, ϵỹN−1 + (1− ϵ)yN−1

)
= ϵu(y, ỹN−1) + (1− ϵ)u(y, yN−1)

is interpreted as the mean fitness of the individuals belonging to a population dis-
tributed according to y when a fraction ϵ of the population has a different distri-
bution ỹ

2.3.1 Evolutionarily stable strategy

The concept of evolutionarily stable strategy (ESS) is a concept, introduced in evolu-
tionary game theory, that refers to a strategy that proves resistant when embraced by a
population to adapt to a particular environment. In essence, it cannot be replaced by a
different strategy, when the new strategy is initially sufficiently uncommon.

Definition 2.3.1. A symmetric mixed strategy y for a symmetric game is evolutionarily
stable iff ∃ϵ > 0 sufficiently small such that ∀ỹ

u
(
y, (1− ϵ)yN−1 + ϵỹN−1

)
> u

(
ỹ, (1− ϵ)yN−1 + ϵỹN−1

)
It can be characterized comparing the definition order by order in ϵ. Indeed by linearity
the definition can equivalently be expressed as

(1− ϵ)u(y, yN−1) + ϵu(y, ỹN−1) > (1− ϵ)u(ỹ, yN−1) + ϵu(ỹ, ỹN−1)

and one finds that y is evolutionarily stable iff either

u(y, y) > u(ỹ, yN−1)

(i.e. strict Nash equilibrium condition) or u(y, yN−1) = u(ỹ, yN−1) and u(y, ỹN−1) > u(ỹ, ỹN−1)

2.3.2 Replicator dynamics

The concept of mixed strategy, as we have seen, has an interpretation as a distribution
of features or types within a population. It can therefore be viewed as a genuine state
of the population. By introducing a temporal dependency, one can define a dynamics of
this state.
Replicator dynamics is a concept in evolutionary game theory that describes such evolu-
tion of strategies within a population over time. It is often used to model the dynamics of
biological populations, economic agents, or social groups engaged in strategic interactions.
In its simplest form, replicator dynamics can be represented by the following differential
equation:
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dy(ai)

dt
= y(ai)

[
u(ai, y

N−1)− u(y, yN−1)
]

(2.2)

This equation describes how the proportion of individuals having feature ai changes over
time (dyi

dt
) based on the difference between the payoff u(ai) and the average payoff of the

population.
Replicator dynamics capture the idea that strategies with higher payoffs relative to the
population average will increase in frequency, while strategies with lower payoffs will de-
crease. This dynamic process mirrors the principles of natural selection, where successful
traits are favored and spread throughout a population over time.

• A fixed point of the replicator dynamics is not necessarily (actually generally is not)
a maximizer of the average fitness of the population.

• y(ai) = 0 and y(ai) = 1 are both fixed points of the replicator dynamics: the former
is trivial and the latter comes from the observation that u(y(ai) = 1, yN−1) =
u(ai, y

N−1)

• a Nash equilibrium y∗ is a fixed point since for any action ai in the support of y∗,
Nash equilibrium, it holds

u(ai, y
∗N−1) = u(y∗, y∗N−1)

• Every Nash equilibrium that is an ESS is a stable fixed point of the replicator
dynamics.

2.4 Replicator dynamics as continuous time limit of Q-
learning dynamics

Using a procedure presented in [13] we can show that for a dynamics of the form

qt+1
i (ai) = qti(ai) + α

(
ui(ai, a

t
−i) + γ

(∑
b∈Ai

πt
i(b)q

t
i(b)
)
− qti(ai)

)

πt
i(ai) =

exp
(qti(ai)

τ

)
∑
b∈Ai

exp
(qti(b)

τ

) (2.3)

one can write a continuous time limit equation for πt
i(ai):

d

dt
πt
i(ai) = α

[
1

τ
· πt

i(ai) ·
(
u(ai, π

t
−i)− ui(π

t
i , π

t
−i)
)
+ πt

i(ai) ·
∑
b∈Ai

πt
i(b) · log

πt
i(b)

πt
i(ai)

]
(2.4)

which has the form of the replicator dynamics plus an entropy term.
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Let’s see how:

πt+1
i (ai)

πt
i(ai)

=

=

exp
(qt+1

i (ai)

τ

)
·
∑
b∈Ai

exp
(qti(b)

τ

)
∑
b∈Ai

exp
(qt+1

i (b)

τ

)
· exp

(qti(ai)
τ

) =

=

exp
(qt+1

i (ai)

τ

)
· exp

(−qti(ai)
τ

)
·
∑
b∈Ai

exp
(qti(b)

τ

)
∑
b∈Ai

exp
(qt+1

i (b)

τ

)
· exp

(−qti(b)
τ

)
· exp

(qt+1
i (b)

τ

) =

=
exp
(∆qti(ai)

τ

)
∑
b∈Ai

πt
i(ai)exp

(∆qti(b)

τ

) where ∆qti(b) := qt+1
i (ai)− qti(ai)

We just obtained that:

πt+1
i (ai) = πt

i(ai) ·
exp
(∆qti(ai)

τ

)
∑
b∈Ai

πt
i(ai)exp

(∆qti(b)

τ

)
so:

πt+1
i (ai)− πt

i(ai) = πt
i(ai) ·

( exp
(∆qti(ai)

τ

)
∑
b∈Ai

πt
i(ai)exp

(∆qti(b)

τ

) − 1

)
=

= πt
i(ai) ·

(exp
(∆qti(ai)

τ

)
−
∑
b∈Ai

πt
i(ai)exp

(∆qti(b)

τ

)
∑
b∈Ai

πt
i(ai)exp

(∆qti(b)

τ

)
)

Now we define the continuous time limit multiplying the discrete time t by a positive
constant ξ and subsequently letting ξ → 0. This way we define a continuous time t̃ such
that as ξ → 0 and t→∞ then t · ξ = t̃. Let’s build up the time derivative of πt̃

i :

lim
ξ→0

∆πtξ
i (ai)

ξ
= lim

ξ→0

πtξ
i (ai)∑

b∈Ai

πtξ
i (ai)exp

(∆qtξi (b)

τ

) ·
(exp

(∆qtξi (ai)

τ

)
ξ

−

∑
b∈Ai

πtξ
i (ai)exp

(∆qtξi (b)

τ

)
ξ

)
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The first term gives simply πt̃
i(ai) as the term ∆qtξi (b) of the exponential clearly goes to

0 and the sum of πi gives 1. The second term instead, if one collects the numerators, is

a
0

0
so we have to use the firs order approximation (consider only the numerator of the

second term):

lim
ξ→0

exp
(∆qtξi (ai)

τ

)
−
∑
b∈Ai

πtξ
i (b)exp

(∆qtξi (b)

τ

)
=

= lim
ξ→0

1 +
∆qtξi (ai)

τ
−
∑
b∈Ai

πtξ
i (b)−

∑
b∈Ai

πtξ
i (b)

∆qtξi (b)

τ

= lim
ξ→0

∆qtξi (ai)

τ
−
∑
b∈Ai

πtξ
i (b)

∆qtξi (b)

τ

so by noticing that:

lim
ξ→0

∆qtξi (ai)

ξ
=

d

dt̃
qt̃i(ai)

we can collect everything to get the first result:

d

dt̃
πt̃
i(ai) =

1

τ
· πt̃

i(ai) ·

(
d

dt̃
qt̃i(ai)−

∑
b∈ai

πt̃
i(b) ·

d

dt̃
qt̃i(b)

)
(2.5)

Let’s do the same for qi: The update rule already involves a relation between subsequent
times so we can directly apply the continuous time limit to it (α is the scale of the time
evolution so it has to be multiplied by ξ too):

lim
ξ→0

q
(t+1)ξ
i (ai) = lim

ξ→0
qtξi (ai) + αξ

(
ui(ai, a

tξ
−i) + ξ

(∑
b∈Ai

πtξ
i (b)q

tξ
i (b)

)
− qtξi (ai)

)

lim
ξ→0

∆qtξi (ai)

ξ
= lim

ξ→0
α

(
ui(ai, a

tξ
−i) + γ

(∑
b∈Ai

πtξ
i (b)q

tξ
i (b)

)
− qtξi (ai)

)
d

dt̃
qt̃i(ai) = α

(
ui(ai, a

t̃
−i) + γ

(∑
b∈Ai

πt̃
i(b)q

t̃
i(b)
)
− qt̃i(ai)

)

We can plug this last result in (2.5):

d

dt̃
πt̃
i(ai) =

1

τ
· πt̃

i(ai) · α
(
ui(ai, a

t̃
−i) + γ

(∑
b∈Ai

πt̃
i(b)q

t̃
i(b)
)
− qt̃i(ai)−

−
∑
b∈ai

πt̃
i(b) ·

(
ui(b, a

t̃
−i) + γ

(∑
c∈Ai

πt̃
i(c)q

t̃
i(c)
)
− qt̃i(b)

))
The average of qi does not depend on ai or b and so the corresponding terms cancel
out because as already observed before, the sum of πi gives 1. Moreover notice that∑

b∈ai π
t̃
i(b) · ui(b, a

t̃
−i) = ui(π

t
i , a

t
−i)

d

dt̃
πt̃
i(ai) =

1

τ
· πt̃

i(ai) · α
(
ui(ai, a

t̃
−i)− ui(π

t
i , a

t
−i)− qt̃i(ai) +

∑
b∈Ai

πt̃
i(b)q

t̃
i(b)

)
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Now, exploiting again the fact that
∑

b∈ai π
t̃
i(b) = 1 we can write

d

dt̃
πt̃
i(ai) =

1

τ
· πt̃

i(ai) · α
(
ui(ai, a

t̃
−i)− ui(π

t
i , a

t
−i)−

∑
b∈ai

πt̃
i(b)q

t̃
i(ai) +

∑
b∈Ai

πt̃
i(b)q

t̃
i(b)

)
=

1

τ
· πt̃

i(ai) · α
(
ui(ai, a

t̃
−i)− ui(π

t
i , a

t
−i) +

∑
b∈ai

πt̃
i(b)
(
qt̃i(b)− qt̃i(ai)

))

Finally, noticing that
πt̃
i(b)

πt̃
i(ai)

=

exp

(
qt̃i(b)

τ

)
exp

(
qt̃i(ai)

τ

) then we have that

1

τ

(
qt̃i(b)− qt̃i(ai)

)
= log

πt̃
i(b)

πt̃
i(ai)

Now we can put everything together and substitute t̃→ t since there is no longer a need
to distinguish discrete and continuous time with different notations. Just recall that t is
now a continuous parameter.

d

dt
πt
i(ai) = α

[
1

τ
· πt

i(ai) ·
(
u(ai, a

t
−i)− ui(π

t
i , a

t
−i)
)
+ πt

i(ai) ·
∑
b∈Ai

πt
i(b) · log

πt
i(b)

πt
i(ai)

]
Then to obtain equation (2.4) one has to average over πt

−i
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We can see that πt
i(ai) = 0 is a stationary state, since it corresponds to a vanishing time

variation:

d

dt
πt
i(ai) = α

[
1

τ
· 0 ·

(
u(ai, π

t
−i)− ui(π

t
i , π

t
−i)
)
+ 0 ·

∑
b∈Ai

πt
i(b) · log

πt
i(b)

πt
i(ai)

]
= 0

Similarly, also πt
i(ai) = 1 is a stationary state, since in that case u(πt

i , π
t
−i) = u(ai, π

t
−i)

and π(bi) = 0 ∀bi ̸= ai, so again:

d

dt
πt
i(ai) = α

[
1

τ
· 1 · (0) + 1

(
·
∑

b ̸=ai∈Ai

0 · log(0) + 1 · log(1)

)]
= 0

What’s more we do know that a symmetric mixed strategy Equilibrium that is an ESS
is a stable fixed point for πt, as long as τ is is sufficiently small. Already from (2.3) one
can see that in the limit of large temperature τ >> |qt|, π tends to uniform distribution.
So in a first approximation we can conclude that this kind of learning is characterized by
stable strategies which are the ESS strategies of the underlying game, absorbing extreme
states that are difficult to reach when the temperature is sufficiently high and a competing
effect between the replicator dynamics that tends to fix in its fixed points and the entropy
term that tends to lead to uniform distributions.
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Chapter 3

Stochastic games

[11] [6] Stochastic games (or Markov games) are a generalizations of repeated games,
in which there is not only one single stage game, but instead at each stage possibly a
different game is played. To be more precise, the stochastic game consists in a discrete
time Markov process in which each state corresponds to a different stage game. Differently
from a simple Markov process, the transition probabilities depend also on the strategy
profile played at the current state/game. In the following, it will be understood that at
a state corresponds a game. Formally a (infinite horizon) Stochastic Game is defined by:

• A finite set of players, with cardinality k, which can be represented by the interval
I = [1, k] ⊂ Z

• A set of states S

• A collection of action sets A1, ..., Ak which are the sets of pure strategies available
for each player in each state. As usual A will denote ×j∈IAj, the set of strategy
profiles.

• ∀ player i a utility function ui: A× S −→ R

• A transition function T : A×S −→ ∆(S) which ∀a ∈ A defines a transition matrix
P a
s,s′ with s, s′ ∈ S

This defines the stochastic game SG =
(
I,S, T, A, u

)
Remark 6. This is not the most general formulation of Stochastic Game as in this setting
the difference between two games lies only in the payoff and not in the structure. A more
general formulation could take into account also state-dependent action sets: As

1, ...A
s
k

with s ∈ S.

Let st denote the state occurring at time t. At each timestep t each player i chooses
an action ai ∈ Ai and receives a reward rit := ui(st, ai, a−i). A strategy for player i can
be defined as a function associating at each timestep and each current state an action
or, more generally a mixed strategy: πi: Z+ × S −→ ∆(Ai). Given a strategy profile
π, at each possible sequence of states {st}∞t=0 a probability measure P

(
{st}∞t=0

)
can be

associated. Given a discount factor γ ∈ [0, 1], the purpose of each player i is to maximize
the expected discounted payoff:

Ui

(
s0, π

)
:= EP

[ ∞∑
t=0

γtrit

]
27



28 Stochastic games

A special class of strategies, particularly relevant in this infinite horizon formulation of
Stochastic Game, is the time independent strategies (or steady strategies) class, for which
the action selected at each stage depends only on the current state: πi: S −→ ∆(Ai).

3.1 Reinforcement learning in stochastic games

Several Q−learning approaches, suited for the diverse classes of stochastic games can
be found in the literature [6] [9] [7]. The structure of the learning is always the one
presented in subsection 2.2.3 with the state dependence incorporated (in this sense it
resembles more the MDP Q−learning). As we will see with some examples, in order to
ensure the convergence in this highly non-stationary environment, the different models
exhibit more complicated features and stronger convergence hypothesis. Even though
there is no unique general formulation, since each formulation is suited for the specific
class of games considered, some common features are often found:

• Decreasing learning rates: the learning rates are often decreasing functions of the
iteration time or of the state-action counters. The way such functions decrease is
also a matter of the convergence hypothesis.

• Double time-scale induced by two different learning rates: a double time-scale evo-
lution is often present, induced by two learning rates that decrease at different
speeds. One of the learning rates corresponds to the evolution of the Q-function
while the other corresponds to the evolution of the strategies or of a value-function
as in the case of 0-sum games.

3.1.1 Two-player 0-sum stochastic games

Definition 3.1.1. A stochastic game is 0-sum iff each stage game is 0-sum

The concept of the value of a game can be extended to this framework. In a zero-sum
stage game, it is possible to arbitrarily choose a player and use only its payoff matrix,
privileging its perspective. A two-player zero-sum stochastic game is then uniquely speci-
fied by a single payoff function: us : a1×a2 −→ R will denote the payoff matrix of Player
1 at stage game s.
If M is the payoff matrix of a 0-sum game: V al(M), X (M), Y(M) will denote respec-
tively: the value of the game, the set of optimal strategies for the first and the second
player.
Because having different stage games implies having a starting state s0, one may expect
to have a different value Vs0 for each s0 ∈ S. So in the following, value of the game V
will refer to the vector whose components are all the

∣∣S∣∣ (possibly) different values.

Using this notation, it is now possible to introduce a definition of the solution to the
stochastic game SG =

(
I,S, T, A, u

)
, as proposed by Shapley in [11]:

Definition 3.1.2. The value of a 0-sum stochastic game is defined to be the unique
solution of the system:

Vs = V al
[
us(a)

)
+
∑
s′∈S

P a
s,s′ · Vs′

]
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Proposition 10. Given a two-player 0-sum stochastic game:

• ∃! V value of the game.

• ∃ π∗ steady solution of the game.

Proof. [11] □

3.1.2 Q-learning in two-player 0-sum stochastic games

The main idea of Q-learning can be exploited also in this framework to estimate optimal
strategy profiles of the stochastic game. Extending the Q-learning concept to stochastic
games involves addressing multi-agent interactions and trying to exploit the peculiar
structure of the game considered. Transitioning from single to multi-agent introduces
complexities, necessitating assumptions and simplifications based on the specific context.
In case of 0-sum games a possible choice is, for each player, to assume that its opponent
employs a minmax strategy. This simplification allows agents to plan while considering
the worst-case scenario, easing the computational burden in multi-agent environments.
This approach, employed in [6], essentially consists in replacing the max operator in
algorithm 1 with the maxmin:
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Algorithm 2 Multiagent Q-learning (player i)
Initialize

· Value function V i(s), ∀s ∈ S

· Action-value function Qi(s, a, o), ∀s ∈ S, ∀a ∈ Ai and ∀o ∈ A−i

· Policy πi(s, a) =
1∣∣Ai

∣∣ , ∀s ∈ S, ∀a ∈ Ai

· Initial learning rate α = 1

· Deviation probability explore ∈ [0, 1]

· Discount factor γ ∈ [0, 1]

Repeat

· With probability explore choose uniformly an action at from ai.
Otherwise observe current state st and choose an action at with probability distri-
bution πi(st, ·).

· Observe new state st+1

· Update Qi, V i, π and α:

Qi(st, at) ←− ·Qi(st, at) + α ·
(
ui(at, st) + γV i(st+1)−Qi(st, at)

)
V i(st+1) ←− max

p∈∆(Ai)
min
o∈A−i

∑
a∈Ai

p(a) ·Q(st+1, a, o)

πi(st+1, · ) ←− argmax
p∈∆(Ai)

argmin
o∈A−i

∑
a∈Ai

p(a) ·Q(st+1, a)

α ←− αt

Notice that this algorithm is the maxmin generalization to a multi-agent setting of algo-
rithm 1.

3.1.3 Decentralized Q-learning in two-player 0-sum stochastic
games

In [9] a different approach is proposed, which has the advantage of not necessiting the
knowledge of the opponent’s action set nor of the 0-sum structure of the game. To
present it, some definitions and specifications are necessary. Such definitions will be
“theoretical”, in the sense that they will have a correspondence in the algorithm, but
such correspondence will not use such definitions neither in the initialization nor in the
updates.
In this framework, the value function is not defined as the solution of the game, so a
different notation will be employed to avoid ambiguities (v instead of V ):

Definition 3.1.3 (Value function). Given the stochastic game SG =
(
I,S, T, A, {ui}i∈I

)
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and strategy profile π, the value function of player i is a solution of the self-consistent
equation, ∀s ∈ S:

vi(s) := Eπ

[
ui(s, a) + γ

∑
s′∈S

vi(s′) · P a
s,s′

]
Remark 7. The average is taken only on the probability measure of the mixed strategy
profile, but the term averaged is in turn an explicit average with respect to the probability
measure of the stochastic process, so it is equivalent to the averages presented in the
previous sections.

Definition 3.1.4 (Q-function and local Q-function). Given the stochastic game SG =(
I,S, T, A, {ui}i∈I

)
, the Q-function and local Q-function of player i are respectively, ∀

a ∈ A and ∀ s ∈ S

Qi(s, a) := ui(s, a) + γ
∑
s′∈S

vi(s′) · P a
s,s′

qi(s, ai) := Eπ−i

[
Qi(s, a)

]
The key element is the local Q-function, which is independent on the opponent’s

actions. Indeed, as anticipated, the strength of the algorithm lies in the fact that each
player only needs to know its own action set, and observe the current state and the payoff
obtained. Let’s list other parameters and peculiarities of the model:

• All players are assumed to know the bounds of their utility functions: ∀ player i,∣∣∣∣ui

∣∣∣∣ ≤ R ∈ R+. Therefore they will ititialize qi and vi so that
∣∣∣∣qi∣∣∣∣∞ ≤ R

1−γ
and∣∣∣∣vi∣∣∣∣∞ ≤ R

1−γ

• The players, as already stated, observe the current state and record them, with
perfect recall. In particular, they record the number of visits of each state s denoting
it with #s.

• In each state s, each player i chooses an action according to a smooted best response
function:

BRi
(
qi(s, ·), τ#s

)
:= argmax

p∈∆(Ai)

∑
ai∈Ai

(
p(ai) · qi(s, ai) + τ#s · νi

s

(
p(ai)

))

and

πi := BRi
(
qi(s, ·), τ#s

)
where τ#s > 0 is a decreasing function of s satisfying some assumptions (specified
below) in order to ensure convergence to the value of the game. It plays the role of a
temperature parameter which has the purpose of tuning the probability of deviating
from observations, in a sense that will be clarified by the specific form of νi

s.
νi
s indeed, is a smooth function of the probability distribution p. If it takes the form

of an entropy:
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νi
s

(
p(ai)

)
:= −

∑
ai∈Ai

p(ai) · logp(ai)

then

πi(s, ai) =

exp

(
qi(s, ai)

τ#s

)
∑
a′∈Ai

exp

(
qi(s, a′)

τ#s

)

and the interpretation of τ#s as a temperature is straightforward.

• For each player i two different learning rates: αi(#s) for the learning of qi and
βi(#s) for the learning of vi. This learning rates together with the temperature
parameter must satisfy some assumptions (specified below) in order to ensure con-
vergence to the value of the game.

Assumption 1-i The sequences αc and βc are non-increasing and satisfy
∑
c

αc = ∞,∑
c

βc =∞, and lim
c→∞

αc = lim
c→∞

βc = 0.

Assumption 1-ii Given any M ∈ (0, 1), there exists a non-decreasing polynomial func-
tion C(·) (which may depend on M) such that for any λ ∈ (0, 1), if

{ℓ ∈ Z+|ℓ ≤ c and
βℓ

αc

> λ} ≠ ∅ =⇒

max{ℓ ∈ Z+|ℓ ≤ c and
βℓ

αc

> λ} ≤Mc, ∀c ≥ C(λ−1).

Assumption 2-i Given any pair of states (s, s′), there exists at least one sequence of
actions such that s′ is reachable from s with some positive probability within a finite
number, n, of stages.
Assumption 2-ii The sequence τc is non-increasing and satisfies limc→∞(τc+1−τc)/αc = 0

and limc→1 τc = δ for some δ > 0. What’s more
∑
c

α2
c <∞.

Assumption 2’-i Given any pair of states (s, s′) and any infinite sequence of actions, s′
is reachable from s with some positive probability within a finite number, n, of stages.
Assumption 2’-ii The sequence τc is non-increasing and satisfies limc→∞(τc+1−τc)/αc =

0 and limc→∞ τc = 0. αc satisfies
∑
c=1

α2−ρ
c < ∞, for some ρ ∈ (0, 1). There exists

C,C ′ ∈ (0,∞) such that αρ
c exp(4D/τc) ≤ C ′ for all c ≥ C.

Under assumptions 1 and 2 the convergence to a ϵ-Nash equilibrium is ensured while
under assumptions 1 and 2′ a convergence to a Nash equilibrium is instead ensured. Note
that also this one is model-free.

Remark 8. The learning dynamics involves only the the local Q-function qi, which is a
function defined on S × ai. In this sense, from the perspective of player i it is a single
player Q learning with a softmax update of the strategy.
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Algorithm 3 Decentralized Q-learning (player i)
Initialize

• qi(s, ai) ∀ s ∈ S and ∀ ai ∈ Ai

• πi(s, ai) ∀ s ∈ S and ∀ ai ∈ Ai

• viπ(s) ∀ s ∈ S

• Smooth function νi
s(ai) ∀ s ∈ S and ∀ ai ∈ Ai

• Fix the discount factor γ

Repeat

• Observe and record current state st

• Update learning rates, local Q-function and strategy:

αi ←− min
{
1,

αi(#st−1)

πi(st−1, a
t−1
i )

}
qi(s

t−1, at−1
i ) ←− qi(s

t−1, at−1
i ) + αi ·

(
ui(s

t−1, at−1) + γv(st)− qi(s
t−1, at−1

i )

)
πi(st, ·)←− argmax

p∈∆(Ai)

∑
ai∈Ai

(
p(ai) · qi(st, ai) + τ#s · νi

s

(
p(ai)

))

• Choose and record ati according to πi(s
t, ·)

• Observe and record current payoff ui(s
t, at)

• Update value function:

vi(s
t)←− vi(s

t) + βi(#st) ·
(∑

ai∈Ai

πi(s
t, ai) · qi(st, ai)− vi(s

t)

)

This is the first algorithm encountered in which a time-scales separation appears: β
decreases faster than α and this induces a dynamics in which v is almost stationary from
the point of view of q. The idea is that v is in some sense a long term belief on the
quality of a state and it has to be more difficult to modify it than the q, which has to
be intended as a signal reflecting the natural fluctuations and the contingency of the
outcomes received.

3.1.4 Potential stochastic games

Definition 3.1.5 (Stochastic potential game). A stochastic game SG =
(
I,S, T, A, {ui}i∈I

)
is potential if there exists a state-dependent potential function Φ : S×

(
×i∈I ∆(Ai)

)
→ R

such that for every (initial state) s ∈ S,

Φ(s, π′i, π−i)− Φ(s, πi, π−i) = Ui(s, π
′i, π−i)− Ui(s, πi, π−i) (3.1)
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for any player i, any πi, π
′i ∈ ∆(Ai), and any Φ−i ∈ ×j∈I\i∆(Aj)

In other words it is potential if the associated game G ′
(
I,×i∈I∆(Ai), {Vi}i∈I

)
is potential.

[7] Unlike conventional stochastic games, where the focus often lies on finding equilib-
rium strategies, potential stochastic games offer a broader perspective by incorporating
notions of stability and convergence associated with potential functions. These games
serve as a valuable tool for analyzing strategic behavior in dynamic systems with com-
plex interdependencies and evolving objectives. In [7] a model-free algorithm, similar
to the decentralized Q-learning of the previous section, is presented. Once more, the
learning involves directly a local Q-function qi and the update of the strategy πi is a
softmax with temperature parameter and once more there are two different decreasing
time-scales αi(c), βi(c), where as always i labels different players. This time, the two
time-scales decouple the learning of the various quantities involved in a different way:
the fast time-scale (αi) governs the evolution of qi while vi is updated directly from qi,
evolving consequently at the same speed. The slow time-scale governs the evolution of
the strategy πi. While βi(c) is again a function of the occurrencies of a state (c = #s),
αi(c) is function of the occurrence of a couple action-state (c = #(s, ai)). This time the
temperature parameter τ is a fixed parameter that tunes the convergence to an ϵ-Nash
equilibrium in the following sense: the algorithm converge to an ϵ-Nash equilibrium π∗

τ

and lim
τ→0

π∗
τ = π∗, Nash equilibrium of the game. It is important to underline that gener-

ally in a potential (stochastic) game, there may be more than a single equilibrium: so in
this case the dynamics will select one of such equilibria.
As in the previous case, some assumptions on the time-scales are needed in order to en-
sure the convergence:

Assumption α(c), β(c) are non-increasing sequences and satisfy (the label of player
i is omitted as these conditions must hold for all the players):

1.
∑
c

α(c) =∞,
∑
c

β(c) =∞, and lim
c→∞

α(c) = lim
c→∞

β(c) = 0

2. For some p, p′ ≥ 2
∑
c

α(c)1+p/2 <∞ and
∑
c

β(c)1+p′/2 <∞

3. For any x ∈ (0, 1), sup
c

α(⌊xc⌋)/α(c) <∞, sup
c

β(⌊xc⌋)/α(n) <∞

4. lim
c→∞

β(c)/α(c) = 0.

One example of stepsizes that satisfy the assumption is: αc = (c+1)−h and βc = (c+1)−g

with 0 < h < g < 1. Let’s define the algorithm:
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Algorithm 4 Decentralized Q-learning for potential games (player i)
Initialize

• qi(s, ai) ∀ s ∈ S and ∀ ai ∈ Ai

• πi(s, ai) ∀ s ∈ S and ∀ ai ∈ Ai

• Entropy-like function ν(p(·)) :=
∑
a′∈Ai

−p(a′)logp(a′)

• Fix the discount factor γ and temperature factor τ

• Initialize the state and action-state counters n0(s) = 0 and ni
0(s, ai) = 0, ∀ player i

, ∀s ∈ S, ∀ai ∈ Ai

• At time t = 0 observe initial state s0, choose action a0i according to πi ∀i. Observe
ui(s

0, a0).

Repeat (t ≥ 1)

• Observe and record current state st

• n(st−1) += 1 and ni(s
t−1, at−1

i ) += 1

• Update local Q-function and strategy:

qi(s
t−1, at−1

i ) ←− qi(s
t−1, at−1

i ) + αi

(
ni(s

t−1, at−1
i )

)
·
(
ui(s

t−1, at−1) + τ ·

ν(πi(s
t−1, ·)) + γ

∑
a′∈Ai

πi(s
t, a′) · qi(st, a′)− qi(s

t−1, at−1
i )

)
πi(s

t−1, at−1
i )

←− πi(s
t−1, at−1

i ) + βi

(
n(st−1)

)
·


exp

(
qi(s

t−1, at−1
i )

τ

)
∑
a′∈Ai

exp

(
qi(s

t−1, a′)

τ

) − πi(s
t−1, at−1

i )


• Choose and record ati according to πi(s

t, ·)

• Observe and record current payoff ui(s
t, at)

Also in this case there is a time-scale separation: this time the two time-scales affect the
learning of q and of the strategy π: in particular again q evolves faster while π instead
plays the role of a fixed belief of the agent, needing more than a simple fluctuation to be
modified.

In the next chapter we will see that in a stateless setting tuning this time-scales difference
(also reverting their > relation) will lead to different equilibrium selection.



36 Stochastic games



Chapter 4

Learning the El Farol bar problem
repeated game

It is quite evident that when the space of states of a stochastic game SG is a singleton,
it is equivalent to a repeated game whose stage game is the only stage game of SG
corresponding to its unique state. This naive consideration brings to a maybe still naive
but non-negligible conclusion: every result in the framework of stochastic games can be
exploited and must hold also for repeated games. Stochastic games represent usually a
more complex class of problems compared to repeated ones, but still they brought to the
development of different computational approaches in order to face the new challenges
they offered. Consider potential games: a best response dynamic based on the potential
function is a standard approach that allows to find Nash equilibria. Conversely, algorithm
4 uses a dynamics which is more inspired to Q-learning, never using explicitly the form
of the potential function. What kind of results can be found by applying this approach
to the potential repeated game? What kind of effect do the two time-scales induce on
the repeated game?

4.1 El Farol bar problem

El Farol bar problem represents a typical problem in the context of decision-making,
where patrons must decide whether to attend a bar, taking into account its limited ca-
pacity. Formulated originally in [1] its main idea is the following: this Farol bar is a
beautiful bar offering very likeable shows once a week and every week each member of a
population has to choose whether to go to the bar or stay home, considering that there
is no room for everyone and that it is preferable to stay home than to stay in a too
crowded bar. This scenario exemplifies coordination dilemmas prevalent in complex sys-
tems, where individual actions impact collective outcomes. By exploring the dynamics of
this problem it is possible to get insights into emergent behavior, strategic interactions,
and the role of expectations in social settings. El Farol Bar Problem applications of course
go further its simple premise, offering valuable lessons applicable to economics, sociology,
and artificial intelligence giving a simple but still not trivial model for phenomena like
market dynamics, traffic congestion, and social network dynamics.

Here we consider one of its possible formulations: the bar has limited seats M and
the population is composed by N elements, both fixed. Let A be the number of people
choosing to attend the bar, x > 0 be a real number and G and H respectively denote the

37
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actions Go to the bar and stay Home. The utility function takes the form:

ui(ai = G, a−i) = x if A ≤M

ui(ai = G, a−i) = −1 if A > M

ui(ai = H, a−i) = 0 ∀A
(4.1)

Some considerations:

• It is a congestion game, so it is also potential.

• There are of
(
N
M

)
pure strategy Nash equilibria, that are the ones in which exactly

M agents choose G and the rest H. If one of the “G” agents deviates from this
strategy its reward decreases from x to 0. On the other hand, if one of the “H”
agents deviates its reward decreases from 0 to −1 because in this case A = M + 1.

• There is a unique mixed strategies symmetric Nash equilibrium (determined below).

• There are countably many Asymmetric Nash equilibria in which part of the players
choose a pure strategy and part play a mixed strategy.

Symmetric equilibrium One can find the symmetric mixed strategy equilibrium using
the method of equating payoffs : suppose such equilibrium exists and all players (but i)
play it. Let’s denote by π|p a symmetric mixed strategy such that πi|p(G) = p ∀i and by
A−i the number of players choosing GO other than player i:

ui(H, π−i|p) = 0

ui(G, π|−i
p ) = xPr(A−i ≤M − 1 | p)− Pr(A−i > M − 1 | p)

But Pr(A−i ≥M) = 1− Pr(A−i ≤M − 1) so

ui(G, π−i
p ) = (x+ 1)Pr(A−i ≤M − 1 | p)− 1

and by equating ui(G, π−i
p ) = ui(H, π−i

p ), one finds that at the equilibrium it must hold

Pr(A−i ≤M − 1 | p∗) = 1

1 + x

where Pr(A−i ≤M − 1 | p) =
M−1∑
ℓ=0

(
N − 1

ℓ

)
pℓ(1− p)N−1−ℓ

The value p∗ exists as long as x ≥ 0 indeed, denoting for simplicity Pr(A−i ≤ M − 1 |
p) := f(p):

f(0) = 1 and f(1) = 0

d

dp
f =

M−1∑
ℓ=1

(
N − 1

ℓ

)
ℓ(ℓ+ 1−N)pℓ−1(1− p)N−2−ℓ

each term in the sum is ≥ 0 provided that p ∈ [0, 1] (and is zero only at the extremes)
excluding (ℓ + 1 − N) which is ≤ 0 (it is zero only if ℓ = N − 1 which is a trivial case,
but still the argument works). So f(p) is a non increasing continuous function that spans
from 1 to 0, implying that p∗ exists.
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Figure 4.1: Numerical estimation of p∗ for different values of the ratio thershold/players

Asymmetric equilibrium From the computation just made it is possible to extend
the same reasoning to the asymmetric equilibrium. Suppose part of the players, say n,
choose a pure strategy and in particular nG choose G, while nH choose H. Suppose the
remaining part of the players play the same mixed strategy, and consider one of them:
since we do know that n players will play deterministically, the situation from the point of
view of players playing mixed strategies is equivalent to the case in which all players play
the same mixed strategy but having a different threshold M̃ := M − nG and a reduced
population Ñ := N − n. So a value p̃∗ can be found as before by imposing (here Ã−i is
the number of players other than i choosing GO among the population playing the mixed
strategy):

Pr(Ã−i ≤ M̃ − 1 | p̃) =
M−1∑
ℓ=0

(
Ñ − 1

ℓ

)
pℓ(1− p)Ñ−1−ℓ =

1

1 + x

which is the equilibrium mixed strategy of the players playing a mixed strategy. One
should still show that the players choosing a pure strategy have no convenience in devi-
ating: for whatever player coming from the pure strategy population, the stochasticity
in the outcome depends exlusively on the stochasticity induced by the mixed strategy
population. Thus, for any player from the pure strategy population:

ui(H, π−i|p̃) = 0 as before

ui(G, π|−i
p̃ ) = (1 + x)Pr(Ã ≤M − 1 | p)− 1 notice Ã instead of Ã−i

But it turns out that it is always more convenient H than G as ui(G, πi|p̃) < 0 if Pr(Ã ≤
M − 1 | p) < 1

1 + x
. But this is always the case, because:

• Pr(Ã−i ≤M − 1 | p) = 1

1 + x

• Pr(Ã ≤M − 1 | p̃) < Pr(Ã−i ≤M − 1 | p̃)
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The last inequality can be intuitively deduced from the fact that Pr(Ã ≤ M − 1 | p̃) is
the probability that among Ñ players, at most M̃ − 1 choose action G, while Pr(Ã−i ≤
M − 1 | p̃) is the probability that among Ñ − 1 players, at most M̃ − 1 choose action
G; the latter is obviously larger. This fact results even more evident considering the
expected values of these probabilities: E[A−i] = (Ñ −1)p̃, while E[A] = Ñ p̃. In any case
it is a general result holding for binomial distributions and a formal proof can be given.

Returning to the problem at hand, we can conclude that ui(H, π−i|p̃) > ui(G, πi|p̃) so the
asymmetric equilibria are those with nG = 0 and so those having only a sub-population
playing the pure strategy H and a sub-population playing the mixed strategy p̃.

Figure 4.2: Numerical estimation of p̃∗ as a function of the ratio
nH

N
for two different

values of the ratio thershold/players m =
M

N
. Clearly when

nH

N
> 1−m p̃∗ is exactly 1

as there’s probability 1 that A ≤M
For nH = 0 instead we recover the value of p∗

4.1.1 Evolutionary stability

Now we check if the symmetric Nash equilibrium found in the El Farol bar problem is an
ESS.

u(πi|p∗ , π−i|p∗) = (1−p∗)u(H, π−i|p∗)+p∗u(G, π−i|p∗) = p∗u(G, π−i|p∗) = p∗
[
(1+x)f(p∗)−1

]
= 0

as f(p∗) =
1

1 + x
by definition of p∗

u(πi|q, π−i|p∗) = (1− q)u(H, π−i|p∗) + qu(G, π−i|p∗) = q
[
(1 + x)f(p∗)− 1

]
= 0

so we are in the second case and have to check the second inequality:

u(πi|p∗ , π−i|q) = p∗
[
(1 + x)f(q)− 1

]
:= p∗ · g(q)
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u(πi|q, π−i|q) = q
[
(1 + x)f(q)− 1

]
:= q · g(q)

So the condition is simply p∗ · g(q) > q · g(q) i.e. (p∗ − q)g(q) > 0
We know that

• g(p∗) = 0

• f(q) (and consequently g(q)) is non increasing and in (0, 1) it is strictly decreasing

Which implies q < p∗ ⇒ g(q) > 0 and q > p∗ ⇒ g(q) < 0. So the inequality is always
satisfied.

4.2 Numerical results for the El Farol bar problem
Algorithm 4 is employed in the repeated El Farol bar problem (4.1). Notice that the
learning rate of q should be a decreasing function of the number of times a player chooses
a specific action (in the stochastic games setting also of the visits of a given state, but in
the repeated game this counter coincides with the iterations). So possibly at each time
step there is a different learning rate for each player and for each of the two actions.
This implies that we have not total control on the learning rate of q because now it
may change in different simulations and there isn’t a biunivocal correspondence between
learning rates and exponents h and g ( we would like for example to have equal learning
rates if h = g). Anyway, this correspondence is asymptotically valid in the cases in which
both strategies are played with comparable probability at least at the beginning of the
dynamics: also for this reason the choice has been that of initializing the π’s as uniform
distributions. Let’s re-write this algorithm 4 in a dynamical system form and without
the states dependence (here ni(a

t
i) is the number of times player i has played action ati

up to time t):

πt+1
i (ai)− πt

i(ai) = t−g ·
[ exp

(
qti(ai)

τ

)
∑
a′∈Ai

exp

(
qti(a

′)

τ

) − πt
i(ai)

]
∀ai ∈ {H,G}

qt+1
i (ati)− qti(a

t
i) = ni(a

t
i)

−h ·
[
ui(a

t) + τ · ν(πt
i(·)) + γ

∑
a′∈Ai

πt
i(a

′) · qti(a′)− qti(a
t
i)

]
In the simulations the following quantities are computed (here T denotes the number of
iterations so t = T is the time at the last iteration):

• The number of players ending up in a pure strategy H and G respectively nH and
nG (as expected the latter will turn out to be always 0)

• Sample average probability of choosing G:

µG :=
1

N

∑
i∈I

πT
i (G)

• Sample average probability of choosing G among the sub-population ending up in
a mixed strategy:

µG|mix :=
1

nG + nH

∑
i∈I|mix

πT
i (G)
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• Sample mean squared error of the probability of choosing G:

σG :=

√
1

N

∑
i∈I

(
πT
i (G)− µG

)2
• Sample mean squared error of the probability of choosing G among the sub-population

ending up in a mixed strategy:

σG|mix :=

√
1

nG + nH

∑
i∈I|mix

(
πT
i (G)− µG|mix

)2
• The symmetric Nash equilirium probability p∗ and the asymmetric mixed strategy

equilibrium probability of the sub-population p̃, both defined in section 4.1

In some of the simulations also the quantity Err := µG − p∗ is considered. Notice that
such quantity is a good measure of the error or quality of the numerical estimate only in
the case in which, for some reason (see below), one is expecting the algorithm to compute
the symmetric Nash equilibrium. Interesting results come out by exploring the different
behaviour of the algorithm with different learning rates. The two parameters controlling
the learning rates are the two exponents h and g. Conversely the discount factor is kept
fixed in all the simulations (as it doesn’t affect qualitatively the discussion below if not in
extreme cases) γ = 0.6. Also x is kept fixed (x = 1), also because with values of x around
1 the results may differ in the absolute magnitude of the parameters but not qualitatively.
The population is fixed at N = 1000 in all the simulations and the threshold is specified
as a ratio m of the population:

m :=
M

N
.

The choice of the different regimes explored are to be interpreted keeping in mind that
the convergence hypothesis for algorithm 4 require that 0 < h < g < 1, which means that
when the learning rates fullfill such requirements the algorithm is provably convergent
to a Nash equilibrium of any suitable stochastic potential game, where suitable refers to
the Markovian structure of the stochastic game: so in the case of repeated games, any
potential game is a suitable potential game.

As a last remark, the algorithm is provably convergent to an ϵ-Nash equilibrium where,
from an analytical point of view, ϵ → 0 as τ → 0. In the simulations τ is finite so there
will be often some dispersion around the equilibria reached (exept in some cases and
regimes). In the interpretation of the results, converges to an equilibrium will be used
indifferently to say that the state reached is actually a Nash equilibrium or just an ϵ-Nash
equilibrium.

Low temperature τ = 10−4

4.2.1 0 < h < g < 1

By setting in the hypothesis of convergence of the algorithm, the strategies converge to
an asymmetric Nash equilibrium in which part of the players set on the strategy H and



4.2. Numerical results for the El Farol bar problem 43

the other part set on the mixed strategy p̃. When m > 0.5 the population choosing H
is very small (Figure 4.3), while in the opposite case they represent the biggest part of
the population (Figure 4.4). Numerical results resumed in Table 4.1. Notice that in this
regime, the dynamics of q is faster than the one of π and asimpotically (t → ∞), π is
steady from the point of view of the evolution of q.

(a) Distribution in the population (b) Distribution in the sub-population

Figure 4.3: Distribution of πT (G) among the players, after 5 · 103 iterations. h = 0.1 and
g = 0.9 and m = 0.2. Values in Table 4.1

(a) Distribution in the population (b) Distribution in the sub-population

Figure 4.4: Distribution of πT (G) among the players, after 5 · 103 iterations. h = 0.1 and
g = 0.9 and m = 0.6. Values in Table 4.1
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p̃ µG|mix σG|mix nH nG

m = 0.2 0.339 0.343 0.147 411 0

m = 0.6 0.617 0.612 0.025 28 0

Table 4.1: h = 0.1 and g = 0.9. In both cases, part of the population chooses one
the pure strategies H, while the other part accumulates around a single mixed strategy.
µG|mix approximates well p̃ but it makes sense to interpret it as an estimate of p∗ only in
the m = 0.6 case, where the H population is very small and the difference between this
asymmetric equilibrium and the symmetric one is negligible.

The two thresholds m = 0.2 and m = 0.6 have been chosen as two non-extreme represen-
tatives of two corresponding classes: very intuitively this two classes are the set of cases
with m > 0.5 and those with m < 0.5. Indeed, corresponding to the threshold 0.5 an
abrupt decrease of the nH population can be observed (Figure 4.5):

Figure 4.5: nH population as a function of m after 5 · 103 iterations, with a stepsize of
1%

When the difference between h and g decreases two things happen: the nH population
in the case m = 0.6 grows, becoming predominant (as already happened in the m = 0.2
case) and in both cases the mean of the mix sub-population approaches 1, while still
approximating well p̃ (which approaches 1 as well), but the mean squared error grows too
(Figure 4.6).
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(a) m = 0.2, h = 0.2, g = 0.8 (b) m = 0.2, h = 0.3, g = 0.7 (c) m = 0.2, h = 0.4, g = 0.6

(d) m = 0.6, h = 0.2, g = 0.8 (e) m = 0.6, h = 0.3, g = 0.7 (f) m = 0.6, h = 0.4, g = 0.6

Figure 4.6: Distribution of πT (G) among the players, after 5 · 103 iterations. h = 0.1 and
g = 0.9 and m = 0.6

Looking at the dynamics of a generic player, two types of temporal evolution can be
observed: players ending up in a mixed strategy are characterized by a q that does not
converge to a specific value but oscillates until the end of the simulation. The π also
exhibits oscillations but of a milder nature right from the start, stabilizing towards a
value towards the end of the simulation. Players ending up in a pure strategy (in this
case only the pure strategy H, but as we will see later, this is a characteristic of players
converging to pure strategies in general) have a q that, after some oscillations, rapidly
converges to a fixed value, just like the corresponding π.

• Let’s consider the first type of dynamics (Figure 4.7): we have players playing mixed
strategies who, during the temporal evolution, try one or the other strategy more or
less frequently (depending on their value of πt(G)). This, combined with the statistical
fluctuations of the outcome of each stage game (i.e., the realization of u(at)), clearly leads
to having a qt that reflects these fluctuations. The fluctuations of qt do not significantly
decrease over time because the learning rate decreases like ∼ (πt(G)·t)−0.1, and after 5000
iterations, it will still be greater than 0.4 (it does not have a certain value because, as
mentioned at the beginning, the learning rate of q varies from simulation to simulation,
but a lower bound can still be determined). In contrast, the learning rate of πt(G)
decreases according to t−0.9 and it is already below 0.02 after 100 iterations and below
0.002 after 1000 iterations. This explains its much more stable dynamics and the fact
that this stability increases as the simulation progresses. After a sufficently long time for
the same reason also the value of qt will stabilize but at that point the dynamics of π will
be already fixed.
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Figure 4.7: Dynamics of πt(G) and qt for a player ending up in mixed strategies, as
function of the iterations t

• Concerning the second type: the dynamics is characterized by a very rapid settling of
the initial phases of both π and q (Figure 4.8).

(a) Complete dynamics (b) Zoom out to the first 100 iterations, where all
three quantities already stabilize

Figure 4.8: Dynamics of πt(G) and qt for a player ending up in the pure strategy H

Finally it’s instructive to track the dynamics concerning the only πt(G) for a portion
of the population taken as a sample. In Figure 4.9 one can see both types of players.
Furthermore, a third type of players can be observed, much less frequent: those who
initially exhibit a pure strategy dynamic and eventually transition into a mixed strategy.
Remarkably it never happens the converse. It means that a fluctuation is able to induce
a player, fixed in the H pure strategy to select a mixed strategy, which has to be more
stable in some sense: a player j using the pure strategy H indeed, receives a payoff
0, independently on the other players choices. But due to the asyncronous update,
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when playing strategy H, only the value corresponding to qj(H) is updated. The qj(H)
converges rapidly and the q(G) is never updated unless strategy G is chosen due to
a flcuctuation induced by temperature. When this happens, it may happen that for
that particular stage, G reveals the winning choice, and since n(G) is still small, the
corresponding learning rate is large, causing an abrupt increasing in the value of qj(G)
and consequently in that of πj(G). A player already playing in mixed strategies is instead
already tuning πj(G) playing both strategies and it results less sensible to fluctuations.

(a) Sample of 100 players. m=0.2 (b) Sample of 100 players. m=0.6

Figure 4.9: Dynamics of πt(G) for a sample of 100 players, as function of the iterations

4.2.2 0 < g < h < 1

When h < g a new regime is reached: in this regime, all players end up in a pure
strategy. The algorithm still converges to an equilibrium, but this time converges to one
of the pure strategies Nash equilibria of the stage game, i.e. the ones in which nG = m
and nH = 1−m (Figure 4.10). Notice that also in this regime, the dynamics of π is faster
than the one of q and asimpotically (t → ∞) q is steady from the point of view of the
evolution of π.
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(a) m = 0.2, h = 0.6, g = 0.4 (b) m = 0.6, h = 0.6, g = 0.4

Figure 4.10: Distribution of πT (G) among the players, after 5 · 103 iterations. In both
cases the convergence to the pure strategy equilibrium is perfect.
Case m = 0.2: nG = 200 and nH = 800
Case m = 0.6: nG = 600 and nH = 400

In all other cases: h = 0.7 and g = 0.3, h = 0.8 and g = 0.2, h = 0.9 and g = 0.1 a pure
strategies state is reached: depending on the specific value of m and of the population N
the actual equilibrium can be reached in some of these cases, increasing the number of
iterations when needed. It turns out that a specific choice (or set of choices) for h and g
leads to a pure Nash equilibrium. When the equilibrium is not reached, all players still
fix on a pure strategy giving a strategy profile characterized by nG < M . So in general
the state reached is a pure strategies state with nG ≤ 0, where the case = 0 is a Nash
equilibrium.

All the players are characterized by the same dynamics as the ones ending up in pure
strategies in the other time-scales regime (Figure 4.11):

(a) Sample of 100 players. m=0.2 (b) Sample of 100 players. m=0.6

Figure 4.11: Dynamics of πt(G) for a sample of 100 players, as function of the iterations
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4.2.3 0 < h < g

By relaxing the request g < 1, in order to create a wider separation in the time-scales,
the algorithm converges to the symmetric mixed strategies Nash equilibrium of the stage
game (Figure 4.12). Numerical results resumed in Table 4.2. In the following h = 0.1
and g = 1.2.

(a) m = 0.2 (b) m = 0.6

Figure 4.12: Distribution of πT (G) among the players, after 104 iterations. h = 0.1 and
g = 1.2. Values in Table 4.2

p∗ µG σG nH nG

m = 0.2 0.200 0.206 0.043 0 0

m = 0.6 0.600 0.598 0.023 0 0

Table 4.2: h = 0.1 and g = 1.2. In both cases the distribution is peaked around the
mixed strategy symmetric equilibrium and the whole population ended up in a mixed
strategy.

In some range of the two time-scales, the values Err and σ2
G depend weakly on the

absolute value of the single h and g, while depending strongly on their difference g − h.
In order to see the dependence of the estimate on the time-scales, different ranges of
h and g have been tested Figure 4.13. Below are some results results concerning this
fact: for each value of h in a range between 0.1 and 0.4 (stepsize 0.1), the values of g
in a range between h and h + 1.3 (stepsize 0.1) have been tested. The figures repeat
periodically evereytime h changes value, meaning that in such ranges, the performance
depends mostly on the difference g − h. The case m = 0.2 has been used because is the
one presenting a higher σG. With much greater values of h, Err begins to grow. A similar
simulation has been made, this time choosing only a range of g relative to h = 0.1, in
order to determine an optimal distance g − h. This way, the values h = 0.1 and g = 1.3
of 4.12 have been selected.
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(a) h between 0.1 and 0.4, g from h to h+ 1.3 (b) h = 0.1, g from 0.1 to 1.6

Figure 4.13: Err (in blue) is in most cases small but σG (in orange) decreases with
increasing g − h.

The decreasing in σT
G is a sign of the fact that the distribution is becoming more and more

dense around the mixed strategy. So separating enough the time-scales, the algorithm
converges to the symmetric mixed strategies Nash equilibrium.

High temperature τ = 0.5

When the temperature is sufficiently high, it can be observed that independently on the
the time-scale regime, all players tend to converge to the symmetric mixed strategies
equilibrium (Figure 4.14): the distribution is sharper as the difference |h− g| is larger.

(a) m = 0.2, h = 0.1, g = 0.9 (b) m = 0.2, h = 0.5, g = 0.5 (c) m = 0.2, h = 0.9, g = 0.1

(d) m = 0.6, h = 0.1, g = 0.9 (e) m = 0.6, h = 0.7, g = 0.3 (f) m = 0.6, h = 0.9, g = 0.1

Figure 4.14: Distribution of πT (G) among the players, for different values of h and g after
5 · 103 iterations.
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In Figure 4.15 one can see that during the dynamics the pure stategies are never system-
atically adopted, neither in the m = 0.2 case where at low temperature there was a great
fraction of the players fixed in the strategy H, nor even in the g < h regime where at low
temperature all players adopted pure strategies.

(a) m = 0.2,h=0.9, g = 0.1 (b) m = 0.6,h=0.1, g = 0.9

Figure 4.15: Two examples of dynamics of a 100 players sample in the high temperature
regime τ = 0.5

The fluctuations induced by the temperature are sufficently strong to make all the pure
strategies player deviate enought to become mixed strategies players, as it happended
rarely in the low temperature regime. This is not surprising since, with a temperature of
the order of q it is very difficult to reach values of q that can lead the smoothed update
of π(G) towards the extremes 0 or 1. Moreover, clearly the symmetric mixed equilibrium
in both time-scale regimes has some stability. This was evident in low temperature when
players deviating from a pure strategy tended to approach the symmetric equilibrium
strategy but never happened the converse and it is evident here, where temperature fluc-
tuations are able to avoid players getting stuck in pure strategies but don’t affect much
players ending up in a strategy sufficiently close to the symmetric mixed strategy equi-
librium.

Even if the two time-scale regimes lead to the same equilibrium convergence, the dy-
namics is still different (Figure 4.16):

• in the h < g regime, q is still oscillating when π has already reached equilibrium: as
already observed it has a very slowly decreasing learning rate so it is very sensible
to the fluctuations of the single realizations of the stage game.

• in the h > g regime instead, also q has a stable dynamics.
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(a) m = 0.2,h=0.1, g = 0.9 (b) m = 0.6,h=0.9, g = 0.1

Figure 4.16: Typical dynamics in the high temperature regime

4.2.4 Summarizing numerical results

From the simulations at low temperature, two distinct regimes that govern the behavior
of the system can be identified: a first regime, that can be referred to as fast-q regime
(where h < g), and the opposite regime, fast-π regime (h > g). The very same regimes
at sufficiently high temperature have the same behaviour.

• fast-q: at sufficiently high temperature the dynamics of π converges to the sym-
metric mixed strategy equilibrium. q keeps oscillating also after π fixes. At low
temperature, the dynamics converges to states characterized by the presence of
players ending up in mixed strategies. Moreover, by appropriately selecting the
parameters, it is possible to ensure that the algorithm converges to:

– one of the asymmetric Nash equilibria

– the symmetric mixed Nash equilibrium (in some cases g has to be set greater
than one, exiting the hypothesis of convergence of the original algorithm)

• fast-π: at sufficiently high temperature the dynamics of π converges to the sym-
metric mixed strategy equilibrium and also q stabilizes. At low temperature, the
dynamics converge to states in which all players end up in pure strategies. Also in
this case, by appropriately selecting the parameters, it is possible to ensure that the
algorithm converges to one of the pure strategies Nash equilibria: the players learn
to coordinate in the most efficient way, i.e. the total sum of the payoffs among the
population is maximized.

4.2.5 The fast-π regime

Algorithm 4 has been proven to be convergent to a Nash equilibrium of the game in [7].
However, the regime in which h > g is out of the convergence hypothesis of the algorithm.
So on one hand it is not surprising that, at least in some settings, it gives different results.
On the other hand, one may wonder why it still converges to Nash equilibria in most of
the cases.
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Let’s consider first the limit of vanishing temperature τ → 0 and assume g to be suffi-
ciently close to 0 to consider t−g as 1: in this limit the update of π in (4.2) is simply
given by (let’s take the update corresponding to ai = G):

πt
i(G) =


1 if qti(G) > qti(H)

0 if qti(G) < qti(H)
1

2
if qti(G) = qti(H)

(4.2)

So we have that whenever it happens that a player reinforces an action obtaining positive
payoff or conversely the action is discouraged we have that the strategy instantaneously
becomes a pure one and consequently fixed for the replicator dynamics. Let’s inspect
when this happens:

• at t = 0 πi(G) = πi(H) =
1

2
and qi(G) = qi(H) = 0 for any player i.

• players choosing H as first action don’t change q since u(H, a−i) = 0 and the other

terms in the update are also 0 ( so they remain with πi =
1

2
). Thus, the only ones

changing πi and qi are those choosing G.

So we have two possible scenarios at the first time step:
⋆ ⋆⋆

1. The fraction of players choosing G is bigger than M . In this case they all get a
payoff -1, and their strategy becomes π(G)i = 0 for the rest of the dynamics. On
the other hand the other fraction will still randomize between the two actions. For
this fraction of players the situation is the same as the beginning, with a smaller
number of opponents.

2. The fraction of players choosing G is smaller than M . In this case they all get a
payoff +1, and their strategy becomes π(G)i = 1 for the rest of the dynamics. As in
the other case, the other fraction will still randomize between the two actions. For
this fraction of players the situation is the same as it was at the beginning, with a
smaller number of opponents and a smaller M .

This process reiterates for the rest of the dynamics until all players will have tried once
action G, settling in one or the other pure strategy.

Interestingly, it can’t happen that the still randomly playing agents reinforce action G if
at that stage the ones choosing G has exceeded M . So at the end there will be fraction
≤ M fixed in the strategy π(G) = 1 and the other fixed in the strategy π(G) = 0.

The Nash equilibrium is reached for values of h and g which are not extreme (in the
simulations presented it was h = 0.6 and g = 0.4 ). Considering a still fast but finite
speed dynamics also for πi, the reasoning is qualitatively unchanged if not for the fact
that the update (4.2) is now weighted by a learning rate, so when an action ai is rein-
forced we have that πi(ai) goes towards 1 but it doesn’t become exactly 1. To be more
precise, looking at (??) we see that at t = 1 reinforcing an action ai means actually
setting πi(ai) = 1, but this becomes less and less accurate as t grows. We can then
conclude that at the first time step we are in the very same scenario as in ⋆ ⋆ ⋆. For t > 1



54 Learning the El Farol bar problem repeated game

the reinforcing or discouraging of action G is smoother than before and so also players
who played G and exceeded M will have non-zero probability of trying again action G.
As long as the number of players fixed in the strategy G is smaller than M there will
be a chance of reinforcing action G. When the population fixed in G is exactly M , all
randomizing players will necessarily discourage action G.
Tuning properly h and g is crucial in order to obtain the Nash equilibrium, since we need
πi not to have a hard update, in orther to induce a trial and error behaviour. On the
other hand we need also the learning rate of qi to be sufficiently large to ensure that the
information relative to a reinforcement or a discouragement arrives to πi.

Concerning the high-τ regime, we can consider again an extremely fast π regime and
consider (??): in this regime we observed that no player ends up in a pure strategy, so
clearly the finite temperature prevents πi from being updated in a hard way as in the
low-τ case. On the other hand we also observe that the entropy term is not yet predomi-

nant since, in that case, the system would end up in a uniform state πi(G) = πi(H) =
1

2
.

We observe instead that the system sets around a stable fixed point of the replicator
dynamics, i.e. the ESS πi(G) = p∗. We can conclude that in this regime the tempera-
ture prevents players from fixing in the pure strategies and the dynamics resulting is a
perturbed replicator dynamics that lead the players around the stable fixed point which
which is the symmetric mixed Nash equilibrium.

4.2.6 The fast-q regime

In [7], where algorithm 4 is proposed, a formal proof of the convergence of such algorithm
is given. From a "mathematician" perspective this would be enough. This in not the
case, so let’s try to analyze this regime in the light of the considerations made for the
other one, in order to interpret the numerical results. Clearly the considerations made
to approximate the dynamics with a replicator equations cannot hold. Anyhow, we can
say something about the low τ regime, exploiting the approach used in the other regime.
Referring to ⋆⋆⋆ we can again conclude that at t = 1 a fraction of the players will choose
G:

1. If this fraction is bigger than M , such players will discourage G and being in the
low tau regime they will adopt the strategy πi(G) = 0. As we already noticed,
players choosing H get deterministically a payoff equal to 0, so such players will be
fixed in such strategy. The probability of this case occuring is clearly decreasing
with increasing M . This justifies why equilibria reached with lower values of M
were characterized by a bigger nH population. Still it is not sufficient to justify the

abrupt decrease in such population occurring around
M

N
= 0.5 shown in figure 4.5.

2. If this fraction is bigger than M , such players will reinforce G and, being in the low τ
regime, they will adopt the strategy πi(G) = 1. Such strategy is not a fixed point of
the dynamics, so in the following time steps, whenever it happens that one of such
players chooses G resulting in an exceeding population, its strategy will change.
If this happens in the earlier phase of the dynamics, it will probably discourage G
enough to adopt the strategy πi(G) = 0, becoming part of the nH population. Once
again this is more likely to happen with lower values of M , justifying in part the
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difference in the populations between the different equilibria varying M but does
not justify the discontinuity observed.

4.3 Analytical approach through Stochastic Approxi-
mation theory techniques

The mathematical framework in which the proofs of the convergence of algorithms applied
in stochastic games is the so called Stochastic Approximation Theory, first introduced in
[10]. Essentially, it comprises a set of techniques that rigorously formalize the approach
to approximating a dynamic system in the presence of stochasticity, providing tools to
describe a corresponding deterministic equation for the average values of the involved
quantities. The set of convergence hypothesis of the stochastic games algorithms of
chapter 3 are due to this approach. We shall now exploit some of the principles of this
framework in order to analyze more formally the two regimes, primarily relying on [2].
Let’s begin this time with the fast-q regime.

Consider two dynamical equations describing algorithm 4:

πt+1
i (ai)− πt

i(ai) = βt
i ·
[ exp

(
qti(ai)

τ

)
∑
a′∈Ai

exp

(
qti(a

′)

τ

) − πt
i(ai)

]

qt+1
i (ai)− qti(ai) = αt

i ·
[
ui(a

t) + τ · ν(πt
i(·)) + γ

∑
a′∈Ai

πt
i(a

′) · qti(a′)− qti(ai)

]
where βt

i ∝ t−g and αt
i ∝ (πt

i (ai) t)
−h ∝ t−h and ui is defined by (4.1). From the point of

view of player i, the received payoff depends on her action and on the unobserved actions
of the other players. It is therefore convenient to express the stage payoff ui (ai, a−i)
received by player i as the sum of two terms: the average payoff value when the other
players behave according to their current mixed strategies ūi

(
ai, π

t
−i

)
and a random

variable ηti (ai) with zero mean and a variance that can be also specified.1 The original
equations become

πt+1
i (ai)− πt

i(ai) = βt
i ·
[ exp

(
qti(ai)

τ

)
∑
a′∈Ai

exp

(
qti(a

′)

τ

) − πt
i(ai)

]

qt+1
i (ati)− qti(a

t
i) = αt

i ·
[
ūi(ai, π

t
i) + ηti (ai) + τ · ν(πt

i(·)) + γ
∑
a′∈Ai

πt
i(a

′) · qti(a′)− qti(a
t
i)

]
1In fact, only the noise term ηti (G) is non zero, still it has zero mean and fluctuations equal to〈

ηti (G) ηtj (G)
〉
= Ωδijδ (t− t′)

with
Ω = (1− ω)ω (1 + x)

2
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Under the already specified conditions h, g ∈ (0, 1), it is now possible to apply stochastic
approximation theory to derive a system of ODE for the two quantities under considera-
tion (we now write explicitely ν defined in chapter 3),

ϵti
d

dt
πt
i (ai) =

exp

(
qti (ai)

τ

)
∑

a′i
exp

(
qti (a

′
i)

τ

) − πt
i (ai)

d

dt
qti (ai) =

ūi

(
ai, π

t
−i

)
− τ

∑
a′i

πt
i (a

′
i) log π

t
i (a

′
i) + γ

∑
a′i

πt
i (a

′
i) q

t
i (a

′
i)− qti (ai)


where ϵti ∝ αt

i/β
t
i . Introducing πi (t) = πt

i (G) (and 1 − πi (t) = πt
i (H)) and δqi (t) =

qti (G)− qti (H), we get the following simplified ODEs

ϵti
d

dt
πi (t) =

exp

(
δqi (t)

τ

)
1 + exp

(
δqi (t)

τ

) − πi (t)

d

dt
δqi (t) =

{
ūi

(
G, πt

−i

)
− ūi

(
H, πt

−i

)
− δqi (t)

}
We first consider the regime 0 < g < h < 1, in which ϵti → 0 as t → ∞. In this regime,
we expect that πi rapidly converges to a local fixed point

πi =

exp

(
δqi
τ

)
1 + exp

(
δqi
τ

)
which is slave with respect to the current value of δqi, while the latter has to be determined
considering its dynamics in which πt

i appears as πt
i = πi [δq

t
i ], i.e.

d

dt
δqi (t) =

{
ūi

(
G, πt

−i

)
− ūi

(
H, πt

−i

)
− δqi (t)

}
=

{
ūi

(
G, π−i

[
δqt−i

])
− ūi

(
H, π−i

[
δqt−i

])
− δqi (t)

}
.

It is convenient to retrieve an equation for the mixed strategy profiles

d

dt
πi (t) =

d

dt

exp

(
δqi
τ

)
1 + exp

(
δqi
τ

)

=
1

1 + exp

(
δqi (t)

τ

) d

dt
exp

(
δqi (t)

τ

)
−

exp

(
δqi (t)

τ

)
(
1 + exp

(
δqi (t)

τ

))2

d

dt
exp

(
δqi (t)

τ

)

=
1

τ
πi(t) (1− πi (t))

d

dt
δqi (t)

= πi(t) (1− πi (t))
{
τ−1 [ūi (G, π−i (t))− ūi (H, π−i (t))]− δqi (t) /τ

}
= πi(t) (1− πi (t))

{
τ−1 [ūi (G, π−i (t))− ūi (H, π−i (t))]− log

πi (t)

1− πi (t)

}
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We have obtained a generalized version of replicator-equations, also known as Sato-
Crutchfield equations. The average payoff difference depends on the current mixed
strategies of the other players, which makes an explicit calculation of the fixed points
of the dynamics non-trivial. If we assume that all players behave symmetrically, i.e.
πj (t) = πi (t) = π (t), then the average payoff difference can be easily estimated. In fact

ūi (G, π−i (t))− ūi (H, π−i (t)) = ūi (G, π−i (t))

= xω
[
πt
]
− 1

(
1− ω

[
πt
])

= (1 + x)ω
[
πt
]
− 1

where ω [πt] = Pr
[
A−i ≤M − 1| {πj (t)}j∈I

]
. The latter quantity can be approximated

as follows

ω
[
πt
]

= Pr
[
A−i ≤M − 1| {πj (t)}j∈I

]
≈ Pr

[
A−i ≤M − 1|π (t) =

1

N

∑
j

πj (t)

]

≈
M−1∑
ℓ=0

(
N − 1

ℓ

)
π (t)ℓ (1− π (t))N−1−ℓ

Considering this mean-field version of the Sato-Crutchfield equations,

d

dt
πi (t) = πi(t) (1− πi (t))

{
τ−1

[
(1 + x)ω

[
πt
]
− 1
]
− log

πi (t)

1− πi (t)

}
for small values of τ , the dynamics of πi (t) rapidly fix in one of the two absorbing states
πt
i = 0 or πt

i = 1 depending on ω [π]: if ω [π] > 1/(1 + x), then the strategy πi increases
until it reaches the pure strategy G, otherwise it rapidly converges to the pure strategy
H. Only when τ is large the entropic term associated to the effects of the “thermal”
noise promotes the survival of purely mixed strategies. In the dynamics we also observe
that, in which regime, the relative proportion of pure strategies played when τ is small is
consistent with the already determined pure-strategy equilibria. This is due to the fact
that the drift associated with the average payoff term, and determining the convergence
of individual mixed strategies, vanishes when ω [πt] = 1/(1 + x), which corresponds to
the equilibrium condition at the population level.

Then we consider the opposite regime 0 < h < g < 1, in which ϵti (ai)→∞ as t→∞.
It is convenient to rescale time in order to write the ODE system as

d

dt
πi (t) =

 exp

(
δqi (t)

τ

)
1 + exp

(
δqi (t)

τ

) − πi (t)


1

ϵti

d

dt
δqi (t) = ūi

(
G, πt

−i

)
− ūi

(
H, πt

−i

)
− δqi (t)

Now the second equation converges faster than the first one and we can use again the
separation of scales to state that δqi can be considered a slave variable of πt

−i by the
relation

δqi = ūi

(
G, πt

−i

)
− ūi

(
H, πt

−i

)
= (1 + x)ω

[
πt
]
− 1.
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Moreover, we expect that the slow variable πi (t) follows the equation

d

dt
πi (t) =

exp

(
ω [πt] (1 + x)− 1

τ

)
exp

(
ω [πt] (1 + x)− 1

τ

)
+ 1

− πi (t) .

We notice that, for small values of τ ,{
πt
i → 1 for ω [πt] > 1/(1 + x)

πt
i → 0 for ω [πt] < 1/(1 + x)

Using again the mean-field approximation for ω [πt], we can analyze more in detail this
relation. In the mean-field approximation, the function ω [πt] is a decreasing function of
πt, therefore when πt

i → 1 we have ω [πt] < 1/(1 + x), which means that πi (t) decreases.
On the contrary then πt

i → 0 then ω [πt] > 1/(1 + x) and certainly πi (t) increases. It
means that, for all indivuals i the mixed-strategy dynamics undergoes a negative feedback
mechanism that stops when πi reaches an equilibrium point π∗ at which

π∗ ≈
exp

(
ω [π∗] (1 + x)− 1

τ

)
exp

(
[ω [π∗] (1 + x)− 1]

τ

)
+ 1

.

Since the r.h.s. is almost a step function at small temperature (when τ ≪ 1), in this
regime the fixed point is very close to the mixed Nash equilibrium, whereas it deviates
towards π∗ → 0.5 for large temperatures.
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4.4 Minority games

Let’s consider a slight (but crucial) modification of the El Farol bar problem. Again,
consider a game in which all players have a binary choice. A common choice is to assign
an explicit numerical value to the choices: Ai := {−1, 1}. Let A :=

∑
i∈I

ai. The utility

function of this symmetric game is given by

u(ai, a−i) = −aiA

It is evident that player i gets a positive reward whenever his choice is 1 and A < 0 or −1
and A > 0, so whenever his choice is in the minority. In other words one way to see this
game is that the purpose of each player is that of predicting what will be the sign of A.
This in just one possible formulation of a minority game: one possible modification/gen-
eralization would be that of choosing another antisymmetric function of A. There can
be identified several Nash-equilibria: a symmetric mixed strategy equilibrium in which
all players use a strategy πi(+1) = πi(−1) = 1

2
and E[A] = 0. Then, if N is even there

are
(

N
N/2

)
pure strategy strict Nash equilibria in which the players split perfectly between

the two strategies and A = 0. If N is odd, there are
(

N
1+N/2

)
pure strategy weak Nash

equilibria with A = ±1. Finally, always in the odd case it can be proved that there are
countably many equilibria in which N/2 −m of the players choose +1, N/2 −m of the
players choose −1 and the others play a mixed strategy.

4.5 Numerical results for the minority game

The minority game exhibits a simpler stucture with respect to the the El Farol bar
problem game: indeed here tere is no asymmetry between the two strategies, and there
is no neutral choice such as the H strategy of the El Farol bar problem, that gave
deterministically a 0 reward. Indeed by performing the same simulations as in the other
game, the same results come out with the difference that in the low-τ fast-π regime, there
is no preferred choice, so the populations can be unbalanced in both the actions.

Low temperature τ = 0.1

In this formulation, the scale of payoffs has the order of the population, so we rescale the
two temperature regimes by N = 1000. In the fast-q regime the results are analogous to
the El Farol bar problem ones, and the strategy profile converge either to the symmetric
Nash equilibrium (figure 4.17a) or to one of the asymmetric Nash equilibria (figure 4.17b),
depending on the specific choice of h and g.
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(a) h=0.1, g = 0.9 (b) h=0.4, g = 0.6

Figure 4.17: Depending on the specific choice of the exponents, one between the sym-
metric or an asymmetric equilibrium is selected

In the fast-π regime analogously, the same results as in the El Farol bar problem are found
again, and by tuning h and g one may recover the pure strategy equilibrium (figure 4.18).
In the other cases, as already anticipated, there is no preferred choice, so the population
may result unbalanced in one or the other (fgures 4.19a 4.19b)

Figure 4.18: By tuning the exponents the pure Nash equilibrium is reached
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(a) h=0.9, g = 0.1 (b) h=0.9, g = 0.1

Figure 4.19: Only pure states are reached and there is no preferred choice

High temperature regime τ = 500

In both time-scale regimes the symmetric Nash equilibrium is reached (figure 4.20)

(a) h=0.9, g = 0.1 (b) h=0.1, g = 0.9

Figure 4.20: In both cases the symmetric Nash equilibrium is reached
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Chapter 5

Conclusion

This study applied a reinforcement learning algorithm initially designed for stochastic
games to the repeated El Farol bar problem. This algorithm featured two temporal
scales governing the evolution of player strategies (π) and a Q-function averaged over
opponent strategies (q). The original algorithm exhibited a fast temporal evolution for
q, treating π as stationary. However, by modifying the temporal scales to allow for rapid
evolution of π, we observed a shift in equilibrium outcomes. Specifically, while the origi-
nal regime led to convergence to symmetric mixed strategies, the reversed regime resulted
in the emergence of pure strategy states, including pure strategy equilibria.
This work highlights the role of learning dynamics in equilibrium selection and stability,
confirming how equilibrium stability is not just an intrinsic property of the game but is
significantly influenced by the learning dynamics. Moreover, focusing on the Farol’s Bar
problem, we find that learning dynamics dictate whether players converge to pure coordi-
nation equilibria or resort to selfish strategies that yeld the same result as a coordination
in the long term.
These findings offer valuable insights also considering how reinforcement learning dynam-
ics mirror human learning and interpretation of real-world phenomena and events. By
investigating the interplay between learning dynamics and equilibrium outcomes, it is
possible to get a deeper understanding of strategic interactions in complex environments.
In essence, this thesis underlines the intricate relationship between learning dynamics and
equilibrium selection, shedding light on the adaptive nature of decision-making processes
in dynamic environments.
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