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Summary
In the realm of physics, causality remains an enigmatic and debated concept. Though numer-
ous measures of causality have been proposed, including Causal Influence [1], Liam’s causality
[2], Pearl’s average causal effect [3], Granger’s causality [4], and Transfer entropy [5], a unified
consensus on its nature and measurement has yet to be reached.

This thesis focuses on transfer entropy, a model-free metric introduced by Thomas Schreiber,
with widespread applications across many disciplines. Notably, transfer entropy has been
used in fields like neuroscience ([6], [7]), finance ([8], [9]), and the study of complex systems
([10], [11]).

Our aim is to provide a comprehensive understanding of transfer entropy and explore its
application to quantum circuits. We investigate how transfer entropy behaves when data
originates from quantum processes, focusing particularly on spin measurements, different
initial states, and different channels.

To achieve this, we developed a program ([12]) that can simulate classical and quantum
measurements of two interacting observables and calculate the transfer entropy from the
obtained time series. For the quantum case, we derive an analytical formula for transfer
entropy in our specific setup, enabling us to study its properties and calculate its value without
relying on simulation.
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Chapter 1

Transfer entropy: definition and
properties.

1.1 Information Theory

Information theory is the mathematical study of the quantification, storage, and communi-
cation of information. The key measure in information theory is entropy: It quantifies the
amount of uncertainty involved in the value of a random variable or the outcome of a random
process. It is the building block of many important information theory quantities, which
we are going to use extensively in this thesis. For an exhaustive explanation of entropy and
entropy related quantities, and how they are linked to quantum information, we refer to the
following review [13]. The most commonly used measure of entropy was proposed by Shannon
in his renowned article [14]:

Definition 1.1.1. The entropy H of a variable X is defined as:

H(X) := −
Ø
x∈X

p(x) log p(x), (1.1)

where p(x) is a discrete probability distribution of values x of X.

In the following we report basic properties of Shannon’s entropy H:

• It is non-negative.

• H(X) is a continuous function of X.

• H(X) is a symmetric function of its arguments.

For two variables X and Y , the entropy of the joint system is H(X, Y ).
We can derive another key quantity, conditional entropy: it quantifies the amount of informa-
tion needed to describe the outcome of a random variable X given that the value of another
random variable Y is known.
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Definition 1.1.2. The conditional entropy of X conditioned on Y is

H(X|Y ) := −
Ø

x∈X,y∈Y

p(x, y) log p(x, y)
p(y) = H(X, Y ) −H(Y ). (1.2)

We list some properties of the above-mentioned quantities:

• Entropy and conditional entropy are both non-negative, as it can be immediately seen,
since the logarithm is always negative for arguments less than 1.

• If X and Y are two independent random variables, we have H(X|Y ) = H(X), due to
the factorization of the probability: p(x, y) = p(x)p(y), the formula for the conditional
entropy Eq. ( 1.2) reduces to the one of the Shannon entropy.

• The maximal entropy of a variable that can take n values is log n and it is reached when
the probability distribution is uniform.

Most of the important quantities in information theory are described with entropy measures.
We introduce the Kullback-Leibler Divergence, also called relative entropy. It is a quantity
used as "distance" between two probability distributions. Let us imagine that a variable has
a probability distribution Q, while the real distribution is P . Kullback-Leibler Divergence
is a measure that tells us how wrong we are with our assumption. It is often related to the
storing and processing of information,which are key concepts in this thesis.

Definition 1.1.3 (Kullback-Leibler Divergence). Given two probability distributions p(x) and
q(x) of values of X:

DKL(p(x)||q(x)) :=
Ø
x∈X

p(x) log p(x)
q(x) (1.3)

To show that the Kullback-Leibler divergence can represent a distance between probability
distributions, we prove that it is always non-negative.

Property 1.1.1. Considering P and Q as probability distributions for the observable X,

DKL(P ||Q) ≥ 0 ∀P,Q (1.4)

Proof. To prove the above mentioned property, we will use the following inequality

− log x ≥ 1 − x.

Starting from Eq. ( 1.3)

Ø
x∈X

p(x) log p(x)
q(x) =

Ø
x∈X

p(x)
A

− log q(x)
p(x)

B
≥
Ø
x∈X

p(x)
A

1 − q(x)
p(x)

B
.

Using the property of probability distributions qx∈X p(x) = 1,

Ø
x∈X

p(x)
A

1 − q(x)
p(x)

B
=
Ø
x∈X

p(x) −
Ø
x∈X

q(x) = 1 −
Ø
x∈X

q(x)

2



Chapter 1. Transfer entropy: definition and properties.

note that non-negativity is obtained when 1 −q
x∈X q(x) ≥ 0, meaning that it is verified for

all Q that represent a probability distribution (qx∈X q(x) = 1) but also for non-normalized
probability distributions with the constrain that qx∈X q(x) ≤ 1.

Kullback-Leibler divergence fails as a metric in the usual sense, because it is asymmetric. The
asymmetry comes from the fact that we assume one distribution to be the true one, in this
case P , since the expectation value is calculated with respect to P . We are calculating the
distance of our assumed distribution from the "true" distribution of the variable. For a more
detailed explanation, see [15].

To represent and quantify the information shared by two variables, mutual information is
often used.

Definition 1.1.4 (Mutual Information). The mutual information between two variables is
defined as:

I(X : Y ) =
Ø

x∈X, y∈Y

p(x, y) log p(x, y)
p(x)p(y) = H(X) +H(Y ) −H(X, Y ), (1.5)

When we desire to measure the information shared between two systems, after knowing the
value of a third additional variable, we use the conditional mutual information:

Definition 1.1.5 (Conditional mutual information). The conditional mutual informationbe-
tween two variables X and Y , considering an additional variable Z, is defined as:

I(X : Y |Z) :=
Ø

x∈X, y∈Y, z∈Z

p(x, y, z) log p(x, y|z)
p(x|z)p(y|z) = H(X|Z) −H(X|Y, Z). (1.6)

A convenient and immediate way to visualize entropy quantities is to use Venn diagrams,
as we show in Fig. 1.1 Mutual information Eq. ( 1.5) and conditional mutual information
Eq. ( 1.6) can be written as Kullback-Leibler divergences, thus inheriting non-negativity:

I(X : Y ) = DKL(p(X, Y )||p(X)p(Y )).

Mutual information is equal to the distance between the joint probability distribution of
variables X and Y , p(X, Y ), and the joint probability distribution assuming that the variables
are independent, p(X)p(Y ).

I(X : Y |Z) = DKL(p(X, Y, Z)||p(X|Z)p(Y |Z)p(Z)), (1.7)

with the same meaning as before, after knowing the value of variable Z.

Mutual Information and conditional mutual information are symmetric with respect to X
and Y .

Property 1.1.2. The conditional mutual information is upper bounded by the conditional
entropy

I(X : Y |Z) ≤ H(X|Z). (1.8)

3
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Figure 1.1: Venn diagrams for entropy, conditional entropy and mutual information.

This is clear from the Venn diagram representation shown in Fig. 1.1.

Property 1.1.3. The conditional entropy of X conditioned on Y vanishes if and only if there
exists an analytical function such that X = f(Y ):

H(X|Y ) = 0 ⇐⇒ ∃f : f(Y ) = X. (1.9)

Proof. f(y) = x can be interpreted with probability distributions as: for all x0 such that
p(x0) > 0 there exist a unique y0 such that p(y0|x0) = 1.
First we prove the "⇒" relation. Assuming conditional mutual information to be zero:

H(X|Y ) = −
Ø
x∈X

Ø
y∈Y

p(y)p(x|y) log p(x|y) = 0.

Since every summand is non-negative, for the conditional mutual information to vanish each
of them must be zero. Imposing this condition, we obtain:

p(y) > 0 =⇒ p(x|y) log p(x|y) = 0.

One has t log t = 0 ⇐⇒ t ∈ {0, 1}, and the properties of probability distribution assure thatq
x∈X p(x|y) = 1, so for each y in the conditional mutual information summation there exists

one and only one x s.t. p(x|y) = 1. When this happens we can conclude that x = f(y). To
extend the property to the whole system we notice that:

p(x) > 0 =⇒ p(y|x) = δ(x− f(y)) =
1 x = f(y)

0 x ̸= f(y)

where δ is the Kronecker-delta.
We claim that X = f(Y ) with probability 1.

4
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Whenever p(x) > 0:

P (X = f(Y )) = E[δ(x− f(y))]
=
Ø
y∈Y

Ø
x∈X

p(x, y)δ(x− f(y))

=
Ø
y∈Y

p(x)
Ø
x∈X

p(x|y)δ(x− f(y))

a)=
Ø
y∈Y

p(x)
Ø
x∈X

p(x|y)

=
Ø
y∈Y

Ø
x∈X

p(x, y) = 1

where in the a) step, we reduce the summation over all x = f(y), and we saw previously that
when H(X|Y ) = 0 for every p(y) ̸= 0 there exists a unique x that satisfies this condition. To
prove the "⇐" we assume that there exists f : X = f(Y ). This means that each x ∈ X is a
function of an y ∈ Y , obtaining: p(x|y) = δ(x− f(y)). The conditional entropy thus becomes:

H(X|Y ) = −
Ø
x∈X

Ø
y∈Y

p(y)δ(x− f(y)) log δ(x− f(y)) = 0.

Because δ ∈ {0, 1} and t log t = 0 ⇐⇒ t ∈ {0, 1}.

1.2 Definition of transfer entropy
To define the transfer entropy, we have to start by Granger’s definition of causality [4].

Definition 1.2.1 (Granger null causality principle). Given two variables X and Y , when
past observations of Y do not influence our ability to predict X, then there is no causation
effects from Y to X. This can be summarized as a probability distribution:

p(xt+1|xt, ..., xt−k) = p(xt+1|xt, ..., xt−k, yt, ..., yt−l) (1.10)

for arbitrary k and l.

Transfer entropy is a measure, defined by Thomas Schreiber [5], originated from the need to
quantify Granger causality. In order to define properly the transfer entropy, we will set up
the environment and notation we are going to be working with.

1.2.1 Environment and Notation
We are considering two variables that evolve in time, X and Y , representing our information
about object/system/state and Xt, Yt constitute measurements/realizations of said systems
at time t. Xt,Yt will be referred as variables which represent points in space-time.

A very convenient representation, shown in Fig. 1.2, is a graph where the nodes are space-time
points and the arrows the information flow between variables. The highlighted points are
the conditioned ones (it will make more sense when we define the transfer entropy), the blue
hatched ones are sources of information flow, the red one is the target.
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Figure 1.2: Example of the notation used to represent two systems

Notation

We will represent a set of multiple variables in the following way:

• xk
t = {xt−k, . . . , xt−1, xt} represents the set of variables of system X from time t− k to
t so that p(xk

t ) = p(xt−k, . . . , xt−1, xt) is the joint distribution of the variables

• We define x0
t = xt, x−1

t = ∅

• Note that {xt+1, x
k
t } = xk+1

t+1

• When a parameter of the system is left unchanged, or it does not influence the calculation,
it will not be appearing when explicating the argument of functions.

1.2.2 Definition
Now we are ready to present the definition of the transfer entropy:

Definition 1.2.2 (Transfer entropy). The incorrectness of the assumption made by Granger
to define causality in Def. 1.2.1 can be quantified with:

TY →X(t+ 1, k, l) =
Ø

xk+1
t+1 ,yl

t

p(xt+1, x
k
t , y

l
t) log p(xt+1|xk

t , y
l
t)

p(xt+1|xk
t ) . (1.11)

It is said that is a non-linear generalization of Granger causality, because it is zero when
Granger non-causality condition (Def. 1.2.1) is true, and it is shown to be equivalent to
Granger causality when the variables are Gaussian distributed in the following paper [16].
Transfer entropy is a measure proposed to determine information flow between two systems.
Specifically, it measures how useful are the yl

t variables to predict the value of xt+1 given that
xk

t are known. The variables yl
t assume the role of the considered source of information flow,

xt+1 the target of such flow and xk
t are the target’s past. In the following we will assume that

there is causal influence if and only if the transfer entropy is positive.

1.2.3 Properties
Transfer entropy can be written as a particular conditional mutual information, inheriting
the previously discussed properties

TY →X(t+ 1, k, l) = I(Xt+1 : Y l
t |Xk

t ) (1.12)

6



Chapter 1. Transfer entropy: definition and properties.

just by noticing that p(xt+1, y
l
t|xk

t )/p(yl
t|xk

t ) = p(xt+1|yl
t, x

k
t )

A brief recap of the previously presented properties of conditional mutual information:

• TY →X ≥ 0 transfer entropy is non-negative.

• TY →X(t+ 1, k, l) ≤ H(Xt+1|Xk
t ) transfer entropy is bounded by conditional entropy of

the target variable and its past.

Dependence on the l parameter

We can start to look into the properties of transfer entropy by asking how its value changes
when an additional source is considered in our calculation. For this purpose we examine the
quantity:

TY →X(l + 1) − TY →X(l).

obtaining the behaviour of transfer entropy in function of l.

Property 1.2.1. The difference between transfer entropy for two consequent l can be written
as a Kullback-Leibler divergence

TY →X(l + 1) − TY →X(l) = DKL[p(xt+1, x
k
t , y

l+1
t )||p(xt+1|xk

t , y
l
t)p(xk

t , y
l
t|yt−(l+1))p(yt−(l+1))]

(1.13)

This property can be interpreted as follows: adding a new source to the transfer entropy
influences it for an amount that is the measure of difference between two probability distri-
butions, one obtained considering the variables xk+1

t+1 dependent from the new source yt−(l+1)
(the probability distribution as a first argument in the Kullback-Leibler divergence) and the
second one obtained considering the xt+1 variable dependent on (xk

t , y
l
t) but independent from

the last introduced source yt−(l+1) while the set of variables (xk
t , y

l
t) depends on it.

Proof. We start by rewriting explicitly the transfer entropy formula in Eq. ( 1.11) for TY →X(l+
1) − TY →X(l) and we obtain:

Ø
yl+1

t

p(xt+1, x
k
t , y

l+1
t ) log p(xt+1|xk

t , y
l+1
t )

p(xt+1|xk
t ) −

Ø
yl

t

p(xt+1, x
k
t , y

l
t) log p(xt+1|xk

t , y
l
t)

p(xt+1|xk
t )

We now use the marginal probability formula p(xt+1, x
k
t , y

l
t) = q

yt−(l+1)
p(xt+1, x

k
t , y

l+1
t ) and

separate the summation

Ø
yl

t

Ø
yt−(l+1)

p(xt+1, x
k
t , y

l+1
t ) log p(xt+1|xk

t , y
l+1
t )

p(xt+1|xk
t ) −

Ø
yl

t

Ø
yt−(l+1)

p(xt+1, x
k
t , y

l+1
t ) log p(xt+1|xk

t , y
l
t)

p(xt+1|xk
t ) ,

the sum over all variable that are not yt−(l+1) is equal for both terms, so it can be collected,
together with the full probability distribution,

Ø
yl

t

Ø
yt−(l+1)

p(xt+1, x
k
t , y

l+1
t )

A
log p(xt+1|xk

t , y
l+1
t )

p(xt+1|xk
t ) − log p(xt+1|xk

t , y
l
t)

p(xt+1|xk
t )

B

7
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and using logarithm’s properties,
Ø
yl

t

Ø
yt−(l+1)

p(xt+1, x
k
t , y

l+1
t ) log p(xt+1|xk

t , y
l+1
t )p(xt+1|xk

t )
p(xt+1|xk

t )p(xt+1|xk
t , y

l
t)
.

After simplifying p(xt+1|xk
t ), we use Bayes theorem to rewrite the probabilities p(xt+1|xk

t , y
l+1
t )p(xk

t , y
l+1
t ) =

p(xt+1, x
k
t , y

l+1
t ) and we obtain:

Ø
yl+1

t

p(xt+1, x
k
t , y

l+1
t ) log p(xt+1, x

k
t , y

l+1
t )

p(xt+1|xk
t , y

l
t)p(xk

t , y
l+1
t )

.

We rewrite the probability in the denominator in a more significant way, using Bayes theorem,
to get the formula

Ø
yl+1

t

p(xt+1, x
k
t , y

l+1
t ) log p(xt+1, x

k
t , y

l+1
t )

p(xt+1|xk
t , y

l
t)p(xk

t , y
l
t|yt−(l+1))p(yt−(l+1))

We can recognise the form of a Kullback-Leibler divergence. The only thing that remains to
be proven is that the denominator of the log is indeed a probability distribution, i.e. it sums
to 1: Ø

yl+1
t

p(xt+1|xk
t , y

l
t)p(xk

t , y
l
t|yt−(l+1))p(yt−(l+1)) =

Ø
yl

t

p(xt+1|xk
t , y

l
t)

Ø
yt−(l+1)

p(xk
t , y

l+1
t ) =

=
Ø
yl

t

p(xt+1|xk
t , y

l
t)

Ø
yt−(l+1)

p(xk
t , y

l+1
t ) =

Ø
p(xt+1, x

k
t , y

l
t) = 1.

Where we just used the previously mentioned Bayes theorem and marginal probability
distribution formula. Now we can say that indeed the quantity that we found can be written
as a Kullback-Leibler divergence, proving the property.

Keeping in mind property 1.2.1, and naming

D(l + 1) = DKL[p(xt+1, x
k
t , y

l+1
t )||p(xt+1|xk

t , y
l
t)p(xk

t , y
l
t|yt−(l+1))p(yt−(l+1))],

transfer entropy can be reformulated as:

TY →X(l) = D(l) + TY →X(l − 1).

We notice that TY →X(−1) = 0, where l = −1 means that we consider no source (see the
notation). Transfer entropy can finally be written as:

TY →X(l) =
lØ

i=0
D(i). (1.14)

The above mentioned Eq. ( 1.14), displays two behaviours of the transfer entropy:

• Transfer entropy is monotonically increasing as a function of l, since DKL ≥ 0, from the
properties of Kullback-Leibler divergence

• Since D(l) = TY →X(l) − TY →X(l − 1), this quantity can be considered as a measure of
the strength of information flow due to a specific source (it could be used to model our
system more efficiently or to gain more insight about the dynamics)

8



Chapter 1. Transfer entropy: definition and properties.

Transfer entropy’s bound

Transfer entropy can be written as a conditional mutual information, and from property 1.1.2
we can write

Property 1.2.2. Transfer entropy is bounded by the conditional entropy of Xt+1 and its own
past Xk

t .
TY →X(t+ 1, k, l) ≤ H(Xt+1|Xk

t ) (1.15)

To better understand what happens when we consider an additional variable in the past of
the target in our calculation, we start by studying how the upper bound varies in function of
parameter k. We analyze the difference between two conditional entropies

Property 1.2.3. The difference between two conditional entropies that variate for a condi-
tioned variable Xt−(k+1):

H(Xt+1|Xk+1
t ) −H(Xt+1|Xk

t ) = −TXt−(k+1)→X(k) (1.16)

Proof. We start by considering the difference of the two conditional entropies:

H(Xt+1|Xk+1
t ) −H(Xt+1|Xk

t ) =

= −
Ø Ø

xt−(k+1)

p(xt+1, x
k+1
t ) log p(xt+1, x

k+1
t )

p(xk+1
t )

+
Ø

p(xt+1, x
k
t ) log p(xt+1, x

k
t )

p(xk
t )

a)= −
Ø Ø

xt−(k+1)

p(xt+1, x
k+1
t ) log p(xt+1, x

k+1
t )

p(xk+1
t )

+
Ø Ø

xt−(k+1)

p(xt+1, x
k+1
t ) log p(xt+1, x

k
t )

p(xk
t )

b)= −
Ø Ø

xt−(k+1)

p(xt+1, x
k+1
t )

A
log p(xt+1, x

k+1
t )

p(xk+1
t )

− log p(xt+1, x
k
t )

p(xk
t )

B

c)= −
Ø

p(xt+1, x
k+1
t ) log p(xt+1, x

k+1
t )p(xk

t )
p(xk+1

t )p(xt+1, xk
t )

d)= −
Ø

p(xt+1, x
k+1
t ) log p(xt+1|xk

t , xt−(k+1))
p(xt+1|xk

t )
e)= −TXt−(k+1)→X(k).

a) marginal probability property was used, p(xt+1, x
k
t ) = q

xt−(k+1)
p(xt+1, x

k+1
t )

b) the term q
xt−(k+1)

p(xt+1, x
k+1
t ) was collected

c) we applied the property for the difference of logarithms

d) we used Bayes theorem

e) we apply the definition of transfer entropy noticing that xt−(k+1) has the role of source
in the formulation.

9
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Figure 1.3: Scheme of sum terms in the bound Eq. 1.17

Corollary 1.2.0.1. The bound of transfer entropy can be rewritten recursively using prop-
erty 1.2.3 as:

H(Xt+1|Xk
t ) = H(Xt+1) −

kØ
i=0

TXt−i→X(i− 1) (1.17)

The term H(Xt+1) denotes the entropy of the target variable (system X observed at time
t+ 1), it represents the uncertainty of Xt+1: It can also be seen as the space in Xt+1 to receive
information. Indeed the more information it receives the less uncertain it becomes. The terms
in the sum are fluxes of information from a single source variable in its own past, given that
all the following variables are known (i.e. conditioned on) as represented in Fig. 1.3. The
bound of the transfer entropy the maximal information that a system Y can send to a system
X, is the actual information that the target variable can receive, minus all the information it
receives from it is past.

1.2.4 Transfer entropy bound saturation
We aim to find the probability distribution that maximizes transfer entropy.

Theorem 1.2.1. Transfer entropy is equal to its bound, Eq. 1.15, when system X is obtained
by a deterministic process from (Xk

t , Y
l

t ), i.e. Xt+1 is an analytic function of (Xk
t , Y

l
t ). Which

means:
p(xt+1, x

k
t , y

l
t) = p(xk

t , y
l
t).

Proof. We equate the transfer entropy to its bound:

TY →X(k, l) = H(Xt+1|Xk
t )Ø

p(xt+1, x
k
t , y

l
t) log p(xt+1|xk

t , y
l
t)

p(xt+1|xk
t ) = −

Ø
p(xt+1, x

k
t ) log p(xt+1, x

k
t )

p(xk
t )Ø

p(xt+1, x
k
t , y

l
t) log p(xt+1, x

k
t , y

l
t)p(xk

t )
p(xt+1, xk

t )p(xk
t , y

l
t)

= −
Ø

p(xt+1, x
k
t ) log p(xt+1, x

k
t )

p(xk
t )Ø

p(xt+1, x
k
t , y

l
t)
A

log p(xt+1, x
k
t , y

l
t)

p(xk
t , y

l
t)

− log p(xt+1, x
k
t )

p(xk
t )

B
= −

Ø
p(xt+1, x

k
t ) log p(xt+1, x

k
t )

p(xk
t )Ø

p(xt+1, x
k
t , y

l
t) log p(xt+1, x

k
t , y

l
t)

p(xk
t , y

l
t)

−
Ø

p(xt+1, x
k
t , y

l
t) log p(xt+1, x

k
t )

p(xk
t ) = −

Ø
p(xt+1, x

k
t ) log p(xt+1, x

k
t )

p(xk
t )Ø

p(xt+1, x
k
t , y

l
t) log p(xt+1, x

k
t , y

l
t)

p(xk
t , y

l
t)

= 0

Since p(xt+1, x
k
t , y

l
t) ≥ 0 and we assume that there is at least one set of value for which

p(xt+1, x
k
t , y

l
t) > 0, (otherwise we would obtain 0 = 0, and in this case the theorem is trivially

10
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verified), for the sum to vanish we need to have p(xt+1, x
k
t , y

l
t) = p(xk

t , y
l
t). Meaning that

xt+1 = f(xk
t , y

l
t), because

p(xt+1, x
k
t , y

l
t) = p(xk

t , y
l
t)

p(xt+1, x
k
t , y

l
t)

p(xk
t , y

l
t)

= 1

p(xt+1|xk
t , y

l
t) = 1.

The last equation exactly means that xt+1 = f(xk
t , y

l
t). (It was further explained in the proof

of property 1.1.3)

We now know that deterministic processes saturate the transfer entropy. But as we have
seen in Eq. ( 1.17), the bound of the transfer entropy is still dependent on the k parameter:
the known history of our target variable. We may want to know which processes realize the
transfer entropy to be equal to its bound and the bound to be maximal. We recall that
conditional entropy is maximized by:

H(X|Y ) ≤ H(X) H(X|Y ) = H(X) ⇐⇒ P (X, Y ) = P (X)P (Y ).

Then it is easy to formulate that transfer entropy is maximised when both of the required
conditions happen:

xt+1 = f(xk
t , y

l
t) ∧ p(xt+1, x

k
t ) = p(xt+1)p(xk

t ),

which is true, but does not give any insight in the processes that leads to a maximal transfer
entropy. We present an interesting example found in the book [17] to clarify the problem.

Example 1.2.1. Consider two observables, X ∈ {−1, 1} and Y ∈ {−1, 1}. Suppose their
initial value is random and then they evolve through the following dynamics:

Yt = −Yt−1 Xt =
Yt−1 with probability 1+c

2
−Yt−1 with probability 1−c

2

Where Xt is equal to Yt−1 with probability p = 1+c
2 or equal to −Yt−1 with probability 1 − p.

Parameter c ∈ [−1, 1]. Since the evolution of X is not a deterministic function we can already
expect that transfer entropy will not be maximal. We are interested in studying how the
transfer entropy varies in function of k (In reference text it is also reported in function of c).
Just by looking at the dynamics one could naively infer that:

• X = f(Y ), where f is not a deterministic, analytical function.

• X only depend on Y : it is independent on its past.

11



Niccolò Ciolli

Figure 1.4: Transfer entropy varying in function of c and k for the dynamic of Ex. 1.2.1

However when we compute the transfer entropy varying c and k we obtain the result in
Fig. 1.4. We can observe that, when k increases, transfer entropy decreases, and goes to 0
when k → ∞. It could imply that the bound of the transfer entropy are still dependent on k,
i.e. X is dependent on its past: it receives a nonzero flow of information each time the system
is conditioned to an additional past variable. This is not immediately clear just by looking
at the dynamics. This effect is due to the stored information about Y in X’s past. Indeed,
since Y evolves deterministically, once one value is known the full series is given. Having the
information about infinite variables in the past of X let us infer the value of Y , making it
useless in the prediction of Xt+1. There is a flow of information from X’s past to X about
the source of causality Y .

We conclude that a description of the dynamic that lead to a maximal transfer entropy rather
than a description of the probability distributions of the system is preferable.

Theorem 1.2.2. Transfer entropy is fully maximized, i.e. it is equal to its maximized bound

TY →X(k, l) = H(Xt+1)

when:

1. Xt+1 = f(Y ), the target variable Xt+1 is an analytic function of variables of system Y .

2. f is constant with respect to variables of system X.

3. p(Y ) = p(Y l
t )p(Y/Y l

t ): Y l
t set is independent from its past.

4. The domain of Xt+1 = f(Y ) is disjoint from the domain of any other Xt, ∀t.

Proof. From theorem 1.2.1 we know that transfer entropy is equal to its bound when Xt+1 =
f(Xk

t , Y
l

t ). During the proof we will assume that Xt+1 = f(Xk
t , Y

l
t ). In order to obtain the

maximum bound, it is required for the conditional entropy H(Xt+1|Xk
t ) to be maximal, which

12



Chapter 1. Transfer entropy: definition and properties.

happens when the two systems are independent: p(xt+1, x
k
t ) = p(xt+1)p(xk

t ). Firstly we will
show that if two variables are independent than they are not function of each other, meaning
that Xt+1 = f(Xk

t , Y
k

t ) = f(Y k
t ). Let us proceed for absurd, and suppose that two systems,

A and B are independent and there exists a function between two elements a ∈ A, b ∈ B s.t.
a = f(b). Then we have:

1 = p(a|b) = p(a, b)
p(b)

1)= p(a)p(b)
p(b) = p(a)

p(a) = 1
,

where in step 1) we used the hypothesis of independence. p(a) = 1 means that the only
possible result of a realization of system A is a; which means that any function with domain
in B and co-domain in A has value a. Those function can be either constant or independent
from B. Proceeding with the proof, we will consider Xt+1 = f(Y l

t ).

Firstly it is useful to prove a property of conditioned probability distribution for functions.
Let A and B be two systems and a ∈ A and suppose a1 = f(B) and a2 = g(B), where f
and g are two analytical functions, (All the system B is in the argument, because it does not
matter from which elements of B the functions depend on).

p(a1, a2|B) = 1, p(a1|B) = 1, p(a2|B) = 1 =⇒ p(a1, a2|B) = p(a1|B)p(a2|B).

The probability distributions of distinct variables, obtained from deterministic functions,
conditioned on their variables are independent.

We will now prove that for the process with the properties described in the enunciation of the
theorem, p(xt+1, x

k
t ) = p(xt+1)p(xk

t ), making the conditional entropy maximal. Our objective
is to decompose the three probability distributions that form the conditional entropy to
explicit how they are influenced by the system Y . Firstly we consider the full distribution
p(xt+1, x

k
t ) and use the property of marginal distribution to rewrite it:

p(xt+1, x
k
t ) =

Ø
yk+l+1

t

p(xt+1, x
k
t , y

k+l+1
t ) =

Ø
yk+l+1

t

p(xt+1, x
k
t |yk+l+1

t )p(yk+l+1
t ).

We define the set of variables that are argument of the function Xt as Ỹt:

Ỹt = {y : y ∈ Y ∧ y ∈ dom(Xt = f(Y ))},

where dom(Xt = f(Y )) is the domain of the function f that produce Xt. Now, recalling the
property mentioned above, we can rewrite the sum as:

p(xt+1, x
k
t ) =

Ø
ỹk+1

t+1

p(xt+1|ỹt+1)p(xt|ỹt)...p(xt−k|ỹt−k)p(ỹk+1
t+1 )

Applying the same methodology to the other two probability distributions we obtain

p(xk
t ) =

Ø
ỹk

t

p(xt−k|ỹt−k)p(xt−k+1|ỹt−k+1)...p(xt|ỹt)p(ỹk
t )

p(xt+1) =
Ø
ỹt+1

p(xt+1|ỹt+1)p(ỹt+1)

13
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The last step is to multiply the probabilities and verify which conditions satisfy independence.
p(xk

t )p(xt+1) =

=

Ø
ỹk

t

p(xt−k|ỹt−k)p(xt−k+1|ỹt−k+1)...p(xt|ỹt)p(ỹk
t )


Ø

ỹt+1

p(xt+1|ỹt+1)p(ỹt+1)


We will define Y ′
t as the set of variables that belong to the set obtained by the intersection

of the domain of Xt and the domain of any other X, and X ′
t the variables related to these

domains

Y ′
t = {y : y ∈ Y ∧ ∃ i s.t. y ∈ Ỹt ∩ Ỹi

X ′
t = {x : x ∈ X ∧ dom(x) ∩ Y ′

t ̸= ∅}

After the product, the only part of the summation that differs is the one that sums over Y ′
t+1

i.e. Ø
y′

t+1

Ø
y′

t+1

p(x′
t+1|y′

t+1)p(x′
t+1|y′

t+1). (1.18)

Indeed from the product of the two probability distributions we get two sums on the overlap of
the shared arguments between Xt+1 and other variables. Conditional probability distribution
for variables that are analytical functions conditioned on their domain are a Kronecker delta

p(x′
t+1|y′

t+1) = δ(X ′
t+1 = f(Y ′

t+1))
knowing that δ2 = δ, we obtain Ø

y′
t+1

Ø
y′

t+1

δ(X ′
t+1 = f(Y ′

t+1))

=
Ø
y′

t+1

1 = |y′
t+1||Y ′

t+1|

This term does not appear in the full distribution, so if we want the probability to be
independent,we need to eliminate it is effects, |Y ′

t+1| and |y′
t+1| must be one, meaning that

only one variable belongs to |Y ′
t+1| and its dimension is 1; there is only one possible result

from observing it. A better assumption is considering Y ′
t empty: the variables in the domain

of Xt+1 are not part of any other variable domain. in this case there is no overlap of sums
and the product can be written as:Ø

ỹk+1
t+1

p(xt−k|ỹt−k)p(xt−k+1|ỹt−k+1)...p(xt+1|ỹt+1)p(ỹk
t )p(ỹt+1)

The only condition left to have the equality p(xt+1)p(xt) = p(xt+1, xt) is that p(ỹk
t , ỹt+1) =

p(ỹk
t )p(ỹt+1): the variables in the domain of Xt+1 are independent of all variables in other

domains.

The described dynamic is better understood if we think for example at a stationary process,
where at every time step, system X is a function of the same number of past observation of
system Y . In this case the conditions in theorem 1.2.2 assume a more understandable form.
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1.2.5 Study of interesting processes
Transfer entropy critiques

Thinking about transfer entropy as a measure of causality in every situations can lead to
misconceptions. Two are pointed out in the article [18]. We report them below.

Example 1.2.2. Consider the following process:

Y,X ∈ {0, 1}
Xt+1 = Xt ⊕ Yt

Yt = rand([0, 1])

and X0 and Y0 are randomly initialized.
H(Xt+1), the entropy of systemXt+1 is equal to 1, meaning that it can store a bit of information.
The transfer entropy TY →X is also equal to 1, meaning that the process maximizes it, and all
the information of the variable Xt+1 derive from system Y . But we can reverse the logic and
calculate the conditional mutual information:

I(Xt+1 : X∞
t |Y ∞

t ) = 1.

This, in our picture, should represent the information flow to Xt+1 from its past. We have a
contradiction, if we think at the transfer entropy as a measure of information flow, because in
this case, variable Xt+1 would receive 2 bit of information while being capable to contain only
1. In short, the 1 bit of reduction in uncertainty H(Xt+1) should not be localized to either
time series. The transfer entropy, however, erroneously localizes this information to its past.
It could be inferred that the transfer entropy overestimates information flow.

Example 1.2.3. The next process involves three systems:

X, Y, Z ∈ {0, 1},
Xt = rand([0, 1])Yt = rand([0, 1]),
Zt+1 = Xt ⊕ Yt.

If we calculate the transfer entropy from each system to Z they result TX→Z = TY →Z = 0,
underestimating the influence. Then we could consider to expand the transfer entropy to
include a third system by defining the causal entropy [19]:

CX→Z|Z,Y = I(Zt+1 : X∞
t |Y ∞

t Z∞
t ).

We obtain:
CX→Z|Z,Y = CY →Z|Z,X = 1

Again, as in the previous case overestimating the flux of information to the target variable. The
paper aims at evidencing how transfer entropy and transfer entropy like measures, although
being good estimator for the the reduction in uncertainty about one time series conditioned
on another, can fails to pinpoint the source of flow and can lead to some misinterpretation of
the physics of the process.

15



Niccolò Ciolli

Stochastic and deterministic processes

As depicted in theorem 1.2.2, the stochasticity of our system influences transfer entropy. It can
affect the value of the transfer entropy and its dependence over the k parameter: the flow of
information deriving from its past. To better understand the behaviour of the transfer entropy
we code a program that: simulate the evolution of two time series given a certain dynamic and
then calculates the transfer entropy over many realization. We report a significant example of
the obtained results.

Example 1.2.4. We consider X, Y ∈ {−1, 1} be two systems that evolve according to the
following dynamic:

Xt =
rand({−1, 1}) p

Yt−1 1 − p

Meaning that with probability p the value of X is random, and with probability 1 − p, it is
a copy of previous Y . So p is a parameter that represents the randomness of the process.
We will study how the behaviour of the transfer entropy changes when the evolution of Y is
completely random or it is completely deterministic.

Figure 1.5: Here Y evolution is random: it
assumes a random value at each
time-step

Figure 1.6: Here Y evolution is determinis-
tic: it multiplies by −1 the pre-
vious value at each time-step

The graphs are representing the value of the transfer entropy plotted for value of p ∈ [0, 1]
and for increasing k. Considering Fig. 1.5, where Y value is extracted randomly from the set
{−1, 1}, we observe that the transfer entropy is effectively independent of the k parameter,
(The slight differences are due to the limited data-set of samples, which create some fluctuation
especially for large number of k), and has the expected behaviour in function of p, when
p = 0 we obtain the greatest value of the transfer entropy that decreases as p increases until it
reaches zero when p = 1: X evolution is completely randomized. Considering Fig. 1.6, where
the evolution of Y is deterministic: we start with a random Y value and then we multiply it by
−1 each time-step. As we increase k as expected from our discussions, the value of the transfer
entropy decreases, shifting his maximum value towards increasing p. What can be interesting
to notice is that increasing k we converge towards a specific curve, with peak around p ≈ 0.6.
The meaning could be that even when the Y dynamic is completely deterministic, if the
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process of X is random enough to lose some memory and not be able to recover the Y series
even if we have the knowledge of the complete X’s past, but not completely random so that
we still have some influence from Y , then there are certain information about the target that
can only be predicted with the Y observable.
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Chapter 2

Transfer entropy on quantum circuits

2.1 Introduction
In this this section we will refresh some concepts of quantum mechanics that are used through
this thesis and introduce quantum information theory and quantum computing. In the
following we assume basic knowledge of quantum mechanics and linear algebra. Most of the
concepts presented can be found in any introductory book on quantum information. For
reference, we mainly used the book "Quantum Computation and Quantum Information" by
Nielsen and Chuang [20].

2.1.1 Quantum mechanical concepts
Density operator

The state of a system can be represented by a density operator, usually indicated with ρ. We
can distinguish two types of density operators, pure and mixed. A pure density operator is
an operator that can be expressed as:

ρ = |Ψ⟩ ⟨Ψ| ,

where |Ψ⟩ is the state of the system.
A mixed density operator is defined as a linear combination of pure density operators as:

ρ =
Ø

i

pi |ψi⟩ ⟨ψi| ,

where pi is the probability to have our system in the state |ψi⟩.
In the following we list two important properties that characterize the density operator:

• tr(ρ) = 1, the density operator has trace equal to one.

• ρ is a positive operator.
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Projective measurements

In quantum mechanics, an observable can be described as an operator, and if we measure
it, the state of our system collapses to one eigenvector of the operator. These are called
projective measurements. After measuring a state, it is projected onto the eigenvector of the
observable operator associated to the eigenvalue corresponding to the measurement result.
To describe the process we will use projection operators, which have the following property:
ΠiΠi = Πi.
For each measurement, the probability distribution over the possible outcomes can be computed
from the density operator using the following:

Definition 2.1.1 (Born’s rule).
p(xi) = tr(Πiρ), (2.1)

with xi being the outcome of observable X and Πi the projector operator.

After the measurement the state changes:

ρ → ΠiρΠi

tr(Πiρ)
.

Positive-operator-valued measures (POVMs) are a generalization of projective measurements.
POVM is a measure whose values are positive semi-definite operators. It can be described by
a set of positive semi-definite Hermitian operators that sum up to the identity:

{A1, ..., An},
nØ

i=1
Ai = I, Ai ≥ 0,

where the Ai are associated to outcomes i of the measurement. Following definition 2.1.1:

p(i) = tr(Aiρ),

where p(i) is the probability that outcome i is measured.

Pauli matrices

Pauli matrices are a particular set of matrices, usually associated with the spin of a spin-1/2-
system. Given an orthonormal basis {x, y, z}, the spin can be described using Pauli matrices
as:

Si = ℏ
2σi,

for i ∈ {x, y, z}.
Pauli matrices inherit their properties from commutation and anti-commutation properties of
the spin operators:

1. [σi, σj] = q
k

2iϵijkσk.

2. {σi, σj} = 2δijI.

3. tr(σi) = 0, ∀i ∈ {x, y, z}.
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Pauli matrices are explicated in the basis of eigenvectors of σz:

σx =
C
0 1
1 0

D
, σy =

C
0 −i
i 0

D
, σz =

C
1 0
0 −1

D
.

All Pauli matrices have two eigenvalues −1 and 1. For a generic σi:
σi |↑⟩i = +1 |↑⟩i ,

σi |↓⟩i = −1 |↓⟩i .

Usually we use the eigenvectors of σz as basis elements, defining the computational basis:

Definition 2.1.2. The computational basis is defined from the eigenvectors of σz:
|0⟩ := |↑⟩z ,

|1⟩ := |↓⟩z .

The expressions of the eigenvectors of the Pauli matrices are:

|↑⟩z =
A

1
0

B
, |↓⟩z =

A
0
1

B
,

|↑⟩x = 1√
2

A
1
1

B
, |↓⟩x = 1√

2

A
1

−1

B
,

|↑⟩y = 1√
2

A
1
i

B
, |↓⟩y = 1√

2

A
1

−i

B
.

And written in the computational basis:
|↑⟩z = |0⟩ , |↓⟩z = |1⟩ ,

|↑⟩x = |+⟩ = 1√
2

(|0⟩ + |1⟩), |↓⟩x = |−⟩ = 1√
2

(|0⟩ − |1⟩),

|↑⟩y = 1√
2

(|0⟩ + i |1⟩), |↓⟩y = 1√
2

(|0⟩ − i |1⟩).

We note that each eigenvector for a specific σi can be written as a superposition of the
eigenvectors of a different σj, in this case σz.

Measuring the spin in the (n̂) direction

Spin measurements are represented by the spin operator, which can be described with the
Pauli matrices. We will focus on the latter to explain briefly what it means to measure the
spin in an arbitrary direction.

Definition 2.1.3. Given a vector of Pauli matrices σ⃗ = (σx, σy, σz) and
n̂ = (cos(θ)cos(ϕ), cos(θ)sin(ϕ), sin(θ)) the usual versor in spherical coordinates, a general
measurement of spin in the n̂ direction is defined as:

M(θ, ϕ) := σ⃗ · n̂.

Here we only point out that the eigenvalues of the measures are 1 and −1 for every direction,
although the eigenvectors change.
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2.1.2 Composite systems
Tensor product

The tensor product is crucial to construct composite systems in quantum mechanics. Suppose
we have two Hilbert spaces V,W of dimension m,n respectively. Then their tensor product,
which is represented by the operator ⊗, is written as V ⊗W and it is a mn dimensional space.
Given |i⟩ and |j⟩ basis for V and W respectively, then the tensor product |i⟩ ⊗ |j⟩ is a basis
for V ⊗W . Usually to represent the tensor product between two vectors |v⟩ and |w⟩ is used
the abbreviated notation |v⟩ ⊗ |w⟩ = |vw⟩.

Entanglement

A system is defined as entangled when the state of the system cannot be factorized. Given
two systems A and B, defined on the Hilbert space H = HA ⊗HB, the most general form for
a pure state is:

|ϕ⟩ =
Ø
ij

cij |iA⟩ ⊗ |jB⟩ ,

where |iA⟩ and |jB⟩ are bases for the respective spaces HA and HB. A state is said to be
separable if there exist complex coefficients ai and bj such that:

|ϕ⟩ =
AØ

i

ai |iA⟩
B

⊗

Ø
j

aj |jB⟩

 = |ϕA⟩ ⊗ |ϕB⟩ .

When this is not possible we say that the systems are in an entangled state.
The most renown entangled states are the Bell states:

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩),

|Φ−⟩ = 1√
2

(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2

(|01⟩ + |10⟩),

|Ψ−⟩ = 1√
2

(|01⟩ − |10⟩).

Schmidt decomposition

In linear algebra, the Schmidt decomposition refers to a way of expressing vectors defined in
a space formed as product of two spaces, as the tensor product of vectors belonging to the
latter.

Theorem 2.1.1. Suppose |ϕ⟩ is a pure state of a composite system AB. There exists a set of
orthonormal vectors |iA⟩ ∈ A and |iB⟩ ∈ B such that:

|ϕ⟩ =
Ø

i

λi |iA⟩ ⊗ |iB⟩ (2.2)
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with λi are real non-negative coefficients and fulfill the normalization q
λ2

i = 1.

Proof. It is a proof by construction, we consider the state |ϕ⟩ written in the basis |i⟩ ⊗ |j⟩.

|ϕ⟩ =
Ø
i,j

cij |i⟩ |j⟩ ,

where cij are the elements of a matrix C. We can rewrite the matrix C using the singular value
decomposition (SVD): a linear algebra theorem states that any complex matrix C admits a
decomposition UΛV † such that Λ is a diagonal matrix with non-negative real numbers on
the diagonal. Then the elements cij can be written as cij = q

k,l
uikλklvlj where, since Λ is a

diagonal matrix, λkl = δklλk, and the equation becomes:

|ϕ⟩ =
Ø
i,j

Ø
k,l

uikδklλkvlj |i⟩ |j⟩ =

=
Ø
i,j,k

uikλkvkj |i⟩ |j⟩ .

Redefining the terms in the following way:

|iA⟩ =
Ø

i

uik |i⟩ |iB⟩ =
Ø

j

vkj |j⟩ , λk = λi.

we re-index the sum:
|ϕ⟩ =

Ø
i

λi |iA⟩ ⊗ |iB⟩ .

If we consider a two qubit space and |ϕ⟩ as a state, then we also have the normalization
condition ⟨ϕ|ϕ⟩ = 1 that reduces the description of the state to one parameter after the
vectors |iA⟩ |iB⟩ have been determined.

Channels

The qubit can evolve due to the action of a unitary operator, which preserves the norm of the
state, called channel. When a channel acts on a single qubit it is said to be local. We will
represent some of the most often used local channels, in the computational basis:

X =
C
0 1
1 0

D
, Y =

C
0 −i
i 0

D
, Z =

C
1 0
0 −1

D
H = 1√

2

C
1 1
1 −1

D
,

where X, Y, Z are the Pauli matrices and H is the Hadamard gate. X is often called the
NOT gate, since it has the effect of exchanging the computational basis vectors.

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ .

The effect of the Hadamard gate on the computational basis is:

H |0⟩ = |0⟩ + |1⟩√
2

= |+⟩ , H |1⟩ = |0⟩ − |1⟩√
2

= |−⟩ .
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Performing a basis change from the Z basis to X basis.
When the system is composite, channels can act on multiple qubits, creating an interaction
between them.
In this thesis we will focus on two qubits systems that interact and evolve through a common
channel. We list two channels that act on two qubit systems:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
The C-NOT gate, or the control-not gate, is a main example of conditional gate, where the
state of a qubit, called control qubit, can vary the operation performed on a second qubit,
called target qubit.
The swap gate exchanges the state of the two qubits.

Kraus-Cirac decomposition of non-local unitary operators

We will briefly explain the decomposition of an arbitrary unitary operator UAB acting on
two qubits, introduced by Kraus and Cirac in the article [21]. The proof was obtained by
construction and it states the following:

Theorem 2.1.2. For any unitary operator UAB acting on two qubits, there exist local operators
UA, UB, VA, VB, that only act on a qubit such that:

UAB = UA ⊗ UBUdVA ⊗ VB (2.3)

where Ud = e−iD with D = αxσx ⊗ σx + αyσy ⊗ σy + αzσz ⊗ σz.

Since local unitary operators can be considered as a simple rotation of the state, UA, UB, VA, VB

merely have the effect to change the direction of the spin, and if the spin is measured before
and after the evolution, the effect of this operator can be incorporated in the measurements,
changing their direction. If we perform a maximization over all measurement angles, then the
effect of the local unitary operators vanishes, allowing us to represent any non local two qubit
channel with only three parameters.

No-communication theorem

Theorem 2.1.3. Given a bipartite system AB, there is no local operation on one subsystem
that can affect the measurements on the other one.

Proof. Consider a system that lives on the Hilbert space H = HA ⊗ HB. The state of our
system can be described by a density operator of the form:

ρ =
Ø

i

Xi ⊗ Yi,

where Xi and Yi are local operators. The theorem still holds without assuming ρ to be a
density matrix, i.e. operators Xi and Yi could be different from state projection operators.
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Suppose that Alice performs a local measurement on qubit A, which can be described as a
map defined by Kraus operators Kj such that:

Φ(ρ) =
Ø

j

(Kj ⊗ IB)ρ(K†
j ⊗ IB),

Ø
j

KjK
†
j = I,

where Φ(ρ) is the state after Alice’s operations. The form of the Kraus operators (Kj ⊗ IB)
indicates that Alice only performs local operations: Alice’s measurement apparatus does not
interact with Bob’s system.
The state that Bob observes is the partial trace over Hilbert space HA of Φ(ρ). This state
can be directly calculated:

trHA
(Φ(ρ)) = trHA

(
Ø

j

(Kj ⊗ IB)ρ(K†
j ⊗ IB))

= trHA
(
Ø

j

(Kj ⊗ IB)
Ø

i

Xi ⊗ Yi(K†
j ⊗ IB))

= trHA
(
Ø

j

Ø
i

(Kj ⊗ IB)Xi ⊗ Yi(K†
j ⊗ IB))

= trHA
(
Ø

j

Ø
i

KjXiK
†
j ⊗ Yi)

= trHA
(
Ø

i

Ø
j

KjK
†
jXi ⊗ Yi)

= trHA
(
Ø

i

Xi ⊗ Yi)

= trHA
(ρ).

Meaning that Bob can not statistically tell what Alice did. Bob’s statistic of the system is
unchanged by local operations on Alice system.

2.1.3 Quantum information
Quantum computation

The fundamental component of quantum computation is the qubit, an object that lives in a
two dimensional Hilbert space. We will use the computational basis as a basis to describe its
space. The qubit is described by a state:

|ψ⟩ = α |0⟩ + β |1⟩ .

Imposing the normalization condition |α|2 + |β|2 = 1, it can be expressed as:

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ .

The parameters θ and ϕ define a point on the surface of the unit three-dimensional sphere,
called the Bloch sphere, represented in Fig. 2.1.
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Figure 2.1: Bloch sphere.

Adding a qubit to our system increases the dimension of the Hilbert space by a factor two.
A multi qubit system is defined on the Hilbert space resulting from the tensor product of
the Hilbert spaces of its qubits. If we want to consider a two qubit system our basis will be
composed by four vectors, which are, using the notation |a⟩ ⊗ |b⟩ = |ab⟩:

{|00⟩ , |01⟩ , |10⟩ , |11⟩}.

And the state that describes our system:

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩ .

An important operation that can be done onto our system is measuring, which, as known
from quantum mechanics, collapses the state of the qubit into the measured state.
Qubits, channels and measurements are the principal components to construct a quantum
circuit. Quantum circuits are used to represent quantum processes. The notation to draw a
quantum circuit is:

|ψ⟩ A qubit in the state |ψ⟩
A classical bit

U A channel U

A measurement

As an example let us draw a two qubit system where both qubits evolve according to U , then
the first qubit’ spin is flipped and measured:
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|0⟩
U

X

|0⟩

Quantum entropies

We start by introducing the Von Neumann entropy. In classical information theory, Shannon
entropy measures the uncertainty associated with a probability distribution. Density operators
replace probability distributions in quantum mechanics.

Definition 2.1.4 (Von Neumann entropy). The Von Neumann entropy of a quantum state ρ
is:

S(ρ) := −tr(ρ log ρ). (2.4)

Since the trace is invariant under unitary transformations, diagonalizing the density matrix,
the previous definition 2.1.4, can also be expressed, being λi the eigenvalues of the density
matrix, as:

S(ρ) = −
Ø

i

λi log λi,

where the logarithm is taken to base two.
The basic properties of the Von Neumann entropy are very similar to the classical Shannon
entropy’s properties. Here we list a few of them:

• The entropy is non-negative and it is 0 if and only if the state is pure.

• In a d-dimensional Hilbert space the entropy is maximized by log d and its maximal
when the density matrix is the one of the completely mixed state: I/d.

• If a composite system AB is in a pure state, then S(A) = S(B).

As in classical physics, it is useful to define the quantum version of relative entropy

Definition 2.1.5 (Quantum relative entropy).

S(ρ||σ) = tr(ρ log ρ) − tr(ρ log σ). (2.5)

As in the classical case, the quantum relative entropy has the same property of non-negativity,
as shown by the Klein’s inequality.

Theorem 2.1.4 (Klein’s inequality). The quantum relative entropy is non-negative

S(ρ||σ) ≥ 0,

with equality if and only if ρ = σ.

Proof. Consider ρ = q
pl |l⟩ ⟨l| , σ = q

qj |j⟩ ⟨j| be orthonormal decomposition for ρ and
σ, applying the definition of relative entropy we obtain:

S(ρ||σ) =
Ø

i

pi log pi −
Ø

i

⟨i| ρ log σ |i⟩ .

27



Niccolò Ciolli

Knowing that:

⟨i| ρ =
Ø

pl ⟨i|l⟩ ⟨l| =
Ø

plδil ⟨l| = pi ⟨i| ,
⟨i| log σ |i⟩ =

Ø
j

Pij log qj where Pij = ⟨i|j⟩ ⟨j|i⟩ ,

we substitute in the relative entropy equation,

S(ρ||σ) =
Ø

i

pi log pi −
Ø
i,j

piPij log qj,

where we note that qi Pij = q
j Pij = 1 and Pij = δij,

S(ρ||σ) =
Ø

i

pi

log pi −
Ø

j

Pij log qj

 .
Since log is a strictly concave function, calling qj Pij log qj = si, we have qj Pij log qj ≤ log si

with equality if and only if ∃ j s.t. Pij = 1. Thus

S(ρ||σ) ≥
Ø

i

pi log pi

si

,

with equality if and only if ∀i ∃ j s.t. Pij = 1, meaning that Pij is a permutation matrix; in
that case, ρ and σ have the same eigenvectors, just ordered differently.
The previous equation has the same form as the classical relative entropy, for which it is proved
that it is always greater than zero, and zero if and only if the two distributions are equal,
pi = si, meaning that ρ and σ have the same eigenvalues. Remembering that for equality Pij

are permutations, then if they have same eigenvalues and eigenvectors the condition implies
that the matrices are equal: ρ = σ.

2.2 Transfer entropy on quantum processes
In this section we apply the transfer entropy to data derived from measurements of quantum
systems. The quantum circuit that describes our process is:

A

U

B

(2.6)

Where A and B are qubits and U is a channel. B will act as a target and A as a source. The
observables that we decide to measure are spins represented by the Pauli matrices. We will
use the notation on Tab. 2.1:
We imagine to receive a set of data from measurements, and from them we inquire what are
the transfer entropy’s properties when the process is quantum. First we will discuss how the
transfer entropy varies for different configurations of the circuit 2.6 and later we will retrieve
an analytical formula to describe the simulations.
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|1⟩z

The eigenvector, associated to eigenvalue 1 of the
operator σz

ΠA
1|z = |1⟩ ⟨1|z ⊗ I2

The projector onto |1⟩z that operates in the Hilbert
space of qubit A

ρA1|z = ΠA
1|zρΠA

1|z
tr(ΠA

1|zρ)

The density matrix after the measurement of ob-
servable σz of qubit A has result 1

Table 2.1: Notation used on section 2.2.

2.2.1 Simulations
For a better understanding of the results, we will briefly explain how the code [12] that
computes the transfer entropy works. Let us imagine that we have a lot of realizations of two
time series, A and B. We aim to study the transfer entropy considering system A as a source
and B as target, both binary variables (they can only take two values), with k = l = 1 and
t = 2, meaning that we have two possible outcomes from each measurement and that we only
consider two instants of time, namely, before and after the application of the channel. The
first thing that is going to be calculated, and the only probability that we extract directly
from the data, is:

p(b2, a1, b1),
where b2, b1 are the measures of observable B and a1 the measure of observable A. In order
to calculate the probability we use a simple frequentist approach, where for each possible
combination of the measurements’ outcomes we calculate the probability that it occurs,
counting the number of realization, in the following way:

p(b2 = b∗
2, a1 = a∗

1, b1 = b∗
1) =

nØ
j=1

δ(bj
2, b

∗
2)δ(a

j
1, a

∗
1)δ(b

j
1, b

∗
1),

where δ is the Kronecker function, bj
2 is the jth observation of variable b2, n is the total number

of different time series and the starred variables are fixed values.
Once the full probability distribution is calculated for each possible combination of outcomes,
the rest of required probability distributions can be obtained applying the marginal rule and
the Bayes formula in the following way:

p(b2|a1, b1) = p(b2, a1, b1)q
b2 p(b2, a1, b1)

= p(b2, a1, b1)
p(a1, b1)

,

p(b2|b1) =
q

a1 p(b2, a1, b1)q
b2,a1 p(b2, a1, b1)

= p(b2, b1)
p(b1)

.

We simulate the measurement given by the quantum circuit in 2.6. We have the freedom to
measure the qubit’ spin in a generic direction in the unitary sphere. We do this to emphasize
the different behaviours of the transfer entropy over different initial states and how it varies
as our measurements rotate.
From the theory we know that after a measurement the state of the qubits collapses into an
eigenvector of the measurement operator. Measurements on qubit A and B are described by

29



Niccolò Ciolli

operators in different Hilbert spaces, and so they commute (it does not matter the order of
the measurements). We will now show results obtained using the C-NOT channel, where we
rotate the measurement of the source qubit A from σz to σx, while we measure the target
qubit B on σz. We perform the simulation for a comprehensive (but not exhaustive) set
of states, which will be presented later. The results for the value of the transfer entropy
are reported for all the fifteen initial states with which the simulation is performed in Fig. 2.2.

Figure 2.2: Fifteen curves are represented, on the y-axis we have the value of the transfer entropy
while on the x-axis we plot the angle θ of the rotation, which defines the measured
observable, from σz (θ = 0) to σx (θ = 1). The value on the horizontal axis must be
multiplied by π/2

We can observe that, the value of the transfer entropy can be divided into three main categories,
which depend on the initial state. We classify the curves for their value on the origin, when
the measure is performed on σz, later we will also try to analytically understand the behaviour
of the curve with the changing of the angle, and try to generalize our apparatus. We notice
that initial values of the transfer entropy are 1, 0.66 and 0. We report in table 2.2 which
states are associated with their respective curve.
We will then give an intuition to why the states reproduce these values of the transfer entropy.
Starting from the case where TE = 1, we notice that qubit A, the source of our flow of
information, is always in the state |+⟩, this state, as explained in the section about quantum
concepts, is an eigenstate of σx operator:

|+⟩ = 1√
2

(|0⟩ + |1⟩).
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TE = 1 TE = 0.66 TE = 0

|+0⟩ ,
|+1⟩ ,
|++⟩

1√
3

(|00⟩ + |01⟩ + |10⟩)

1√
3

(|00⟩ + |01⟩ + |11⟩)

1√
3

(|01⟩ + |10⟩ + |11⟩)

1√
3

(|00⟩ + |10⟩ + |11⟩)

|00⟩ , |01⟩ , |10⟩ , |11⟩ ,
1√
2

|00⟩ + 1√
2

|11⟩ ,

1√
2

|01⟩ + 1√
2

|10⟩ ,

|0+⟩ , |1+⟩

Table 2.2: Initial states that outputs a certain value of the transfer entropy

The main point is that the state is totally undetermined with respect to a measurement
of σz: when measured, the state collapses in |0⟩ or |1⟩ with equal probability. Measuring
the state |+⟩ is the same as initializing the value a1 randomly. As we saw in the previous
chapter, the transfer entropy is influenced by the deterministic nature of the source, and it is
able to capture fully the flux of information when our source is randomized. We could infer
that to obtain a maximal value of the transfer entropy we need an initial state where the
source qubit is in an undetermined state respect to its measure, even though this condition
is not enough to ensure a maximal value of the transfer entropy as we will see for the next case.

The states where TE = 0 are all the ones where source qubit A is in an eigenstate of the
measured observable σz and the maximally entangled states:

1√
2

|00⟩ + 1√
2

|11⟩ ,

1√
2

|01⟩ + 1√
2

|10⟩ .

The reason why for entangled states we obtain zero is that, once the qubit A is measured
then also the value of B is certain, so for the same entangled state, each measurement process
gives us back the same coupled values of a1 and b1. The transfer entropy, due to the way the
probabilities are calculated, can never see the effect of the source on the target, because it
always receives the same initial combinations, and attributes the change of the target variable
only to its past. The same reasoning is done when the qubit A is prepared in an eigenstate of
the measured observable, since the transfer entropy never sees it varying, it will attribute the
change, if there are any, to the target’s past.
To understand why the value of the transfer entropy is 0.66 in the states reported in the
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Figure 2.3: Transfer entropy for state in Eq. 2.7, varying q

Tab. 2.2 we can rewrite them in a different form.

1√
3

(|00⟩ + |01⟩ + |10⟩) =
ó

2
3 |+0⟩ + 1√

3
|01⟩

1√
3

(|00⟩ + |01⟩ + |11⟩) =
ó

2
3 |+1⟩ + 1√

3
|00⟩

1√
3

(|01⟩ + |10⟩ + |11⟩) =
ó

2
3 |+1⟩ + 1√

3
|10⟩

1√
3

(|00⟩ + |10⟩ + |11⟩) =
ó

2
3 |+0⟩ + 1√

3
|11⟩

We see that our states are in a superposition of states where with probability of 2/3 it collapses
on a state that produce a transfer entropy’s value of one, and with probability 1/3 collapses
into a state with transfer entropy’s value of zero. It suggests a linear dependency between
the transfer entropy and the squared coefficients of the state. We observe what happens in
Fig. 2.3 in a state with the following structure:

√
q |+0⟩ +

√
1 − q |01⟩ . (2.7)

It is immediately clear that the transfer entropy is linear with the squared coefficients of the
initial state. Going back to the Fig. 2.2, we briefly explain why the transfer entropy seems
to be 0 for every initial states when σx is measured on the source qubit (we have the same
identical results for σy). We can exploit what happens for an arbitrary initial state.
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Example 2.2.1. Suppose to have the following circuit with initial state |10⟩:

|1⟩
σx

|0⟩
σz σz

The source qubit A, after the measurement will be in an eigenstate of σx, in this case with
p = 1

2 , which are |+⟩ , |−⟩. The first measure on the target qubit B is 1 in this case, (remember
how the computational basis is defined). Now if we apply the C-NOT gate we obtain:

CNOT |+0⟩ = 1√
2
CNOT |00⟩ + 1√

2
CNOT |10⟩ = 1√

2
|00⟩ + 1√

2
|11⟩

CNOT |−0⟩ = 1√
2
CNOT |00⟩ − 1√

2
CNOT |10⟩ = 1√

2
|00⟩ − 1√

2
|11⟩

A measurement on σz of the qubit B returns as a result −1 or 1 with equal probability,
independently if we measured 1 or −1 for σx. Our ability to predict the value of the second
measurement of qubit B is completely unaltered by our knowledge of the measurement of σx

on the source A, yielding:
p(b2|a1, b1) = p(b2|b1),

which is the condition to have transfer entropy’s value equal to zero.
Note that using σy as measured observable we would have obtained the same result.
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Figure 2.4: Transfer entropy’s values when rotating the measurements on the target qubit B from
σx to σy.

Rotating target qubit measurements

If we rotate the measurement over the target qubit B, we can observe some differences; the
main one is a different value of the transfer entropy if we measure σx or σy. In Fig. 2.4 are
reported the results from simulations where we measure the target qubit B from σx to σy

with initial state |+0⟩ and gate C-NOT. Recalling that for the same initial state, rotating
the measurements on source qubit A we obtained zero value for the transfer entropy for both
σx and σy measurements. To understand this behaviour we recognize the difference between
applying the C-NOT gate to σx’s eigenvectors and σy’s. If the control qubit, in this case
A, is in state |0⟩, the C-NOT will not do anything to the states, so we assume that the
state of qubit A is |1⟩ and analyze the action of the C-NOT gate when qubit B is in a state
corresponding to an eigenvector of σx. We will call the C-NOT gate C:

|1+⟩ = |1⟩ ⊗ |+⟩ = 1√
2

|10⟩ + 1√
2

|11⟩ ,

|1−⟩ = |1⟩ ⊗ |−⟩ = 1√
2

|10⟩ − 1√
2

|11⟩ ,

C |1+⟩ = 1√
2
C |10⟩ + 1√

2
C |11⟩ = 1√

2
|11⟩ + 1√

2
|10⟩ = |1+⟩ ,

C |1−⟩ = 1√
2
C |10⟩ − 1√

2
C |11⟩ = 1√

2
|11⟩ − 1√

2
|10⟩ = − |1−⟩ .
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And the state remains unchanged after the action of the C-NOT, if we do not consider an
overall phase to the state. For σy’s eigenvectors instead

|1⟩ ⊗ |↑⟩y = 1√
2

|10⟩ + i√
2

|11⟩

|1⟩ ⊗ |↓⟩y = 1√
2

|10⟩ − i√
2

|11⟩

C |1⟩ ⊗ |↑⟩y = 1√
2
C |10⟩ + i√

2
C |11⟩ = 1√

2
|11⟩ + i√

2
|10⟩ = i√

2
|1⟩ ⊗ |↓⟩y

C |1⟩ ⊗ |↓⟩y = 1√
2
C |10⟩ − i√

2
C |11⟩ = 1√

2
|11⟩ − i√

2
|10⟩ = −i√

2
|1⟩ ⊗ |↑⟩y

We observe that the C-NOT flips the eigenvectors of σy in the same way as it does for
eigenvectors σz, and so we expect a similar value of the transfer entropy when we measure,
for source qubit A the spin σz and for B, σz and σy, even thought for different initial states
we obtain different results.

2.2.2 Analytical study
The purpose of this section is to obtain an analytic formulation of the transfer entropy
calculated as described in the previous section. For this purpose we will study the following
circuit:

A

α1

U

B

β1 β2

where the measurement of spin are done in an arbitrary angle and α1, β1, β2 represent the
tuple of angles necessary to define the direction of the measurements, with α representing
measurements on qubit A and β on qubit B, namely:

α1 = (θ, ϕ)a1 M(α1) = σ⃗ · n̂(α1),
β1 = (θ, ϕ)b1 M(β1) = σ⃗ · n̂(β1),
β2 = (θ, ϕ)b2 M(β2) = σ⃗ · n̂(β2).

To rewrite the projectors in a general and more convenient way we can exploit property 2.2.1:

Property 2.2.1. If we have an observable M in a two dimensional Hilbert space, with
eigenvalues 1 and −1, we can write the associated projectors in this form:

|a⟩ ⟨a| = 1
2(I + aM)

with a ∈ {1,−1}
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Proof. It is know that:

M |1⟩ = |1⟩ ,
M |−1⟩ = − |−1⟩ ,
M = |1⟩ ⟨1| − |−1⟩ ⟨−1| .

In a two dimensional space, the eigenvectors of an observable form a orthonormal basis, so we
can write:

|1⟩ ⟨1| + |−1⟩ ⟨−1| = I.

From the M and I equation we can find the form of the projector just by summing and
subtracting:

I +M = 2 |1⟩ ⟨1| ,
I −M = 2 |−1⟩ ⟨−1| ,

which can be easily rewritten in the convenient way shown in the proposition.

To keep the notation light we will indicate:

ΠA
a1|α1 → Πa1 , ΠA

b1|β1 → Πb1 .

For the above mentioned property 2.2.1:

ΠA
a1|α1 → Πa1 = 1

2(I + a1M(α1)) ⊗ I.

As explained, the code to calculate the transfer entropy starts with calculating the full
probability distribution p(b2, a1, b1). We rewrite the probability distribution in the transfer
entropy’s formula using Born’s rule 2.1.1. The probability of the first measure is straightforward.
Suppose we start in a state ρ, we apply the rule obtaining the density matrix:

ρa1 = Πa1ρΠa1

tr(Πa1ρ)
,

with p(a1) = tr(Πa1ρ).

We can calculate the state and the probability of the next measurement, keeping in mind
that the projectors for the two different qubit commute, since they act on different Hilbert
spaces. We obtain the density matrix after the second measurement:

ρb1 = Πb1ρa1Πb1

tr(Π1ρa1) ,

with probability given by:

tr(Πb1ρa1) = tr(Πb1

Πa1ρΠa1

tr(Πa1ρ)
) = tr(Πb1Πa1ρΠa1)

tr(Πa1ρ)
= p(b1, a1)

p(a1)
= p(b1|a1).
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Combining all the formulas together:

ρb1 = Πb1ρa1Πb1

p(b1|a1)
=

Πb1
Πa1 ρΠa1

p(a1) Πb1

p(b1|a1)
= Πb1Πa1ρΠa1Πb1

p(b1|a1)p(a1)

= Πb1Πa1ρΠa1Πb1

p(b1, a1)
.

Afterwards the channel operator is applied to the density matrix:

ρU = Uρb1U
†.

The last measure will give us a result with the following probability:

p(b2|b1, a1) = tr(Πb2ρU) =

= tr(Πb2UΠb1Πa1ρΠa1Πb1U
†)

p(b1, a1)
We notice that:

p(b2, b1, a1) = p(b2|b1, a1)p(b1, a1) = tr(Πb2UΠb1Πa1ρΠa1Πb1U
†).

This is the starting point for the computation of the transfer entropy. We also observe that:Ø
b2

p(b2, a1, b1) =
Ø

b2=±1
tr(Πb2UΠb1Πa1ρΠa1Πb1U

†) =

= tr(Π1UΠb1Πa1ρΠa1Πb1U
†) + tr(Π−1UΠb1Πa1ρΠa1Πb1U

†) =
= tr(Π1UΠb1Πa1ρΠa1Πb1U

† + Π−1UΠb1Πa1ρΠa1Πb1U
†) =

= tr((Π1 + Π−1)UΠb1Πa1ρΠa1Πb1U
†) =

= tr(IUΠb1Πa1ρΠa1Πb1U
†) = tr(Πb1Πa1ρΠa1Πb1)

= p(b1, a1)

Where we used cyclic property of the trace and known properties of projectors.
To calculate the transfer entropy we require three probability distributions:

p(b2, a1, b1), p(b2|a1, b1) = p(b2, a1, b1)
p(a1, b1)

, p(b2|b1) =

q
a1=±1

p(b2, a1, b1)

p(b1)
.

We already know how to obtain p(b2, a1, b1) and p(b2|a1, b1), p(b1) is easily calculated from
the initial state and the Born rule, while p(b2, b1) = q

a1=±1 p(b2, a1, b1) has to be calculated.
In order to obtain this probability we expand the sum:Ø

a1=±1
p(b2, a1, b1) =

=
Ø

a1=±1
tr(Πb2UΠb1Πa1ρΠa1Πb1U

†) =

= tr(Πb2UΠb1Π1ρΠ1Πb1U
†) + tr(Πb2UΠb1Π−1ρΠ−1Πb1U

†) =
= tr(Πb2UΠb1Π1ρΠ1Πb1U

† + Πb2UΠb1Π−1ρΠ−1Πb1U
†) =

= tr(Πb2UΠb1 [Π1ρΠ1 + Π−1ρΠ−1]Πb1U
†).
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We analyze the central term and apply property 2.2.1:

Π1 = 1
2(I +M(α1)) ⊗ I

Π−1 = 1
2(I −M(α1)) ⊗ I

studying the two terms independently:
Π1ρΠ1 =

= 1
2(I +M(α1)) ⊗ Iρ

1
2(I +M(α1)) ⊗ I =

= 1
4(I +M(α1) ⊗ I)ρ(I +M(α1) ⊗ I) =

= 1
4(ρ+M(α1) ⊗ Iρ+ ρM(α1) ⊗ I +M(α1) ⊗ IρM(α1) ⊗ I),

Π−1ρΠ−1 =

= 1
2(I −M(α1)) ⊗ Iρ

1
2(I −M(α1)) ⊗ I =

= 1
4(I −M(α1) ⊗ I)ρ(I −M(α1) ⊗ I) =

= 1
4(ρ−M(α1) ⊗ Iρ− ρM(α1) ⊗ I +M(α1) ⊗ IρM(α1) ⊗ I).

The sum explicated will read:

Π1ρΠ1 + Π−1ρΠ−1 = 1
2ρ+ 1

2(M(α1) ⊗ I)ρ(M(α1) ⊗ I).

Introducing this result in the equation of the probability, we obtain:Ø
a1=±1

p(b2, a1, b1) = tr(Πb2UΠb1 [Π1ρΠ1 + Π−1ρΠ−1]Πb1U
†) =

= tr(Πb2UΠb1 [12ρ+ 1
2(M(α1) ⊗ I)ρ(M(α1) ⊗ I)]Πb1U

†) =

= 1
2tr(Πb2UΠb1ρΠb1U

†) + 1
2tr(Πb2UΠb1(M(α1) ⊗ I)ρ(M(α1) ⊗ I)Πb1U

†),

omitting ⊗I:

p(b2, b1) = 1
2tr(Πb2UΠb1ρΠb1U

†) + 1
2tr(Πb2UΠb1M(α1)ρM(α1)Πb1U

†)

We present all the probability distributions’ formulas together with the transfer entropy
equation, for the sake of clarity:

TE =
±1Ø

b2,a1,b1

p(b2, a1, b1)log
p(b2|a1, b1)
p(b2|b1)

(2.8)

p(b2, a1, b1) = tr(Πb2UΠb1Πa1ρΠa1Πb1U
†) (2.9)

p(b2|a1, b1) = tr(Πb2UΠb1Πa1ρΠa1Πb1U
†)

tr(Πa1Πb1ρ)
(2.10)

p(b2|b1) = 1
2
tr(Πb2UΠb1ρΠb1U

†) + tr(Πb2UΠb1M(α1)ρM(α1)Πb1U
†)

tr(Πb1ρ)
(2.11)
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The previous equation 2.8, can be generalized up to 10 parameters:

• Two angles for each of the three measurements, leading up to six parameters.

• One angle to describe our initial state, that adds one parameter, for the Schmidt
decomposition.

• Three parameters that describe any two qubit interacting unitary due to the Kraus-Cirac
decomposition.

We report the results obtained rotating the measurement on source qubit A and rotating
both measurements for B at the same angle, with a fixed initial state, when applying the
C-NOT gate. We confront the simulation’s results with the ones obtained by the analytic
formula. We project the value of the transfer entropy on the Bloch sphere where every point
on the surface indicates a measure of the spin in that direction and the color indicates the
value of the transfer entropy.

We report in Fig. 2.5 the data from the simulations as a scatter plot over the sphere, while the
data from the analytic formula are represented as continuous lines. This is done to differentiate
them but mainly because using the analytic formula allows us to compute the transfer entropy
way faster than simulating. We obtain the same results between simulations and analytic

Figure 2.5: Data for the entangled initial state 1√
2(|00⟩ + |11⟩), rotating measurements on source

qubit A. Each point in the surface of the sphere represents a measure of spin in the
direction of the versor connecting the center of the sphere with the point. The rotation
happens from σx to σy, then to σz, then back to σx.

formula, for different states and rotating over all angles, proving, at least computationally
the validity of the analytic formula. We can now exploit the speed of the formula 2.8 to
compute values of the transfer entropy for all points in the sphere. We present an example
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in Fig. 2.6 with results for the initial state |+0⟩ for just the principal quadrant of the Bloch
sphere, where we first rotate the measurement on A and then on B (for better data reading,
the heat map is usually more clear).

Figure 2.6: Value of the transfer entropy rotating respectively the measurements on qubit A and
B for initial state |+0⟩.

2.2.3 Properties
We will use a different notation, expressed in Tab. 2.3, to keep this section light and easy to
read. Most of the parameters are fixed after choosing our measurement apparatus and we
will not note them. We drop the indexing for first or second measure of B since it will be
clear from the position of the projector in the trace.

A,B Observable measured on qubit A and B

|bi⟩ The eigenvector, associated to observable B, with
eigenvalue i

Ai = |ai⟩ ⟨ai| ⊗ I2
The projector onto |ai⟩ that operates in the Hilbert
space of qubit A

Table 2.3: Notation for subsection 2.2.3

Considering the transfer entropy’s analytic formulation, we can look for some property and
case of interests.

Theorem 2.2.1. When the channel acts only locally, U = UA ⊗ UB then the transfer entropy
is zero.
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Proof. This is a direct consequence of the Non-communication theorem expressed in subsec-
tion 2.1.3. Since the operations performed on the initial state are local, regardless of the
initial state, p(b2|a1, b1) = p(b2|b1), due to the statistical independence of system B respect to
A.

Reviewing what has been done for the classical part, we want to see when the transfer entropy
it is equal to the bound found in the classical section. what theorem 1.2.1 means for our
process. Starting with the former we reformulate it for the analytical version of the transfer
entropy:

Theorem 2.2.2. The transfer entropy is equal to its bound, when:

tr(BkUAiBjρBjAiU †) = tr(AiBjρ) ∀i, j, k s.t. tr(BkUAiBjρBjAiU †) ̸= 0.

Remembering that in our case:

p(b2, b1, a1) = tr(Bb2UAa1Bb1ρBb1Aa1U †),
p(b1, a1) = tr(Aa1Bb1ρ),

We will consider the proof in the classical case valid, and consider what implication it has for
the processes we observe. To start we want to understand when p(b2, b1, a1) = 0. We analyze

tr(BkUAiBjρBjAiU †) = 0,

where i, j, k are representing the values that our variables can assume, namely + and −. We
will consider that the same observable is measured on qubit B before and after the evolution
through the channel. We represent operators in the basis {|a+⟩ , |a−⟩} and {|b+⟩ , |b−⟩},
eigenvectors for observable measured on qubit A and B respectively:

ρ =
Ø

m,f,r,t

cmfc
∗
rt

---ambf
f e
arbt

--- ,
U =

Ø
l,s,h,c

ulshc

---albs
f e
ahbc

--- .
We first consider the central term in the trace and expand it:

AiBjρBjAi = (2.12)
=
---ai
f e
ai
---⊗ ---bj

f e
bj
--- Ø

m,f,r,t

cmfc
∗
rt

---am bf
f e
ar bt

--- ---ai
f e
ai
---⊗ ---bj

f e
bj
--- = (2.13)

=
Ø

m,f,r,t

cmfc
∗
rt

---ai bj
f e
ai bj

--- ---am bf
f e
ar bt

--- ---ai bj
f e
ai bj

--- = (2.14)

a)=
Ø

m,f,r,t

cmfc
∗
rtδimδjfδirδjt

---ai bj
f e
ai bj

--- = (2.15)

= |cij|2
---ai bj

f e
ai bj

--- = |cij|2AiBj, (2.16)

where in a) the orthogonality of the basis was used.
The equation p(b2, b1, a1) = 0 reduces to:

|cij|2tr(BkUAiBjU †) = 0.
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We further expand the term inside the trace, and just with same calculation as before we
obtain:

UAiBjU † =
Ø

s,l,m,f

us,l,j,iu
∗
j,i,m,f

---as bl
f e
am bf

--- .
We multiply both sides by Bk (it does not affect the trace because a projector is equal to
itself squared):

BkUAiBjU †Bk =
=
---bk
f e
bk
---⊗ I

Ø
s,l,m,f

us,l,i,ju
∗
i,j,m,f

---as bl
f e
am bf

--- ---bk
f e
bk
---⊗ I =

a)=
Ø

s,l,m,f

us,l,i,ju
∗
i,j,m,f

e
bk
---bl
f e
bf
---bk
f ---as bk

f e
am bk

--- =

=
Ø

s,l,m,f

us,l,i,ju
∗
i,j,m,fδklδfk

---as bk
f e
am bk

--- =

=
Ø
s,m

us,k,i,ju
∗
i,j,m,k

---as bk
f e
am bk

--- ,
where in a) we use the fact that we choose to measure the same observable for qubit B
before and after the channel, otherwise so the scalar product would not have resulted into a
Kronecker delta and the computation would be way more complicated, but it would include as
a parameter the angle between eigenvectors of the two observables measured for B. The trace
is easy to compute because it only takes diagonal elements, the elements in the sum associated
to identical kets and bras. In our case it reduces to a δms in the calculation, obtaining in the
end: Ø

s

us,k,i,ju
∗
i,j,s,k = 0. (2.17)

Before analyzing with more attention the term, we consider the condition in theorem 2.2.2,
having already calculated the first term, Eq. 2.17, and the second, Eq. 2.12, we can rewrite
the condition as:

tr(BkUAiBjρBjAiU †) = tr(AiBjρ),
|cij|2

Ø
s

us,k,i,ju
∗
i,j,s,k = |cij|2Ø

s

us,k,i,ju
∗
i,j,s,k = 1.

We can notice that the condition imposes a restriction on the form of the channel written
in the basis of eigenvectors of our observables. This does not mean that, given a channel,
transfer entropy remains constant varying the initial state, as we have seen previously. It
only means that the transfer entropy for channel respecting the previous constraint is equal
to its bound, which will probably be dependent on the state, measurement apparatus and
channel all together. For the purpose of understanding, we try to rewrite the two conditions
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in a more practical form, even thought more intricate:Ø
s

us,k,i,ju
∗
i,j,s,k =

=
Ø

s

e
as bk

---U ---ai bj
f 1e

ai bj
---U ---as bk

f2∗
=

=
Ø

s

e
as bk

---U ---ai bj
f e
as bk

---U †
---ai bj

f
=

=
e
a+ bk

---U ---ai bj
f e
a+ bk

---U †
---ai bj

f
+
e
a− bk

---U ---ai bj
f e
a− bk

---U †
---ai bj

f
.

Calling U s
i,j = U |ai bj⟩

e
as bk

---U †:
e
a+ bk

---U+
ij

---ai bj
f

+
e
a− bk

---U−
ij

---ai bj
f
.

Introducing the permutation operator Pl,m that exchanges row l with row m of the matrix,
we can rewrite everything compactly:e

a+ bk
---U+

ij + P1,3P2,4U
−
ij

---ai bj
f

(2.18)

Combining our condition together we can see that the transfer entropy is equal to its bound
when: e

a+ bk
---U+

ij + P1,3P2,4U
−
ij

---ai bj
f

∈ 0, 1 ∀ i, j, k ∈ +1,−1 (2.19)
and if all elements are zero, then transfer entropy and its bound are zero. Practically, once
U+

ij + P1,3P2,4U
−
ij is computed, we have to check the values of the first two row to see if the

transfer entropy it is equal to its bound.
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Conclusions and outlooks

This thesis aimed to introduce and investigate the behavior of the transfer entropy in both
classical and quantum systems.

After providing a concise introduction to information theory and transfer entropy, we in-
vestigated some of its properties. We successfully demonstrated the monotonicity of the
transfer entropy respect to the number of considered variables as a source of information flow,
establishing a recursive representation through a sum of relative entropies. Additionally, we
explored transfer entropy’s boundary properties, revealing its monotonically decreasing nature
respect to the number of known variables in the target’s past. We found a representation of
the boundary as a sum of transfer entropies that represented the information flow from the
target’s past to the target itself.

We identified the conditions necessary for a dynamic between two systems to saturate transfer
entropy’s bound and achieve its maximum value. It became evident that the dynamics of the
source directly influenced the value of the transfer entropy. Specifically, to attain a maximal
value for the transfer entropy, the source’s dynamics should be non-interacting with its past.

We reported the behavior of the transfer entropy for some interesting cases and provided a
critique of its interpretation as a measure of causality. It appears that the transfer entropy
may not accurately capture the true source of causality when more than two systems are
interacting, leading to overestimation or underestimation of the causal effect from a source.

Furthermore, we developed a code to simulate the dynamics of two interacting systems.
With these simulations, we calculated the transfer entropy, with a focus on scenarios where
the target variables were randomly extracted with a probability of p, while copying the
source’s value with a probability of 1 − p. The evolution of the source system variables was
governed by two distinct dynamics: one involved random extraction from a set of values,
while the other multiplied the values of the previous variable by minus one. Remarkably, the
behavior predicted theoretically was observed. Particularly, in cases where the source evolved
deterministically, it became apparent that the transfer entropy decreased with an increase in
conditioned variables, reflecting the effect of what can be described as "stored information."
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Subsequently, we applied the transfer entropy on measurements of spin on quantum circuits.
Initially, we designed a code to simulate two-qubit quantum circuits, offering flexibility in
selecting measurement types, channels, and circuit lengths. Our implementation utilized a
tree structure to depict the circuit, where nodes represented density matrices and edge weights
encoded transition probabilities between density matrices. Using this structure, we conducted
numerous simulations and computed the transfer entropy effectively.

The utilized circuit involved two qubits initialized with an arbitrary state. It started by
measuring the spin of the qubits, followed by their evolution through the C-NOT gate, and
concluded with another round of measurements. To compute the transfer entropy, we used
the measurement of qubit A as the source and those of qubit B as the target.

Initially, we simulated the transfer entropy for spin measurements in the z direction. Notably,
we observed that the choice of the initial state strongly influenced the behavior of the
transfer entropy. Different initial states yield distinct probability distributions of measurement
outcomes. When the source qubit’s initial state was an eigenstate of its measurement, the
transfer entropy was equal to zero, as it could not detect the effect of the source on the target
without observing varied source values. It was also observed the linearity of the transfer
entropy with the squared coefficients of the initial state.

In order to have a better description of the behaviour of the transfer entropy on quantum
circuit we tried to provide an analytical formulation of how the code computed the transfer
entropy, and use the Born’s rule to derive the probability distributions. It is shown that the
analytic formulation reproduces the same results of the simulations. It can be used to infer
constraints on our circuit that present certain properties of the transfer entropy.

Subsequently It would be interesting to measure how the transfer entropy behaves respect
to entanglement creating channels, to understand if the transfer entropy is an appropriate
measure of causality in quantum processes and to find a formulation that uses density matrices
instead of probability distributions.
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