
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Allowing prototyping of
applications running on

heterogeneous HW through a
multi-tenant platform based on

cloud microservices

Relatori
Urgese Gianvito
Risso Fulvio Giovanni Ottavio
Pignata Andrea

Candidato
Fanuli Giuseppe

April 2024

Abstract

Neuromorphic engineering is an emerging field that aims to develop physical im-
plementations of brain-inspired systems using electronic circuits. These circuits,
drawing inspiration from the brain’s architecture, offer several advantages over the
traditional von Neumann architecture. These advantages include improved power
consumption, enhanced adaptability and learning capabilities, real-time processing,
and fault tolerance. As a result, neuromorphic technologies hold the potential to
replace conventional approaches in various domains. However, it is important to
note that existing technologies for neuromorphic computation, such as chips and
boards, are still predominantly in the prototype stage. Consequently, they are often
expensive and not readily available on the market. This limitation currently im-
pedes the widespread adoption of these technologies in the development of IoT and
industrial use cases. This thesis project aims to find a solution for this problem al-
lowing users to prototype applications on a cloud platform based on microservices,
guarantying a user-friendly access to the system through a web application accessi-
ble by a common browser, and run such applications on a heterogeneous hardware
platform composed by several boards for neuromorphic and general-purpose com-
putation. The platform allows tenants to develop, build, run, test and compare
the results of their application on different boards to provide an overview of the
state-of-the-art reached by such technologies. In the design stage, the user can take
advantage of the flexibility and general-purpose nature of the platform, running
different tools and application that he may need for his goals. Once the application
is ready, the platform allows the user to deploy and run it on real HW, to verify
the correctness of the results and check parameters like running time and power
consumption. This is possible through a job scheduling system, which orchestrates
all the resources by assigning incoming jobs to the available nodes according to
the user needs. The user can interact with the platform through a user-friendly
interface by means of well-known applications such as Visual Studio Code. This
IDE is one of most used and powerful environments for developing software thanks
to its integration with some features able to create a fully customizable interface
which best address all the use cases and needs of the user. The infrastructure re-
lies on two major open-source technologies: Kubernetes and Slurm. The former
orchestrates the microservices to provide everything needed by the user to use the

3

platform in the most user-friendly and effective way, the latter is used to orchestrate
all the heterogeneous boards in order to assign the “jobs” created by the user and
provide them the results of the computation. By combining these two technologies,
it is possible to manage a distributed system without taking care the place of the
various physical resources and managing a multi-layer infrastructure, completely
transparent to the users, that improve the isolation between resources needed for
the computation and resources needed to expose the cloud services.

4

Contents

List of Figures 7

1 Introduction 9
1.1 Goal . 10

2 Background 13
2.1 Neuromorphic Engineering . 13

2.1.1 Neuromorphic Solutions . 14
2.1.2 Software Modules . 15

2.2 Prototyping Platform . 15
2.2.1 Board as a Service . 16
2.2.2 Available market solutions 16
2.2.3 Heterogeneous Hardware . 17

2.3 Cloud Computing . 18
2.3.1 Commercial Products . 18
2.3.2 Virtualization . 19

2.4 Crownlabs . 20
2.5 Kubernetes . 21

2.5.1 Kubernetes Resources . 21
2.5.2 Kubernetes Components . 23

2.6 Service Mesh . 24
2.6.1 Istio Service Mesh . 25

2.7 Slurm . 26
2.7.1 Slurm architecture . 27
2.7.2 Slurm Job . 27

3 Materials and methods 29
3.1 Design . 29

3.1.1 Microservice-based architecture 29
3.1.2 Kubernetes as Backend . 30
3.1.3 System resources . 31
3.1.4 Visual Studio Code as developing platform 31

5

3.1.5 Istio Service Mesh . 32
3.1.6 Slurm as HPC cluster . 32
3.1.7 User developing process and job submission 33

3.2 Implementation . 36
3.2.1 Container-based instances 36
3.2.2 Infrastructure . 38

3.3 Journey . 38
3.3.1 Architectural choices . 39

4 Results and discussion 41
4.1 Testing conditions . 41
4.2 User workflow . 42
4.3 Slurm Testing . 44

5 Conclusion 49
5.1 Future works . 50

Bibliography 53

6

List of Figures

2.1 Contaners vs Virtual Machines . 20
2.2 General overview of components of a Kubernetes cluster [25] 24
2.3 Service communication before Istio Service Mesh 26
2.4 Service communication after Istio Service Mesh [26] 26

3.1 CRDs and Kubernetes operators of the cluster[27] 30
3.2 Kiali dashboard . 33
3.3 Slurm architecture . 34
3.4 User interaction with the coding platform 35
3.5 Job creation process . 36
3.6 User Namespace overview . 37

4.1 The architecture used for testing purposes 42
4.2 VsCode instance accessible by the browser 43
4.3 A view of the tasks allowing users to run their script to a board

hosted by Slurm . 44
4.4 Output of sinfo command. All the nodes are in IDLE state, waiting

for new jobs . 45
4.5 Output of squeue command. The status field (ST) has the value

PENDING (PD) for the job named example and the NODELIST field
is empty since no nodes have been allocated yet. 45

4.6 A view of the command scontrol show job 46
4.7 The htop command executed on the jts03 node. The CPU 1 has

been allocated for running the Python script named example.py . . 47
4.8 The content of the file slurm-48.out. The file contains the prints

of the executed script. The filename is the default name provided by
Slurm and it can be modified at configuration time. 48

7

8

Chapter 1

Introduction

Over the years, with the advent of the Cloud Computing, computation is moving
more and more to data centers where a lot of computing resources are gathered
together in order to address the various needs of the customers in the form of
services to be consumed. On the other hand, with the advent of the Internet of
Things (IoT), some of the computation is moving to smart devices, equipped with
low-power chips able to perform simple tasks [1].
Trends suggest that industries investing in various sectors such as automotive, re-
newable energies but also RF/microwave communications, are moving to the uti-
lization of these embedded devices for performing specific kinds of computation
which strongly require the usage of sensors for getting data and antennas for com-
munications [1].

In addition, new computational paradigms are emerging which require special
needs to be addressed and new forms of devices to be used.
One of these new types of computation paradigms is represented by Neuromorphic
Computation. Neuromorphic engineering is a relatively young field that takes in-
spiration from different subjects of science such as neurology, psychology, biology,
physics, mathematics, computer science, and electronic engineering to design and
develop artificial neural systems and machine learning algorithms simulating the
functioning of the human brain.

Devices supporting this kind of computation are mainly prototypes from the
research world, so transferring these technologies from a research environment to
a production environment is not so simple due to the market cost of the devices
themselves. Consequently, there is a growing demand to develop technologies that
allow us to work without physically owning the hardware devices. This is where
the Cloud Computing paradigm comes into play.
The cloud environment tries to expose those HW devices as virtual devices to the
various users, allowing them to use the resources as a service. The cloud service
model can be summarized as BaaS, Board as a Service, stressing that a board of

9

Introduction

the system becomes a service for users who are allowed to use it without effectively
owning the hardware itself. The strategy of BaaS is inspired by the Platform as a
Service (PaaS) paradigm that is commonly adopted in the cloud domain.
There are already several solutions available on the market that expose special
boards as virtual service to the customers such as NengoEdge [2], Cadence Pro-
tium [3] or STM32Cube.AI Developer Cloud [4] developed by STMicroelectronics
which provides a set of services allowing to optimize, quantize benchmark and de-
ploy user-trained neural network on a STM32 target, the proprietary boards of
STMicroelectronics. The problem with these solutions consists of the devices that
have been integrated, as most of them are solutions developed by a single brand,
limiting users to their hardware only and providing just a cheap way.

Having a platform that manages a set of heterogeneous devices, where research
teams of academies and companies can evaluate a set of different brand solutions
before buying them is the motivation behind the project of Politecnico di Torino
for EBRAINS-Italy in which this thesis want to provide a solution and a fully func-
tional design of the platform.
EBRAINS-Italy (European Brain ReseArch INfrastructureS-Italy) will be the Ital-
ian node of the European distributed infrastructure of EBRAINS which aims to
allow the usage of the most advanced technologies of data modeling, computation,
and analysis for the neuroscience field to the healthcare sector.
In detail, the goal of Politecnico is to create a Neuromorphic Computing Lab fo-
cused on the design of a platform suitable for the development of new Neuromorphic
solutions [5].

1.1 Goal
As mentioned before, the goal of this thesis project is to develop a cloud infras-
tructure allowing users to use physical devices through the internet, hence without
effectively owning them, a sort of BaaS (Board as a Service).
The system adheres to the design outlined by the CrownLabs project [6], providing
a platform structured around micro-services. This platform enables students to
engage in practical exercises and examinations within secure virtual environments.
The cloud environment I’m developing has been designed considering the advance-
ments made in related technologies to ensure its alignment with the current state
of the art. The platform relies on a collection of micro-services that improve the
maintainability and reliability of the infrastructure in case of failures.

Kubernetes [7] is the main tool used as a container and micro-service orchestrator
for developing cloud services by providing also storage management as well as user
accounting and request authentication. The main service I’m developing with this
project consists of an integrated platform where users can design their own code in

10

1.1 – Goal

the most user-friendly and effective way. Within this platform, users are allowed
to test their code on physical boards to evaluate such devices.
These physical resources (e.g. prototypes of boards) are managed by Slurm [8], an
open-source project of an HPC (High-Performance Computing) cluster. Thanks to
Slurm it is possible to allocate specific resources to the various users in an exclusive
way, queue incoming requests if there are no available resources, and provide the
users with information about the HW state (e.g. power consumption, executing
time, ...) during the job execution.

11

12

Chapter 2

Background

This thesis project was born with the need to create a cloud infrastructure to allow
users to test their algorithms on physical boards that may be really expensive and
hard to find on the market due to their prototypical nature. The system is thought
of as PaaS (Platform as a Service) since users can design, code, build, and test their
algorithms directly using the facilities offered by the infrastructure. It consists of
two different clusters. The former handles and orchestrates all the micro-services
needed to expose a user-friendly and easy-to-use system to the users; the latter
handles all the physical resources (boards, computing nodes, CPUs, FPGA, GPUs)
and orchestrates them to run jobs issued by the users.

In this chapter, I will introduce all the technologies and concepts adopted for the
development of the platform to discuss in the following chapter how these tools
have been integrated for the purposes of this thesis project.

2.1 Neuromorphic Engineering
This thesis project started with the goal of allowing researchers and engineers to
develop new algorithms related to a rather new engineering sector, the Neuromor-
phic Computing.
Neuromorphic Computing is a new field of Computer Engineering that simulates
the way our brain processes information and decides by using electronic circuits
implemented in very large-scale integration technology. This emerging field is char-
acterized by its multidisciplinary nature and its focus on the physics of computation,
driving innovations in theoretical neuroscience, device physics, electrical engineer-
ing, and computer science [9].
As support for the research and development of Neuromorphic Computing, spe-
cialized devices are extensively employed. These devices are designed specifically
to execute algorithms related to this field, alongside specialized software modules

13

Background

that facilitate the development process for such algorithms.

2.1.1 Neuromorphic Solutions
Regarding physical devices, several solutions coming from different brands are al-
ready available on the market. These devices called also Development Kit, have
been created to allow developers to use special hardware created ad-hoc for testing
and developing new technologies.
Regarding the Neuromorphic computation, there are different solutions available
on the market.

BrainChip

BrainChip is an Australian-based company, a worldwide leader in edge AI on-
chip processing and learning. BrainChip engineered several technologies regard-
ing the Artificial Intelligence (AI) world. Examples of these technologies are rep-
resented by the Akida processors, ultra-low-power neuromorphic processors that
mimic the human brain to analyze only essential sensor inputs at the point of ac-
quisition—processing data with unparalleled performance, precision, and reduced
power consumption [10].

UAB NeuroTechnologijos

UAB Neurotechnologijos is a Lithuanian company that operates on the branch of
AI technologies. It produces boards, pluggable inside a common slot of PCIe, for
supporting the developing process of neural networks. These boards are powered
by the NM500 chip [11], a neuromorphic chip with 576 neurons engineered by
NEPES [12]. This chip provides a re-configurable and low-power multiple recogni-
tion engine for storage devices with high-speed contextual recognition, uncertainty
management, and hypothesis generation for more robust decisions.

SynSense

SynSense is the a supplier of neuromorphic intelligence and application solutions [13].
Based on the experience of the Research and Development department of the Uni-
versity of Zürich and the ETH Zürich, it provides intelligent application solutions
that combine neuromorphic sensing and computing. SynSense offers solutions for
edge computing applications by providing ultra-low power consumption, ultra-low
latency inference ASICs and IP blocks, as well as full-stack application develop-
ment services. In addition, it is the only company which involves both sensing and
computing technologies.
Regarding hardware solutions, SynSense provides different products concerning dif-
ferent fields of application such as SPECK™, a fully event-driven neuromorphic

14

2.2 – Prototyping Platform

vision SoC, and XYLO™, a programmable, ultra-low power neuromorphic chip for
low-dimensional signal processing.
SynSense offers a variety of software modules that best fit the characteristics of
their devices such as ROCKPOOL, SINABS, SAMNA, TONIC.

2.1.2 Software Modules
Several libraries and packages are available to support developers using such tech-
nologies.

snnTorch

snnTorch is a Python package that extends the capabilities of PyTorch, a package
that enables fast, flexible experimentation and efficient production through a user-
friendly front-end, distributed training, and ecosystem of tools and libraries [14].
snnTorch performs gradient-based learning with spiking neural networks by taking
advantage of PyTorch’s GPU-accelerated tensor computation and applying it to
networks of spiking neurons [15].

GeNN

Nowadays GPU computation is becoming more and more a key point of worksta-
tions and edge computing devices. GeNN (GPU-enhanced Neuronal Networks) is
a framework which aims to facilitate the use of graphics accelerators for computa-
tional models of large-scale neuronal networks aiming to speed up the computing
process. The GeNN library an open source project written in C++ which generates
code to accelerate the execution of network simulations on NVIDIA GPUs through
a flexible and extensible interface, which does not require in-depth technical knowl-
edge from the users. [16]

2.2 Prototyping Platform
The new computing paradigms that are emerging nowadays require the usage of
special devices, optimized to execute the corresponding algorithms most effectively.
In most cases these devices reside with the end users or at least in a room close to
them, necessitating developers themselves to handle the maintenance and manage-
ment of these devices. To facilitate and improve the development process of new
algorithms using such devices, companies are moving towards the usage of Proto-
typing Server Farms.
A prototyping server farm is a controlled-temperature room where several devices

15

Background

have been placed together to be accessed remotely from all around the world allow-
ing users to perform software development, software-driven verification, hardware-
software validation tasks, and various other tasks as needed [17].

2.2.1 Board as a Service
The necessity for the creation of these prototyping server farms is to improve the
company’s productivity by delegating to whoever handles the server farm infras-
tructure the maintenance and management of the hardware. This is a big advantage
for those companies with limited resources since they can evaluate their work by
using remote devices, which are expensive, without effectively owning them.
Several device manufacturers have developed their cloud infrastructure to address
such problems by allowing customers to access the Prototyping Platform they’ve
developed allowing them to utilize their proprietary boards as a service.

2.2.2 Available market solutions
Below is a brief presentation of the main Prototyping Platform available on the
market.

STM32Cube.AI Developer Cloud

The STM32Cube.AI Developer Cloud [4], developed by STMicroelectronics is a set
of services allowing to optimize, quantize, benchmark, and deploy trained neural
networks on STM32 microcontroller targets. Users can directly upload the neural
network model they want to use or load a subset of the neural network model ZOO,
developed by STM32.

Protium Enterprise Prototyping

Prototyping platforms are well-known and used in the System-on-chip (SoC) and
Application Specific Integrated Circuit (ASIC) development world. In such a
context, developers design their hardware using Hardware Description Languages
(HDLs) and then request the production of their chips on silicon to foundries. This
process is very expensive; HDLs usually allow developers to test their projects via
software simulators, checking the correctness of all their components before manu-
facturing.
Another possibility is to deploy their design on re-configurable chips, known as
Field Programmable Gate Array (FPGAs). Hardware deployed on FPGAs per-
forms way faster than any software simulation, but those pieces of hardware are
pretty expensive.
With this in mind, prototyping platforms such as Protium Enterprise by Cadence [3]
allow Pre-silicon prototyping for system verification (to check if the hardware is

16

2.2 – Prototyping Platform

working as intended) and to start development of software compatible with such
work-in-progress chip before being even manufactured. In this way, hardware de-
velopers can save money, as malfunctioning designs can be corrected before pro-
duction, and save time, allowing them to hit the market with their hardware +
software frameworks faster.

NengoEdge

NengoEdge is a prototyping platform (still in beta version on March 2024) developed
by Applied Brain Research [2]. The NengoEdge solution’s purpose is to provide
users with a development framework where high-performance and low-power AI
applications can be designed with no-code tools in the cloud. Then the framework
supports easy deployment procedures of those solutions to edge devices. Typical
application targeted by this framework are: Keyword spotting, Automatic speech
recognition, Text-to-speech, Natural language processing and Signal processing

2.2.3 Heterogeneous Hardware

All the previously mentioned platforms rely on cloud services for exposing to the
customers the computational resources of the boards they’ve implemented within
their Prototyping Server Farm. These boards may belong to the same manufac-
turer, as the solution proposed by STMicroelectronics, or belong to different man-
ufacturers and be created with different architectures to address the various needs
of developers.
Having a platform that integrates a heterogeneous set of computational resources,
allows users to choose which device best fits their needs and develop their algo-
rithms most effectively.
Devices that may be integrated with these kinds of platforms can be devices created
ad-hoc for addressing specific research fields.

Nvidia

An actor that operates in the sector of AI technologies is Nvidia with the family
of NVIDIA Jetson boards. These boards are integrated systems for the edge com-
puting process with a very tiny form factor and high performance. Each Nvidia
Jetson board is a SOM (System on Module) which includes CPU, GPU, memory,
power management, and high-speed interfaces. Nvidia provides different solutions
and configurations for its boards, accounting for the different needs of the cus-
tomers. Available products are Jetson Orin family, Jetson Xavier family, Jetson
TX2 family and Jetson Nano family [18].

17

Background

2.3 Cloud Computing
Officially born in 2002 with the creation of Amazon Web Services, but with its
bases founded in the late ’60, Cloud Computing nowadays is the main solution
adopted by companies who want to expose their digital services to customers.
The National Institute of Standards and Technology (NIST) defines cloud comput-
ing as a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction [19].
This cloud model has three different service models:

• SaaS - Software as a Service. The capability provided to the consumer is
to use the provider’s applications running on a cloud infrastructure. The
consumer does not manage or control the underlying cloud infrastructure in-
cluding network, servers, operating systems, storage, or even individual appli-
cation capabilities, except for limited user-specific application configuration
settings.

• PaaS - Platform as a Service. The capability provided to the consumer
is to deploy onto the cloud infrastructure consumer-created or acquired ap-
plications created using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control the un-
derlying cloud infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications and possibly con-
figuration settings for the application-hosting environment.

• IaaS - Infrastructure as a Service. The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing
resources where the consumer can deploy and run arbitrary software, that can
include operating systems and applications. The consumer does not manage
or control the underlying cloud infrastructure but has control over operating
systems, storage, and deployed applications; and possibly limited control of
select networking components (e.g., host firewalls).

2.3.1 Commercial Products
The IaaS solution allows companies to create their own fleet of cloud services with-
out effectively owning the underlying hardware. This helps those companies that
cannot create their on-premise servers due to problems of space, costs, and effort
to manage the whole architecture.
Several solutions can be found on the market.

18

2.3 – Cloud Computing

Amazon Web Services (AWS)

Amazon offers a collection of cloud computing products able to meet all the needs
of the customers. Over 200 products are available such as Amazon Elastic Com-
pute Cloud (EC2) which offers the possibility to the users to rent virtual machines
and run whichever application they want and Amazon Simple Storage Service (S3)
which instead offers a Storage as a Service, a virtual storage space users can use to
store their private data.
Other competitors are Microsoft Azure and Google Cloud Platform.

2.3.2 Virtualization
Virtualization is the main concept behind cloud computing and it allows a more
efficient and powerful utilization of the underlying physical hardware. Virtualiza-
tion uses software to create an abstraction layer over computer HW that allows the
HW elements of a single computer—processors, memory, storage, and more—to be
divided into multiple virtual computers, commonly called virtual machines (VMs).
Each VM runs its own operating system (OS) and behaves like an independent
computer, even though it is running on just a portion of the actual underlying
computer [20].

Virtual Machines

As explained above, Virtual Machines (VMs) are the result of the virtualization
process. They are highly used for virtualizing servers in a distributed system (e.g.
in a datacenter) avoiding the problem of managing several physical servers for ac-
counting different jobs. The most widespread approach is the One app per server
rule which consists of having a single VM running a specific application (e.g. Fire-
wall, Nat, or whatever other application). This approach increases the process
isolation and the system reliability in case of failures and by concatenating several
of these VMs it is possible to create the macro-service they are built for.

Containers

Containers are another tool of the virtualization process. A container is a lightweigth
virtualization of resources and the operating system itself is responsible for han-
dling them. Containers are the cloud-native solution for services engineered for the
cloud environment.
A container is a sort of isolated space that creates a virtualized environment lighter
than the normal virtualization (used for VMs).

The Figure 2.1 compare the architecture of a fully virtualized environment (a
VM) and a lightweight virtualized environment (a container). In the case of VMs,

19

Background

the virtualization process is handled by the hypervisor, a software that runs over
the host Operating System (OS) and it is involved in intercepting (trap) the system
calls coming from the guest OS and translate it for the host OS. In this way, the
VMs are unaware of being virtualized and behave as a normal system. On the other
hand, containers are handled directly by the host OS which is involved in providing
the proper isolation to them. This involves fewer overheads to be managed and, as
a consequence, fewer resources to be used for handling those instances.

Figure 2.1: Contaners vs Virtual Machines

2.4 Crownlabs
This thesis project is inspired by the CrownLabs project, a platform created at
Politecnico Di Torino during the pandemic years to make available to the students
of Politecnico a virtual environment where they can practice with educational tools
and take exams (e.g. coding exams) [6]. CrownLabs platform is based on the
cloud computing paradigm and it heavily relies on the containerization of its micro-
services to improve the reliability of the system.

Crownlabs services

The Crownlabs system relies on Kubernetes, a powerful tool used for managing,
deploying, and orchestrating cloud micro-services. The Crownlabs platform allows
users (students mainly) to use virtual environments accessible as web applications
through the browser. These virtual environments are containerized operating sys-
tems integrated with the noVNC web client which offers the possibility to access
the virtual Desktop from the web without having a client installed on the end-user
computer [21].

20

2.5 – Kubernetes

The other goal of CrownLabs is to deliver Politecnico exams to the booked students
by integrating these virtual environments with Respondus Lockdown Browser [22],
a custom browser that locks down the testing environment within a learning man-
agement system.

2.5 Kubernetes
Kubernetes, also known as k8s, is an open-source system developed by Google
and maintained by Cloud Native Computing Foundation. Kubernetes is the main
technology used in the cloud world for deploying, scaling, and orchestrating micro-
services.
Orchestration happens thanks to a set of operators that continuously observe the
state of the various containers (or more in general resources) deployed and compare
such state with the desired state defined in the various configuration files by the
developers. In this way, it is possible to manage all the resources by scaling, creat-
ing, updating, and deleting them according to the various needs or actual state of
the system.

2.5.1 Kubernetes Resources
Kubernetes relies on a huge set of built-in resources as well as user-defined resources.
Below, is a brief introduction to the most important one.

Node

A node is a physical machine (or even a virtual one such as a VM) that hosts the
Kubernetes system. A node can be a Control Plane Node or a Worker Node.
A control plane node is the main actor of the cluster (a server) and it is responsible
for the coordination of the other nodes (worker nodes).
A worker node is instead the node responsible to host and run the containers.

Namespace

Users that consume cloud services are called tenants. To provide isolation and
security for each tenant’s data, the concept of Namespace has been developed.
A Namespace is a portion of the cluster where resources deployed inside obey to the
rules associated with that Namespace, hence providing strong isolation and more
security since the access to such resources is restricted to who has the proper role
defined for that Namespace.
A resource can belong to a given Namespace (in this case it is called namespaced,
or be cluster-wide if it is accessible from the the whole cluster.

21

Background

Pod

Pods are the smallest deployable units of computing that you can create and manage
in Kubernetes. It can be composed of one or more containers with shared storage
and networks. Containers within the same pod are tightly coupled and they work
together to provide a given service. Consider a scenario when a container hosts an
HTTP server. This server receives external traffic, and there is a requirement to
filter this incoming traffic using a proxy server: the proxy server will be hosted by
another container within the same pod. The proxy server will be hosted by another
container within the same pod. In this case, the proxy server container is called
sidecar container.

Service

A Service is a method for exposing a network application that is running as one or
more Pods in your cluster [23].
There are different types of services:

• ClusterIP - It is the default service type and it exposes the Service on a
cluster-internal IP. This kind of service is accessible only within the cluster
and if you want to make the application accessible from the public internet
you need to create an Ingress or Gateway resource.

• NodePort - It creates a static port where services of this type can be exposed
to the node’s IP where they are deployed. In this way, Pods referring to this
kind of service are accessible from the public internet by referring to the
physical node IP and the exposed port.

• LoadBalancer - It exposes the Service externally using an external load
balancer, a component that distributes new connections across the server to
homogenize the load of each pod deployed.

Deployment and ReplicaSet

A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any
given time. As such, it is often used to guarantee the availability of a specified
number of identical Pods to increase the system reliability in case of failures of one
or more Pods[24]. Consider the case of a failing Pod. The condition given by the
ReplicaSet is no longer met. To satisfy the desired state, the failed pod is deleted
and another one is created automatically.
A ReplicaSet is defined through fields. This field contains a label that specifies the
pod to be referred to and the number of replicas desired for that pod. A Deployment
instead provides a declarative way for defining the ReplicaSet.

22

2.5 – Kubernetes

Custom Resource Definition

Kubernetes works using resources such as Volumes, Pods, Services, and so forth.
These resources are handled and monitored by the so-called operators. Operators
are the core components of Kubernetes and they are responsible for making the
desired state of each resource actual in the cluster.
Kubernetes has its own set of built-in resources but allows developers to create
their own as well as the proper operators for managing them. These resources are
called Custom Resource Definition (CRD).

2.5.2 Kubernetes Components
The following section illustrates the most important Kubernetes components.

etcd

As described in the previous paragraphs, Kubernetes is an orchestration platform
of containers. Orchestrating containers means managing a complex workload and
Kubernetes uses the etcd component for simplifying this task. The etcd is an open-
source, distributed key-value storage system that facilitates the configuration of
resources, the discovery of services, and the coordination of distributed systems
such as clusters and containers. It provides a single, consistent source of the truth
about the status of the system at any given point in time such as the current state
of the cluster, the desired state, configuration of resources, and runtime data.

ApiServer

APIServer is another key concept of Kubernetes. It provides both external and
internal interfaces with the Kubernetes cluster utilizing a collection of REST APIs.
This means that the only way to interact with the cluster is through the APIServier
which is responsible for parsing and validating each call and submitting the requests
to the etcd component described above to update the cluster state with the new
requests.

Scheduler

The scheduler is the component involved in the selection of which node (or nodes)
has to be used for hosting a given resource (e.g. Pod). Kube-scheduler is the default
Kubernetes scheduler and runs as a part of the control plane.
Kube-scheduler selects an optimal node to run newly created or not yet scheduled
(unscheduled) pods according to the specification provided for each pod such as
CPU resources or the amount of memory. The scheduler filters out any node that
doesn’t meet those requirements.

23

Background

Controller Manager

The Controller Manager is responsible for matching the current cluster state with
the desired one by running the reconciliation loop acting on the default Kubernetes
resources. Then it communicates with the APIServer to create, update, or delete
such resources.

Kubelet

Kubelet is the agent, deployed on each node, responsible for scheduling the container
within a pod on the node and reporting the status of the creation to the APIServer.

The Figure 2.2 shows the general architecture of a Kubernetes cluster, high-
lighting the core components belonging to the system. It is important to notice the
Kubelet agent running on each worker node of the cluster, the APIServer and the
etcd component running on the master node as well as the scheduler, responsible
to assign the assign new pods to the various worker nodes.

Figure 2.2: General overview of components of a Kubernetes cluster [25]

2.6 Service Mesh
Modern applications, delivered through the cloud computing paradigm, are gener-
ally organized as a collection of micro-services that implement a specific business
logic. These micro-services are interconnected with each other to deliver the bigger
service that the entire infrastructure aims to provide. To facilitate the interconnec-
tion of micro-service, the service mesh comes into play.

24

2.6 – Service Mesh

A Service Mesh is an additional layer that can be added to the system. This
layer provides some important features like observability of the system, security,
and traffic management without adding additional code to the service already im-
plemented. Service mesh is widely used in distributed environments such as the
Kubernetes-base clusters. This is because deploying distributed services becomes
increasingly complex as the size of the cluster grows, mainly due to the increasing
complexity of the Service-to-Service communication. Considering this aspect, in-
troducing features like service discovery, load balancing, failure recovery, metrics,
and monitoring will enhance the observability and management of the system.

2.6.1 Istio Service Mesh
Istio is an open-source service mesh that layers transparently onto existing dis-
tributed applications [26]. Istio Service Mesh is composed of two different compo-
nents: control plane and data plane. The data plane represents a communication
between services. It is needed to track communications within the mesh to com-
prehend the nature of the traffic being transmitted and to make decisions based on
the kind of traffic, its origin, and its destination. The control plane instead takes
your desired configuration, and its view of the services, and dynamically programs
the proxy servers, updating them as the rules or the environment changes.
Proxy servers are essential components of the Istio service mesh. Typically, a proxy
server intercepts network traffic to perform certain operations, such as firewalling,
before forwarding it to the intended destination. In the context of Istio, proxy
servers manage the network traffic produced by the services within the mesh, en-
forcing the rules specified in the Istio configuration.
Another key component is the so-called Envoy Proxy. It is a component that can
be injected (manually or automatically) in a Pod during its creation as support for
the Pod communication. The Envoy Proxy is the component which is responsible
to allow the Service-to-Service communication.

The Figure 2.3 and Figure 2.4 show the difference between a service commu-
nication without and with using the Istio Service Mesh. In the former case, the
services directly communicate with each other, without performing any action on
that traffic, since in the latter case the service communication happens through the
Envoy proxy which applies the configuration rules defined with Istio.

25

Background

Figure 2.3: Service communication before Istio Service Mesh

Figure 2.4: Service communication after Istio Service Mesh [26]

2.7 Slurm
One of the goals of the platform I’m developing is to allocate and orchestrate a
set of physical resources (mainly neuromorphic boards) allowing users to run their
algorithms on such boards for testing them.
Slurm is the system used for accounting for the scheduling management job. It
is an open-source cluster management system, fault-tolerant and highly scalable,
which manages resources on small or large Linux clusters.
It has three key functions:

26

2.7 – Slurm

• Resource orchestration - It allocates in an exclusive or non-exclusive way
computing nodes and resources to the users for a certain amount of time.

• Job monitoring - It provides a framework for starting, executing, and mon-
itoring parallel jobs in a set of allocated nodes.

• Job queuing - It orchestrates access to the resources by managing a queue
of pending jobs to be allocated.

2.7.1 Slurm architecture
Similarly to Kubernetes, Slurm relies on a distributed architecture divided into
control nodes, which orchestrate jobs and resources, and worker nodes, which effec-
tively execute the jobs. Below is an overview of the most important components.

slurmctld

slurmctld is the centralized daemon that orchestrates the jobs to be submitted. It
can be scaled to improve reliability and have a backup node in case of failures.

slurmd

slurmd is the daemon installed on compute nodes which waits for incoming jobs,
executes those jobs, returns status, and waits for more work. It can be compared
to a remote shell providing fault-tolerant and hierarchical communication.

2.7.2 Slurm Job
A Slurm Job represents the task being executed within the Slurm system. The
definition of Jobs happens in a declarative way by creating a simple bash file (.sh)
containing the script to be executed and a list of configuration flags describing the
HW that must be allocated to execute such a job. With the sbatch command, it is
possible to submit the defined job to the system, delegating the control nodes to
allocate the requested resources.
After the job has been defined, Slurm assigns it a specific State, which describes
the lifecycle of the job. Possible states are:

• PENDING: Job is awaiting resource allocation.

• RUNNING: Job currently has an allocation and the worker nodes are exe-
cuting it.

• SUSPENDED: The job has an allocation, but the execution has been sus-
pended and CPUs have been released for other jobs.

27

Background

• COMPLETING: The job is in the process of completing. Its execution is
finished and the system is freeing the allocated resources.

• COMPLETED: Job has terminated all processes on all nodes with an exit
code of zero.

28

Chapter 3

Materials and methods

In this chapter, I’m going to present how I designed and developed the system.
I divided the developing process into two parts: the former related to the design of
the system, where I defined the general architecture of the platform, and the latter
is the implementation of the component I defined.
In addition, the third section of this chapter describes in detail the steps I made
during the development process, highlighting the modifications made along the way.

3.1 Design
This section describes and analyzes the design choices made during the development
of the system.

3.1.1 Microservice-based architecture
Nowadays different developing approaches have been used for designing new sys-
tems, obeying the new requirements needed for the cloud environment. Monolithic
services are no longer used and the micro-services approach took their place.
According to that, in this thesis project, I created an architecture fully based on
micro-services. This approach enhances the reliability and maintainability of the
system, while also enabling more efficient resource management, thereby optimizing
the sizing of the physical servers hosting it.
To implement this kind of architecture, I used Kubernetes, a micro-service and con-
tainer orchestrator, which allows the creation of an operator-based infrastructure.
The operators are its core components and they can manage the cluster resources
from within the cluster itself.
At the same time, the interaction with the Kubernetes cluster happens through the
Kubernetes APIServer which offers a collection of endpoints for creating, deleting,
and more in general using all the services exposed by the cluster.

29

Materials and methods

3.1.2 Kubernetes as Backend

The core components of the platform are the so-called operators. These kinds of
components run indefinitely inside the cluster, taking care of and reacting to the
changes in the associated resources by performing some jobs according to the type
of events that occurred.
Some already built-in operators manage the default Kubernetes resources such as
Pod and Deployments (see section 2.5 for more details), as well as some user-defined
operators which are associated with particular user-defined resources called Custom
Resource Definition (CRD). This project heavily relies on these custom resources
where many of the entities composing the system are mapped as CRDs. The Fig-
ure 3.1 illustrates the operators and CRD belonging to the system. Through the
APIServer (see section 2.5.2), users can manage these resources by accessing the
corresponding REST APIs. This enables them to create, delete, and update those
CRDs to trigger the corresponding operator for performing some jobs according to
the implemented logic.
Given this architecture, the final user can easily use those services using APIs
(called from a client running on the browser), while a developer, who wants to
manage those resources from the inside, can use a powerful command line tool
called kubectl.

Figure 3.1: CRDs and Kubernetes operators of the cluster[27]

30

3.1 – Design

3.1.3 System resources
As explained in the previous paragraph, the platform relies on a set of CRDs that
define the business logic behind the system. A brief description follows.

Tenant

A Tenant is the resource describing a platform user. It contains all the user in-
formation needed for using the system such as ID, name, and the Namespace (see
2.5.1) it refers to. A Tenant resource is created when a user signs up to the platform
and the operator responsible for handling its lifecycle is the Tenant Operator.

Instances

An Instance describes a running environment. It is created following the specifica-
tion described in a Template object and belongs to a given user Namespace.
An Instance resource contains all the useful information regarding the actual state
of the deployed object (e.g. a Pod) and its lifecycle is managed by the Instance
Operator. In the architecture I deployed, users can interact with an Instance using
a web interface (see VsCode Intance in section 3.2.1).

Templates

A Template is the resource that describes a model of an Instance. It contains the
configuration for creating a given Instance such as the image to be used, the services
to be created, the environment variable needed for running the application, and so
forth.
A Template must be created a priori by the system administrators to be used by
users who want to create the related Instances.

SJobs

The SJob is the resource describing a Job to be issued to the Slurm cluster. Such
resources can be created by users who want to test their algorithms on real HW.
Each SJob contains the configuration needed to submit the job to Slurm as well as
the commands to launch the algorithm and the algorithm itself as explained in the
next section.

3.1.4 Visual Studio Code as developing platform
As described before, this thesis project has a double goal: exposing computational
resources to the end-users and allowing them to develop their code on an integrated
platform that is connected to those resources and allows users to easily issue their
jobs.

31

Materials and methods

There are several IDE (Integrated Development Environment) available on the mar-
ket but for this thesis project, I chose to implement Visual Studio Code (VsCode).
It is one of the most flexible coding environments with several features and is fully
customizable. It supports the major programming languages and has several ex-
tensions useful for improving the coding experience.
The solution I adopted consists of the containerization of code-server, a web-based
version of VsCode developed by Coder which exposes the whole VsCode environ-
ment through a web interface accessible from a simple browser [28].
The code-server has been customized to allow users to create SJobs to be submitted
to Slurm. It is done by a special task defined inside vscode which sends requests
to the Kubernetes APIServer, calling the proper API for creating such resource.

3.1.5 Istio Service Mesh
Even if Kubernetes allows the orchestration of containers and microservices, it does
not provide a powerful tool for: 1) handling the communications between pods; 2)
monitoring and analyzing the workload of each service deployed; and 3) observing
what happens in the cluster in a more high-level view. This is required when you
need to analyze the system to find bottlenecks reducing the performance of the
system.
For this platform, I adopted a helpful mechanism for managing the whole system
with a high-level view: the Service Mesh.
A Service Mesh is an additional layer you can add to your system which pro-
vides some important features like observability of the system, security, and traffic
management without adding additional code to the service already implemented.
There are several third-party service mesh providers and for this project, I chose
Istio Service Mesh (see Section 2.6.1 for more details).
In addition, Istio provides a way to visualize the implemented Service Mesh using
a web-based graphical user interface called Kiali (Figure 3.2). This addon allows
developers to monitor the service communication most effectively.

3.1.6 Slurm as HPC cluster
The main purpose of the project is to export computational resources hosted on-
premise (e.g. neuromorphic boards). These boards are organized in a separate
cluster from Kubernetes, which is specialized in performing job scheduling, job
queuing, and node management in a distributed and highly available system.
This Heterogeneous cluster is powered by Slurm.
Users can develop their algorithm on the platforms made available by the Kuber-
netes cluster and, through special commands, send their code to the Slurm cluster
to be executed by Slurm according to the requirements specified at submission
time.

32

3.1 – Design

Figure 3.2: Kiali dashboard

The communication between Slurm and Kubernetes happens through some end-
points exposed by a web server running on the Slurm control plane. REST APIs
exposed by this web server can store the bash file coming from Kubernetes, al-
ready configured with the necessary setup, and submit it to the nodes using special
commands such as sbatch or srun. These commands schedule or queue the job if
resources are unavailable. The Figure 3.3 shows an overview of the Slurm cluster
I implemented. The master node implements both the Slurm logic (slurmctld dae-
mon) and the logic which allows the communication with the Kubernetes cluster by
means of the web server. Each worker node, instead, executes the slurmd daemon
which contains the Slurm logic for the worker nodes.

3.1.7 User developing process and job submission

This paragraph shows the way how users can use this platform and interact with
the various services offered by the system.

33

Materials and methods

Figure 3.3: Slurm architecture

Coding

As said previously, users are allowed to code in a web-based version of VsCode.
They can access the tool directly from the web application by calling the proper
API exposed by the APIServer. The ApiServer will create a new Instance (see
3.1.3), which describes the VsCode configuration, leaving to the Instance Operator
the task of creating the VsCode container. The process of the instance creation is
depicted in Figure 3.4. The instance is created in a user private workspace only
accessible by him. Each user is allowed to interact only with its workspace to create
projects and store data and files as well as import their custom libraries, tools, and
extensions to enhance their development experience.

Job creation

When users want to run their code using some special resources available in the
system, they need to create a job by calling the proper task directly from VsCode
itself. A VsCode task is a user-defined command which can be executed directly
from the VsCode environment.
I implemented the task mentioned above as a predefined function within the ap-
plication, allowing users to execute it most easily. The only duty related to users
is to specify which and how many resources they wish to use (e.g. the amount of
memory, how many CPUs, which special boards, which GPU).

34

3.1 – Design

Job submission

The submission of jobs is handled by the system and it is depicted in Figure 3.5.
Once jobs are created, the SJob operator parses the configuration provided by the
user and submits the created bash script to Slurm which is in charge of scheduling
and queueing incoming jobs to the physical resources orchestrated.

Results

Once the job is completed, results are provided to the user, together with eventual
errors, logs, and statistics about the execution provided by Slurm itself.

Figure 3.4: User interaction with the coding platform

35

Materials and methods

Figure 3.5: Job creation process

3.2 Implementation
This section shows more in detail how the different components have been integrated
into the system.

3.2.1 Container-based instances
Since Kubernetes is the main tool used for deploying and creating micro-services,
each resource has been deployed as a container-based instance.
Containers nowadays represent the state of the art for the cloud environment since
they are easy to create and manage, allowing the implementation of a dynamic
system that continuously creates, moves, and destroys containers according to the
requirements to be met.

vscode

VsCode represents the environment used for the coding process. I implemented it
as a containerized web application by creating the proper image where I installed
the web-based version of the IDE provided by Coder Technologies. [28].
As the default programming language I chose Python, a powerful and high-level

36

3.2 – Implementation

language heavily used for the development of Artificial Intelligence (AI) applica-
tions. In addition, I integrate with the environment a set of useful Python modules,
such as pyTorch, snnTorch, and numPy, needed for the developing process of AI
and Neuromorphic algorithms.
Even if these modules can be integrated directly within the image itself containing
the Vscode environment, I chose to attach them to the container as an external
volume relying on PVC resources of Kubernetes. This choice was driven by the
huge size of these packages which caused an increment of the image size, limiting
the advantages provided by the containerized approach. In addition, implement-
ing these packages in a separate volume to be attached during the deployments of
instances, allow users to choose which versions of these modules they want to use.

Figure 3.6: User Namespace overview

submitter

The submitter is the pod in charge of parsing and sending jobs to Slurm.
Slurm exposes a REST API for uploading files and submitting them. What the
submitter does is to get the Job specification from the SJob resource, parse them
by creating the bash file with a proper format of configuration understandable by
the Slurm daemon, and call the proper POST API exposed by Slurm, sending the
created file.

37

Materials and methods

3.2.2 Infrastructure
Instance operator

The Instance Operator is one of the core components of the system. It is the com-
ponent that reacts to the changes of Instance resources, CRDs which describe the
state of the user pods created in the system.
Whenever the user issues a request for creating a Pod (e.g. the user wants VsCode),
it creates an Instance object containing all the configuration variables for starting
the pod, such as the Template resource the Instance refers to, the user information
(provided by the Tenant object), the Namespace where the Instance must be cre-
ated, PVC to be attached if present and so forth.
Once the Instance has been created, the operator updates the phase of the Instance
to keep track of the status of the running resource. Every time the phase of an
Instance changes, the operator reacts to that change by performing some jobs such
as deleting the instance, updating it, or whatever other job has been defined for
the operator.

Tenant operator

As well as for the Instance operator, the Tenant operator keeps track of a specific
CRD, in this case, a Tenant resource. The tenant operator is responsible for exe-
cuting various operations, including the creation or deletion of the user Namespace,
where all user-related resources will reside. Additionally, it manages user login and
logout processes by redirecting these checks to the appropriate pod serving as an
authentication server. Furthermore, it associates all the roles linked to the user
account with the proper Tenant object.

SJob operator

The SJob operator instead reacts to the changes that happen to the SJob resource,
the CRD which describes a user-defined Job to be submitted to Slurm. Whenever a
new SJob resource is created, the SJob operator gets the information (configuration)
of the SJob and creates a pod, the submitter pod described above, for parsing that
information, create the bash file with the Job specification for running it and send
the created file to the Slurm cluster by calling the proper API.

3.3 Journey
The previous sections of this chapter show the final result of the system I developed
for this thesis project. The journey into the development of this distributed system
was not so straightforward and in this section, I want to describe the changes I

38

3.3 – Journey

made to the initially envisioned architecture, leading to the final design.

3.3.1 Architectural choices
Single cluster architecture

The two clusters I developed are based on Kubernetes and Slurm. Even if Ku-
bernetes has been always the first choice to deploy the micro-services, the idea to
implement Slurm for managing the job submission to the computing nodes comes
in the middle of the development process. In the beginning, my idea was the de-
velopment of a single cluster running Kubernetes. Within this cluster, I wanted to
implement all the business logic needed to expose the IDE (Integrated Development
Environment) to the users and provide a way to allocate physical nodes to Kuber-
netes to run the jobs. The problem with this solution lies in the poor reliability the
system could have due to the big complexity introduced for managing such a task.
Considering these problems, I figured out that I needed to find a new solution to
address them. At this moment Slurm came into play.
Slurm is a tool that allows creating most easily and effectively an HPC (High Per-
formance Cluster), by managing all the computing nodes belonging to the cluster
and managing the incoming job to be submitted.
Implementing both Slurm and Kubenrtes, creating a Double cluster architecture,
was the right choice for this project.

Slurm compatibility with the Jetson Boards

Another key problem that I addressed was the compatibility problem between Slurm
and the NVIDIA Jetson Nano Boards, implemented as computing nodes.
Installing Slurm on these boards was not so simple since Slurm needs to be compiled
for the architecture where it must be executed. NVIDIA Jetson Nano boards rely
on an ARM64 architecture, hence it was needed to compile Slurm ad-hoc for such
devices.
Due to the limited resources of the Jetson boards, the compiling process took a lot
of time and many installation attempts. Additionally, issues arose due to outdated
package versions already installed on the boards which needed to be updated.

Istio implementation

As I mentioned in previous sections, Istio is a powerful tool that enables a reliable
connection between the various services in the cluster. In the first version of the
system, there was no real need to implement such a component since I provided
a basic service communication. Problems arose with the connection between the

39

Materials and methods

Kubernetes cluster and the Slurm cluster.
Traffic generated by a Pod running in Kubernetes can only reach services within
the same cluster. This limitation implies that establishing connections between
different clusters requires additional implementation of components. Istio comes
into play for solving this problem. It allows the creation of rules for enabling traffic
to flow outside the cluster.

Operator-based cluster

The system I developed highly relies on operators to manage the different events
that occur in the cluster such as a new Tenant who wants to log into the system,
and the creation of a new Instance rather than a new SJob to be submitted.
Initially, I wanted to manage such interaction through applications running on
the system indefinitely. This solution doesn’t match with the goals of the Cloud
Computing paradigm and does not exploit the potential of the Kubernetes tool.
The implementation of event-driven operators, which react to changes in resources
deployed within the Kubernetes cluster, is the optimal solution to adopt for creating
a reliable and powerful distributed architecture.

40

Chapter 4

Results and discussion

The platform created with this thesis project is the beta version of the platform
which will be improved in the next future.
As a beta version, the system has been created in development mode, without taking
into account all the aspects related to a production environment, due to limited
resources available for running the system. Despite all, the infrastructure used for
testing purposes is as similar as possible to the real one.

4.1 Testing conditions
The system has been developed as two separate clusters, placed in two different IP
networks, running Kubernetes and Slurm.

Kubernetes cluster

The Kubernetes cluster has been hosted on 3 different VMs, virtualized by Virtual-
box [29], a level 2 Hypervisor that easily allows the creation of VMs by virtualizing
the host HW. The cluster for testing purposes contains:

• 1 Control Plane Node with 4 core and 4 GB of RAM

• 2 Worker Nodes with 4 core and 4 GB of RAM each

These nodes are under the same IP Network created within Virtualbox.

Slurm cluster

The Slurm cluster has been hosted in a different IP Network than Kubernetes. For
testing purposes, it is composed by:

• 1 Control Plane Node running the slurmctld and hosted in a VM created
with Virtualbox

41

Results and discussion

• 1 Nvidia Jetson Nano Developer Kit 2GB with Quad-core ARM Cortex-
A57 MPCore processor, 2GB LPDDR4 Memory, 128-core NVIDIA Maxwell
GPU and Gigabit Ethernet port

• 2 NVIDIA Jetson Nano 4GB, Quad-core ARM Cortex-A57 MPCore pro-
cessor, 4GB LPDDR4 Memory, 128-core NVIDIA Maxwell GPU carried by
reComputer J101 with Gigabit Ethernet port

A representation of the two cluster mentioned above is the Figure 4.1. The
communication between the cluster happen with the HTTP REST protocol as
described in the design section 3.1.6.

Figure 4.1: The architecture used for testing purposes

4.2 User workflow
The main user interaction with the system is with the integrated developing plat-
form: VsCode. As discussed in the previous chapter, I deployed VsCode as a
containerized application. Users can consume such service to develop their code
directly inside the system.
Once a user requests a VsCode instance, by calling the corresponding REST API,
the proper container will be created in the user Namespace which is only accessible
to him.
Then, a new tab on the browser is created redirecting the user to the Vscode in-
stance, allowing him to develop the code implementing the desired application.
The Figure 4.2 shows the VsCode instance on the browser. The Graphical User
Interface (GUI) is the same of the desktop-based version. On the left there is the
user working directory containing the user files and data. This image shows a user

42

4.2 – User workflow

Figure 4.2: VsCode instance accessible by the browser

developing its own Python algorithm. Users are allowed to test their code directly
on VsCode by using the built-in terminal. This approach uses the virtual resources
assigned to the container at creation time, hence it is suggested to run simple jobs.
In addition, users may required to test their code with a physical board having
some specific characteristics. In this case, users need to run the predefined task in
VsCode called Run job on physical device as shown in the Figure 4.3. The task will
issue a Job request to the cluster with all the information needed to use the chosen
board.

43

Results and discussion

Figure 4.3: A view of the tasks allowing users to run their script to a board hosted
by Slurm

4.3 Slurm Testing
After a job reaches the Slurm cluster and the appropriate command for its execution
is issued, various scenarios may unfold:

• Resources are available. There are available resources for running the job.
The Slurm controller allocates the needed resources to the job and executes
it.

• Resources are not available. The job requests for resources that are not
available. This may happen when computing nodes are performing other
tasks such as the execution of other jobs. In this case, the incoming job will
be queued and executed when resources become available.

The following paragraph describes the submission process and the execution of
a test job, illustrating the system’s functionality and the monitoring capabilities
available for each job.

Test script overview

The script used for tests is provided by TensorFlow tutorials [30]. It consists of a ba-
sic classification of images (clothing images) by using the Fashion MNIST dataset
which contains 70,000 grayscale images in 10 categories.

Cluster initial state

Before running the test, I’m going to show a brief description of the initial state of
the cluster.

44

4.3 – Slurm Testing

By issuing the command sinfo it is possible to get the current status of the cluster,
highlighting the actual state of the nodes (DOWN, IDLE, ALLOCATED), which
partitions are available and which is the current one and other useful info such as
the time limit description for each partition.
The Figure 4.4 shows the output of sinfo command issued before starting the test.

Figure 4.4: Output of sinfo command. All the nodes are in IDLE state, waiting
for new jobs

Job execution

After a user has defined its job on VsCode and the job has been submitted to Slurm
via the REST APIs, the web server, hosted on the Slurm control plane, executes
the sbatch command to run such job.
This paragraph shows what happens to the job after the execution of the sbatch
command. The job assumes the state of PENDING, which means that the Slurm
Controller is waiting for resources to be allocated to the job. The Figure 4.5 shows
the output of squeue command which prints out all the running and queued jobs.

Figure 4.5: Output of squeue command. The status field (ST) has the value PEND-
ING (PD) for the job named example and the NODELIST field is empty since no nodes
have been allocated yet.

Running Job

The job assumes the RUNNING state when resources have been allocated for exe-
cuting the job and it is effectively running.
It is possible to get some information about the running job by issuing the scontrol
show job command. It prints out all the related information about the job such

45

Results and discussion

as the allocated nodes, the amount of CPU and memory used, and the execution
time as shown in the Figure 4.6.
It is possible to notice that, for this specific test, the job requested a single node
to be allocated (NumNodes=1), a single CPU for running the job (NumCPUs=1), a
single task to be executed (NumTasks=1) and just one task assigned to the CPUs
allocated (CPU/Task=1). In addition, by checking the field NodeList, it is possible
to notice that the Slurm controller has allocated the node called jts03 for running
the job.
The Figure 4.7 shows the htop command of the allocated node during the job
execution, proving that the job has been executed on a single node.

Figure 4.6: A view of the command scontrol show job

Results

Slurm provides results through an output file created according to the specifications
provided during the job configuration. The output file contains the batch script’s
standard output, hence all the prints that the script executes.
The Figure 4.8 shows the output file of the script executed as a test for this thesis
project.

46

4.3 – Slurm Testing

Figure 4.7: The htop command executed on the jts03 node. The CPU 1 has been
allocated for running the Python script named example.py

47

Results and discussion

Figure 4.8: The content of the file slurm-48.out. The file contains the prints of
the executed script. The filename is the default name provided by Slurm and it
can be modified at configuration time.

48

Chapter 5

Conclusion

The infrastructure developed in this thesis is a key component of the comprehensive
research infrastructure that the Politecnico di Torino team is contributing to the
Ebrains-Italy project. This contribution aims to establish Neuromorphic Comput-
ing Lab, a dedicated facility focused on the study, development, and utilization of
cutting-edge neuromorphic technologies.

The core focus of the system developed in this thesis lies in the implementation
of key components that a prototyping platform must perform. It incorporates
Visual Studio Code (VSCode) as a coding platform, enabling users to develop their
applications while also providing an integrated Linux terminal for running and
testing these applications within the platform itself.

Furthermore, a critical aspect of the system is to facilitate the capability to
test and evaluate developed algorithms on dedicated hardware devices specifically
designed to address the paradigm of neuromorphic computing. This functionality
allows researchers and developers to validate their algorithms on specialized neuro-
morphic hardware, ensuring compatibility and optimal performance in real-world
deployments.

By seamlessly integrating a robust coding environment, testing capabilities,
and dedicated neuromorphic hardware resources, this prototyping infrastructure
empowers users to explore the full potential of neuromorphic computing. From
algorithm development to hardware testing and validation, the system provides a
comprehensive framework for advancing the frontiers of this emerging field.

During the development of the system, the most challenging aspect was the
integration of Slurm, the tool responsible for allocating physical devices for the
execution of user jobs, with Kubernetes, the platform utilized for orchestrating,
deploying, and exposing microservices to the end-users. The solution adopted,
which involves a REST Web Server running on Slurm, satisfies the requirements of
this beta version of the system. However, further investigation and optimization will
be necessary to ensure scalability and efficiency under realistic workload scenarios.

49

Conclusion

5.1 Future works
The developed system is part of a bigger project, hence in the future several en-
hancements will be introduced to improve both performance and reliability but also
to introduce new functionalities that best fit the user needs.
Some of the future works consist of:

• Improve the connection between Slurm and Kubernetes by switching to using
the gRPC protocol.

• Implement other useful tools in parallel to VScode, such as NNI (Neural
Network Intelligence), a toolkit that helps users automate Hyperparameter
Optimization, Neural Architecture Search, Model Compression and Feature
Engineering.

• Design a user-friendly interface to allow users to interact with the system
most effectively.

• Update the system with a method for getting real-time data from running
Slurm Jobs.

50

Acknowledgements

This research is funded by the European Union - NextGenerationEU Project EBRAINS-
Italy (IR0000011, CUP B51E22000150006). I would like to express my deepest
gratitude to EDA-ECP research group for their support and guidance, especially
to Professor Gianvito Urgese and Andrea Pignata for giving me the opportunity to
work on this project.

51

52

Bibliography

[1] Microchip. Prototyping Embedded Systems. 2024. url: https://www.microchip.
com/en-us/about/media-center/blog/2020/prototyping-embedded-
systems (visited on Mar. 27, 2024).

[2] Applied Brain Research. NengoEdge. 2024. url: https://edge.nengo.ai/
(visited on Mar. 18, 2024).

[3] Inc Cadence Design Systems. Protium. 2024. url: https://www.cadence.
com/en_US/home/tools/system-design-and-verification/emulation-
and-prototyping/protium.html (visited on Mar. 18, 2024).

[4] STMicroelectronics. STM32Cube.AI Developer Cloud. 2024. url: https://
stm32ai-cs.st.com/documentation (visited on Mar. 11, 2024).

[5] Politecnico di Torino. PoliTo for EBRAINS-Italy. 2024. url: https://www.
polito . it / ricerca / luoghi / infrastrutture - di - ricerca / ebrains -
italy (visited on Mar. 11, 2024).

[6] Politecnico di Torino. CrownLabs. 2024. url: https://crownlabs.polito.
it/ (visited on Mar. 7, 2024).

[7] Cloud Native Computing Foundation. Kubernetes. 2024. url: http://kubernetes.
io (visited on Feb. 22, 2024).

[8] SchedMD. Slurm. 2024. url: https://slurm.schedmd.com/overview.html
(visited on Feb. 22, 2024).

[9] Giacomo Indiveri. «Neuromorphic engineering». In: Springer Handbook of
Computational Intelligence (2015), pp. 715–725.

[10] BrainChip. Akida Foundation. 2024. url: https://brainchip.com/akida-
foundations/ (visited on Mar. 1, 2024).

[11] General Vision. NeuroMem chip. 2024. url: https://general-vision.com/
ip-and-chips/nm500/ (visited on Mar. 28, 2024).

[12] Nepes. Nepes website. 2024. url: https://www.nepes.co.kr/en/ (visited
on Mar. 28, 2024).

[13] SynSense. SynSense. 2024. url: https://www.synsense.ai/about- us/
(visited on Mar. 18, 2024).

53

https://www.microchip.com/en-us/about/media-center/blog/2020/prototyping-embedded-systems
https://www.microchip.com/en-us/about/media-center/blog/2020/prototyping-embedded-systems
https://www.microchip.com/en-us/about/media-center/blog/2020/prototyping-embedded-systems
https://edge.nengo.ai/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://stm32ai-cs.st.com/documentation
https://stm32ai-cs.st.com/documentation
https://www.polito.it/ricerca/luoghi/infrastrutture-di-ricerca/ebrains-italy
https://www.polito.it/ricerca/luoghi/infrastrutture-di-ricerca/ebrains-italy
https://www.polito.it/ricerca/luoghi/infrastrutture-di-ricerca/ebrains-italy
https://crownlabs.polito.it/
https://crownlabs.polito.it/
http://kubernetes.io
http://kubernetes.io
https://slurm.schedmd.com/overview.html
https://brainchip.com/akida-foundations/
https://brainchip.com/akida-foundations/
https://general-vision.com/ip-and-chips/nm500/
https://general-vision.com/ip-and-chips/nm500/
https://www.nepes.co.kr/en/
https://www.synsense.ai/about-us/

BIBLIOGRAPHY

[14] The Linux Foundation. pyTorch. 2024. url: https://pytorch.org/features/
(visited on Mar. 1, 2024).

[15] Jason K. Eshraghian. snnTorch. 2024. url: https://snntorch.readthedocs.
io/en/latest/ (visited on Mar. 1, 2024).

[16] Esin Yavuz, James Turner, and Thomas Nowotny. «GeNN: a code generation
framework for accelerated brain simulations». In: Scientific reports 6.1 (2016),
p. 18854.

[17] Tom De Shutter. Prototyping Server Farm. 2024. url: https://semiengineering.
com/prototyping-server-farms/ (visited on Mar. 19, 2024).

[18] Nvidia. Nvidia Embedded Systems. 2024. url: https://www.nvidia.com/
en- us/autonomous- machines/embedded- systems/ (visited on Mar. 28,
2024).

[19] Peter Mell, Tim Grance, et al. «The NIST definition of cloud computing».
In: (2011).

[20] IBM. Virtualization. 2024. url: https://www.ibm.com/topics/virtualization
(visited on Feb. 26, 2024).

[21] Federico Cucinella. «Mass Scale Lightweight Remote Desktop Environments
for Educational Purposes». PhD thesis. Politecnico di Torino, 2021.

[22] Respondus. Lockdown Browser. 2024. url: https://web.respondus.com/
he/lockdownbrowser/ (visited on Mar. 7, 2024).

[23] Cloud Native Computing Foundation. Service. 2024. url: https://kubernetes.
io/docs/concepts/services-networking/service/ (visited on Feb. 28,
2024).

[24] Cloud Native Computing Foundation. ReplicaSet. 2024. url: https://kubernetes.
io / docs / concepts / workloads / controllers / replicaset/ (visited on
Feb. 28, 2024).

[25] Cloud Native Computing Foundation. K8s Architecture Overview. 2024. url:
https://kubernetes.io/images/docs/components-of-kubernetes.svg
(visited on Feb. 28, 2024).

[26] Istio. Istio Service Mesh. 2024. url: https://istio.io/latest/about/
service-mesh/ (visited on Mar. 6, 2024).

[27] Kubernetes. Kubernetes icon set. 2024. url: https://github.com/kubernetes/
community/tree/master (visited on Mar. 5, 2024).

[28] Coder Technologies. Coder, code-server project. 2024. url: https://coder.
com/docs/code-server/latest (visited on Mar. 6, 2024).

[29] Oracle. VirtualBox. 2024. url: https://www.virtualbox.org/ (visited on
Mar. 12, 2024).

54

https://pytorch.org/features/
https://snntorch.readthedocs.io/en/latest/
https://snntorch.readthedocs.io/en/latest/
https://semiengineering.com/prototyping-server-farms/
https://semiengineering.com/prototyping-server-farms/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.ibm.com/topics/virtualization
https://web.respondus.com/he/lockdownbrowser/
https://web.respondus.com/he/lockdownbrowser/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/images/docs/components-of-kubernetes.svg
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/
https://github.com/kubernetes/community/tree/master
https://github.com/kubernetes/community/tree/master
https://coder.com/docs/code-server/latest
https://coder.com/docs/code-server/latest
https://www.virtualbox.org/

BIBLIOGRAPHY

[30] TensorFlow. Basic classification: Classify images of clothing. 2024. url: https:
//www.tensorflow.org/tutorials/keras/classification?hl=it (vis-
ited on Mar. 13, 2024).

55

https://www.tensorflow.org/tutorials/keras/classification?hl=it
https://www.tensorflow.org/tutorials/keras/classification?hl=it

	List of Figures
	Introduction
	Goal

	Background
	Neuromorphic Engineering
	Neuromorphic Solutions
	Software Modules

	Prototyping Platform
	Board as a Service
	Available market solutions
	Heterogeneous Hardware

	Cloud Computing
	Commercial Products
	Virtualization

	Crownlabs
	Kubernetes
	Kubernetes Resources
	Kubernetes Components

	Service Mesh
	Istio Service Mesh

	Slurm
	Slurm architecture
	Slurm Job

	Materials and methods
	Design
	Microservice-based architecture
	Kubernetes as Backend
	System resources
	Visual Studio Code as developing platform
	Istio Service Mesh
	Slurm as HPC cluster
	User developing process and job submission

	Implementation
	Container-based instances
	Infrastructure

	Journey
	Architectural choices

	Results and discussion
	Testing conditions
	User workflow
	Slurm Testing

	Conclusion
	Future works

	Bibliography

