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Abstract

In the evolving landscape of enterprise data management, automating the creation
of ETL pipelines emerges as a crucial objective. This master’s thesis delves into
employing state-of-the-art Artificial Intelligence techniques to streamline the in-
tegration and transformation of enterprise data, aiming to minimize the manual
effort in developing data processing workflows.

In partnership with Mediamente Consulting Srl, the study focuses on designing
and implementing a system that efficiently addresses user requests within the ETL
framework, leveraging cutting-edge technology.

To this end, a tailored algorithm was designed to process user requests, employing
sophisticated data representation techniques to encapsulate the semantic nuances
and contextual cues embedded in these queries. This distributed representation
of user requests serves as the basis for identifying the most suitable ETL solution
from a repertoire of available options. Subsequently, the identified solution is re-
fined through a generative model, which further aligns it with the original user
specification, thereby improving the congruence and relevance of the final result.
In the formulation of the proposed pipeline, a selected set of embedding techniques
and generative models were evaluated and tested, culminating in the identification
of the most efficient methodologies that could provide answers most attuned to
user needs, as clarified in the thesis.

This approach results in an initial ETL solution closely aligned with the user’s
needs, substantially reducing the manual work usually associated with creating
ETL workflows, although not eliminating it.

Keywords: ETL Workflow, Word Embedding, Generative Model

i





Contents

Abstract i

Contents iii

Summary 1

Introduction 5

1 Data Warehouse 11
1.1 Data Lake, Data Mart, Database . . . . . . . . . . . . . . . . . . . 11
1.2 Data Warehousing Architectures . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Star schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Snowflake schema . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 OLAP and OLTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Foundations of ETL Pipelines 19
2.1 Data Integration ETL Framework . . . . . . . . . . . . . . . . . . . 20

2.1.1 Level L0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Level L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Level L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 ODI vs SSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Evolution and Revolution of Large Language Models 27
3.1 Introduction to Large Language Models . . . . . . . . . . . . . . . . 27

3.1.1 Word Embedding: Starting Point for LLMs . . . . . . . . . 28
3.1.2 Technological Advancements in Language Models: From RNN

to Transformer . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Question Answering System . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Generic Architecture of a QA model . . . . . . . . . . . . . 36
3.2.2 Generative Question Answering System . . . . . . . . . . . . 37

iii



iv CONTENTS

3.3 Evolution of Self-Supervised Learning in NLP . . . . . . . . . . . . 38
3.3.1 Pretreined Language Models . . . . . . . . . . . . . . . . . . 38
3.3.2 Large Language Models . . . . . . . . . . . . . . . . . . . . 40

4 AI-Driven XML Generation in ETL 43
4.1 SSIS Component Creation . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 The primary elements of SSIS . . . . . . . . . . . . . . . . . 44
4.1.2 Design of functions for SSIS component creation . . . . . . . 47

4.2 Excel Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Database Construction . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Pipeline Implementation . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Optimizing Text Embedding and Query Retrieval . . . . . . 51
4.4.2 Prompt Construction . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.1 Evaluating Text Embedding Models . . . . . . . . . . . . . . 55
4.5.2 Analysis and Selection of the Generative Model . . . . . . . 58
4.5.3 Prompt Engineering vs Fine-Tuning . . . . . . . . . . . . . . 59

5 Conclusion and future implementations 65
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 69

List of Figures 73

List of Tables 75

Acknowledgements 77



Summary

Thesis Objectives

In the modern era of data, effective management and integration of information
flows are crucial components for the success and competitiveness of businesses. In
the Mediamente Consulting company scenario, which operates in an environment
characterized by a growing volume of data and operational complexity, optimizing
data integration processes plays a fundamental role.

It is within this context that the present thesis is situated, focused on the design
and implementation of a pipeline for the automated creation of workflows in SQL
Server Integration Services (SSIS). Through the development of this automated
framework, the thesis aims to significantly diminish the manual effort typically as-
sociated with the creation of data workflows, thereby enabling employees to focus
on more strategic tasks and initiatives within the organization.

The automation project is divided into several stages. At first, custom functions
were developed to generate SSIS components. Subsequently, two databases were
built: one to collect users’ automation needs and the other containing the corre-
sponding modules for generating ETL workflows. After that, a question-answering
system was developed and used, which integrates an embedding-based model to
identify the most relevant query among those collected and a generative artificial
intelligence model to process and customize the answer according to the user’s
specific needs.

The Proof of Concept (PoC) of this thesis aims to demonstrate the effectiveness
of integrating syntactic embedding methodologies and advanced AI technology to
automate ETL processes from user requests formulated in natural language.
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2 SUMMARY

Research Area and Contribution

During this study, several technologies used in the development of the algorithm
for generating the SQL Server Integration Services (SSIS) flow were examined,
tested, and evaluated.

As an initial phase, a comprehensive review was conducted to develop custom
executable functions for creating SSIS components in XML format, responsible
for processing data and defining workflows. It is important to point out that no
Python libraries are currently available for generating the XML of these compo-
nents, which makes this development phase essential.
These functions are employed to specifically address user requests through the
development of two separate databases. The first collects the main automation
needs identified among employees, formulated in the form of questions, while the
second lists the related functions, or combinations thereof, needed to generate the
required components or sequences of operations.

Utilizing these databases, a question-answering system has been developed that,
employing the technique of embedding, enables the identification of the most rele-
vant need from the collection based on the query formulated by the user. To enrich
the effectiveness of embedding, a semantic weighting technique was adopted, which
played a crucial role in increasing the accuracy of the model.
Given the importance of an effective vector representation that accurately cap-
tures the contextual meaning of the questions, the selection of the word embedding
model was made considering key factors such as database size, data features, and
application purposes.

After the system has identified and retrieved the most congruent response to the
user’s request, it is fed into an AI generative model to more closely match the
identified function to the user’s request, allowing for a more precise and customized
solution.
Similar to the evaluation of text embedding models, several options were examined
for the LLM, taking into consideration the performance, cost, and efficiency of the
various models.
An analysis of different prompt engineering techniques was conducted to evaluate
which among them offered optimal results, evaluating them both individually and
in combination. During this evaluation, the cost and effectiveness of each technique
were examined.



SUMMARY 3

Result and Future Works

The results obtained from the developed pipeline demonstrated that the synergy
between text embedding models and Large Language Models (LLMs) can be ex-
ploited to tailor the most similar response identified, to the specific needs of the
user. This capability stems from the ability of the generative model to accurately
understand, through an optimal prompt, which specific function parameters need
to be modified to customize the response.

By expanding the database with a wider range of queries and increasing the num-
ber of functions to represent more SSIS elements, the range of manageable queries
could be greatly expanded. That database expansion would greatly improve the
results obtained, paving the way for a refinement of the model’s understand-
ing. This would allow the model to interpret and respond autonomously to user
queries, without depending on particularly elaborate prompts or examples to guide
it through the task.

In conclusion, the pipeline developed proved effective in mitigating the workload
required to create the data management flow from scratch, representing an effective
solution for improving the overall efficiency of the process.





Introduction

The creative capabilities of Artificial Intelligence have heralded new vistas across
domains like computer vision, natural language processing, and the arts, revolu-
tionizing these fields. In the realm of Artificial Intelligence, the usage of generative
models has seen widespread adoption, leading to fresh perspectives and innova-
tions across various sectors.

This study focuses on applying these models to automatically generate XML files,
which is pivotal in constructing ETL pipelines. It delves into how integrating these
models can offer an innovative alternative, significantly reducing the manual labor
typically required for crafting XML files crucial for data mapping.

This need emerged within Mediamente Consulting, a company that operates in
the field of consulting and management design of decision-support systems. Of-
fering a broad spectrum of services, including data integration and management,
data visualization, technology infrastructure, business intelligence, and enterprise
performance management (CPM), Mediamente Consulting serves as a strategic
partner for corporate clients seeking advanced solutions in these areas.

The thesis is divided into five chapters: the first three are devoted to a detailed
analysis of management systems, data collection, and the evolution of the most
advanced generative technologies; the last two chapters, on the other hand, focus
on the practical implementation of the model, describing the tests carried out, the
results achieved and their limitations.

Chapter 1 provided an in-depth analysis of the major enterprise information man-
agement systems, highlighting their purposes, advantages, disadvantages, and dis-
tinguishing features. Next, emphasis was placed on the architecture of data ware-
houses, essential pillars for the structured analysis and arrangement of data within
organizations.
These systems are crucial to the ultimate goal of ETL (Extract, Transform, Load)
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6 INTRODUCTION

processes, which is to organize data, facilitating effective and efficient information
management.

In Chapter 2, the features of ETL flows were explored in detail by examining the
standard framework adopted by Mediamente for data management. This analysis
included an exploration of the various stages of the workflow, with a focus on the
specific objectives, rules established, and changes applied to the data at each step.
In addition, a comparison of the main tools used by the company to create ETL
flows was conducted. Among these tools we find SSIS playing a central role in this
study, as the goal was to develop a method to automatically generate XML files
interpreted by this tool starting from user requests expressed in natural language.

In Chapter 3, the analysis focused on the fundamental elements of the project,
beginning with an exploration of word embedding models, this section deliberates
in detail on their distinctive structure, the functions they perform, and the limi-
tations they encounter.
The discussion then evolved to more elaborate systems, such as Recurrent Neural
Networks (RNNs), focusing on the architecture capable of recognizing the sequen-
tial relationships present in texts and addressing the main challenges associated
with these models, such as the Long Short-Term Memory (LSTM) problem and
the strategies adopted to overcome it.
The treatment then follows with an in-depth look at Transformer models, minutely
analyzing their structure, which is distinguished by the presence of two key com-
ponents, the Encoder, and the Decoder, as well as the attention mechanisms that
constitute their main innovation.

The focus then turned to question-answering systems, recognized as crucial ele-
ments for the developed application and in a wide range of areas. The starting
point was the standard architecture of these systems, which are designed to process
questions and generate answers, paying particular attention to generative question-
answering systems.
Next came an in-depth analysis of the evolution of Self-Supervised Learning (SSL)
in the field of Natural Language Processing (NLP), starting with Pretrained Lan-
guage Models (PLMs). The latter represented a paradigm shift in NLP, introduc-
ing the concept of SSL and transfer learning, different pretrained models such as
BERT, GPT-1, and GPT-2 were examined, highlighting the peculiarities of each
and showcasing their respective strengths and weaknesses.
In conclusion, the chapter focused on Large Language Models (LLMs), with a
special interest in models such as GPT-3 and GPT-4, which will be tested in the
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pipeline. This section highlighted the innovative techniques and paradigms intro-
duced by these models in the artificial intelligence landscape.

After exploring more theoretical chapters, the focus shifted to concrete implemen-
tation details: an in-depth analysis was conducted to clearly illustrate to the reader
the structure in XML of the different components used in SSIS for data processing.
This step is intended to provide a deeper understanding of both the development
of the project and the importance of each element within the SSIS tool.
Next, the structure of the functions representing the components was outlined: the
execution of these functions generates the XML code. The Excel document struc-
ture essential for extracting function parameters and describing the configuration
of the tables from which data is extracted for flow operations was also described.

The following section explores the pipeline structure in detail, beginning with
the tokenizer employed to generate word embeddings for both database queries
and the user-posed question, along with the distance metric adopted to identify
the question in the database most akin to the user’s question. Next, there is an
in-depth analysis of the various prompting techniques tested, including concrete
examples of their application.

Figure 1: Accuracy comparison between embedding models with and without se-
mantic weighting (left), accuracy and context windows comparison between LLMs
(right)

Chapter 4 culminates in a detailed illustration of the experiments conducted to
refine the final pipeline and analyze the results achieved. This research phase
involved evaluating various embedding models to identify the best performance,
following a similar process for generative models to identify the most appropriate
one for the specific application task.
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Results from tests conducted on the different embedding models, both with the
application of the semantic weighting technique and without, as well as on the
various language models, are illustrated in Figure 1. The introduction of semantic
weighting led to a significant increase in the performance of all three methodologies
examined. Among the Large Language Models (LLMs) analyzed, the model that
demonstrated the greatest accuracy is the latest one released by OpenAI, which is
also characterized by the largest context window.

In addition, various prompting strategies were explored, and the results achieved
in terms of accuracy and the average number of tokens needed per request with
the different prompting techniques are shown in Figure 2.

Figure 2: Comparison of the accuracy (left) and average number of tokens per
request (right) of various prompting techniques, both individually and in combi-
nation with Self-Consistency or Rephrase and Respond techniques

Substantial improvement in results can be observed when a combined approach of
various prompting techniques is adopted. By integrating methods specific to the
domain of reasoning and logic, techniques designed to handle new tasks without
the need for extensive training, and strategies aimed at understanding the user’s
intentions, a significant increase in the quality of performance is achieved. This
synergy between different methodologies not only refines the accuracy of responses
but also amplifies the system’s ability to adapt effectively to a wide range of new
tasks.

Fine-tuning was attempted, which, however, did not achieve the desired results
due to the limited amount of examples available in the database. The chapter also
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presents the pseudo-code of the pipeline, providing a comprehensive view of the
development process.

The thesis concludes with a final chapter that examines in detail the limitations of
the survey conducted, the results achieved, and outlines prospects for future devel-
opments. The latter particularly focuses on the importance of database expansion,
identified as a crucial element in improving and refining research outcomes.





Chapter 1

Data Warehouse

A Data Warehouse is an aggregate of structured historical data that comes from
different sources, derived from business activity, taken from external sources, gen-
erated by the applications, log files and more. The data is first transformed from
heterogeneous data into congruent information that will be accessed by responsible
decisions through Business Intelligence tools or other analytics applications.

The characteristics that distinguish DW from other decision-making tools have
been outlined by William H. Inmon [13] and include:

• Subject-Oriented: the data in DW are organized by relevant subjects in
order to offer all the information related to a specific field or area

• Integrated: Data from different sources often show heterogeneity in terms
of format and encoding and are then integrated and consolidated within the
DW

• Time-Variant: the DW contains data belonging to a wider time horizon
than operational systems, this allows the analysis of trends and the evolution
of information over time

• Non-volatile: once the data has been uploaded within the DW become
immutable, they do not undergo updates or cancellations while maintaining
their integrity over time

1.1 Data Lake, Data Mart, Database

It is crucial at this point to distinguish between the different systems of man-
agement of company information resources. In this context, let’s now define the

11



12 CHAPTER 1. DATA WAREHOUSE

peculiarities, needs and objectives for which Data Lake, Data Mart, Data Ware-
house and Database are designated.

Data Lakes are large scalable repositories that contain great amounts of data in
their original and raw form. The raw nature of the acquired data requires the use
of more advanced and dynamic analysis technologies than those typical of a Data
Warehouse. However, using a Data Lake reduces data ingestion costs by provid-
ing a comprehensive view of enterprise information resources, simplifying big data
analysis and retaining flexibility for subsequent processing [20].
Data lakes represent a valuable resource in various sectors: in finance, for exam-
ple, their ability to store and update market data in real time is crucial to mak-
ing timely decisions, in the field of IoT, where sensors generate huge amounts of
semi-structured data on the surrounding environment, streaming platforms, which
collect real-time data on customer habits, find in data lakes an essential resource
to power recommendation algorithms, Figure 1.1.

As can be seen from the previous examples, the main purpose of a Data Lake is to
collect data immediately to decide how to use it only at a later time, unlike DW
where storage can take months or even years. The data that will then be used for
analysis are processed only at a later time, this type of scheme is called "on read".

Figure 1.1: Organization and operation of a Data Lake system

Data Marts, on the other hand, have a similar structure to that of Data Ware-
houses, because they contain consolidated and consistent data, ready for analysis.
However, their specificity lies in the optimization of the needs of a particular group
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or business process. Essentially, they are configured as single-issue data warehouses
that reflect the needs of a specific business unit, such as marketing [11].
The advantages of Data Marts are many: first, you have a remarkable speed in
processing queries, thanks to the reduced amount of data managed, in addition,
they offer a high level of security, limiting the visibility of data to individual de-
partments and allowing targeted security control. The reduction of complexity is
an additional benefit that translates into a significant simplification in manage-
ment and maintenance since the data are limited to a single functional scope.
Despite these indisputable advantages, Data Marts have some limitations. Their
vision focused on a single department may be limited compared to the Data Ware-
house, which offers a wider overview of business data. In addition, there is the
possibility of data duplication, as several Data Marts may share similar informa-
tion.

The term Database refers to any organized collection of data used for storage,
accessibility, and recovery. Typically, databases are circumscribed to a single ap-
plication and are optimized for fast read and write operations. While commonly
referring to online databases for transactional processing, it is important to note
that they can take different forms, including formats such as XML, CSV files, or
Excel spreadsheets.
The main differences concerning Data Warehouses emerge both from the functional
point of view, as the databases are designed to meet operational needs, and both
from the design point of view, as they are oriented to manage daily operational
activities, reflecting the dynamics and volatility of the data.
The categories of users accessing the two systems are also significantly different, as
databases are queried by a wide spectrum of users belonging to different categories.
A further element of distinction lies in the backup strategy. Since database data
is subject to frequent changes, they require repeated saves to ensure the integrity
of information over time [36].

The interaction between Database, Data Warehouse, and Data Mart is illustrated
by Figure 1.2. Each transactional database represents a separate source, from
which data and other sources are extracted and processed through an ETL flow
before being uploaded to the DW. From the latter, several data sets related to
specific topics are loaded into the various data marts, which together with the
Data Warehouse will be used to generate a variety of reports and dashboards.

While entity-relationship diagrams and normalization techniques are used in the
OLTP environment to construct transactional databases, this is improper for the
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Figure 1.2: Organization and operation of a Data Warehouse system in the field
of Business Intelligence

decision support system design. The most common types of diagrams for DW
construction will now be explained.

1.2 Data Warehousing Architectures

1.2.1 Star schema

A typical implementation for Data Warehouse construction follows the star dia-
gram model. As the name suggests, this scheme is similar to a star, characterized
by a large central table and a series of smaller tables placed around it. An example
of this provision is clearly illustrated in Figure 1.3.
The configuration of the star schema is asymmetric: the main table, the table of
facts, placed in the center of the diagram, is the only one equipped with multiple
links that are concretized through the keys connecting with the tables of dimen-
sions. The fact table preserves the numerical measures of the business, each of
which represents the intersection of all the dimensions.

The Primary Key, crucial for uniquely identifying individual records in the facts
table, is crafted by combining Foreign Keys from the dimension tables. Never-
theless, owing to the complexity of an FK, which may involve multiple fields or
lengthy attributes like the fiscal code, the introduction of the Surrogate Key be-
comes pivotal. Surrogate Keys, represented by incremental numeric fields, assume
the role of the PK for dimension tables, their values lack intrinsic significance with
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Figure 1.3: Star scheme example

the data. Embracing SKs simplifies the administration of relationships between
tables and enhances the efficiency of search and join operations.

In the star scheme, the facts table is normalized, including a single key combination
of the dimensional elements, while the dimensional table is denormalized. This
approach reduces the number of join operations but increases the required memory
size. This model is particularly advantageous in scenarios where the commercial
entity to be represented includes a large number of records, for example, could
be adopted by a commercial company that wants to monitor the movements of
products in the warehouse [21].

1.2.2 Snowflake schema

The snowflake schema has a similar structure to the star one, with the key dis-
tinction that some of the dimensions are normalized. This means that these di-
mensions are divided into smaller, related tables, this subdivision aims to reduce
data redundancy. For example, a hierarchical structure could be implemented,
where a dimension such as "Date" is fragmented into separate tables for "Year"
and "Month", while maintaining a hierarchical relationship between them, Figure
1.4.
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The main objective of the snowflake scheme is to save space by minimizing data
redundancy. However, it should be noted that this additional normalization can
lead to greater complexity in queries. Queries must cross a larger number of joins
between normalized tables, increasing the complexity of querying operations.

Figure 1.4: Snowflake scheme example

1.3 OLAP and OLTP

After identifying the most suitable structure for data storage, the next step is to
identify the most suitable data processing system. Currently, the available systems
are divided into two main categories: On-Line Transaction Processing (OLTP) and
On-Line Analytical Processing (OLAP).

Transaction management systems support operations such as financial transac-
tions, order processing, or store upgrades, generally responding to the company’s
daily operational needs. These systems adopt an entity-relationship data structure
to ensure data integrity.
Since the focus is on transactional data, temporary imperfections in the data, such
as incomplete or ongoing transactions, are tolerated. An example of this could be
the lack of information about a user’s tariff plan during a change of plan, which
does not compromise the overall integrity of the data. In contrast, the presence of
erroneous tariff data would pose a significant issue.

On the other hand, analysis management systems adopt multidimensional data
models, and data warehouses, to analyze information from different perspectives.
As these systems are used for analytics and to support business decisions, they
do not tolerate "dirty" data that could compromise information processing, such
as the presence of null fields. Therefore, data cleansing operations are performed.
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Unlike OLTP systems, inaccuracies in the data do not affect analysis, as they are
hidden by aggregation operations across the entire dataset [21].

As highlighted by the distinct organizational structure of the data used by the
two systems, the operations performed on them exhibit significant differences. In
OLTP systems, the emphasis is primarily on data writing operations, such as up-
dates, inserts, and deletions, along with daily operational needs. Consequently, the
environment is optimized to efficiently support such transactional operations. In
contrast, OLAP systems primarily revolve around analysis and involve complex ad
hoc queries aimed at analyzing consolidated data with a broad temporal horizon
[4].

The distinction between users of the two environments is based on their respective
roles. OLTP tools are intended for use by employees, customers, and IT profes-
sionals, while OLAP tools are designed for specialized workers such as managers,
analysts, and data scientists [27].
The main differences between the two systems are shown in the Table 1.1.

Features OLTP OLAP

Function daily management decision support

Accuracy detailed data consolidated data

Data structure relational models multidimensional models

Data structure real-time or every transition planned, usually daily

Time window limited historic

Access type read/write read

Query structure simple and repetitive complex and ad-hoc

Table 1.1: Key Differences: OLAP vs. OLTP





Chapter 2

Foundations of ETL Pipelines

Due to the exponential surge in data, businesses are grappling with a vast volume
of information stemming from various sources: SQL databases, NoSQL databases,
standard text or XML files, cloud platforms, and more. Interpreting these diverse
data sources is challenging due to their disparate and disorderly formats. As a re-
sult, it is becoming more important to process and standardize this data to make
it uniform and readily available for analysis.

The ETL process involves three basic steps:

Figure 2.1: The basic ETL process used in Data Warehouses

• Data Extraction: The goal of this phase is to gather data from a variety
of sources, with complexity differing depending on the source of the data.
There are two ways to extract data: static ingestion involves gathering all
the available records from a source and transferring them to the next steps
of the ETL process and incremental ingestion in which only new, updated,
or newly deleted records are acquired through each iteration.

19
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• Data Transformation: This phase is designed to convert data from differ-
ent organizational forms and formats into a uniform format. Dealing with
some redundant, ambiguous, incomplete, and anti-rules, data to form a unity
of data granularity and data format. [32]

• Data Loading: This final phase is responsible for loading the data pro-
cessed by the above two steps into the Data Warehouse. There are two main
approaches to loading data: the refreshing method is mainly used to load the
data into the database while creating a Data Warehouse, while the updating
method is used to maintain the data warehouse. [32]

This process ensures data consistency, making it suitable for analysis, and over-
comes its initial heterogeneity and disorderliness.
The challenge in standardizing ETL processes lies not so much in the data loading
and extraction phases, which follow established models such as entity-relationship
diagrams or star and snowflake schemes. The true challenge comes during the data
transformation phase, which varies depending on the specific needs of the data or
analyses involved [30].

2.1 Data Integration ETL Framework

A data pipeline is a series of operations that involve manipulating and transform-
ing data through a series of components. By processing the output of the previous
operation and serving as input for the subsequent one, each component establishes
an automated flow in data management [34]. Typically, this structure begins by
receiving incoming data and ends with a data sink that stores post-processed data
within the Data Warehouse.

Subsequently, an extensive analysis will be carried out on the implemented data
flow framework within the company, analyzing its operational specifics and fea-
tures.

2.1.1 Level L0

The initial step, as depicted in the Figure 2.2, involves Staging, which essentially
encompasses transferring the source data into staging tables as-is, without con-
ducting any data validation or transformation. The source systems providing this
data can vary, with the most common being operational systems within databases
or files generated by suppliers.
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Figure 2.2: Structure of company Data Flow

Furthermore, during this phase, a variable named JOBID is appended to each
record. This variable usually consists of a twelve-digit code that represents the
year, month, day, hour, minutes, and seconds, thereby indicating the data’s asso-
ciation with a specific loading stream. This numerical choice is aimed at optimizing
computational performance for future filtering operations.

As loading into the staging tables occurs regularly, it becomes essential to identify
changes in the current loading stream data compared to the previous one. This
operation, called Delta, can be executed in two modes:

• If within the metadata tables there is information about the latest data
update, new added data is retrieved, while a log table tracks deleted records.

• In the absence of update date information, two ’minus’ operations are per-
formed: one between today’s and yesterday’s data to identify added records,
and another between yesterday’s and today’s data to determine the deleted
data. In both cases, a variable named FLG_NEG is added, taking values 0 or
1 to denote whether the record was added or deleted, respectively.

2.1.2 Level L1

The most significant and expensive operations of the entire ETL process take place
in the second stage of the flow. The purpose of this phase is to transition from
replicating source structures to integrating and reshaping information, which is
then transformed into tables that are tailored for the next tier’s analysis.
Transformations at this stage include:

• Normalization

• Integration
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• Generation and resolution of internal keys

The Data quality check phase is central because the presence of low-quality
data could result in a range of issues within the Data Warehouse, such as failed
loading due to constraint violations or inaccurate data types, as well as the in-
consistencies that necessitate the application of business rules [28]. At first, the
process selects solely unique records with higher JOBID values, which encapsulate
the most recent data snapshots from the delta tables. Following this, these data
undergo a comprehensive validation process involving various rules:

• Referential integrity rules: are constructed to ensure that data consis-
tency is maintained across various tables in a database. These rules establish
constraints that must be met to ensure valid relationships between tables,
ensuring that data is correctly associated and consistent within the system
[16]. This check involves joining different tables in the database using their
respective foreign keys.

• Record validation rules: The purpose of these checks is to discard records
that do not meet the predefined criteria. Not null constraints are enforced
in fields where NULL values are not permissible, and this is usually re-
solved by replacing NULL values with defaults [16]. To ensure data integrity,
attribute-based check constraints, like length restrictions and invalid value
identification, are utilized [28].

• Business rules: are criteria set by users to identify suspicious values through
comparisons or statistical methods. They encompass missing values, data er-
rors based on specific business definitions, and outliers [28].

After validation through these various rules, the data is loaded into the OK tables.

In the Operational Data Store layer, consolidated and historicized data from
the OK tables is loaded. The aim is to have a replica of the source after performing
reference and data quality checks in previous steps. To update data from various
flows, a constraint on the primary key is utilized. This allows for specific handling
of records: if the record already exists, it will be discarded; if it exists but with
different values in secondary fields, the record will be updated; otherwise, it will
be inserted into the ODS tables.

During the Master Data Management phase, two essential operations are car-
ried out: loading data from various sources and enriching it.
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The first operation is carried out by joining the ODS fact tables to form a sin-
gle central table, which is used to combine data from multiple sources. This
type of table joining is fundamental as the steps seen earlier are carried out sepa-
rately for each table. Additionally, this step allows prioritization between sources.
For instance, if there are two tables—one from an API and the other from an
ERP—employing a left outer join can prioritize the table located on the left side
of the join.
Data enrichment is achieved through join operations, utilizing dimensional tables
that offer additional descriptive details. This approach enriches core data with
supplementary information.

The implementation of surrogate keys (SK) to replace natural keys within dimen-
sional tables is a crucial process within MDM. These keys are designed to enhance
the efficiency of table joins by reducing computational load and speeding up op-
erations. Surrogate keys encompass a meaningless incrementing integer value,
simplifying inter-table relationships [37].

At the final stage of Level L1, known as OUT, the enriched and integrated data
from prior operations is readied for publication. The OUT tables, temporary in
nature, serve as a snapshot of the publication. This phase functions as a prepara-
tory step for the data model at the subsequent Level L2. Here, the importance of
surrogate keys becomes evident, employed in the various joins that contribute to
constructing the final chosen Data Warehouse model.

2.1.3 Level L2

Level L2, which is the final level, only requires one step: Publishing. This level’s
tables contain data divided into thematic areas, usually aligned with specific busi-
ness processes. The tables will be divided into:

• Fact tables is where the numerical measurements of the business processes
are stored. These measurements or events are related to each dimension
table by foreign keys.

• Dimension tables contains attributes used to constrain, group, or browse the
fact data [29].

The Data Warehouse structure is made up of these tables that can be configured
with:
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• Star schema is a representation of multidimensional data that is made up of
a fact table and a set of unnormalized dimension tables using the relational
model.

• Snowflake schema is obtained from a star schema. It consists of a fact table
and several partially normalized dimension tables [10].

Both models have different advantages and disadvantages, as shown in the Table
2.1. The choice of the type of scheme depends on the specific needs of the com-
pany and the type of analysis that will be carried out on the data. In general,
the preferred model is the one that minimizes the number of joins required for
analyses, as these operations are computationally expensive.

In this final stage, the complete set of business data intended for analysis and
decision-making is collected. Here is where it is possible to create data marts and
data collectors targeted to specific analytical interests. To perform an accurate
analysis, the most recent images from the OUT phase must be selected from all
available images, performing the same procedure as in the delta phase.

Star schema Snowflake schema

Integrity Lower, due to denormalization Higher

Data redundancy Higher Lower due to normalization

Complexity Simplified model and fast queries Complex model and queries

Execution time Higher due to redundant data Lower due to normalization

Maintenance Easier due to the reduced number of relationships Harder

OLAP friendly Yes No

Table 2.1: Comparison between the star and snowflake schemes

2.2 ODI vs SSIS

Key tools used by the company to create ETL streams include Oracle Data Inte-
grator and SQL Server Integration Services.

ODI is a highly used, comprehensive platform that covers all of the data integra-
tion requirements, starting from high-volume, high-performance batch loads, to
event-driven, trickle-feed integration processes, to SOA-enabled data services [22].
A key distinction of ODIs compared to other ETL tools is its architecture based on
Extract, Load, Transform (ELT). This approach eliminates the need for an ETL
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server between the source data and the destination server. In practice, it allows
the extraction of data, their direct upload to the destination server, and then the
execution of transformations on the data within the server itself.

SSIS is a powerful platform for creating comprehensive solutions that cater to data
integration and transformation needs within an enterprise. This tool tackles com-
plex business challenges by extracting and transforming data from diverse sources,
such as XML files, flat files, and relational databases. Once the processing is com-
plete, the data is loaded into one or more destinations as needed [31].

ODI leverages an external tool to automate the generation of the entire config-
uration of the data flow, aligning with the specific requirements and structures
defined in an Excel sheet outlining the flow structure. This functionality enhances
the efficiency of the ETL workflow, considerably streamlining the development
time required for data integration solutions. Recognizing the absence of a similar
feature in SSIS, the thesis focuses on the creation of an implementation aimed at
automating the process.

Another significant difference is in the approach to data transformation: in ODI,
a push-based approach is adopted, which implies that data transformation opera-
tions take place directly within the target database, fully exploiting the computa-
tional power of the latter [9]. In contrast, in SSIS data is extracted and transformed
into a separate environment.
From the perspective of scalability, the Oracle tool stands out positively thanks
to its distributed architecture, which allows the execution of transformation oper-
ations in parallel on multiple server nodes [9]. In contrast, in SSIS, scalability is
constrained by the complexity of server configuration and ETL flow.

After this brief comparative analysis of the instruments, it may not be clear why
SSIS is preferred. There are two main reasons: firstly, the customer’s use of services
and tools included in the Microsoft SQL Server ecosystem. This may result from
the need to maintain technological consistency with the Microsoft solutions already
adopted. Secondly, the cost of licensing should be considered, which is generally
higher for Oracle tools.





Chapter 3

Evolution and Revolution of Large
Language Models

3.1 Introduction to Large Language Models

The relentless progression of digital technology has ignited an escalating interest in
language models. To fully grasp their essence and potential, it is imperative to em-
bark on a journey back in time, particularly to the 1950s, when the linguist Noam
Chomsky introduced the groundbreaking theory of generative grammar. Central
to this theory is the radical proposition that the grammar of any language can be
delineated through a set of formal rules. These rules uniquely generate sequences
that are grammatically valid for the language in question, effectively transforming
the concept of grammar into a mathematical model.

Despite the promise of Chomsky’s theory, the early experiments encountered some
difficulties. These included the difficulty of the model to incorporate context and
the computational limitations of the time. Only in the 1980s did the advent of
the first machine learning models capable of identifying patterns, facilitated by
advances in algorithms such as neural networks.

The dawn of the 21st century marked a significant milestone with the development
of more sophisticated models trained through unsupervised learning. This advance
paved the way for unprecedented growth in the field of neural networks and deep
learning.
Today, the advent of Transformer models has revolutionized our ability to process
vast datasets, unlocking the ability to understand the context, structure, and se-
mantics of the human language, marking a monumental leap forward in the field

27
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[25].

At this point, a more precise definition of Large Language Models (LLMs) can be
provided: they constitute a subcategory of neural networks dedicated to natural
language processing (NLP). The hallmark of these models lies in their considerable
size and complex capabilities; they are trained on large text datasets to understand
intricate language patterns, semantic contexts, and internal relationships between
words.

LLMs are applied across a broad spectrum of domains: from enhancing the preci-
sion and flow of automatic translations to improving virtual assistants with deeper
insights and more conversational responses. Up to applications of automatic sum-
marization of documents or long texts, through identification of key information.
Furthermore, these models are instrumental in generating code automatically, pow-
ering question-answer systems, and serving a multitude of other purposes, demon-
strating their versatility and relevance in a wide range of fields.

Throughout this chapter, the fundamental techniques and methodologies under-
lying Large Language Models (LLMs) will be explored, analyzing their evolution
from the simple structure of recurrent neural networks (RNNs) to the sophisticated
architecture of Transformer models. Through this examination, an attempt will
be made to outline the progression of techniques used in LLMs, highlighting the
key innovations that have made it possible for them to achieve their remarkable
natural language understanding and generation capabilities.

3.1.1 Word Embedding: Starting Point for LLMs

One of the main topics in natural language processing is distributed word rep-
resentation, a technique that represents words as continuous vectors capable of
capturing relationships between words. This approach is rooted in the linguistic
theory known as Zellig Harris’ "distributional hypothesis" which postulates that
words that appear in similar contexts tend to have similar or related meanings [12].

Based on this assumption, several neural words embedding models have been de-
veloped, including Word2Vec, introduced by Tomas Mikolov, which stands out
as a pioneering and widely adopted framework.
The algorithm takes as input a text, also known as corpus, from which it gener-
ates an output consisting of a vector representation of the words in the corpus, as
shown in Figure 3.1. The model W2V includes two main architecture variants:
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Figure 3.1: Vectorization of the input corpus

• The Skip-Gram model, which predicts context words from an input word.

• The Continuous Bag of Words (CBOW), which predicts the input word from
context words.

Both variants share the basic goal of learning meaningful embedding vectors for
words in a specific context.
The context is defined by a window of words, where its size represents the key
parameter of the model; a window of length "t" corresponds to the selection of t
tokens before and after the target word.

Both architectures are implemented through a shallow neural network consisting
of three layers: an input layer, a hidden layer, and an output layer, Figure 3.2.
As easily understood, depending on the model, both the input and output can
represent either the window of words or the target word.
The training of embeddings (hidden layer) will also change, in the case of CBOW
they will be optimized to maximize the probability of correctly predicting the in-
put word, and in the case of Skip-Gram to maximize the probability of correctly
predicting the surrounding words, i.e., the context [19].

Once the word embedding vectors have been computed using one of two archi-
tectures, they can be used to compute the similarity between two words, using
different measures such as Euclidean distance, Jaccard similarity, or cosine simi-
larity, which among the three represents the most widely used measure.

The cosine similarity formula evaluates the angle between the word embedding
vectors in the vector space, indicating how directionally similar the vectors are. A
value of 1 indicates that the two words have the highest similarity, while a value of
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Figure 3.2: Difference between SkipGram and CBOW training architectures.

0 denotes no similarity; conversely, a value of -1 suggests maximum dissimilarity
between the words.

cos(wi,wj) =
wi ·wj

∥wi∥ · ∥wj∥
where wi and wj represent the embeddings of two words and ∥wi∥, ∥wj∥ the re-
spective Euclidean norms of the vectors.

Although Word2Vec is a widely used algorithm that offers excellent performance,
it has some notable limitations:

• Dependence on large amounts of data: in the absence of a sufficiently
large corpus, the model cannot capture the complexity of relationships

• Poor handling of Out-Of-Vocabulary (OOV) words: in contexts of a
dynamic vocabulary, the absence of words in the vocabulary used in training
results in limited flexibility

• Limitation in context: because the model considers only a window of
surrounding words during training, the broader relationships present in the
overall context are not captured

• Difficulty with homonymous and antonymic words: difficulty with
semantically related but dissimilar words that share similar contexts, such
as synonyms and antonyms

To overcome limitations in providing accurate results for rare words and outside
the vocabulary, the FastText model was introduced, an innovative embedding
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technique that builds on the skip-gram concept of the Word2Vec model. Unlike
the latter, FastText splits words into smaller substrings, known as "n-grams",
allowing the model to capture information about the internal structure of words.
Consider the word "eating" as an example. Its representation using n = 3 is as
follows:

< ea, eat, ati, tin, ing, ng >

It is evident that < eat > appears among the sequences, corresponding to the word
"eat", whose tri-gram, however, is different than that of "eating". In addition, the
word itself is also considered within the set of n-grams of the word.

The word embedding vector will be the sum of all the vectors associated with the
n-grams. This technique allows for an accurate representation of rare words since
some of their n-grams are likely to appear in other words as well [2].
This model has some disadvantages, including longer training times due to the
inclusion of n-grams and a lower ability to detect similarities between words than
the Word2Vec model.

Another technique used in the context of vector representations is Sent2Vec,
which extends the fundamentals of Word2Vec to capture the semantics of whole
sentences rather than individual words, thus allowing a broader understanding of
context to be captured.
The model can be considered an extension of C-BOW, but with some significant
differences; for example, it uses dynamic context windows, making it more effec-
tive in capturing sentence-level context [24]. However, this greater emphasis on
sentence-level context may result in less ability to capture the subtle semantic
nuances of individual words.

3.1.2 Technological Advancements in Language Models: From
RNN to Transformer

Recurrent neural networks (RNNs) are specific neural network architectures
designed to process sequential input, making them key tools in Natural Language
Processing (NLP). Their main applications include text generation, machine trans-
lation, and sentiment analysis.

In the depicted architecture, Figure 3.3, a recurring pattern of cells forms a se-
quence, enabling the flow of information from one time step to the next. Each cell
is fed with an input x(t), such as a word, and the hidden state from the preceding
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hidden layer h(t−1), which encapsulates insights from earlier sequence iterations,
essentially serving as the network’s short-term memory.
Leveraging these inputs, the cell computes the output o(t) corresponding to the
current sequence position. Throughout the network’s training process, the cell au-
tonomously learns the weights U , V , and W about the three layers by optimizing
a loss function [33].

Figure 3.3: Diagram of the Structure of a Recurrent Neural Network

Despite the ability of RNNs to capture sequential dependencies, they suffer from
the issue of vanishing gradients. In other words, the weight of information from
previous inputs decreases exponentially as the sequence progresses, making it dif-
ficult to capture long-term relationships accurately [18].

To overcome this challenge, Long Short-Term Memory (LSTMs), extensions
of RNN architectures but equipped with the ability to effectively handle long-term
dependencies in sequences, were developed. This is achieved through the use of
a cell state, which stores long-term information and allows LSTMs to store and
manipulate information more effectively than traditional RNNs.

The architecture resembles that of RNNs, but three gates are introduced within
each cell. The first is called the Forget Gate, which, through a sigmoid function,
decides what information from x(t) and h(t−1) will be forgotten by the cell state.
The second gate is the Input Gate, which operates similarly to the previous gate
but determines what new information will be stored in the cell state. Finally, the
information obtained passes through the Output Gate to determine what informa-
tion will be returned, again using a sigmoid function [15].

The limitations of LSTM models focus mainly on the computational complexity
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required during both training and inference. In addition, because of their sequen-
tial structure, which prevents parallelization across tokens in the input sequence.

Before arriving at modern transformers, the Seq2Seq architecture was developed,
which consists of two basic components:

• The Encoder converts a sequence of input tokens into a series of embedded
vectors; it is commonly referred to as the hidden state or context.

• The Decoder uses the Encoder’s output to generate a sequence of output
tokens, one at a time.

In this type of architecture, both components are recurrent neural networks en-
hanced with an attention mechanism [33]. This allows the Decoder to assign a
different weight to each token. Specifically, attention is computed using the fea-
tures of both sequences to determine the importance of each element in the input
sequence relative to the elements in the output sequence.

The Transformer architecture was originally introduced in the article "Attention
Is All You Need." While retaining the encoder-decoder paradigm, the structure of
the blocks within the two components is completely revised.

The input is initially tokenized using a Tokenizer, and each token is converted into
an embedding vector.
Since Transformers have no inherent sequential structure, it is essential to add
Positional Encoding. This component adds positional encoding vectors to the em-
bedding vectors, providing the model with information about the position of words
in the sequence.
Then input tokens are sent to the Encoder, which is composed of a series of
decoding layers, each of which includes two attention sublayers:a Multi-Head Self-
Attention sublayer and a Feed-Forward sublayer.

We have previously seen what the attention mechanism consists of; the self-
attention mechanism differs in that attention is computed among tokens of the
same sequence.
This mechanism is implemented through four steps:

• Creation of query, key and value vectors : Each embedding of the token xi

is multiplied by three separate weight matrices: one for queries WQ, one for
keys WK and one for values WV , learned by the model during the training
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process. These operations produce query vectors qi = xiWQ , key vectors
ki = xiWK and value vectors vi = xiWV , respectively.

• Compute attention scores : Each query vector is multiplied by each trans-
posed key vector, for each token pair i and j, using the following formula:

score(qi, kj) = qi · kT
j

This process generates a matrix of scalar products indicating how "similar"
each token is to the other tokens in the sequence; a sequence of N tokens
corresponds to a matrix NxN of attention scores.

• Calculate attention weights : To ensure stability in the gradient during the
training process, the previously calculated attention scores are divided by
the square root of the size of the key vectors,

√
dk, and then normalized

through a softmax function. The resulting matrix N × N will now contain
all the attention weights wij.

• Update token embeddings : After the weights are calculated, they are used to
weight the value vectors. For each token i, the output yi will be the weighted
sum of the value vectors using the weights wij, so yi =

P
j wijvj.

The attention function is executed in parallel h times, each time with a different
set of weight matrices (WK , WV , WQ), known as the attention head, as shown in
Figure 3.4.

Figure 3.4: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
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Before using these matrices, they are linearly projected independently, these differ-
ent projections allow the attention function to focus on different semantic aspects.
The outputs of each attention head are concatenated and then subjected to a
further linear transformation to produce the final output of the Multi-Headed Self-
Attention sublayer.
After the attention sublayer, a Feed-Forward Neural Network (FFNN) layer, a
fully connected two-layer structure designed to process sequence embeddings in-
dependently, is inserted. This sublayer consists of two linear transformations,
interspersed with activations of the rectified linear units (ReLUs) between them.
Both sublayers described are followed by a Normalization Layer, whose task is to
normalize the sum of the inputs from the sublayer with the outputs generated by
the same sublayer. This sublayer is crucial in stabilizing the learning process, help-
ing to avoid the problem of the gradient disappearing through the direct passage
of information through the layers.

As highlighted in Figure 3.5, the main difference between the Encoder and the
Decoder lies in the fact that the latter has two attention sublayers.

Figure 3.5: The Transformer - model architecture.
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In the encoder-decoder attention layer, Multi-Head attention is applied to the key
and value vectors from the encoder output and the query vector from the previous
layers of the decoder. This layer allows the decoder to focus on different parts of
the encoder input while generating the sequential output, as was the case in the
Seq2Seq models.

Masked Multi-Head Attention, on the other hand, has the same operation as the
encoder attention layer but a mask is applied to the attention scores to set the
weights corresponding to the next tokens in the sequence to zero, ensuring that
only the previous tokens are considered during the attention calculation.

At the end of the decoder sublayers, a linear function is applied to project the
output of each token into the dimension space of the vocabulary, followed by a
softmax function to obtain a probability distribution over the entire vocabulary.
This probability distribution represents the probability of each word in the vocab-
ulary to be the next word in the output sequence [35].

3.2 Question Answering System

A question-answering system is a software application designed to analyze a ques-
tion posed in natural language, understand its meaning, search for relevant infor-
mation from a large source of data, and generate an understandable and accurate
answer for the user.

These kinds of systems are becoming increasingly important in a wide range of
areas. Starting from accessing information online, as evidenced in search engines,
to the field of medical care, where they are used to provide immediate and accurate
answers in the medical field.
In the course of this section, we will explore in detail the architecture, operation,
techniques, different types, and challenges of question-answering systems.

3.2.1 Generic Architecture of a QA model

The architecture of a QA model can be divided into three main components, as
shown in Figure 3.6:

• Question Processing, which consists of analyzing the question to identify the
focus, i.e., the relevant keyword or sequence of words, and classifying the
question type to better understand the context. Finally, it rephrases the
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Figure 3.6: General Architecture of a Question Answering System

question, if necessary, for the next information retrieval step [1], using for
example Query Logic Language (QLL).

• Information Retrieval whose task is to identify relevant information to com-
pose the final answer within a set of documents that can be of different types.
This can be done by exploiting different Information Retrieval models, such
as the vector model that represents the query and documents as vectors and
uses cosine similarity to determine the similarity between the two or more
complex models based on deep neural networks such as transformers, which
can learn semantic representations of documents and queries [5].

• Answer Processing is responsible for the final generation of the response to
the user, from the documents returned by the IR model, the most relevant
answer is selected, a choice that can be made in different ways depending on
the specific architecture of the QA model and the characteristics of the task.
Finally, natural language generation techniques produce an understandable
and consistent response.

3.2.2 Generative Question Answering System

While traditional question-answer models can extract direct answers from a set
of documents or data, generative question-answer models can create entirely new
answers based on an understanding of the prompt provided as input. The term
"prompt" refers to an instruction given to the model in natural language.
To perform this task, the model must use an LLM, such as a generative neural
network, capable of producing sequences of words or tokens that make up the
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answer. The main transformer-based models used for this objective and their
evolution will be explained below.

3.3 Evolution of Self-Supervised Learning in NLP

In this chapter, the evolution of Self-Supervised Learning in natural language
processing is examined. This progression, illustrated in Figure 3.7, has been char-
acterized by three main phases: embedding models, Pretrained Language Model
(PLM), and Large Language Model (LLM). The first phase has already been pre-
viously introduced and analyzed in Chapter 3.1.1. In the following sections, we
will explore the implementation and impact of PLMs and LLMs in the field of
natural language.

Figure 3.7: Evolution of Self-Supervised Learning in NLP

3.3.1 Pretreined Language Models

The evolution from transformer models to pretrained models was motivated by a
significant limitation of the former, which required a large amount of labeled data
for training, making the process very expensive and inefficient. However, with the
advent of pretrained models, two key concepts were introduced that revolutionized
the field: transfer learning and self-supervised learning.

Self-supervised learning is a learning paradigm that aims to exploit inherent
structures or relationships within input data to learn discriminative representations
for downstream tasks [7]. The use of this technique has proven to be extremely
effective in pre-training natural language models, enabling them to achieve state-of-
the-art performance on a variety of tasks without the need for explicit supervision,
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making the models more adaptable and versatile.

The term transfer learning refers to the ability to transfer knowledge from one
task or domain to a different but related one [41]. The inherent mechanism is
the same as it is for humans who can more easily learn a programming language
such as Python from knowledge of another language such as C because the two
languages have concepts in common. The use of this learning paradigm makes it
possible to reduce the amount of annotated data needed to train a model, improve
performance on one task by using pre-learned knowledge on other tasks, and pre-
vent a model from needing training from scratch.

Early Language Models (PLMs) include GPT-1 and BERT, both of which follow
the "pretrain then fine-tune" paradigm. According to this approach, the model
is first pretrained on an unsupervised learning task, using a large corpus of data,
and then adapted to a specific task using a labeled dataset relevant to that task.
Although the two models follow the same paradigm they show relevant differences.

BERT is the first encoder-only model based on a transformer architecture; its
pretraining is based on two goals: predicting masked tokens in texts and deter-
mining whether two text passages follow each other. Unlike previous models, it
analyzes the context both before and after a given word during the learning process.

GPT-1 uses a transformer decoder architecture as a feature extractor and is
trained on the BookCorpus with 117 parameters. Although the model showed
significant improvements over past results, it has some significant limitations: it
tends to generate repetitive text, especially if the inputs are different from the
data used during training. It has difficulty capturing long-term dependencies in
text. The results obtained demonstrated the power of the Generative Pre-trained
Transformer models.

GPT-2, follows in the footsteps of the previous model but includes some improve-
ments: larger data collection for pretraining and a larger parameter scale (1.5
million). This led the model to develop a remarkable ability to generate extremely
fluent and realistic text compared to its previous counterpart. The increase in
model size reduced perplexity without saturation, suggesting that GPT-2 could
benefit from longer training. Larger language models could improve natural lan-
guage understanding and generation, laying the foundation for future models [14].
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3.3.2 Large Language Models

PLMs are considered specialized AI systems for specific tasks, but research aims
to create versatile models that can generalize to a wide range of tasks. Researchers
focus on enhancing computation, data, and model size, leading to the creation of
LLMs, an advanced form of PLMs. In this section will examine the LLMs that
have demonstrated the best performance in the main natural language processing
tasks. These models can be divided into two categories: closed-source LLMs and
open-source LLMs.

The evolution of LLMs starts from the GPT-3 model, which is about 100 times
larger than previous models and is trained on a very large text corpus collected
from various sources. What makes it unique from its predecessors is the adoption
of a new learning paradigm called "In-Context Learning" (ICL). In this approach,
the model learns new skills from a small set of examples provided directly in the
prompt at the time of inference. This instant learning capability, however, does
not involve any updating of the model’s weights after the response, which means
that the acquired knowledge is immediately forgotten [8].
GPT-3, although advanced, has some important limitations: it is not trained on
code data, so it has difficulty solving mathematical problems, sometimes misin-
terprets complex instructions, generates malicious text, and has problems under-
standing specific contexts.
To overcome these limitations, later models such as GPT-3.5 were developed
through the use of supervised fine-tuning (SFT) or reinforcement learning by hu-
man feedback (RLHF) techniques applied to the GPT-3 model.
Reinforcement Learning from Human Feedback is a model training tech-
nique that aims to align language models with users’ intentions. Essentially, it in-
volves using feedback provided by users on model outputs to update model weights
through a learning process [23].

Although the latest models have led to the generation of both natural language
and code, they are still not optimized for chat conversations. To address this
challenge, later models such as ChatGPT (also known as GPT-3.5 turbo), which
made the GPT-3 model accessible to users, were developed.

GPT-4 represents the latest model released by OpenAI and is capable of per-
forming increasingly complex tasks. Equipped with multimodal capabilities, it
can receive as input not only text but also images; in addition, it has a larger
context window that allows the model to store more data during a chat session.
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Although the exact number of parameters used to train the model has not been
released, it is estimated to be in the trillions.

Among the most successful open-source projects is the Llama 2 series, a collec-
tion of models developed by Meta. These models, pre-trained on a wide range of
public domain online data sources, represent a benchmark in the field of artificial
intelligence.
Their architecture is deeply inspired by that of GPT models, relying on the trans-
former framework and exploiting sophisticated attention mechanisms. However,
Llama models are distinguished by their unique training and optimization method-
ologies; the models are trained with anywhere from 7 billion to 70 billion parame-
ters.





Chapter 4

AI-Driven XML Generation in ETL

This chapter will examine the project conducted at Mediamente Consulting Srl in
more detail. As anticipated, SSIS is one of the company’s predominant tools for
creating pipelines. However, as there is currently no extension for the automatic
generation of ETL pipelines or individual components, work has focused on this
gap.
The primary purpose is to speed up the work of corporate employees involved in
the ETL flows, providing them with interface access to the model that can generate
the SSIS components needed for pipeline design. The activity was divided into:

• Development of the functions associated with the individual components that
constitute the ETL flow.

• Drafting the Excel file including the properties and structure of the tables
from which the data are taken in the flow.

• Creation of a database containing the company’s main user queries on the
creation of individual components or flow segments.

• Construction of the pipeline by exploiting embedding techniques, the vector
database, and a generative model to produce an executable XML file in SSIS
that satisfies the user request.

4.1 SSIS Component Creation

To better understand how the project has been structured, it is first necessary to
deepen what are the main data tools used in SSIS.

43
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4.1.1 The primary elements of SSIS

The Package represents the fundamental working unit in SSIS and is a logical
container of connections, control flow elements, data flow elements, event handlers,
variables, parameters, and configurations, necessary to execute the ETL. Within
the package there are three main elements:

• Control flow defines the order and logic with which operations are carried
out in the package

• Data flow within which the data extraction, processing, and loading oper-
ations are effectively defined

• Connection managers manages the connection between the package and
the database or other data sources/destinations

The package generally includes a single control flow, housing several types of Tasks
and Containers. Containers may include one or more Tasks and fall into three
categories: For Loop Container, Foreach Loop Container, and Sequence Container.
The example shown in Figure 4.1 illustrates the package related to the Staging Area
of the ETL flow, which is made up of a Sequence Container that executes two Data
Flow Tasks in sequence.

Figure 4.1: Visualization of an SSIS package designed for the Staging Area

Control Flow then acts as an orchestrator, coordinating the execution of Tasks
and Containers through the use of precedence constraints [17].
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Within the Control Flow, among the numerous available ETL tasks, one that holds
particular relevance for the business workflow is the Data Flow. This task serves
as the core for processing and moving data within an SSIS package, acting as a
pipeline mechanism that transfers data from a source to a destination while allow-
ing for data manipulation within the process [17].

Let’s now delineate the most commonly used Tasks within Data Flow, represented
by source, destination, and transformation components.

The Source component of the SSIS package specifies the source location of the
data through the use of Connection Managers acting as intermediaries between
the package and external data stores. There are various types of Sources, each
associated with different connection types, including OLE DB, ADO.NET, Flat
File, and many more. The Sources allow both to import the table entirely and
portions of the data through the use of a specific SQL command.

The Destination component, although it shares many features with the Origin
component, differs in its main purpose, which is to load data into a specific Des-
tination. This Destination can be of different types and thus be associated with
various forms of connection, similar to the Origin. The Destination also offers the
flexibility of loading the entire set of processed data or only a part of it, through
the use of SQL commands.

The Tasks used for data transformation are multiple and cover a wide range of
functionalities, including operations of split, divert, and remerge, as well as pro-
cesses of validation, cleaning, and rejection of non-compliant data. In addition,
other components dedicated to data transformation are available, such as adding
columns, aggregation, and even the use of scripts for applying specific business
logic.

An illustration of the application of these three components is showcased in Figure
4.2. In detail, the figure highlights the components employed during the Staging
phase development of the flow. The data is extracted from the SRC table, situ-
ated in a SQL Server database, utilizing an OLE DB Source component adept
at retrieving data from an OLE DB-compliant relational database. After data
extraction, a modification step follows, in which the JOBID_L0 field is introduced
into the source records, obtained through a Derived Column component. The
field just introduced in this context is derived from a local variable present within
the package; however, in other situations, it is possible to calculate the new field
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by using a series of functions or transformations on existing columns. Finally, the
newly modified data is loaded into the STG table on SQL Server using the OLE
DB Destination component.

Figure 4.2: Visualization of the Data Flow related to the Staging phase in SSIS

Another example representing the OK phase is depicted in Figure 4.3, in this
case, data is loaded from the DLT table and split using the Conditional Split
component.

Figure 4.3: Visualization of the Data Flow related to the OK phase in SSIS

This component allows directing data from a single source to different outputs
based on conditions defined in the SSIS language [17]. Specifically, in this case, the
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data is split based on null fields in the primary keys and directed to a table ES that
stores the discarded records. This helps track these rows and potentially modify
their content to make them compliant with the rules. If the fields are correct, they
are written to the OK table using an OLE DB Destination component.

4.1.2 Design of functions for SSIS component creation

In the context of designing and implementing data integration workflows with SQL
Server Integration Services (SSIS), a central element is the files with the ".dtsx"
extension. These files, essentially in XML format, provide a structured and de-
tailed representation of data transformation and loading activities and operations
within an SSIS project.
The code 4.1 displays the structure of the package component. Within the <
Executables></Executables> tag, individual SSIS components that need to be
executed during the execution of the main SSIS package are specified and config-
ured.

<DTS:Executable >
<DTS:ObjectData >

<!-- component properties -->
</DTS:ObjectData >
<DTS:ConnectionManagers >

<!-- connection managers used by component -->
</DTS:ConnectionManagers >
<DTS:Executables >

<!-- Other components to be executed -->
</DTS:Executables >

</DTS:Executable >

Listing 4.1: Structure of the package fundamental unit in the DTSX file in XML

Since there are no predefined libraries in Python to automatically generate com-
ponents in XML format, dedicated functions have been developed for each type
of SSIS component. These functions accept the component specification as input
and, using this information, generate the corresponding XML code.

The code 4.2 shows the generic structure of a component in SSIS. For <input><
/input> and <output></output> tags, specific functions have been defined with
varying characteristics depending on the type of component. These functions re-
ceive the necessary parameters from an Excel file that describes the structure of



48 CHAPTER 4. AI-DRIVEN XML GENERATION IN ETL

the ETL flow. This file contains detailed information about the tables in the vari-
ous stages of the flow, including the records in each table and their properties such
as data type, length, precision, scale, and primary key indication.
Through the implementation of these functions, Python scripts dedicated to defin-
ing SSIS components have been developed. These scripts, which form the core
of process automation, will be used to answer various user queries, forming the
corpus of our vector database.

<component
refId="Component_ID"
componentClassID="Component_Class_ID"
contactInfo="Component_Contact_Info"
description="Component_Description"
name="Component_Name"
usesDispositions="true/false">

<!-- Inputs of the component -->
<inputs >

<!-- Definition of inputs -->
</inputs >

<!-- Outputs of the component -->
<outputs >

<!-- Definition of outputs -->
</outputs >

</component >

Listing 4.2: Generic Component Structure

Another crucial feature of component representation in SSIS is the DTSID, which
is a unique identifier assigned to each component, variable, or activity within the
package.
This identifier is used internally by SSIS to uniquely refer to the object during
package execution. Since the components were created outside of SSIS and there-
fore the tool cannot automatically generate the identifiers, a function was adopted
that, at the beginning of each new user request, generates the identifiers for each
item that requests it.bbbb
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4.2 Excel Structure

Since the model lacks information about the characteristics of the tables associated
with the different stages of the flow, it was deemed essential to create an Excel
file describing the main characteristics of the records in each table, following a
specific schema. This decision was also influenced by the company’s pre-existing
automation on the ODI platform regarding mapping development. In this context,
automation involves the creation of an Excel file that defines the sequential struc-
ture of the mappings, which is subsequently processed by a dedicated algorithm.

The structure of Excel for the pipeline bears similarities to that used in ODI, but
some modifications have been made to better suit the specific needs of SSIS. In
particular, fields were added to identify the primary keys of tables and to handle
expressions related to the computation of new fields, which are propagated from
one table to another.
For example, fields such as INS_TIME or JOBID are accompanied by the
respective expressions for calculating their values, such as GETDATE() and
@[$Package :: JOBID], indicating the retrieval of the value of a variable con-
tained in the package. In addition, the data characteristics of each table used in
the flow are specified, including type, length, scale, and precision. This informa-
tion is crucial for the functions created, as it is essential to specify these details in
the XML code.
The creation of Excel represents one of the few manual tasks required of users.
However, since its structure is standard, its preparation requires minimal effort.

4.3 Database Construction

To train the model effectively, a specific database was developed in the domain
of interest, focusing on requests made by company employees to create individual
components or entire flow segments in SSIS.
The compilation of potential queries stemmed from an analysis of employee re-
quirements, concentrating on prevalent requests encountered during workflow de-
velopment. For instance, a typical user query might involve ’Construct a package
component with a data flow comprising an OLEDB source task’ alongside more
intricate demands like ’Create the complete flow structure of Level 0’.

Despite efforts to cover a wide range of requirements, it is important to note that
the database does not include every possible component that can be created in
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SSIS, only the most common and required components for flow development have
been included.

All questions were collected in the file "question.txt," while a second database
called "answer.txt" contains the Python scripts associated with each question.
These scripts containing the functions needed for the specific request generate the
desired response as an XML file.

4.4 Pipeline Implementation

Figure 4.4: Structural overview of the pipeline for XML file generation

After outlining the fundamental elements needed to build the components and meet
user requirements, a detailed description of the pipeline construction is given, as
illustrated in Figure 4.4. In the initial stage of the pipeline, the Excel file is im-
ported and the table names, used through the database connection, are extracted.
This step is crucial for extracting and loading data during the various stages of
the flow and within the different components.
Next, questions and their answers are extracted from the corresponding "ques-
tion.txt" and "answer.txt" files. This data is then loaded inside a dictionary,
where each question is associated with its corresponding answer.

The Python code associated with the created pipeline and all tests conducted on
the different models were implemented and executed on Google’s Colab platform.
This choice was driven by the availability of advanced computing resources that
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Colab provides, its ability to avoid the need to configure local development envi-
ronments, and the completely free nature of the service.

The next subsections will outline the main steps for implementing the pipeline. At
the same time, Chapter 4.5, on experiments and results, will detail the technologies
used and the motivations behind the choice of specific models. In the Algorithm
1, the main steps of the pipeline are described in detail.

4.4.1 Optimizing Text Embedding and Query Retrieval

The Word2Vec model, recognized as one of the best for text embedding, trans-
forms user input into a vector through an embedding process. In addition, this
same process has been applied to the query database, resulting in a vector database
management system (VDBMS). Then, through the application of a similarity met-
ric, in this case, cosine, the query most similar to the user’s query among those in
the VDBMS is determined.
To optimize the performance of the embedder, the technique of semantic weight-
ing was implemented; this technique involves assigning a higher weight within the
embedding vector to the words identified as most significant.

Through this method, the answer most akin to the user’s input query is identified.
Consequently, the Python script containing the functions to generate the XML file
most closely matches the user’s request.

4.4.2 Prompt Construction

After identifying the question most similar to the one posed by the user and its
answer, a fundamental step for successful automation is reached: the creation of
the prompt.
This stage is crucial because crafting a well-structured prompt enables the GPT
model, trained on various tasks, to discern the user’s needs and generate the desired
outputs. Therefore, understanding the various prompt techniques to optimize
interactions with the generative model becomes essential:

• Zero-Shot Prompting : The model is instructed through a prompt de-
scribing the task to be performed, but without having access to labeled data
for training on precise input-output mappings. Therefore, the model relies on
its pre-acquired knowledge to come up with predictions based on the prompt
provided for the specific task.
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Algorithm 1 XML File Generation Algorithm
Require:

input: User Request
questions: Questions Database
answers: Answers Database
weight_dictionary: Dictionary of word weights

Ensure:
XML file

1: function weighted_embedding(model, question, weight_dict)
2: for word in question.split() do
3: if word in model.wv then
4: weighted_vector←model.wv[word] ∗ weight_dict.get(word, 1.0)
5: weighted_vectors.append(weighted_vector)
6: end if
7: end for
8: return np.mean(weighted_vectors, axis=0).reshape(1, -1)
9: end function

10: word2vec_model← Word2Vec(questions, vector_size=50, window=5,
min_count=1, sg=0)

11: input_vector ← weighted_embedding(word2vec_model, input,
weight_dictionary)

12: VDBMS ← [ weighted_embedding(word2vec_model, question,
weight_dictionary) .flatten() for question in questions]

13: id← argmax(cosine_similarity(input_vector, V DBMS))

14: gpt_prompt← f “
To tailor the response to the new question {input},
lets begin by analyzing the similar question {questions[id]},
whose answer is {answers[id]}.
After identifying the parameters to be changed, modify the response to
adapt it accordingly. Generate three potential responses to the new
question following the reasoning made above.
Select the response that best fits the users specific query “

15: message← { "role": "user", "content": gpt_prompt}
16: output← client.chat.completions.create( model="gpt-4-0125-preview",

textmessages = message, temperature=0.5,
max_tokens=500, frequency_penalty=0.0)

17: exc(output.choices[0].message.content)
18: root← ET.fromstring(result)
19: tree← ET.ElementTree(root)
20: XML_file← tree.write("result.xml")

21: return XML_file
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In this type of technique, for particularly detailed or complex tasks, the
accuracy of responses may not be optimal [26].

Zero-Shot Prompting

Prompt: "Classify the text into positive, neutral, or negative:
Text: That shot selection was awesome.
Classification:"

Example of One-Shot Prompt

• Few-Shot Prompting : This technique provides models with a limited
number of input and output examples to help them better understand a
given task. The use of few examples, as long as they are of high quality, is
effective in improving model performance in complex tasks.
However, this strategy requires the use of more tokens to include these exam-
ples, which can be particularly resource-intensive when working with longer
texts [3].

Few-Shot Prompting

Prompt: "A ’whatpu’ is a small, furry animal native to Tanzania. An
example of a sentence that uses the word whatpu is: We were traveling
in Africa and we saw these very cute whatpus.
To do a ’farduddle’ means to jump up and down really fast. An example
of a sentence that uses the word farduddle is:"

Example of Few-Shot Prompt

• Chain-of-Thought (CoT) Prompting : This technique leads the model
through a sequence of logical steps, deconstructing the main problem into
a series of intermediate steps, and facilitating the achievement of a final
answer.
Compared with traditional prompts, this allows the model to enhance its
performance in a variety of tasks, including arithmetic, common sense, and
symbolic reasoning tasks [39].
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CoT Prompting

Prompt: " Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he have
now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis
balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to make lunch and
bought 6 more, how many apples do they have?
A: "

Example of CoT Prompt

This kind of prompt requires manual dexterity in devising effective and var-
ied examples, thus involving significant effort.
To mitigate this need, Automatic Chain-of-Thought (Auto-CoT) was in-
troduced, a two-step process: initially, questions are grouped into similar
clusters; then, a representative question is chosen from each cluster and a se-
quence of reasoning is generated using Zero-Shot-CoT with simple heuristics
[40].

• Self-Consistency : This prompting strategy improves reasoning skills over
simple greedy decoding within the Chain of Thought. It involves repeat-
edly executing the same language model on the same prompt, ultimately
selecting the most consistent result as the final response, thus adopting a
"self-ensemble" approach.
This methodology allows different reasoning paths within the Chain of Thought
to be explored, allowing the most accurate one to be selected, this enhances
the performance of CoT prompting in reasoning tasks.

• Rephrase and Respond (RaR) Prompt : This approach has been de-
vised to bridge the gap between human thought structures and those of
LLMs. The method involves reformulating the original question, incorporat-
ing additional details to enhance semantic clarity and address inherent am-
biguities within the question, thereby enabling the model to respond more
accurately [6].
An example is illustrated below, where the prompt: "Was {person} born in
an even day?" has been rephrased using the RaR technique.
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RaR Prompting

Prompt: "Could you provide more information on whether the individ-
ual named {person} was born on a day that is an even number? This
refers to dates such as the 2nd, 4th, 6th, 8th, and so on within a given
month."

Example of RaR Prompt

The prompt engineering techniques mentioned represent only a limited subset of
the many methods available. In particular, the selected techniques are those con-
sidered most congenial to the ultimate goal of this project.
The various techniques differ in the application domains with which they are as-
sociated, the type of applications they are intended to support, the method of
prompt acquisition, and the number of prompts used during interaction with the
language model. These differences are made explicit in detail in the Table 4.1

Prompting Technique Application Prompt Acquisition Prompt Turn

Zero-shot new tasks without training data manual single

Few-shot new tasks without training data manual single

CoT reasoning and logic manual multi

Self-Consistency reasoning and logic manual single

RaR understanding user intent manual single

Table 4.1: Summary of LLM prompting techniques by factors: application, prompt
acquisition, prompt turn

4.5 Experiments and Results

This chapter will detail the different techniques and models used and tested within
the pipeline, and compare the selected parameters and their results obtained to
select the optimal solution for the pipeline.

4.5.1 Evaluating Text Embedding Models

As previously illustrated, selecting the optimal text embedding model is crucial to
ensure the identification of the functions best suited to effectively respond to the
user’s request. This step is critical to provide the generative model with relevant
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examples, thus enabling it to tailor its functionality specifically to the user’s query
and correctly learn the task to be performed.
A detailed analysis of the main models, including those tested for the pipeline,
was provided in the Chapter 3.1.1.

Systems employing embedding for text matching have a significant limitation:
while capable of capturing semantic features of text, they can be affected by text
length, word distribution, and other factors that do not necessarily reflect semantic
intention or context.
To mitigate this effect, there are several approaches available; in the context of
this application, semantic weighting was adopted. This approach involves in-
troducing a higher weight within the embedding vector for specific words of higher
relevance. This ensures that terms of greater importance have a higher impact in
establishing the similarity between the user’s query and the collection of database
queries.

Three key metrics were considered to evaluate different embedding models: accu-
racy, recall@K and precision@K. These metrics provide a comprehensive overview
of model performance in information retrieval or classification scenarios.

The accuracy measures the percentage of times the model selects exactly the
correct question among all possible options.

Accuracy =
Number of correct question selections

Total number of questions
Where a "correct question selection" means that the model has identified the ques-
tion that exactly matches the Python function for generating the user’s expected
component.

Given the possibility that multiple queries may seem similar to the user’s query
but only some of them are truly relevant, precision@K evaluates how much of
the first K queries selected by the model are relevant. A high value means that,
among the K questions that the model considers most similar, most are relevant
to the user’s query.

Precision@K =
Number of relevant questions among the first K selected

K

Recall@K is important to assess whether the model can "retrieve" or identify
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the correct question among its top K choices, considering all relevant questions in
the dataset. In practice, if there are multiple versions of a question that could be
considered correct, recall@K tells us whether the model can find them within its
top K choices.

Recall@K =
Number of relevant questions found in the first K selections

Total number of relevant questions in the dataset

For the parameter K, the value 3 was selected. This choice aims to increase the
accuracy of the choice, ensuring relevant selection of the most similar questions
without overloading the user. Considering that each component in the database
has 3-5 related queries associated with it, K = 3 optimizes the precision of the
answers provided, which is crucial for correctly identifying the Python functions
of the component.
Table 4.2 presents results of different embedding models, with and without seman-
tic weighting, 25 possible user queries have been tested.

Model SW Accuracy Precision@3 Recall@3

Word2Vec
No 0.76 0.61 0.52
Yes 0.96 0.72 0.6

FastText
No 0.48 0.42 0.39
Yes 0.64 0.58 0.51

TF-IDF
No 0.68 0.53 0.46
Yes 0.88 0.67 0.56

Table 4.2: Performance comparison of embedding models with and without se-
mantic weighting on Accuracy, Precision@3, and Recall@3 metrics

As demonstrated by the results obtained, the use of embedding models in combi-
nation with semantic weighting shows a performance improvement.
This improvement can be explained by considering the example of a typical user re-
quest, "generate a flow with name FLOW with inside an origin named SOURCE".
Using the Word2Vec model without semantic weighting, the most related response
identified is: "generate a data flow component named STG with inside a derived
column named DC". In contrast, the Word2Vec model enriched with semantic
weighting identifies the most relevant response: "create an origin named STG in-
side a flow named DLT inside a sequence named SEQ", which better reflects the
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user’s initial request.
Through this approach, the model places less importance on word order or array
length, focusing instead on key terms such as "origin", which essentially captures
the user’s desired component.

Several measures of similarity and distance were evaluated, including cosine sim-
ilarity, Euclidean distance, and Manhattan distance. The corresponding formulas
are shown in Table 4.3, where a and b denote the vectors under comparison.

Formula Definition

Cosine Similarity sim(a,b) = a·b
∥a∥∥b∥

Euclidean Distance d(a,b) =
pPn

i=1(ai − bi)2

Manhattan Distance d(a,b) =
Pn

i=1 |ai − bi|

Table 4.3: Formulas for Cosine Similarity, Euclidean Distance, and Manhattan
Distance

Among the three options considered, cosine similarity emerges as the preferred
choice; this metric evaluates the angle formed by two vectors in space, making it
independent of their length.
In contrast, Euclidean distance assumes significance when operating in a space
whose dimensions are of equal importance, its use can lead to the problem of the
"curse of dimensionality", where sparsity of data and high dimensionality cause
distortions in the results.
Manhattan distance proves to be more suitable than Euclidean distance in envi-
ronments characterized by high dimensionality or sparse data, and is particularly
effective in scenarios where discrepancies in each dimension linearly affect the out-
come, nevertheless, it remains sensitive to the size of the vectors [38].

4.5.2 Analysis and Selection of the Generative Model

The core element of the pipeline is the generative model, employed to adapt func-
tions to user requests. Several models, both open-source and proprietary, have
been tested to identify the best one.

In the open-source context, one of the models in the Llama 2 series, a suite of
pre-trained and optimized generative language models developed by Meta, was
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analyzed. Specifically, the llama-2-13b-chat.ggmlv3.q5_1.bin model was chosen,
one of the latest released in this collection, trained with 13 billion parameters and
with a size of 9.76 GB.

On the proprietary model side, three models developed by OpenAI were exam-
ined: gpt-4-0125-preview, gpt-4-0613, and gpt-3.5-turbo-0125. Access to all three
models was through the API provided by OpenAI, thus eliminating the need to
download models locally, which would have consumed considerable storage space
and resulted in additional complexity in managing them.

The models were tested based on 25 questions, using the same prompt, the results
achieved, along with several characteristics of the models such as API costs, context
window size, and accuracy of responses, were reported in Table 4.4.

Model Type Accuracy Input price Output price Context window

llama-2-13b-chat.ggmlv3.q5_1.bin Open-source 0.65 $0 $0 4096

gpt-3.5-turbo-0125 Closed-source 0.76 $0.0005 / 1K tokens $0.0015 / 1K tokens 16385

gpt-4-0613 Closed-source 0.79 $0.03 / 1K tokens $0.06 / 1K tokens 8192

gpt-4-0125-preview Closed-source 0.85 $0.01 / 1K tokens $0.03 / 1K tokens 128000

Table 4.4: Comparison of text generation models: type, accuracy, API cost for
input prompt and response every 1K tokens, and context window size.

From the table it seems clear that the model with the best results is gpt-4-0125,
also known as GPT-4 Turbo, in addition to having higher accuracy in responses,
which is essential for the proper execution of functions that require to be generated
accurately to be executed and build a correct XML file, it also has significantly
lower costs than the previous model.
The only open-source model tested showed difficulties in understanding the re-
quired task, specifically in understanding the structure of the functions and their
parameters and thus failing to correctly substitute parameters within them.

It was decided to examine several GPT models, as they are currently the cutting
edge of the state of the art in the field of text generative models. Similarly, the
Llama model was identified as a benchmark among open-source models.

4.5.3 Prompt Engineering vs Fine-Tuning

In this subchapter, we explore the challenge of adapting the model, which was
not originally trained to recognize and generate the specific features designed for
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component creations.

When faced with this situation, it becomes crucial to determine the optimal ap-
proach: on the one hand, there is the option of fine-tuning, which involves ad-
ditional training of the pre-existing model to refine its capabilities to our specific
needs; on the other hand, there is the option of prompt engineering, which is
the art of formulating accurate and detailed prompts that guide the model to un-
derstand and perform the required task without the need for additional training.
Choosing between these two methodologies is critical to the project’s success and
requires careful evaluation of their implications and potential.

The comparison between the two techniques focuses on several key aspects such
as flexibility, cost, customization, and data requirements.
Fine-tuning allows a preexisting model to be customized to deal with highly spe-
cialized tasks, thereby improving its capabilities in those specific areas. Through
this process, the model can assimilate the peculiarities and various gradations
present in the dataset at its disposal.
However, from an economic point of view, fine-tuning involves a significant invest-
ment in training resources, especially when working with large datasets. The size
of the dataset is crucial not only to prevent the risk of overfitting but also to ensure
an effective training process.

The prompt engineering technique allows the model to be oriented toward specific
tasks without having to change its architecture or weights, thus offering a faster
method because it eliminates the need for an additional learning process. This
approach is particularly useful when available training data is scarce, as it requires
a limited amount of data to teach the model new tasks.
However, the limitations of this technique lie in its heavy reliance on the ability to
formulate effective prompts: if the prompts are not well designed, performance may
not be optimal. Also, if the underlying model lacks knowledge in a specific domain,
prompt engineering may prove less effective in guiding learning to the desired area.

Both techniques were tested, and the code used to train the model by fine-tuning
is described in Algorithm 2.

The analysis of the algorithm shows that the dataset consisting of questions and
answers was processed to generate various sequences of demonstration conversa-
tions, which reflect the type of interactions that the model is expected to handle
during inference. The model chosen for this task is gpt-3.5-turbo-0613, reported as



4.5. EXPERIMENTS AND RESULTS 61

Algorithm 2 Fine-tuning Algorithm
Require:

questions: Questions Database
answers: Answers Database
user_message: User Question in message format

Ensure:
Fine-tuned model

1: function dataset_line(question, answer):
2: message← { "messages":[

{"role": "system", "content": system_message},
{"role": "user", "content": question},
{"role": "assistant", "content": answer} ] }

3: return message
4: end function

5: dataset← []
6: for each question in questions and answer in answers do:
7: dataset.append(dataset_line(question, answer))
8: end for

9: training_file_id← openai.files.create(
file = open(dataset, "rb"),
purpose ="fine-tune")

10: validation_file_id← openai.files.create(
file =open(dataset[-20:], "rb"),
purpose ="fine-tune")

11: response← openai.fine_tuning.jobs.create(
training_file = training_file_id,
validation_file = validation_file_id,
model ="gpt-3.5-turbo-0613",
suffix ="q&a-test" )

12: job_id← response.id
13: fine_tuned_model_id ← openai.fine_tuning.jobs.retrieve(job_id)

.fine_tuned_model
14: user_answer ← openai.chat.completions.create(

model = fine_tuned_model_id,
messages = user_message,
temperature = 0,
max_tokens = 100 )

15: return fine_tuned_model_id
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the most effective for fine-tuning, according to the recommendations in the Ope-
nAI documentation. This choice is motivated by the demonstrated superiority of
the model in terms of performance and ease of use.

Although the results obtained from the model trained with fine-tuning are con-
sistent, the accuracy is lower than that obtainable through the direct use of the
prompt. This discrepancy is mainly attributable to the limited amount of question-
response pairs in the dataset, which does not allow the model to optimally assim-
ilate the correlation of each function with its respective component.

Hyperparameters, such as the number of epochs, learning rate multiplier, and
batch size, were kept at the default values recommended by OpenAI.
This decision is based on the observation that the model tends to fit the training
data adequately and converges satisfactorily to the target responses, thus avoiding
the risk of overfitting, whereas the limitations observed in the fine-tuned model
seem to be attributable solely to the scarcity of training data.

Prompting Technique Avg # of Tokens Avg Cost ($) Accuracy Avg Time (s)

Zero-Shot

Normal 205.14 0.004 53% 4.88

With Rephrase 225.62 0.003 65% 3.5

With Self-Consistency 452.90 0.011 63% 17.57

Few-Shot

Normal 283.38 0.004 61% 4.18

With Rephrase 313.57 0.004 75% 3.35

With Self-Consistency 528.14 0.011 81% 15.35

Chain-of-Thought

Normal 425.62 0.01 57% 14.13

With Rephrase 385.76 0.008 77% 11.21

With Self-Consistency 633.90 0.016 85% 24.25

Table 4.5: Performance comparison of different prompting techniques tested based
on the average number of tokens, average prompt cost, accuracy, and average
inference time.

In the prompt engineering approach, several prompting techniques and their vari-
ous combinations were tested, which are presented in detail in Chapter 4.4.2.
Through a sample of 20 questions, the following were calculated: the average num-
ber of tokens used in formulating the prompt and response, along with the average
cost associated with the input prompt and generated response, the accuracy of
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the different methodologies, and the average inference time for the response, the
results are shown in Table 4.5.
These results are obtained from the combination of the generative model and the
embedding model selected in the previous chapters, 4.5.2 and 4.5.1, together with
the various prompting techniques examined.

Reviewing the results in the table, it is clear that the techniques combined with
Rephrase or Self-Consistency show a significant performance improvement. It is
important to note that this improvement is accompanied by an increase in cost
and time to compute the response; since both prompts created and model results
will require more tokens.
However, the costs are still low when compared to the significant time savings in
the work of creating the components.

Breaking down the query into subproblems and analyzing the different features
that make up the answer allows the model to more thoroughly understand the
correlations between the query identified as most similar to the user’s input and
the input itself. This allows the model to construct the features to be returned
correctly and consistently.

For example, considering the user’s question: ’create a union tool in a data flow
named DATA_FLOW’ and the most similar question identified in the database:
’create a union component called UNION with inside a sequence named SEQUENCE
and a package named PACKAGE’ with the corresponding answer:

union = union(’SEQUENCE ’, ’Flow_name ’, ’UNION’);
data_flow = createDataFlow(union , ’SEQUENCE ’, ’Flow_name ’, ’’,
generate_id ());
sequence = createSequence(’SEQUENCE ’, data_flow , ’’,
generate_id ());
result = createPackage(’PACKAGE ’, sequence , generate_id (),
generate_id (), ’’);

Many prompt techniques have shown a limitation in recognizing the importance
of the functions that create the sequence and package components; since this in-
formation is not explicitly requested in the user’s query.
Prompt methodologies such as Few-Shot and Chain-of-Thought, due to the avail-
ability of multiple examples and the ability to reason logically, can capture the
importance of these fundamental elements. Moreover, they understand within
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functions the meaning of different parameters and, consequently, can determine
which ones to modify.

In constructing the pipeline, it was therefore chosen to combine two prompting
techniques, Chain-of-thought and Self-Consistency, since they have been shown to
produce the highest level of accuracy.



Chapter 5

Conclusion and future
implementations

In this thesis work, one of the most significant challenges in data engineering was
addressed: the automation of ETL pipeline creation in response to specific user
requests. The importance of this research lies in the growing need in business
contexts to process and analyze large volumes of data in an efficient, rapid, and
personalized manner.
This was achieved through the combination of the capabilities of embedding mod-
els, the latest generative models, and various prompt techniques, leading to the
results shown in Table 4.5.

The selection of the most suitable generative model and the careful choice of the
best embedder represent two crucial steps that significantly affected the accuracy
of the responses generated by the system.

The process of identifying the request, among those pre-existing in the database,
that most closely matches the user’s request and adapting the corresponding func-
tion to specifically address the initial query, through the use of a Large Language
Model, proved to be a successful approach. This method made it possible to
customize functions to the user’s needs, which, when executed, return flow com-
ponents in XML code tailored precisely to the expressed requests.

However, the developed implementation, despite its progress, shows significant
limitations. The domain of possible functions, and therefore of generatable ETL
components or flow segments, as well as of user-manageable requests, is confined
exclusively to those pre-existing elements in the created database. This restriction
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limits the ability to adapt to new requirements not previously considered, demand-
ing continuous updating of the database of queries and their responses according
to employee needs.

In conclusion through the development of an advanced system, it has been proven
that it is possible to significantly simplify the ETL pipeline setup process, reducing
development time and human error, as well as allowing for greater flexibility and
adaptability to specific user requirements.

5.1 Future Work

This section will explore possible directions the research might take as a result of
the findings and conclusions presented previously.

A major aspect of the planned next developments is the expansion of the vector
database, which is a crucial element in ensuring the effectiveness of the results.
Increasing the size of the database dedicated to questions and the associated func-
tions would contribute significantly to improving the accuracy of the model by
being able to select questions that increasingly match those posed by the user and
ensure a more accurate answer.

A more extensive database would also open up the possibility of employing fine-
tuning techniques, teaching the LLM the correlation between query and function
to execute for obtaining whole chunks of flow. Currently, the model works through
a predefined database of questions to identify and select the one most akin to the
user’s query. This approach, however, narrows the domain of possible questions
the model can answer, limiting its flexibility to predefined examples.
Implementing fine-tuning could greatly expand its comprehension capabilities, al-
lowing the model to autonomously interpret and respond to user queries without
having to depend on particularly elaborate prompts or examples that trace the
formulated question.
This would allow users to formulate increasingly complex questions and be able to
generate flow sequences not currently represented in the database, thus enriching
the interactivity and effectiveness of the model.

Currently, automated management of database connections has not been
implemented. This functionality is crucial to allow users to use their connections
to access the databases of their interest; users must manually configure these con-
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nections through SSIS.

The automation of the Excel spreadsheet creation process, which is used to
map the structure of tables and sources of data provided to components, would
achieve a level of total automation of the project. Currently, this document is
still compiled manually by users, even though its standardized structure makes it
relatively easy to draft.

Finally, in the future, it would be useful to develop a more user-friendly
interface to make it easier for employees to access and interact with the system.
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