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Abstract

Deep Learning Medical Image Segmentation is a popular computer vision task, its
goal is to provide a precise and accurate representation of target objects with the
purpose of disease diagnosis or treatment planning. In this thesis we apply Deep
Learning Image Segmentation methods to detect cysts on physiological images
of kidneys tissues affected by ADPKD. The collected dataset is characterized by
images depicting several sparse and tiny cysts with different sizes and shapes in
order to improve segmentation results already computed in previous work over
it. Moreover, given images and cysts characteristics we will focus our attention
over deep learning methods developed to well perform also with images depicting
really small objects. Different solutions will be explored and finally a proposed
method consisting of a segmentation model and a classifier trained together, called
Tandem method, will be presented and tested. Classification head role inside
Tandem solution can be described as a post processing segmentation refinement
specifically suitable for small and sparse target objects. Classifier head is aware
of segmentation model predictions and consequently refine them by erasing the
classified-as-wrong segmented object, in order to adjust and improve segmentation
output. Computed tests over our dataset show that this method achieve great
results, outperforming standard segmentation models such as U-Net, for example.
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Chapter 1

Introduction

In this chapter the global context of the thesis is presented, specifically ADPKD
topic is introduced to the reader, than a brief description of present work contribu-
tion is reported. In chapter 2 background and several related works are described
to provide the reader a general vision of the most popular methods and technique
used in medical image segmentation. In chapters 3 and 4 respectively selected
methods will be deeply analyzed and computed results will be discussed.

1.1 ADPKD

Autosomal dominant polycystic kidney disease (ADPKD) is a life-threatening
inherited human disorder and the most common hereditary kidney disease. It’s a
progressive disease characterized by the formation of multiple cysts that grow out
of the renal tubules, kidney enlargement, and also extrarenal organ involvement[1].
It affects up to 12 million individuals and is the 4th most common cause for renal
replacement therapy worldwide[2]. The majority of ADPKD patients (approx.
80–85 %) carry a germline mutation in the PKD1 gene on chromosome 16p13,
whereas about 15–20 % harbor a mutation in the PKD2 gene on chromosome 4q21[3].
There is an urgent need for developing patient-specific models that can replicate
key aspects of polycystic kidneys and therefore be used for drug testing studies.
Recently, two new kind of drugs have been used to reduce the growth rate of cysts:
Tolvaptan and Octreotide-LAR. In [4], using 3D printing technologies and patients’
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Introduction

cells, a platform has been developed in order to "study the pathogenesis of the disease
directly in human tissues and to identify novel therapeutic targets". This system is
based on engineered kidney tubules and allows evaluation of ADPKD response to
drugs, which indeed can be formulated in terms of cysts number and dimension.
However, the lack of automated systems to quantify cysts in kidney tubules did
not currently allow the platform to be further developed and used at a large scale.
In order to properly investigate if these and other future drugs can be effective in
ADPKD treatment, the main goal of this thesis is introduced: the development of
an artificial intelligence system to perform a fully-automatic segmentation of cysts
on kidney tubules to improve and automatize the detection and quantification of
cyst number and size. Specifically, given analysis already computed in [4] with
U-Net based segmentation models tested on a dataset consisting of images depicting
kidney tissue affected by ADPKD cysts, we want to make a step further using the
same set of data to evaluate effectiveness of deep learning segmentation models
explicitly developed to deal with small medical target objects. The idea is to localize
attention over smaller cysts, which represent the main obstacle for obtaining fully
satisfying segmentation performances in this task.

1.2 Contributions

The main purpose of this thesis, as anticipated in previous section, is to investigate
new deep learning solutions to improve image segmentation of small and scattered
medical target objects, which in our case are ADPKD typical kidney cysts. Specifi-
cally, all selected methods and techniques are evaluated with a dataset provided
by Istituto di ricerche farmacologiche Mario Negri (Bergamo, Italy) consisting
of RGB immunofluorescence images of tridimensional human tubules engineered
from epithelial cyst-lining cells that were isolated from a single donor patient with
a mutation in PKD1. Actually, we want to expand and improve results already
computed over this dataset in previous work [4] from Monaco et al. Moreover,
considering peculiar dataset characteristics that will be described extensively in
following sections, our idea is to explore and test effectiveness of deep learning
segmentation solutions specifically designed to well perform with small medical ob-
jects, rather than more generic and popular segmentation models such as U-Net[5]
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and similar. Although those architectures obtain usually good overall segmentation
results, they are less sensitive at detecting small objects which in some fields are
quite frequent, especially in medical one. Indeed, the final goal of this thesis is
the development of a method able to identify correctly the highest number of
cysts possible, simultaneously trying to keep the amount of false negatives and
false positives as lower as possible, aiming at providing reliable predictions to
physicians and enable measurement of ADPKD response to drugs in a fast way and,
consequently, also on a large scale. For the purpose of moving towards described
goal we firstly investigate state-of-art literature, aiming to find segmentation archi-
tectures suitable for our needs. As a result of that search we identify two promising
models: CE-Net[6] and CaraNet[7]. We test them for the first time with before
mentioned dataset in order to compare their performances and also to understand
if their declared capabilities are useful in our context. Finally, we present and
explain in depth our newly cysts segmentation solution called Tandem, consisting
of a classifier working together with a segmentation model. The first acts as a
refinement post-segmentation process for the latter, but the main characteristic is
that classifier and segmentation model are not used in sequence only at inference
time but instead they are trained together, using as training loss a sum of the
two models losses. We asses Tandem performances with cysts dataset following
a cross validation strategy called Leave-One-Tubule-Out (LOTO) introduced in
[4], therefore we compare Tandem also with several models already evaluated in
Monaco et al. work with the same strategy. LOTO results show how good our
proposed method is since it reaches great positioning in different evaluation metrics
among all considered models in ADPKD cysts segmentation task.
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Chapter 2

Background

In this chapter Image Segmentation topic is introduced, specifically its role in
medical field is discussed. Moreover, also typical challenges of medical image
segmentation are described. Finally, notable deep learning architectures and
techniques are presented.

2.1 Image Segmentation

Image segmentation is the process of partitioning digital images in groups of
pixels based on some criteria. The division is performed assigning a label to each
pixel inside the image in order to build a so called "segmentation mask" which
makes possible to highlight some areas of the original image that share a specific
characteristic, in other words is the process of dividing an image in non-overlapping
regions (segments). The criteria according to which the separation of an image in
different portion is performed are task dependent [8], in fact image segmentation
has a central role in a broad range of digital image processing tasks since it can
be exploited in a plethora of applications belongings to several fields like image
processing, image analysis, image understanding, and pattern recognition. The
key feature of image segmentation is the possibility of underlining some crucial
and interesting aspects inside an image, which alone is just a scene representation,
while computing a segmentation mask global information are extracted from it and
specific properties of the scene are highlighted throughout a description of the scene
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in terms of simple elements like shapes, regions and boundaries. This feature can
be crucial in various fields, and this is the reason why image segmentation has been
implemented in so many ways and received so much attention during recent years,
especially from the moment it is carried out by deep learning methods. Moreover,
since image segmentation is used in different applications there is no standard
way of segment a specific image, segmentation result goodness is quantified by the
reason why a specific image have been segmented. Thus the segmentation problem
has not a unique result [8]. Different methods can be more or less effective in
segmenting a specific image, depending on the type of image considered, for example
some methods can be more efficient on real images while others on synthetic ones.
Additionally, even with the same kind of images various methods can be effective
in different measures considering the final goal of segmentation, some can segment
better specific parts of objects like boundaries rather than other more precise at
segmenting shapes. The two main types of segmentation are semantic segmentation
and instance segmentation: In the first case, final goal is classify each single pixel
belonging to an image into a fixed set of categories without differentiating object
instances, while in the latter case the final goal is to detect all objects in an image
while also precisely segmenting each instance [9]. Mentioned differences are visually
presented in figure 2.1. Numerous image segmentation algorithms and methods

Figure 2.1: Semantic and instance segmentation comparison, from https://www.
v7labs.com/blog/instance-segmentation-guide

have been developed, from earliest ones such as thresholding and k-means clustering
to more complex and recent like Markov random fields. More recently also deep
learning models have been exploited to perform image segmentation, nowadays
they are the standard approach.

5

https://www.v7labs.com/blog/instance-segmentation-guide
https://www.v7labs.com/blog/instance-segmentation-guide


Background

2.2 Image Segmentation in medical domain
Image segmentation, as mentioned before, is a great tool for highlighting in a
fast way interesting and specific parts of an image. This feature make it ideal for
several medical field applications in which noisy and complex images are scanned
from doctors in order to detect and locate specific objects or regions of interest.
The utilization of automated segmentation methods makes possible to provide
an accurate representation of target objects and analyze their characteristics for
diagnosis purpose in an automated, and consequently less time consuming, manner.
Examples of these applications, just to name a few, are:

• retinal vessel segmentation

• nuclei segmentation in microscopy images

• identification of organs and lesions from CT or MRI images

• liver segmentation in abdominal CT scans

• early detection and diagnosis of breast, lung, glaucoma, and skin cancer

Image segmentation has a crucial role in medical fields because its usage can help
doctors, making the diagnosis process faster and more efficient.

2.3 Image Segmentation in medical field
In the 2000s deep learning approaches started to demonstrate their considerable
capabilities in image processing tasks [10], including image segmentation. Deep
learning methods achieved results never seen before with previous segmentation
methods and algorithms, it is correct to declare that deep learning has been a game
changer in image segmentation providing optimal results and great performances
on popular benchmarks [11].Probably the benchmark that allowed deep learning to
shine for the first time has been ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)[12] in 2012 when one of the first and most famous deep learning model
AlexNet[13] won the challenge, showing the superiority of deep learning methods
over other solutions. Owing the great capabilities of deep learning methods, they
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have been exploited also in medical image segmentation. Before diving into deep
learning image segmentation methods, is crucial to have an overview of what kind
of models have been involved in medical image segmentation and what challenges
characterize this specific field.

2.3.1 Data availability issues

Despite the huge attention paid to deep learning based methods for medical image
segmentation in recent years, publicly available datasets suitable for training
segmentation models are limited both in number and size. This scarcity is probably
the main problem that modern image segmentation methods have to face in medical
field. Acquiring enough data to properly train a segmentation model for medical
field is a not trivial operation for several reasons: medical images are private and
sensible patients data, this means that sharing them, but even just collecting them,
can be a challenging task because of obvious privacy and legal related aspects.
In fact, a lot of in literature presented methods are trained with private datasets
which for these reasons cannot be shared publicly. Moreover, collecting medical
data suitable for deep learning image segmentation it’s a relatively recent concern,
meaning that the few publicly available datasets are usually small if compared in
terms of images number with the ones publicly available in other fields. Another
issue consists of the high cost associated with both data collection and annotation:
medical images are usually collected from expensive machines, also annotating this
kind of images require efforts and time from experienced doctors. Last but not least,
is really hard to obtain balanced datasets for rare diseases because positive cases
are very infrequent rather than negative ones. All this issues lead to small, and
most of the times inadequate, public datasets. It’s a fact that deep learning models
need great amount of data to effectively learn and, in general, bigger datasets
result in better deep learning models but unfortunately most medical datasets are
composed of just few thousands or even hundreds of medical images [14].

2.3.2 CNNs: Convolutional Neural Networks

Convolutional Neural Networks are the most widely used architectures in deep
learning, specifically in computer vision tasks. The first architecture defined as
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CNN was presented by LeCun et al. in [15]. A CNN has three basic building
blocks:

• convolutional layers

• pooling layers

• fully-connected layers

These layers are stacked and each intermediate layer receives as input the output
of the previous one [16]. The first layer, called input layer, is directly connected to
the input image and has a number of neuron equal to the number of pixels in the
input. The next set of layers are convolutional layers, they operate over the input
performing convolution with a set of filters, known as kernels, in order to perform
feature extraction. The output of a convolutional layer, called activation map,
become input of activation layer which apply non-linearity in order to enable the
modeling of non-linear functions by the network. After that, usually a pooling layer
is positioned, these kind of layers perform pooling operations which help to reduce
dimensionality of the convolution’s output. There are different pooling options,
the most common are max and average pooling. Finally, high level abstractions
are extracted by fully connected layers. The weights of neural connections and the
kernels are continuously optimized during the procedure of back propagation in
the training phase [10].

Figure 2.2: CNN diagram from [17]
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2.3.3 FCNs: Fully Convolutional Networks

Fully Convolutional Networks, as the name suggests, are a version of CNN in which
only convolutional layers are involved and just convolution operations are performed
beyond subsampling and upsampling. Fully connected layers are substituted with
convolutional ones, this allows to have a dense pixel-wise prediction and to achieve
better localization performances [10]. Moreover, this makes possible also to take
an image of arbitrary size and produce a segmentation map of the same size in
output instead of a simple classification score. A FCN has also less parameters,
which means that training can be less time-consuming. Long et al. introduced
one of the first FCN architectures in [18], it is considered a milestone for deep
learning image segmentation because authors demonstrated that deep networks can
be trained for semantic segmentation in an end-to-end manner on variable sized
images, achieving a new state-of-the-art segmentation performance [11] testing
their work over famous benchmark datasets. They modified some already well
known CNN models as VGG16 and GoogleNet substituting fully connected layers
with convolutional ones and introduced skip connections in which feature maps
from the final layers of the model are up-sampled and fused with feature maps of
earlier layers, through this connections the model is able to combine semantic with
appearance information, computing more accurate segmentation masks. FCN are
not perfect though, their major limitations are related to:

• real-time usage; FCNs are faster than CNNs, but not enough to use them in
real-time applications where computation time is crucial.

• global context information; FCNs do not exploit this kind of information
efficiently.

Despite these limitations, since when presented achieved best segmentation per-
formances, they have been exploited in a variety of segmentation tasks including
medical field related ones such as segmentation of brain tumor or skin lesions.

2.3.4 Encoder-Decoder Based Models

The encoder-decoder structure is a popular kind of architecture in image segmenta-
tion. It is based on 2 main macro components: the encoder, a contraction part that
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extract information and compress the input image in a reduced dimension feature
vector, and the decoder which is the symmetric corresponding part of the network
that gradually upscales the encoded features back to the original image dimension
[19]. One of the first architecture of this family has been SegNet[20], where Badri-
narayanan et al. introduced a convolutional encoder-decoder architecture for image
segmentation in which the decoder upsamples its lower resolution feature maps
using pooling indices computed from the encoder in its max-pooling steps. Usually
the two parts of these networks combine information at different levels exploiting
skip connections, a concept firstly introduced in [21], to combine high level spatial
features extracted in the encoder with fine-grained ones computed during decoder
steps to improve segmentation results.

U-Net

The most worth mentioning deep learning segmentation model based on encoder-
decoder structure is probably U-Net[5], which is also the most popular segmentation
model specifically designed for medical applications. The primary purpose of this
architecture was to address the problem of limited annotated data in medical
field, in fact authors stress out the importance of augmentation techniques role
to obtain good results with relatively small datasets, as the usual case of medical
ones. The model has a characteristic shape known as U-shape, see figure 2.3,
consisting of a contracting path (encoder) and an expansive path (decoder). The
first has encoder layers in it and is capable of identify relevant features of input
image. The encoder layers perform convolutional operations in order to reduce
the spatial resolution of the feature maps and at the same time increasing their
depth, meaning that will capture increasingly abstract representations of the input
image. Just like the contracting path has encoder layers in it, the expansive
path is based on decoder layers, its role is to decode encoded and compressed
features computed from previous architecture section, upsampling them while
also performing convolutional operations. Skip connections make possible to
preserve, and consequently recover when needed, spatial information lost during
downsampling. These direct paths that connect encoder and decoder have a central
role in U-Net behavior because help the latter to better locate features accurately,
combining larger and smaller convolutional results to extract features at various
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resolutions. Without skip connections would be really hard upsampling back
the compressed representation computed from the encoder to the input image
resolution. Moreover, skip connections in general help stabilizing training and
model convergence. Since U-Net performed so well in medical image segmentation
tasks, it gained popularity among developers and researchers, consequently it was
deployed also in different segmentation tasks, achieving also there great results.
Another consequence of U-Net popularity has been the development of modified
versions built with the goal of making the already good architecture presented by
Ronneberger et al. even better. An example of this tendency is UNet++ [22] which
basically is a U-Net architecture that use a series of nested and dense skip pathways
to connect the encoder and decoder sub-networks instead of simple skip connections
used in the original U-shaped model. These re-designed skip pathways aim at
reducing the semantic gap between the feature maps of the encoder and decoder sub-
networks, making easier for the model to learn, authors declare that their modified
version of U-Net achieve better performances than the original in several medical
image segmentation tasks. Another approach designed to improve the already good

Figure 2.3: U-Net architecture, image from [5]

U-Net segmentation performances is based on adding blocks to the architecture,
specifically between encoder and decoder paths, or also changing entire parts of it
like the encoder or decoder branch. The goal of the mentioned blocks is usually
preserving as much information as possible from features extracted with encoder to
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better exploit them in the corresponding decoder. An example of this approach is
CE-Net[6]. CE stands for context encoder, the main contribution to the standard
U-shaped architecture of this specific model is the addition of a context extractor
module positioned between encoder and decoder, this module extracts context
semantic information and generates more high-level feature maps. Authors report
in the paper that this module has been developed to get more abstract features
and preserve more spatial information to specifically boost performances of medical
image segmentation. Another variation to the basic U-Net architecture that they
made is replacing the standard U-Net backbone (encoder) with a ResNet-34 block
pretrained on ImageNet. This choice is justified by ResNet shortcut mechanism to
avoid the gradient vanishing and accelerate the network convergence i.e. encoder
only skip connections in addition to the ones between it and the decoder. Reported
results effectively show that this modified version of U-Net brings improvements in
different medical image segmentation tasks respect to the original version. Moreover,
U-Net has also inspired V-Net[23], which performs segmentation over 3D images
with a volumetric, fully convolutional, neural network having a structure inspired
by U-Net encoder-decoder characteristic shape. V-Net was introduced to deal with
MRI volumes depicting prostate, aiming to translate U-shape from 2D images to
3D volumes. Another popular segmentation methods in medical field is HarDNet-
MSEG[24] which uses an encoder-decoder structure but only high-level features
extracted in the encoder path are used in the corresponding decoder to compute
the final output, for this reason it is called partial-decoder. Specifically, those
features are elaborated by a RFB block (Recepive Field Block) during decoding
phase which uses multi-branch with different kernel size convolution and also
dilated convolution to extract features with different receptive fields. Finally, a 1x1
convolution is applied to merge extracted features from each RFB block and after
a dense aggregation of RFBs outputs the final result is computed. This structure
of encoder-decoder models with partial decoders and blocks that extract features
exploiting dilated convolution and kernels with different sizes to compute multi-scale
features is really popular in image segmentation. In fact another relevant model in
medical image segmentation is PraNet[25] which also uses a partial decoder but
additionally applies also reverse attention to encoder extracted features in order to
grant segmentation improvements extracting relationships between boundaries and
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areas.

2.3.5 Other relevant segmentation approaches
Other solutions designed to improve medical image segmentation are not based on
new architectures but instead on different approaches to the problem, an example
is post segmentation refinement where the goal is to use deep learning models in
sequence to improve segmentation results exploiting prior knowledge of specific
medical tasks. The idea of using models in sequence is quite popular because
segmentation results quality is really task specific, and exploiting contribution
from different models can be beneficial. The idea of just trying to improve seg-
mentation results only throughout architectural changes can reach diminishing
returns sometimes, meaning that popular segmentation models perform already
well at segmenting objects and increasing their parameter number or changing
structural aspects is not that easy, moreover sometimes those changes lead to
really small improvements, making them almost not profitable. On the other
hand, acting directly over segmentation results seems to pay off more in some
cases. PostDAE[26] is an example of this approach, it is a solution based on
post segmentation refinement criteria: using a Denoising Autoencoders (DAE) as
a post processing step this model-independent method aims to improve masks
computed with arbitrary segmentation models, see figure 2.4 to visualize solution
pipeline. At inference time the DAE receives in input masks computed from a
generic segmentation model and outputs an anatomical plausible version of it. Since
DAEs are neural networks specifically designed to reconstruct a clean input from a
corrupted version of it, in this solution the DAE is trained with segmentation mask
pairs consisting of an artificially degraded mask and a correct version of the same
mask. With this training technique the autoencoder learns target objects usual
shape in segmentation masks and also their usual position in it. Consequently,
the DAE learns a relation between arbitrary masks and anatomical plausible ones
and will be able to impose anatomical priors over generic segmentation masks.
This method though, given the idea over which is based, is suitable for medical
tasks where target objects occupy usually the same position inside the image
and also have a recognizable and common shape such as lung segmentation for
example. Another case of segmentation improvement obtained exploiting models
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Figure 2.4: PostDAE pipeline. From [26]

in sequence is Stack U-Net[27] where authors build a refinement chain using up
to 15 blocks in sequence. The basic building block can be both U-Net standard
model or also a modified version of U-Net, called ResU-Net which exploits residual
connections. Each model receives in input previous block output combined through
skip connections with the original input image in order to refine segmentation
result progressively going further in the models chain. Finally the last example

Figure 2.5: Stack-U-Net[27]

of segmentation improvement exploiting several models combined is given by [28],
where segmentation models are used together in two different ways, producing
consequently two models called respectively TriUNet and DivergentNets. The first
is a combination of three U-Net models in which the input image is passed to the
first two, having different randomized weights. The output of both models is then
concatenated before being passed through a third U-Net model to predict the final
segmentation mask. DivergentNets is instead an ensemble of different well perform-
ing and popular segmentation models, and also the before introduced TriUNet is
used in it. The idea is to improve segmentation results in generic medical tasks
exploiting predictions performed by different models separately trained before and
finally merged in this ensemble solution at inference time, the idea is to get a precise
and generic segmentation architecture able to well-perform in several medical tasks.

14



Background

Each input image is passed to every model and the final segmentation mask is
computed simply averaging computed predictions. Other newly medical image

Figure 2.6: DivergentNets structure[28]

segmentation solutions are based on GANs: Generative Adversarial Networks, in
which a deep learning model called generator learns a specific task trying to fool
another deep learning model, called discriminator, that has to detect if received
data is original or has been generated from the generator. GANs are quite useful
in image segmentation tasks where available datasets are usually small due to the
possibility of generating artificial images offered by this kind of models, therefore
can be exploited in segmentation medical related tasks [29]. Rather than using
GANs just to generate artificial data to extend training datasets, other solutions
based on these kind models use their peculiar adversarial training modality to teach
models a relation between RGB images and relative segmentation masks in order
to produce a segmentation model to all effects. This approach has been used in
medical segmentation tasks [29]. Unfortunately, GANs need really long training
time to properly learn if compared with more traditional deep learning methods.
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Chapter 3

Methods

In this chapter the utilized dataset is described in depth, specifically task specific
segmentation target objects, i.e. cysts, will be analyzed to make the reader
aware of the difficulties that a segmentation model can face when dealing with
images depicting them. In addition, a brief overview of selected and tested models
is reported, followed by a description of Tandem, our newly proposed method,
we also explain the motivation that led us to implement this solution. Finally,
evaluation metrics and assessment criteria used to analyze results and performances
of considered methods are introduced.

3.1 Dataset

Figure 3.1: Dataset statistics. Statistics for cyst size (left side) and number of
cysts per image (right side) on the whole dataset. From [4]

The dataset we used to conduct our experiments was the same used in [4], it has
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been provided by Istituto di ricerche farmacologiche Mario Negri (Bergamo, Italy)
and consists of RGB immunofluorescence images of tridimensional human tubules
engineered from epithelial cyst-lining cells that were isolated from a single donor
patient with a mutation in PKD1. Tubules are the result of 4 individual experiments
conducted from July 2019 to December 2020 and are classified according to the
treatment received, specifically there are images belongings to 4 different in vitro
experiments with 32 engineered polycystic kidney tubules. The dataset has 1076
images of microscope acquisitions with a fixed scale and fixed size of 1024 × 1024
pixels. The total number of annotated cysts is 5042. For each image, cysts were
manually annotated by human experts through a polygonal segmentation with
the opensource annotation tool labelme [30]. The number of cysts depicted in
each image is not fixed, a single image can contain a variable number of cysts that
goes from zero to twenty in some cases. Moreover, also cysts size is variable: even
though they have on average a very small area, their dimensions fluctuate in an
ample interval. In [4] dataset annotated cysts were aggregated in 6 zones according
to their size (expressed in µm2), intervals that define these size zones are shown
in table 3.1. Analysis computed in Monaco et al. previous work with this dataset

Cysts size Size zone
x < 32µm2 1
32µm2 ≤ x < 53µm2 2
53µm2 ≤ x < 83µm2 3
83µm2 ≤ x < 131µm2 4
131µm2 ≤ x < 232µm2 5
x ≥ 232µm2 6

Table 3.1: Cysts size zones, x is the cyst size expressed in µm2 .

highlight the difficulty of U-Net based segmentation models at computing satisfying
results when dealing with cysts belonging to size zone 1, or in other words the
smallest ones. Cysts features constitutes the dataset greatest challenge due to the
fact that, although cysts share similar visual characteristics, they can have various
sizes and shapes which contribute to make this task more complex to learn for
a segmentation model. Moreover, segmenting small objects is already a difficult
task, and indeed deep learning segmentation models are usually deployed in tasks
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Figure 3.2: Dataset images and relative segmentation masks examples

where target objects have fixed shape and dimensions, net of minor variations,
and occupy a not too small part of the image. In this dataset though, average
cysts dimension is really small, therefore segmentation target objects occupy only
a minimum part of images surface. Another consequence of cysts dimension is that
segmentation masks are "unbalanced", meaning that foreground portion occupy
always a minimum part of the mask, making the training process harder, see figure
3.2. Another challenge is constituted by the visual similarity between cysts and
the tissue pattern, meaning that in addition to the reduced average size of target
objects, also a lot of tissue portion have visual features in common with cysts,
hence this can easily mislead segmentation models. Mentioned similarities are
depicted in image 3.3 to better understand the problem. Yet another aspect to

18



Methods

consider as challenge is the scatter distribution of cysts in images. Target objects,
in fact, in several pictures have a scattered positioning, moreover they seems to
not share a distribution pattern: in some cases they are really far apart from each
other and isolated, in others they are close to each other resembling clusters, and
finally in some cases they present a mixed modality, meaning that the same picture
can have clusters of cysts with also scattered and isolated ones. To summarize
the above, detecting and segmenting the exact position of cysts in these particular
images is not an easy task, neither for a human, because target cysts have really
small dimensions and variable shape, moreover their identification is made even
more difficult due to their general resemblance to the background pattern and their
not predictable positioning. In general detecting and segmenting tiny objects is a
known task in medical image segmentation because the ability of detecting small
areas means usually possible early detection of fatal diseases and consequently
prevention of serious and irreversible consequences in many cases. Thus, small
objects segmentation in medical domain is a challenging task of crucial importance.
For this reasons we focused our solution search on deep learning methods that aim

Figure 3.3: Patches extracted from dataset images. True cysts (top row) and
portions of tissue resembling cysts (bottom row)

to compute good performances with segmentation of small objects in medical fields,
the dataset discussed before is a great benchmark to understand how much a given
model is really good at segmenting this kind of difficult objects due to its specific
features. Models and methods developed specifically for this kind of tasks are not
really frequent due to the challenging goal, so even finding solutions to asses was
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quite challenging.

3.2 Preprocessing

As usual in deep learning based solutions, images have been augmented throughout
different random transformations before feeding them into models during training in
order to gain generalizability. Indeed, augmentations help models to gain invariance
properties to image rotations, brightness changes and similar variations, but most
of all they are really useful to enlarge the number of samples available in dataset.
This concept has already been mentioned in previous sections, specifically when
talking about U-Net architecture: Ronnenberg et al. point out in their paper[5]
the crucial role of augmentations in deep learning approaches applied to medical
fields because of the usual medical datasets small size in terms of samples number.
Applied augmentations are reported in table 3.2 with relative parameters and
probability rate, the latter is the parameter that, more than others, makes possible
showing different transformed versions of the same image to models during training
combining different transformations in several ways. Finally, each image has been
normalized with ImageNet[12] mean and standard deviation in order to obtain the
same ImageNet[12] RGB images distribution, this is also a common practice in
computer vision because many pretrained models have ImageNet weights.

Transformation Parameter Probability

Horizontal Flip - 0.5
Random Rotate ±90° 0.5
Random Brightness brightness limit: 0.2 1.0
Random Contrast contrast limit: 0.2 1.0
Random Gamma Correction gamma limit: (80, 120) 0.5
Contrast Limited Adaptive
Histogram Equalization
(CLAHE)

contrast limit: 4.0 0.5

Normalize ImageNet mean and stdev for each
RGB channel

1.0

Table 3.2: Augmentations applied to images
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3.3 Selected segmentation models
We decided to focus our attention on segmentation models explicitly developed to
deal with small medical objects and for this reason we selected from literature two
promising architectures: CE-Net and CaraNet. Both will be detailed described in
following sections. Moreover, we compared those solutions with UNet++, a model
already tested in [4], therefore we consider it as a "baseline" model because previous
work results proved that, when tested with our cysts dataset, is the most precise
architecture. Consequently also a brief explanation of this model is reported below.

3.3.1 Unet++

UNet++[22] is a segmentation model based on U-Net, as the name suggests.
What distinguish this version from the basic one is the dense skip pathways
between encoder and decoder, which replace simple skip connections. It enhances
extracted feature processing and was reported by its authors to outperform U-
Net on several datasets. Encoder and decoder are connected through a series of

Figure 3.4: Unet++[22] architecture

nested dense convolutional blocks. The main idea is to bridge the semantic gap
between the feature maps of the encoder and decoder prior to fusion, making them
semantically similar to each other. This is done to make optimization process easier
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because of the similarity between received features from encoder and awaiting
ones in corresponding decoder depth. The encoder features, before arriving to the

Figure 3.5: Unet++[22] first skip path details

decoder, pass through a dense convolutional block as shown in figure 3.5 where H

represents a function that combines Batch Normalization, ReLU activation, and a
3x3 convolution while U an upsampling operation and finally [] concatenation.

3.3.2 CE-Net
CE-Net[6], briefly introduced in section 2, is called Context Encoder Network
because the main contribution of this architecture is adding to a classic U-Net
encoder-decoder structure a Context Extractor module, beyond changing the en-
coder with a ResNet-34 pretrained on Imagenet. Authors expose a common U-net
limitation: consecutive pooling layers reduce feature resolution to compute increas-
ingly abstract feature representations, sacrificing spatial information. The goal of
CE-Net model is to boost segmentation maintaining high-level semantic features
at the middle stage (between encoder and decoder) without increasing parameter
number and size of feature maps. Motivated by this, authors introduce a Context
Extractor block to capture more high-level features and preserve spatial information
in an efficient way, figure 3.6 show architecture schema. The Context Extractor
module extracts context semantic information and generates more high-level feature
maps, convolution operations performed in this module are dilated convolutions
(also known as "atrous" convolution), this because even though standard convolution
is widely used in segmentation to extract feature representations of images, the
pooling layers usually placed after lead to loss of useful semantic information. In
order to overcome this limitation, dilated convolution is adopted which basically
increase the kernel receptive field dilating it with a rate r without increasing
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Figure 3.6: CE-Net[6] architecture

parameter number or computational cost. A regular convolution is a specific case
of dilated one, to perform it in fact r is set to 1. Given a 3x3 kernel in dilated
convolution and r = 1, for example, we have a receptive field of 3, while if r = 3 the
receptive field become 7 without any additional computation cost. The Context
Extractor module consists of two main sub-blocks: the DAC block and the RMP
block, both are explained in details below.

DAC block

Dense Atrous Convolution (DAC) block is used to encode the high-level semantic
features maps, which in other words are the features computed from encoder
module. Authors were inspired by Inception[31] and ResNet[21] basic blocks.
In the first different convolutions are performed in parallel with kernels having
several dimensions in order to compute multi-scale features while in the latter skip
connections are exploited to avoid gradient vanishing. A DAC block merge these
two techniques, an illustration from [6] is reported below:
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Figure 3.7: DAC module

In DAC block there are 4 branches, each one with a different dilation rate for
dilated convolution: from 1 of the first branch up to 1,3 and 5 of the last, thus
receptive fields of the four branches are different (3,7,9,19) as in Inception, and
finally as in ResNet the original features are added to computed ones via skip
connection. At the end of each branch we have a 1x1 convolution for rectified linear
activation. The convolution of large reception field extract and generate more
abstract features for large objects, while the convolution of small reception field is
better for small object. Authors declare that by combining the dilated convolution
of different rates, the DAC block is able to extract features for objects with various
sizes and consequently also small ones, this is also the main reason why we selected
CE-Net for our experiments given cysts variable size.

RMP block

Residual Multi-kernel Pooling is CE-Net authors solution to classic segmentation
challenge in medical images: variation of objects sizes. RMP relies on multiple
effective field-of-views to detect object at different sizes. A general max pooling
operation usually just employs a single pooling kernel. As illustrated in figure 3.8,
the RMP block encodes global context information with four different-size receptive
fields. The four-level outputs contain the feature maps with various sizes. A 1×1
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convolution is performed after each level of pooling to reduce the dimension of
weights and computational cost. Then computed feature maps are upsampled to
get the same size features as the original feature map via bilinear interpolation.
Finally, the original features are concatenated with upsampled feature maps.

Figure 3.8: RMP module

Dice Loss

CE-Net authors tested their model over dataset with highly imbalanced images,
where segmentation target objects occupied only a small area of the mask. In
order to overcome the limitations that Binary Cross Entropy has with this kind
of imbalanced data they used Dice Loss to train CE-Net. Dice coefficient D is a
number among 0 and 1 which describes the overlap between two binary masks,
specifically predicted and ground-truth masks. The goal is to maximize that number
to have masks really similar to each other. Dice loss is based on Dice coefficient D
and was developed to explicitly deal with imbalanced segmentation masks[32][23].
Dice loss formulation from [6] is reported below:

Ldice = 1 −
KØ
k

2ωk
qN

i p(k,i)g(k,i)qN
i p2

(k,i) + qN
i g2

(k,i)

where N is the pixel number, p(k, i) ∈ [0, 1] and g(k, i) ∈ {0, 1} denote predicted
probability and ground truth label for class k, respectively. K is the class number
(which is two: background and foreground), and q

k ωk = 1 are the class weights.
In CE-Net paper, authors set ωk = 1

K
.
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3.3.3 CaraNet

CaraNet[7] is a model developed to solve segmentation of small objects problem,
specifically in medical fields. Authors motivate their goal with a sharp observation:
detecting small objects means finding early stages diseases and consequently can
be crucial for early detection and diagnosis. Given network purpose we decided to
test it with our dataset since, as already mentioned, it is characterized by small
cysts which cause serious difficulties to standard segmentation models. CaraNet
uses Res2Net[33] as backbone for features extraction. Given an input RGB image,
a backbone network compute increasingly higher representations of it throughout
its layers: the deeper is the layer, the higher representation channels number grows,
meanwhile its spatial dimension is reduced. In CaraNet only high-level features
extracted from deep backbone layers are passed to the decoder, which in this
architecture is a Partial Decoder (PD) precisely because only a subset of backbone
computed features are utilized.

Figure 3.9: CaraNet[7] architecture

Actually, from Res2Net can be obtained features at five different depth levels
fi, {i = 1, ...,5}, only high-level features are aggregated with the Partial Decoder
to get a global map Sg = PD(f3, f4, f5). Authors motivate the structural choice
of completely discard backbone extracted low-level features reporting that these
contribute less to performance but have higher computational cost because of their
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larger spatial resolution. CaraNet has two main modules: CFP and A-RA.

CFP module

CFP stands for Channel-wise Feature Pyramid, has been introduced in [34] and is
a module developed in order to perform complex convolution operations efficiently,
therefore its paper goal was to present a segmentation model for real-time usage.
Authors were inspired by Inception module and its reformulation presented in [31].
Specifically, in Inception multi-scale feature maps are computed in each module
throughout parallel convolutions with different kernel sizes and than concatenated.
In the original Inception formulation, three parallel convolutions with 1x1, 3x3
and 5x5 kernels were performed, but computational cost of the last two was
high. Consequently, to reduce parameters and make the module more efficient,
factorization was introduced in [31]: the expensive 5x5 convolutional filter was
replaced with two 3x3 in sequence. A CFP module is a factorized form of convolution
operator that decompose large kernel into smaller convolutions consisting of K

channels called Feature Pyramid channels (FP).

(a) (b)

Figure 3.10: Diagrams of (a): CFP module; (b): FP channel

In a single FP channel multi-scale features are extracted with factorized 5x5 and 7x7
convolutions, replaced respectively with two and three 3x3 filters similarly to what
happens in the last Inception module version. Finally, results are concatenated
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exploiting skip connections to compute multi-scale features and also to make
network trainable, avoiding vanishing gradient. Each FP channel has a specific
dilation rate, indeed dilated convolution rather than regular one is performed,
meaning that convolutional filter is dilated with a dilation rate r in order to enlarge
the receptive field without increasing parameters number. The dilation rate is
the number of pixel gaps between adjacent convolution elements and contribute
to multi-scale features extraction. In CaraNet each CFP module has K = 4 FP
channels having dilation rate rk = {1,2,4,8}. CFP module input is reduced from
dimension M to M/4 with a 1x1 convolution, which projects high-dimension feature
maps to low-dimension, before being passed to each FP channel. Exploiting skip
connections, channels output features are combined in a Hierarchical Feature Fusion
(HFF) style: 

level1 = outF P 1

level2 = level1 + outF P 2

level3 = level2 + outF P 3

level4 = level3 + outF P 4

Final FP contains a stack of features computed as:

Ø
i

leveli

The final output is obtained adding to HFF result, with a skip connection, the
original input. Complete CFP architecture is reported in figure ??.

A-RA module

A-RA is the abbreviation of Axial-Reverse Attention, this module apply attention,
in other words assign a weight to each portion of the frame to focus training over
specific images areas. As visible in figure 3.9 these modules are placed after each
CFP module, this because they receive in input relative CFP output and a global
map Si computed from previous A-RA module, except for the first which receive
Sg global map directly from Partial Decoder. Two kind of attention mechanism are
applied respectively to both inputs. Axial attention, which is based on self-attention,
is the operation of assigning to a single context (image) some weights, specifically a
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weight to each portion of it. This is factorized along height and weight dimensions
to improve performances. Result of axial-attention is then combined, through an
element-wise multiplication, with reverse attention[35] computed over Si map in
order to erase salient regions from side-outputs and consequently force the network
to explore portion of the image with potentially missing objects. Combination
of the two attention mechanism leads to A-RA output (ARAi). Finally ARAi is
combined with global map S computed from previous steps obtaining S5, S4, S3

which are the previous mentioned side-outputs. CaraNet final segmentation mask
is computed performing a Sigmoid over S3.

Figure 3.11: Structure in details of A-RA module

Structure Loss

Structure Loss is a loss formulation developed by CaraNet authors to train specifi-
cally their model. This loss is a combination of weighted Intersection over Union
(IoU) and weighted Binary Cross-Entropy (BCE). The first ensure a loss com-
putation to globally supervise the segmentation results while the latter is used
to supervise results at local pixel-level. Consequently to train CaraNet, a deep
supervision for the three side-outputs (S1, S2, S3) and the global map Sg is applied.
Thus, given ground-truth segmentation mask G, the total loss is:

Ltotal = Lw
IoU + Lw

BCE = L(G, Sup
g ) +

5Ø
i=3

L(G, Sup
i ) (3.1)
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We used this loss to train CaraNet during out experiments and also for supervise
it within our proposed method described in following sections, furthermore we
experimented also other loss formulations, such as weighted Binary Cross Entropy
between ground-truth mask and final segmentation output, but computed results
showed worse network performances, hence an intermediate results supervision
through Structure Loss is really effective for CaraNet.

3.4 Tandem solution

The main contribution of this thesis is the development of a newly solution based
on a segmentation model and a classifier working together called Tandem. This
strategy was developed because, as comparisons between different models will
show in next chapter, among the tested architectures CaraNet[7] is the one that
outperform others in terms of detected cysts, but at the same time is also the
model that produces the highest number of wrong predictions. We believe this
happens because CaraNet is really good at detect small cysts but is fooled by
tissue structures that resemble them, which have been illustrated in section 3.1,
consequently producing several wrong predictions. Aiming to improve CaraNet
performances over our dataset reducing the number of wrong predicted cysts and, at
the same time preserving as much as possible correctly detected ones, we introduced
a classifier which act as a post-segmentation refinement component. The idea is to
unfold each RGB image that have to be segmented in a fixed number of patches and
use the classifier to predict if there are cysts or not in each obtained patch, assigning
respectively label True or False. In the second case, corresponding areas of False
classified patches in the segmentation prediction are erased, meaning that basically
they are set to black. In this way wrong cysts number should be reduced from
CaraNet computed mask. Our solution is not a simple ensemble, classification head
is not trained alone but instead at the same time with CaraNet. This choice was
made to make classifier aware of segmentation model prediction and exploit it to
precisely predict labels. In fact, it receives in input patches extracted from original
RGB image concatenated with corresponding patches of CaraNet segmented mask.
Using classifier computed labels for patches, a refinement mask is built and finally
it is multiplied with CaraNet prediction in order to refine it, deleting sections
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of predictions corresponding to patches classified as "not containing cysts" from
classifier. We registered evident improvement in terms of wrong cysts number
using this strategy with a truly negligible reduction of properly identified cysts.
Moreover, computed results show that CaraNet benefit from classifier presence:
training process indeed improved more epoch after epoch when Tandem solution
was applied, meanwhile during CaraNet solo training improvements stopped after
just few epochs. More details about training strategy, schedulers and chosen
classifier are reported in sections below.

3.4.1 Pipeline
As already anticipated in previous section, our idea is exploiting classification to
improve segmentation results. Classifier role can be described as a sliding window
that scans the segmentation model RGB input image to predict cysts presence,
in order to finally refine segmentation output merging with it its predictions and
thus contributing to the final segmentation result. In order to scan the input image
with the classifier we unfold it in non-overlapping squared patches. Unfolding
an image, or more specifically its tensor, means extracting sliding local blocks
from it that we refer to as patches. Given a fixed patch dimension, is possible
to extract overlapping or non-overlapping patches specifying a stride, but since
we are interested in a classifier prediction of each input image section we chose
the second option, setting the stride equal to patch width and height. Actually,
the classifier scans RGB image not before, but only after the segmentation model
has predicted a binary mask for it. This because both RGB input image and
corresponding segmentation predicted mask are unfolded equally therefore their
patches are coherent, i.e. the i-th segmentation output patch is the segmented
version of i-th RGB input image patch, hence we concatenate corresponding patches
before passing them to the classifier. In this way computed patches are not just
RGB images but instead they have 4 channels: three color channels plus the
additional fourth consisting of their binary predicted mask from segmentation
model. We will refer to 4-dimensional patches as enriched patches. Figure 3.12
depict graphically the described process. Enriched patches are finally passed to
classifier which will consequently predict a label for each one of them, being aware
of segmentation prediction. Obviously, in order to train the classifier performing
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Figure 3.12: Patches enrichment process in proposed Tandem solution

back-propagation to adjust its weights, patches ground-truth labels are required
for classifier loss computation. We assign, during training, a ground-truth label to
each enriched patch exploiting the ground-truth segmentation mask associated with
RGB input image from which they are extracted: this means that, other than input
RGB image and predicted segmentation mask, also ground-truth mask associated
with input image is unfolded in patches, specifically in the exact same way as the
fists two. Therefore patches in unfolded RGB image match coherently the ones
extracted from ground-truth mask. Exploiting this coherence we can assign to each
enriched patch the ground-truth label:

• True if corresponding ground-truth mask patch contains cysts

• False if corresponding ground-truth mask patch does not contain cysts

A ground-truth mask patch has a fixed number of pixels, we use a criteria based on
threshold t to define if it contains cysts: if the total number of pixels set to 1 (area
corresponding to segmentation target object) is higher or equal to t we consider
that patch as containing cysts, otherwise not. In our final configuration patches
have dimension 128x128 and threshold t is set to 200, meaning that a patch will be
labeled as True even if only a small portion of total pixels number is set to 1, this
decision was made to correctly label as True also patches containing really small
cysts. The ground-truth labeling process computed during training is depicted in
figure 3.13. Once all enriched patches are labeled from the classifier, a refinement
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Figure 3.13: How ground-truth labels are assigned to each patch of a single RGB
image during training

mask (R) is computed in order to use it later in the refinement process to improve
the segmentation model predicted mask (P ). The refinement mask is a matrix
having the same dimension of the segmentation mask and consists of ones and zero
values. At each patch classified as False corresponds a zero-value matrix of the
same dimension, while to patches classified as True one-value matrices correspond.
Finally, an element-wise multiplication between refinement mask and segmentation
model output(R · P ) is performed in order to erase all segmentation predictions
inside areas which corresponds to False classified patches while keeping unaltered
the predictions in areas matching True classified patches. The complete Tandem
pipeline at inference time is graphically reported in figure 3.14. Of course this
method is not perfect, for example when in a given patch there are both correct and
wrong segmented cysts, if the classifier labels that patch as Negative the correctly
predicted ones will be erased in the final output after the refinement, even if the
segmentation model had detected them correctly. On the other hand is true also the
opposite, because when a wrong predicted cyst lays in the same patch of correctly
predicted ones, it will be kept in the final segmentation output if the patch is
classified as True. Moreover, in case of big cysts that do not appear in a single
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Figure 3.14: Tandem pipeline

patch but instead in more than one, is possible that in the final segmentation output
those will appear trimmed because patches containing only small slices of them
and nothing else could be classified as False, and consequently during refinement
their corresponding portion in the segmentation prediction will be erased.

3.4.2 Classifier choice

Since we had to train both a segmentation model and a classification model at the
same time we decided to focus our classifier choice on not too complex models in
order to add only a relatively small number of parameters to tune other than the ones
from segmentation model. A standard choice would have been a classic ResNet[21]
solution, but we selected Res2Net[33] which is a modified version of the first. The
main contribution of Res2Net to the original ResNet architecture is a novel residual
block structure, specifically hierarchical residual-like connections are inserted inside
each single residual block in order to improve the multi-scale representation ability
of the network maintaining a similar computational load. We preferred Res2Net
over ResNet because authors report in the paper better performances of the first
over the latter utilizing the same number of layers. Res2Net obtains slightly better
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Figure 3.15: Res2Net residual block compared with standard version

results with several popular datasets, as for example ImageNet, even if compared
with other popular models.

3.4.3 Classifier class imbalance problem

As already mentioned in 3.1, since cysts are really small objects images belonging to
our dataset are extremely imbalanced because target objects occupy only a minimum
portion of the entire picture. Consequently, unfolding RGB images and assigning a
label to each patch according to relative patches extracted unfolding associated
ground-truth mask, leads to unbalanced training data also for the classifier. From
a single 768x768 RGB image divided in 36 patches of 128x128 pixels, on average
only 10% of patches were labeled as positives (class 1). Class imbalanced data
makes model training really hard because samples from the less frequent class will
be fed into the classifier in only a few cases, this leads to training batches in which
less frequent class samples will be only a minimum part, furthermore in some cases
could also happen that no sample belonging to minority class would be present
at all. Hence a generic loss function, such as Binary Cross Entropy (BCE), would
not be able to correctly supervise the classifier training because will not consider
the imbalance problem, moreover its value will be low even if the model predict
always the label associated with preponderant class, thus the model will learn that
predicting always the label associated with a specific class (the more frequent one)
is a good solution while actually it is not. In other words, class imbalance can
overwhelm training and lead to degenerate and not useful models. For this reason
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the first loss function selected for classifier training was the balanced version of
BCE which can be defined starting from the standard BCE formulation:

CE(p, y) =

− log(p) if y = 1

− log(1 − p) otherwise.

where y ∈ {0,1} specify ground-truth class and p ∈ [0,1] is the model estimated
probability for class with label y = 1. Defining pt as:

pt =

p if y = 1

1 − p otherwise,

we can rewrite the Binary Cross Entropy Loss as

CE(p, y) = CE(pt) = − log(pt).

Weighted BCE version can be defined introducing the parameter α ∈ [0,1] for class
1 and 1 − α for class 0. Defining αt as already done with pt the balanced version of
Cross Entropy Loss can be written as:

CE(pt) = −αt log(pt).

Unfortunately, balanced BCE has not been able to manage our data class imbalance.
During our tests we noticed that classifier was learning to just predict always label
0, associated with samples from the most frequent class. We tested different values
of α, computing also class weights from classifier training dataset analysis: starting
from the entire dataset we excluded experiment 3 images from it, because those
pictures were used as test set in our experiments, and divided each image in patches,
computing associated labels from ground-truth masks in order to have a precise
idea about the number of samples in both classes. We did this for each tested patch
dimension. Using resized images of 768x768 pixels and patches size set to 128x128
pixels a total number of 35028 patches is obtained, class distribution is depicted in
figure 3.16 where class 0 is associated with patches not containing cysts while class
1 with patches containing them. Indeed, we have an extremely imbalanced dataset
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for classifier training. We computed class weights using different formulas but

Figure 3.16: Classifier training dataset class distribution

classifier was not affected at all, it was struggling to learn in any case with balanced
BCE loss. For this reasons we shifted our attention to another loss function able
to manage highly imbalanced training dataset: Focal loss[36], which was explicitly
developed for this purpose.

FL(pt) = −(1 − pt)γ log(pt) (3.2)

Focal loss formulation is reported in equation 3.2, basically it’s a modified version of
the Cross Entropy loss, specifically a modulating term is applied to standard cross
entropy formula aiming to focus learning on "hard" usually misclassified examples.
The main idea behind this loss is that, during training, the model will confidently
predict samples belonging to predominant class since their number is high enough
to make the model aware of their characteristics and consequently it will properly
learn to recognize them, on contrary it is not true for the less frequent class samples.
Model predictions with a high probability are called easy examples and usually
are associated with predominant class samples. On the other hand, predictions
with not so high probability are called hard examples, which given the imbalanced
dataset nature, happen to be associated with samples belonging to minority class.
Focal loss force the model to focus on hard examples exploiting the modulating
factor (1−pt)γ where γ is a tunable focusing parameter, when it is set to 0 Focal loss
acts basically as Cross Entropy loss. Using this formulation the loss contribution of
highly confident classified samples ("easy" examples, where pt >> 0.5) is reduced
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in order to focus training on hard examples. As for Cross Entropy, also Focal loss
has a weighted version, which is the one that we used in our experiments, where is
possible to define class weights via αt parameter. Weighted Focal loss is reported
in equation 3.3. We tested different combination of αt and γ values, obtaining best
classifier response with αt = 0.1 and γ = 2.0.

FL(pt) = −αt(1 − pt)γ log(pt) (3.3)

In our case the minority class was the one associated with patches containing cysts.
Using Focal loss we were able to train properly the classifier and obtain satisfactory
refinement results.

3.4.4 Loss computation

As described in previous sections, we use Structure Loss to supervise CaraNet
training and Focal Loss for Res2Net classifier. Since we train those models together
in Tandem, we sum those losses before performing back-propagation, thus the total
loss formulation for Tandem (LT ) will be the sum of both Focal loss and Structure
loss contribution, as reported in equation 3.4.

LT = LStructure + LF ocal (3.4)

3.5 Evaluation metrics and methods
Image Segmentation results are always evaluated using pixel-wise metrics as IoU,
Precision and Recall. In this section the aforementioned metrics will be explained,
moreover also other kind of evaluation metrics introduced previously in [4] and
specifically based on cysts will be described since also in this thesis cysts-wise
IoU, Precision and Recall are used to evaluate and compare results obtained with
different models. In standard pixel-wise metrics a True Positive (TP) pixel is a
correctly predicted one, meaning that in both segmentation predicted mask and
ground-truth mask the given pixel is labeled as "foreground", consequently a True
Negative (TN) is a pixel labeled as "background" in both masks. Of course, a
False Positive (FP) and a False Negative (FN) pixel are respectively a background
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pixel labeled as "foreground" and vice versa. In our specific case, since our mask
are binary, a "background" pixel is a pixel not belonging to a cyst, otherwise a
"foreground" pixel is a pixel belonging to a cyst. Based on those information we
can report pixel-wise evaluation metrics definitions in table 3.3: Even though these

Intersection over Union (IoU) T P
T P +F N+F P

Precision (Pr) T P
T P +F P

Recall (Re) T P
T P +F N

Table 3.3: Pixel-wise metrics

metrics makes possible to get an overall idea of segmentation quality, and therefore
compare performances of different methods, as already suggested in [4], they are
not perfectly suitable for images inside our dataset. Segmentation target objects
are cysts with variable sizes and the ones with larger size have obviously more pixels
than smaller ones. This means that detection of larger cysts lead to unbalanced
metrics because they will have a larger weight than small cysts. Since we are also
greatly interested in the number of correctly or wrong predicted cysts, we will use
also in this thesis cyst-wise metrics introduced in [4]. These evaluation metrics aim
to weight all cysts equally regardless their number of pixels, moreover they are a
cyst-based extension of pixel-wise ones described above. Cysts in ground-truth mask
and predicted mask overlaps when have some pixels in common. A ground-truth
cyst can be considered as Detected (DT) when it overlaps with a cyst in predicted
mask or Missed (MS) when it does not overlap with a cyst in predicted mask. On
the other hand, a predicted cyst in segmented mask can be labeled as Wrong (WR)
when it does not overlap with any ground-truth cyst. Detected, Missed and Wrong
are a cyst-based version of respectively TP, FN, FP. Finally we can report cyst-wise
metrics definitions in table 3.4. It’s important to define what happen when a
ground-truth cyst overlap with multiple predicted cysts. In this situation one of
the predicted is labeled as detected (DT) cyst while the rest of them as wrong
(WR). Similarly, when a predicted cyst overlaps several ground truth ones only one
is considered as detected (DT) cyst and the other as missed (MS). Image 3.17 from
[4] depict all possible overlapping situations. As anticipated in previous sections,
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IoUcyst
DT

DT +MS+W R

Prcyst
DT

DT +W R

Recyst
DT

DT +MS

Table 3.4: Cyst-wise metrics

Figure 3.17: Possible cysts overlapping cases. In blue real cyst while predicted
cyst in red.

our dataset consists of images belonging to 32 tubules and 4 experiments, each
tubule is exclusively associated with only one experiment. Therefore images from a
given tubule can be found only in one experiment. We divided dataset in train,
validation and test set during our tests according to experiments, in order to train
each model with images from a large number of tubules and test them later with
images having slightly different features. Specifically, we decided to use experiment
number 3, which contains 103 images, as test set and consequently the remaining
973 pictures have been split in training and validation set respectively with an
80-20% proportion. We use the third experiment as test set because the first two
have few images and consequently using them to validate models performances
would not return an accurate result, on the other hand experiment number 4 is the
one with more images among the four, this means that removing it from training
would have compromised the learning procedure because remaining images would
not be enough to properly train models. Experiment number 3, indeed is the
best candidate to be our test set and compute reliable performance evaluations.
Moreover, in [4] Monaco et al. tested their models using a leave-one-out cross-
validation approach based on tubules called Leave-One-Tubule-Out (LOTO) which,
as the name suggests, consists of using 31 tubules as training set and the remaining
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one as test set. In this way, averaging results computed over each tubule used as
test set, the best possible estimate of model quality on unseen data is computed.
In following chapters we will compare model performances obtained using the
firstly described training setting, while for our Tandem method performances will
be evaluated also with LOTO strategy in order to compare it even with models
analyzed in [4].
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Chapter 4

Results

In this chapter results computed with CaraNet, CE-Net and Unet++ are reported
in order to compare them. Moreover, also some models ensembles are analyzed
and finally Tandem proposed solution results, including LOTO strategy ones, are
presented and discussed.

4.1 Training settings
Unet++, CE-Net and CaraNet has been trained using a batch size of 4 for training,
validation and test. Images are augmented through augmentation techniques
previously described in section 3.2. Training configurations are reported in table
below: Adam optimizer, Cosine Annealing Warm Restart and learning rate set

Loss Scheduler Optimizer Learning rate
Unet++ BCE CAWR Adam 1e − 4
CE-Net Dice CAWR Adam 1e − 4
CaraNet Structure CAWR Adam 1e − 4

CAWR: Cosine Annealing with Warm Restart

Table 4.1: Training settings

to 0,0001 were chosen as standard training settings because after several tests
performed with different optimizer and scheduler combinations we noticed that this
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specific was the most suitable. We trained models with early stopping termination
criterion. The number of epochs needed to reach model convergence was architecture
specific, it went from a minimum of 10 to a maximum of 25 whit early stopping
patience parameter set to 10 epochs. Training and testing has been performed on
Google Colab notebook with a 16GB NVIDIA Tesla T4 GPU.

4.2 Models comparison
Results computed with experiment 3 as test set are reported in terms of detected,
missed and wrong predicted cysts in figure 4.1. Is clear that both CE-Net and
CaraNet are able to outperform the baseline UNet++ model in terms of detected
cysts, and obviously also performances over missed cysts are positively affected in
the same way. Unfortunately, for what concerns wrong segmented cysts Unet++
is still better than the other two: indeed CaraNet produced three times more its
number of wrong segmented cysts, while CE-Net performed even worse. Is clear
that our two literature selected models are able to detect more cysts than UNet++
but, at the same time, they also introduce many undesirable wrong predictions.
Other interesting information useful for comparing models and understanding their

Figure 4.1: Raw models results computed with experiment 3 as test set

behavior with cyst segmentation can be extracted from image 4.2, where the number
of missed cysts for each size zone (which have been described previously in table 3.1)
and architecture is reported. Better performances in terms of detected small cysts,
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Figure 4.2: Number of missed cysts for each cyst size zone

and consequently reduced number of missed ones, from CaraNet can be noticed
in almost every size zone. Moreover, we can report the same information also
according to cysts size intervals in figure 4.3 where is even more clear how CaraNet
outperforms the other two models when dealing with small cysts, intervals associated
with smallest cysts show how good this architecture is at segmenting tiny objects.
4.3 Based on these evidence we focused our attention on CaraNet, which again was

Figure 4.3: Number of missed cysts for each dimension interval

the most promising architecture. Specifically, we decided to take a step further
implementing the so called Multi-Scale (MS) training which consists of not using
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any augmentation technique but instead increasing and decreasing training images
dimension. This means that each image, during training, is shown to the model 3
times at 1x,0.75x and 1.25x. This technique was originally presented in CaraNet
paper, authors report that it is beneficial if used instead of augmentations. Indeed
also in our tests results have been improved in terms of detected cysts training
CaraNet with multi-scale but also wrong prediction number grew up considerably,
results are reported in figure 4.4. Computed results show that CaraNet architecture

Figure 4.4: CaraNet with Multi-Scale training compared to other models

actually benefits from multi-scale training in terms of predicted detected cysts
number, passing from 151 of CaraNet with augmentations to 160, but the price
for that improvement is a doubled up wrong predictions number, which made us
think that it is not the most suitable technique for our dataset. We also applied
multi-scale training to UNet++, aiming to see how this architecture would respond,
but results were really bad: the number of correctly detected cysts boosted up
from 131 to 171 but wrongs grew up exponentially, passing from 11 to 307. During
our experiments, we observed that multi-scale procedure slowed down training:
more epochs were required to reach model convergence and also a lot more GPU
memory resources was needed. Indeed, since each training sample have to be
re-scaled two times (0,75x and 1,25x), each training batch sample number will
increase passing from 4 to 12, thus multi-scale training is computational expensive.
At this point, having trained several models, we decided to try ensembles, which
basically means using different models together at inference time in order to average
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their predictions and compute, possibly, segmentation results better than the ones
obtained with single models. Below are reported results computed with some
ensembles, we tested several combinations of models, also weighted, but results
were not exciting.

(a) (b)

(c) (d)

Figure 4.5: (a), (b): Ensambles via sum of outputs; (c), (d): Weighted ensembles

In order to build an ensemble each model has been trained separately, than at
inference time their weights were loaded and ensemble output is computed merging
models predictions with a simple sum, or as in (c) and (d), through weighted sum.
Results show that the best possible outcome using ensembles is a small reduction in
terms of wrong predicted cysts, but no improvement in detected/missed cysts has
been registered at all. From reported plots we can understand that CaraNet was
leading in terms of detection and the best ensembles could do was to reduce the
wrong cysts number by 3/5 units, specifically when Unet++ results were merged
with CaraNet ones. On the other hand, CE-Net related ensembles did not bring any
improvements but rather made worse performances in terms of wrong predictions.
Since CaraNet resulted the best model from our tests over experiment 3, we decided
to use classification aiming to boost its performances, specifically we wanted to
use classifier contribution to obtain an efficiency in terms of wrong predicted cysts
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similar to UNet++, or at least better than CaraNet one. Therefore, we thought to
train classifier and segmentation model separately, in order to use them together
only at inference time. In this way we could exploit also CaraNet multi-scale
trained version, which we will refer to as CaraNetMS, because the multi-scale is
memory-resource hungry only at training time. This classifier and segmentation

Figure 4.6: Comparison between CaraNetMS and CaraNetMS + Classifier

approach can be considered as an embryonic version of Tandem solution, specifically
the idea was to segment an input image and than, using the classifier, assign a
label to each patch of the input RGB image associated with a segmented cyst in
the segmentation model output, obtaining finally a mask in which cysts related
to classified-as-wrong patches were erased, basically the classifier was a second
verification step for segmented cysts. In order to train the classifier, a dataset of
patches extracted from training samples (i.e. our original dataset without images
belonging to experiment 3) was built. It had two classes: positive class, in which
patches contained centered cysts, and negative class, where patches did not contain
any cyst. The first kind of samples were obtained using ground-truth masks, each
cyst depicted in them was extracted from associated RGB image in order to center
it, meanwhile the negative patches were computed dividing each RGB image in
a fixed number of patches, only the ones containing tissue and not cysts were
selected. In this way we did not use as negative examples totally black patches
which could negatively affect classifier training. We used ResNet50 trained with
the previously described patches dataset as classifier in sequence with CaraNetMS,
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performances were better in terms of wrong cysts, which were reduced, but detected
cysts were too much negatively affected, see figure 4.6. Finally, we decided to
define another approach: train classifier and segmentation model together, i.e. the
Tandem method, our goal was to achieve a higher Unet++ detected cysts number
while reducing considerably the quantity of wrong predicted cysts found when
dealing with literature selected models. Therefore, we decided to focus our attention
on CaraNet trained with augmentations and not with multi-scale procedure, indeed
our idea of training a segmentation model together with a classifier would not have
been possible using multi-scale because, as mentioned before, is a computational
expensive training strategy and we had a limited amount of GPU memory available.
Tandem solution results over experiment 3 images are reported in figure 4.7

Figure 4.7: Tandem results computed with two different seeds
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Tandem method performed well on experiment 3 images, it was able to reduce the
number of wrong predictions and, at the same time, preserve a considerable amount
of correctly detected cysts. For this reason we finally performed a LOTO cross
validation to precisely assess Tandem performances, we performed this evaluation
strategy also for standalone CaraNet in order to better understand the classifier
contribution to this specific architecture. In following table LOTO computed
results are reported for both CaraNet and Tandem, moreover also performances of
other models with cysts dataset from [4] are included in order to further expand
Tandem comparison. As clearly visible from table 4.2 Tandem method is able to

Model IoU IoUcyst Prcyst Recyst

UNet 0.5845 ± 0.0451 0.6029 ± 0.035 0.7743 ± 0.0448 0.7463 ± 0.0353
UNet++ 0.5821 ± 0.0525 0.6059 ± 0.0493 0.8385 ± 0.0321 0.696 ± 0.0554
HardNet-MSEG 0.5311 ± 0.0527 0.5664 ± 0.0453 0.787 ± 0.0324 0.6812 ± 0.0516
PraNet 0.5868 ± 0.0493 0.6224 ± 0.0369 0.7171 ± 0.0372 0.8276 ± 0.0323
UACANet 0.6239 ± 0.0359 0.6464 ± 0.0395 0.7406 ± 0.0411 0.8346 ± 0.0262
CaraNet 0,4930±0,0096 0,5723±0,0139 0,6416±0,0166 0,8441±0,0053
Tandem 0,5887±0,0082 0,6609±0,0098 0,7898±0,0066 0,7994±0,0069

Table 4.2: LOTO performances comparison

outperform UNet and Unet++ in terms of cyst-wise IoU, actually it obtained the
best result among all considered models. UACANet has the best Pixel-wise IoU
result, followed by Tandem method at second place. Indeed, considering both pixel
and cysts based IoU metrics, is evident how beneficial is the classifier contribution
to CaraNet predictions, the latter alone in fact did not performed great results
because of its tendency to produce a high number of wrong cysts. For what concerns
cyst-wise Precision, even though Unet++ is still the best option so far, Tandem
method obtains also here the second best score. Finally, in terms of cyst-wise
Recall CaraNet performed best because of the high number of correctly segmented
cysts, while Tandem reached a good positioning also there.
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Chapter 5

Conclusions and future
works

In this thesis we addressed the medical image segmentation topic, more specifically
we focused our attention on segmentation of small medical objects, which in our
case were ADPKD kidney cysts. We exposed the challenges that characterizes
this task and the reasons why it is so important to improve available solutions.
Moreover, a brief view of medical image segmentation state-of-art has been reported.
We selected from literature two models explicitly developed to well perform in
segmentation of medical images depicting small target objects, i.e. CaraNet and CE-
Net, explaining their main architectural aspects. Our first contribution is testing
those models for the first time with a dataset containing images of engineered kidney
tubules affected by ADPKD and its characteristic small and scattered cysts. In
order to improve segmentation performances computed by Monaco et al. in [4] over
the previously mentioned dataset with several and popular segmentation methods,
we tried different solutions involving our literature selected models. Finally, our
main contribution is introduced: we developed a segmentation method called
Tandem consisting of a segmentation model (CaraNet) trained together with a
classifier which is able to improve segmentation performances deleting segmented
cysts identified as wrong. Classification head scans a 4-channels image obtained
through concatenation of input RGB image and CaraNet segmented mask to
produce a refinement mask. In this way the classifier exploits both input image
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and segmentation mask to improve the final output mask combining refinement
mask with intermediate CaraNet segmentation prediction. Our experiments results
proved that Tandem method is able to outperform popular segmentation models,
as UNet and UNet++, in this task. More specifically it reaches the best cyst-
wise IoU performance. We believe that our method is a valid solution in medical
segmentation tasks characterized by small target objects having, more than anything
else, a scattered and unpredictable disposition in the input image, therefore future
development involve testing Tandem method with other challenging datasets with
similar images and features. Another open challenge could be improving the
proposed method exploiting multi-scale training technique to reach an even higher
number of correctly segmented cysts using more powerful GPU graphic cards since
this technique is memory resource hungry. Since Tandem method is based on a
classifier acting as a post segmentation refinement component, another kind of
usage would be extracting a heat map for the input RGB image based on classifier
probability outputs. At the end of the day, physicians are interested in a fast
detection of cysts in images with high precision. Therefore, considering Tandem
method limits derived from the fixed grid patches extraction, i.e. possible deletions
of correctly detected cysts which lay in the same patch of wrong ones, Tandem
utilization can not be optimal in some cases. For these reasons an open challenge is
using the classification head as a soft refinement, in which it is used only to suggests
physicians the probability of cysts presence in each area of the image instead
of directly editing the CaraNet predictions. In this way, having both CaraNet
segmentation mask and the heat map computed from the classifier, physicians
could refine the segmented mask themselves.
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