
POLITECNICO DI TORINO

Masters of Science in Computer Engineering

Tesi di Masters of Science

Multi-locator For GUI-Testing

Supervisor

Prof. Riccardo COPPOLA

Prof. Tommaso FULCINI

Candidate

Syed Faraz SHAH

April 2024

Sommario

Introduction: This thesis explores using multi-locator strategies to analyze widget
attribute changes and their visual impact on mobile application graphical user
interfaces (GUIs). Through a comprehensive examination of attribute changes such
as bounds, resource ID, text, and content description, this research aims to demon-
strate multi-locator techniques’ effectiveness in simultaneously locating multiple
widgets. The study encompasses a detailed analysis of attribute variations across
consecutive application versions, highlighting their influence on widget changes and
the resultant visual alterations in the GUI. This investigation provides valuable
insights to inform software development practices and enhance the user experience.

Objective: This thesis encompasses mobile application development, specifically
focusing on widgets and their attribute changes using graphical user interface (GUI)
testing for Android applications. Within this scope, the thesis investigates the
challenges and complexities developers face in ensuring the functionality, usability,
and visual consistency of GUI elements across different versions of mobile applica-
tions. The research also explores strategies for analyzing layout-based properties
and their impact on GUI testing processes. Overall, the project contributes to the
field of software quality assurance, particularly in the context of mobile application
development and GUI-based testing.

Methodology: For GUI testing, evaluating real applications from the market
provides practical insights into GUI component composition and user experience.
It enables the examination of interface design principles like layout, color scheme,
typography, and iconography, identifying effective patterns and avoiding pitfalls.
We selected multiple real mobile applications from various categories, focusing on
those with multiple versions available. Applications were sourced from APKMirror,
with the most recent versions downloaded for evaluation based on inclusion criteria.
Visual mutation testing was initiated to identify components like buttons, text fields,
and dropdowns, generating mutations by modifying colors, sizes, and positions and
adding/removing elements.

ii

This methodology involves installing two chosen versions of each mobile applica-
tion on the Google Nexus 5X AVD and preparing them for evaluation by completing
setup processes and examining their XML layouts using the UI Automator dump
command. A script is then used to filter out irrelevant Android Views and parse
potential characteristics and their values into a CSV file. Distinctive identifiers
are added to facilitate widget identification, and screenshots of the home page
are taken for reference. Related widgets are identified and manually paired to
compare attribute changes between versions, with differences obtained from CSV
files. This process allows for evaluating attribute suitability as a locator, providing
insights into attribute evolution and its impact on application development. Using
a generated CSV file, we initiated the analysis of each application to compile
an Oracle table containing all attributes within the user interface. Our primary
focus was on identifying changes by examining nodes such as content description,
resource-id, and attribute progression. Additionally, for specific applications, we
also sought to extract text associated with each attribute to enrich our analysis.

Results:

Figura 1: calm with all versions and attribute variability

Results obtained in the figures 4.6, 4.7 and 4.8 we can observe that the bounds
attribute in calm application ranked as the most unstable attribute due to its
high variability approximately 80 percent of instability in different releases of
the application. Despite its frequent presence and variability in assumed values,
it’s deemed unsuitable as a locator due to instability. Changes in the "bounds"
attribute often coincide with alterations in the "index" attribute, indicating shifts
in both visual arrangement and tree structure. The attribute resource-id Ranked

iii

Figura 2: calm with all attribute changes in all releases

Figura 3: calm with all versions and oracle variability

second for instability with a variability of 70 percent. Despite Android Developers’
recommendation for uniquely identifying resources using this attribute, half of the
widget changes affect this identifier. Maintaining the "resource-id" updated across
the project requires a significant effort, especially during GUI testing outsourcing.

iv

Class and Text Attributes (Instability: 65 percent and 60 percent, respectively).
These are considered quite unstable attributes with moderate variability. Frequent
absence of values adds to their unreliability, contributing to their instability.

In our examination of visual mutations, mutation M11 emerged with the highest
frequency of visual changes in the GUI, primarily attributed to alterations in the
bound attribute. This attribute notably impacts the widget’s positioning within the
interface. Following closely is mutation M15, which involves modifications to the
widget’s graphical appearance. Notably, changes in the application’s appearance
often coincide with slight rearrangements of widgets within the interface.

Conclusion: Here are the essential findings and contributions of the research.

• We found that the five top attributes, Bounds, Resource-id, class, text, and
content-description, are the most variable.

• The study revealed notable variabilities in attributes across consecutive ver-
sions, especially in attributes like Bound, resource-id, and content description,
which directly influenced the widget changes such as layout, position, and
identification of GUI elements.

• Attribute variation had a significant visual impact on the GUI, affecting the
overall appearance and usability of the application. Variability in attributes
such as text and content description influenced the clarity and accessibility of
GUI elements.

• Using a multi-locator proved instrumental in facilitating efficient localization
and attribute analysis.

v

Indice

Elenco delle tabelle viii

Elenco delle figure ix

Acronimi xi

1 Introduction 1
1.1 Motivation . 2
1.2 Objective . 3

2 Background and state of the art 5
2.1 The Android Application Architecture 5

2.1.1 Categories of Mobile Applications 7
2.2 Introduction to Mobile Testing . 8

2.2.1 Types of Mobile App Testing 8
2.2.2 Automated GUI Testing . 9
2.2.3 Approaches for Automated GUI Testing 11
2.2.4 Challenges in Mobile Application Testing 13
2.2.5 Framework’s and Tools for Automated Testing 16

3 Methodology 22
3.1 Research Methodology . 22

3.1.1 DataSet Selection . 24
3.1.2 Visual Mutation . 28
3.1.3 Analysis Process . 31

4 Results 39
4.1 . 39

5 Conclusion 58

Bibliografia 62

vii

Elenco delle tabelle

3.1 List of selected applications with their release version and date . . . 27
3.2 Mutation operators . 30
3.3 All Oracles . 33
3.4 Oracles . 36

4.1 Attribute Variability . 55
4.2 Widget Variability . 56

viii

Elenco delle figure

1 calm with all versions and attribute variability iii
2 calm with all attribute changes in all releases iv
3 calm with all versions and oracle variability iv

2.1 Espresso Framework . 17
2.2 UIautomator Framework . 19

3.1 Visual Mutation Flow chart . 29
3.2 Difference between old release and latest release 32
3.3 Visual Difference between the consecutive releases 37

4.1 distribution of empty and valued attributes in the selected app . . 40
4.2 distribution of boolean attributes in the selected app 41
4.3 cdisplay with all versions and attribute variability 43
4.4 cdisplay with all Attributes change 44
4.5 cdisplay with all versions and oracles variability 45
4.6 calm with all versions and attribute variability 46
4.7 calm with all attribute changes in all releases 46
4.8 calm with all versions and oracle variability 47
4.9 youVersion with all versions and attribute variability 48
4.10 youVersion with all attribute changes in all releases 48
4.11 youVersion with all versions and oracle variability 49
4.12 Mirror with all versions and attribute variability 49
4.13 Mirror with all attribute changes in all releases 50
4.14 Mirror with all versions and oracle variability 50
4.15 Sketchbook with all versions and attribute variability 51
4.16 Sketchbook with all attribute changes in all releases 52
4.17 Sketchbook with all versions and oracle variability 53
4.18 Cdisplay all versions mutation . 54
4.19 youVersion all versions mutation . 54

ix

Acronimi

GUI
Graphical User Interface

SUT
System Under Test

MVC
Model View Controller

IPO
Input Process Output

JSON
JavaScript Object Notation

VCS
Version Control System

xi

Capitolo 1

Introduction

A product has a life cycle starts with its conception and concludes with its distri-
bution and release to the market. Each product must complete several tests before
being allowed on the market to comply with the law and ensure that it does so
without producing any negative impacts. The software must also be tested because
its life cycle resembles a physical object. Because it requires a lot of time and
resources—sometimes more than the design itself—and is, therefore, very expensive,
software vendors frequently undervalue this stage.

Every stage of software development should include testing. Each line of code
should pass one or more tests that confirm its accuracy, and each time a change
is made, the test is updated. However, the testing phase includes more than just
functionality verification; performance, usability, compliance with requirements,
security, and more are also examined. Mobile apps are described as mobile software
(i.e., programs that run on mobile devices) that incorporates context-sensitive
features, such as contextual sensing and adaption and context-triggered activities,
into its design. They can be divided into two categories: native apps, which are
created specifically to run on a given mobile platform by its design principles, and
web-based apps, which are built from web pages and only partially or not at all
make use of the unique capabilities of the mobile device.

Following a Statista report [1], The world’s population of mobile phone users
has grown during the last ten years. From 3.6 billion users in 2016 to 6.25 billion
in 2021 and then to 7.6 billion users by 2027, smartphone usage is anticipated to
increase gradually. Numerous applications are available on mobile devices that can
now perform functions previously only available on high-end desktop computers.

One feature that has contributed to Android’s success is the availability of mar-
ketplaces (like the Play Store) where developers may sell—or release for free—their
applications. Due to the overwhelming amount of software on those platforms and
the resulting competition, applications must fulfill their promises to users. Mobile
applications, often known as apps, are becoming increasingly important in our

1

Introduction

personal and professional lives due to the increasing number of mobile devices. In
this context, GUI testing is crucial since it enables the simulation of direct user
interaction. Automated GUI testing, in particular, makes it feasible to quickly and
consistently show that the Application Under Test (AUT) is functionally valid.
The ability to quickly run the same tests on demand on the target AUT is another
benefit of having a set of automated tests. If the tests are successful, this ensures
that the application problems won’t recur. The structure and workflow of the
application GUI are susceptible to changes, and GUI test scripts often refer to
precise sequences of operations to be performed on particular GUI widgets.

An automated test suite is created to ensure that all of an app’s components
function properly; if a test case fails, it should indicate improper application
behavior. Even though this is generally true when testing the application at a
lower level, such as with unit testing and integration testing, when testing apps
through their GUI, tests may also fail because of locator changes. Locators help
testers pinpoint specific elements on screens and access widget functionality.

It is common for an app’s GUI, internal description, or properties to change
over time as it develops, either with minor attribute adjustments to some widgets
or a whole new visual design on some screens. In both situations, tests may fail if
the widget locators change between releases, which requires fixing tests with a new,
accurate locator. These test failures are due to a failure with a widget’s location
procedure rather than an issue with the app itself.

1.1 Motivation

This research addresses the challenges posed by attribute changes in mobile ap-
plication development. Attributes such as bounds, resource ID, text, and content
description play a crucial role in defining the appearance and behavior of UI ele-
ments within mobile applications. However, managing attribute variations can
be complex and time-consuming, often leading to unexpected widget changes and
visual inconsistencies in the graphical user interface (GUI).

Understanding the impact of attribute changes on widget modifications and GUI
visual appearance is essential for ensuring the usability and effectiveness of mobile
applications. By investigating how attribute variations influence widget changes
and visual alterations in the GUI, we can gain valuable insights into optimizing
software development processes and enhancing user experience.

Furthermore, utilizing multi-locator strategies presents an opportunity to stream-
line attribute analysis and widget localization. Multilocator techniques enable the
simultaneous identification of multiple widgets based on various attributes, offering
a more efficient and effective approach to GUI testing in mobile applications.

2

Introduction

1.2 Objective
This thesis explores using multi-locator strategies to analyze widget attribute
changes and their visual impact on mobile application graphical user interfaces
(GUIs). Through a comprehensive examination of attribute changes such as bounds,
resource ID, text, and content description, this research aims to demonstrate multi-
locator techniques’ effectiveness in simultaneously locating multiple widgets. The
study encompasses a detailed analysis of attribute variations across consecutive
application versions, highlighting their influence on widget changes and the resultant
visual alterations in the GUI. This investigation provides valuable insights to
inform software development practices and enhance the user experience. This thesis
investigates how to increase location robustness by combining different locator
variables. We present the findings of an experimental investigation that looked at
the distributions of locator values in well-known Android applications to determine
which qualities are more stable and less subject to change when used as locators.

3

Capitolo 2

Background and state of the
art

2.1 The Android Application Architecture

Android is a mobile operating system based on the Linux operating system kernel.
An android comprises an operating system and a software platform where the
operating system allows the application to run, which is somewhat different from
the traditional applications by default. An Android application distribution comes
with a set of minimal applications like (browser, email client) setting applications,
which any third-party application can replace.

The Linux kernel acts as a hardware abstraction layer between the device’s
physical layer and the Android software stack. The kernel manages the permission
of who can do what, which files are readable and which files are executable which
operations to invoke and it also manages the security.

The kernel manages the memory allocation to spread the physical memory
among the Android monitors. It also manages the processes and the threads of
the network layer whenever you need to open a network connection. Basically, it
is the operating system that is in charge of returning you to a socket, and it also
manages all the hardware and peripherals such as display, keyboard, camera and
flash memory that contains the file system.

Each Android system has its own process, and inside the process is an instance
of the Android runtime library, the ART(Dalvik) virtual machine. The Android
application framework provides some basic components that respond to different
user experience needs. Android apps declare in the AndroidManifest.xml file their
main components, which can be of four different types:

5

Background and state of the art

Activities

The elements in charge of an app’s user interface are called activities. Each activity
is a window with different UI components, like buttons and text fields. By providing
the proper callbacks for each life-cycle phase (i.e., generated, paused, resumed, and
destroyed), developers may regulate the behavior of each activity. Because they
respond to user input events like clicks, activities are the main focus of Android
testing tools.

Services

Services are parts of a program that can perform time-consuming tasks in the
background. Because they do not have a user interface, testing tools for Android
generally do not directly target them; however, they may be indirectly tested
through some activities.

Broadcast receivers

Interprocess communication is made possible by broadcast receivers and intents.
Apps can register broadcast receivers to get notifications about particular system
events via intents. As a result, apps can respond. For example, if a new SMS
is received, a new connection becomes accessible, or a new call is placed. The
manifest file or the app’s code can both specify broadcast receivers at runtime.
Testing tools must be aware of the relevant broadcast receivers to fully examine an
app’s behavior and set the appropriate intents.

Content providers

Content providers provide a structured interface to shared data storage, such
as calendars and contact databases. In addition to making them available to
other apps, apps may have their content suppliers. Like all software, an app’s
behavior may be influenced by the condition of these content providers (such as
whether or not a list of contacts is empty or contains duplicates). Because of this,
testing tools should "mock" content providers to make tests more deterministic and
comprehensive of an app’s behavior. [2]

Fragments

Fragments In Android development, a fragment is a modular and reusable com-
ponent representing a portion of a user interface (UI) and its associated behavior.
Fragments are used to create flexible and dynamic UI designs that can be combined
and reused across different activities or within a single activity.

6

Background and state of the art

Android introduced Fragments to address the challenges of creating responsive
UIs that adapt to different screen sizes and orientations. Using fragments, developers
can build UI components that can be added, removed, or replaced dynamically
within an activity based on user interactions or device configurations.

2.1.1 Categories of mobile applications
App development is driven by one of three types of mobile apps: native, web-based,
and hybrid. And even though they all have unique structures and approaches to
writing code, they also have several similarities. We’ll get into each category’s
specifics in this section.

Native apps

The creation of native apps is specific to one platform or operating system. Additio-
nally, they employ a programming language unique to that platform or operating
system. Usually, users can use iOS, Android, or Windows Phone. In practice, that
means a native app will depend on a platform’s ecosystem in addition to using the
platform’s native API to support features like app distribution. For instance, a
native Android app would use the codebase for the Google Play store. However,
native apps can provide better user experiences by adapting to the features of
particular operating systems.

Native apps are directly executed by hardware. Because of this, they can
support robust performance, high levels of security, and cutting-edge features that
are "native" to the particular operating system. This implies improved performance
capabilities and possibly fewer bugs to fix. For various kinds of mobile apps, the
following are some of the codebases that are most frequently used across the three
operating systems:

• iOS: Programming languages include Swift, Python, and Objective-C

• Android: Programming languages include Kotlin and Java

• Windows: Programming languages include C and .NET

Web-based apps

Mobile apps that use web-based technology are known as web apps. Avoid downloa-
ding or installing them onto a device because they may be accessed using a mobile
web browser. Additionally, they are internet-capable, giving them more flexibility
and a responsive design that works with any mobile device or operating system.

Web apps have a single codebase and use languages like HTML5, CSS, Javascript,
and Ruby. Additionally, they employ the developer’s preferred web application

7

Background and state of the art

frameworks or server-side languages, such as PHP, Rails, or Python. A ready-made
SDK is unavailable for web mobile applications, which only employ a small subset
of native functionalities.

Hybrid apps

A hybrid app combines a native app and a web app, making it one of the many
varieties of mobile apps. In reality, it’s made as a web app that runs inside a native
app container. Hybrid apps provide the advantages of a native experience while
adapting to non-native situations by utilizing specific native platform capabilities
and device hardware. However, hybrid apps use front-end development tools like
React, JavaScript, HTML5, Ionic, Cordova, and CSS to power this cross-platform
functionality. Additionally, users can download hybrid apps from their app store
because they offer better access to native device APIs and hardware than non-hybrid
alternatives like Ionic, Cordova, Flutter, Electron, Swift, and Sencha Touch.

2.2 Introduction to Mobile Testing
Mobile testing refers to testing mobile applications and ensuring their functionality,
usability, and compatibility on various mobile devices. With the rapid growth
of the mobile industry and the increasing number of mobile applications, it has
become crucial to test mobile apps to deliver a seamless user experience.

Mobile testing involves comprehensively examining mobile applications across
different platforms, such as iOS, Android, and Windows, considering the diverse
screen sizes, resolutions, hardware capabilities, and operating systems. The pri-
mary goal of mobile testing is to identify any issues or bugs that may affect the
performance, stability, and security of the application

2.2.1 Types of Mobile App Testing
To address all the above technical aspects, the following types of testing are
performed on mobile applications.

• Usability testing – To ensure that the mobile app is easy to use and provides
a satisfactory user experience to the customers.

• Compatibility testing – To ensure that the Testing of applications in different
mobile devices, browsers, screen sizes, and OS versions is according to the
requirements.

• Performance testing – To ensure that the application does not exploit any
available resources since they can be limited.

8

Background and state of the art

• Security testing – To ensure that an application is tested to validate if the
information system protects data.

• GUI Testing – To ensure correct behavior and state of the GUI. This includes
verification of data handling, control flows, states, and display of windows and
dialogs.

Testing mobile GUI applications raises unique challenges: the character is
event-driven, which makes GUI applications non-deterministic; the user can click
anywhere on the screen. The growth platform is usually distinctive from the target
platform for mobile applications. Testing the nearly unlimited variety of feasible
states a GUI might have is impossible. This makes mobile GUI testing more
difficult compared to pure functional testing.

GUI testing can be done in two ways:
Manual GUI testing - Manual testing of Android applications involves

testing an Android app’s functionality, usability, and performance using human
testers. It typically requires testers to interact with the app on real Android
devices or emulators to simulate real-world usage scenarios. Manual testing can
be time-consuming and prone to human error. Consider complementing it with
automated testing techniques to increase test coverage, improve efficiency, and
ensure consistent results.

Automated GUI testing - Automated testing in mobile applications involves
using specialized tools, frameworks, and scripts to automate test cases and verify
mobile apps’ functionality, performance, and usability. Automated testing offers
several benefits, including increased test coverage, faster execution, improved
reliability, and the ability to run tests on multiple devices and configurations.

2.2.2 Automated GUI Testing

The advantages of automated software testing over manual testing include increased
test frequency. However, there are drawbacks, such as the fact that most methodo-
logies only function at low levels of system abstraction. Several automated test
methods work against or through the GUI to test the SUT at a higher level. These
GUI-based testing methods have been divided into three chronological generations
to illustrate their distinctions better. How they interact with the SUT, whether
through precise coordinates, GUI hooks, or image recognition, varies depending
on the generation. In this section, we present the key properties of the three
generations.[3]

9

Background and state of the art

First Generation: Coordinate-Based

The first generation of automated GUI testing refers to testing graphical user
interfaces (GUIs) by specifying and interacting with GUI elements based on their
screen coordinates. In this approach, testing tools or scripts are programmed to
simulate user interactions by providing X and Y coordinates to locate and interact
with GUI elements such as buttons, input fields, or dropdown menus.

In coordinate-based testing, the tool uses predefined coordinates to click on
specific areas of the screen or move the cursor to perform actions. For example, if
there is a login button on a GUI, the testing script would be programmed to click
on the coordinates corresponding to the position of that button.

This approach has its limitations. Since it relies on fixed coordinates, any
changes to the GUI layout, screen resolution, or device size can cause the test script
to fail. Even small changes in the GUI can lead to significant issues in maintaining
and updating the tests. Moreover, coordinate-based testing is highly dependent on
the GUI structure and may not be suitable for complex or dynamically changing
interfaces.

Due to these limitations, coordinate-based testing has been largely replaced by
more advanced and flexible approaches such as user identifiers (e.g., IDs, classes,
or XPath) or visual recognition techniques. These newer methods allow for more
robust and maintainable automated GUI testing, adapting to changes in the UI
and reducing the fragility associated with coordinate-based testing.[3]

Second Generation: Component/Widget-Based

The second generation of automated GUI testing refers to testing graphical user
interfaces (GUIs) by using hooks into the SUT’s GUI. The testing tool can access
and alter GUI events and data using hooks. Additionally, most tools from the second
generation offer record and replay, which reduces the cost of test development.
Additionally, most tools assist the user by maintaining the property data for GUI
components, such as ID numbers, labels, and component types. These properties
must have this functionality because they are confusing.

Without technical or subject knowledge, a human tester cannot intuitively
recognize a component from its ID number or component type. However, groupings
of attributes, when combined, allow the tester to differentiate between components.
Indirect interaction with GUI controls, information retrieval, and answer validation
are all capabilities of test scripts or tools. Compared to coordinate-based testing,
second-generation testing enables higher-level testing by interacting with the SUT
more abstractly. It provides more flexibility and maintainability than the prior
generation.[3]

10

Background and state of the art

Third Generation:

The third generation of automated GUI testing refers to a method of testing
graphical user interfaces (GUIs) by Visual GUI Testing, which involves utilizing
image recognition techniques to interact with the System Under Test (SUT) based
on visual elements. Visual GUI testing uses image recognition techniques to
recognize and interact with GUI elements. The testing tool takes screenshots or
images of the SUT’s GUI and analyzes them rather than utilizing coordinates or
hooks. The testing tool uses image recognition to recognize GUI elements including
buttons, icons, text fields, and labels based on their outward look. This makes it
possible to interact with the GUI without relying on certain coordinates or hooks.

Compared to earlier versions, Visual GUI Testing is more robust and flexible.
It is more resistant to minor visual alterations since it can handle changes in
the GUI layout, size, or position of elements. It is ideal for testing complicated
or dynamically changing interfaces to use visual GUI testing. It can deal with
situations in which GUI elements are dynamically generated or changed, which
makes it simpler to automate the testing of such interfaces. Testing based on image
recognition can be computationally expensive since it needs complex algorithms to
evaluate and compare images. This might affect how quickly and effectively tests
are run.[3]

2.2.3 Approaches for Automated GUI Testing

Random/Fuzzy Testing

Software applications are tested using the random testing technique, which generates
random, independent inputs. The output results are compared to the program
requirements to determine whether the test was successful or unsuccessful. Program
exceptions are used to identify test case failures without specifications. Almost
all other test suite-generating approaches incorporate random testing as a core
component.

Using erroneous, unexpected, or random data as inputs to a testing object is
called "fuzzing testing." It is frequently used to check for security flaws in computer
systems or applications. The primary attention then switches to monitoring the
application for errors like crashes, failing built-in code assertions, or discovering
potential memory leaks. Fuzzing testing differs from random testing in that it
primarily accepts unexpected, erroneous inputs—often on purpose—and focuses
on tracking crashes and other exceptions of the tested apps. In contrast, random
testing is not required to adhere to any such software criteria. [4]

11

Background and state of the art

Model-based Testing

Model-based testing advances traditional testing approaches by automatically
producing test cases based on a model representing the system’s functioning under
test. The final test technique is frequently extensive, even if such a methodology
necessitates a significant, typically manual, effort to develop and build the model
since test cases can be automatically generated and run. According to [4], the most
prevalent methodology used in Android testing literature is model-based testing:
In 63 percent of papers, model-based testing procedures are used. A thorough
documentation of Takala et al.’s [5] experiences using model-based GUI testing
on Android apps were presented. They frequently review how apps are modeled,
model-based testing and test automation are deployed, and how tests are created
and carried out.[4]

Capture and Replay Testing

Each user interface element in Android is a subclass of the View class. A view is
in charge of drawing and takes up a rectangle area on the screen. The Android
platform offers a collection of pre-built views that can be utilized to create a Button,
CheckBox, or TextView in a user interface. Furthermore, a view is a component of
a user interface screen. In a hierarchy, child views are placed on the tree’s branches,
and a root view is placed at the top. A root view is typically a layout view (i.e.,
container view). The layout, a subclass of ViewGroup (a subclass of View), is
utilized to manage the placement of child views on the screen. A perspective is
also in charge of managing unexpected events inside of the view. User events in
Android are received by the top view in the hierarchy and passed down until they
reach the right place (the view currently in focus). As a result, in our method, the
source code of the Android application under test (AUT) is instrumented, and a
mock layout called InterceptLayout.

. The InterceptLayout will analyze the user events it has recorded and related
test scripts will be generated automatically. The suggested approach will capture
two different kinds of events: key and touch events. A key event is set off when
users push a physical key on a device, like the Home or Menu button. The produced
script will essentially send a key event with a key code corresponding with the
physical key being pushed to the device for such a key event.

A touch event is set off when users contact a touch-enabled device’s screen. Any
movement gesture on the screen counts as a press, a release, or other action. The
suggested solution will first get the screen coordinates of the event and the intended
target UI component (i.e., widget) to construct the appropriate test scripts for
touch events. The appropriate test script is then built to send the events and
actions to the target UI component, depending on the target UI component and
event action code information.

12

Background and state of the art

The proposed method enables users to enter assertions that may be used to
evaluate whether the runtime outputs of UI components are accurate to verify the
execution outcome of an Android application. When capturing user interactions
immediately following the occurrence of the target UI component for the assertion,
the assertion may be added.

The AUT and the test script are assembled and packaged into an.apk file to
replay the recorded test script. This file is uploaded to the target device through
Android Debugging Bridge (ADB), a toolset of the Android SDK that enables
connection between the desktop computer and the target device. The execution
results of this apk file, including the conclusions of the assertions, are logged and
delivered back to the desktop for additional analysis and presentation.[6]

Scripted and White-Box Testing

In a white-box testing scenario, the program is evaluated while being aware of the
specifics of its implementation. Developers typically use unit testing in the early
stages of software development. Once all the software components have been put
together, comprehensive testing—also referred to as regression testing—is a typical
usage case. When a strategy in this SLR calls for knowledge of the app source (or
byte) code, whether obtained directly or by reverse engineering, we refer to it as a
white-box approach [4]

2.2.4 Challenges in Mobile Application Testing
According to a report published by Statista [1] Over the past ten years, the number
of mobile phone users around the globe has increased. Smartphone usage is expected
to rise steadily, from 3.6 billion users in 2016 to 6.25 billion users in 2021 and then
to 7.6 billion users by 2027.

Mobile technologies, such as smartphones, have integrated seamlessly into our
lives and will continue to do so. Only mobile programs, or "Apps," can perform
all of the capabilities of a smartphone. Due to the rise in the number of mobile
OS and browser combinations. To be at the top of their game, developers and
testers must overcome several significant obstacles. Adopting methods to overcome
difficulties in mobile testing is essential, particularly in light of the end-user’s
current hyper-awareness of what they desire.

Mobile apps, as opposed to desktop or web applications, are much more event-
driven, accepting user input and adjusting to environmental changes due to a
wide range of sensors and hardware components that provide interfaces for touch-
based gestures, temperature measurements, GPS locations, orientation, and other
functions. Developers find simulating these various input possibilities challenging in
safe testing settings. Additionally, due to time and financial restrictions, testing apps

13

Background and state of the art

against a broad range of configurations indicative of "in-the-wild" circumstances
is less likely to be done by startups, small development teams, or even major
corporations. A list of problems and a possible solution is presented by Linares-
Vasquez et al [7]

Fragmentation

The numerous mobile application icons are what immediately come to mind when
we talk about mobile applications. The mobile device’s operating system is its
heart. Each operating system has a different set of rules and ways of operation
that assist the programs running on the device. Most manufacturers use the size
of the mobile device’s screen as a smanytice customers to buy larger phones. So,
numerous configurations have been created using various devices, versions, and
operating systems. It is quite challenging to test the application in all settings
because there are so many of them, not to mention how expensive that would be.

Moving the testing step to cloud/crowd-based services, which give developers
the capacity to test apps on a great number of virtual and physical devices or with a
multitude of users using various devices, maybe a potential solution to this problem.
Anyhow, this kind of service is typically more expensive and time-consuming than
what Agile and DevOps practices would allow.[7]

Test Flakiness

Many modern mobile apps frequently utilize back-end services. The greater an
app’s reliance on back-end servers and services, the more susceptible it is to race-
condition scenarios, loss of service brought on by a lack of connectivity, response
time outs, and data-integrity problems during large-scale data transfers to and from
a device. These situations have the potential to generate nondeterminism in-app
behavior and results, which has an immediate influence on testing: test cases may
fail (or pass) as a result of non-deterministic outcomes that change assertions. This
phenomenon is known as test flakiness

Flaky tests frequently appear while testing complex apps because of assumptions
codified in test scripts and test sequences (such as the inter-arrival time between
events) and a lack of techniques for spotting unexpected circumstances when
contacting back-end servers/services in both the app and the tests. Other "flakiness"
sources include different run-time device states that rely on the resources available
when running the tests.

Espresso only performs GUI events in test cases when the GUI is not in use,
lowering the risk of tests failing due to longer-than-expected inter-arrival delays.
However, both from the GUI front-end and services back-end perspectives, test
flakiness continues to be a significant challenge for automated approaches.[7]

14

Background and state of the art

Lack of History Awareness in Test Cases

In test cases for mobile apps, history awareness has mostly been analyzed in two
ways:

• Event-Flow-Graphs- Using different GUI states (like windows or screens)
and transitions (between the states) defined as input events (like clicking the
OK button), EFGs simulate GUI behavior as a finite state machine; EFGs are
extracted from apps automatically while they are running, manually, using
static analysis tools like GATOR.

• Language Model- In testing, the words are GUI events, and the distributions
are created by examining execution traces gathered during the execution of
the software. Language models are probabilistic distributions computed over
sequences of tokens or words.

Although EFGs lack a specific memory mechanism, we can still execute in the
past by navigating the graph. Instead, language-based models explicitly implement
memory by creating the subsequent event in the sequence based on the previous
ones using a conditional probability distribution.[7]

Difficulties in evolving and maintaining GUI scripts

The process of creating test scripts takes time since a practitioner must record
or create the test for each target device. However, these scripts are frequently
either related to the locations of the displays or affected by reactive GUI layout
changes on devices of various sizes. When modifications affect the GUI (or GUI
behavior) as expected in the scripts, test scripts must be updated as the application
progresses. Although scripts are coupled to component ids that are subject to
change, automation APIs like Espresso allow for the partial decoupling of GUI
events from device characteristics. A current method for automatically evolving
scripts created or recorded utilizing Automation APIs does not exist as of yet.

Models, like those used in some AIG techniques, could be one potential solution
to this issue. Theoretically, a model could co-evolve with an app’s modifications,
and test cases might be produced using the model’s ongoing updates. Although
this could currently be achieved by automated GUI-ripping approaches (and tools
based on systematic exploration) that extract the model at run time, this approach
wastes the potentially useful knowledge embedded in previously generated models
because the model is generated "just-in-time".[7]

Absence of mobile-specific testing oracles

Several options have been investigated for the deployment of mobile application
oracles. Some of those depend on the state of the graphical user interface (GUI)

15

Background and state of the art

or the raising of exceptions and errors to determine whether or not a test has
failed. The lack of specialized oracles is still a problem; methods that rely on
app-raised exceptions can help identify crashes and unexpected problems but cannot
distinguish between errors occurring on the GUI and vice versa.

Oracles are still manually implemented and updated as a result, making them a
very expensive voice in testing processes.[7]

Missing support for multi-goal automated testing

Most testing operations and currently applied methods concentrate on destructive
testing intended to elicit failures from mobile applications. However, this is only
a small portion of the various testing methods that mobile app developers must
use to guarantee that their creations are of the highest caliber and function as
intended. Regression, functional, security, localization, energy, performance, and
play-testing are other crucial forms of testing.[7]

2.2.5 Framework’s and Tools for Automated Testing
For developers, the Android Testing Support Library [8] provides a flexible testing
framework that supports the testing of single and multiple activities running on
the same device. The framework is built on the AndroidJUnitRunner Java class,
which enables the execution of JUnit3 and JUnit4 tests on Android applications.
UI Automator and Espresso use it to run their tests.

There are further testing tools available in the literature that can build interface
test cases automatically using either random numbers or a model.

Espresso

Espresso is an open-source automation framework that uses a gray-box methodology
to test the GUI of a single application. To actuate the most pertinent input
simulations of the framework, the internal arrangement of the parts inside the view
tree of the application must be known. The name of the class that is instantiated
by the application’s first action must be provided by the programmer.

Espresso’s onView() method makes finding particular UI elements in an appli-
cation possible. The method accepts a Matcher as a parameter, which enables
selecting the appropriate view based on certain criteria. For example, views can be
chosen based on their class names or IDs, current state, or textual content. Similar
functionalities are offered by the onData() method, which is made to operate with
AdapterViews. By using ViewInteraction.perform() and DataInteraction.perform(),
Espresso enables the execution of operations on selected views (such as clicking,
typing, pressing buttons, and swiping).

16

Background and state of the art

To match and discover UI elements/views in the view hierarchy of an Android
activity screen, Espresso offers a wide variety of view matcher classes (in the androi-
dx.test.espresso.matcher.ViewMatchers package). The onView method in Espresso
accepts a single Matcher (View matchers) parameter, locates the relevant UI view,
and returns a ViewInteraction object. The ViewInteraction object produced by the
onView method can also be used to assert the matched view or to trigger actions
like clicking on it.

When a view is selected or matched, Espresso offers various view action classes
(under android.test.espresso.action.ViewActions). Any action can be called by
calling the "perform" method of the ViewInteraction object and passing it the
appropriate view actions once onView matches and returns the ViewInteraction
object.

Espresso offers various view assertions (in the androidx.test.espresso.assertion.
ViewAssertions package) to guarantee the matched view is what we anticipated,
much like view matchers and view actions. Any assert can be checked using the
check function of ViewInteraction by feeding it the appropriate view assertion once
onView matches and returns the ViewInteraction object.

Figura 2.1: Espresso Framework

UIAtomator

UI Automator is a functional cross-app UI testing framework for installed and
system apps. Depending on which activity has the focus, the UI Automator APIs

17

Background and state of the art

allow you to interact with visible items on a device, enabling you to perform
actions like opening the Settings menu or the app launcher on a test device. Useful
descriptors like the text displayed in a UI component or its content description
can be used in your test to look for that component quickly. UI Automator allows
access to the device state in addition to the features offered by Espresso. It is
possible to find out the device’s orientation, the size, and the resolution of the
screen, as well as to carry out actions like rotating the device and touching buttons.

The following are some of the main characteristics of the UI Automator testing
framework:

• UiDevice- The main method for accessing and controlling a device’s state is
through the UiDevice object. UiDevice methods are used in tests to examine
the status of different attributes, such as the display size or current orientation.
The UiDevice object can also be used in the test to carry out device-level
operations by rotating the device in a certain direction and pressing the Home
and Menu buttons and the D-pad hardware buttons.

• UiCollection- Lists all of the UI elements in a container so that they may be
counted or targeted based on their visible text or content-description properties.
If you want to recreate user interactions with a collection of things (like songs
in a music album or a list of emails in an inbox), the UiCollection class is
used. Specify a UiSelector that looks for a UI container or wrapper of other
child UI components, such as a layout view containing child UI elements, to
generate a UiCollection object.

• UiObject- A UI element displayed on the device is represented by a UiObject.
Finding a UiObject that represents a view that fits a selector criterion can
be done using the findObject() method. As required, the UiObject instances
are used to build in other phases of app testing. It should be noted that each
time the test utilizes a UiObject instance to click on a UI element or query a
property, the UI Automator test framework looks for a match in the current
display.

• UiScrollable- Searching for items in a scrollable UI container is supported by
UiScrollable. The UiScrollable class emulates vertical or horizontal scrolling
across a display. This method is useful when you need to scroll to see an
off-screen UI element.

• UiSelector- A UiSelector represents a query for one or more target UI
components on a device. The first matching element in the layout hierarchy is
returned as the target UiObject if multiple matching elements are discovered.
The search can be narrowed by chaining together several attributes when
building a UiSelector. A UiAutomatorObjectNotFoundException is raised if

18

Background and state of the art

no matching UI element is located. To nest several UiSelector instances, we
can use the childSelector() function. Using a Resource ID rather than a text
element or content descriptor is suggested when specifying a selector. Not all
items include text (icons in a toolbar, for instance). Because text selectors
are fragile, even little UI changes can cause tests to fail.

Figura 2.2: UIautomator Framework

Appium

Appium is an open-source tool that is widely used for automating mobile application
testing, including Android testing. It provides a framework and APIs for testing
native, hybrid, and mobile web applications on Android devices. Here are some
key features and concepts related to using Appium for Android testing:

• Cross-platform Capability: Appium is designed to support both Android
and iOS platforms, allowing you to write test scripts that can be used across
different mobile platforms with minimal changes.

• WebDriver Protocol: Appium implements the WebDriver protocol, which
enables you to write tests in various programming languages such as Java,
Python, Ruby, etc. You can use WebDriver commands to interact with the
application’s user interface elements and perform actions like tapping buttons,
entering text, swiping, and verifying element states.

19

Background and state of the art

• Real Devices and Emulators: Appium supports testing on real Android
devices and emulators/simulators. You can specify the desired device or
emulator configuration in your test scripts, allowing you to test your app on
various devices with different screen sizes, resolutions, and Android versions.

• Appium Server: The Appium server bridges your test scripts and the mobile
device/emulator. It receives commands from your test scripts, translates them
into the appropriate actions, and executes them on the target device.

• Desired Capabilities: When initiating a test session, you need to define
desired capabilities, which are a set of key-value pairs that provide information
about the test environment, such as the device name, platform version, app
package name, app activity, and more. These capabilities help Appium identify
the device and application to test.

• Inspector Tools: Appium provides inspector tools, such as Appium Desktop
and Appium Inspector, which allow you to inspect the UI hierarchy of your
application and identify the unique identifiers (e.g., resource ID, XPath,
accessibility ID) for the elements you want to interact with in your test scripts.

• Integration with Test Frameworks: Appium can be integrated with
popular test frameworks like JUnit, TestNG, NUnit, and others, allowing you
to organize and manage your test scripts effectively.

These frameworks provide features for test case management, reporting, and running
tests in parallel. Appium’s extensive documentation, community support, and
active development make it a popular choice for Android testing. It provides a
flexible and powerful platform for automating mobile app testing, allowing you
to write reliable and scalable test scripts to ensure the quality of your Android
applications.

20

Capitolo 3

Methodology

3.1 Research Methodology
The goal of this chapter is the widget analysis of Android application and their
attribute usage. Widget analysis of an application is the process of examining
the various widgets or user interface elements present in a mobile application. It
involves assessing their functionality, design, placement, and overall user experience.
To understand what changes are made in the application’s graphical user interface
with respect to time and with a new release of the application. Here are some key
aspects to be considered during the widget analysis of a mobile application

• Widget Types: Identify the different widgets used in the application, such
as buttons, text fields, checkboxes, radio buttons, drop-down menus, sliders,
lists, tabs, etc. Understand their purpose and how they contribute to the
app’s overall functionality.

• Widget Placement: Evaluate the placement of widgets within the applica-
tion’s screens. Assess if the placement follows standard design principles and
if it facilitates easy access and interaction for users. Ensure that widgets are
logically grouped and located where users expect to find them.

• Widget Styling and Visual Design: Analyze the visual design of widgets,
including their color, shape, size, font, and overall aesthetics. Ensure the
styling is consistent throughout the application and aligns with the app’s
branding guidelines. Pay attention to the contrast, readability, and visual
hierarchy of widgets.

• Widget Labels and Instructions: Review the labels and instructions
associated with each widget. Check if they are clear, concise, and meaningful

22

Methodology

to users. Labels should provide users with a clear understanding of the purpose
and functionality of the widget.

• Widget Interactions and Responsiveness: Evaluate how users interact
with widgets and assess their responsiveness. Test the behavior of widgets when
tapped, swiped, or interacted with using gestures. Ensure that widgets provide
appropriate feedback, such as visual cues or haptic feedback, to indicate user
actions and system responses.

• Widget Usability and Accessibility: Consider the usability of widgets
by assessing their ease of use and intuitiveness. Check if widgets adhere to
accessibility guidelines, such as providing proper labeling, support for screen
readers, and accommodating users with disabilities. Ensure that widgets are
accessible to a wide range of users.

• Widget Performance: Assess the performance of widgets in terms of re-
sponsiveness, load times, and resource consumption. Verify that widgets do
not significantly impact the application’s overall performance, leading to slow
response times or increased battery usage.

• Widget Compatibility: Test the application on different devices, screen
sizes, and resolutions to ensure that widgets adapt and display correctly across
various configurations. Verify that widgets are responsive in both portrait and
landscape orientations.

• Widget Consistency: Ensure consistency in widget design, behavior, and
functionality across different screens and sections of the application. Inconsi-
stencies may lead to confusion and a fragmented user experience.

GUI testing assesses the visual elements, user interactions, and overall usability
of an application’s interface. For this reason, we choose to evaluate real applications
from the market to examine the composition of various applications. By evaluating
real applications, we can gain practical insights into the composition of GUI
components and their effectiveness in delivering a seamless user experience.

when conducting GUI testing, it is essential to examine how different applications
handle interface design principles such as layout, color scheme, typography, and
iconography. Real-world applications provide us with diverse examples to study
and compare, enabling us to identify effective design patterns and avoid potential
pitfalls. Through this evaluation process, we can determine the composition of
GUI elements that best suit users’ preferences and expectations.

This chapter focuses on the research methodology, subject pool identification
procedure, and widget analysis procedure employed in the study. These components
are critical in ensuring the validity and reliability of the research findings.

23

Methodology

Several of the qualities are connected to the widget’s functionality (such as
clickable, focused, scrollable, etc.). These characteristics are frequently boolean and
are always valued (by default, false). A different category of widgets displays the
widget’s textual content, if any, or offers a description that helps users recognize
the widget (e.g., id, content-desc,...). We are interested in learning how frequently
a value might be possible in these widget categories and how diverse the values
anticipated across apps are. An attribute is more likely to be used as a locator
if it is commonly valued (i.e., not empty) and sufficiently diverse throughout
the collection of applications, according to the logic underpinning this research.
In reality, attributes with little variability won’t effectively differentiate between
several widgets on the same screen or application. The total number of distinct
values an attribute has taken over its whole range of values is what we refer to as
variability. It shows the potential for a characteristic to take on distinct values for
various widgets.

In this analysis, we compare the attribute values between two releases. For each
application, we manually define a set of corresponding widgets or widgets with
the same functionality in both program versions. To find this set, we manually
reviewed each app’s two versions to check which widgets were related to the same
function (regardless of how they looked). We then labeled them as corresponding
widgets and used their metadata in the analysis. To determine if and how the
relevant widgets’ attributes changed over time, we compared the attribute values of
the two versions’ related widgets. By calculating these statistics, we may determine
which attributes are less suited for use as locators by estimating how unstable
the attributes are. We measure instability as the ratio of the number of times
a certain widget attribute has changed value between the chosen two versions.
Instead, stability can be considered the polar opposite of stability, meaning that
the less stable it is, the more likely it is to break.

3.1.1 DataSet Selection

When selecting an application for GUI testing, it is essential to consider both
variability and the existence of important qualities.

Variability: To check an application’s functionality, usability, and responsi-
veness, GUI testing involves interacting with the graphical user interface. Many
different platforms, operating systems, browsers, screen sizes, resolutions, and
application localization options exist. To test GUIs effectively, we must choose an
application that supports the range of variability required. This makes sure that
the tests we run are thorough and accurate to the target environment.

Existence of important Qualities: When conducting GUI testing, it is vital
to validate the application’s existence of important qualities such as functionality,

24

Methodology

usability, performance, and security. The selection of an application for GUI testing
should be based on the specific qualities critical for testing objectives.

To do this, we chose many real mobile applications from various categories. We
searched various online resources, including APKMirror, AppBrain, and fdroid,
to select the application process. In this thesis work, we have selected all the
applications from APKMirror. An APKMirror website gives users access to Android
application package (APK) files for downloading programs not offered on the Google
Play Store. The Android operating system distributes and installs apps using APK
files, a native format for that platform. For an app to run properly on an Android
smartphone, they are equipped with all of the essential code, resources, and
metadata. There are numerous instances in which APKMirror is beneficial. We
might be able to download and install programs from an APKMirror if, for instance,
the Android device we are using does not have access to the Google Play Store.
In addition, there is a way to install an older version of an application that is no
longer available through the Google Play Store. An APKMirror has all the older
versions available for download.

Application Selection Criteria

In our selection process, we focused on applications with multiple versions available.
We specifically downloaded the most recent version of each application and applied
a set of inclusion criteria to determine which versions to evaluate. These criteria
were established to ensure the relevance and suitability of the chosen versions for
our analysis.

The following inclusion criteria were employed:

• IC0: The application must have multiple versions available on APKMirror,
which hosts various Android application packages (APKs). This criterion
allowed us to select applications with a history of updates and improvements.

• IC1: We considered the most recent version of each application to ensure that
our analysis focused on the latest developments and features. This criterion
enabled us to evaluate applications that were up-to-date and relevant to users.

• IC2: We assessed whether the application met our minimum standards for
functionality and usability. This criterion ensured that the selected applications
were viable candidates for evaluation and provided meaningful insights into
the composition and characteristics of their GUI components.

• IC3: The application’s availability on APKMirror was crucial to ensure access
to different versions for comparison. This criterion ensured that the selected
applications could be reliably sourced and evaluated.

25

Methodology

• IC4: The application’s home screen must be accessible without registering or
logging in explicitly. The use of a login based on an external API (such as
login via Google, Facebook, or Twitter), deemed an acceptable example, is
excluded from this criterion.

• IC5: The previous version must be installed on the utilized Google Nexus 5X
Android Virtual Device (AVD), which must be running Android SDK 29.

We initiated an iterative evaluation process after satisfying the first four inclusion
criteria. We examined each version of the application available on APKMirror,
starting from the earliest release and progressing to the most recent. This iterative
approach allowed us to track the evolution of the application’s GUI components
and assess any changes made over time.

We compared each version’s GUI components, functionalities, and user expe-
riences during the iterative evaluation. We aimed to identify notable differences,
improvements, or regressions in the GUI composition. This iterative process ena-
bled us to gain insights into the evolution of the application’s GUI elements and
understand the progression of its design and usability.

The evaluation continued until we encountered a version that satisfied the
fifth inclusion criterion, IC5. The details of IC5 were not provided, but it likely
represented a specific requirement related to the application’s GUI components,
functionality, or user experience. Once a version meeting IC5 was identified, it was
considered the final version for our analysis.

By employing these inclusion criteria and the iterative evaluation process, we
ensured that our analysis encompassed the applications’ most recent and relevant
versions, enabling a comprehensive examination of their GUI components and their
evolution over time.

Tabella 3.1, we present a complete list of applications used in the study. Each
application is described with its corresponding category, package name, release
name, and publication dates of the two versions under consideration. Each row
represents an application, and the corresponding columns provide the necessary
information about the application. The breakdown of columns is as follows:

• Category: The category or classification of the application (i-e, productivity,
Art, Books, Comics, etc.)

• Application: The name or identifier of the application.

• OldV: The specific version or release name of the application (i-e version3.7.2)

• Release: The publication dates of the two versions under consideration. It’s
associated with the release name of each application.

26

Methodology

Category Application OldV Release NewV Release
Art Sketchbook 3.7.2 18-10-2019 5.3.1 27-06-2022

Auto CarMax 2.47.1 30-08-2018 3.31.0 13-02-2023
Beauty Mirror Plus 2.9.1 24-09-2016 4.2.2 24-03-2023
Books YouVersion 6.4.2 21-12-2016 9.20.0 27-02-2023

Business UPS mobile 4.5.0 07-08-2016 9.9.3 14-03-2023
Comics Cdisplay 1.1.70 08-04-2023 1.3.57 08-03-2023

Communication Firefox 65.0.1 13-02-2019 111.0.0 14-03-2023
Education Google Classroom 4.5.212 12-06-2018 8.0.341 02-11-2022

Entertainment Tubi 3.7.0 01-12-2020 4.43.2 10-03-2023
Events Gametime 11.2.15 28-03-2019 2023.3.0 03-03-2023
Finance wise 7.29.1 13-10-2021 8.3.2 23-03-2023

Food Burger king 6.2.0 14-05-2019 6.25.25 20-03-2023
Health Calm 3.11 03-01-2018 6.18 08-03-2023
House Angi 21.0.18 26-11-2021 23.10.0 15-03-2023

Libraries Allinone toolbox 6.4.3 08-08-2016 8.3.0 30-03-2023
Lifestyle Pinterest 8.39.0 24-10-2020 11.9.0 16-03-2023

Maps Transit 4.3.1 16-11-2017 5.13.5 24-02-2023
Media Video downloader 1.1.98 21-9-2020 2.4.6 21-03-2023

Medical Nevada COVID trace 1.2.11 05-10-2020 1.4.0 14-09-2022
Music Soundcloud 2017.12.14 14-12-2017 2023.03.03 08-03-2023
News NewsBreak 4.6.4 27-11-2019 23.11.0 22-03-2023

Personalization Backgrounds hd 4.8.25 17-01-2017 5.0.064 16-02-2023
Photography Lightroom 4.4 13-08-2019 8.2.2 16-03-2023
Productivity HP smart 4.7.104 01-05-2018 11.0.0 22-03-2023

Shopping Walmart 22.1.1 15-01-2022 23.09.0 14-03-2023
Social Reddit 2020.30.0 13-08-2020 2023.11.0 21-03-2023
Sports FOX Sports 5.0.0 20-07-2020 5.71.0 27-03-2023
Tools Google translate 5.12.0 08-09-2017 7.0.22 15-03-2023
Travel Booking.com 11.9 28-01-2017 35.9 13-03-2023

Weather AccuWeather 4.8.2 06-07-2017 8.9.1 24-03-2023

Tabella 3.1: List of selected applications with their release version and date

• NewV: The latest version or release name of the application (i-e, version
5.3.2)

To ensure complete coverage and efficient testing, it’s important to consider
several aspects while choosing applications for GUI testing. For data set selec-
tion, we choose to test 30 applications for the following reasons: A broad and
representative selection of 30 apps represents the software landscape. Applications
from various categories, including media players, browsers, productivity tools, and
more, are included in this list. It guarantees that a wide range of GUI components,
functions, and interactions are tested. Give top programs with a sizable user base
priority. we can meet the demands and expectations of a large audience by testing

27

Methodology

frequently utilized applications. This method makes it easier to spot frequent
problems, guarantees platform compatibility and provides a better user experience.

Applications are chosen with varied degrees of sophistication. This method
allows us to evaluate the GUI testing technique for straightforward, moderately
complicated, and extremely complex interfaces. Testing apps with varying degrees
of complexity enables the discovery of potential usability problems and guarantees
a thorough testing procedure.

3.1.2 Visual Mutation

Mutation testing is a fault-based testing technique that assesses the effectiveness
of a test set by creating a set of faulty programs called mutants. These mutants
are derived from the original program by introducing simple syntactic changes,
representing common mistakes programmers make.

The goal of mutation testing is to evaluate the ability of the test set to detect
these seeded faults. Each mutant is executed using the input test set. If the output
of a mutant differs from the output of the original program for any test case, it
indicates that the seeded fault has been detected.

The mutation score is calculated by determining the ratio of the number of
detected faults to the total number of seeded faults. It represents the quality of
the input test set and indicates how effective the tests are in identifying the seeded
faults. A higher mutation score suggests a more thorough and effective test suite,
while a lower score implies that the test suite may lack fault detection capability.

By measuring the mutation score, developers and testers can gain insights into
the adequacy of their test suite and identify areas where additional testing or
improvements are needed. The ultimate goal is to achieve a high mutation score,
indicating a strong test suite that can effectively detect faults and enhance the
overall quality of the software.[9]

we started the visual mutation testing process for the GUI of the application
to identify the different components, such as buttons, text fields, and dropdowns
within the application. Generate visual mutations by applying various modifications
to the GUI components, such as changing colors, size, and positions and adding/
removing elements. Then, we captured screenshots and events (user interactions)
while executing test cases on both the original and mutated versions of the app.
To execute test cases on the mutated app, we run test cases on the mutated app to
test its behavior and capture relevant screenshots, and then we will compare the
captured screenshots between the original and the mutated versions to detect any
visual differences. After the comparison, we will analyze the comparison results
to detect visual differences, such as changes in color, layouts, missing or added
components

28

Methodology

Figura 3.1: Visual Mutation Flow chart

At last, we will classify the detected visual differences based on their severity or

29

Methodology

impact on GUI functionality by allowing for prioritization and further analysis. If
the visual mutation testing process is successful, we will end the visual mutation
testing, and if necessary, we will generate new visual mutation by repeating steps
3-8 and continue the testing process.

Mutation Operators

According to the visual mutation characterization provided by Alegroth et al. [10]
in order to link each appropriate "widget" with its modification, if any. We adopted
a portion of the full characterization (given in Tabella 3.2) for our labeling approach
because some mutant operators did not fit our needs. We identified certain mutant
operators that were more relevant or aligned with their specific requirements or
objectives. The labeling approach we adopted would involve associating each widget
with its respective modification based on the chosen subset of mutation operators.

we started our analysis from [11] as the baseline in which the first part of the
analysis was the visual comparison of two versions of the application. We considered
the mutant operator M0 to be used when nothing has changed. Mutant operator
pairs M11-M13 and M15-M16 were regarded as being mutually exclusive. The
first reason is that both mutants change the original coordinates by assuming
a different generic value or overlapping other widgets. The pair M15-M16 is
fundamentally associated with a change in the widget’s visual appearance, either
due to a change in the widget type or with a general variation. During the labeling
process, we saw that each change in a widget’s type reflected a change in its look.
We chose to designate the condition as the M16 mutant operator to achieve a more
precise description.

No. Type Mutation operators
M0 Static No changes affected the widget
M1 Remove Remove Completely
M2 Remove Invisible
M3 Duplicate Add Identical widget
M4 Duplicate Add similar widget
M5 Duplicate Add different widget

M10 Modified Reduced the size o window to hide widgets
M11 Modified Modify location of a widget to a proper location
M13 Modified Modify location of a widget to overlap with another
M14 Modified Modify size of widgets
M15 Modified Modify appearance of widgets
M16 Modified Modify the type of widgets (Button changed to TextField)

Tabella 3.2: Mutation operators

30

Methodology

In the second part, we performed a longitudinal analysis. During the longitudinal
analysis (i-e, analysis of the application in consecutive releases), we found some
useful mutant operators like M1 as some widgets are completely removed from
the app GUI and never used in the new releases. For some of the widgets partially
removed from the GUI and invisible in the app’s GUI, we used the mutant operator
M2. During the longitudinal analysis in the consecutive releases, some widgets
are duplicated by adding identical widgets, similar widgets, or different widgets for
these mutations. We considered the mutation operators M3-M5. Mutant operator
pairs M11-M13 were thought to be mutually exclusive. The first is that both
mutants alter the original coordinates by assuming a generically different value or
overlapping other widgets. The pair M15-M16 is fundamentally associated with
a change in the widget’s visual aspect, either due to a change in the widget type
or with a general variation. If no changes affected the widget, we considered it as
mutant M0.

3.1.3 Analysis Process
After downloading and installing the two chosen versions of each app on the Google
Nexus 5X AVD, a setup process was required to prepare each app for the home
screen. This setup process involved logging in with external APIs as needed and
closing all one-time screens or wizards that appear when an app is first opened
on a device. After that, we examined its XML layout, which was collected via
the UI Automator dump command. Once we had the dump file, we made a
script to filter out any Android Views that were only ever used as containers and
never appeared on the screen. The names of all potential characteristics and the
corresponding presumed values for each widget were then parsed from the remaining
widgets to produce a CSV file. Reviewing the downloaded files, we discovered
that UIAutomator had not provided any unique identifiers, such as XPath. As a
result, we decided to include a distinctive identifier in the form of a progressive
number along the UI hierarchy in the created CSV file. This will enable us to
identify between all of the widgets. We connected the matching widgets in the
two versions of the program using the said identification. The old and updated
versions of the CSV file containing the attribute values were collected for each
application. For each version, we took a screenshot of the home page to quickly
access the actual visual representation if necessary for the study. We had to identify
all the pairs of related widgets—that is, widgets that play the same role in both
the old and new versions of the program—to compare how the attributes for the
same widget changed between two different iterations of the same application.
The widgets with the same conceptual significance utilized to carry out the same
application actions were carefully inspected in all the pairings of versions of the 30
chosen apps to obtain this list of similar widget pairs. We created matching widget

31

Methodology

pairings by manually identifying the widget correspondence. The differences in the
characteristics associated with the same conceptual widget in the program were
then obtained using a lookup in the CSV files. With the help of this knowledge, it
is feasible to evaluate if an attribute is suitable from the standpoint of attribute
evolution as a locator. The main standard is that an attribute can be deemed less
reliable as a locator if it is more likely to change in future application releases.

Figura 3.2: Difference between old release and latest release

With the help of a generated CSV file, we started to analyze each application from
the list to get Oracle’s table containing all the attributes in the user interface. Our
focus is to identify the changes by considering the nodes, i-e, content-description,
resource-id, and the progress of the attribute and also for some applications if
we get the text for that attribute. In Tabella 3.3, we reported all the attributes
with the possible change in the new version of the application. These changes are
referred to as oracles.

Once we finished the analysis of widget attributes in the old and new versions,

32

Methodology

App Name Comment Old Node New Node
sketchbook main menu 1 1
sketchbook full screen 2 8
sketchbook tools menu 3 4
sketchbook brush 4 5
sketchbook color 5 6
sketchbook layer 6 7

Mirror menu 0 6
Mirror light button 4 9
Mirror freeze button 5
Mirror zoom bar 6 11
Mirror exposure bar 7 12
Mirror MIRROR 16
Mirror 3D 17

cdisplay Menu 2 40
cdisplay Search 4 41
cdisplay Display Mood 5
cdisplay Reading icon 9 18
cdisplay Series icon 11 21
cdisplay Folder icon 24
cdisplay Fevorites icon 12 33
cdisplay Download icon 13 36
cdisplay Settings icon 14 42
cdisplay Floating button 38
cdisplay Read 28
cdisplay unread 31

youVersion Menu 2
youVersion signin 4 7
youVersion HOME 8 36
youVersion READ 10 41
youVersion PLANS 12 45
youVersion VIDEOS 14
youVersion LIVE 16
youVersion Search 49
youVersion verse of the day 21 25
youVersion share verse 28 27

Tabella 3.3: All Oracles

33

Methodology

then, we extended our analysis to see what are the possible changes that occur in
the GUI of the application in each version. For this reason, we randomly selected
five applications from the list and started the longitudinal analysis of each of the
five applications. We started the analysis from the first release of the application
and continued to collect data for each release. The longitudinal analysis process is
done manually.

During this process, we downloaded every application release from APK Mirror.
We installed them on the Google Nexus 5X AVD to get the XML by using the
command UIAutomator dump to get the dump file, and then we got the XML file
for each release. For the visual verification of widgets in each version we took a
screenshot of that version, we continued the process until we get the data for the
final release that was available in the APK mirror. For each application version,
we have the XML file, the CSV file, and the screenshot.

Once we had all the data available for longitudinal analysis of that application,
we started the comparisons of the CSV file and the corresponding visual mutations,
as well as the screenshot for consecutive versions of the application. Starting from
the first release of the application, we examined the widgets used within the app
and analyzed their attributes, such as their appearance, behavior, and functionality.
It helps in identifying any changes made to the widget in the new release of the
application, widget analysis, and the potential changes that may occur in the
widget attribute after a new release.

The overall process is categorized into two steps: identifying the widgets in
consecutive releases and the changes occurring in the new release.

• Identifying widgets: start identifying the widgets used in the application,
which are the UI components that provide specific functionality and user
interaction on the home screen or with the app.

• Understanding Attributes: Analyze the attributes of each widget, inclu-
ding size, layout, appearance (colors, fonts, icons), behavior (interactivity,
animations), and data handling (data binding, updates).

• Assessing Functionality: Evaluate how each widget functions within the
application, such as button actions, input fields, progress indicators, or data
display.

• Experience: Consider the overall user experience provided by the widgets,
including ease of use, intuitiveness, and responsiveness.

When a new release of an application occurs, several changes can be made to widget
attributes based on user feedback, design improvements, or feature enhancements.
Here are some common changes that occurred.

34

Methodology

• Visual Enhancements: Widgets might receive visual updates, such as color
changes, fonts, icons, or overall styling to align with updated design guidelines.

• Layout Modifications: Widgets could undergo layout changes to improve
their positioning, spacing, or alignment within the app’s user interface.

• Added/Removed Functionality: New widgets might be introduced, while
existing ones may be removed or modified to accommodate additional features
or improve existing functionality.

• Behavior Improvements: Widgets can have changes in their behavior,
including enhanced interactivity, smoother animations, or better responsiveness
to user input.

• Performance Optimizations: Changes to widget attributes might aim to
improve performance, reduce resource usage, or optimize battery consumption.

After having all the data available for each application version, we started the
Oracle analysis of the app’s attributes with the help of a CSV file. The nodes of
attributes that we considered are the content description, resource-id, and progress.
The change in attribute values is reported in Tabella 3.4 where the first column
is the attribute itself considered for the longitudinal analysis and the columns
from A-T are the consecutive versions of the application attribute change. In the
Tabella 3.4, we reported the oracles of two different applications chosen for the
analysis process. We can see a complete detail of the attribute changes across the
consecutive releases.

35

Methodology

C
D

is
pl

ay
A

tt
ri

bu
te

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

M
en

u
2

2
2

2
2

2
2

2
2

2
40

40
40

40
40

40
40

40
40

40
Se

ar
ch

4
4

6
6

4
4

4
4

4
4

41
41

41
41

41
41

41
41

41
41

D
isp

la
y

M
oo

d
5

5
7

7
5

5
5

5
5

5
5

So
rt

6
8

8
6

6
6

6
6

6
R

ea
di

ng
ic

on
9

10
12

12
10

10
10

10
10

10
18

18
18

18
18

18
18

18
18

18
R

ea
di

ng
tit

le
10

11
13

13
11

11
11

11
11

11
19

19
19

19
19

19
19

19
19

19
Se

rie
s

ic
on

11
12

14
14

12
12

12
12

12
12

21
21

21
21

21
21

21
21

21
21

Se
rie

s
tit

le
22

22
22

22
22

22
22

22
22

22
Fo

ld
er

ic
on

13
13

13
13

13
13

24
24

24
24

24
24

24
24

24
24

Fo
ld

er
tit

le
25

25
25

25
25

25
25

25
25

25
Fa

vo
rit

es
ic

on
12

13
15

15
14

14
14

14
14

14
33

33
33

33
33

33
33

33
33

33
Fa

vo
rit

es
tit

le
34

34
34

34
34

34
34

34
34

34
D

ow
nl

oa
d

ic
on

13
14

16
16

15
15

15
15

15
15

36
36

36
36

36
36

36
36

36
36

D
ow

nl
oa

d
tit

le
37

37
37

37
37

37
37

37
37

37
Se

tt
in

gs
ic

on
14

15
17

17
42

42
42

42
42

42
42

42
42

42
Fl

oa
tin

g
bu

tt
on

38
38

38
38

38
38

38
38

38
38

R
ea

d
28

28
28

28
28

28
28

28
28

28
un

re
ad

31
31

31
31

31
31

31
31

31
31

Sk
et

ch
bo

ok
m

ai
n

m
en

u
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
fu

lls
cr

ee
n

2
2

6
6

6
6

6
6

6
6

6
6

6
6

6
8

to
ol

s
m

en
u

3
3

2
2

2
2

2
2

2
2

2
2

2
2

2
4

br
us

h
4

4
3

3
3

3
3

3
3

3
3

3
3

3
3

5
co

lo
r

5
5

4
4

4
4

4
4

4
4

4
4

4
4

4
6

la
ye

r
6

6
5

5
5

5
5

5
5

5
5

5
5

5
5

7
un

do
2

re
do

3

T
ab

el
la

3.
4:

O
ra

cl
es

36

Methodology

F
ig

ur
a

3.
3:

V
isu

al
D

iff
er

en
ce

be
tw

ee
n

th
e

co
ns

ec
ut

iv
e

re
le

as
es

37

Capitolo 4

Results

4.1

Collecting, analyzing, and interpreting data on GUI widget attributes in Android
applications involved data processing techniques, statistical analysis, and visualiza-
tion methods to gain insights into widgets’ characteristics and properties. The first
analysis is based on the total number of valued attributes.UI Automator helped us
extract this information, including details about various properties (like focused,
enabled, selected, etc) of the app. These properties can be either true or false.
The information is split into two parts to clarify the analysis, each focusing on a
different aspect of the valued properties.

In figure 4.1, Our analysis involves presenting the distribution of values that are
either empty (meaning that an empty string is found in the UI Automator dump
corresponding to that attribute) or valued (meaning that any string is found in
the dump as a value corresponding to that attribute). Based on the provided data,
we have a breakdown of the percentage of empty and present values for various
attributes in GUI widgets and the distribution of empty and valued attributes in
selected apps. Based on the graph, it can be observed that just the attributes (text,
resource-id, and content-desc) do not always have values associated with them.
Aspects generated by UIAutomator or Android Studio itself are the ones with 100
percent valued instances. Specifically, the bounds attribute relates to the upper-left
and lower-right corners of the widgets on the screen, and the class attribute always
corresponds to the Java class of the widget. Rather, the widget’s reference in the
app’s hierarchical tree structure is reported via the index attribute. Lastly, Android
Studio automatically sets the package attribute when a new View is created within
the context of an application. NAF is essentially a boolean attribute, but it is
typically not supplied (in the form of a NULL Value).

The distribution of values for the boolean characteristics that the UI Automator

39

Results

Figura 4.1: distribution of empty and valued attributes in the selected app

dump recovered is shown in Figure 4.2. The distribution of values across the
various properties is visible: while most widgets are enabled, about 80 percent
are clickable, meaning they may interact. While boolean values aren’t efficient
for finding widgets, it’s important to remember that a weighted combination can
help confirm the presence of other, more powerful locators because UI Automator
always ensures their presence. It is important to remember that an attribute with a
constant value across all widgets will not be helpful as a locator, even if the value is
assigned randomly. Indeed, in that scenario, it would be impossible to distinguish
between several widgets using the locator’s value alone. This means the analysis
must be deeper by combining data on the availability of values for a characteristic
with the many values assumed by that particular attribute.

The second step for a deeper analysis regarding the nature When utilizing
attributes, it is important to consider the different possible values each attribute
may contain. Attributes can have values that vary greatly or remain fairly consistent
across elements. Considering the range of an attribute The concept of how attributes
are assigned is represented in Tabella 4.1. This plots the measure of attribute
allocation. different values are distributed for each property: in particular, The
value refers to the relationship between the variety of distinct elements and the

40

Results

Figura 4.2: distribution of boolean attributes in the selected app

total number of elements. It quantifies how evenly distributed elements are by
comparing the number of different types to the total count. A lower value is
assumed over the number of valued widget properties. Although this indicator
shows that the greatest variability is concentrated in the text, NAF, and content
description attributes, from the previous finding, we infer that these are more likely
to be left unassigned.

Therefore, we considered the ratio between the number of distinct values for a
property and the total number of widgets to merge the information about variability.
This specific distribution shows that the resource ID and text properties are the next
most variable, with multiple possible values after the boundaries attribute. The
boundaries characteristic has the largest variability, but its use as a location method
dates back to outdated first-generation technologies with well-known shortcomings.
Nonetheless, current location procedures might be strengthened by cross-referencing
position-related attributes with other locators.

41

Results

Notwithstanding the result, it must be taken into account that the value compari-
son was performed in a boolean way, which implies that for the bound attribute, the
widgets must have coincident positions and dimensions to obtain two corresponding
values. This constraint appears to be rare, leading us to wonder whether position-
related metrics comparisons should be based on more sophisticated treatments,
such as the percentage of screen overlapping.

In figure 4.3, we reported the sum of attribute changes across different releases
of an application. Each letter (A, B, C, etc.) corresponds to a specific release, and
the numbers represent the total number of attribute changes in each release for
various widgets or components. In the application cdisplay, we can see that every
time there is a significant release of the application there will be a change in the
attributes of the application. This means that if the attribute of the application is
changed, there will be a change in the oracles of the application. As we can see from
version A, there is a significant attribute change as the application has the first
release, and concerning time, some modifications were done; Release A: Various
widgets were updated with thirty new attributes. Release B included thirty more
attribute changes spread throughout the various parts of the application. Release
C: There was a notable surge in attribute modifications, amounting to 67 in the
entire program.version D: This version did not include changes to any widget’s
attributes.Release E: Similar to Release D, there were no attribute changes. Release
F: 40 attribute changes were implemented across various application components.
Release G: No attribute changes occurred. Release H: No changes were made to
attributes. Releases I to V: No attribute changes were recorded in these releases.

Release M: 12 attribute changes were affecting different parts of the application.
Release N to V: No attribute changes occurred.

Figure 4.4 shows the distribution of values for the attribute changes in all
application versions. We can examine which attribute is most likely to be changed
in the longitudinal analysis of the application. The attribute Clickable: This
attribute was changed twice across different releases. It indicates whether a widget
is clickable or not. The variability in this attribute might suggest alterations in
the behavior of clickable elements within the application, possibly affecting user
interaction.

Bounds: With 43 changes, the "bounds" attribute experienced significant varia-
bility across releases. This attribute defines the boundaries of a widget within the
user interface. Changes in this attribute could indicate modifications to the layout
or positioning of elements within the application, potentially reflecting redesign
efforts or improvements in visual presentation. Content-description: Changed
eight times across releases, the "content-description" attribute provides a textual
description of a UI element for accessibility purposes. This attribute’s variation
may suggest updates to enhance accessibility features or improve descriptions for
visually impaired users.

42

Results

Figura 4.3: cdisplay with all versions and attribute variability

Index: This attribute was altered 19 times across releases. It typically represents
the position of a UI element within its parent container. Variability in the "index"
attribute could indicate changes in the ordering or arrangement of elements within
the application’s interface, reflecting layout or navigation flow adjustments.

Focusable: Changed nine times, the "focusable" attribute determines whether a
UI element can receive focus. Variability in this attribute might indicate adjustments
to the focus behavior of elements, potentially improving navigation or accessibility
for users interacting with the application via keyboard or other input devices.
Text: With seven changes, the "text" attribute represents the textual content
displayed by a UI element. Variability in this attribute could signify updates to
the displayed text within the application, such as changes in labels, button text, or
other user-facing content.

Class: Altered 24 times, the "class" attribute specifies the class or type of a UI
element. Variability in this attribute may indicate changes in the implementation
or styling of elements within the application, potentially reflecting updates to
the underlying codebase or user interface framework. Resource-ID: Also changed
24 times, the "resource-id" attribute uniquely identifies a UI element within the
application’s resource hierarchy. Variability in this attribute might indicate updates
to the naming or identification of elements, potentially reflecting changes in the
application’s structure or organization.

43

Results

Selected: Changed seven times, the "selected" attribute indicates whether a
UI element is currently selected. Variability in this attribute may suggest adjust-
ments to the selection behavior of components within the application, potentially
improving user interaction or highlighting chosen items.

Long-clickable: This attribute was altered twice across releases. It determines
whether a UI element supports long-click interactions. Variability in this attribute
might indicate changes in long-press behavior for specific elements, potentially
enhancing user interaction options within the application.

Among these attributes, "Bounds," "Class," and "Resource-ID" exhibit high varia-
bility with 43, 24, and 24 changes, respectively, suggesting significant adjustments
to layout, styling, and identification of UI elements across releases. Additional-
ly, "Clickable," "Index," and "Focusable" also show notable variability, indicating
changes in interactive behavior and navigation flow within the application.

Figura 4.4: cdisplay with all Attributes change

Figure 4.5 shows the variability of widgets in each version of the application, with
the number representing the changes or modifications to those widgets. From this
data, the versions that saw changes in releases are A, B, C, F, and M. These versions
had varying degrees of changes in the number of widgets within the application.
Versions D to L and N to V had no changes in the number of widgets, indicating
stability or lack of updates in those releases.

Results shown in figure 4.3, 4.4 and 4.5 that the variability in widgets across
releases indicates the extent of changes made to the application’s components over

44

Results

Figura 4.5: cdisplay with all versions and oracles variability

time. Releases with higher variability suggest more significant modifications or
updates to the application, while those with lower variability may indicate periods
of stability or fewer changes. These releases (A, B, and C) saw incremental changes
in the number of widgets, with 6, 6, and 8 widgets changed, respectively. This
indicates ongoing development or refinement of features during these early stages.
These releases (D to L) experienced no changes in the number of widgets, suggesting
potential periods of stability or maintenance where no significant updates were
implemented. Release M has 12 widgets changed, indicating a substantial update
or overhaul in the application’s functionality or user interface. These releases (N
to V) also show no changes in the number of widgets, similar to the earlier releases
D to L.

. Understanding the variability in widgets across releases helps assess the
evolution and progress of the application’s development. Higher variability may
indicate periods of innovation, feature additions, or bug fixes, while lower variability
may signal stability or maintenance phases. Analyzing trends in widget variabi-
lity can provide insights into the application’s development cycle, user feedback
incorporation, and overall quality assurance processes.

Results obtained in the figures 4.6, 4.7 and 4.8 we can observe that the bounds
attribute in calm application ranked as the most unstable attribute due to its
high variability approximately 80 percent of instability in different releases of
the application. Despite its frequent presence and variability in assumed values,
it’s deemed unsuitable as a locator due to instability. Changes in the "bounds"

45

Results

Figura 4.6: calm with all versions and attribute variability

Figura 4.7: calm with all attribute changes in all releases

attribute often coincide with alterations in the "index" attribute, indicating shifts
in both visual arrangement and tree structure. The attribute resource-id Ranked
second for instability with a variability of 50 percent. Despite Android Developers’
recommendation for uniquely identifying resources using this attribute, half of the

46

Results

Figura 4.8: calm with all versions and oracle variability

widget changes affect this identifier. Maintaining the "resource-id" updated across
the project requires a significant effort, especially during GUI testing outsourcing.

Text and Content Description Attributes (Instability: 23 percent and 17 per-
cent, respectively). These are considered quite unstable attributes with moderate
variability. Frequent absence of values adds to their unreliability, contributing to
their instability.

For the application youVersion the results shown in figure 4.9 reveal varying
degrees of variability across different attributes in different releases. Release such
as "A," "B," "C," "F," "G," "I," "J," "M," "N," "P," "Q," "R," "T," "U," "W," and "Y"
exhibit substantial changes across versions, indicating significant modifications to
these attributes’ values.

Figure 4.11 illustrates the impact of attribute changes on UI elements. Attributes
like "bounds," "class," and "resource-id" have higher numbers of changes, suggesting
their importance in influencing widget alterations across versions.

In Figure 4.10, Certain attributes, such as "bounds," "resource-id," "class," and
"content-description," consistently experience significant changes across versions.
These attributes play crucial roles in UI element identification, layout, and behavior,
making their stability essential for application reliability.

The results obtained from the application Mirror are shown in figure 4.12, which
represents the attribute changes in the application during the longitudinal analysis.
We can see that Versions A, B, C, D, and E show a relatively lower number of
attribute changes, indicating potentially more stable periods in the application’s
development. Conversely, versions G and J exhibit higher changes, suggesting more

47

Results

Figura 4.9: youVersion with all versions and attribute variability

Figura 4.10: youVersion with all attribute changes in all releases

iterative development phases with frequent updates and attribute modifications.
Versions G, J, and K showcase notable spikes in attribute changes, indicating

48

Results

Figura 4.11: youVersion with all versions and oracle variability

Figura 4.12: Mirror with all versions and attribute variability

potential focus areas for development efforts or areas of significant feature enhan-
cements or refactoring. The substantial increase in attribute changes in version

49

Results

Figura 4.13: Mirror with all attribute changes in all releases

Figura 4.14: Mirror with all versions and oracle variability

50

Results

J suggests a significant milestone in the application’s development, potentially
marking the introduction of new features or significant architectural changes.

Figure 4.14 illustrates the impact of attribute changes on UI elements. Attributes
like "bounds," "class," and "resource-id" have higher numbers of changes, suggesting
their importance in influencing widget alterations across versions.

In Figur 4.13, attributes such as "bounds," "resource-id," "class," and "content-
description" regularly undergo substantial modifications between versions. Their
stability is critical to the dependability of the application since these properties
are vital to the identification, layout, and behavior of UI elements.

Figura 4.15: Sketchbook with all versions and attribute variability

The results shown in the sketchbook application in figure 4.15 show varying
degrees of variability in only two versions of the application, "A" and "P," indicating
significant changes to the attributes. Versions B-O show stability during the
application development. A total of 25 attributes changed during the consecutive
releases of the application, resulting in 15 widget changes. Version "A" and "P" of
the application experienced notable attribute changes, primarily focused on the
"bounds," "index," and "resource-id" attributes. These changes likely reflect efforts
to refine the layout, organization, and identification of UI elements within the
application’s interface.

Regarding the visual mutations, we found that mutation M11 has the highest
frequency of visual change in the GUI, with 67 percent because of the bound

51

Results

Figura 4.16: Sketchbook with all attribute changes in all releases

attribute. The bound attribute has the highest impact on modifying the widget’s
location. (eg. The search button location is altered and is placed at the bottom of
the GUI). Modifying a widget’s graphical appearance (M15, occurring in 50 percent
of related widget pairings) is the second visual mutation by frequency. When an
application’s appearance changed, the widgets were at least slightly rearranged
(e.g., the reading and favorite icons in the youVersion app). The absence of visual
mutation (M0, occurring in 32 percent of the corresponding widget pairs) was closely
followed by the rescaling mutation (M14, happening in 28 percent of corresponding
widget pairs), ranked third. Part of this is the need for readjustment after layout
changes, but in other situations, a rescale may indicate a shift in the significance
of the widget’s related function. The mutation about modifications in widget type
(M16, which occurred in 17 percent of similar widget pairings) came in last place in
frequency. This kind of mutation primarily affects widgets that, as of a particular
release, gain new functions that cannot be linked to the previous type. The change
from ImageButton to ImageView is an example that occurs repeatedly.

The least common mutation among those considered is a shift in the position to
overlap a different widget (M13, occurring in 4 percent of similar widget pairings),
indicating that keeping an app’s appearance tidy and uncluttered is crucial to its
graphical development. One exception is the addition of a Floating Action Button,
which makes a specific feature stand out and be easily apparent from the rest of

52

Results

Figura 4.17: Sketchbook with all versions and oracle variability

the GUI.

53

Results

Figura 4.18: Cdisplay all versions mutation

Figura 4.19: youVersion all versions mutation

54

Results

A
T

T
R

IB
U

T
E

C
H

A
N

G
E

S
P

E
R

V
E

R
SI

O
N

A
tt

ri
bu

te
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
ot

al
C

lic
ka

bl
e

1
1

2
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
6

Bo
un

ds
6

6
9

0
0

10
0

0
0

0
0

0
12

0
0

0
0

0
0

43
C

on
te

nt
-d

is
1

1
3

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

8
In

de
x

3
3

6
0

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
19

Fo
cu

sa
bl

e
3

3
2

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

9
Te

xt
2

2
2

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

7
C

la
ss

6
6

6
0

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
24

R
es

ou
rc

e-
id

6
6

5
0

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
24

Se
le

ct
ed

2
2

2
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
7

Lo
ng

C
lic

ka
bl

e
0

0
0

0
0

2
0

0
0

0
0

0
0

0
0

0
0

0
0

2
A

ll
A

tt
rib

ut
e

C
ha

ng
e

30
30

67
0

0
12

0
0

0
0

0
0

0
0

0
0

0
0

0
17

9

T
ab

el
la

4.
1:

A
tt

rib
ut

e
Va

ria
bi

lit
y

55

Results
C

ha
ng

e
in

w
id

ge
t

N
um

be
r

W
id

ge
t

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
A

ll
ve

rs
io

ns
1

0
6

0
0

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
10

4
0

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

7
5

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

6
0

0
5

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

10
7

6
0

0
0

0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
7

8
0

0
0

0
0

7
0

0
0

0
0

0
0

0
0

0
0

0
0

7
9

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4

10
4

5
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

15
11

5
4

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
14

12
4

6
3

0
0

3
0

0
0

0
0

0
0

0
0

0
0

0
0

16
13

6
4

4
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
17

14
4

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

7
15

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
2

16
0

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

0
0

4
17

0
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
4

18
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
19

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

21
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
22

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

24
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
25

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

28
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
31

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

32
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
33

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

34
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
36

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

37
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
To

ta
l

C
ha

ng
es

6
6

8
0

0
10

0
0

0
0

0
0

12
0

0
0

0
0

0
42

T
ab

el
la

4.
2:

W
id

ge
t

Va
ria

bi
lit

y

56

Capitolo 5

Conclusion

In conclusion, this research has provided valuable insights into the significance of
understanding attribute variability and its impact on widget changes and the GUI
visual appearance in mobile applications. In this research, For a comprehensive
analysis, we selected 30 real applications for widget composition. Then, we expanded
our experiment to analyze the changes in consecutive application releases for
attribute changes and their impact on widget changes and visual changes.

We offered data regarding the attributes’ values. Specifically, textual attributes
seem to have the highest rate of empty values: only one in four widgets has a
non-empty text property, and more than 25 percent lack a resource-id definition.
The textual properties and the boundaries attribute show the most flexibility,
although their presence is not guaranteed. Starting with a collection of 1277
comparable widgets in all five applications in the longitudinal analysis, we looked
at changes that might influence widgets. We found that the five top attributes,
Bounds, Resource-id, class, text, and content-description, are the most variable.

Here are the essential findings and contributions of the research.
The study revealed notable variabilities in attributes across consecutive versions,

especially in attributes like Bound, resource-id, and content description, which
directly influenced the widget changes such as layout, position, and identification
of GUI elements.

Attribute variation had a significant visual impact on the GUI, affecting the
overall appearance and usability of the application. Variability in attributes such
as text and content description influenced the clarity and accessibility of GUI
elements.

Using a multilocator proved instrumental in facilitating efficient localization and
attribute analysis.

Understanding attribute variations and their impact on widget changes is crucial
for improving the user experience of mobile applications. By addressing attribute

58

Conclusion

inconsistencies and optimizing GUI visual appearance, developers can enhance
usability, accessibility, and overall user satisfaction.

Future research should explore advanced multi-locator techniques further to
enhance widget localization and attribute analysis in mobile applications. Techni-
ques such as machine learning-based localization algorithms or dynamic attribute
tracking mechanisms could offer new insights and efficiencies.

Longitudinal studies tracking attribute evolution over time could provide deeper
insights into the dynamics of attribute changes and their long-term impact on GUI
visual appearance and user experience.

59

Conclusion

import os os.system("echo 1")

61

Bibliografia

[1] Statista. Number of smartphone mobile network subscriptions worldwide from
2016 to 2022, with forecasts from 2023 to 2028. https://www.statista.
com/statistics/330695/number- of- smartphone- users- worldwide/.
Accessed on 12-APR-2023 (cit. alle pp. 1, 13).

[2] Shauvik Roy Choudhary, Alessandra Gorla e Alessandro Orso. «Automated
Test Input Generation for Android: Are We There Yet? (E)». In: nov. 2015,
pp. 429–440. doi: 10.1109/ASE.2015.89 (cit. a p. 6).

[3] Emil Alégroth. Visual gui testing: Automating high-level software testing in
industrial practice. Chalmers Tekniska Hogskola (Sweden), 2015 (cit. alle
pp. 9–11).

[4] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé e Jacques
Klein. «Automated Testing of Android Apps: A Systematic Literature Re-
view». In: IEEE Transactions on Reliability 68.1 (2019), pp. 45–66. doi:
10.1109/TR.2018.2865733 (cit. alle pp. 11–13).

[5] Tommi Takala, Mika Katara e Julian Harty. «Experiences of System-Level
Model-Based GUI Testing of an Android Application». In: 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation.
2011, pp. 377–386. doi: 10.1109/ICST.2011.11 (cit. a p. 12).

[6] Chien Hung Liu, Chien Yu Lu, Shan Jen Cheng, Koan Yuh Chang, Yung Chia
Hsiao e Weng Ming Chu. «Capture-Replay Testing for Android Applications».
In: 2014 International Symposium on Computer, Consumer and Control. 2014,
pp. 1129–1132. doi: 10.1109/IS3C.2014.293 (cit. a p. 13).

[7] Mario Linares-Vásquez, Kevin Moran e Denys Poshyvanyk. «Continuous,
Evolutionary and Large-Scale: A New Perspective for Automated Mobile App
Testing». In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 2017, pp. 399–410. doi: 10.1109/ICSME.2017.27
(cit. alle pp. 14–16).

62

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1109/ICST.2011.11
https://doi.org/10.1109/IS3C.2014.293
https://doi.org/10.1109/ICSME.2017.27

BIBLIOGRAFIA

[8] Android Fundamentals. Fundamentals of testing Android apps. https://
developer.android.com/training/testing/fundamentals. Accessed on
12-APR-2023 (cit. a p. 16).

[9] Yue Jia e Mark Harman. «An analysis and survey of the development of
mutation testing». In: IEEE transactions on software engineering 37.5 (2010),
pp. 649–678 (cit. a p. 28).

[10] Emil Alégroth, Zebao Gao, Rafael Oliveira e Atif Memon. «Conceptualization
and evaluation of component-based testing unified with visual gui testing: an
empirical study». In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). IEEE. 2015, pp. 1–10 (cit. a
p. 30).

[11] Tommaso Fulcini, Riccardo Coppola, Marco Torchiano e Luca Ardito. «An
analysis of widget layout attributes to support Android GUI-based testing».
In: 2023 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE. 2023, pp. 117–125 (cit. a p. 30).

63

https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/fundamentals

	Elenco delle tabelle
	Elenco delle figure
	Acronimi
	Introduction
	Motivation
	Objective

	Background and state of the art
	The Android Application Architecture
	Categories of Mobile Applications

	Introduction to Mobile Testing
	Types of Mobile App Testing
	Automated GUI Testing
	Approaches for Automated GUI Testing
	Challenges in Mobile Application Testing
	Framework's and Tools for Automated Testing

	Methodology
	Research Methodology
	DataSet Selection
	Visual Mutation
	Analysis Process

	Results
	Conclusion
	Bibliografia

