POLITECNICO DI TORINO

MASTER’s Degree in DATA SCIENCE AND
ENGINEERING

MASTER’s Degree Thesis

Automatic web crawler for malicious
websites classification

Supervisors Candidate

Prof. MARCO MELLIA

e ALLAN BRUNSTEIN
Prof. IDILIO DRAGO
Prof. RODOLFO VALENTIM

Prof. CRISTIANO PANAZIO

MARCH/APRIL 2024

Summary

Introduction

Cyber crimes like phishing and cybersquatting are very dangerous and very common
forms of scam in the internet. By impersonating target brands, criminals make use
of copyrights and big brands reputation to extort victims and receive money via
fraudulent messages. Their crimes are often more than only financial, since they
are able to gain access to bank accounts, credit cards and they collect information
about the victims, which might lead it to a data leak, identity theft or a series of
different cyber crimes.

A FBI report over cyber crimes stated that in 2023 alone, phishing was respon-
sible for a total loss of more than 50 million United States Dollars. A Google
research on this topic with the University of South California showed that 45%
of phishing attacks are successful, and that even the least performing ones were
successful 3% of the times.

The current defense mechanism against phishing and cybersquatting is block
listing the malicious websites. Internet providers, upon taking knowledge of new
malicious domains, block access to them along the network, protecting their users
from criminal activities.

However, this defence fails when the domain is new or undetected. Domains can
stay under the radar for months or even years before authorities are alerted and
block them. This method is even more inefficient against zero-day attacks, those
that happen in the same day that a domain starts its malicious activities.

In this sense, it is necessary to constantly and consistently collect data from
the largest amount of domains possible in the shortest amount of time, enabling
Internet Service Providers (ISPs) to gather evidence and block malicious websites
as quickly as possible.

The solution developed in this thesis is a proactive crawler that collects DNS
records, security certificates, ownership information and takes a screenshot for each
candidate of an input list of potentially harmful domains provided by the user.
This kind of system is complex to engineer due to its need for efficiency, scale,
portability and ability to manage incoming data from multiple sources.

11

This thesis is an effort to fill this gap in cybersecurity by constantly collecting
consistent data from potentially dangerous domains, helping authorities to identify
threats and block malicious websites as soon as possible, which is a fundamental
step to avoid frauds and save victims all over the world.

Methodology

The web crawler collects the following information of monitored domains: Secure
Sockets Layer (SSL) certificate, Domain Name System (DNS) information and
WHOIS data, that shows who owns the domain, when it was registered and other
information about its background. Finally, the crawler takes a screenshot of the
home web page and saves all the results in a local folder.

The list of domains to monitor is served as an input via a CSV file. The crawler
loads it and proceeds to parse the data inside a python script. This script then
makes requests to DNS servers to acquire A (IPv4), AAAA (IPv6), MX (e-mail)
and CNAME (redirects) records.

If this domain contains at least one A record or one CNAME record, in such
way that it contains a visible home page, the server proceeds to collecting the SSL
certificate and the WHOIS information. This criteria ultimately saves processing
time, since the program will not try to screenshot websites that do not contain a
home web page, which would be impossible.

Then, the python script executes an asynchronous call via web sockets to a
NET application called Screenshoter. This application uses a headless chromium
browser to take a screenshot of the main web page of the monitored website and
saves the image in the output folder. With this asynchronicity, the python script
can continue processing new domains and making DNS, SSL and WHOIS requests
while waiting for the screenshot of already processed ones, saving execution time.

In order to optimize the performance of a single run of the crawler and allow
for the monitoring of the largest possible number of domains, the program works
in multiple threads. The number of threads is defined by the user as a parameter
when running the program.

Moreover, to facilitate horizontal scaling, the whole program was containerized
using Docker. With this, the execution does not depend on any specific operational
system or processor and can be orchestrated by simply loading the image and
running it. The user can also split the list of domains to monitor across different
machines, which contributes to the scaling of the whole process.

The final tool developed is a dashboard that allows for the visualization of the
obtained results by listing them in a website containing a table and the screenshots.
The visitor can then manually label the websites and these results can be further
used to train an artificial intelligence model to automatically classify websites and

II1

boost the process of blocking malicious domains.

Results

To test the functionalities of the crawler, I used a list of domains that are phonetically
similar to target brands. This way, using a brand like amazon, the list suggests
monitoring amacon, amason and amazone, to name a few. Approximately 2400
domains were monitored for two weeks in an Ubuntu machine with 4 cores and 8 GB
of RAM memory. The results available in the website (https://crawler.allanbr.net).

Throughout the execution, the crawler successfully and consistently collected
data from the input domains and websites. It is important to notice that although
the initial list contains 2780 domains, not all of them are registered and some of
them are already present in block lists due to malicious activities in the past.

Analyzing Amazon’s case, it is possible to realize the consistency of the crawler.
Since the 6th day, it collected A data from 156 websites (+1), AAAA from 77 (£
0), MX from 64 (£1) and captured screenshots from 144 (£2) websites.

For the Apple brand, the initial list contained 101 similar domains, and in that
same period the crawler could daily collect A records from 92 websites (£1), AAAA
from 17 (£0), MX from 74 (£1) and Screenshots from 89 (£1). These results show
consistency and that the crawler is reliable to resolve DNS and screenshot websites.

Moreover, the collected data from these websites was stored in a MongoDB cluster
and is available in a dashboard website. By inspecting the obtained screenshots, I
was able to identify that about 10% of the domains similar to Amazon (14 out of
145 screenshots) and Apple (11 out of 92) are parked domains. More than that, a
big part of the parked domains with similar names are owned by the same registrar.
This indicates that these registry companies might be mass buying domains that
resemble famous brands in order to profit from their reputation.

The main issue with parked domains owned by domain registrars is that they can
be bought at any given time and there is no way to ensure that the new owner will
use it for legitimate purposes. Therefore, parked domains are extremely dangerous
and need constant monitoring, since they can suddenly and unexpectedly become
malicious websites.

All in all, this application aims to power up the fight against phishing and
cybersquatting and prove a new technique of fighting malicious domains, applying
data engineering concepts with the use of a crawler and paving the way to the use
of machine learning techniques to more efficiently combat it in the future.

v

https://crawler.allanbr.net

Acknowledgements

ACKNOWLEDGMENTS

Firstly, I'd like to thank my family for the unconditional support during my time
abroad. To my parents, David and Diana. To my grandparents, José and Agnes,
Dora and Israel. To my brothers Rafael and Artur, to my cousins, aunts and
uncles who actively participated in my development as a person and raised me
with great values, including those of the persistence, resilience and showed me the
importance of study and work to become a productive member of society and give
back to the people.

I would like to dedicate this thesis and my work in memory of my late grandfather
Israel Brunstein, that served University of Sao Paulo as a professor for more than
forty years, becoming a reference in management engineering, economy, and a
reference for me as a great person dedicated to creating a better world.

I carried his memory along with me during all my time abroad, and in the hard
times I always remembered his bravery when he moved to Stanford with my
grandmother Dora and my uncle Leo in 1963, in a world where the only way of
communicating with people abroad was with letters. He went studying in
California to follow his dreams and his determination motivated me all along my
trajectory to follow my own path with determination and passion.

I have no words to express my enormous gratitude to my family, a very united
family that did everything possible, or even more, to raise me with good values
and did not measure efforts to help me while I was abroad. I can not express my
profound admiration for my grandparents trajectory or underestimate their advice.
Agnes and José came to Brazil as immigrants, from Hungary and Egypt, and with
hard work and dedication they are now grandparents to a great family that
admires them and looks up to them as an example for honesty, intelligence and
values.

Dora and Israel were born in Brazil, as a second generation from Polish and
Romanian families. From a very poor background, they proved that study,
honesty, companionship and hard work can create roots to a successful family and
a successful life.

David and Diana are my parents, to whom I owe infinite gratitude for showing me
the right way in life to become a valuable member of society, for showing me how
work and study dignifies a person and for making me interested in ever learning
more and perfecting myself. In this sense, I must also acknowledge my brother for
also making me interested in the most diverse topics, that developed my creativity
and set my in my path to engineering.

I must, therefore, thank the Brazilian nation for receiving my immigrant family
with open arms and providing us with all the condition to build our future in this
wonderful land. The Italian nation, for receiving myself and giving me the
opportunity to study in one of Europe’s most prestigious universities.

In terms of people that helped me during this thesis process, I want to thank the
professors at my home university (USP), in special Cristiano Panazio, and to the
institution itself, that allowed me to board this opportunity, study in Turin and
graduate via the Double Degree agreement.

In Italy, I must also acknowledge Rodolfo Valentim, Idilio Drago, Marco Mellia for
their help during the preparing, developing and writing of this thesis. Their
dedication and support was outstanding and I learned a lot from their expertise
during this whole project.

In Hungary, I would like to acknowledge the help from a very special person that
kept me motivated to work in this project as hard as I can, to give the best that I
can, and that I have the privilege to call my girlfriend. Thank you, Abigél, for
keeping me motivated and focused in this project through all the times.

To my friends in Brazil and the friends that I made during my time in Turin, from
the Politecnico and from Granstudio. To my school professors that motivated me
to follow a path in engineering - Evelyn and Vargas to cite a few - and to the
assistants and support staff from my school, from my universities, from the
International Office and every one that took part in this journey. You have all
contributed to shape my personality, my talents and my way of seeing the world.
To all of you, a huge thank you from the bottom of my heart. You made every
step of this process enjoyable and rewarding, and I am extremely happy to share
this moment with you.

VI

Table of Contents

Introduction
Methodology
Results s,

List of Tables
List of Figures
Acronyms

1 Introduction

1.1 Introduction

1.2 Objectives
2 Related Work

2.1 Generative methods for domain-based phishing

2.2 Other crawlers.o

3 Background

3.1 DNS . s
3.2 SSL .
3.3 WHOIS
3.4 Selenium
3.5 Docker
3.6 Parked Domain
4 Methodology

4.1 Structure

4.1.1 Python Script

4.1.2 Screenshoter
4.2 Flexibility and optimizations
4.3 Docker

XI

XIV

4.4 Dashboard

5 Results
5.1 Testing Dataset
5.2 Dashboard
5.3 Study cases
5.4 Further Considerations . . .
5.4.1 Memory management
5.4.2 Performance
5.4.3 Synchronicity

6 Conclusions and Future Work

Bibliography

IX

19
19
19
27
31
31
34
36

37

39

List of Tables

2.1

5.1
5.2

2.3

5.4
9.5
0.6
5.7

Similar crawlers

Possible labels for websites
Number of outputs per day - Adobe (There were no CNAME nor
AAAA entries)
Number of outputs per day - Amazon (There was only one CNAME
entry all the days) Lo o
Number of outputs per day - Apple (No CNAME entries)
Labels for Adobe homophones, daily
Labels for Amazon’s homophones in the last day of execution
Labels for Apple’s homophones in the last day of execution

List of Figures

1.1
1.2

4.1

4.2

4.3

5.1
5.2

9.3
5.4
9.5
5.6
5.7
0.8

FBI IC3 report [1] - Number of phishing victims per year since 2018

Proposed work fit. The Web Crawler works as an intermediate
between the Generator, that provides a list of domains, and the
(Classifier, that can be created to automatically label the websites. .

High level abstraction of the model - The domains of interest are
passed to the system via a csv file. For each candidate, the script
captures DNS, SSL and WHOIS information. The data is then
sent via TCP to the .NET application, that inserts the url into an
asynchronous queue that captures a screenshot whenever a thread
worker gets free.
Program’s execution in steps: upon receiving the URL, the ap-
plication resolves the DNS, then catching the SSL certificate and
the WHOIS information before requesting the screenshot from the
external application oL
Screenshoter abstraction - The domain received via TCP is added
to the queue of candidates to be processed. The browsers receive
these domains whenever they are free, sending the screenshot path
back to the Python script via TCP

React website containing fetched results

The column end_time now appears in the table, showing how long
it took for the website to be fully processed

Table results with example custom query
Modal with complete information of adob.eu, a parked domain . . .
Modal with expanded information about the SSL certificate

Modal showing information about a not yet labeled parked domain
Screenshots displayed as a gallery in the crawler website

Memory usage running container with external screenshoter and 8
threads

2

5.9 Memory usage running container with external screenshoter and 24

threads
5.10 Memory usage running container with python screenshoter and 8

threads
5.11 Blocked site alert - amazen.mom

XII

Acronyms

Al
Artificial Intelligence

BBC

British Broadcasting Corporation

CNN

Convolutional Neural Network

FBI

Federal Bureau of Investigation’s

GAN

Generative Adversarial Network

ISP

Internet Service Provider

JS
JavaScript

SSL

Generative adversarial network

TCP

Transmission Control Protocol

UDP

User Datagram Protocol

X1V

Chapter 1

Introduction

1.1 Introduction

Cyberattacks continue to pose significant challenges for individuals, businesses,
and organizations worldwide. One of the most dangerous forms of cyber threats
is phishing, a method employed by malicious actors to deceive individuals into
revealing sensitive information, like credit card numbers, bank account balance,
home address, social security number etc.

Cybersquatting is one of the most insidious allies of phishing: the malicious
registration of domain names to replicate legitimate brands further compounds
the complexities of safeguarding the digital realm. When trusting victims mistype
an institution name in the internet they are vulnerable to find themselves in a
malicious website, that abuses the names and trademarks of legitimate organizations
to deceive unsuspecting users into revealing their most precious data.

The profile of a malicious website usually follows a known pattern: it can be
as simple as a website displaying fake virus messages - e.g. "Your computer has
been infected - call xxx-xxxx") - or legitimate-looking like a real business replica,
imitating the target company’s website style and content. Since the user believes
that they typed the correct address, they are likely to believe that they are in a
legitimate position of concern.

The most recent report from the Federal Bureau of Investigation (FBI) [1]
highlights the severity of these crimes: in 2022 alone, over 300,000 American
citizens fell victim to phishing attacks, resulting in a staggering loss exceeding
52 million dollars. The pervasive nature of cyber threats is further emphasized
by Google’s research along with the University of South California: 45% of the
phishing attacks are successful, which comes to show the hurry for innovative and
robust tools to fight the existence of these activities.

1

Introduction

Phishing victims over time

0 | 3240 10°
I1Cases 3. 1()5
3 [
2.41 - 10°
g 2f 1
ks
= 1.15-10°
1 _
26 379
oL ‘ |
2018 2019 2020 2021 2022

Year

Figure 1.1: FBI IC3 report [1] - Number of phishing victims per year since 2018

The traditional mechanism of defence against those attacks consists in blocklist-
ing, which means that internet providers and internet browsers block connections
to the malicious website as soon as the fraudulent activity is discovered.

Block lists, however, are not effective against new domains, since they work by
adding domains when a malicious actor is found. Therefore, websites can only
be blocked after an individual reports their existence, which makes it possible for
scamming domains to be unnoticed by authorities per months or even years.

To the best of our knowledge, there are still no tools that allow for constant
monitoring and stopping cyber threats more quickly, in the day that they started.
Zero-day attacks — the name of cyberattacks that occurs in the same date as the
website has been published — pose a serious threat to internet users, and my goal
with the thesis is to attack this problem, creating a tool that allows the monitoring
of potentially risky domains in a daily basis, obtaining their content and the most
significant information that can be used by a classifier to block them or trigger
human validation as soon as they are up on the internet.

Traditional methods of obtaining information from websites can assist in the
identification of threats, however, there are several limitations that makes it
impossible to adequately monitor candidates only with their use. Some of these
tools and their limitations are listed below.

Tools like wget [2] and curl [3] have been around for decades now, and they
allow the retrieval of a webpage content via command line. While they excel at
downloading static content, their most severe limitation is that they cannot run

2

Introduction

JavaScript or other client-side scripts. Since most of the modern websites make
extensive use of JavaScript, it is crucial to address this issue.

Selenium, on the other hand, is a more powerful tool in this context. It can
be used to run web pages in the most commonly used Operational Systems (OS)
and can be used together with the most used browsers as well. In this thesis, I
opted to use Selenium’s C# (.NET 7) library along with Chromium web driver
and Google Chrome browser. This system runs in an Ubuntu environment with a
x64 processor architecture, and the end goal is to screenshot candidate web pages.

Therefore, the basis of this thesis is the creation of a web crawler, built on the
top of Selenium, that receives a list of domains to monitor, retrieving essential
information over their DNS, SSL. and WHOIS status while simultaneously taking a
screenshot of the visited web page.

The list of monitored domains comes from Valentim et al. paper from December
2021: the work proposed a Generative Adversarial Network (GAN) that was used
to list more than 600,000 homophone domains to popular targets. In this list, for
example, “google.com” is related to “gugle.com”; since the “00” in Google has the
sound of “/u/” in some languages.

This Future
VALENTIM, R. et. al. project
Main - Web - e
domains —> Generator > Crawler > Classifier

Figure 1.2: Proposed work fit. The Web Crawler works as an intermediate
between the Generator, that provides a list of domains, and the Classifier, that
can be created to automatically label the websites.

In terms of scalability, several users can run the application at the same time,
dividing the number of domains in the input between different machines and
horizontally scaling the application. This is possible because the output from a
single domain can be treated as statistically independent from the output from
another domain — there are no correlations between them. Therefore, in order to
increment the number of monitored domains, it is sufficient to run parts of the list
on separate computers or virtual machines.

What is more, the project is fully open source and available for everyone to
contribute to its future improvement in GitHub [4]. Since this is a matter of interest
of the whole internet community and the society in general, a collective effort can
be made to stop phishing and cybersquatting for one and for all.

3

Introduction

1.2 Objectives

The main objective of this work is to create a Web Crawler capable to consistently
monitor a list of candidate websites, automatically collecting information and taking
a screenshot, allowing for manual and automatically classification of potentially
malicious websites.

e Collect DNS, SSL and WHOIS information from domains belonging to a
pre-defined list

o Take a screenshot of viable websites, assuring that they are correct and
consistent

o Create a visualization tool that allows labeling of the obtained data

The labeling of the data is essentially a proof that the collected information is
sufficient to classify the websites, and validates the main objective of this thesis,
that it is possible to use a Web Crawler to collect information and systematically
detect phishing and cybersquatting domains.

Chapter 2

Related Work

2.1 Generative methods for domain-based phish-
ing

The core of this project, as described in Figure 1.2, is the follow up step to the
conference paper "Augmenting phishing squatting detection with GANs" [5]. This
work introduces a novel approach to find phishing and squatting candidates, using
a Generative Adversarial Network (GAN) to create a list of phonetically similar
domains to a target brand.

The authors stated that this method generates more than 600,000 potential
malicious domains and at least 1,175 of those were confirmed to be used for
phishing. Moreover, an alarming share of 90% of the malicious domains evaded
blocklists for more than a month, which emphasizes a critical the problem with
current approaches to detect cyberthreats: they are unable to stop attacks with a
reasonable speed and scams can last for months without being noticed.

Therefore, this list is the basis for this web crawler, serving as input for the
domain monitoring. In other words, the generated domains are shortlisted and
monitored every day by the crawler application. Collecting their main information
is key to provide a future classifier with sufficient data to analyse and classify
domains as legitimate or malicious, allowing for a safer internet and stopping scams
as soon as they start.

Preceding the previous work is PhishGAN [6], which proposes the usage of
GANSs to generate homoglyph attacks. In this context, users often are unable to
notice small changes in the domain name. Malicious domains often contain similar
characters like "i" for "1", "w" for "vv', "o" for "0" or even their other alphabet
counterparts: "l" for 717, latin "a" for cyrilic "a", which tricks victims eyes into
believing they are in the correct webpage.

In fact, the academic paper cites a study by Dhamija et al. [7], that used a

5

Related Work

website "bankofthevvest.com" and 90.9% of participants did not realize the double
"v’s" were used instead of a "w" in "west".

One work that relates to this thesis and PhishGAN is "GlyphNet: Homoglyph
domains dataset and detection using attention-based Convolutional Neural Net-
works" [8], that exemplifies how lethal can homoglyphs be in terms of cybersecurity,
allowing malicious actors to invade networks, steal data and take control of orga-

nizations. In this project, domain names were generated using a Convolutional
Neural Network (CNN).

2.2 Other crawlers

Several other crawlers have been already developed in the context of improving
internet security. Some of the examples that inspired me for this project are listed
below, as well as the missing feature in comparison to this project.

Tool Main capability Disadvantage
Puppeteer Get PDF and Screenshots Can’t get SSL, DNS
Gospider Find all subdomains, domain tree, robots.txt No screenshot
Hakrawler Gathers website, subdomains and JS data No screenshot

CheckPhish Al Screenshot, gets SSL, DNS Paid service
OpenPhish Screenshot, path, SSL Paid service

Table 2.1: Similar crawlers

These crawlers are the State of the art in terms of modern security crawlers.
Most of them are written in Go for the Kali operational system, a Linux open-source
distribution aimed towards digital forensics, ethical hacking and penetration testing,
among other cybersecurity features.[9]

While this work is very well related with the mentioned tools, none of them do
exactly what I designed this application to do. With this crawler, the user can store
main information regarding the website security (SSL certificate, DNS records) and
origin (WHOIS data), allowing an automatic classification in the future. These
features are not present in the above mentioned open-source crawlers, and the paid
options are not viable due to the high cost to have access to their database.

In this context, State of the Art crawlers currently focus on XSS injections
and other methods for server protection. These crawlers test the capability of
websites to protect themselves against attacks, and their focus is not on actual
data collecting on third-party servers.

Therefore, it is clear that these methods are not enough to obtain the necessary
information to classify websites as potentially harmful for users or legitimate,

6

Related Work

and the crawler I developed is a necessary tool in this sense, to allow for further
classification of risky websites and make the internet a safer place for everyone.

Chapter 3
Background

Before proceeding with the work developed on the course of the thesis, it is crucial
to define some of the terms that are extensively used in the following chapters and
that are fundamental for the understanding of the system.

3.1 DNS

The Domain Name System (DNS), essentialy, is the association mechanism between
human-friendly URLs (e.g. www.domain.com) to computer-friendly addresses
(IPs, e.g. 192.168.0.1). Each domain on the internet publishes information about
themselves in a distributed database system, whose nodes are called Name Servers
(NS).

Each node stores records that are essential for correct operation of the internet,
allowing other computers to easily locate resources such as IP addressses, e-mail
servers addresses, aliases, subdomains etc.. The most important records for the

understanding of this thesis are the A/AAAA, CNAME and MX:

« A record[10]: stands for Address. It stores the IPv4 address corresponding
to the website. The A record helps to understand who is hosting the website,
since many different domain names can point to the same IP address.

o AAAA record[l1]: similar to A record, but it stores IPv6 addresses instead
of IPv4.

« CNAME record|12]: stands for Canonical Name. It means that the queried
domain (e.g. pagel.com) is an alias for another domain (e.g. page2.com),
therefore pagel.com should use the same records as page2.com. Notice that a
CNAME record holds relations between two domains, and not IPs.

8

Background

o MX record[13]: stands for Mail Exchange. It shows the route for incoming
e-mails and are always pointing to domains (not IPs).

3.2 SSL

SSL (Secure Sockets Layer) is an internet encryption-based security protocol [14].
A website in possession of a SSL certificate guarantees that the traffic is fully
encrypted between the server and the client, assuring that the message can not be
understood by a third party.

When browsing through the internet, a serious amount of data is transferred
between the client and the server, which often involves sensitive data: credit card
numbers, addresses, telephone numbers, medical data, private messages etc.

When the traffic runs unencrypted, every message can be intercepted and read as
plain text, making it easy to steal sensitive data from unsuspicious users. However,
one must notice that the presence of such certificate does not mean that the website
is legitimate. It assures that the data transmission between the client and the
server is encrypted, and that the current domain is associated with the current
server. It does not certify, by any means, that one specific website can be trusted.

It is possible to instantly emit SSL certificates for free with providers such as
Let’s Encrypt and Cloudfare, which is one tactic that malicious websites can use
to provide a feeling of safety to the victims. This step is important, since most
browsers display a warning when the user tries to access a webpage without any
certificate or with an invalid one. A clone website, for example, might have this
certificate to go through this browser verification.

3.3 WHOIS

WHOIS is an internet database that provides records of ownership for internet
domains. It contains information such as the domain’s owner, e-mail, telephone,
address, domain name registrar, expiry date, transfer date etc.

In the context of this thesis, the WHOIS is a very important data source.
Domains used for cybersquatting and phishing are not associated to the target
company, were recently registered or had their ownership changed. It can help the
classification of malicious domains with more precision and work as another tool
to detect fraudulent activity.

3.4 Selenium

Selenium [15] is an automated browser tool that is used as the backbone for this
project. By using selenium, it is possible to use a headless web browser, that means,

9

Background

without any user interface or human interaction.

In this thesis, the Chromium Webdriver (open source from Google [16]) is
attached to the selenium, that accesses the desired websites and screenshots them
through Selenium’s C# library.

The advantage of Selenium, in comparison to tools like wget and curl that were
mentioned in the Related Work section, is that it can run JavaScript and capture
screenshots of the web pages, basically allowing for the attachment of most web
drivers with their full functionality just like a human would use it’s internet browser.
Therefore, the image captured in the screenshots is exactly what a person would
see when entering the same page.

3.5 Docker

Docker [17] is a virtualization tool that allows applications to run in isolated
environments known as containers.

In this project, Docker was used to create an image of an Ubuntu operational
system containing the Crawler’s files and services installed. In practical terms, it is
a new virtual machine containing only the necessary resources to run the software,
making it more portable and prone to scale.

With Docker, the script can run in an isolated environment and be less susceptible
to interference with services and other factors that would possibly harm the efficiency
of the system. Therefore, given that the system has the necessary free RAM memory
and CPU, any computer can run the application, which helps scaling further.

3.6 Parked Domain

A parked domain is essentially a web page that is hosted, but not being used for
any specific purposes. Domain registrars often take hold of parked domains to
resell them, or individuals for future development purposes.

Parked domain websites can often display messages stating that the website is
"In development" or "Under construction', if the owner intends on using it, or it
can show messages suggesting that the domain name is "For sale". Some of these
pages might also display advertisements as a form of monetization.

Moreover, companies can also buy domain names which are similarly written or
phonetically similar to their brand’s name to prevent malicious actors from owning
these domains and using them for phishing or cybersquatting.

10

Chapter 4

Methodology

4.1 Structure

The most fundamental abstraction of the application consists of two systems that
communicate with each other. The first one is a Python script, that collects infor-
mation about the domain’s background, and the second one is a .NET application
that runs on the background and takes screenshots of the web pages upon request,
both of which communicate with via TCP sockets.

The .NET application is called Screenshoter, a tool developed in C# specifically
for the purposes of this thesis. I projected it on the top of Selenium using a
TepListener handle to asynchronously listen to a socket port and communicate with
other applications. The number of threads and the port that the screenshoter runs
in is fully parameterized, and defined via an environment variable on the Docker
image, that can be set when creating the container.

The Python script, on the other hand, processes the input domains and send
the viable candidates to the screenshoter. This step aims to collect information
from the website before actually taking the picture, in order to avoid unnecessary
resource consuming and time wasting in the case that the website is known to be
legitimate or if it is not hosted.

The Docker containerization is the step that provides reproducibility and allows
the service to always run in the correct environment, with the original files and all
services running as intended. Moreover, it makes the service portable and runnable
in different machines with diverse operational systems (OS) - originally, I projected
it to run in an Ubuntu 20.04 OS with the x64 architecture. When using Docker’s
virtualization, any x64 processor can run it, even if the host machine is a Windows
or a Mac OS.

After the execution, the pipeline resumes outside of the Docker container. The
output.ndjson file is uploaded to a third-party database service, and the screenshots

11

Methodology

URL Processing Schema

Domain class

—[r—- - - ———————"————=———=——"=—=—=—=== === == — = 1
Candidates

| |
input.csv Ly A/AAAA... > SSL > WHOIS I
| |
| |
| |
| |
| |
| |
output.ndjson | |
< T Dump |
MongoDB | v |
| A |
___________________________ TCP .

A —Z

TCP B I
rowser class BrowserManager class
—— A - === — - - = - = = r—-———----- - - ==
\ 4

Screenshoter...

[
[
[
: CALLBACK |4 WORKER <
|
|
|
[

Figure 4.1: High level abstraction of the model - The domains of interest are
passed to the system via a csv file. For each candidate, the script captures DNS, SSL
and WHOIS information. The data is then sent via TCP to the .NET application,
that inserts the url into an asynchronous queue that captures a screenshot whenever
a thread worker gets free.

can be either saved in a cloud environment or saved in the database itself via
Base64 encoding, for example.

Both approaches have their advantages and disadvantages, and overall I consider
that the cloud hosting should be the best approach in the case of a standalone
server, considering the fact that the Base64 encoding would also possibly expand
the image size due to the conversion of its natural JPEG compression into a text
encoded from a binary string.

Since I plan to keep this thesis’ project hosted at a PoliTO cluster, I chose the
to host the images at the cluster itself, in a cloud environment. This should save
space overall and allow for a smoother execution.

12

Methodology

4.1.1 Python Script

The Python script is the entry point of the whole process. Here, the C'SV input file
is processed and divided into multiple workers, according to the number of threads
that the user chose when creating the Docker container.

Each worker creates a call to a function named process wurl, whose arguments
are the domain to be processed and the target brand’s domain it is associated with.

In the process _wurl function, the aforementioned arguments will be the parameters
to create a Domain class’ instance, which is responsible for getting the main
information from the domain as stated in the diagram from Figure 4.1.

The ndjson output format was chosen to allow simpler visualization and index-
ation of the results. The final document can be easily indexated in a collection
and used as a document in a NoSQL context, like a MongoDB or an ElasticSearch
environment.

The WebBrowser class contains a wrapper to manage a Chromium instance
that will run in the background in a headless state - running unattended without
any user interface, which is suitable for automation purposes. This integration
was possible due to the Selenium library, which provides modules for using a web
browser inside a python code. Moreover, the web driver headless-chromium can be
downloaded directly from Google’s open-source repository [16].

Domain class

The Domain class possesses methods for the most important functions: getting
DNS records (A, AAAA, CNAME, MX), SSL certificate and WHOIS data.

The DNS requests are crucial. If the domain does not have at least one A or
CNAME record, then no websites are hosted in that domain, nor it is used to
redirect.

This filtering is crucial to avoid overloading the screenshoter. The biggest
bottleneck in this project is that there is a minimum loading time for a website,
depending on its overall size, the distance between the host and the client and
the webpage loading time is by far the slowest part of the process. In fact, the
DNS data gathering process takes between one and two seconds to finish (average:
791 ms, standard deviation: 1454 ms), but the screenshot itself is a long process
since the whole webpage has to be processed, including its images, JS scripts and
content, allowing for the best screenshot with the page as complete as possible.

Therefore, I added a two-second delay between accessing the website and taking
the screenshot in the Screenshoter, so that most websites are able to load completely
by the time that the program takes the picture. This value has been found
empirically to be a good compromise between the application speed and the quality
of the screenshots.

13

Methodology

URL
> A > AAAA > CNAME
\ 4
WHOIS SSL < MX
output.nd...
» SCREENSHOT > Dump >

Y

SCREENSHOTER

Figure 4.2: Program’s execution in steps: upon receiving the URL, the application
resolves the DNS, then catching the SSL certificate and the WHOIS information
before requesting the screenshot from the external application

In order to find this value, I tested the application multiple times with smaller
datasets, of about 500 websites, and I evaluated the amount of blank images and
images of pages which were not fully loaded at the moment of the capture in the
screenshot folder. The tested delay interval ranged from half a second up to five
seconds, in steps of half a second. From this range, I found the two second delay to
be the best compromise between speed and accuracy, since the number of unwanted
images did not drop consistently during the following executions.

The diagram at Figure 4.2 shows the flux of actions since a new website starts
its processing. In other words, it answers the question "how does the Domain class
deals with a new domain?".

Firstly, the script asks a DNS question, in order to try to resolve the A address of
the domain, observing if it is hosted somewhere and getting more information after:
In order to further optimize the results and observe future correlations between
DNS records and legitimacy, I also projected the script to collect AAAA (IPv6),
CNAME (to check if the page redirects somewhere) and MX.

After all DNS records data is collected, a socket is opened at the domain’s 443
port, in order to obtain its SSL certificate, check its legitimacy and who issued it.

14

Methodology

Lastly, the instance tries to obtain the WHOIS records of the domain, in an effort
to find out who owns the domain, date of acquisition, number of owners and other
relevant information.

If the data is consistent, that is, if there is at least one A or CNAME record,
the domain is sent for analysis in the Screenshoter Core application. It would not
make any sense to analyze domains with no A or CNAME record, since they are
not pointing anywhere.

4.1.2 Screenshoter

As I mentioned earlier, I built the Screenshoter application in C#, using the .NET
7 framework and on the top of the Selenium Webdriver library.

Several libraries were developed over the course of the years to allow web crawling.
Some of the most famous ones include wget and curl, packages that date from 1996
and are still widely used especially in Unix-like systems, like Linux and Ubuntu.
However, the main issue with these tools that disallow their use for this project is
their lack of support for JavaScript (JS), which is crucial in modern websites.

With phishing websites, it is not different at all: they most probably use JS in
some extent to show alerts, modals, banners, popups, track data, make requests etc.
It is crucial that this web crawler sees the webpage exactly like an unsuspicious
victim would.

Therefore, Selenium Manager comes in handy due to the option to choose which
web driver and browser I want to use in my script, and this means that JS scripts
will run as normal just as they would in a normal browser.

I chose the Chromium webdriver and the Chrome Web Browser [16] due to the
fact that Google Chrome is the most used browser in the world, and using it as the
application’s browser would replicate at least 68% of the internet users’ browser
environment, according to the Cloudflare Radar from August 2023

[18].

The screenshoter is an event-driven program, which means that it updates only
as a result of a call. In this case, the necessary call for the program to start running
is executed in the form of sending a TCP message through the user-defined port.

There are two types of message that I configured the screenshoter to deal with.
The first type is simply sending a domain name, and when it is received it is
immediately pushed into the queue. The second one happens by sending the work
"finished", which lets the driver know that no more domains are coming in and that
the Screenshoter should finish as soon as its queue empties.

A step by step analysis of Figure 4.3 shows that:

1. The TCP listener receives the message containing a domain. The received
domain is enqueued in an asyncronous queue (ConcurrentQueue [19]), which
triggers an event (OnAnyQueueChanged)

15

Methodology

TCP IN > Queue M
Delegate (2
Y Y Y
Browser Browser Browser (3)
TCP OUT
< EVENT EVENT EVENT (4)

Figure 4.3: Screenshoter abstraction - The domain received via TCP is added
to the queue of candidates to be processed. The browsers receive these domains

whenever they are free, sending the screenshot path back to the Python script via
TCP

2. The event delegate checks if there is any available instance of a Browser in
the Browsers’ ConcurrentQQueue and any domain in the Domains’ Concurren-
tQueue.

e If there are no domains in the queue, the program is not going to do
anything. If the finished signal was also received, then the program
understands that all domains have been processed and exits.

o If there are no browsers available, the domain stands waiting in the queue
and the program will not do anything as well.

16

Methodology

e If there is a browser available, the first domain in the domains queue is
dequeued and sent to the first browser instance in the browsers’ queue for
screenshoting. Proceed to (3).

3. The selected browser instance visits the sent domain’s home page and screen-
shots it.

4. In either case of success or failure, the browser is enqueued again in the
Browser Manager’s browsers concurrent queue and the OnAnyQueueChanged
event is triggered once more. Repeat from (2)

o If a screenshot was taken, its path is sent via TCP (TCP OUT). Otherwise,
a failure message is sent back.

o The python script receives the feedback and writes the obtained informa-
tion into the output file (Dump method in Figure 4.2).

5. If the TCP listener received the end signal, indicating that all the domains
have been sent to the Screenshoter, the program waits for the domains’ queue
to empty and stops its execution.

4.2 Flexibility and optimizations

The number of parameters allow for the user to choose several information: time
limit for screenshot execution, debugging flags, number of processing threads, DNS
name servers and output domains. The goal of this flexibility is to facilitate the
distribution of the code, making it possible for users to run it with a performance
that is condizent with their machinery. Moreover, this is important since it also
allows horizontal scalability, by not demanding expensive hardware and running in
slower machines.

Many aspects of the script were chosen for practical reasons. Since it is crucial
to handle the largest amount of websites as possible as quickly as possible, it is
fundamental to reduce as much as possible the execution time. While it would be
possible to make more complex calculations and functions, this would consume
precious amount of memory and time, which would compromise the scalability.
Therefore, a single screenshot of the web page is taken after it is fully loaded.

The most time-consuming and resource-consuming step of the algorithm is
taking the screenshot. The page has to load completely, so that the image contains
all the information that would be shown to a regular user visiting the web page.
Therefore, a higher amount of threads is advised to make the execution smoother.
The execution time is inversely proportional to the number of threads, given that
they can run smoothly on the CPU.

17

Methodology

4.3 Docker

In order to facilitate the implementation of the algorithm in virtual clusters, there
is a ready Dockerfile in its repository, allowing its image creation and it can be
easily run inside a container. This makes it so that every device can run the same
program with different parameters, distributing even more the load of the algorithm.
With the Docker virtualization, I could write all the applications targeted at the
Ubuntu-x64 CPU architecture and it allowed me to use Linux-specific libraries
instead of searching for cross platform ones and compile to multiple operating
systems.

4.4 Dashboard

The final part of the methodology is the creation of a dashboard aggregating all the
results achieved in the execution period. This step is an important part of the data
visualization and in the classification process, since the interface should provide
a way for manually labeling the images and helping find suspicious websites by
inspection.

Since the data collected is in the format of a ndjson document, I decided that
the best way to store all data is in a MongoDB database. The documents of this
database are consolidated in a table, and each row represents a single execution for
a domain.

When clicking on a row of the table, the user is presented with all the collected
information for the selected row’s website in the selected date. If there is a
screenshot, it is displayed as well. With this feature, users can monitor daily
activities of websites and try to spot a malicious domain by inspection.

18

Chapter 5

Results

5.1 Testing Dataset

I constructed a testing dataset considering the limitations of the machine dedicated
to run it: an Ubuntu-based computer with 4 cores, 8 GB of RAM and 20 GB of
total storage. Therefore, I prepared a small subset of the previously mentioned
domain list, coming from Valentim et. al containing 46 target brands considering
their number of related /homophone domains, the target business sector - criteria
which T used to selected several names from the banking/financial sector and from
retailers sector, since they are often targets for cyber criminals who abuse their
name and reputation to obtain large financial returns.

Overall, the list contains 2780 domains, and each day about 2400 domains can
have their information collected, according to testing results. The following section
shows the results obtained with this dataset and goes into details for a couple of
interesting target brands.

5.2 Dashboard

In order to visualize the results in real time and allow for more transparency, I
decided to showcase the results that I obtained during testing in a dashboard,
hosted in my private server, as a proof of concept.

I stored all the collected data in a MongoDB collection, and I uploaded all the
images to my server. Therefore, whenever an user decides to check the individual
result for a website, they can see how did it look like in the selected date.

The figures 5.1 to 5.6 display the website and the next paragraphs describe its
functionality. Each caption contains a brief overview of a different functionality of
the dashboard.

As seen in Figure 5.1, the user can see a list of columns in the top of the page.

19

Results

By clicking on each column name, the user toggles its exhibition, allowing the
visitor to choose only the data that is important for their purposes. This allows a
quick visualization and comparison of punctual data, for example comparing SSL
certificates or WHOIS data from various websites.

The next important feature is the Custom Search Builder (Figure 5.3). The user
can filter the table with their own criteria and try to find, this way, potential risky
websites, unlabeled websites or or any website belonging to a group of interest.
Also, it is possible to export the current table’s result in the format of PDF, CSV
and print. This is due do the native JS DataTables extension, that powered this
visualization tool.

Upon clicking a website on the table (a row), a modal appears containing all
the information of the current website (Figure 5.4 and Figure 5.5), and if it is not
labeled, the user can manually label it (Figure 5.6). This is an important step for
the future, facilitating the development of an artificial intelligence classifier with
the labeled data.

The possible categories that a website can be classified in are displayed on the
Table 5.1.

Finally, the dashboard displays a gallery of currently filtered websites, a side-by-
side picture comparison (Figure 5.7). This is a visualization tool that helps quick
detection of risky websites, avoiding the need to open every single domain by hand.
When a user clicks a screenshot, the website displays the same modal that it would
display if the user interacted with a table row.

Label Meaning
Legitimate Website is from a legitimate company/author
and poses no threats
Uncertain, it is not possible to affirm that
. the website is legitimate and there are
Dubious . ..
no signs of malicious use.
Low chances of changing ownership in the near future
- Strong evidences that the domain
Suspicious

is used for malicious purposes
Website returned an empty page
Whitepage/Error or an error page (e.g. 404 not found,
403 forbidden, nginx error etc.)
A parked domain. This is the most common label
Parked in the dataset and it is extremely dangerous,
since its ownership can change at any point in time

Table 5.1: Possible labels for websites

20

Results

Phishing Crawler

Results

Toggle Columns:

stamp main_domain main ssl_cert a_info aaaa_info cname_info mix_info whois_info screensh: label timing end_tin

i

Custom Search Builder

‘ Add Condition

‘ Copy ‘ ‘CS—V‘ ‘PrT‘ Search:
timestamp domain screenshot_file_path label
13/11/2023 adobes.de 2023-11-13 14-20-21 - adobes.de jpeg parked
13/11/2023 adobai.com 2023-11-13 14-20-22 - adobai.comjpeg whitepage/error
13/11/2023 adobes.ch 2023-11-13 14-20-26 - adobes.ch,jpeg legitimate
13/11/2023 adobi.me 2023-11-13 14-20-29 - adobimejpeg null
13/11/2023 adobs.network 2023-11-13 14-20-22 - adobs.network.jpeg whitepage/error
13/11/2023 adobit.com 2023-11-13 14-20-23 - adobit.com.jpeg null
13/11/2023 adob.eu 2023-11-13 14-20-27 - adob.eujpeg parked

13/11/2023 adob.xyz 2023-11-13 14-20-33 - adob.xyz.jpeg parked
13/11/2023 alien.moe 2023-11-13 14-20-30 - alien.moe jpeg legitimate
Showing 1 to 10 of 29,621 entries 1 row selected Previous ‘ 1 ‘ 2 3 4 5 2,963 Next

Figure 5.1: React website containing fetched results

21

Results

Phishing Crawler Home

Results

Toggle Columns:

main_domain ssl_cert a_info aaaa_info cname_info my_info whois_info screenshot_file_path label timing end

Custom Search Builder

‘ Adel Condlition ‘

cony || cov || pom | Search:

timestamp domain screenshot_file_path label end_time
13/11/2023 adobes.de 2023-11-13 14-20-21 - adobes.de.jpeg parked 1.9193005561828613
13/11/2023 adobai.com 2023-11-13 14-20-22 - adobai.com jpeg whitepage/error 3.300568103790283
13/11/2023 adobes.ch 2023-11-13 14-20-26 - adobes.ch.jpeg legitimate 4.226350545883179
13/11/2023 adobi.me 2023-11-13 14-20-29 - adobi.me.jpeg null 5.254292726516724
13/11/2023 adobs.network 2023-11-13 14-20-22 - adobs.network jpeg whitepage/error 5.293579339981079
13/11/2023 adobit.com 2023-11-13 14-20-23 - adobit.com.jpeg null 5.455219984054565
13/11/2023 adob.eu 2023-11-13 14-20-27 - adob.eujpeg parked 7.2385900020599365

13/11/2023 adob.de 2023-11-13 14~ 5.9908061027526855
13/11/2023 adob.xyz 2023-11-13 14-20-33 - adobxyzjpeg parked 8.973571300506592
13/11/2023 alien.moe 2023-11-13 14-20-30 - alien.moe.jpeg legitimate 7.846379041671753

Showing 1 to 10 of 29,621 entries 1 row selected Previous | 1 ‘ 2 3 4 5

2,963 Next

Figure 5.2: The column end_time now appears in the table, showing how long it

took for the website to be fully processed

Custom Search Builder (5) ‘ Gleaglll ‘
I main_demain V‘ | Equals "‘ adobe "‘ m |f‘
ss|_cert "‘ ‘ Equals "‘ null v‘ ‘ < ‘ ‘ > ‘ | = ‘
® l ssl_cert V‘ ‘ Contains V‘ lLet's Encrypt ‘ ‘ < ‘ ‘ > ‘ |T‘
=z R
= ss|_cert V‘ ‘ Contains V‘ lCIcudﬂare ‘ ‘ < ‘ ‘ > ‘ | x ‘
5 | Add Condition ‘
label v‘ | Equals v‘ null vl m x ‘
. | Add Condition ‘ | Search ‘
‘ Copy ‘ ‘CST‘ ‘WT‘ Search: ‘
timestamp domain screenshot_file_path label end_time
13/11/2023 adobi.me 2023-11-13 14-20-29 - adobi.me jpeg null 5.254292726516724
13/11/2023 adobit.com 2023-11-13 14-20-23 - adobit.com.jpeg null 5.455219984054565

adob.de

5.9908061027526855

14/11/2023 adobs.network 2023-11-15 00-22-49 - adobs.networkjpeg null 1.3263249397277832
14/11/2023 adob.de 2023-11-15 00-22-52 - adob.dejpeg null 2.0456619262695312
14/11/2023 adobi.me 2023-11-15 00-23-02 - adobi.me jpeg null 5.317889928817749
14/11/2023 adobit.com 2023-11-15 00-22-56 - adobit.com.jpeg null 5.67396092414856
15/11/2023 adob.de 2023-11-15 15-13-31 - adob.de jpeg null 1.7631218433380127

Figure 5.3: Table results with example custom query

22

Results

Details |z|
m C L i

timestamp:
13/11/2023
main_domain:
adobe

domain: Miaks an offer

adob.eu Wa use oockies

it uney: cockies and similar beshnologies, fo erable epential services and functionality on our site

ssl_cert: ot e e
[+]

a_info: Manage cookies
[+]

aaaa_info: Label: parked
chame_info:

. Labeled By: 1759.209.46.202
mx_info:

whois_info:

[+]
label:
parked
labeled _by:
179.209.46.202
timing:

[+]
end_time:
7.2385900020599365

Figure 5.4: Modal with complete information of adob.eu, a parked domain

23

Results

Details

timestamp:
13/11,/2023
main_domain:
adobe
domain:
adob.eu
ssl_cert:

subject:

commonMName:
adob.eu

issuer:

countryName:
us
organizationName:
Let's Encrypt
commonName:
R3

version:

3

serialNumber:

]

B dan.com * Trustpilot
4 by s]

Encelient 44 ot of

he domain name

adob.eu

is for sale

Make an offer

Wa use cookias

(T) (e)

Label: parked

Labeled By: 179.209.46.202

03AF17323E01085D49CC2CAAGBT1270C2A

Figure 5.5: Modal with expanded information about the SSL certificate

24

Results

Details |z|

timestamp:
13/11/2023
main_domain:

[+]

aaaa_info: How would you classify this website?

cname_info: Legitimate
mx_info:

whois_info: Dubious

[+] Suspicious

Whitepage/Error

,,_
o 5
=
52
(=]

Parked

[+1
end_time:
24718165397644043

Close

Figure 5.6: Modal showing information about a not yet labeled parked domain

25

Results

Showing 1 to 10 of 29,621 entries Previous 1 2 3 4 5 2,963 Mext
4 3

_;..k domanmarkt o - ADDEAL 9

:

ACHTUNG: Aktionspreis!
e Nothing Found ADOBES

Heues

Premium Domains sind der Turbo

filr Ihr Business! R Adit contre le B ok Beulimie, |
!“"g;:ll::-"_:ll' ol Endecrinapath Syndrarme rr
— et
adobes.de adobai.com adobes.ch
| = — e ies] 403 Farbidden
[adobit
Adobipe,)
Doskenalenie Techniki Jazdy
adobs.network adobit.com

Make an offer

[Esacmiiel omly 1 (Aoyt ol)]

adob.eu * adob.de . adob.xyz

Figure 5.7: Screenshots displayed as a gallery in the crawler website

26

Results

5.3 Study cases

As a study case, the crawler was used to monitor 12 homophones of the "adobe.com”
website, 177 homophones of the "amazon.com" website and 101 homophones of
"apple.com”. During thirteen days of execution, the algorithm consistently obtained
screenshots from the monitored websites and information on their SSL certificates,
DNS records and WHOIS status. The aggregated results are shown in the Table
5.2 for Adobe, Table 5.3 for Amazon and Table 5.4 for Apple.

Day A MX Screenshot Total

1 11 6 11 11
2 11 7 11 11
3 11 7 11 11
4 11 7 11 11
5 11 7 10 11
6 11 7 11 11
T o117 11 11
g§ 11 7 11 11
9 11 7 11 11
0 11 7 11 11
1 11 7 11 11
1211 7 11 11
13 11 7 11 11

Table 5.2: Number of outputs per day - Adobe (There were no CNAME nor
AAAA entries)

By inspection of the tables above, it is clear that the Crawler yields consistent
results. The number of records obtained after each execution for these websites
suggests that the tool is indeed functional and able to collect correct and consistent
data from the provided list of websites.

After I obtained these results by running the crawler, I stepped up to manually
label a couple of domains. In order to track daily evolution, I tracked Adobe’s
homophones and labelled its data during the whole period. I also labeled Amazon’s
and Apple’s homophones’ data for the last day of execution.

Upon labeling, I found that Amazon is the owner of a large number of homophone
domains that redirect to their own website. This shows that they have been taking
action against possible phishing attacks, avoiding cybersquatting by owning multiple
similar domains. Unfortunately, not every brand has the same consciousness of
this issue and their users might inadvertently fall victims to malicious activities.

Labeling is an exhaustive process, since there are about 2400 new screenshots
every day and most legitimate web pages do not change significantly their content

27

Results

Day A AAAA MX Screenshot Total

1 147 66 56 129 147
2 156 75 63 136 156
3 155 74 o8 131 155
4 155 75 62 136 155
5 151 74 58 132 151
6 156 77 65 144 156
7 156 7 65 144 156
8 156 7 65 145 156
9 156 7 64 142 157
10 156 7 65 144 156
11 157 7 65 144 157
12 156 7 65 142 156
13 155 7 63 145 155

Table 5.3: Number of outputs per day - Amazon (There was only one CNAME
entry all the days)

Day A AAAA MX Screenshot Total

0 87 16 65 80 87
1 88 16 71 76 88
2 86 17 67 74 86
3 90 16 72 79 90
4 90 16 72 76 90
o 92 17 I6) 38 92
6 92 17 75 89 92
7 92 17 73 89 92
8 92 17 74 90 92
9 92 17 74 89 92
10 92 17 5 88 92
11 91 17 73 88 91
1292 17 75 89 92

Table 5.4: Number of outputs per day - Apple (No CNAME entries)

28

Results

from one day to another. In order to label the entire result dataset, of about thirty
thousand domains, it would take a collaborative effort.

Therefore, it would be of great use a tool that compares websites’ information
from one day to another, especially WHOIS and screenshot data. A supervised
learning tool can be developed in the future making use of the current available
data and future labels, complementing this work by automatically classifying them
- blocking the malicious domains more quickly than current defense strategy and
allowing for zero-day phishing defence.

It is extremely difficult to catch phishing websites on the act since they are also
protected against crawlers. Most of them are going to display malicious information
after user interaction only, something that invalidates automated actions. This
way, phishing websites can "disguise" themselves and protect against automatic
detection methods.

Moreover, phishing websites are also well-hidden behind parking domains.
Parked domains are one of the most dangerous and common websites used for
malicious context. Since they are available for sale, they are extremely volatile
(their ownership can suddenly change) and they need to be constantly monitored.
Zero-day attacks often come from parked domains that turn themselves into a
phishing website for a single day, then going back to its parked domain status.

The results for the monitoring of the Adobe target phonetically similar domains
over the course of 13 days are shown on the Table 5.5.

The table shows consistent results for the analyzed time, and it is important to
notice that during the observations one website changed labels from Whitepage/Er-
ror to Legitimate, and in the tenth day one website left the parked label to the
whitepage/error category for a single day.

In this case, the website adob.com had a failure on the nginz application for
a single day. However, it would be very much possible as well that malicious
actors tried a single-day attack in the website, thus the importance of constantly
monitoring. The page could have changed, this day only, into a page that uses
Adobe’s reputation for phishing purposes.

In general, domain registrars offer plans starting from 28 days, a monthly bill.
Therefore, domain ownership can change very suddenly and daily monitoring is
necessary.

In Amazon’s case (Table 5.6), it is noticeable that most domains are classified in
the Legitimate category. Besides Amazon’s effort and the fact that Amazon is the
legitimate owner of a great number of similar domains to their name, [must state
that a legitimate company, AMAZONE, an agricultural machinery manufacturer,
also contributes to this positive result, since they own 71 domains from the 96
legitimate ones, while Amazon owns 23 and there are 2 other legitimate businesses
running under a name similar to Amazon.

However, Apple’s case is very different from Amazon’s one. The 19 domains

29

Results

Day Legitimate Dubious Suspicious Whitepage/Error Parked

1 2 1 1 3 4
2 2 1 1 3 4
3 2 1 1 3 4
4 2 1 1 3 4
5 2 0 1 3 4
6 3 1 1 2 4
7 3 1 1 2 4
8 3 1 1 2 4
9 3 1 1 2 4
10 3 1 1 3 3
11 3 1 1 2 4
12 3 1 1 2 4
13 3 1 1 2 4

Table 5.5: Labels for Adobe homophones, daily

Day Legitimate Dubious Suspicious Whitepage/Error Parked
13 96 15 9 11 14

Table 5.6: Labels for Amazon’s homophones in the last day of execution

that I classified as legitimate businesses (those that exist for a long time and there
is little risk of the domain changing ownership) are all from different organizations
except for aple.ro that redirects to Apple’s official website. The full results are in
5.7, and must be interpreted in relation to the results table present in the Crawler
website.

In Apple’s case, there is a seriously high number of dubious domains (23 domains).
Due to their recent registry, lack of proper SSL certificate and lack of information,
they can not be deemed as malicious of legitimate, and I classified them in this
category for continuous monitoring in the future.

It is important to notice that legitimate domains can be monitored less often,
since they already belong to trustworthy organizations that exist for decades and
there is a very low probability that they will become a malicious website in the
near future. Therefore, the main source of concern for them is to guarantee that
the company will keep its ownership after the expiry of the current registration.

30

Results

Day Legitimate Dubious Suspicious Whitepage/Error Parked
13 19 23 8 27 11

Table 5.7: Labels for Apple’s homophones in the last day of execution

5.4 Further Considerations

I considered the possibility to use a single, monolithic python script to run the
whole project, and while it was possible to construct the whole project in a single
program with object-orientation and multi threading, the two-application approach
presented better performance and less memory management issues.

5.4.1 Memory management

In the early versions of the project, I used a monolithic Python code to serve the
application. The main issue is that the flow control was difficult to manage and
the memory management was very poor when using workers for multi-threading.

Spacial complexity of the algorithm is supposed to be constant, which means
that the memory usage should not rise over time and remain constant on average
for the whole program execution. Stochastically, the actual memory consumption
is expected to float around a value, since there are pages that require more storage,
with more images, fonts, ads and more information overall. However, statistically,
it is expected that on average this value should not systematically increase during
the execution.

Empirically, I experienced that the equivalent code used in Python rises un-
bounded until memory exceptions occur and breaks the execution. This is a serious
threat for the application consistency and could compromise data integrity and
correctness.

For a complete program running with 8 threads and the .NET 7-based screen-
shoter (Figure 5.8), the Docker container accused around 1.3 GB of memory usage,

while 2.65 GB for 24 threads (5.9).

The same pattern can not be observed in the Python execution, as the Figure
5.10 shows. Instead of keeping a constant memory usage, it grows over time and
eventually might exceed the expected RAM memory usage of the container, causing
crashes and making it impossible to run the whole project.

Although these images refer to single runs, I observed this pattern in hundreds
of testing runs, with the monolithic code always exceeding memory usage and the
final version being consistent in terms of memory usage.

31

Results

Memory usage: 1.29GB / 15.51GB
15.51GB

13.04GE
11.18GB
9.31GB
TASGE
5.59GEB
ITIGE
1.86GE

0B

Lol il el ol

PR]
e e et et e e =

I erory

Figure 5.8: Memory usage running container with external screenshoter and 8
threads

Memory usage: 2.65GB/ 15.51GBE
15.51GB

13.04GB
11.18GB
9.31GB
7.45GB
559GB

3.73GB

—— B S
1.86GB 23:00:41
o8 []2.72G68

R I SN G N G g
VTP PTPRE D PP PP

PELELLFFFFISPSH
PEECTPPPE PP PP D

- verory

Figure 5.9: Memory usage running container with external screenshoter and 24
threads

32

Results

Memeory usage: 3GE £ 15.5160
15.51GE

13 D4GE
111866
5 I1GE
T 45GE
5.50GE

1TIGE

1.860E .-—-‘—._._-____._.‘-—-l-—‘""_#'_ e

ae

R I g g S S
Gl Al R R el el el el el o S .l el el ol ol ol

I temary

Figure 5.10: Memory usage running container with python screenshoter and 8
threads

33

Results

5.4.2 Performance

It is worth mentioning that using a larger number of threads does not necessarily
means that the program is going to perform better. Several factors limit the
execution time, including but not limited to CPU availability, CPU speed, threading,
internet speed, internet bandwidth, servers availability, firewall, cache etc.

In fact, the usage of higher number of threads (more than 50% of the available
threads) is prejudicial to the execution. Empirically, I noticed that the best number
of threads to run the application is about half of the total number of threads on
the CPU. I believe that for a larger number of threads, they start interfering with
each other, overflowing cores of the CPU and reducing performance. It might be
the case that packets are thrown away due to instability and the screenshoter will
not be able to work as intended.

Even if the system is isolated, running the program in a personal computer
or home network can be prejudicial, since the usage of the computer for daily
activities also interferes with the performance. Tasks like writing reports, filling
spreadsheets, navigating in the internet, combined with other routine tasks of the
OS, like antivirus, system scanning, clocks, e-mails and regular services consume
CPU cycles and use memory that affect the performance of the crawler. Therefore,
ideally the project should run in a dedicated cluster, which can lead to optimal
CPU usage, network consumption etc.

Another factor affecting the results is that some of the domains might not
screenshotted in due to the restrictions imposed by the Internet Service Provider
(ISP). In the test runs, hundreds of domains were already blocked in the crawler’s
network due to phishing activities, and I was able to find out this information when
running the program in a different network from another ISP.

While some ISPs block the malicious domains without further explanation, by
simply bouncing back the request and thus not fulfilling it, other providers actually
send a response informing that a given domain is now blocked because of its history
of being used for phishing or other malicious activities.

Figure 5.11 shows an example of phishing alert. One ISP displayed an alert
when the crawler tried to access a blocked domain, whereas other ISP just blocks
the website without giving further information.

The message is in Portuguese and can be translated as follows: "INFECTED
WEBSITE", "This website was blocked because it is a phishing webpage. We
reccomend you to leave this page', followed by a "Exit" button or a link allowing
the user to "Proceed anyway".

The fact that dozens of domains yielded this same message indicates that ISPs
are constantly working to block malicious websites and are committed to stop
phishing and reduce cybernetic crimes. More importantly, it corroborates with
the argument that it is possible to detect phishing websites with a web crawler

34

Results

www.fasternet.com.br
m FASTERNET

A

SITE INFECTADO

Este site foi bloqueado porque é uma pagina de phishing.
Recomendamos gue vocé saia dessa pagina

Sair

Quero continuar mesmo assim

Copyright 2019

Figure 5.11: Blocked site alert - amazen.mom

35

Results

and that the use of a GAN to generate candidates of cybersquatting is a valid and
working approach.

5.4.3 Synchronicity

Finally, I would like to comment that using a monolithic Python script for all
the execution would delay the process of obtaining the DNS, SSL and WHOIS
information from the domains. Since the screenshot is the operation that takes the
longest to occur, the bottleneck of the whole project, it is crucial that it takes place
asynchronously from the data gathering thread. Therefore, having separate queues
between the data collection and the screenshot allows for a faster execution and a
larger separation of functions, asynchronous processing and a better performance
overall.

Due to all the reasons mentioned above I decided that the screenshoter external
application is indeed the way to go in this project and it’s code is also fully available
in GitHub [4] for transparency reasons. I strongly believe that this project is of sum
importance in cybersecurity terms, and I believe that putting it in an open-source
license to allow contributions from all over the world is indeed crucial to scale the
project and fight cyber crime as efficiently as possible.

36

Chapter 6

Conclusions and Future
Work

Finally, the main conclusion that I take from this project is that it is possible to
monitor phishing and cybersquatting candidates using a web crawler.

The tool and the overall system that I developed for the purpose of this thesis
has the potential to be of great use against phishing targets by collecting useful
data, being another step towards the process of automatically finding, fetching and
classifying malicious websites and protecting internet users from scams.

This data collection generates important proof that can be used to make a case
against phishing candidates, allowing internet service providers to insert malicious
domains in their block lists with more agility. Moreover, by doing this, the system
has the potential to save victims from losing their savings to cyber criminals, which
is the most important contribution of this work.

Phishing and cybersquatting are very serious cyber crimes that create immea-
surable losses to victims all over the world, financially, emotionally, in safety terms,
and also harm people and companies reputations. They move an extremely large
amount of money every year by stealing money and data from victims and they
manage to expand their activities every year.

By using this tool, I successfully and consistently collected information from
thousands of websites, proving the effectiveness of the crawler. Data analysis from
the last chapter corroborates with the argument that it is possible to automatically
and systematically generate candidate domains, collect information about them
and detect phishing targets.

Future work can start from this point and develop a machine learning algorithm
on the top of these results to complete the cycle of generating, crawling and
detecting risky websites toward the common goal of making the internet a safer
environment.

37

Conclusions and Future Work

38

Bibliography

[10]

Federal Bureau of Investigation. Internet Crime Report (2022). 2023. URL:
https://www.ic3.gov/Media/PDF/AnnualReport/2022_ IC3Report .pdf
(cit. on pp. 1, 2).

wget. URL: https://www.gnu.org/software/wget/ (cit. on p. 2).

curl. URL: https://curl.se/docs/manpage.html (cit. on p. 2).

Allan Brunstein. Crawler GitHub repository. 2023. URL: https://github.
com/allanbru/thesis-repo (cit. on pp. 3, 36).

Rodolfo Valentim, Idilio Drago, Martino Trevisan, Federico Cerutti, and
Marco Mellia. « Augmenting Phishing Squatting Detection with GANs». In:
Proceedings of the CoNEXT Student Workshop. CoONEXT-SW ’21. Virtual
Event, Germany: Association for Computing Machinery, 2021, pp. 3—4. ISBN:
9781450391337. DOI: 10.1145/3488658.3493787. URL: https://doi.org/
10.1145/3488658.3493787 (cit. on p. 5).

Lee Joon Sern, Yam Gui Peng David, and Chan Jin Hao. «PhishGAN:
Data Augmentation and Identification of Homoglyph Attacks». In: 2020
International Conference on Communications, Computing, Cybersecurity, and
Informatics (CCCI). 2020, pp. 1-6. DOI: 10.1109/CCCI49893.2020.9256804
(cit. on p. 5).

Rachna Dhamija, J. Doug Tygar, and Marti Hearst. « Why Phishing Works».
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 2006, pp. 581-590 (cit. on p. 5).

Akshat Gupta, Laxman Singh Tomar, and Ridhima Garg. GlyphNet: Ho-
moglyph domains dataset and detection using attention-based Convolutional
Neural Networks. 2023. arXiv: 2306.10392 [cs.CR] (cit. on p. 6).

Wikipedia contributors. Kali Linux — Wikipedia, The Free Encyclopedia.
[Online; accessed 25-November-2023]. 2023. URL: https://en.wikipedia.
org/w/index.php?title=Kali_ Linux&oldid=1186771493 (cit. on p. 6).

Cloudflare. What is a DNS A record? URL: https://www.cloudflare.com/
learning/dns/dns-records/dns-a-record/ (cit. on p. 8).

39

https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
https://www.gnu.org/software/wget/
https://curl.se/docs/manpage.html
https://github.com/allanbru/thesis-repo
https://github.com/allanbru/thesis-repo
https://doi.org/10.1145/3488658.3493787
https://doi.org/10.1145/3488658.3493787
https://doi.org/10.1145/3488658.3493787
https://doi.org/10.1109/CCCI49893.2020.9256804
https://arxiv.org/abs/2306.10392
https://en.wikipedia.org/w/index.php?title=Kali_Linux&oldid=1186771493
https://en.wikipedia.org/w/index.php?title=Kali_Linux&oldid=1186771493
https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-a-record/

BIBLIOGRAPHY

Cloudflare. What is a DNS AAAA record? URL: https://www.cloudflare.
com/learning/dns/dns-records/dns-aaaa-record/ (cit. on p. 8).

Cloudflare. What is a DNS CNAME record? URL: https://www.cloudflare.
com/learning/dns/dns-records/dns-cname-record/ (cit. on p. 8).

Cloudflare. What is a DNS MX record? URL: https://www.cloudflare.
com/learning/dns/dns-records/dns-mx-record/ (cit. on p. 9).

Cloudflare. What is SSL (secure sockets layer)? URL: https://www.cloudfl
are.com/learning/ssl/what-is-ssl/ (cit. on p. 9).

Selenium. URL: https://wuw.selenium.dev/ (cit. on p. 9).

2023. URL: https://chromium. googlesource . com/ chromium/src/+/
master/headless/README.md (cit. on pp. 10, 13, 15).

Docker. URL: https://www.docker.com/ (cit. on p. 10).

Cloudflare Data Insights Team. Browser Market Share Report for 2023 Q2.
https://radar.cloudflare.com/reports/browser-market-share-2023-
q2. [Accessed 14-11-2023]. 2023 (cit. on p. 15).

URL: https://learn.microsoft.com/en-us/dotnet/api/system.collec
tions.concurrent.concurrentqueue-1?view=net-7.0 (cit. on p. 15).

40

https://www.cloudflare.com/learning/dns/dns-records/dns-aaaa-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-aaaa-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-cname-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-cname-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-mx-record/
https://www.cloudflare.com/learning/dns/dns-records/dns-mx-record/
https://www.cloudflare.com/learning/ssl/what-is-ssl/
https://www.cloudflare.com/learning/ssl/what-is-ssl/
https://www.selenium.dev/
https://chromium.googlesource.com/chromium/src/+/master/headless/README.md
https://chromium.googlesource.com/chromium/src/+/master/headless/README.md
https://www.docker.com/
https://radar.cloudflare.com/reports/browser-market-share-2023-q2
https://radar.cloudflare.com/reports/browser-market-share-2023-q2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentqueue-1?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentqueue-1?view=net-7.0

	Introduction
	Methodology
	Results
	List of Tables
	List of Figures
	Acronyms
	Introduction (1)
	Introduction
	Objectives

	Related Work
	Generative methods for domain-based phishing
	Other crawlers

	Background
	DNS
	SSL
	WHOIS
	Selenium
	Docker
	Parked Domain

	Methodology (1)
	Structure
	Python Script
	Screenshoter

	Flexibility and optimizations
	Docker
	Dashboard

	Results (1)
	Testing Dataset
	Dashboard
	Study cases
	Further Considerations
	Memory management
	Performance
	Synchronicity

	Conclusions and Future Work
	Bibliography

