
POLITECNICO DI TORINO
Master’s Degree in ICT FOR SMART SOCIETIES

Master’s Degree Thesis

Honeypot in a box: A distributed cluster
network for honeypot deployment

Supervisors

Prof. Marco MELLIA

Prof. Idilio DRAGO

Candidate

Alejandro AYALA GIL

April 2024

Abstract

Honeypots are strategic tools crafted to divert potential attackers away from com-
promising infrastructures while simultaneously capturing their attack techniques.
These sophisticated cybersecurity instruments empower experts to discern patterns
that could present risks to specific infrastructures. Deploying a honeypot in a
particular location may result in the repetitive collection of similar patterns. Estab-
lishing an infrastructure that enables the distribution of honeypots across diverse
locations could yield distinct patterns. Despite this potential advantage, there
is presently a lack of dedicated tools designed for such purposes. In cooperation
with various entities, I aspire to establish a distributed network of honeypots for
comprehensive research endeavors.

To initiate an in-depth examination of the advantages of containers and virtual
machines, ultimately necessitating the adoption of a container orchestrator. This
exploration involved a detailed comparative analysis, assessing Docker Compose,
Swarm, and Kubernetes, with the latter emerging as the preferred solution due
to its unparalleled scalability. To enhance the robustness of secure connections
between nodes, an exhaustive exploration of VPN technologies, including OpenVPN,
IPsec, and WireGuard, was undertaken. The latter was chosen for its outstanding
throughput performance, solidifying its selection in the network architecture. In the
quest for an optimal Kubernetes distribution, a thorough evaluation covered K8s,
Minikube, Rancher, K3s, and K0s. The choice of K3s stemmed from its simplicity
and robust support for edge devices, including Raspberry Pis.

Consequently, I delve into the implementation of scripts designed to facilitate the
seamless installation of a cluster and the establishment of node connections through
a VPN. This installation ensures the creation of a robust system that can withstand
disruptions, promptly initiating recovery mechanisms in the event of a cluster
node failure. Once the cluster is operational, specific manifests containing the
Cowrie honeypot image are applied, allowing me to deploy these honeypots across
diverse networks. Leveraging services, I enable the exposure of these honeypots
in various locations, ultimately achieving our objective of distributing honeypots
across different environments.

Upon establishing the K3s cluster, it becomes imperative to conduct thorough
performance assessments. The benchmarks employed to evaluate the cluster encom-
pass a spectrum of critical metrics. These include Network Latency Testing, Pod
Deployment Time, Honeypot Simulation, Network Throughput, and Node Failure
and Recovery. These benchmarks collectively provide comprehensive insights into
the efficiency and resilience of the k3s cluster under varied conditions.

In the future, the project envisions the incorporation of monitoring tools, an ex-
pansion in the number of honeypots, and the development of intelligent mechanisms
to enhance honeypot control. This forward-looking strategy aims to enhance the
cluster’s overall functionality and security. These planned initiatives aim to create
a more sophisticated and responsive infrastructure, paving the way for continual
improvements in the project’s capabilities.

ii

i

Acknowledgements

Esta experiencia de venir a Italia a hacer una doble titulación ha estado una
experiencia inolvidable. Nadie sabe lo que es estar lejos de casa, de tu familia, de
tus amigos hasta que se vive una experiencia como esta. Es una experiencia única
en la que se pude decir siempre hay una primera vez para todo. Una primera vez
buscando casa, primera vez haciendo mercado solo, primera vez pagando facturas
de servicios, primera vez teniendo clases en inglés, primera vez comunicándote
constantemente con otros en una lengua que no es la tuya. No ha sido un camino
fácil, pero en medio puedo decir que hay muchas personas que debo agradecer por
impulsarme a conseguir este logro.

Agradezco a Dios por haberme permitido llegar tan lejos en la vida, por darme
la oportunidad de vivir experiencias en la vida que muy pocas personas han podido
tener.

A mis abuelos y mi primo Juan Camilo que desde el cielo siempre están pendientes
de mí y me aman con todo su corazón.

A mis padres, mi hermana quienes han luchado incontables días por verme
crecer de manera profesional, y por siempre apoyarme desde lo lejos.

A mi familia por siempre estar pendiente de mí y siempre alentarme a seguir
adelante con fuerza para lograr todos mis sueños.

A los amigos que deje en Colombia que también me apoyaron en este proceso,
que siempre han estado pendientes de mí.

A David Contreras uno de mis mejores amigos que me ha impulsado en mi vida
personal y profesional. A quien agradezco por siempre haber luchado conmigo
tantas batallas durante la carrera.

A los amigos que hice aquí en Italia que me han hecho sentir siempre en casa,
recordándome siempre lo orgulloso que me debo sentir de ser colombiano. En
especial agradezco a Daniel Ballestero por a pesar de no conocerme, ofrecerme un
lugar donde vivir en mis primeros días aquí.

A mis roomates que he tenido, prácticamente han sido hermanos para mi siempre
cuidando de mí, siempre compartiendo juntos experiencias inolvidables en la casa.
A mi pareja que ha sido un gran apoyo para mi y siempre me llena de mucha
felicidad compartir con ella momentos lindos.

ii

A mi pareja que ha sido un gran apoyo para mi y siempre me llena de mucha
felicidad compartir con ella momentos lindos.

A Idilio Drago e Rodolfo Vieira por me orientarem, apoiarem e estarem sempre
atentos no desenvolvimento desta tese. Sou sempre grato a vocês.

A Marco Mellia per avermi dato l’opportunità di svolgere questa tesi. Per essere
stato sempre attento a me durante tutto questo processo, guidandomi in ogni fase
che ho sviluppato.

To the guys from the smart data center with whom I always shared fun experi-
ences during the development of my thesis.

A todos mis compañeros de maestría que fueron parte de este proceso de casi 2
años y medio.

¡Desde el fondo de mi corazón, muchas gracias a todos!

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Objectives and Related Work 3
2.1 Objectives . 3
2.2 Related Work . 4

3 Background 6
3.1 Virtualization . 6
3.2 Containers Orchestration . 7
3.3 Network Security . 9

4 Methodology 10
4.1 System Architecture . 10
4.2 Virtual Machines . 11
4.3 Containers Orchestration . 12
4.4 K3s . 13
4.5 Wireguard . 14
4.6 Workloads, services and networking 17

4.6.1 Pod . 17
4.6.2 Deployment . 19
4.6.3 Volumes . 20
4.6.4 Services . 22
4.6.5 Network policies . 23

5 Prototype 25
5.1 Physical Layer . 25
5.2 Cluster Layer . 27

v

5.3 Service Layer . 32

6 Benchmarks 39
6.1 Network Latency . 39
6.2 Network Bandwidth . 41
6.3 Pod Deployment Time . 43
6.4 Node Failure and Recovery . 43
6.5 Data collection . 44

7 Conclusion 45
7.1 Future Work . 46

Bibliography 48

vi

List of Tables

6.1 Statistical results of network delay for each possible peer. 41
6.2 Statistical results of network bandwidth for each possible peer. . . . 42
6.3 Statistical results of pod deployment time. 43
6.4 Statistical results of node recovery time. 43

vii

List of Figures

2.1 T-pot Architecture. 4

3.1 Containers vs Virtual Machines. 7
3.2 Docker Swarm Architecture. 8
3.3 Kubernetes Architecture based on components. 8

4.1 System architecture composed of three different layers. 11
4.2 K3s Architecture. 14
4.3 Throught comparison between different VPN’s. 15
4.4 Ping Time comparison between different VPN’s. 15
4.5 List of a pod with its parameters. 18
4.6 List of deployments with its parameters. 20

5.1 Panel of hardware specification for a virtual machine in VirtualBox. 25
5.2 Panel of network options for a virtual machine in VirtualBox. . . . 26
5.3 Display of the nodes in the cluster. 32
5.4 Detailed layer of service of the prototype. 33
5.5 List of persistence volumes and persistence volumes claims. 35
5.6 List of deployments. 37
5.7 List of services. 38

6.1 Ping command example. 40
6.2 Delay comparison between node to node and pod to pod. 40
6.3 Iperf command example. 41
6.4 Throughput comparison between node to node and pod to pod. . . 42
6.5 Data storage vs attacker action. 44

viii

Chapter 1

Introduction

Cybersecurity is in constant growth concerning businesses worldwide. With the
pervasive integration of digital infrastructure into various facets of operations, the
threat landscape has expanded exponentially[1].

Consequently, organizations are investing significant resources to fortify their
defenses against cyber threats. The urgency of this investment underscores the
significance, as evidenced by alarming statistics, such as IBM’s 2023 report revealing
that the global average cost of a data breach surged to $4.45 million, marking a
15% increase over three years. Organizations leveraging security AI and automation
demonstrate substantial savings, highlighting the efficacy of proactive cybersecurity
measures [2].

Moreover, the proliferation of internet connectivity further amplifies the suscep-
tibility of systems to potential threats. Projections indicate that by 2023, nearly
two-thirds of the global population will have internet access, with an estimated 5.3
billion users worldwide. In such a hyperconnected environment, the likelihood of
cyberattacks is virtually inevitable. Consequently, the focus shifts from whether an
organization will experience an attack to how well-prepared they are to mitigate
and respond to such threats[3].

One innovative approach that has emerged to bolster cybersecurity defenses is
the utilization of honeypots. Honeypots strategically position decoy systems within
an infrastructure to divert and capture potential attackers, allowing organizations
to gather valuable insights into their adversary’s tactics and techniques. The
distribution of honeypots across diverse geographical locations enables cybersecurity
experts to discern new patterns based on geographic factors.

The research presented start from a project undertaken by the Smart Data
division of Politecnico aimed at developing a distributed honeypot system. This
system seeks to proliferate honeypots across diverse locations, facilitating the col-
lection of varied and contextually relevant data for the analysis of attack strategies.
However, the endeavor poses multifaceted challenges, encompassing technological

1

Introduction

complexities and the need for collaboration with third-party entities.
This thesis address these challenges by delving into the development of a

distributed honeypot infrastructure, laying the groundwork for accommodating the
requirements of future stakeholders. The research will encompass a comparative
analysis of technologies pertinent to deploying such a system, culminating in the
realization of a prototype capable of distributing honeypots and capturing data.

Subsequently, I will conduct a comprehensive benchmarking exercise to evaluate
the performance and efficacy of the deployed infrastructure. In particular, with the
experiments conducted, I reached average values of 17 ms and 95 Mbits/s.

In essence, this thesis is a pioneering endeavor to advance the capabilities of
cybersecurity defense mechanisms through the strategic deployment of distributed
honeypots. By elucidating the intricacies of implementation and performance
assessment, this research aims to contribute significantly to the collective efforts
aimed at fortifying digital ecosystems against evolving cyber threats.

2

Chapter 2

Objectives and Related
Work

2.1 Objectives
The goal is to distribute honeypots to analyze patterns that may emerge in different
scenes. However, the project goes beyond the concept of distributed honeypots.
It encompasses various objectives that pose challenges when tackled individually.
The supplementary goals are outlined below:

• Collect relevant data

• Store non-classified data

• Enhance honeypots to withstand severe attacks

• Develop a monitoring interface

• Ensure security for entities

• Control honeypot behavior during attacks

• Train models based on collected data

• Enable deployment on devices with limited resources

This thesis presents the implementation of a prototype that serves as the
foundation for achieving the mentioned objectives. At the same time, some of these
goals are addressed in this thesis, such as storing data without considering
relevancy or confidentiality, ensuring security for entities, and enabling
deployment on devices with limited resources.

3

Objectives and Related Work

2.2 Related Work
In my initial exploration for this thesis, I delved into the intricacies of a project
known as T-Pot[4], developed by Telekom T-Pot is an all-encompassing multi-
honeypot platform. This innovative system coordinates multiple honeypots using
containers, complemented by monitoring tools for seamless data visualization.

For optimal performance, T-Pot mandates a device with a robust configuration,
necessitating a minimum of 8-16GB RAM and 128GB SSD. This platform does
not cater to devices with limited capabilities.

Figure 2.1: T-pot Architecture.
Source: Architecture Server and Agents. [4]

Figure 2.1 illustrates the architecture of TPOT. Docker containers form the
backbone of this infrastructure, housing a variety of honeypots that expose specific
ports to the internet. Additionally, some containers host monitoring tools and
Elastic Search for effective data visualization, fortified with security measures.

One distinctive feature of T-Pot is its data collection mechanism. The installed
T-Pot image transmits the gathered data to a centralized repository managed by
Telekom. Note that if an individual opts to install multiple T-Pot ISOs, there is no
streamlined approach to consolidate information from these instances.

A downside aspect of T-Pot’s functionality revolves around using Docker Com-
pose. This tool is instrumental in deploying the containers; however, it lacks
resilience when containers go offline due to low resources or system issues, as they
do not automatically restart. This characteristic merits careful consideration for
maintaining uninterrupted functionality.

In my pursuit, T-Pot is a starting point showing the power of containers and
honeypots. My project aims to transcend its current limitations:

4

Objectives and Related Work

• Container reliability

• Contemplation of low-resource devices

While T-Pot is proficient in certain aspects, several features essential to my
endeavor are not within its framework. Nevertheless, I recognize the value of
the tools employed in T-Pot because I plan to incorporate some of them into my
project.

5

Chapter 3

Background

3.1 Virtualization

Virtualization emerges as a foundational concept, constituting one of the principal
pillars. In this thesis, I confront two primary technologies: virtual machines and
containers. Both of these technologies serve the purpose of resource encapsulation,
offering an optimal means to establish a stable foundation for tasks involving the
deployment of honeypots. Additionally, the functionality of snapshots and rollback
features provide the capability to recover information from previous moments before
system corruption occurs.

Virtual machines are computational entities that replicate an operating system
environment, eliminating the need for a physical computer to execute programs
and deploy applications[5]. It enables users to host a virtualized instance of one
operating system, such as having a Windows 11 operating system and running
Ubuntu 20.04. Well-known tools like VirtualBox and VMware facilitate the creation
and management of virtual machines. Also, virtual machines can seamlessly
integrate into a cloud provider’s infrastructure. Moreover, virtual machines offer a
layer of isolation from actual devices, adding an extra hurdle for potential hackers.

Containers are encapsulated units comprising an application along with its
dependencies. Unlike virtual machines, containers leverage the host operating
system’s kernel, making them lightweight and efficient[6]. Essentially, containers
operate as background processes, dynamically utilizing resources without requiring
predefined allocations. This attribute allows numerous honeypots or applications
to operate concurrently without imposing excessive resource demands on the host
machines.

Delving deeper into the distinction between containers and virtual machines,
Figure 3.1 illustrates their structures. One notable difference lies in the number
of applications a container can execute with identical resources compared with a

6

Background

Figure 3.1: Containers vs Virtual Machines.
Source: Comparing Containers and Virtual Machines. [6]

virtual machine. Containers employ images to specify the required packages and
resources for an application. Inside Docker Hub[7], we can encounter millions of
images developed and tested. One particular example is the Cowrie[8] honeypot,
constructed using Python. In a future chapter, I will describe how these technologies
play a role in the implementation of the prototype.

3.2 Containers Orchestration
In the preceding section, I highlighted the advantages of utilizing containers. How-
ever, deploying containers necessitates the use of specific tools. Docker orchestrators
come into play, enabling the simultaneous deployment of multiple containers.

Among these orchestrators, Docker Compose is one of the most popular and
the default choice with Docker. Docker Compose simplifies the deployment of
multi-container applications on Docker. It operates by interpreting a YAML file,
adhering to the Compose file format, where users define the configuration of
the application developers wish to deploy[9]. This file outlines the specifications
for one or more containers, streamlining the setup and management of complex
application environments. Applications like T-Pot leverage Docker Compose to
deploy various components, including honeypots and monitoring tools. However, it
lacks a mechanism to restore containers that may have been compromised or pose
malicious intent.

Docker Swarm, a docker orchestrator developed by Docker, features an architec-
ture comprising managers and worker nodes. Docker Swarm has a straightforward
installation, is lightweight, and seamlessly integrates into the Docker environment
[10]. It offers built-in load-balancing capabilities and employs an intelligent node

7

Background

selection process for container deployment. Nevertheless, It has limitations in
scaling for larger applications, less community support, and the absence of cloud
provider integration. Figure 3.2 describes how the architecture is composed in
detail.

Figure 3.2: Docker Swarm Architecture.
Source: How nodes work. [11]

k-proxy

kubelet

sched
sched

sched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller

manager

(optional) c-c-m

Controller

manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Figure 3.3: Kubernetes Architecture based on components.
Source: Kubernetes Components. [12]

Kubernetes, designed by Google, was born as an alternative to the docker
orchestrators. Its expansive ecosystem, widespread adoption, and robust support
from cloud providers distinguish Kubernetes as a compelling option. A downside is
the learning curve associated with Kubernetes can be challenging for newcomers due
to its complexity and the array of concepts and elements[13]. Kubernetes presents
a modular and intricate architecture comprising various essential components,

8

Background

including the API server, etcd (a key-value store), scheduler, controller manager,
and more[14], in Figure 3.3, you can observe the different components inside the
architecture. A central master node empowers you to control the infrastructure
using kubectl. With kubectl, you can seamlessly deploy applications, monitor,
manage cluster resources, and review logs.

3.3 Network Security
When discussing the distribution of honeypots, it’s essential to acknowledge that
information exchange over a network is inherent. Additionally, to minimize the
potential vulnerability to malicious attacks during this communication process, the
thesis proposes implementing a Virtual Private Network (VPN).

A VPN operates by rerouting your internet traffic through a distant server
while encrypting it. Ordinarily, when you attempt to access a website, your
internet service provider (ISP) receives the request and guides you to your desired
destination. However, upon connecting to a VPN, your internet traffic is directed
through a remote server before reaching its intended destination.

The encryption established by a VPN shields your data from potential eaves-
droppers, significantly bolstering your online security and reducing your digital
footprint. As a result, your ISP cannot compile and sell your browsing history to
third parties.

Furthermore, a VPN masks your IP address, replacing it with one belonging
to the VPN server you are using. It adds an extra layer of security and enhances
your online anonymity by concealing your geographical location. As a result,
your browsing activities remain undisclosed, ensuring heightened privacy without
revealing your city or country of origin.

Considering various open-source VPNs, I came across a comprehensive com-
parison provided by IVPN [15]. IKEv2 is an excellent choice due to its speed,
security, and reliability. Notably, unlike OpenVPN, IKEv2 typically doesn’t require
additional software installation, making it the quickest to set up in most cases.

However, if your threat model involves sophisticated adversaries, it’s worth
considering OpenVPN due to concerns raised in leaked NSA presentations. Open-
VPN remains an excellent choice across all platforms, boasting remarkable speed,
security, and reliability.

Another noteworthy option is WireGuard, which excels particularly in high-speed
scenarios. Promising enhanced security and faster speeds compared to existing
solutions, WireGuard has gained traction since its integration into the Linux Kernel
(v5.6) and subsequent release of v1.0. Given these advancements, WireGuard is
now considered suitable for widespread use.

9

Chapter 4

Methodology

In this chapter, I will delineate the methodology employed in my thesis. Herein
lies a comprehensive exposition of the decision-making processes I engaged in,
elucidating how each chosen technology contributes to a prototype aligned with
the objectives I have set forth.

4.1 System Architecture
Now that I have identified and selected the technologies to achieve my objectives, I
will describe the system I intend to implement. Figure 4.1 illustrates the architecture,
comprising three layers: physical, cluster, and service. Each layer encompasses
various components, which I will elaborate on in the following chapter.

Firstly, at the physical layer, we have the foundational elements mentioned
earlier in this chapter, including all virtualization setups and hosts involved in the
system, interconnected via the internet. Specifically, I have three virtual machines:
two running on my local computer and one operating within the Politecnico cluster.

Moving on to the cluster layer consists of the nodes constituting the cluster itself.
Here, two key technologies, namely K3s and WireGuard, play crucial roles. Initially,
I establish a VPN connection and then integrate each node into the cluster. Each
worker node manages distinct workloads and may assume specific roles within the
cluster. Furthermore, within the prototype’s construction, one node will function
as the master, while the remaining nodes will operate as workers. To streamline
this process, I will develop scripts facilitating seamless peer-to-peer interactions.

Finally, the service layer focuses on tasks such as distributing honeypots, acquir-
ing images, allocating storage memory, managing node loads, and directing traffic
within the cluster. Specifically, I plan to deploy two Cowrie honeypots: one within
a virtual machine on my local system, exposed within the same environment, and
another on a virtual machine at Politecnico, exposed on a separate virtual machine

10

Methodology

Figure 4.1: System architecture composed of three different layers.

on my computer. The honeypots will store the collected data on the hosting node
disk using volumes.

Upon completing the prototype, it becomes imperative to conduct benchmarks
to assess the system’s efficiency across various metrics. I will elaborate on the
testing procedures and present the results in another chapter.

4.2 Virtual Machines
In the preceding chapter, I delved into the concept of virtualization, elucidating
the distinctions between virtual machines and containers. In the initial stages of
my thesis, I leveraged VirtualBox as a testing platform for related work, including
TPOT. Given my aim to deploy honeypots across diverse locations, I found it
expedient to establish separate playgrounds in different geographical areas. Fortu-
nately, the Smart Data Center at Politecnico generously provided me access to a
virtual machine within their cluster, while I also utilized my personal computer
for experimentation. Given that the tools essential to my thesis operate within a
Linux kernel, whereas my primary operating system is Windows, I needed to use

11

Methodology

virtual machines. Moreover, the inherent advantages of resource management and
snapshot functionality significantly facilitated my exploration.

At the start, I encountered a significant challenge regarding bridge adapter
networking in VirtualBox. When connecting to a corporate internet network, a
mandatory authentication step necessitates each physical machine to possess a
unique IP address. Consequently, I explored two potential solutions to address this
issue. The first involves utilizing the NAT network, wherein the virtual machine
shares the same network interface as the physical host. Alternatively, I considered
connecting to my cellular network, where firewall restrictions are absent. The second
alternative emerged as my preferred choice because it enables me to simulate real-
world scenarios more accurately. By connecting to my cellular network, the virtual
machines emulate distinct hosts rather than simply a computer sending traffic to
itself with the same IP address.

The virtual machines typically used for my experiments were configured with
one core, 1024 MB of RAM, and shared 10GB of disk space with my physical
host. They ran Ubuntu Server 22.04 as the operating system. Opting for Ubuntu
Server, which lacks a graphical interface, ensured lightweight functionality while
encompassing all the essential features necessary for my thesis work.

4.3 Containers Orchestration
Early in my thesis, I considered leveraging containers for deploying honeypots.
Containers offer significant advantages, notably their minimal resource requirements
compared to virtual machines. However, I grappled with uncertainties regarding
how to manage multiple containers reliably.

In my search for a reliable container deployment, I explored three technologies:
Docker Compose, Docker Swarm, and Kubernetes. I dismissed Docker Compose
from my options due to its inability to ensure container reliability. Specifically,
if a failure occurs after deploying the containers, Docker Compose cannot restart
them, thus compromising the reliability of the setup. Despite Docker Swarm’s
simplicity, I opted against this option primarily due to its limitations in scaling
for larger applications, less community support, and the absence of cloud provider
integration, unlike Kubernetes, which enjoys broader industry backing and seamless
integration with various cloud platforms. Despite acknowledging the potentially
steep learning curve, I opted for Kubernetes due to its comprehensive features and
broad industry acceptance.

After selecting Kubernetes as the container orchestrator, the next crucial decision
is to choose the most suitable distribution. It’s important to note that you similarly
manage each distribution. In exploring various distributions, I considered the
following options: Rancher, K8s, Minikube, K0s, and K3s. I ruled out the first two

12

Methodology

options as they are primarily designed for cloud services, making them unsuitable
for lightweight devices[16][17]. Minikube presented a limitation with their single-
node nature, preventing the deployment of honeypots across multiple locations[18].
Upon closer examination, I found that K0s and K3s share significant similarities
in their composition. Ultimately, I chose K3s because of its robust community
support. K3s, released a year earlier than K0s, gained widespread adoption and
user familiarity, making it the preferred choice[19].

4.4 K3s
Having opted for K3s as the Kubernetes distribution due to its lightweight nature
and scalability, let’s delve into its offerings and the system composition. The
installation process is remarkably straightforward; a simple command initiates the
process.

1 c u r l −s fL https : // get . k3s . i o | sh −

Within moments, utilizing sudo K3s, I gained immediate interaction with a
single node, completing the setup in approximately 30 seconds.

Expanding the cluster by adding nodes is equally uncomplicated. Ensuring
accessibility of the master node and utilizing the token located at:

1 / var / l i b / rancher / k3s / s e r v e r /node−token

Connecting the nodes involves executing the command:

1 c u r l −s fL https : // get . k3s . i o | K3S_URL=https : / u r l K3S_TOKEN=
mynodetoken sh −

Setting up a cluster with K3s is effortless, and the uninstallation process mirrors
this simplicity.

1 # Master node
2 / usr / l o c a l / bin /k3s−u n i n s t a l l . sh
3 # Agent node
4 / usr / l o c a l / bin /k3s−agent−u n i n s t a l l . sh

Flannel facilitates networking within the cluster, a lightweight layer tree provider
that implements a container network interface. Flannel boasts multiple plugins,
enabling the customization of security for network traffic. Examples of such plugins

13

Methodology

include WireGuard and IPsec, both serving as VPN providers. Also, incorporating
–flannel-iface into the installation command allows setting the network interface
used by the node.

Figure 4.2: K3s Architecture.
Source: Architecture Server and Agents. [20]

Figure 4.2 illustrates the K3s architecture, delineating the distribution of roles
among servers and agents. K3 architecture allows the master node to assume the role
of an agent node. Within the agent nodes, components include Kubelet, responsible
for ensuring container reliability, and Kube Proxy, facilitating communication
within the cluster. On the server side, essential components comprise the API
server for cluster management, the controller manager overseeing the desired
state, the scheduler assigning workloads to nodes, and kine serving as an API
to a database functioning as the equivalent of etcd in a standard Kubernetes
distribution. This database stores events and states critical for cluster functioning.
Finally, guaranteeing communication between the server and the agents involves
the tunnel proxy of the agent reaching the supervisor in a unidirectional manner.
After establishing the connection, the communication evolves into a bidirectional
exchange.

4.5 Wireguard
As outlined in the project objectives, ensuring secure communication between
entities is a requirement. Addressing this concern involves implementing a VPN

14

Methodology

layer between the nodes. Notably, K3s facilitates such integration through plugins,
with options like Wireguard and IPsec. It’s important to note that each plugin
must be installed before its inclusion in the cluster, presenting a constraint in the
process.

Figure 4.3: Throught comparison between different VPN’s.
Source: Benchmarking Results. [21]

Figure 4.4: Ping Time comparison between different VPN’s.
Source: Benchmarking Results. [21]

Let’s delve into a comparative analysis of IPsec and Wireguard. According to
performance benchmarks on the Wireguard website, both exhibit similar capabilities
in latency and bandwidth tests. Figure 4.3 visually demonstrates Wireguard’s
superior bandwidth performance compared to different configurations of IPsec
and OpenVPN. Moreover, Figure 4.4 highlights Wireguard’s dominance in latency
performance over alternative options. Based on these results, Wireguard emerges
as the preferred VPN solution for this cluster.

Turning our attention to Wireguard, the technology prides itself on simplicity

15

Methodology

compared to other VPNs. All communication between peers is encrypted, contribut-
ing to a secure environment. Additionally, cybersecurity experts can easily audit
Wireguard, aligning with best security practices. Notably, Wireguard’s emphasis
on high performance positions it as a fitting choice for embedded devices, aligning
with the specific requirements of this project, which aims to run efficiently on
low-capability devices.

Now, let’s explore how Wireguard works. In its fundamental operation, Wire-
guard integrates a network interface into the host, typically denoted as wg0, or
even multiple interfaces like wg1, wg2, etc. The architecture of Wireguard relies on
two pairs of keys, a public key and a private key. When establishing a connection
between a server and a client, Wireguard associates the IP address of the endpoint
with its corresponding public key. In the process, Wireguard identifies the port
configured on the other peer, allowing it to send an encrypted message. At the
client end, Wireguard inspects whether the incoming IP address is permitted;
if not, Wireguard promptly drops the message, enhancing the security of the
communication channel.

To initiate Wireguard setup, the process varies depending on the operating
system. I jump to this step replacing IPs and keys by placeholder in the examples.
Specifically, for Linux-based systems, executing the following command suffices:

1 sudo apt i n s t a l l wireguard

After installing Wireguard, the following steps include generating keys and
configuring the network interface. To create the public and private keys, utilize the
following command:

1 wg genkey | t e e pr ivatekey | wg pubkey > publ i ckey

To configure the network interface, create a file at the following path:

1 / e tc / wireguard /wg0 . conf

The following file details the server configuration:

1 [I n t e r f a c e]
2 Address = [ServerIP]
3 PrivateKey = [ServerPrivateKey]
4 Lis tenPort = 51820
5

6 [Peer]

16

Methodology

7 PublicKey = [Peer1PublicKey]
8 AllowedIPs = [Peer1IP]
9

10 [Peer]
11 PublicKey = [Peer2PublicKey]
12 AllowedIPs = [Peer2IP]

For a client, the configuration is as follows:

1 [I n t e r f a c e]
2 Address = [Peer1IP]
3 PrivateKey = [Peer1PrivateKey]
4

5 [Peer]
6 PublicKey = [ServerPubl icKey]
7 Endpoint = some . domain . com:51820
8 AllowedIPs = [Peer1IP]

4.6 Workloads, services and networking
Considering the configuration of a K3s cluster and the integration of WireGuard,
let’s delve into the realm of Kubernetes and explore its associated tools. In
particular, to incorporate any resource into a cluster, a manifest is required.
This manifest, typically in YAML format, comprehensively outlines the various
parameters a resource may possess, similar to a JSON file. It’s crucial to recognize
that only the master node or a node with appropriate permissions can manipulate
the cluster. All the manifest can be applied to the cluster using the following
kubectl command:

1 kubect l apply −f mani f e s t . yaml

Given the extensive array of components within Kubernetes, I’ll focus solely
on those pertinent to the prototype: Pods, Deployments, Services, and network
policies.

4.6.1 Pod
Upon my initial encounter with pods, I mistakenly viewed them as containers.
However, pods are more intricately categorized, encompassing those with a single
container and those housing multiple containers. Indeed, Kubernetes allocates
a cluster IP to each pod and hosts it on a specific node within the cluster. By

17

Methodology

utilizing labels, one can correlate nodes with other resources in the cluster, such
as services and network policies. I’ll delve into this further when explaining the
prototype.

Consider the example of an nginx application:

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : nginx
5 spec :
6 c on t a i n e r s :
7 − name : nginx
8 image : nginx : l a t e s t
9 por t s :

10 − conta ine rPort : 80

Inside the manifest, observe the pod’s distinctive name, which must be unique
among other pods in the cluster. It is imperative to list the containers along with
their respective names, images, and required ports. Employing the command below,
I gain an overview of all pods in the cluster.

1 kubect l get pods −o wide

Figure 4.5: List of a pod with its parameters.

Notably, in Figure 4.5, an IP address and a cluster are assigned to this pod. Now,
let’s consider a pod housing multiple containers. A manifest for such a scenario
may appear as follows:

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : multi−conta iner −pod
5 spec :
6 c on t a i n e r s :
7 − name : nginx−conta ine r
8 image : nginx : l a t e s t
9 por t s :

10 − conta ine rPort : 80
11 − name : busybox−conta ine r
12 image : busybox : l a t e s t

18

Methodology

13 command : [’ sh ’ , ’−c ’ , ’ whi l e t rue ; do echo He l lo from BusyBox ;
s l e e p 10 ; done ’]

When executing the command to list pods, the "ready" option shows as 2/2,
indicating the successful deployment of both containers. An issue I encountered
involved two containers necessitating the same port within their images; in such
cases, the deployment only deploys one of the two containers.

4.6.2 Deployment
Pods offer a convenient approach to developing various applications. Kubernetes
operates like Docker Compose in that case. However, utilizing Kubernetes deploy-
ments is essential when fortifying honeypots against severe attacks. Deployments
serve as mechanisms for managing high demand and ensuring the stability of pods.
Essentially, deployments operate similarly to pods, with the distinction in the
replica set, which determines the number of replicas to add for load-balancing
purposes. Below is an example of a deployment manifest in Kubernetes:

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 spec :
6 r e p l i c a s : 3
7 s e l e c t o r :
8 matchLabels :
9 app : nginx

10 template :
11 metadata :
12 l a b e l s :
13 app : nginx
14 spec :
15 c on t a i n e r s :
16 − name : nginx
17 image : nginx : l a t e s t
18 por t s :
19 − conta ine rPort : 80

Employing the command below, I list the different deployments. A simple
command suffices, much like listing pods:

1 kubect l get deployments −o wide

19

Methodology

Figure 4.6: List of deployments with its parameters.

Figure 4.6 displays the command logs on the screen, showcasing the similarity it
shares with pods. However, instead of the containers being ready, the pods indicate
readiness.

4.6.3 Volumes
I’ve delved into the functionalities of pods and deployments, indispensable tools
within the Kubernetes environment. However, one crucial aspect yet to be addressed
is how Kubernetes manages data storage and persistence. Here is where volumes
step in as a solution. Volumes are classified into two parts, each serving distinct
purposes: persistent volumes and persistent volume claims.

Persistent volumes essentially act as physical storage spaces within your cluster,
facilitating the linkage to one or multiple applications. For instance, if you aim to
store data on a node, you can establish a connection between a pod’s folder and a
folder on the actual machine. In the event of pod failure, persistent volumes ensure
seamless data retention, maintaining continuity between the preceding and newly
created pods.

On the other hand, persistent volume claims are responsible for identifying the
appropriate persistent volume within the cluster for the application that needs
storage information. For example, if in the cluster are persistent volumes available
in capacities of 1MB, 2MB, and 1GB, and your application requires a maximum
of 1GB, the associated persistent volume claim of 1GB will seek out a suitable
persistent volume with matching capabilities and allocate storage accordingly.

Here’s an illustrative example of a persistent volume and a persistent volume
claim within a manifest:

1 ap iVers ion : v1
2 kind : Pers istentVolume
3 metadata :
4 name : example−pv
5 spec :
6 capac i ty :
7 s t o rage : 1Gi
8 volumeMode : F i l e sys tem
9 accessModes :

10 − ReadWriteOnce
11 pers i s tentVolumeRec la imPol icy : Retain

20

Methodology

12 storageClassName : manual
13 hostPath :
14 path : / data /example
15

16 −−−
17

18 ap iVers ion : v1
19 kind : PersistentVolumeClaim
20 metadata :
21 name : example−pvc
22 spec :
23 accessModes :
24 − ReadWriteOnce
25 r e s o u r c e s :
26 r eque s t s :
27 s t o rage : 1Gi
28 storageClassName : manual

The deployment manifest must include a persistent volume claim, to store the
data. Here’s an example:

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : example−deployment
5 spec :
6 r e p l i c a s : 1
7 s e l e c t o r :
8 matchLabels :
9 app : example

10 template :
11 metadata :
12 l a b e l s :
13 app : example
14 spec :
15 c on t a i n e r s :
16 − name : example−conta ine r
17 image : nginx : l a t e s t
18 por t s :
19 − conta ine rPort : 80
20 volumeMounts :
21 − name : example−volume
22 mountPath : / data
23 volumes :
24 − name : example−volume
25 pers istentVolumeClaim :
26 claimName : example−pvc

21

Methodology

Utilizing these tools enables me to manage the storage of honeypots in a physical
location. In Kubernetes, there are various storage options, the most prevalent
being local or network file system storage.

4.6.4 Services
So far, I’ve discussed three components in Kubernetes: pods, deployments, and
volumes. However, I haven’t addressed how to make applications accessible. Where
a tool in Kubernetes, called a service, comes into play. A service can expose one or
multiple pods to a network, making them accessible to use, in my case, including
potential cyber attackers.

For this application, I’ll focus on a specific option within services called External
IPs. External IPs allow applications to be exposed using the IP addresses of one
or more cluster nodes. The following manifest explains in detail:

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : my−app−deployment
5 spec :
6 r e p l i c a s : 3
7 s e l e c t o r :
8 matchLabels :
9 app : my−app

10 template :
11 metadata :
12 l a b e l s :
13 app : my−app
14 spec :
15 c on t a i n e r s :
16 − name : my−app−conta ine r
17 image : your−image : l a t e s t
18 por t s :
19 − conta ine rPort : 80
20 volumeMounts :
21 − name : data−volume
22 mountPath : / data
23 volumes :
24 − name : data−volume
25 pers istentVolumeClaim :
26 claimName : my−pvc
27 −−−
28 ap iVers ion : v1
29 kind : S e rv i c e
30 metadata :

22

Methodology

31 name : my−app−s e r v i c e
32 spec :
33 type : LoadBalancer
34 s e l e c t o r :
35 app : my−app
36 por t s :
37 − pro to co l : TCP
38 port : 80
39 ta rge tPor t : 80
40 ex t e rna l IPs :
41 − 19 8 . 51 . 1 00 . 3 2

In this manifest, you can see that the deployment and the service match by a
label. You can also define the protocol, the port on the node where you want to
run the application, and which nodes will host that port. In this case, the target
port specifies the port the node will use.

One particularly notable aspect of Kubernetes is its ability to deploy a pod on
one node and expose it to another. This flexibility makes it powerful for supporting
lightweight devices. In some scenarios, such as running multiple honeypots, you
could direct all the workload to a specific node and redirect attacker access from
other nodes with lesser capabilities. In the prototype, I will describe in detail this
case.

4.6.5 Network policies
An aspect that warrants attention is Kubernete’s incorporation of namespaces, a
tool enabling the segregation of applications within distinct spaces. In practical
terms, this means that disparate groups of developers operating within the same
cluster can operate in separate namespaces without necessitating direct interaction.
However, this involves network policies to regulate traffic throughout the cluster,
thus confining interactions. By default, communication is unrestricted across the
cluster, permitting any component to communicate with another. If network
policies are not defined, for instance, when deploying two pods, they can transfer
data between each other.

Network policies dictate the ingress and egress traffic for pods. They determine
which entities can interact with each other through three distinct identifiers: pods,
namespaces, and IP blocks. The first two utilize Kubernetes selectors, like labels,
while IP blocks employ CIDR ranges to specify the permissible traffic flow. Below
is an example manifest showcasing all the mentioned components:

1 ap iVers ion : networking . k8s . i o /v1
2 kind : NetworkPolicy
3 metadata :

23

Methodology

4 name : example−network−p o l i c y
5 spec :
6 podSe l ec to r :
7 matchLabels :
8 app : example−app
9 pol icyTypes :

10 − I n g r e s s
11 − Egress
12 i n g r e s s :
13 − from :
14 − podSe l ec to r :
15 matchLabels :
16 r o l e : f rontend
17 − namespaceSe lector :
18 matchLabels :
19 environment : product ion
20 − ipBlock :
21 c i d r : 192 . 168 . 0 . 0/24
22 e g r e s s :
23 − to :
24 − podSe l ec to r :
25 matchLabels :
26 r o l e : backend
27 − namespaceSe lector :
28 matchLabels :
29 environment : s t ag ing
30 − ipBlock :
31 c i d r : 1 0 . 0 . 0 . 0 / 1 6

In the previous example, the podSelector ensures that pods are authorized to
communicate. Meanwhile, the namespaceSelector designates the desired namespace.
Finally, the CIDR range specifies the IP ranges not restricted from interacting with
those pods.

24

Chapter 5

Prototype

5.1 Physical Layer

Initiating the building of a cluster involves acquiring the necessary nodes. As
mentioned previously, the Smart Data Center at Politecnico provided one virtual
machine while I implemented the other two on my personal computer. Access to
the Politecnico virtual machine was granted via SSH, allowing remote connection
from my computer using an SSH certificate. The setup for the other two machines
proceeded as follows:

Figure 5.1: Panel of hardware specification for a virtual machine in VirtualBox.

25

Prototype

To begin, VirtualBox must be installed and available in various versions com-
patible with different operating systems. The next step involves downloading the
Ubuntu Server 22.04 disk image. When I selected "New" in the VirtualBox interface,
it prompted me to specify a name and select the ISO image. Subsequently, I defined
the credentials for the virtual machine and configured its hardware capabilities
based on my host’s specifications, as depicted in Figure 5.1. Following this, I
allocated the desired amount of memory from my local computer to the virtual
hard disk. Finally, the setup process concluded by launching the virtual machine
in a new tab.

Figure 5.2: Panel of network options for a virtual machine in VirtualBox.

Once the virtual machine starts, it will prompt you to select the operating system
installation. Upon proceeding, it will inquire about your preferred language. You
can opt for the minimized version of Ubuntu Server, which omits many packages to
conserve resources. After confirming, it will prompt for interface settings, typically
set to default. When asked to utilize the entire disk, you should accept, as this
allocates the previously selected virtual disk. Once all prerequisites are accepted,

26

Prototype

it will request a username and password to enter the machine. Optionally, you can
enable OpenSSH for remote terminal access from your computer. Subsequently,
it will inquire about popular packages, with Docker needed for integration with
Kubernetes infrastructure. After installation and reboot, it defaults to using NAT
networking for installation. If you desire an alternate IP bridge adapter mode,
you should configure it accordingly. Refer to Figure 5.2 for the available option to
ensure that your bridge adapter is the internet card operating.

5.2 Cluster Layer
As per the methodology, this layer involves using two primary technologies: K3s
and WireGuard. Setting up WireGuard is a prerequisite for K3s, necessitating
its configuration as the initial step. The configuration varies between the master
and worker nodes in several aspects. I will delve into each script I’ve designed,
elucidating how they enhance reliability and ease of implementation.

1 #! / bin /bash
2

3 # Set the WireGuard IP address
4 WG_IP=" 1 0 . 0 . 0 . 1 "
5

6 # Set the i n t e r n e t i n t e r f a c e
7 i f a c e=" enp0s3 "
8

9 # I n s t a l l WireGuard
10 sudo apt−get i n s t a l l −y wireguard
11

12 # Generate WireGuard keys
13 wg genkey | t e e pr ivatekey | wg pubkey > publ i ckey
14

15 # Create WireGuard c o n f i g u r a t i o n f i l e
16 sudo bash −c " cat > / etc / wireguard /wg0 . conf << EOF
17 [I n t e r f a c e]
18

19 # The IP address o f t h i s host in the wireguard tunne l s
20 Address = $WG_IP
21

22 # Every Raspberry Pi connects v ia UDP to t h i s port . Your Cloud VM
must be reachab l e on t h i s port v ia UDP from the i n t e r n e t .

23 Lis tenPort = 51820
24

25 # Set the p r i va t e key to the value o f the pr ivatekey f i l e generated
by the prev ious command

26 PrivateKey = $ (cat pr ivatekey)
27

27

Prototype

28 PostUp = i p t a b l e s −A FORWARD − i %i −j ACCEPT; i p t a b l e s −A FORWARD −
o %i −j ACCEPT; i p t a b l e s −t nat −A POSTROUTING −o $ i f a c e −j
MASQUERADE

29 PostDown = i p t a b l e s −D FORWARD − i %i −j ACCEPT; i p t a b l e s −D FORWARD −
o %i −j ACCEPT; i p t a b l e s −t nat −D POSTROUTING −o $ i f a c e −j
MASQUERADE

30 EOF"
31

32 # Create WireGuard Up s e r v i c e f i l e
33 sudo bash −c " cat > / etc / systemd/system/ wireguard−up . s e r v i c e << EOF
34 [Unit]
35 Desc r ip t i on=WireGuard Up Se rv i c e
36 After=network . t a r g e t
37

38 [S e rv i c e]
39 Type=simpled
40 ExecStart=/usr / bin /wg−quick up wg0
41

42 [I n s t a l l]
43 WantedBy=d e f a u l t . t a r g e t
44 EOF"
45

46 # Reload systemd and s t a r t WireGuard s e r v i c e
47 sudo sys t emct l daemon−r e l oad
48 sudo sys t emct l enable wireguard−up . s e r v i c e
49 sudo sys t emct l s t a r t wireguard−up . s e r v i c e
50

51 # I n s t a l l K3s with WireGuard
52 c u r l −s fL https : // get . k3s . i o | K3S_NODE_NAME=master sh −
53

54 # Check f o r an empty l i n e and remove i t be f o r e appending the echo
message

55 sed − i ’ /^$/d ’ / e t c / systemd/system/ k3s . s e r v i c e
56

57 # Conf igure f l a n n e l in node
58 echo " ExecStart=/usr / l o c a l / bin / k3s s e r v e r −−adve r t i s e −address $WG_IP

−−f l a n n e l −i f a c e=wg0" | sudo tee −a / e tc / systemd/system/ k3s . s e r v i c e
59

60 # Restart k3s s e r v i c e
61 sudo sys t emct l daemon−r e l oad
62 sudo sys t emct l r e s t a r t k3s . s e r v i c e

Let’s commence with the script for configuring the master node. As is shown,
two variables are required: the IP address of the WireGuard interface and the
internet interface. The script proceeds with the installation of WireGuard, followed
by the generation of public and private keys. Subsequently, a new interface file is
crafted for the WireGuard interface, necessitating the addition of the IP address,
port, and private key. Additionally, two lines for ’postup’ and ’postdown’ are

28

Prototype

inserted to facilitate traffic forwarding through the Linux system serving as a router
or gateway.

One issue encountered was the failure of the system to reinstate the interface
upon reboot. I deployed a systemd service to automate configuring the WireGuard
interface during the start of the system. This service must be enabled and initiated.
With WireGuard fully configured, the installation of K3s follows, accomplished
with a simple command. Within the ’K3S_NODE_NAME’ parameter, I specify
the node’s name. After the K3s installation completion, the WireGuard interface
is incorporated into the K3s service via a command, ensuring it’s placed correctly
within the configuration file. Afterward, I restarted the K3s service with the
WireGuard interface integrated.

1 #! / bin /bash
2

3 # Set Wireguard peer Publ ic Key
4 WG_Pk="K30I8eIxuBL3OA43Xl34x0Tc60wqyDBx4msVm8VLkAE="
5

6 # Set Wireguard peer IP address
7 WG_IP=" 1 0 . 0 . 0 . 2 "
8

9 # Add peer in to network
10 sudo wg s e t wg0 peer $WG_PK allowed−i p s $WG_IP/32
11 sudo ip −4 route add $WG_IP/32 dev wg0
12

13 # Save c o n f i g u r a t i o n
14 sudo wg−quick save wg0

Now that WireGuard and k3s are operational on the master node, it’s currently
the sole node in the cluster, meaning all workload remains centralized. However,
there’s a solution to this by adding peers to the WireGuard connection. The
process involves obtaining the peers’s public key and IP address, then utilizing
the WireGuard ’add peer’ command and enabling the route to that peer. For
preservation, these peers should be saved into the configuration, as demonstrated
in the final line of code. Ideally, the master node should assign the IP address to
the peer to avoid duplication within the cluster.

1 #! / bin /bash
2

3 # Set the WireGuard IP address
4 WG_IP=" 1 0 . 0 . 0 . 2 "
5

6 # I n s t a l l WireGuard
7 sudo apt−get i n s t a l l −y wireguard

29

Prototype

8

9 # Generate WireGuard keys
10 wg genkey | t e e pr ivatekey | wg pubkey > publ i ckey
11

12 # Create WireGuard c o n f i g u r a t i o n f i l e
13 sudo bash −c " cat > / etc / wireguard /wg0 . conf << EOF
14 [I n t e r f a c e]
15 Address = $WG_IP/24
16 PrivateKey = $ (cat pr ivatekey)
17

18 [Peer]
19 PublicKey = <Publickey_Master>
20 Endpoint = <domain>:<port>
21 AllowedIPs = 1 0 . 0 . 0 . 1 / 3 2
22 EOF"
23

24 # Create WireGuard Up s e r v i c e f i l e
25 sudo bash −c " cat > / etc / systemd/system/ wireguard−up . s e r v i c e << EOF
26 [Unit]
27 Desc r ip t i on=WireGuard Up Se rv i c e
28 After=network . t a r g e t
29

30 [S e rv i c e]
31 Type=simple
32 ExecStart=/usr / bin /wg−quick up wg0
33

34 [I n s t a l l]
35 WantedBy=d e f a u l t . t a r g e t
36 EOF"
37

38 # Reload systemd and s t a r t WireGuard s e r v i c e
39 sudo sys t emct l daemon−r e l oad
40 sudo sys t emct l enable wireguard−up . s e r v i c e
41 sudo sys t emct l s t a r t wireguard−up . s e r v i c e
42

43 unset WG_IP

After establishing the master node, it’s time to configure the worker nodes.
While all worker nodes undergo the same configuration process, they must input
different variables as parameters. Configuring a worker node involves setting up
WireGuard and configuring K3s. Upon completing the WireGuard phase, the
master node must add the worker node as a peer into the WireGuard network to
ensure complete k3s integration.

As evident from the previous code, similar to the master node, the initial step
is to install WireGuard. Following this, I create a new interface with the assigned
WireGuard IP, a selection best made by the master node, which possesses knowledge
of the IP for each peer in the cluster.

30

Prototype

Additionally, I must add the private key. The master node is added as a peer
in the configuration, requiring the master’s public key and endpoint (the domain
or IP through which one can reach the master node, along with its corresponding
port). The ’allowedips’ line establishes which peers can communicate with the
worker node. Similar to the master node, it’s necessary to configure the WireGuard
service to initialize the WireGuard interface every time the system reboots. Once
this process is complete, the worker node’s public key must be sent to the master
node to be added, following the same procedure previously.

1 #! / bin /bash
2

3 # Set the WireGuard IP address
4 WG_IP=" 1 0 . 0 . 0 . 2 "
5

6 # I n s t a l l K3s with WireGuard
7 c u r l −s fL https : // get . k3s . i o | K3S_URL=https : / / 1 0 . 0 . 0 . 1 : 6 4 4 3

K3S_TOKEN=<master_node_token> K3S_NODE_NAME=name−node sh −
8

9 # Check f o r an empty l i n e and remove i t be f o r e appending the echo
message

10 sed − i ’ /^$/d ’ / e t c / systemd/system/k3s−agent . s e r v i c e
11

12 # Conf igure f l a n n e l in node
13 echo " ExecStart=/usr / l o c a l / bin / k3s agent −−node−ip $WG_IP −−f l a n n e l −

i f a c e=wg0" | sudo tee −a / e tc / systemd/system/k3s−agent . s e r v i c e
14

15 # Restart k3s s e r v i c e
16 sudo sys t emct l daemon−r e l oad
17 sudo sys t emct l r e s t a r t k3s−agent . s e r v i c e
18

19 # Unset the WireGuard IP address v a r i a b l e
20 unset WG_IP

Once the WireGuard setup is complete, you can verify its functionality by
using the ping command to reach the IP of the master node. Next, we detail the
setup procedure for K3s on the agent in the following code snippet. Firstly, it’s
essential to specify the WireGuard IP of the worker node, followed by executing
the node installation using the subsequent line of code. Let’s break this down
further: Initially, the K3S_URL must contain the IP address of the master node
on the WireGuard interface, utilizing port 6443 (the designated port for K3s).
The K3S_TOKEN needs to be provided by the master node, as described in the
methodology. You can find this token in the following path:

1 / var / l i b / rancher / k3s / s e r v e r /node−token

31

Prototype

When specifying the K3S_NODE_NAME, each node should have a distinct
name. Otherwise, the master won’t be able to recognize it within the cluster. The
subsequent lines configure the WireGuard interface as the cluster interface and
restart the K3s service. Notably, the service name for the worker node differs
from that of the master node. To check the status of each node, run the following
command:

1 kubect l get nodes

Figure 5.3: Display of the nodes in the cluster.

It will display which nodes are available and which are not. Figure 5.3 illustrates
all the relevant information regarding the nodes in the cluster. The master node is
responsible for rescheduling workloads to available nodes with resources.

5.3 Service Layer

Now that the cluster layer is complete, I have a Kubernetes cluster capable of
running any desired application. With an infinite array of deployment possibilities
and millions of images on Docker Hub, I’ll limit this section to a simple prototype
showcasing the system’s capability to distribute honeypots.

32

Prototype

Master
Node

vm1-bigdata

Worker
node

server1

Service
Topology

Worker
node

server9

2222

Cowrie-1

Internet22222222

Cowrie-2

Internet2222

pv

pv

svc

svc

Figure 5.4: Detailed layer of service of the prototype.

In Figure 5.4, I outline the prototype for building and testing at the service layer.
It consists of three nodes: one master and two worker nodes, all virtual machines
running Ubuntu. The master node will host a Cowrie honeypot deployment,
along with worker node server1. Each node will locally store the data from these
honeypots. However, as mentioned in the methodology, there’s a method for
exposing these services on a different node, even if the pods are not in the node.

Regarding the persistence volumes and persistent volume claims. It’s necessary
to create a persistence volume on each node where the honeypot will deploy for local
storage on the node. Below are the manifests for creating these storage resources
on the master node and the worker node, respectively:

1 ap iVers ion : v1
2 kind : Pers istentVolume
3 metadata :
4 name : cowrie−pv−1
5 l a b e l s :
6 type : l o c a l
7 spec :
8 storageClassName : manual
9 capac i ty :

10 s t o rage : 1Gi

33

Prototype

11 accessModes :
12 − ReadWriteOnce
13 hostPath :
14 path : " / data / "
15 nodeAf f i n i ty :
16 r equ i r ed :
17 nodeSelectorTerms :
18 − matchExpressions :
19 − key : kubernetes . i o /hostname
20 operator : In
21 va lue s :
22 − vm1−bigdata
23 −−−
24

25 ap iVers ion : v1
26 kind : PersistentVolumeClaim
27 metadata :
28 name : cowrie−pvc−1
29 spec :
30 storageClassName : manual
31 accessModes :
32 − ReadWriteOnce
33 r e s o u r c e s :
34 r eque s t s :
35 s t o rage : 1Gi

1 ap iVers ion : v1
2 kind : Pers istentVolume
3 metadata :
4 name : cowrie−pv−2
5 l a b e l s :
6 type : l o c a l
7 spec :
8 storageClassName : manual
9 capac i ty :

10 s t o rage : 1Gi
11 accessModes :
12 − ReadWriteOnce
13 hostPath :
14 path : " / data / "
15 nodeAf f i n i ty :
16 r equ i r ed :
17 nodeSelectorTerms :
18 − matchExpressions :
19 − key : kubernetes . i o /hostname
20 operator : In
21 va lue s :

34

Prototype

22 − s e rv e r1
23

24 −−−
25

26 ap iVers ion : v1
27 kind : PersistentVolumeClaim
28 metadata :
29 name : cowrie−pvc−2
30 spec :
31 storageClassName : manual
32 accessModes :
33 − ReadWriteOnce
34 r e s o u r c e s :
35 r eque s t s :
36 s t o rage : 1Gi

It is important to note that the persistence volume folder needs to have write
permissions; otherwise, the honeypot will not be able to write to it. If you wish to
experiment without permission, you can utilize the ¨tmp folder. You can list the
different persistence volumes and persistence volumes claims respectively with the
following lines:

1 kubect l get pv −o wide

1 kubect l get pvc −o wide

Figure 5.5: List of persistence volumes and persistence volumes claims.

Figure 5.5 illustrates persistence volumes and persistence volume claims inside
the cluster. After defining the persistence volumes and persistence volume claims,
it’s time to implement the deployments of the honeypots. Each deployment needs
to link to a persistence volume claim to store the data captured by the honeypot.
The honeypot chosen is Cowrie, which emulates a UNIX operating system, making
it perfect for capturing brute-force attacks. Both deployments will run just one
replica. Below are the manifests for both deployments:

35

Prototype

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : cowrie −1
5 spec :
6 r e p l i c a s : 1
7 s e l e c t o r :
8 matchLabels :
9 app : cowrie −1

10 template :
11 metadata :
12 l a b e l s :
13 app : cowrie −1
14 spec :
15 volumes :
16 − name : cowrie−data
17 pers istentVolumeClaim :
18 claimName : cowrie−pvc−1
19 c on t a i n e r s :
20 − name : cowr ie
21 image : cowr ie / cowr ie : l a t e s t
22 volumeMounts :
23 − name : cowrie−data
24 mountPath : " / cowr ie / cowrie−g i t / var / log / cowr ie "
25 nodeName : vm1−bigdata

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : cowrie −2
5 spec :
6 r e p l i c a s : 1
7 s e l e c t o r :
8 matchLabels :
9 app : cowrie −2

10 template :
11 metadata :
12 l a b e l s :
13 app : cowrie −2
14 spec :
15 volumes :
16 − name : cowrie−data
17 pers istentVolumeClaim :
18 claimName : cowrie−pvc−2
19 c on t a i n e r s :
20 − name : cowr ie

36

Prototype

21 image : cowr ie / cowr ie : l a t e s t
22 volumeMounts :
23 − name : cowrie−data
24 mountPath : " / cowr ie / cowrie−g i t / var / log / cowr ie "
25 nodeName : s e rv e r1

Figure 5.6: List of deployments.

Figure 5.6 displays the list of Cowrie deployments. The only remaining compo-
nents are the services and network policies. While network policies aren’t necessary
for testing purposes, they are essential in a production environment. The services
for these honeypots are exposed using the external IP, equivalent to the IP of the
node to be exposed. Below are the manifests for these services:

1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : cowrie −1
5 spec :
6 s e l e c t o r :
7 app : cowrie −1
8 por t s :
9 − pro to co l : TCP

10 port : 2222
11 ta rge tPor t : 2222
12 ex t e rna l IPs :
13 − 19 2 . 16 8 . 1 . 1 7 5

1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : cowrie −2
5 spec :
6 s e l e c t o r :
7 app : cowrie −2
8 por t s :
9 − pro to co l : TCP

10 port : 2222
11 ta rge tPor t : 2222
12 ex t e rna l IPs :

37

Prototype

13 − 1 9 2 . 1 6 8 . 1 . 7 0

Figure 5.7 illustrates the list of different services in the cluster after executing
the following command:

1 kubect l get s e r v i c e s −o wide

Figure 5.7: List of services.

With all these manifests applied to the cluster, the service layer for the prototype
is now complete. In the next chapter, I will conduct a test to show the attacker’s
perspective and how the node saves the data.

38

Chapter 6

Benchmarks

After implementing the prototype, it’s relevant to conduct measurements to assess
the performance behavior of the system. Therefore, I will perform five different tests.
Four tests will focus on statistical analysis after measuring a significant sample size.
In contrast, the fifth test will demonstrate the behavior of the prototype in the
service layer (from the attacker’s perspective and data storage).

For the statistical tests, I will utilize the mean (described by equation 6.1),
the standard deviation (followed by equation 6.2), and the confidence interval
considering a confidence level of 90 percent (indicating a 10 percent chance of
being wrong, as shown by equation 6.3). In those equations, xi represents each
measurement, N is the number of measurements, x̄ is the mean, σ is the standard
deviation, and z is the confidence level value (1.645).

x̄ = 1
N

NØ
i=1

xi (6.1)

σ =
óqN

i=1(xi − x̄)2

N
(6.2)

CI = x̄ ± z
σ√
N

(6.3)

6.1 Network Latency
I aimed to assess network latency to predict the time required for future actions.
To achieve this, I systematically tested various configurations among nodes and
pods. Utilizing the ping tool, depicted in Figure 6.1, I measured delays. Ping’s
efficacy in determining host availability, owing to its transmission of small packets,
rendered it ideal for gauging network delays.

39

Benchmarks

Figure 6.1: Ping command example.

0 5 10 15 20 25 30
Iteration

17

18

19

20

21

22

De
la

y
(m

s)

Delay between of Master node to Worker node and Master node Pod to Worker node Pod
Master node to Worker node
Master node Pod to Worker node Pod

Figure 6.2: Delay comparison between node to node and pod to pod.

The experimentation encompassed measuring delays between the master node
and working node, between the master node and a pod running within it, between
two pods within the master node, and between a pod in the master node and
another in the working node.

I notice that the two results within a node yield values based on the hardware
limitations on site. In Figure 6.2, I compare the discrepancy in delay between a

40

Benchmarks

Peers Mean (ms) Std (ms) 90% CI (ms)
Master node -
Worker node 17.69 0.603 [17.51, 17.87]

Master node -
Master node pod 0.069 0.017 [0.064, 0.075]

Master node pod -
Master node pod 0.082 0.019 [0.077, 0.088]

Master node pod -
Worker node pod 18.38 1.16 [18.03, 18.73]

Table 6.1: Statistical results of network delay for each possible peer.

master node and a worker node, as well as between two pods within those nodes.
After conducting 30 sample runs, each comprising ten traces, I derived statistical
insights for each configuration. Table 6.1 presents the obtained results.

6.2 Network Bandwidth
I replicated the experiments conducted in the preceding section here, focusing on
measuring bandwidth instead of latency. For this purpose, I employed iperf3, a tool
that sets up a server-client configuration to initiate data transfer, thereby assessing
network capabilities. As illustrated in Figure 6.3, this tool typically conducts a
10-second measurement.

Figure 6.3: Iperf command example.

41

Benchmarks

0 5 10 15 20 25 30
Iteration

40

50

60

70

80

90

100

110
Th

ro
ug

hp
ut

 (M
bi

ts
/s

ec
)

Throughput between Master node to Worker node and Master node Pod to Worker node Pod
Master node to Worker node
Master node Pod to Worker node Pod

Figure 6.4: Throughput comparison between node to node and pod to pod.

Peers Mean (Mbits/s) Std (Mbits/s) 90% CI (Mbits/s)
Master node -
Worker node 95.29 8.69 [92.68, 97.90]

Master node -
Master node pod 13493.3 11398.6 [13151, 13835.6]

Master node pod -
Master node pod 11367.7 1210.78 [11004.1, 11731.3]

Master node pod -
Worker node pod 66.82 7.16 [64.67, 68.97]

Table 6.2: Statistical results of network bandwidth for each possible peer.

I essentially replicated the comparison from the previous section, this time
focusing on the throughput of the network. As depicted in Figure 6.4, the results
were significantly divergent, possibly owing to the capabilities inherent in a node
compared to the relatively simpler resources inside a pod. Analysis of the results
presented in Table 6.2 reveals that, in this instance, the bandwidth between nodes
surpasses that between pods. Additionally, other probes indicate that internal
processes operate at speeds reaching gigabits per second.

42

Benchmarks

6.3 Pod Deployment Time
In the pod deployment time test, I create 30 consecutive pods using a cowrie image,
considering both the time taken for the creation and the time until the pod is
ready, and then calculate the difference. Table 6.3 presents the statistical values
obtained. This experiment was conducted separately for the master node and a
working node.

Node Mean (ms) Standart deviation (ms) 90% Confident Interval (ms)
Master 1812 329 [1271, 2353]
Worker 2903 768 [1640, 4166]

Table 6.3: Statistical results of pod deployment time.

The results indicate that the pod creation time ranges between one and four
seconds. That’s due to the pre-stored image that the pod requires from the cluster’s
registry. It is noteworthy that the values differ between the master node and the
working node, which could be due to the time taken for the master to notify the
Kubelet of the working node, as it needs to traverse the network.

6.4 Node Failure and Recovery
For the test of node failure and recovery in the K3s architecture, I needed to
understand the underlying mechanism. Rather than immediately notifying the
system of a node failure, the master node initiates periodic heartbeat signals. To
accurately assess node recovery time, it was necessary to wait for the node to report
its status as offline before initiating the reboot process, ensuring a measurable
interval between states.

The measurement script employed for this purpose followed a sequence: it
initiated a reboot command via SSH to the node and then commenced time
tracking. Upon the transition from an offline to an online state, the script recorded
the end time, allowing for the calculation of the recovery duration.

I replicated this experiment 30 times, rebooting the virtual machine on each
occasion. The results presented in Table 6.4 indicate variability in the data, likely
influenced by occasional jobs running before some reboots.

Mean (s) Standart deviation (s) 90% Confident Interval (s)
56.83 14.45 [40.11, 70.56]

Table 6.4: Statistical results of node recovery time.

43

Benchmarks

6.5 Data collection
In the latest test I conducted, I aimed to showcase the prototype defined in the
service layer discussed in the previous chapter. Figure 6.5 illustrates a terminal
on the left side, displaying the file containing all the commands and passwords
proposed by the attacker. On the right side of the screen, you can observe the
actions I performed, highlighting the striking resemblance between the Cowrie
honeypot and a Unix system.

Figure 6.5: Data storage vs attacker action.

44

Chapter 7

Conclusion

In conclusion, this thesis has successfully achieved its primary objective of dis-
tributing honeypots across various locations. Additionally, it has realized several
goals broadening the project’s success.

The initial phase involved meticulous selection of technologies suitable for
running honeypots, with virtual machines and containers emerging as the primary
candidates. Subsequently, I decided to employ Kubernetes for orchestrating and
ensuring control over the honeypots due to its scalability and robust community
support.

Further refinement led to the adoption of K3s, a lightweight Kubernetes dis-
tribution capable of facilitating multi-node deployment across multiple locations.
This decision was pivotal in ensuring the efficient utilization of resources and the
seamless integration of honeypots into diverse environments.

Moreover, I implemented a Wireguard deployment as the VPN solution, instru-
mental in achieving secure communication across nodes, with benchmarking results
highlighting its superior performance compared to alternative options.

After the decision-making, I developed a three-layered prototype encompassing
physical, cluster, and service layers. The physical layer laid the groundwork by
establishing virtual machine nodes. In the cluster layer, I employed algorithms
to ensure the reliability and resilience of the network, even in the face of system
failures.

The service layer showcased the design of honeypots exposed across different
locations, facilitated by deployments, volumes, and services orchestrated through
Kubernetes.

Rigorous testing of the prototype yielded promising results, with data trans-
mission rates between nodes averaging between 92.6 to 97.9 Mbits/s and minimal
latency ranging from 17.5 to 17.9 ms. Furthermore, the prototype demonstrated
satisfactory performance in pod generation and node recovery, with pods being
instantiated within 1 to 4 seconds and node recovery times ranging from 40 to

45

Conclusion

70 seconds, notwithstanding the inherent delay in node disconnection notification
within the K3s cluster.

In essence, this thesis achieves its primary objective of deploying distributed
honeypots and establishes a foundation for future advancements in cybersecurity
infrastructure. Dispersing honeypots across various locations enables the capture of
diverse patterns that may not be observable within a single geographic area. The
insights garnered from this research are invaluable contributions to the continual
evolution of cybersecurity practices. They emphasize the significance of innovative
solutions in fortifying digital ecosystems against emerging threats by offering a
nuanced understanding of malicious activities across different environments.

7.1 Future Work
While this thesis lays the groundwork for distributed honeypot deployment and
demonstrates its feasibility, several avenues for further research and development
remain unexplored. The following tasks represent potential areas for future work:

• Aggregate New Honeypot Images: Continuously expand the repository
of honeypot images to encompass a broader range of deceptive services and
emulate diverse targets, enhancing detection capabilities across different threat
landscapes.

• Establish Secure Connection Between Clusters: Develop robust proto-
cols and mechanisms for securely interconnecting distributed honeypot clusters,
ensuring the confidentiality, integrity, and availability of communication chan-
nels to prevent unauthorized access and data breaches.

• Implement Classification for Non-sensitive Data Capture: Integrate
machine learning algorithms or rule-based classifiers to discern between sen-
sitive and non-sensitive data captured by honeypots, enabling the selective
retention and analysis of information while adhering to privacy and regulatory
requirements.

• Train Models Based on Collected Data: Leverage the wealth of data col-
lected by distributed honeypots to train machine learning models for anomaly
detection, intrusion detection, and threat intelligence, empowering organiza-
tions to identify and mitigate emerging cyber threats.

• Create Smart Control of Honeypots Based on External Data: Develop
dynamic control mechanisms that adjust the behavior and configuration of
honeypots in real time based on contextual information gathered from external
sources, such as threat intelligence feeds, network telemetry, and incident
response systems.

46

Conclusion

• Design Interface for Traffic Monitoring: Design and implement a user-
friendly interface for centralized monitoring and visualization of network
traffic, allowing security analysts to gain insights into malicious activities,
detect patterns, and respond promptly to evolving threats across distributed
honeypot deployments.

By addressing these future tasks, researchers can further advance the capabilities
and effectiveness of distributed honeypot infrastructures, bolstering cybersecurity
defenses and enhancing resilience against evolving cyber threats.

47

Bibliography

[1] B. Aiyer, J. Caso, P. Russell, and M. Sorel. «New survey reveals $2 trillion
market opportunity for cybersecurity technology and service providers». In:
(Oct. 2022). url: https://www.mckinsey.com/capabilities/risk-and-
resilience/our-insights/cybersecurity/new-survey-reveals-2-tr
illion-dollar-market-opportunity-for-cybersecurity-technology-
and-service-providers (cit. on p. 1).

[2] Cost of a data breach 2023. https://www.ibm.com/reports/data-breach.
Accessed on: March 28, 2024 (cit. on p. 1).

[3] Cisco. Cisco Annual Internet Report (2018–2023) White Paper. https://www.
cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html. Accessed on:
March 28, 2024. Jan. 2022 (cit. on p. 1).

[4] T-Pot Version 22.04 released. https://github.security.telekom.com/
2022/04/honeypot-tpot-22.04-released.html. Accessed on: March 28,
2024. Apr. 2022 (cit. on p. 4).

[5] What is a virtual machine (VM)? https://www.redhat.com/en/topics/
virtualization/what-is- a- virtual- machine. Accessed on March 28,
2024 (cit. on p. 6).

[6] Docker. What is a Container? | Docker. https://www.docker.com/resourc
es/what-container/. Accessed on March 28, 2024 (cit. on pp. 6, 7).

[7] Docker Documentation. Overview of Docker Hub. https://docs.docker.
com/docker-hub/. Accessed on March 28, 2024. Jan. 2024 (cit. on p. 7).

[8] Welcome to Cowrie’s documentation! — cowrie 2.5.0 documentation. https:
//cowrie.readthedocs.io/en/latest/index.html. Accessed on March 28,
2024 (cit. on p. 7).

[9] Docker Documentation. Docker Compose overview. https://docs.docker.
com/compose/. Accessed on March 28, 2024. Jan. 2024 (cit. on p. 7).

[10] Docker Documentation. Swarm mode overview. https://docs.docker.com/
engine/swarm/. Accessed on March 28, 2024. Feb. 2024 (cit. on p. 7).

48

https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.ibm.com/reports/data-breach
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://github.security.telekom.com/2022/04/honeypot-tpot-22.04-released.html
https://github.security.telekom.com/2022/04/honeypot-tpot-22.04-released.html
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://cowrie.readthedocs.io/en/latest/index.html
https://cowrie.readthedocs.io/en/latest/index.html
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

BIBLIOGRAPHY

[11] Docker Documentation. How nodes work. https://docs.docker.com/
engine/swarm/how-swarm-mode-works/nodes/. Accessed on March 28,
2024. Feb. 2024 (cit. on p. 8).

[12] Kubernetes. Kubernetes components. https://kubernetes.io/docs/conce
pts/overview/components/. Accessed on March 28, 2024. Jan. 2024 (cit. on
p. 8).

[13] Kubernetes. Overview. https://kubernetes.io/docs/concepts/overview
/. Accessed on March 28, 2024 (cit. on p. 8).

[14] Kubernetes. Cluster Architecture. https://kubernetes.io/docs/concepts/
architecture/. Accessed on March 28, 2024 (cit. on p. 9).

[15] IVPN. PPTP vs IPSec IKEv2 vs OpenVPN vs WireGuard. https://www.
ivpn.net/pptp-vs-ipsec-ikev2-vs-openvpn-vs-wireguard/. Accessed
on March 28, 2024 (cit. on p. 9).

[16] Rancher Labs. Cloud native infrastructure. https://www.rancher.com/
categories/cloud-native-infrastructure. Accessed on March 28, 2024
(cit. on p. 13).

[17] Google Cloud. What is Kubernetes? | Google Cloud. https://cloud.google.
com/learn/what- is- kubernetes. Accessed on March 28, 2024 (cit. on
p. 13).

[18] Kubernetes. Using Minikube to create a cluster. https://kubernetes.io/
docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/.
Accessed on March 28, 2024. Dec. 2023 (cit. on p. 13).

[19] Toolify. Choosing between k0s and k3s for Your Home Lab. https://www.
toolify.ai/gpts/choosing-between-k0s-and-k3s-for-your-home-
lab-110856. Accessed on March 28, 2024. Nov. 2023 (cit. on p. 13).

[20] K3s. Architecture | K3s. https://docs.k3s.io/architecture. Accessed on
March 28, 2024. Mar. 2024 (cit. on p. 14).

[21] Jason A. Donenfeld. Performance - WireGuard. https://www.wireguard.
com/performance/. Accessed on March 28, 2024 (cit. on p. 15).

49

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://www.ivpn.net/pptp-vs-ipsec-ikev2-vs-openvpn-vs-wireguard/
https://www.ivpn.net/pptp-vs-ipsec-ikev2-vs-openvpn-vs-wireguard/
https://www.rancher.com/categories/cloud-native-infrastructure
https://www.rancher.com/categories/cloud-native-infrastructure
https://cloud.google.com/learn/what-is-kubernetes
https://cloud.google.com/learn/what-is-kubernetes
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
https://www.toolify.ai/gpts/choosing-between-k0s-and-k3s-for-your-home-lab-110856
https://www.toolify.ai/gpts/choosing-between-k0s-and-k3s-for-your-home-lab-110856
https://www.toolify.ai/gpts/choosing-between-k0s-and-k3s-for-your-home-lab-110856
https://docs.k3s.io/architecture
https://www.wireguard.com/performance/
https://www.wireguard.com/performance/

	List of Tables
	List of Figures
	Introduction
	Objectives and Related Work
	Objectives
	Related Work

	Background
	Virtualization
	Containers Orchestration
	Network Security

	Methodology
	System Architecture
	Virtual Machines
	Containers Orchestration
	K3s
	Wireguard
	Workloads, services and networking
	Pod
	Deployment
	Volumes
	Services
	Network policies

	Prototype
	Physical Layer
	Cluster Layer
	Service Layer

	Benchmarks
	Network Latency
	Network Bandwidth
	Pod Deployment Time
	Node Failure and Recovery
	Data collection

	Conclusion
	Future Work

	Bibliography

