
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Thesis

Design and experimental validation of vehicle
dynamics estimators and trajectory tracking
model predictive controller for scaled fully

autonomous vehicles

Supervisors Candidate
Prof. Alessandro Vigliani Nuccio lo Bello
Prof. Angelo Domenico Vella
Dr. Umberto Montanaro
Prof. Aldo Sorniotti

Academic Year 2023-2024

Abstract

The progress of self-driving cars widely depends on the development of precise navigation systems
and effective motion controllers that allow to track the desired trajectories provided by the
motion planning stage. Both these critical aspects are addressed in this work: the enhancement
of localization accuracy by using sensor fusion and estimation techniques and the design and
experimental validation of trajectory tracking controllers for autonomous driving.
In particular, the first part of the thesis focuses on the design of Extended Kalman Filters (EKFs)
that, by integrating measurements of multiple sensors such as Lidar, Inertial Measurement Unit
(IMU) and encoder, allow to overcome the issues of splikes in Lidar-based pose measurements.
These filters not only mitigate the impact of outliers in the Lidar measurements but also allow
to estimate vehicle dynamics state variables that are not directly measured, e.g. vehicle side-slip
angle. The improved localization and vehicle dynamics estimators are crucial for ensuring both
reliability and accuracy of autonomous vehicles in diverse operational scenarios.
The second part of the work delves into the motion control stage which represents a fundamental
module of an autonomous vehicles software stack, aiming to follow accurately the reference path
by ensuring vehicle stability and robustness of control system performance. Specifically, two
control strategies are presented: a static state feedback controller with optimization and a model
predictive controller. All estimators and controllers have been firstly tested by using closed-
loop simulations and then experimental validated employing a scaled fully autonomous vehicle
prototype.

1

Contents

List of Figures 4

List of Tables 6

1 Introduction 7
1.1 QCar . 7

1.1.1 Hardware, sensors and actuators . 8

2 Vehicle models 12
2.1 Reference frames . 12
2.2 Kinematic model . 13
2.3 Dynamic single-track model . 16
2.4 Vehicle model for path tracking . 22
2.5 Longitudinal model . 23

3 Reference trajectories generation 25
3.1 U-shaped trajectory . 26
3.2 S-shaped trajectory . 29
3.3 Circular trajectory . 31
3.4 Eight-shaped trajectory . 33
3.5 Obstacle-avoidance manoeuvre . 35

4 Kalman filters 39
4.1 Kalman Filters algorithm . 39
4.2 Kinematic Extended Kalman filter . 41

4.2.1 Dynamic Extended Kalman filter . 43
4.3 Simulation results . 45

4.3.1 Kinematic Extended Kalman Filter . 45
4.3.2 Dynamic Extended Kalman Filter . 47
4.3.3 Comparison of simulation results . 48

4.4 Experimental results . 48

5 Trajectory tracking controllers design 53
5.1 Pole placement controller solution . 53

5.1.1 Control design via static state feedback 53
5.1.2 Pole placement path tracking design . 54

5.2 Model predictive controller solution . 57
5.2.1 NMPC algorithm . 57

2

5.2.2 MPC path tracking design . 59

6 Simulation results 67
6.1 Computation of the lateral and heading errors in real-time for control purposes . 67
6.2 Presentation of trajectory tracking controllers simulation results 69

6.2.1 Pole placement with optimization simulation results 69
6.2.2 Model predictive controller simulation results 71

7 Experimental results 74
7.1 Pole placement with optimization experimental results 74
7.2 Model predictive controller experimental results 76
7.3 Comparison of experimental results . 78

7.3.1 Comparison of controllers experimental results for U-shaped trajectory . . 79
7.3.2 Comparison of controllers experimental results for S-shaped trajectory . . 80
7.3.3 Comparison of controllers experimental results for obstacle avoidance tra-

jectory . 81
7.3.4 Comparison of controllers experimental results for circle trajectory 82
7.3.5 Comparison of controllers experimental results for eight trajectory 83

Bibliography 88

3

List of Figures

1.1 QCar . 7
1.2 Experimental setup of the QLab . 8
1.3 CSI camera and relative reference frame . 8
1.4 Available frame rates of CSI cameras . 9
1.5 RGB-D camera . 9
1.6 Resolution and frame rate of RGB-D camera . 10
1.7 IMU specifications . 10
1.8 Optical encoder . 10
1.9 RPLidar A2 (A2M8) . 11
1.10 Available frame rates and sample frequencies of the lidar sensor 11

2.1 Inertial and body reference frames . 13
2.2 Vehicle kinematic model . 14
2.3 Front tire side-slip angle . 17
2.4 Rear tire side-slip angle . 18
2.5 Single-track model cornering dynamics . 19
2.6 Lateral tire-road force as function of tire side-slip angle 20
2.7 Block diagram of dynamic single-track model . 22

3.1 Laboratory tests track plan . 25
3.2 U-shaped trajectory on the test track . 26
3.3 Reference pose and curvature for U trajectory . 28
3.4 S-shaped trajectory on the test track . 29
3.5 Reference pose and curvature for S trajectory . 30
3.6 Circular trajectory on the test track . 31
3.7 Reference pose and curvature for circular trajectory 32
3.8 Eight-shaped trajectory on the test track . 33
3.9 Reference pose and curvature for eight trajectory 35
3.10 Obstacle avoidance trajectory’s sections from ISO3888 standard. 35
3.11 Obstacle-avoidance trajectory on the test track 36
3.12 Reference pose and curvature for obstacle-avoidance trajectory 38

4.1 Kinematic Extended Kalman filter scheme . 43
4.2 Dynamic Extended Kalman filter scheme . 44
4.3 Model’s input in simulation . 45
4.7 Pose provided by the LiDar with spikes . 49
4.8 Sigmoid functions for LiDar measurement noises 50
4.10 KEKF and DEKF performance comparison in experimental tests 52

4

5.1 Static state feedback control law . 54
5.2 Receding horizon strategy . 59
5.3 Sensitivity analysis . 65
5.4 MPC block in Simulink . 65

6.1 Look-Up-Tables used to provide the reference variables to the control architecture,
’s’ is the vehicle travelled distance. 67

6.2 Definition of variables used for calculation of distance travelled along the path . 68
6.3 Simulation results of pole placement controller for U-shaped trajectory 69
6.4 Simulation results of pole placement controller for S-shaped trajectory 70
6.5 Simulation results of pole placement controller for circle trajectory 70
6.6 Simulation results of pole placement controller for eight trajectory 70
6.7 Simulation results of pole placement controller for obstacle avoidance trajectory . 71
6.8 Simulation results of model predictive controller for U-shaped trajectory 71
6.9 Simulation results of model predictive controller for S-shaped trajectory 72
6.10 Simulation results of model predictive controller for circle trajectory 72
6.11 Simulation results of model predictive controller for eight trajectory 73
6.12 Simulation results of model predictive controller for obstacle avoidance trajectory 73

7.1 Experimental results of pole placement controller for U-shaped trajectory at 0.5,
1 and 1.5 mps . 74

7.2 Experimental results of pole placement controller for S-shaped trajectory at 0.5,
1 and 1.5 mps . 75

7.3 Experimental results of pole placement controller for obstacle avoidance trajectory
at 0.5, 1 and 1.5 mps . 75

7.4 Experimental results of pole placement controller for circle trajectory at 0.5, 1 and
1.5 mps . 75

7.5 Experimental results of pole placement controller for eight trajectory at 0.5, 1 and
1.5 mps . 76

7.6 Experimental results of model predictive controller for U-shaped trajectory at 0.5,
1 and 1.5 mps . 76

7.7 Experimental results of model predictive controller for S-shaped trajectory at 0.5,
1 and 1.5 mps . 77

7.8 Experimental results of model predictive controller for obstacle avoidance trajec-
tory at 0.5, 1 and 1.5 mps . 77

7.9 Experimental results of model predictive controller for circle trajectory at 0.5, 1
and 1.5 mps . 77

7.10 Experimental results of model predictive controller for eight trajectory at 0.5, 1
and 1.5 mps . 78

7.11 Comparison of controllers performance in experimental tests with U trajectory at
different vehicle velocities . 79

7.12 Comparison of controllers performance in experimental tests with S trajectory at
different vehicle velocities . 80

7.13 Comparison of controllers performance in experimental tests with eight trajectory
at different vehicle velocities . 81

7.14 Comparison of controllers performance in experimental tests with circular trajec-
tory at different vehicle velocities . 82

7.15 Comparison of controllers performance in experimental tests with eight trajectory
at different vehicle velocities . 83

5

List of Tables

3.1 Obstacle avoidance trajectory dimensions in meters 36

4.1 White noises variances . 45
4.2 Covariance matrices KEKF . 45
4.3 Covariance matrices DEKF . 48
4.4 KPIs comparison . 48
4.5 Multiplied factors for spike management . 50
4.6 Covariance matrix’s entries for encoder and IMU measurement noise and process

disturbances . 50

7.1 List of path tracking symbols . 85
7.2 List of symbols . 86

6

Chapter 1

Introduction

In earlier times, vehicles were characterized by their simplicity, primarily serving the purpose of
transportation. However, as society progressed and technology evolved, vehicles began to encom-
pass more than just transportation and it’s started to prioritize comfort, safety, and convenience
as well. This shift in focus prompted extensive research into enhancing vehicles by integrating
technological innovations and advancements and the idea of autonomous vehicles (AVs) was soon
conceived. According to the World Health Organization (WHO), about 1.3 million people die
every year due to road accidents, by representing the major cause of death among persons aged
5-29 [1]. The main risk factors include high speeds, alcohol, distracted driving, unsafe vehicles
and infrastructures. AVs have garnered considerable attention from researchers and manufac-
turers for their potential to assist in driving tasks such as sensing the surrounding environment,
planning the shortest route, navigating, controlling speed and parking without human interven-
tion. Although AVs are not yet widely adopted, their potential social and economic benefits are
evident. They can play a crucial role in reducing road accidents by decreasing human errors, fuel
consumption, and traffic congestion. These promising advantages represent a significant moti-
vation for this work, whose aim is the design and experimental validation of vehicle dynamics
estimators and trajectory tracking controllers for fully scaled autonomous vehicles. These model
vehicles, designed for academic teaching and research, are presented in the following paragraph.

1.1 QCar

Figure 1.1: QCar

7

Introduction

QCar, the feature vehicle of the Self-Driving Car Studio, is an open-architecture, scaled model
vehicle designed for academic teaching and research. The vehicle is equipped with a wide range
of sensors including lidar, 360 degrees vision cameras, depth sensor, inertial measurement unit
(IMU) and one encoder, with the possibility to connect four encoders, one for each wheel. The
QCar is supplied with a software stack where it’s possible to modify or create new ROS nodes,
allowing to interface directly with the vehicle avoiding the use of lower level programming lan-
guage.
Additionally, a ground station and a desktop PC are provided to control the vehicles by running
the desired control algorithm in the target hardware. The experimental setup is shown in the
following figure.

Figure 1.2: Experimental setup of the QLab

1.1.1 Hardware, sensors and actuators

The onboard computer of the QCar is a NVIDIA Jetson TX2, with Linux operating system,
CPU: 2 GHz quad-core ARM Cortex-A57 64-bit and GPU: 256 CUDA core NVIDIA Pascal.
The sensors and the actuators the vehicle is equipped with are:

• CSI cameras (Camera Serial Interface): the QCars is equipped with four CSI cameras
providing a 360◦ vision of the surrounding environment. Each camera presents an horizontal
Field-Of-View of 160◦ and a vertical Field-Of-View of 120°, a variable resolution from
3280x2464 to 820x410 and a frame rate with resolution ranging from 21 fps to 120 fps.

Figure 1.3: CSI camera and relative reference frame

8

Introduction

Figure 1.4: Available frame rates of CSI cameras

• RGB-D camera: the QCar is equipped with an Intel RealSense D435 RGB-D (Red, Gree,
Blue and Depth) camera. It includes an IR projector and two IR imagers, which make
this unit a stereo tracking solution. The camera can provide RGB, infrared data streams
(left and right) and depth at different frame rates and resolutions. Moreover, the depth
image allows to trace the distance of the objects that RealSense is framing, enabling objects
detection in front of the vehicle which can be useful for creating an adaptive cruise control.
The horizontal and vertical FOVs of this camera have higher values than the CSI one.

Figure 1.5: RGB-D camera

• IMU: the QCar is equipped with a 9-axis inertial measurement unit; specifically, three for
the accelerometer to measure longitudinal, lateral and vertical accelerations, three for the
gyroscope to measures angular velocities around each axis of the vehicle body reference
frame, and three for the magnetometer to measure the magnetic field. The specifications
of this sensor are reported below.

• DC steering motor: the QCar is equipped with only one motor for driving the four wheels
though two differentials. The motor is the Titan 12T 550 manufactured by the US company
Traxxas. Moreover, in order to manage the steering of the front wheels, a servo motor is
used whose rotor is limited by physical constraints of [-0.5, 0.5] rad, i.e. ± 28.65°.

• Encoder: the QCar is equipped with an encoder placed on the rotor which is used to
measure the angular position of the drive motor. The model of the encoder is E8T720-125
and it is produced by US Digital. It features a single-ended optical shaft that provides 720
counts per revolution. Additionally, it also provides the measurement of rotor speed based
on the time that elapses between rising and falling edges of the signal.

9

Introduction

Figure 1.6: Resolution and frame rate of RGB-D camera

Figure 1.7: IMU specifications

Figure 1.8: Optical encoder

• Lidar: the lidar (Light Detection and Ranging) is a sensor that uses laser pulses to measure
distances of the surrounding environment. Specifically, it consists of a laser emitter, a
signal receiver and a data processing system. The emitter sends laser pulses in the desired
direction, while the receiver gets back the signal reflected by the object. The data processing
system computes the distance to the object based on the time it takes for the laser to return
to the receiver. The Qcar is equipped with the RPLidar A2 (A2M8): this is a 2D planar
lidar that supports up to 8000 samples per second with a scan rate of up to 15 Hz, providing
a detection range of up to 18 m. The scanning frame rate and the corresponding samples
per revolution are presented in the following.

10

Introduction

Figure 1.9: RPLidar A2 (A2M8)

Figure 1.10: Available frame rates and sample frequencies of the lidar sensor

Lidar, especially in indoor applications, is used for the SLAM (Simultaneous localization
and mapping) service to trace the position of the vehicle and to map the system environ-
ment. In particular, Quanser has created a localization service for QCar using lidar, the
algorithm is structured as follows: 1) an initial scan is carried out of the environment in
which the QCar remains stationary. At the end of the scan the lidar data is saved in local
memory and the initial position of the car or rather the position in which the scan took
place coincides with the origin of the fixed reference system to which the position of the
QCar will refer; 2) the position with the vehicle running is obtained by comparing the data
that the lidar is acquiring with the data saved in memory during the first scan; depending
on this comparison, the vehicle position and orientation are calculated and a score is also
associated with this measurement.
However, the localization service provided by Quanser is still under development and there-
fore the vehicle pose provided may not be accurate. In particular, this problem is due to
the fact that the initial scan takes place with the car stationary and therefore only the
data of a very specific point is saved in memory. Indeed, to improve the first scan it is
advisable to insert references into the environment, such as boxes or other objects, being
able to obtain a measurement of the position more precise. Another issue arises from the
lidar limited maximum sample frequency of 15 Hz, which could be not enough to ensure
optimal performance for the path tracking control strategies that are based mainly on ve-
hicle localization. To figure out these issues, Kalman filters have been implemented and
presented in chapter 5.

11

Chapter 2

Vehicle models

In the context of vehicle dynamics and control, the precise modeling of vehicle motion dynam-
ics plays a crucial role in the design of effective control algorithms. Within this scenery, two
fundamental models, the kinematic model and the single-track model, allows us to comprehend
and predict the vehicle behavior and become indispensable in the development of robust control
systems for autonomous vehicles, where an accurate representation of the dynamics of the car is
essential for ensuring safe navigation.
The kinematic model provides a simplified representation of the vehicle’s motion, by focusing
on its pose without introducing the complexities of forces and torques actions. It is a valuable
abstraction for scenarios where dynamics can be overlooked in favor of a concise description of
the vehicle’s path.
On the other hand, the single-track model goes deeper into the dynamic aspects of vehicular
motion, considering the forces and torques that influence the vehicle’s behavior. This model,
despite still represents a simplification, accounts for essential dynamics, making it suitable for
tasks requiring a more detailed understanding of vehicle behavior.
In this chapter both of the models are presented and discussed since they are employed for
Kalman filters and path tracking controllers design and implementation.

2.1 Reference frames

The aim of this paragraph is to present the two reference frames employed in the work. Reference
frames serve as the basis for interpreting and responding to the surrounding world, allowing
vehicles to understand their position, orientation, and movement relative to their surroundings.
For localization purposes it’s needed expressing the vehicle pose with respect to a fixed point in
the space. Let’s consider a mobile reference frame fixed on the vehicle itself and centered in its
center of gravity that we call ’body reference frame’. The ’inertial reference frame’ (centered in
’I’ in the figure 2.1) is a fixed reference frame. The position and the orientation of the vehicle
are referenced with respect to this latter:

pI(t) =

 x
y
ψ

 (2.1)

where pI is the generic vector composed by x, y coordinates and yaw angle ψ. Considering that
the body reference frame is rotating with respect to the fixed one by the angle ψ, the following
velocity expressions hold true:

12

Vehicle models

Figure 2.1: Inertial and body reference frames

vB = RBI v
I

vI = (RBI)
⊤vB

(2.2)

where

RBI =

(
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

)
(2.3)

and

RIB =

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
(2.4)

For what concern the position, it can be easily seen that the vehicle coordinates vector in the
body reference frame is always zero since such reference system moves with the vehicle itself.

2.2 Kinematic model

The vehicle kinematic model, shown in figure 2.2, considers three degrees of freedom. The vehicle
is considered to have front and rear wheels collapsed in single points, M and O respectively.

13

Vehicle models

Figure 2.2: Vehicle kinematic model

For front-wheel-only steering vehicles, the steering angles are δf , that is the angle between
vehicle longitudinal axis and front wheel longitudinal axis, and δr = 0, that is the angle between
vehicle longitudinal axis and rear wheel longitudinal axis . The vehicle mass is assumed to be
concentrated in its center of gravity (c.o.g), which corresponds to point G. The distances of M
and O from the center of gravity are lf and lr respectively and their sum equals L = lf + lr
and represents the vehicle wheelbase. Under the above assumptions, the vehicle moves along a
circle of radius R, with the center of the curvature being C. This point coincides also with the
istantaneous centre of rotation of the body and can be found as the intersection of the normal-
segment to the longitudinal plane of the front and rear wheels MC and OC. The velocity of
the system is perpendicular to the line CG and the angle between vehicle velocity vector and
the longitudinal axis of the vehicle is called vehicle side slip angle β. The angle between the
longitudinal axis and the vehicle heading is called yaw angle or heading angle ψ. The main
assumptions for the kinematic model [2] are the following:

• Vehicle is moving in 2D plane, so roll, pitch and lift dynamics are neglected;

• The wheel slip angles are considered to be zero. This implies that velocities vectors vM and
vO are oriented along the direction of the front and rear wheels respectively. In the presence
of low vehicle velocity (v < 5 m/s), since the lateral forces are small, this assumption is

14

Vehicle models

reasonable.

By assuming that the curvature radius changes slowly in the presence of low vehicle velocity, the
vehicle yaw rate shall be equal to the vehicle angular velocity:

ψ̇ = ω =
v

R
. (2.5)

Applying the sine rule to the triangle CGM we get:

sin (δf − β)

lf
=

sin
(
π
2 − δf

)
R

(2.6)

Applying the sine rule to the triangle CGO we get:

sin(β)

lr
=

sin(π2)

R
=

1

R
(2.7)

Multiplying both sides of 2.6 by
lf

cos(δf)
we get:

sin(δf) cos(β)− cos(δf) sin(β)

lf
=

cos(δf)

R
⇒ tan(δf) cos(β)− sin(β) =

lf
R

(2.8)

In the same way, multiplying both sides of 2.7 by lf we get:

sin(β) =
lr
R

(2.9)

If we combine 2.8 and 2.9 it holds true the following expression:

cos(β) tan(δf) =
lf + lr
R

(2.10)

Finally, substituting 2.10 in 2.5, the vehicle yaw rate can be expressed as follows:

ψ̇ =
v cos(β)

lf + lr
(tan(δf)) . (2.11)

The equation 2.11 represents the differential equation of the kinematic model that describes
the evolution of the vehicle yaw angle trajectory. In order to write the remaining differential
equations of the kinematic model that describe the evolution of the X and Y coordinates of the
vehicle, the vehicle velocity vector shall be expressed in the inertial frame. The velocity vector
described in the body reference frame is:

v =

[
vx
vy

]
=

[
v · cos(β)
v · sin(β)

]
(2.12)

15

Vehicle models

Since the body reference frame rotates of the angle ψ with respect to the inertial reference frame,
the vehicle velocity vector in the inertial frame can be expressed as:

V (I) =

[
VX
VY

]
=

[
Ẋ

Ẏ

]
= RIBv

(B) =

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
·
[
v · cos(β)
v · sin(β)

]
(2.13)

It follows:

VX = v · cos(ψ) · cos(β)− v · sin(ψ) · sin(β) = v · cos(ψ + β) (2.14)

VY = v · sin(ψ) · cos(β) + v · cos(ψ) · sin(β) = v · sin(ψ + β) (2.15)

The two equations presented above represent the differential equations of the kinematic model
that describe the evolution of the vehicle coordinates in the inertial reference frame.
Finally, since all the kinematic model’s differential equations 2.11, 2.14, and 2.15 depend on the
vehicle side-slip angle, this shall be written as a function of the model inputs. To do so, it is
possible to combine equation 2.8 and equation 2.9 multiplied respectively by lr and lf :

lr(tan(β) cos(β)− sin(β)) =
lr·lf
R

lf · sin(β) = lr·lf
R

(2.16)

Developing the above equations, the vehicle side-slip angle can be written as:

β = tan−1

(
lr tan(δf)

lr + lf

)
(2.17)

Summarizing, the state variables of the vehicle kinematic model coincide with the vehicle pose
X,Y, ψ and the input variables are the front steering angle δf and the vehicle velocity in the
body reference frame v.

Ẋ = v cos(ψ + β)

Ẏ = v sin(ψ + β)

ψ̇ = v cos(β)
lf+lr

(tan(δf))

β = tan−1
(
lr tan(δf)
lr+lf

) (2.18)

2.3 Dynamic single-track model

In contrast to the simpler vehicle kinematic model, which primarily focuses on geometric rela-
tionships without accounting for the tire characteristic, as well as forces and torques that are
applied, the dynamic single-track model provides a more comprehensive and realistic description
of the vehicle motion’s in the presence of higher vehicle velocity. Indeed, at higher speeds the
assumption that tire side-slip angles are equal to zero, i.e. that the velocity vector at each wheel
is in the direction of the wheel longitudinal axle, cannot be made since it does not approximate
properly the vehicle’s dynamics, so a different approach is needed.
In order to build the dynamic vehicle single-track model, the description of the forces acting
on the vehicle is needed. For what concerns the forces due to tire-road interactions, thanks to
experimental analysis, it is observed that the lateral tire force is proportional to the tire side-slip

16

Vehicle models

angle α, which represents the angle between the velocity vector of the wheel and its longitudi-
nal axis. The tire side-slip angles for both front and rear wheels can be obtained by writing a
balance between the longitudinal and lateral components of the velocities of the tires and the
vehicle chassis.

Figure 2.3: Front tire side-slip angle

The front tire side-slip angle (figure 2.3) can be obtained by writing a velocity balance in both
lateral and longitudinal directions as follows:

vf sin(δf − αf) = v sin(β) + lf ψ̇ (2.19)

vf cos(δf − αf) = v cos(β) (2.20)

The ratio between 2.19 and 2.20 leads to:

tan(δf − αf) =
lf ψ̇ + v sinβ

v cosβ
(2.21)

Under the assumption of small vehicle side-slip angle β ≤ 10◦, it’s possible to consider sin(β) ∼= β,
cos(β) = 1 and tan(β) = β. In such case equation 2.21 becomes:

αf = δf −
lf ψ̇ + vβ

v
(2.22)

17

Vehicle models

Figure 2.4: Rear tire side-slip angle

By using the same approach, the rear tire side-slip angle (figure 2.4) can be obtained by writing
a velocity balance in lateral and longitudinal directions:

vr sin(αr) = −v sin(β) + lrψ̇ (2.23)

vr cos(αr) = v cos(β) (2.24)

The ratio between 2.23 and 2.24 gives:

tan(αr) =
lf ψ̇ − v sinβ

v cosβ
(2.25)

and again assuming β small, the rear tire side-slip angle is equal to:

αr =
lrψ̇ − vβ

v
(2.26)

Once the tire side-slip angles are defined with equations 2.22 and 2.26, the lateral forces generated
due to the interaction between the tire and the road, highlighted in figure 2.5, can be expressed
as:

Fyf = Cαf · αf = (Cαfl + Cαfr) · αf (2.27)

Fyr = Cαr · αr = (Cαrl + Cαrr) · αr (2.28)

Cαf and Cαr are respectively the cornering stiffness of the front and rear tire and for the vehicle
single-track model they correspond to the sum of the cornering stiffness of the two front and rear
wheels.

18

Vehicle models

Figure 2.5: Single-track model cornering dynamics

Therefore the lateral frictional forces depend on the tire side-slip angle as they are generated
due to tire deformation, whose magnitude depends on the lateral velocity and on the time spent
by the tire’s treads in the tire-road contact area [3]. For small lateral velocities, and hence
for small slip angles, the lateral forces are linearly proportional to the slip angle. When the
vehicle lateral velocity increases, also the tire deformation rises as well, and the relation between
lateral force and tire side-slip angle becomes highly non-linear. An indicative shape of the tire
lateral characteristic is presented in figure 2.6. The tire cornering stiffness Cα corresponds to
the tangent of the curve (α, Fy). For small tire side-slip angles, the cornering stiffness can be
considered constant and it is denoted as Cα0.

At this point it is possible to derive the differential equations that describe the vehicle dynamics
considering the tire-road interactions. According to figure 2.5, we can write the equilibrium of
forces along the y axis in the body reference frame as follow:

m · ay = Fc cosβ = Fyr + Fyf cos(δf) (2.29)

Considering the vehicle velocity in the body reference frame:

v(b) =

 v cos(β)
v sin(β)

0

19

Vehicle models

Figure 2.6: Lateral tire-road force as function of tire side-slip angle

the vehicle acceleration in the same reference frame can be computed as the sum of two terms:
the acceleration due to motion along the y axis and the centripetal acceleration due to rotational
motion along the z axis [2].

ab = dvb

dt + ωb ∧ vb =

 −v sin(β) · β̇
v cos(β) · β̇
0

+

 0
0

ψ̇

 ∧

 v cos(β)
v sin(β)
0

 =

=

 −v sin(β) · β̇
v cos(β) · β̇
0

+

 −v sin(β) · ψ̇
v cos(β) · ψ̇
0

 =

 −v sin(β) · (β̇ + ψ̇)

v cos(β) · (β̇ + ψ̇)
0

(2.30)

The magnitude of the vehicle acceleration vector is equal to:

|ab| = an
b = v · (β̇ + ψ̇) (2.31)

Under the assumption of small vehicle side-slip angle β, the lateral acceleration can be expressed
as:

ay = v cosβ(β̇ + ψ̇) ∼= v(β̇ + ψ̇) (2.32)

Substituting the expression of the lateral acceleration presented above into the Newton’s second
law we get:

mv · (β̇ + ψ̇) = Fc cosβ = Fyr + Fyf cos(δf) (2.33)

20

Vehicle models

Additionally, substituting expressions 2.22, 2.27, 2.26, 2.28 in the previous one it’s obtained:

mv · (β̇ + ψ̇) = Cαrαr + Cαfαf cos(δf) =

= Cαr

(
lrψ̇
v − β

)
+ Cαf cos(δf)

(
δf − lf ψ̇

v − β
) (2.34)

Considering the assumptions of small front steering angle, the previous equation can be rewritten
as:

mvβ̇ +
ψ̇

v

(
mv2 − Cαrlr + Cαf lf

)
+ β (Cαf − Cαr) = Cαfδf (2.35)

Equation 2.35 is the first differential equation of the dynamic single-track model in which the
state variable corresponds to vehicle side-slip angle β.

Based on the balance of the moments around the z-axis of the vehicle’s body reference frame it
is possible to write:

Izψ̈ = lfFyf − lrFyr (2.36)

Substituting equations 2.22, 2.27, 2.26, 2.28 in the previous equation:

Izψ̈ = lfFyf − lrFyr = lfCαf

(
δf −

lf ψ̇

v
− β

)
− lrCαr

(
lrψ̇

v
− β

)
(2.37)

The above equation can be rewritten as:

Izψ̈ +
ψ̇

v

(
Cαf lf

2

v
+
Cαrlr

2

v

)
+ β (Cαf lf − Cαrlr) = Cαf lfδf (2.38)

Equation 2.38 is the second differential equation of the dynamic single-track model in which the
state variable corresponds to vehicle yaw rate ψ̇.

In conclusion, the equations that describe the vehicle dynamics in the presence of the assumptions
of the dynamic single-track model are rewritten below:

mvβ̇ + ψ̇

v

(
mv2 − Cαrlr + Cαf lf

)
+ β (Cαf − Cαr) = Cαfδf

Izψ̈ + ψ̇
v

(
Cαf lf

2

v + Cαrlr
2

v

)
+ β (Cαf lf − Cαrlr) = Cαf lfδf

(2.39)

The state variables of the dynamic single-track model are the vehicle side-slip angle β and the
yaw rate ψ̇, and the input variables are the front wheel road steering angle and the vehicle
velocity in the body reference frame.

21

Vehicle models

Figure 2.7: Block diagram of dynamic single-track model

2.4 Vehicle model for path tracking

To design trajectory tracking control algorithms, it is necessary to employ a dynamic model of
the vehicle in which the lateral error and the heading error with respect to the road are used as
state variables. So, the dynamic single-track model defined in 2.3 is re-written in terms of:

• ey: distance of the c.g. of the car from the center line of the road;

• eψ: heading error of the car with respect to the road.

A car moving with constant longitudinal velocity vx on a road with constant curvature ρ is
considered. As usual, the curvature is assumed to be small so that the small angles assumptions
can be made. The desired yaw rate of the vehicle is defined as:

ψ̇des = vxρ (2.40)

Then, the desired acceleration of the vehicle can be expressed as:

v2xρ = vxψ̇des (2.41)

The following variables can be defined [3]:{
ëy = ÿ + vx(ψ̇ − ψ̇des)

eψ = ψ − ψdes
(2.42)

Since the longitudinal velocity is assumed to be constant, the following expression can be

obtained from the above equation:
ėy = ẏ + vxeψ (2.43)

If the velocity is not constant, the derivative of the lateral error with respect to the time has to
be computed by using the following equation:

ėy = ẏ +

∫
vxeψ · dt (2.44)

by leading to a nonlinear and time-varying model that would not be suitable for control purposes.
By substituting expressions of eψ and ėy into 2.39, it can be written:

mëy = ėy(−Cαf
vx

− Cαr
vx

) + eψ(Cαf + Cαr) + ėψ(
−Cαf lf
vx

+ Cαrlr
vx

)+

+ψ̇des(
−Cαf lf
vx

+ Cαrlr
vx

) + Cαfδ

Iz ëψ = Cαf lfδ + ėy(−Cαf lf
vx

+ Cαrlr
vx

) + eψ(Cαf lf − Cαrlr)+

+ėψ(−
Cαf l

2
f

vx
− Cαrl

2
r

vx
)− Izψ̇des(−

Cαf l
2
f

vx
− Cαrl

2
r

vx

(2.45)

22

Vehicle models

The above equations can be written in the following state space form:

ẋ = Ax+B1δ +B2ρ (2.46)

where the state vector is x =
[
ey ėy eψ ėψ

]T
and the matrices A,B1, B2 are:

A =

0 1 0 0

0 −Cαf+Cαr
mvx

Cαf+Cαf
m

−Cαf lf+Cαrlr
mvx

0 0 0 1

0 −Cαf lf−Cαrlr
Izvx

Cαf lf−Cαrlr
Iz

−Cαf l
2
f+Cαrl

2
r

Izvx

B1 =

0
Cαf
m
0

Cαf lf
Iz

 B2 = vx ·

0

−Cαf lf−Cαrlr
mvx

− vx
0

−Cαf l
2
f+Cαrl

2
r

Izvx

The state-space model presented above is used to design the trajectory tracking controllers, as
the main objective is to minimize both the lateral error and the orientation error with respect
to an imposed desired path that the vehicle has to follow.

2.5 Longitudinal model

The vehicle longitudinal model equations are obtained employing the dynamics of the DC motor.
The two following equations are derived respectively from the Kirchhoff’s law and from the
dynamic equilibrium for the rotational motion. Va = Raia + La

dia
dt + E

Cm − Cr = J dωdt +Bω
(2.47)

where,

• Va is the armature voltage;

• Raia is the voltage drop across the equivalent armature resistance;

• La
dia
dt is the voltage drop due to equivalent inductance during transients. This contribution

can be neglected when steady-state conditions are considered.

• E is the back electro-motive-force;

• Cm is the driving torque provided by the EM;

• Cr is the load torque due to resistance contributions;

• J dωdt is the product between motor’s inertia and angular acceleration;

• Bω is the product between viscous friction and angular speed.

23

Vehicle models

For a DC motor the following equations hold true:{
Cm = KmΦia
E = KeΦω

(2.48)

where,

• Km is a constant that depends on the motor characteristics;

• Φ is the excitation flux;

• ω is the motor angular velocity;

• Ke is a constant that depends on the motor characteristics.

Combining 2.47, 2.48 and considering that Kt = KmΦ and Kv = KeΦ it is possible to write:{
ia = Va−Kvω

Ra

Ktia − Cr = J dωdt +Bω
(2.49)

Substituting the above expression of armature current ia in the second equation we get:

Kt
Va −Kvω

Ra
− Cr = J

dω

dt
+Bω (2.50)

and rewriting the equation:

ω̇ =
1

J
(
Kt

Ra
(Va −Kvω)−Bω − Cr) (2.51)

Equation 2.51 describes the dynamics of the EM. Nevertheless, if we consider small vehicle side-
slip angle and we assume zero slip at the ground contact point, this differential equation can be
used to describe the longitudinal dynamics of the QCar by introducing the transmission ratio τ :

vwh =
1

τ
· ωrwh (2.52)

Equation 2.51 can be rewritten as:

ω̇ =
Kt

J ·Ra
Va + (

KtKv

JRa
−B)ω − Cr

J
(2.53)

and, equivalently:

ω̇ = P1Va − P2ω − P3 (2.54)

where
P1 = Kt

J·Ra
P2 = KtKv

JRa
−B

P3 = Cr
J

(2.55)

24

Chapter 3

Reference trajectories generation

This chapter aims to present the procedure employed to generate the reference curvature ρ used
as reference signal in the path tracking controllers. In this work, five different trajectories are
taken into account: U-shaped trajectory, S-shaped trajectory, Circular-shaped trajectory, Eight-
shaped trajectory and Obstacle avoidance trajectory.
All the reference trajectories have been designed such that they can be properly performed in
the experimental tests’ track present in the laboratory, whose plan is shown in figure 3.1.

Figure 3.1: Laboratory tests track plan

25

Reference trajectories generation

3.1 U-shaped trajectory

The U-shaped trajectory, which starts in the point of coordinates (0,0), is built by connecting
two straight horizontal segments with a semi-circular arc. The numerical values presented below
are provided in meters.

Figure 3.2: U-shaped trajectory on the test track

Specifically, the measurements of the path are reported below.

• Straight segment starting at (X,Y) = (0,0), ending at (X,Y) = (1, 0);

• semi-circumference with radius r = 1.335 starting at (X,Y) = (1,0) and ending at (X,Y) =
(1, 2.67);

• straight segment starting at (X,Y) = (1,2.67) and ending at (X,Y) = (0,2.67).

These three segments are combined together to provide the reference coordinates vectors, as
shown in the fragment of code below.

1 % Initial straight segment

2 y_in = zeros(1, 1000);

3 x_in = linspace (0,0.999, 1000);

4

5 % Semicircumference

6 r = 1.335;

7 theta = linspace(-pi/2, pi/2, 1000);

8 x = r*cos(theta) + 1 ; % x coordinates

9 y = r*sin(theta) + r; % y coordinates

10

11 % Final straight segment

12 y_fin = 2.67* ones(1, 1000);

26

Reference trajectories generation

13 x_fin = linspace (0.999 , 0, 1000);

14

15 % Combined coordinates

16 xRef = [x_in , x, x_fin]’;

17 yRef = [y_in , y, y_fin]’;

18

19 % Coordinates vector

20 refpos = [xRef , yRef];

Listing 3.1: Computation of the U-shaped trajectory’s reference coordinates

At this point, the points of the reference path are interpolated using a defined number of samples.
Additionally, the reference heading angle is computed.

1 %% Distance computation

2 distancematrix = squareform(pdist(refpos));

3 distancesteps = zeros(length(refpos) -1,1);

4

5 % Distance between consecutive points

6 for i = 2: length(refpos)

7 distancesteps(i-1,1) = distancematrix(i,i-1);

8 end

9

10 % Total distance

11 totalDistance = sum(distancesteps);

12

13 % Cumulative distance

14 distbp = cumsum ([0; distancesteps]);

15

16 % Curvilinear abscissa

17 s = linspace(0, totalDistance , 300);

18

19 xRef2 = interp1(distbp ,xRef ,s,’pchip ’);

20 yRef2 = interp1(distbp ,yRef ,s,’pchip ’);

21 yRef2s = smooth(s,yRef2);

22 xRef2s = smooth(s,xRef2);

23

24 %% Calculate psi_ref

25 psiRef = zeros(length(s) ,1);

26 for i = 2: length(s)

27 psiRef(i,1) = atan2d ((yRef2s(i) - yRef2s(i-1)) ,...

28 (xRef2s(i) - xRef2s(i-1)));

29 end

30 psiRefs = smooth(s, psiRef);

Listing 3.2: Computation of the U-shaped trajectory’s smoothed reference coordinates and
heading angle

In the end, the reference curvature is computed as the inverse of the curvature radius [4]:

ρ(s) =
1

R
=

x′y′′ − x′′y′

(x′2 + y′2)
3/2

(3.1)

where:

x′ =
dx

ds
(3.2)

x′′ =
dx′

ds
(3.3)

The fragment of code employed to compute the path curvature is reported below, as well as the
reference variables of the U-shaped trajectory.

27

Reference trajectories generation

1 % Calculate curvature vector through curvature function

2 curvature = getCurvature(xRef2s , yRef2s);

3

4 % Curvature Function

5

6 function curvature = getCurvature(xRef ,yRef)

7 % Calculate gradient by the gradient of the X and Y vectors

8 DX = gradient(xRef);

9 D2X = gradient(DX);

10 DY = gradient(yRef);

11 D2Y = gradient(DY);

12 curvature = (DX.*D2Y - DY.*D2X) ./(DX.^2+DY.^2) .^(3/2);

13 end

Listing 3.3: Computation of the U-shaped trajectory’s path curvature

(a) X reference coordinate (b) Y reference coordinate

(c) Reference heading angle ψRef (d) Reference curvature ρ

Figure 3.3: Reference pose and curvature for U trajectory

28

Reference trajectories generation

3.2 S-shaped trajectory

The procedure used to build the S-shaped trajectory is the same to the one presented above
for the U-shaped trajectory. It is based on a first horizontal segment, three adjacent semi-
circumferences and a final vertical segment. Specifically, the measurements in meters of these
trajectory sections are:

• straight segment starting at (X,Y) = (0,0) and ending at (X,Y) = (1.334, 0);

• a quarter of circumference with radius r = 1.335 starting at (X,Y) = (1.335,0) and ending
at (X,Y) = (0, 1.335);

• semi-circumference with radius r = 1.335 starting at (X,Y) = (0, 1.335) and ending at
(X,Y) = (-2.67, 1.335);

• semi-circumference with radius r = 1.335 starting at (X,Y) = (0, 1.335) and ending at
(X,Y) = (-2.335, 1.335);

• straight segment starting at (X,Y) = (-2.67, 1.335) and ending at (X,Y) = (-2.67, 2.335).

Figure 3.4: S-shaped trajectory on the test track

As before, the code used to compute the reference coordinates is presented. Additionally, the
code employed to smooth the coordinates vector and to calculate the reference heading angle
and the path curvature is always the same and for this reason it’s not shown.

1 % Initial horizontal segment

2 y_in = zeros(1, 1000);

3 x_in = linspace(0, 1.334 , 1000);

4

5 % First quarter of circumference

6 r = 1.335;

7 theta0 = linspace(-pi/2, 0, 1000);

8 x0 = r*cos(theta0) + 1.335 ;

29

Reference trajectories generation

9 y0 = r*sin(theta0) + r;

10

11 % Second semicirfumference

12 theta1 = linspace (0.001 , pi , 1000);

13 x1 = r*cos(theta1) + 1.335;

14 y1 = r*sin(theta1) + r;

15

16 % Third semicircumference

17 theta2 = linspace (0.001 , pi , 1000);

18 x2 = r*cos(theta2) - 1.335;

19 y2 = -r*sin(theta2) + r;

20

21 % Final vertical line

22 y_fin = linspace(r+0.001 , r+1, 1000);

23 x_fin = -2*r*ones(1, 1000) - 0.001;

24

25 % Combined coordinates

26 xRef = [x_in , x0, x1 , x2 , x_fin]’;

27 yRef = [y_in , y0, y1 , y2 , y_fin]’;

28

29 % Coordinates vector

30 refpos = [xRef , yRef];

Listing 3.4: Computation of the S-shaped trajectory’s reference coordinates

(a) X reference coordinate (b) Y reference coordinate

(c) Reference heading angle ψRef (d) Reference curvature ρ

Figure 3.5: Reference pose and curvature for S trajectory

30

Reference trajectories generation

3.3 Circular trajectory

The circular trajectory is built by combining an initial horizontal segment, a circumference and
final horizontal section. The measurements of these elements are:

• Horizontal segment starting at (X,Y) = (0,0) and ending at (X,Y) = (1.535, 0);

• circumference with radius r = 1.335 centered in (X,Y) = (1.535, 1,335) starting and ending
at (X,Y) = (1.535,0)

• Horizontal segment starting at (X,Y)=(1.535, 0) and ending at (X,Y) = (2.5, 0).

Figure 3.6: Circular trajectory on the test track

The code used to compute the reference coordinates is presented. As usual, the code employed
to smooth the coordinates vector and to calculate the reference heading angle and the path
curvature is always the same and for this reason it’s not shown.

1 % Initial horizontal segment

2 y_in = zeros(1, 1000);

3 x_in = linspace(0,r+0.199 , 1000);

4

5 % Circumference

6 r = 1.335;

7 theta = linspace(-pi/2, +3*pi/2-0.001, 1000);

8 x = r*cos(theta) + r + 0.2;

9 y = r*sin(theta) + r;

10

11 % Final horizontal segment

31

Reference trajectories generation

12 y_fin = zeros(1, 1000);

13 x_fin = linspace(x(end)+0.001 , 2.5, 1000);

14

15 % Combined coordinates

16 xRef = [x_in , x, x_fin]’;

17 yRef = [y_in , y, y_fin]’;

18

19 % Coordinates vector

20 refpos =[xRef , yRef];

Listing 3.5: Computation of the circular trajectory’s reference coordinates

(a) X reference coordinate (b) Y reference coordinate

(c) Reference heading angle ψRef (d) Reference curvature ρ

Figure 3.7: Reference pose and curvature for circular trajectory

32

Reference trajectories generation

3.4 Eight-shaped trajectory

The eight-shaped trajectory is built by combining an initial horizontal segment, a series of semi-
circumferences and final horizontal segment. As usual, the measurements of all the sections are
reported below in meters.

• First horizontal segment starting at (X,Y) = (0,0) and ending at (X,Y) = (1.335, 0);

• quarter of circumference with radius r = 1.335 centered in (X,Y) = (1.335, 1.335) starting
at (X,Y) = (1.335, 0) and ending at (X,Y) = (2.67, 1.335);

• semi-circumference with radius r = 1.335 centered in X,Y) = (1.335, 1.335) starting at
(X,Y) = (2.67, 1.335) and ending at (X,Y) = (0, 1.335);

• semi-circumference with radius r = 1.335 centered in (X,Y) = (-1.335, 1.335) starting at
(X,Y) = (0, 1.335) and ending at (X,Y) = (-2.67, 1.335);

• semi-circumference with radius r = 1.335 centered in (X,Y) = (-1.335, 1.335) starting at
(X,Y) = (-2.67, 1.335) and ending at (X,Y) = (1.335, 0);

• quarter of circumference with radius r = 1.335 centered in (X,Y) = (1.335, 1.335) starting
at (X,Y) = (0, 1.335) and ending at (X,Y) = (1.335, 0);

• final straight segment starting at (X,Y) = (1.335, 0) and ending at (X,Y) = (2.5, 0).

Figure 3.8: Eight-shaped trajectory on the test track

33

Reference trajectories generation

The code used to compute the reference coordinates is presented. As usual, the code employed
to smooth the coordinates vector and to calculate the reference heading angle and the path
curvature is always the same and for this reason it’s not shown.

1 % Horizontal segment

2 y_in = zeros(1, 1000);

3 x_in = linspace(0, 1.349 , 1000);

4

5 % Quarter of circumference

6 r = 1.335;

7 theta0 = linspace(-pi/2, 0, 1000);

8 x0 = r*cos(theta0) + r ;

9 y0 = r*sin(theta0) + r;

10

11 % Semicirfumference

12 theta1 = linspace (0.001 , pi , 1000);

13 x1 = r*cos(theta1) + r;

14 y1 = r*sin(theta1) + r;

15

16 % Semicircumference

17 theta2 = linspace (0.001 , pi , 1000);

18 x2 = r*cos(theta2) - r;

19 y2 = -r*sin(theta2) + r;

20

21 % Semicircumference

22 theta3 = linspace(pi+0.001 , 0.001, 1000);

23 x3 = r*cos(theta3) - r;

24 y3 = r*sin(theta3) + r;

25

26 % Quarter of semicircumference

27 theta4 = linspace(pi, pi/2, 1000);

28 x4 = r*cos(theta4) + r;

29 y4 = -r*sin(theta4) + r;

30

31 % Horizontal segment

32 y_fin = zeros(1, 1000);

33 x_fin = linspace(r+0.001 , 2.5, 1000);

34

35 % Combined coordinates

36 xRef = [x_in , x0, x1 , x2 , x3, x4, x_fin]’;

37 yRef = [y_in , y0, y1 , y2 , y3, y4, y_fin]’;

38

39 % Coordinates vector

40 refpos = [xRef , yRef];

Listing 3.6: Computation of the eight trajectory’s reference coordinates

34

Reference trajectories generation

(a) X reference coordinate (b) Y reference coordinate

(c) Reference heading angle ψRef (d) Reference curvature ρ

Figure 3.9: Reference pose and curvature for eight trajectory

3.5 Obstacle-avoidance manoeuvre

To properly build the obstacle-avoidance manoeuvre, the international standard ISO3888 was
taken as reference [5]. Nevertheless, the shape of the trajectory is properly adapted by accounting
for the dimension of the QCar used for the experimental tests and the dimensions of the test track.
Specifically, since the QCar is in scale 1:10, the measures of the obstacle-avoidance trajectory
pointed out in the standard are scaled by a factor of 10 as well.

Figure 3.10: Obstacle avoidance trajectory’s sections from ISO3888 standard.

35

Reference trajectories generation

The figure 3.10 shows the different parts of the trajectory according to the normative. The
dimensions of all the sections are reported in the following table.

Section Length Lane offset
Width

b
1 0,4 - 1,1 · vehicle width + 0,25
2 1,35 - 1,1 · vehicle width + 0,25
3 1,1 1 vehicle width + 1
4 1,25 - vehicle width + 1
5 0,12 - 1,3 · vehicle width + 0,25, but not less than 0,3

Table 3.1: Obstacle avoidance trajectory dimensions in meters

Additionally, the trajectory reported in figure 3.10 is completed with the remaining sections
listed below in order to preserve the QCar starting point at the center of the track’s lower
straight section, where the first scan of the LiDar allows an optimal detection of the surrounding
environment.

• Horizontal segment starting at (X,Y) = (0,0) and ending at (X,Y) = (1,0);

• Semi-circumference with radius r = 1.335 starting at (X,Y) = (1,0) and ending at (X,Y)
= (1, 2.67).

The final trajectory is shown in figure 3.11

Figure 3.11: Obstacle-avoidance trajectory on the test track

The code used for the generation of the trajectory is presented below.

1 % First initial segment

2 interpPoints = 1000;

3 y_in = zeros(1, 1000);

4 x_in = linspace (0,1.499, interpPoints);

36

Reference trajectories generation

5

6 % Semicircumference

7 r = 1.335;

8 theta = linspace(-pi/2, pi/2, interpPoints);

9 x = r*cos(theta) + 1.5 ;

10 y = r*sin(theta) + r;

11

12 %% Obstacle avoidance trajectory

13 s_init = 0;

14 lane_offset = 0.1;

15

16 % Test limit definition

17 vehicle_width = 0.192;

18 x_init = x(end) - 0.001;

19 x_1 = x_init - 0.4;

20 x_2 = x_1 - 1.35;

21 x_3 = x_2 - 1.1;

22 x_4 = x_3 - 1.25;

23 x_5 = x_4 - 0.3;

24 x_end = x_5 - 0.12;

25

26 % Right limit

27 reference_path_tmp.x_right = [x_init;x_init -10^ -10; x_1 ;x_1 -10^ -10;

28 x_2; x_2 -10^ -10; x_3; x_3 -10^ -10; x_4;

29 x_4 -10^ -10; x_5; x_end];

30 y_right_1 = y(end) + (1.1* vehicle_width +0.025) /2;

31 y_right_2 = y_right_1;

32 y_right_3 = y(end) - lane_offset - ((vehicle_width +0.1) /2);

33 y_right_4 = y(end) + (0.3) /2;

34 y_right_5 = y_right_4;

35 reference_path_tmp.y_right = [y_right_1;y_right_1;y_right_1;

36 y_right_2; y_right_2; y_right_3;

37 y_right_3;y_right_4; y_right_4;

38 y_right_5; y_right_5;y_right_5];

39

40 % Left limit

41 reference_path_tmp.x_left = [x_init;x_init -10^ -10; x_1 ;x_1 -10^ -10;

42 x_2;x_2 -10^ -10; x_3; x_3 -10^ -10; x_4;

43 x_4 -10^ -10; x_5; x_end];

44 y_left_1 = y(end) - (1.1* vehicle_width +0.025) /2;

45 y_left_2 = y_left_1 - lane_offset - (vehicle_width +0.1);

46 y_left_3 = y_left_2;

47 y_left_4 = y_left_2;

48 y_left_5 = y(end) - (0.3) /2;

49 reference_path_tmp.y_left =[y_left_1;y_left_1;y_left_1;y_left_2;

50 y_left_2;y_left_3;y_left_3;y_left_4;

51 y_left_4;y_left_5;y_left_5;y_left_5];

52

53 % Mid line

54 reference_path_tmp.x_mid = reference_path_tmp.x_left;

55 y_mid_1 = mean([y_left_1 y_right_1]);

56 y_mid_2 = mean([y_left_2 y_right_2]);

57 y_mid_3 = mean([y_left_3 y_right_3]);

58 y_mid_4 = mean([y_left_4 y_right_4]);

59 y_mid_5 = mean([y_left_5 y_right_5]);

60 reference_path_tmp.y_mid = [y_mid_1;y_mid_1;y_mid_1;y_mid_1;

61 y_mid_3;y_mid_3;y_mid_3;y_mid_3;

62 y_mid_5;y_mid_5;y_mid_5;y_mid_5];

63

64 % Calculate reference vectors with the same length

65 reference_path_tmp.x_ref=reference_path_tmp.x_mid;

66 reference_path_tmp.y_ref=reference_path_tmp.y_mid;

37

Reference trajectories generation

67

68 % Interpolate the original vectors

69 x_interp = interp1 (1: numel(reference_path_tmp.x_ref) ,...

70 reference_path_tmp.x_ref ,...

71 linspace(1, numel(reference_path_tmp.x_ref) ,...

72 interpPoints));

73 y_interp = interp1 (1: numel(reference_path_tmp.y_ref) ,...

74 reference_path_tmp.y_ref ,...

75 linspace(1, numel(reference_path_tmp.y_ref),

76 interpPoints));

77

78 % Combined coordinates

79 xRef = [x_in , x, x_interp]’;

80 yRef = [y_in , y, y_interp]’;

81

82 % Coordinates vector

83 refpos = [xRef , yRef];

Listing 3.7: Computation of the obstacle avoidance trajectory’s reference coordinates

(a) X reference coordinate (b) Y reference coordinate

(c) Reference heading angle ψRef (d) Reference curvature ρ

Figure 3.12: Reference pose and curvature for obstacle-avoidance trajectory

38

Chapter 4

Kalman filters

The use of Kalman filters for estimating a vehicle’s state variables has drawn a lot of interest
lately. For many applications, including autonomous driving, navigation, and vehicle control,
the knowledge of vehicle’s state variables are essential. The vehicle’s dynamics uncertainties,
sensor noise, and measurement mistakes make it difficult to estimate these variables precisely.
An overview of the use of Kalman filters in the context of estimating vehicle status is provided
in this work.
Based on a set of noisy observations, Kalman filters offer a recursive technique to estimate the
system’s state. Prediction and update are the two phases of the filter’s operation. Based on the
prior estimate and the plant’s dynamics, the filter predicts the state variables in the first stage
using a model of the vehicle. An uncertainty covariance matrix that reflects the prediction’s level
of confidence is linked to the predicted state.
In the update stage, the filter employs the measurements from sensors in order to correct the
predicted state. By generating a weighted average, where the weights are based on the uncer-
tainties of both the predicted state variables and the measurements, the Kalman filter offers a
better illustration of the actual state.
In this work, KFs are employed to correct the vehicle’s pose, velocity and acceleration respec-
tively provided by lidar, encoder and IMU. Indeed, despite the localization system produces
precise measurement of the vehicle’s pose, often happens that the measurements differ consider-
ably from the actual pose. These ”spikes” are due to inaccurate matching which therefore leads
to inappropriate measured data that have to be corrected.

4.1 Kalman Filters algorithm

Consider the discrete-time nonlinear system [6]:{
xk+1 = f(xk, uk) + dk

yk = h(xk) + dyk

Suppose that xk, dk, d
y
k are unknown and yk, uk are measured. The goal is to obtain an accurate

estimate x̂k of xk from current and past measurements of yk and uk.

Notation part 1:

• xk is the state;

39

Kalman filters

• uk is the input;

• yk is the output;

• dk is the process disturbance;

• dyk is the measurement noise.

The elements xk, dk, d
y
k are supposed to be unknown whereas yk, uk to be measured. The aim is

to have an estimate x̂k of the state xk from current and past measurements of yk and uk.

Notation part 2:

• xpk: prediction of xk (computed at step k-1);

• x̂k: estimate of xk (computed at step k);

• δxk = xk − xpk: state prediction error;

• x̃k=xk − x̂k: state estimation error;

• P pk = E[δxkδx
T
k]: covariance matrix of the prediction error;

• Pk = E[x̃kx̃
T
k]: covariance matrix of the estimation error;

• Q = E[dkd
T
k]: covariance matrix of process noise dk;

• R = E[dyk(d
y
k)
T]: covariance matrix of measurement noise dyk.

Assumptions:

• The noises are independent, identically distribuited and white:

– Zero-mean:

 E[dk] = 0

E[dyk] = 0
;

– Bounded variance:

 var(dk) <∞

var(dyk) <∞
;

• Noise cross-uncorrelation: E[dk(d
y
k)
T] = 0;

• Input-noise cross-uncorrelation: E[dku
T
k] = 0 , E[dyku

T
k] = 0;

• The system is globally observable.

The algorithm, as previously mentioned, is composed by two steps:

1. Prediction: at time tk−1, compute a prediction xpk of the state xk using the prediction
model:

xpk = f(x̂k−1, uk−1)

P pk = Fk−1Pk−1F
T
k−1 +Q

40

Kalman filters

2. Update: at time tk, the prediction xpk is corrected using the output yk, providing more
accurate estimate:

Sk = HkP
p
kH

T
k +R

Kk = P pkH
T
k S

−1
k

δyk = yk − h(xpk)

x̂k = xpk +Kkδyk

Pk = (I −KkHk)P
p
k

In the linear case Kk is computed with the aim to minimize the variance of the estimation error
norm, while in the non-linear case is computed from Fk and Hk matrices, in turn obtained
linearizing the system around the current estimate:

Fk =
∂f

∂x
(x̂k, uk)

Hk =
∂h

∂x
(x̂k)

For what concerns the initial conditions, the estimated initial state is typically set to x̂0 = 0 and
the estimated initial covariance matrix is typically set to P0 = I.
In this work, two extended Kalman filters have been designed for estimating the vehicle state
variables of interest that are employed for control purposes: a kinematic extended Kalman filter
(KEKF) and a dynamic extended Kalman filter (DEKF). The details of both filters are presented
in the following sections.

4.2 Kinematic Extended Kalman filter

The first Kalman filter which has been developed uses the equation of uniformly accelerated
motion. By writing the equations of motion in the continuous time domain and applying the
Euler discretization method, the discrete state-space representation of the considered plant is

X(k + 1) = X(k) + Vx(k)Ts + aX(k)
T 2
s

2

Y (k + 1) = Y (k) + Vy(k)Ts + aY (k)
T 2
s

2

Vx(k + 1) = Vx(k) + aX(k)Ts

Vy(k + 1) = Vy(k) + aY (k)Ts

ψ(k + 1) = ψ(k) + ψ̇(k)Ts

(4.1)

where Ts is the sampling time. The longitudinal and lateral accelerations are expressed in the
inertial reference frame; since the acceleration vector provided by the IMU is referred to the body
reference frame, a rotation is needed to compute the accelerations used in the model equations:[

aX
aY

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
ax
ay

]
(4.2)

41

Kalman filters

where ax ≡ ax,IMU , ay ≡ ay,IMU .
By substituting 4.2 in 4.1, the following discrete time nonlinear model is obtained:

X(k + 1) = X(k) + Vx(k)Ts + (ax cos(ψ(k))− ay sin(ψ(k)))
T 2
s

2

Y (k + 1) = Y (k) + Vy(k)Ts + (ax sin(ψ(k)) + ay cos(ψ(k)))
T 2
s

2

Vx(k + 1) = Vx(k) + (ax cos(ψ(k))− ay sin(ψ(k)))Ts

Vy(k + 1) = Vy(k) + (ax sin(ψ(k)) + ay cos(ψ(k)))Ts

ψ(k + 1) = ψ(k) + ψ̇(k)Ts

(4.3)

The state and the input vectors of the system are:

x(k) =
[
X(k) Y (k) Vx(k) Vy(k) ψ(k)

]T
, u =

[
ax(k) ay(k) ψ̇(k)

]T
As measurements, vehicle’s pose (X,Y, ψ) provided by the lidar and vehicle’s longitudinal velocity
vx computed starting from the motor rotational velocity provided by the encoder are employed
to correct the predicted state. Instead, the IMU measurements, suitably rotated as indicated
in (2), are used as model’s input. Under the assumption of small velocity and vehicle side slip
angle, it can be assumed that:

v =
√
V 2
x + V 2

y ≃ vx (4.4)

Therefore, the output equations are:
y1(k) = X(k)

y2(k) = Y (k)

y3(k) = ψ(k)

y4(k) =
√
V 2
x + V 2

y

The filtered state vector is x̂ =
[
X̂ Ŷ V̂x V̂y ψ̂

]T
.

Additionally, considering the following static equations:

[
v̂x

v̂y

]
=

[
cos(ψ̂) − sin(ψ̂)

sin(ψ̂) cos(ψ̂)

]T [
V̂x

V̂y

]

v̂ =
√
v̂2x + v̂2y

β̂ = tan−1(
v̂y
v̂x
)

the augmented filtered state vector x̂a =
[
X̂ Ŷ ψ̂ v̂ v̂x v̂y β̂

]T
is obtained.

An overview scheme of the KEKF is presented below.

42

Kalman filters

Figure 4.1: Kinematic Extended Kalman filter scheme

4.2.1 Dynamic Extended Kalman filter

In the dynamic extended Kalman filter (DEKF), the single track dynamic model, also known as
bicycle model, is used with the assumption of small slip-angles in order to consider lateral tire
force proportional to the tire slip angle. The equations that describe the time evolution of the
lateral velocity and yaw rate are:{

v̇y =
−(Cαf+Cαr)

mvx
vy − (vx +

(Cαf lf+Cαrlr)
mvx

)ψ̇ +
Cαf
m δ

ψ̈ =
−(Cαf lf−Cαrlr)

Izvx
vy −

Cαf l
2
f+Cαrl

2
r

Izvx
ψ̇ +

Cαf lf
Iz

δ
(4.5)

where Cαf and Cαr are respectively the equivalent cornering stiffness of front and rear axles.
The time derivatives of the global coordinates X and Y associated with the centre of gravity and
the yaw angle can be expressed as:

Ẋ = vx cos(ψ)− vy sin(ψ)

Ẏ = vx sin(ψ) + vy cos(ψ)

ψ̇ = r

(4.6)

where r is the yaw rate.
The differential equation that describes the electric motor dynamics is:

ω̇ = P1Va − P2ω − P3 (4.7)

By considering the transmission ratio τ between the motor and the wheels, and the wheel radius
rw, if there is no wheel slip in the longitudinal direction of the vehicle it can be written:

vx = ωτrw (4.8)

So it can be obtained:

v̇x = τrw(P1Va −
P2

τrw
vx − P3) (4.9)

43

Kalman filters

By combining the equations written above and applying Euler discretization method, the com-
plete model’s equations are:

X(k + 1) = X(k) + (vx(k) cos(ψ(k))− vy(k) sin(ψ(k)))Ts

Y (k + 1) = Y (k) + (vx(k) sin(ψ(k)) + vy(k) cos(ψ(k)))Ts

ψ(k + 1) = ψ(k) + ψ̇(k)Ts

vx(k + 1) = vx(k) + (τrw(P1Va(k)− P2

τrw
vx(k)− P3))Ts

vy(k + 1) = vy(k) + (
−(Cαf+Cαr)

mvx(k)
vy(k)− (vx(k) +

(Cαf lf+Cαrlr)
mvx(k)

)ψ̇(k) +
Cαf
m δ(k))Ts

ψ̇(k + 1) = ψ̇(k) + (
−(Cαf lf−Cαrlr

Izvx(k)
vy(k)−

Cαf l
2
f+Cαrl

2
r

Izvx(k)
ψ̇(k) +

Cαf lf
Iz

δ(k))Ts

(4.10)

As measurements, vehicle pose provided by the lidar, longitudinal velocity computed starting
from the measurement of motor speed provided by the encoder and yaw rate provided the IMU
are employed. The output equations are:

y1(k) = X(k)

y2(k) = Y (k)

y3(k) = ψ(k)

y4(k) = vx(k)

y5(k) = ψ̇(k)

(4.11)

The filtered state vector is: x̂ =
[
X̂ Ŷ ψ̂ v̂x v̂y

ˆ̇
ψ

]T
.

Additionally, considering the following static equations:{
v̂ =

√
v̂2x + v̂2y

β̂ = tan−1(
v̂y
v̂x
)

(4.12)

the augmented filtered state vector x̂a =
[
X̂ Ŷ ψ̂ v̂ v̂x v̂y β̂

ˆ̇
ψ

]T
is obtained.

An overview scheme of the DEKF is shown below.

Figure 4.2: Dynamic Extended Kalman filter scheme

44

Kalman filters

4.3 Simulation results

The goal of the simulation tests is to compare the two Kalman filters in the same environment,
where the exact system and the statistical information about disturbances are available to the
filters. Although this situation is unrealistic in experimental practice, it allows to realize a right
comparison of the two ideally tuned filters with no model uncertainty affecting the results.
The output measurements are generated by summing white noises to the model’s output vector
ym. The considered noises variances are presented below.

Signal Variance UoM
ax 0.05 m2/s4

ay 0.05 m2/s4

ψ̇ 0.005 rad2/s2

X 0.2 m2

Y 0.01 m2

ψ 0.05 rad2

vx 0.001 m2/s2

Table 4.1: White noises variances

The maneuver is simulated in open-loop imposing constant longitudinal velocity and a steering
angle with sine-wave shape. In order to numerically quantify the goodness of the two filters
performances, the root-mean-square errors between the filtered states and the ideal states coming
out from the model are evaluated.

Figure 4.3: Model’s input in simulation

4.3.1 Kinematic Extended Kalman Filter

By using the covariance matrices Q and R presented in the following table, the simulation results
of the KEKF are shown below.

Q R
10−7I5 diag(0.2,0.01,0.05,0.001)

Table 4.2: Covariance matrices KEKF

45

Kalman filters

(a) X position (b) Y position

(c) Yaw angle (d) Longitudinal velocity

(e) Lateral velocity (f) Total velocity

(g) Vehicle sideslip angle

46

Kalman filters

4.3.2 Dynamic Extended Kalman Filter

By using the covariance matrices Q and R presented in the following table, the simulation results
of the first DEKF are shown below.

(a) X position (b) Y position

(c) Yaw angle (d) Longitudinal velocity

(e) Lateral velocity (f) Total velocity

47

Kalman filters

(a) Vehicle sideslip angle (b) Yaw rate

Q R
10−7I6 diag(0.2,0.01,0.05,0.001,0.005)

Table 4.3: Covariance matrices DEKF

4.3.3 Comparison of simulation results

In order to compare the performance of both KEKF and DEKF, the root mean square errors
between the model state variables and the filtered state variables are evaluated. The results are
presented in the following table.

KEKF DEKF UoM

RMSE(X̂,Xm) 0.0604 0.0523 m

RMSE(Ŷ , Ym) 0.0713 0.0460 m

RMSE(ψ̂, ψm) 0.0367 0.0337 rad
RMSE(v̂x, vx,m) 0.0331 0.0303 m/s
RMSE(v̂y, vy,m) 0.0196 0.0024 m/s
RMSE(v̂, vm) 0.0331 0.0304 m/s

RMSE(β̂, βm) 0.0202 0.0135 rad

RMSE(
ˆ̇
ψ, ψ̇m) - 0.0193 rad/s

Table 4.4: KPIs comparison

As expected, the DEKF leads to better results with respect to the KEKF that employs only
a kinematic model of the car, especially for the estimation of the vehicle side-slip angle and
equivalently of the vehicle lateral velocity.

4.4 Experimental results

The Kalman filters that have been designed are based on the measurements of the LiDar for the
vehicle pose, the motor encoder for the longitudinal speed and the IMU for the yaw rate. The

48

Kalman filters

LiDar equipped on the QCar provides a localization system developed by Quanser that measures
the pose of the car based on a matching with some data (ranges and angles) saved in memory
during an initial setup where the sensor scans the surrounding environment for few seconds.
During this stage, the point in which the LiDar performs the scan is considered as origin of the
inertial reference frame with respect to which the pose is expressed.
Although the localization system provides a position’s precise measure, sometimes, in the case of
a wide area,measurements diverge from the actual values of the vehicle pose. These ”spikes” are
caused by wrong matching that generate completely wrong values. The LiDar Simulink block

Figure 4.7: Pose provided by the LiDar with spikes

designed by Quanser provides a quality index of the measurement accuracy of the sensor named
LiDar score that can reach a maximum value of 200. An high value of the LiDar score implies
an accurate pose measurement provided by the sensor. So, the entries of the pose measurement
noise’s covariance matrix are time-varying and strongly depend on the score value. The following
sigmoid functions are employed to define the entries of the LiDar covariance matrix:

i = 200

|LiDarScore|

Rxx,0 = Ryy,0 = 80 · tanh(i
0.6 − 3) + 81

Rψψ,0 = 9 · tanh(i
0.7 − 3) + 9.3

(4.13)

In this way, as the accuracy of the pose measurement increases the respective entry of the
covariance matrix decreases in order to trust more the sensor data with respect to the model’s
prediction. However, in the presence of spikes, the LiDar score does not penalize the wrong mea-
surement enough and this leads to bad performance due to one or more values of Rxx, Ryy, Rψψ
still too high. In order to improve filters performance by further penalizing the spikes presence,
the respective entry of the LiDar measurement noise’s covariance matrix is multiplied by a factor
αX , αY , αψ > 1 when a spike is detected respectively in the X, Y and ψ measurement. The

49

Kalman filters

Figure 4.8: Sigmoid functions for LiDar measurement noises

condition that allows the spike identification is the following:
|X(k)−X(k − 1)| > 0.1 −→ SPIKEX −→ Rxx = αXRxx,0

|Y (k)− Y (k − 1)| > 0.1 −→ SPIKEY −→ Ryy = αYRyy,0

|ψ(k)− ψ(k − 1)| > 0.05 −→ SPIKEψ −→ Rψψ = αψRψψ,0

(4.14)

The values of the multiplied factors for the two filters are presented below.

Multiplied factors KEKF DEKF
αX 200 20
αY 1000 1000
αψ 10000 10000

Table 4.5: Multiplied factors for spike management

For the motor encoder and IMU measurement noises and the process disturbances covariance
entries, the values are shown in the following table.

KEKF DEKF
Rvx,vx 0.025 0.025
Rψ̇,ψ̇ - 0.04

Q diag(1,0.6,100,60,80) diag(0.05,0.05,0.0628,0.01,0.0001,0.1257)

Table 4.6: Covariance matrix’s entries for encoder and IMU measurement noise and process
disturbances

The experimental test is performed in closed-loop by using one of the benchmark path tracking
controllers presented in the following chapters, imposing a eight trajectory’s tracking. With the
numerical values presented above for matrices R and Q, the following experimental results are
obtained. As already observed in the simulation results, also through experimental tests it can

50

Kalman filters

be seen that the performance of the two filters are comparable for the estimation of the vehicle
pose but the DEKF provides smoother and more accurate estimation of the vehicle side-slip angle
and vehicle lateral velocity. For this reason, for the design of the trajectory tracking controller
presented in the next chapter, the DEKF has been chosen for the evaluation of the vehicle state
variables for control purposes.

(a) X position (b) Y position

(c) Yaw angle (d) Longitudinal velocity

(e) Lateral velocity (f) Total velocity

51

Kalman filters

(a) Vehicle sideslip angle (b) Vehicle yaw rate

Figure 4.10: KEKF and DEKF performance comparison in experimental tests

52

Chapter 5

Trajectory tracking controllers
design

In this chapter the design of trajectory tracking control algorithms for the QCar is discussed.
Firstly, a pole placement controller is presented, followed by a model predictive controller (MPC).
Once each controller has been designed and validated by using closed-loop simulations, the control
solution has been integrated into the scaled vehicle’s ECU for experimental tests in real scenario
environment.

5.1 Pole placement controller solution

5.1.1 Control design via static state feedback

Let’s consider a LTI dynamic system in the state-space representation:{
ẋ = Ax+Bu

y = Cx+Du
(5.1)

where x ∈ Rn is the state vector, y ∈ Rp is the output vector and u ∈ Rp is the input vector.
As widely known, the dynamics of an LTI system depend on the eigenvalues of the dominant
matrix A, so if we would desire to control the dynamics of the system we need to look for an
input that can affect the structure of the matrix A in order to change its eigenvalues.
In this regard, the following control input law is considered [7]:

u(t) = −Kx(t) +Nr(t),K ∈ Rp,n, r(t) ∈ Rp, N ∈ Rp,p

When this control input is applied, the state equation becomes:

ẋ(t) = Ax(t) +Bu(t) = (A−BK)x(t) +BNr(t) (5.2)

The above differential equation represents the state equation of the closed-loop dynamics, where
the dynamical properties of the (controlled) system depend on the eigenvalues of the matrix
A− BK, where the matrix K is referred to as state gain and r(t) is a reference signal that the
output has to track. A suitable choice of the state gain allows to change the dominant matrix’s
eigenvalues and in turn to modify the dynamic properties of the system, e.g. its stability. On
the other hand, the reference gain N can be chosen in order to impose desired performance at

53

Trajectory tracking controllers design

the steady state.
It’s important to highlight that it’s not always possible to find a state gain K able to arbitrarily
assign the eigenvalues of the closed-loop dominant matrix A−BK. In particular, we can report
the following result:

Result 1 Given the state space equation

ẋ(t) = Ax(t) +Bu(t), A ∈ Rn,n, B ∈ Rn,p

a state gain K exists such that the n eigenvalues of A−BK can be arbitrarily assigned, real or
complex-conjugate, locations if and only if

ρ(MR) = n

The matrix MR is referred to as the reachability matrix and it is defined as

MR =
[
B AB · · · An−1B

]
The reachability (or controllability) property describes the capabilities of the control input to
affect the system dynamics. If ρ(MR) = n the dynamic system is said reachable, or equivalently
the couple (A,B) is reachable and it’s possible to find a matrix K to modify the dynamical
properties of the system. Typically, K is computed by placing the eigenvalues of the controlled
system to obtain asymptotic stability (eigenvalues with strictly negative real part) and desired
damping and rapidity properties of the transient.Instead, N can be chosen to make unitary the
dc-gain of the controlled system ensuring zero steady state tracking error in the presence of a
constant reference signal.
The architecture of this control technique is shown before, assuming that the matrix D is null.

Figure 5.1: Static state feedback control law

5.1.2 Pole placement path tracking design

As described in 2.4, considering a bicycle model assumptions, the lateral dynamics of a vehicle
written with respect to the desired lane errors can be described by

ẋ = Ax+B1δ +B2ρ (5.3)

with x =
[
ey ėy eψ ėψ

]T
, where ey is the vehicle’s center of gravity’s lateral position error,

eψ is the yaw angle error between the road and the car, δ is the front wheel steering angle and
it represents the control input to the system and ρ is the desired trajectory’s curvature.
By substituting the numerical values in the open-loop matrix A defined in the paragraph 2.4 and
considering vx = 1 m/s, it results

A =

0 1 0 0
0 −7.5287 7.5287 0.0091
0 0 0 1
0 0.5931 −0.5931 −7.8412

54

Trajectory tracking controllers design

This matrix has two eigenvalues at the origin with minimal polynomial multiplicity equal to 2,
so the system is unstable. Moreover, as shown in the previous paragraph, the couple (A,B1) is
reachable, so it’s possible to control the system using a static state feedback control law of the
form

δ = −Kxx+ krρ

where Kx is the state gain and Kr is the reference gain. The closed-loop dynamics using this
static state feedback control input is

ẋ = (A−B1Kx)x+ (B1Kr +B2)ρ = Aclx+Bclρ (5.4)

where the eigenvalues of the matrix Acl = A−B1Kx affect the dynamics of the controlled system.
Before approaching the choice of the desired eigenvalues of the closed-loop dominant matrix, let’s
consider first how the reference gain is computed. The feed-forward matrix Kr is chosen in such
a way that the steady state value of the lateral error is equal to zero in the presence of constant
desired curvature. In the detail, considering as output of the system the entire state vector, we
can define Ccl = I4 in such a way y = Cclx = x. The closed-loop transfer function’s set can be
computed as

G(s) = Ccl(sI4 −Acl)
−1Bcl (5.5)

where s is the Laplace variable and G(s) corresponds to

G(s) =
[
G1(s) G2(s) G3(s) G4(s)

]T
=
[
ey(s)
ρ(s)

ėy(s)
ρ(s)

eψ(s)
ρ(s)

ėψ(s)
ρ(s)

]T
(5.6)

Employing the final value theorem, the steady state value of the lateral error can be computed
as

|ey(t)|∞ = | lim
t→∞

ey(t)| = | lim
s→0

s · ey(s)| = | lim
s→0

s ·G1(s) · ρ(s)| (5.7)

Considering a constant desired curvature ρ(t) = ρ̄ · E(t), its Laplace transform is ρ(s) = ρ̄
s .

Substituting this expression in 5.7 we have

|ey(t)|∞ = | lim
s→0

s ·G1(s) ·
ρ̄

s
| = ρ̄ · | lim

s→0
G1(s)| (5.8)

In order to achieve |ey(t)|∞ = 0, we have to impose that |G1(0)| = 0. From this constraint, the
feed-forward gain Kr can be computed as a function of the vehicle’s parameters and an entry
of the state gain Kx. To do this, as first step the transfer function G1(s) can be computed by
using the Matlab symbolic toolbox, then the DC gain is evaluated with the Matlab command
G1(0) = subs(G1, s,0) and lastly the expression of Kr to obtain a zero steady state lateral error
can be found using the Matlab command Kr = solve(G1(0),Kr). With the last step, we impose
to solve the equation G1(0) = 0 with respect to the parameter Kr. With this procedure, the
expression of Kr that has been obtained is the following

Kr =
mv2x
L

(
lr
Cαf

− lf
Cαr

+
lf
Cαr

Kx,3) + L− lrKx,3 (5.9)

As it can be seen from the above equation, Kr depends on the vehicle’s parameters and only on
the third entry of the state gain Kx.
For what concerns the state gain, it is computed by employing a set of desired eigenvalues ob-
tained through an optimization procedure. Since the controller has been designed to achieve
a zero steady state value of the lateral error, other three performance index are considered.

55

Trajectory tracking controllers design

In particular, I would desire to minimize the maximum lateral error and the maximum orien-
tation error and its steady state value during the maneuver. So the objective is to minimize
||G1(s)||∞, ||G3(s)||∞, |G3(0)|, where

||G1(s)||∞ = min
w

|G1(jw)|

||G3(s)||∞ = min
w

|G3(jw)|

|G3(0)| = | lim
s→0

G3(s)|

Notice that the closed-loop transfer function’s G1(s) and G3(s) depend on the eigenvalues of the
matrix A − B1Kx, so the goal is to find a set of desired eigenvalues λdes which minimize the
following quadratic cost function

J(λdes) = α1||G1(s)||2∞ + α2||G3(s)||2∞ + α3|G3(0)|2 (5.10)

where α1, α2, α3 are positive constant used to manage the trade-off between the three above
three quantities. The minimization of the cost function is subject to the constraint that the
desired eigenvalues coming from the optimization problem must have strictly negative real part
to ensure the stability of the system. Since the matrix A and B2 depend on the vehicle’s
longitudinal velocity, a set of optimized eigenvalues is considered for each value of vx used in the
simulated and experimental maneuvers. Then, the optimization problem that has to be solved
is formulated in the following way

λ∗des = argmin
λdes

J(λdes)

J(λdes) = α1||G1(s)||2∞ + α2||G3(s)||2∞ + α3|G3(0)|2

subject to:

G1(s) =
[
1 0 0 0

]
(sI4 −Acl)

−1Bcl

G3(s) =
[
0 0 1 0

]
(sI4 −Acl)

−1Bcl

Re{λdes,i} < 0, i = 1, ...,4

(5.11)

56

Trajectory tracking controllers design

5.2 Model predictive controller solution

5.2.1 NMPC algorithm

Model predictive control (MPC) is a optimal control strategy. The fundamental principle of MPC
is to use a dynamic model to predict the system’s behavior and to provide the best decision to
control the system in terms of optimal control action at the current time instant. Therefore,
prediction models are crucial for every kind of MPC, since it involves the employment of dy-
namic models and optimization strategies. Despite the prediction model employed in this work
to control the lateral dynamics of the vehicle is a simple single-track model, in this section the
nonlinear model predictive control (NMPC) is presented since it represents a general and flexible
technique to control nonlinear dynamic systems, e.g. vehicle’s two-track model.
The key point of the NMPC is that it allows to directly consider state,input and output con-
straints and to manage systematically the trade-off between performance and command effort.
The general approach is based on a first prediction of the system’s state trajectory over a given
time horizon by using a prediction model of the plant that is embedded into the controller; at
this point, the control input is computed in order to have the prediction as close as possible to
the desired behavior, by means of some on-line optimization algorithms.
Let’s consider a general MIMO dynamic system{

ẋ = f(x, u)

y = h(x, u)
(5.12)

where x ∈ Rn is the state vector, u ∈ Rnu is the command input and y ∈ Rny is the output.
As assumption, we consider that the state is measured in real-time with a sampling time Ts and
the measurements are expressed with

x(tk), tk = Tsk, k = 0,1, ...

If the state is not measured, either an observer or a filter has to be used. The model predictive
control is based on two essential operations: prediction and optimization. At each time t = tk,
the state and the output of the system are predicted over the time interval [t, t + Tp] by the
integration of the dynamic equations of the system (or much more likely a model of it), where
Tp ≥ Ts is called prediction horizon. At any time τ ∈ [t, t + Tp], the predicted output ŷ(τ) is a
function of the ”initial” state x(t) and the input signal u(t : τ), that represents the command
input in the interval [t, τ].
At each time t = tk, an input signal u(t : τ) = u∗(t : τ) is computed such that the prediction
ŷ(u∗(t : τ) has the desired behavior over the considered prediction horizon. But what does
”desired behavior” mean? The concept of desired behavior is formalized by considering a cost
function [8]

J(u(t : t+ Tp)) =

∫ t+Tp

t

(||ỹp(τ)||2Q + ||u(τ)||2R)dτ + ||ỹp(t+ Tp)||2P

where ỹp(τ) = r(τ) − ŷ(τ) is the predicted tracking error, r(τ) ∈ Rny is the reference signal to
track, || · ||X and their integrals are respectively vector norms and signal norms. The optimal
control input sequence u∗(t : t + Tp) is selected to minimize the cost function J(u(t : t +
Tp)). Usually, the main goal is to minimize, at each time tk, the tracking error square norm
||ỹp(τ)||2Q over the prediction horizon; the term ||u(τ)||2R is used to manage the trade-off between

performance and command effort; the term ||ỹp(t+ Tp)||2P is used to give further importance to
the tracking error at the final time instant of the considered time interval [t, t+ Tp].

57

Trajectory tracking controllers design

It’s crucial to highlight that the tracking error ỹp(τ) depends on the predicted system’s output
ŷ(τ), which in turn is computed by integrating the model differential equations. Therefore, the
minimization of the cost function J is subject to the constraints{

˙̂x(τ) = f(x̂(τ), u(τ)), τ ∈ [t, t+ Tp]

ŷ(τ) = h(x̂(τ), u(τ))

so, the predicted output and state have to satisfy the dynamic equations of the prediction model
that is embedded into the controller. The MPC allows also to directly consider further constraints
that could be present on the predicted state, the output and/or the input

x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc, τ ∈ [t, t+ Tp]

Indeed, in real applications it’s very likely to have constraints on the state/output of a system,
e.g. obstacles, collision avoidance, and on the command input, e.g. saturation of the actuator
due to physical limitations.
To summarize, at each time t = tk, for τ ∈ [t, t+Tp], the following optimization problem is solved

u∗(t : t+ Tp) = argmin
u(·)

J(u(t : t+ Tp))

J(u(t : t+ Tp)) =
∫ t+Tp
t

(||ỹp(τ)||2Q + ||u(τ)||2R)dτ + ||ỹp(t+ Tp)||2P

subject to:

˙̂x(τ) = f(x̂(τ), u(τ))

ŷ(τ) = h(x̂(τ), u(τ))

x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc

(5.13)

where Ts is the sampling time, Tp is the prediction horizon, with 0 ≤ Ts ≤ Tp.
The optimization problem presented above is in general non-convex, this means that the numer-
ical algorithms used to solve the problem usually provide in general a local minimum solution as
optimal control action. Moreover, the optimization problem must be solved on-line at each time
tk and this makes the MPC very computationally demanding.
By solving the optimization problem 5.13, the optimal input sequence u∗(t : t+Tp) is computed.
Now, suppose to apply the entire sequence for the time interval [t, t+ Tp]; this does not perform
a feedback action and so it’s not possible neither to reduce error and disturbance effects or to
adapt to new and varying environments. This is why u∗(t : t+Tp) represents an open-loop input
as it depends on x(t) but not on x(τ), τ > t. For this reason, the NMPC feedback controller
is obtained by employing the receding horizon strategy : at time t = tk, the entire optimal input
sequence u∗(t : t + Tp) is computed by solving the optimization problem and at this point only
the first value of the input signal u∗(t = tk) is applied by keeping it constant in the interval
[tk, tk+1].
By recalling that the cost function J(·) depends on the state x(tk), assuming that the model
and the objective function are time invariant, the receding horizon strategy implicitly defines a

58

Trajectory tracking controllers design

nonlinear time invariant static state feedback control law of the form:

u(tk) = K(x(tk)) (5.14)

Unfortunately, in general the analytic expression of the control law K(x(tk)) cannot be computed.

Figure 5.2: Receding horizon strategy

For what concerns the choice of the design parameters, the sampling time Ts is often given and
cannot be arbitrarily chosen, as in this application since it coincides with the sampling time of
the Kalman filter (10 ms). The prediction horizon Tp = TsNh, where Nh represents the number
of prediction steps, can be chosen through a sensitivity analysis in simulation, by ensuring an
optimal trade-off between performance and computational time. In general, a large Tp increases
the closed-loop stability properties; however, a too large Tp may reduce the short-time tracking
accuracy. For what regards the choice of the weight matrices Q,R, P , they can be set as diagonal
non-negative matrices (like LQR controller) and the values of Qii, Rii and Pii are changed by
using trial and error procedure, until the given requirements are fulfilled.

5.2.2 MPC path tracking design

In order to properly design a model predictive controller for trajectory tracking application,
firstly let’s consider the dynamic model that is employed to predict the system’s behavior of the
vehicle over the prediction horizon. As in the case of pole placement controller, the considered

59

Trajectory tracking controllers design

plant model is the linear lateral dynamics model of the vehicle written with respect to the desired
lane errors

ẋ = Ax+B1δ +B2ρ

where x =
[
ey ėy eψ ėψ

]T
, δ is the steering angle and ρ represents the desired curvature.

In order to limit steering angle oscillations, the model has been slightly modified by adding the
steering angle as fifth state variable and imposing its derivative as control input. By making this
choice, it’s possible to minimize the steering angle floating behavior by tuning the R weight in
the cost function. Therefore, the following augmented system is considered as prediction model

˙̂xa = Aax̂a +B1au+B2aρ

where x̂a =
[
x̂ δ

]T
is the augmented state, u represents the time derivative of the steering angle

and the matrices Aa,B1a and B2s are

Aa =

[
[A B1]

O

]
∈ R5x5, B1a =

[
O
1

]
∈ R5x1, B2a =

[
B2

0

]
∈ R5x1

As output of the system, the entire augmented state in considered

ŷ = x̂a

The considered cost function is

J(u(t : t+ Tp)) =

∫ t+Tp

t

(||ỹp(τ)||2Q + ||u(τ)||2R)dτ + ||ỹp(t+ Tp)||2P

where ỹp(τ) = r(τ)− ŷ(τ) is the predicted tracking error and r(τ) ∈ R5x1 is the reference signal
to track and in this case is set as a zero vector. The weight matrices Q ∈ R5x5 and R ∈ R1x1 are
set by considering the longitudinal velocity of the trajectory tracking test and so their values are
chosen by using trial and error procedure. The weight matrix P ∈ R5x5 is set to a zeros matrix
O5x5 because I did not give importance to the tracking error at the final time instant of the
considered time horizon. As further constraint, mechanical saturation of the steering actuation
system is considered; indeed, the maximum possible value of the steering angle’s magnitude that
can be actuated by the QCar’s steering system is 0.5 radians which corresponds to 28.65°

|δ| = |x̂a,5| ≤ 0.5 (5.15)

For what concerns the choice of the design parameters Ts, Tp and Nh, we have that Ts is chosen
based on the Kalman filter sampling time equal to 10ms while Tp is selected by performing a
set of simulations in order to evaluate a good trade-off between performance and computation
time. At this point, once the prediction model has been presented, as well as the cost function,
the reference signal to track and the constrained state domain Xc, the optimization problem 5.13
can be solved and the receding horizon principle is employed to realize a feedback control action.
The implementation of the presented model predictive controller has been done in Matlab/Simulink
environment by using the ACADO toolkit and its Matlab interface [9].
ACADO Toolkit is a software environment and algorithm collection written in C++ for dynamic
optimization and controls design. It provides a general framework to deal with a great variety
of algorithms for direct optimal control, including model predictive control as well as Runge-
Kutta and BDF integrators for the simulation of ODE’s and DAE’s. ACADO Toolkit has been
designed to be an open-source and user-friendliness software; additionally, no external packages
are required since it is designed in a completely self-contained manner.
ACADO Toolkit is able to interact with Matlab/Simulink thanks to ”ACADO for Matlab”, that
represents a Matlab interface which allows to bring ACADO integrators and algorithms for direct
optimal control to Matlab. The most important characteristics of ACADO for Matlab are:

60

Trajectory tracking controllers design

• Same properties of ACADO Toolkit: in the interface we have no new algorithms, nor any
further functionality.

• No C++ required, familiar with Matlab: we do not need any knowledge of C++, neither
syntax or compiling rules, to use the interface. This is one of the main reasons why ACADO
for Matlab is a valid way to start using ACADO Toolkit if you are familiar with Matlab but
don’t have any C++ knowledge or experience. Indeed, the interface makes use of Matlab
style notations, as well as it allows to directly use variables and matrices stored in the
workspace.

• Use Matlab black box models: Although the ACADO Toolkit supports a symbolic syntax
to write down differential and algebraic equations, the interface allows to link existing
Matlab black box models to ACADO Toolkit.

• Cross-platform: The interface works on Windows, Mac and Linux OS.

After installing and configuring ACADO for Matlab, the S-function representing the model pre-
dictive controller used in Simulink environment is generated by using the Matlab script presented
in the following page. Since both the prediction model and the state constraints are linear and
the objective function is quadratic, just one quadratic program (QP) needs to be solved at each
sampling instant. This is why in general QP solvers play a crucial role in looking for the optimal
control inputs considering system dynamics and ensuring constraints’ fulfillment. In this work,
the solver qpOASES has been used to solve QP optimization problem [10].

61

Trajectory tracking controllers design

1 %% --- Definition of AKADO s function --- %%

2 clear all , close all , clc

3
4 load(" QCar_param.mat");

5
6 EXPORT = 1;

7 COMPILE = 1;

8
9 Ts = 0.01; % MPC sampling time

10 Ts_pm = 0.001; % Prediction model sampling time

11 N = 40; % Prediction horizon steps

12 N_disc = N*Ts/Ts_pm; % Integrator steps number

13
14 % States of the system

15 DifferentialState e1 e1d e2 e2d delta;

16
17 % Control input

18 Control delta_dot;

19
20 % Extra input

21 OnlineData curvature;

22
23 %% Parameters definition

24
25 Ca_F = QCar.Ca_lin; % [N/rad] Front tire cornering stiffness

26 Ca_R = QCar.Cp_lin; % [N/rad] Rear tire cornering stiffness

27 m = QCar.m; % [kg] Vehicle mass

28 Vx = QCar.long_speed; % [m/s] Longitudinal speed

29 I_z = QCar.Iz; % [kg*m^2] Vehicle inertia

30 l_f = QCar.Wb_half_a; % [m] CoG - front tire distance

31 l_r = QCar.Wb_half_b; % [m] CoG - rear tire distance

32 L = QCar.Wb_half_a + QCar.Wb_half_b; % [m] Wheelbase

33
34 %% Control action bounds

35
36 Lb_delta = -0.5; % [rad]

37 Ub_delta = 0.5; % [rad]

38
39 %% State equations

40
41 x1d = is(e1d);

42
43 x2d = is((e2*(Ca_F + Ca_R))/m - Vx*curvature *(Vx +...

44 (Ca_F*l_f - Ca_R*l_r)/(Vx*m)) + (Ca_F*delta)/m + ...

45 - (e1d*(Ca_F + Ca_R))/(Vx*m) - (e2d*(Ca_F*l_f -...

46 Ca_R*l_r))/(Vx*m));

47
48 x3d = is(e2d);

49

62

Trajectory tracking controllers design

50 x4d = is((e2*(Ca_F*l_f - Ca_R*l_r))/I_z - (curvature *(Ca_F*l_f^2 +

...

51 Ca_R*l_r ^2))/I_z + (Ca_F*delta*l_f)/I_z - ...

52 (e2d*(Ca_F*l_f^2 + Ca_R*l_r^2))/(I_z*Vx) - ...

53 (e1d*(Ca_F*l_f - Ca_R*l_r))/(I_z*Vx));

54
55 control_action = is(delta_dot);

56
57 f = [dot(e1);dot(e1d);dot(e2);dot(e2d);dot(delta)]==...

58 [x1d;x2d;x3d;x4d;control_action];

59
60 %% Define cost function

61
62 h = {e1;e1d;e2;e2d;delta;control_action };

63
64 hN = {e1};

65
66 %% MPC export

67
68 acadoSet('problemname ', 'NMPC');
69
70 ocp = acado.OCP(0.0, N*Ts , N);

71
72 %These two variables are just for the compilation.

73 % The ones implemented in the Simulink Model are used in the

simulation

74 W = acado.BMatrix(eye(length(h)));

75 WN = acado.BMatrix(eye(length(hN)));

76
77 ocp.minimizeLSQ(W, h);

78 ocp.minimizeLSQEndTerm(WN , hN);

79
80 %% Constraints (hard)

81
82 % State constraints (steering angle)

83 ocp.subjectTo(is(Lb_delta - (delta)) <= 0);

84 ocp.subjectTo(is(Ub_delta - (delta)) >= 0);

85
86 %% Settings

87 ocp.setModel(f);

88
89 mpc = acado.OCPexport(ocp);

90 mpc.set('HESSIAN_APPROXIMATION ','GAUSS_NEWTON ');
91 mpc.set('DISCRETIZATION_TYPE ','MULTIPLE_SHOOTING ');

92 mpc.set('SPARSE_QP_SOLUTION ','FULL_CONDENSING_N2 ');
93 mpc.set('INTEGRATOR_TYPE ','INT_IRK_GL4 ');
94 mpc.set('NUM_INTEGRATOR_STEPS ', N_disc);

95 mpc.set('QP_SOLVER ', 'QP_QPOASES3 ');
96 mpc.set('GENERATE_SIMULINK_INTERFACE ', 'YES');

63

Trajectory tracking controllers design

97 mpc.set('LEVENBERG_MARQUARDT ',1e-4);
98
99 %% Export , Compilation and S-function generation

100 if EXPORT

101 mpc.exportCode('export_NMPC ');

102 end

103 if COMPILE

104 global ACADO_;

105 copyfile ([ACADO_.pwd '/../../ external_packages/qpoases3 '],...
106 'export_NMPC/qpoases3 ')
107
108 make_custom_solver_sfunction

109
110 end

Once the MPC s-function has been generated by running the Matlab script presented above,
it is employed in the Simulink file where the trajectory tracking model predictive controller is
designed. The crucial variables and the MPC design parameters that have been considered for
the design of controller are:

• n: number of parameters in the cost function J . In this case n = 6, since the entire state
vector (5 state variables) and the unique control input (time derivative of the steering
angle) are considered.

• Nh: number of prediction horizon steps. In this case Nh = 40. This value comes out from
a sensitivity analysis that has been made in simulation based on finding a good trade-off
between performance and computational time. In order to realize this sensitivity analysis,
the controller sampling time has been fixed to Ts = 10 ms and both performance and
computational time have been evaluated as the prediction horizon changed, leading to an
optimal value of the design parameter Nh. Indeed, the prediction horizon is computed
as Tp = TsNh, where Ts is the controller sampling time. The results of the sensitivity
analysis are presented below. As expected, as the prediction horizon’s length rises the
performance improve (both the lateral and heading error decrease) but at the same time
the computational time increases. A good trade-off between these two can be obtained for
Nh = 40, so for a prediction horizon equal to Tp = 400 ms.

• W : stage cost matrix. It is defined as W = diag(Q,R), where Q and R are the weight
matrices used in the cost function.

• WN : terminal cost matrix. I set this parameter equal to a zeros matrix since I did not
give importance to the tracking error at the final time instant of the considered prediction
horizon t+ Tp.

• Niter: number of the iterations of the control algorithm to give the optimal control input
that has to be applied to the system. As this value increases, it’s more likely that the
found solution is optimal, in the sense that it approaches the absolute minimum of the cost
function, but on the other hand the computational effort increases as well. I set Niter = 3
because this represents a good trade-off between solution’s accuracy and computational
effort.

After setting the controller parameters and generating the controller s-function using the Matlab
script presented above, it is employed in the Simulink file when the path tracking model predictive

64

Trajectory tracking controllers design

Figure 5.3: Sensitivity analysis

Figure 5.4: MPC block in Simulink

controller is designed. Therefore, the s-function block represents the controller in Simulink and
it takes as input:

• The current state vector of the plant.

• The reference signals over the entire prediction horizon, that coincides with a zeros’ vector
having length nNh + 1.

• The stage cost matrix, written as column vector.

• The terminal cost matrix, written as column vector.

• Possible online constraints, if any.

65

Trajectory tracking controllers design

• Online data over the prediction horizon: in this case, the desired curvature for the entire
time interval [t, t + Tp] has to be provided since, as presented in the Matlab script, the
curvature is defined as an online data. In order to compute the desired curvature over the
prediction horizon, the assumption of constant longitudinal speed is used. The algorithm
that I used to build this vector is the following

Algorithm 1 Curvature prediction over the prediction horizon at each Ts

Set Nh ▷ Prediction horizon steps
sv = zeros(Nh + 1,1) ▷ Distance vector initialization
sv(1) = s ▷ s: distance covered until the actual time instant
for i = 2 : Nh + 1 do

sv(i) = s+ (i− 1)ds
end for
ρv is the output of a look-up table that maps travelled distance and desired curvature.

• Number of iterations of the controller.

66

Chapter 6

Simulation results

6.1 Computation of the lateral and heading errors in real-
time for control purposes

Since the plant model employed for the design of both pole placement controller and model
predictive controller contains the lateral displacement error ey and the heading angle error eψ as
state variables, it becomes fundamental to evaluate these signals in real-time for control purposes.
It’s important to notice that both quantities cannot be directly measured, i.e. it’s not present a
sensor which provides ey and eψ measurements, but these variables need to be evaluated in an
accurate way to ensure the correct behavior of the controllers. The goal of this paragraph is to
present the procedure for the accurate computation of ey and eψ in real-time for both simulation
and experimental tests.
The reference trajectory is expressed in terms of travelled distance spath, reference curvature
ρ, reference yaw angle ψref and reference coordinates in the inertial frame Xref , Yref . For
simulation and experimental purposes, these variables are provided to the control architecture
through look-up-tables as function of actual distance travelled by the vehicle s, as shown in figure
6.1. If the car would travel on the reference path, position, curvature and yaw angle would be
equal to the reference ones. Nevertheless, in general the vehicle deviates from the reference path
and it’s needed to evaluate this difference by using the lateral displacement error ey and the
heading angle error eψ.

Figure 6.1: Look-Up-Tables used to provide the reference variables to the control architecture,
’s’ is the vehicle travelled distance.

67

Simulation results

The lateral distance between vehicle and reference path is given by [11]:

d = ey = (Y − Yref) cos(ψref)− (X −Xref) sin(ψref) (6.1)

On the other hand, the heading angle error is simply calculated as the difference between current
heading angle of the vehicle and reference heading angle for the vehicle at the travelled distance
s.

eψ = (ψ − ψref) (6.2)

A crucial step is how the actual travelled distance is computed. At each sampling time, a
segment ds1 is calculated considering the Euclidean distance between two consecutive points
(Xk, Xk−1), (Yk, Yk−1) as reported in equation 6.3.

ds1 =

√
(Xk −Xk−1)

2
+ (Yk − Yk−1)

2
(6.3)

This segment corresponds to the distance travelled by the car on the longitudinal direction and
can be related to the space travelled on the reference trajectory ds with this formula:

ds =
ds1

1− e1
ρ

(6.4)

Then, at each sampling time the total distance travelled up to that specific time instant s is the
sum of all the previous differential segments ds and is fed into the LUT to obtain the reference
variables ρ, ψref , Xref and Yref .

Figure 6.2: Definition of variables used for calculation of distance travelled along the path

68

Simulation results

6.2 Presentation of trajectory tracking controllers simula-
tion results

This paragraph aims to present the simulation results of the designed trajectory tracking con-
trollers. Several simulations have been performed for different vehicle longitudinal velocity, start-
ing from 0.5 up to 1.5 mps, and for different trajectories. For sake of brevity and clarity, only
the simulations realized with 0.5, 0.7 and 1 mps are presented for the considered trajectories.
In the figures below, the following variables are plotted:

• Reference and actual trajectories;

• Lateral error;

• Heading error;

• Steering angle.

6.2.1 Pole placement with optimization simulation results

This section aims to present the simulation results and the tracking performance achieved by
the static state feedback controller with optimization. As expected, both lateral and heading
angle errors increase as the velocity rises and more evasive manoeuvres such as eight trajectory
or obstacle avoidance are considered.

Figure 6.3: Simulation results of pole placement controller for U-shaped trajectory

69

Simulation results

Figure 6.4: Simulation results of pole placement controller for S-shaped trajectory

Figure 6.5: Simulation results of pole placement controller for circle trajectory

Figure 6.6: Simulation results of pole placement controller for eight trajectory

70

Simulation results

Figure 6.7: Simulation results of pole placement controller for obstacle avoidance trajectory

6.2.2 Model predictive controller simulation results

This section aims to present the simulation results and the tracking performance achieved by
the model predictive controller. Since the weight matrices of the cost function have been tuned
considering a nominal velocity equal to 1 mps, the controller reaches better performance for such
value of longitudinal velocity. Moreover, the MPC allows to have very good performance even
when higher velocities are considered.

Figure 6.8: Simulation results of model predictive controller for U-shaped trajectory

71

Simulation results

Figure 6.9: Simulation results of model predictive controller for S-shaped trajectory

Figure 6.10: Simulation results of model predictive controller for circle trajectory

72

Simulation results

Figure 6.11: Simulation results of model predictive controller for eight trajectory

Figure 6.12: Simulation results of model predictive controller for obstacle avoidance trajectory

73

Chapter 7

Experimental results

In this chapter, the experimental performance of both controllers for different velocities and
trajectories on the test track are presented. The considered velocities are 0.5, 0.6, 0.7, 0.8, 0.9, 1,
1.2 and 1.5 m/s; however, for brevity and clarity, in the following figures only the results for 0.5,
1, 1.5 m/s are reported. Additionally, for the closed trajectories, i.e. circle and eight, three laps
were made at each velocity to compare the performance with other trajectory tracking controllers
developed in the same research group, e.g. an enhanced model reference adaptive controller with
neural network [12]. The plots show the reference and the actual trajectory of the vehicle and
the measured lateral and heading errors with respect to the reference path as function of the
travelled distance.

7.1 Pole placement with optimization experimental results

Figure 7.1: Experimental results of pole placement controller for U-shaped trajectory at 0.5, 1
and 1.5 mps

74

Experimental results

Figure 7.2: Experimental results of pole placement controller for S-shaped trajectory at 0.5, 1
and 1.5 mps

Figure 7.3: Experimental results of pole placement controller for obstacle avoidance trajectory
at 0.5, 1 and 1.5 mps

Figure 7.4: Experimental results of pole placement controller for circle trajectory at 0.5, 1 and
1.5 mps

75

Experimental results

Figure 7.5: Experimental results of pole placement controller for eight trajectory at 0.5, 1 and
1.5 mps

7.2 Model predictive controller experimental results

Figure 7.6: Experimental results of model predictive controller for U-shaped trajectory at 0.5, 1
and 1.5 mps

76

Experimental results

Figure 7.7: Experimental results of model predictive controller for S-shaped trajectory at 0.5, 1
and 1.5 mps

Figure 7.8: Experimental results of model predictive controller for obstacle avoidance trajectory
at 0.5, 1 and 1.5 mps

Figure 7.9: Experimental results of model predictive controller for circle trajectory at 0.5, 1 and
1.5 mps

77

Experimental results

Figure 7.10: Experimental results of model predictive controller for eight trajectory at 0.5, 1 and
1.5 mps

7.3 Comparison of experimental results

The figures above for the five trajectories at 0.5, 1 and 1.5 mps show how the model predictive
controller leads to a consider improvement of the tracking performance especially at higher
speeds. However, since not all the experimental tests for each velocity are shown for brevity
in the plots, performance were evaluated by using five Key Performance Indicators (KPIs) and
presented using histograms. The considered KPIs and their analytical definitions are:

• Maximum lateral error;

• Maximum heading angle error;

• Root-Mean-Squared-lateral Error;

• Root-Mean-Squared-heading angle Error;

• Integral of the Absolute value of the Control Action variations (IACA);

MAXey = max(ey) (7.1)

RMSey =

√
1

tfin − tin

∫ tfin

tin

(ey)2dt (7.2)

MAXeψ = max(eψ) (7.3)

RMSeψ =

√
1

tfin − tin

∫ tfin

tin

(eψ)2dt (7.4)

IACAδ =
1

tfin − tin

∫ tfin

tin

|∆δ| dt (7.5)

78

Experimental results

7.3.1 Comparison of controllers experimental results for U-shaped tra-
jectory

Figure 7.11: Comparison of controllers performance in experimental tests with U trajectory at
different vehicle velocities

79

Experimental results

7.3.2 Comparison of controllers experimental results for S-shaped tra-
jectory

Figure 7.12: Comparison of controllers performance in experimental tests with S trajectory at
different vehicle velocities

80

Experimental results

7.3.3 Comparison of controllers experimental results for obstacle avoid-
ance trajectory

Figure 7.13: Comparison of controllers performance in experimental tests with eight trajectory
at different vehicle velocities

81

Experimental results

7.3.4 Comparison of controllers experimental results for circle trajec-
tory

Figure 7.14: Comparison of controllers performance in experimental tests with circular trajectory
at different vehicle velocities

82

Experimental results

7.3.5 Comparison of controllers experimental results for eight trajec-
tory

Figure 7.15: Comparison of controllers performance in experimental tests with eight trajectory
at different vehicle velocities

As can be seen in the above figures and as expected according to the preliminary simulation
results, the performance of both trajectory tracking controllers in terms of maximum and mean
lateral error worsen with increasing speeds. However, the model predictive controller allows to
heavily improve the tracking performance especially at higher vehicle velocities, by leading to
a decrease of the maximum lateral error in the range of [50,70]% for 1.5 mps depending on the
considered manoeuvre.

83

Conclusion

This thesis has presented an application of estimation and control techniques for self-driving
cars. In chapter 1, the QCar has been presented for giving an overview of the model vehicle
employed for the experimental validation. In chapter 2, the vehicle dynamic models were dis-
cussed, by highlighting the paramount importance and assumptions of the dynamic single-track
model employed together with the longitudinal dynamic model for both filtering and control
purposes. The path-tracking control application has been introduced and discussed in chapter
3, where the generation of the reference trajectories considered for this work is presented. In
chapter 4, a kinematic and a dynamic Extended Kalman Filter have been designed, implemented
and validated to significantly improve the accuracy of the vehicle pose measured by the lidar
by allowing the rejection of the spikes of this sensor, providing an estimate of the vehicle state
variables of interest, including some signals that are not directly measured such as the vehicle
side-slip angle, at the desired sample frequency needed to achieve better tracking results in the
controller design. Both filters allows to achieve exceptional performance for spikes rejection and
localization improvements; however the dynamic EKF leads to better results for the estimation
of lateral velocity and vehicle side-slip angle and this is why this last one has been used for the
controller validation. In chapter 5, the design of two trajectory tracking controllers was tackled:
the first benchmark controller based on a static state feed-back control law in which the poles
of the closed-loop dynamic system are computed by solving an optimization problem, and a
model predictive controller which allows to heavily improve the tracking performance for higher
velocities in all the considered trajectories, by leading to a decrease of the maximum lateral error
of up to 70 %. Specifically, the simulation and the experimental results of the controllers are
presented respectively in chapter 6 and 7.
The work carried out at the University of Surrey turned out to be fundamental for applying
vehicle dynamics, filtering and model based controller design concepts in the field of autonomous
driving. A possible future work deriving from this activity could be the usage of a neural net-
work as prediction model embedded into the model predictive controller algorithm in order to
overcome the limits of the simple linear single-track model at higher velocities leading potentially
to better tracking performance in such scenarios.

84

Conclusion

Nomenclature

Symbol Variable Unit of measure
s Distance covered along the path m
ρ Road curvature 1/m
ey Lateral offset error m
eψ Heading angle error rad

Table 7.1: List of path tracking symbols

Symbol Variable Unit of measure
xb, yb Body axes m
XI , YI Global axes m
X,Y Coordinates of the c.g. of vehicle in the inertial frame m
V Total velocity at c.g. of vehicle in the inertial frame m/s
Vx Total velocity at c.g. of vehicle in the inertial frame m/s
Vy Lateral velocity at c.g. of vehicle in the inertial frame m/s
v Total velocity at c.g. of vehicle in the body frame m/s
vx Longitudinal velocity at c.g. of vehicle in the body frame m/s
vy Lateral velocity at c.g. of vehicle in the body frame m/s
ax Longitudinal acceleration at c.g. of vehicle in the body frame m/s2

aX Longitudinal acceleration at c.g. of vehicle in the inertial frame m/s2

ay Lateral acceleration at c.g. of vehicle in the body frame m/s2

aY Lateral acceleration at c.g. of vehicle in the inertial frame m/s2

ψ Yaw angle of vehicle in global axes rad

ψ̇ Yaw rate of vehicle rad/s
Fy Lateral tire force N
Fyf Lateral tire force on front tires N
Fyr Lateral tire force on rear tire N
m Total mass of vehicle kg

85

Conclusion

Symbol Variable Unit of measure
Iz Yaw moment of inertia of vehicle kg m2

lf Longitudinal distance from c.g. to front tires m
lr Longitudinal distance from c.g. to rear tires m
δf Front wheel steering angle rad
δr Rear wheel steering angle rad
αf Front wheel slip angle rad
αr Rear wheel slip angle rad
Cαf Cornering stiffness of front tire N/rad
Cαr Cornering stiffness of rear tire N/rad
β Slip angle at vehicle c.g rad
rw Wheel radius m
τ Transmission ratio -
Va Armature voltage V
ω Motor speed rad/s
Ra Terminal resistance Ω
Kt Torque constant N m/A
Kv Motor back-emf constant V s/rad
J Inertia equivalent to the motor kg m2

B Coefficient of viscous friction N m s
Cr Static friction torque N m

Table 7.2: List of symbols

86

Acknowledgements

Questo elaborato sancisce la fine del mio percorso accademico, durante il quale diverse persone
sono state fondamentali.
Prima di tutto vorrei ringraziare la mia fidanzata. Sharon, sei stata, sei e sarai vitale per il mio
benessere. Ti ringrazio per tutti i momenti passati insieme durante questi cinque anni e per le
lunghe chiamate e la tua visita durante il mio soggiorno in Inghilterra, dove questo lavoro e’ stato
partorito. Sono fiero di essere cresciuto insieme a te, e non vedo l’ora di festeggiare questo e
tanti altri traguardi insieme. Piu’ di ogni altra cosa, di te ammiro e cerco di assorbire l’immensa
energia positiva e la luce che emani. Sei stata essenziale durante questo percorso.
Ringrazio la mia famiglia. Senza il vostro supporto questo traguardo non esisterebbe, grazie per
le chiamate giornaliere, per i consigli e per non avermi mai fatto sentire solo nonostante i mille
chilometri di distanza che ci hanno separato in questi anni.
Ringrazio i ragazzi della residenza universitaria Borsellino, troppi per essere citati individual-
mente. E’ stato stupendo condividere con voi questi anni. I ricordi delle cene, delle uscite, delle
riflessioni e delle serate passate insieme sono tra i piu’ belli che mi portero’ dietro per sempre.
Ringrazio i ragazzi con cui ho condiviso il mio soggiorno a Guildford. Giulio, Matteo, Paolo (x2),
Edoardo, i legami di amicizia creati qui rimarranno la cosa piu’ bella che questa esperienza mi
ha regalato.
E infine, ringrazio me stesso per aver cercato sempre di raggiungere il massimo durante questi
anni di studi, per aver creduto nelle mie capacita’ e nelle mie ambizioni.

87

Bibliography

[1] P. Darsh, P. Nishi, R. Aakash, C. Manisha, G. P. J. Neeraj Kumar, and W. Cho, “A review
on autonomous vehicles: Progress, methods and challenges,” electronics, vol. 11, no. 2162,
2022.

[2] D. Schramm, M. Hiller, and R. Bardini, “Vehicle dynamics,” Modeling and Simulation.
Berlin, Heidelberg, vol. 151, 2014.

[3] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.
[4] “Curvature,” 2016. Accessed on July 14, 2023.
[5] “Passenger cars - Test track for a severe lane change manoeuvre - Part 2: Obstacle avoid-

ance,” standard, International Organization for Standardization, Geneva, CH, 2015.
[6] C. Novara, “Nonlinear control and aerospace applications, lecture notes.,” 2017. Politecnico

di Torino.
[7] M Canale, “Automatic control, lecture notes..” Politecnico di Torino.
[8] M. Canale, “Digital control technologies and architectures, lecture notes..” Politecnico di

Torino.
[9] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open Source Framework for

Automatic Control and Dynamic Optimization,” Optimal Control Applications and Methods,
vol. 32, no. 3, pp. 298–312, 2011.

[10] “Qpoases user’s manual,” 2014.
[11] R. S. Sharp, D. Casanova, and P. Symonds, “A mathematical model for driver steering

control, with design, tuning and performance results,” Vehicle system dynamics, vol. 33,
no. 5, pp. 289–326, 2000.

[12] P. Timis, “Path tracking control solutions via enhanced model reference adaptive control
algorithms augmented with neural networks and their experimental validation in scaled fully
autonomous vehicles.,” 2023.

88

