
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Behaviour cloning of a Model Predictive
Controller for Path Tracking applications

Supervisors

Prof. Alessandro VIGLIANI

Prof. Umberto MONTANARO

Prof. Manuel FERRE PÉREZ

Candidate

Marino Massimo COSTANTINI

March 2024

i

Summary

Over the past few years, the University of Surrey has undertaken successful research
in vehicle systems controls. Particularly, investigations have focused on implement-
ing control strategies using scaled sensor-rich autonomous vehicles (SSRAVs) as
experimental platforms, specifically emphasising path-tracking tasks. The preexist-
ing controller architectures developed before the commencement of this study are
essentially three:

• PID

• LQR

• MPC

Among these architectures, the Model Predictive Control (MPC) architecture
has demonstrated superiority in terms of the key performance indicators (KPIs)
taken into account. However, it is worth noting that a notable drawback of the
MPC architecture is the considerable computational effort required. Indeed, to let
this architecture work in real-time too, some simplifications got to be necessary.
Real-time simplifications led to lower KPIs yet MPC was still the best architecture.
In brief, the focus of this Master’s thesis is to assess the viability of replacing MPC
with an MPC-inspired Artificial Neural Network (ANN) to enhance computational
efficiency and, consequently, achieve a higher level of overall real-time performance.
The type used in this work is the Multi-Layer Perceptron (MLP) which is relatively
straightforward compared to some other types of neural networks, such as convolu-
tional neural networks (CNNs) or recurrent neural networks (RNNs). Nonetheless,
CNNs and RNNs solutions may be considered as potential future developments of
this work, since they might lead to comparable results.

iii

Acknowledgements

To my family, my friends and whoever spontaneously and positively enriches this
marvellous life.

“Audentes fortuna iuvat”
Publius Vergilius Maro

iv

https://www.britannica.com/biography/Virgil

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1

2 State of the Art 3
2.1 Scaled Sensor-Rich Autonomous Vehicle 4
2.2 Path tracking control solutions . 5
2.3 MPC & associated issues . 6
2.4 Neural Network-Based Optimisation 9

3 Methodologies 11
3.1 Model Predictive Problem formulation 12

3.1.1 Internal model . 14
3.1.2 ACADO tool-kit . 18
3.1.3 Creation of the set of LMPCs 19

3.2 Key Performance Indicators . 20
3.3 MAAB Guidelines . 21
3.4 Review of the previous Simulink model 22

3.4.1 Reference distance along the path 22
3.4.2 Reference yaw . 25
3.4.3 Simulink modifications According to MAAB Guidelines . . . 26

3.5 LMPC dataset . 27
3.6 Chosen paths . 29

3.6.1 Validation paths . 30
3.6.2 Training paths . 31
3.6.3 Data Cleaning & Data Augmentation 32

3.7 Learning Algorithms for MLP . 33

vi

3.7.1 Multi-Layer Perceptron & Adam Optimiser 33
3.7.2 Hyperparameters & Activation Functions 36

3.8 Experimental Approach . 38

4 Development of programming tools 40
4.1 MLP builder toolchain . 42

4.1.1 Necessary Requirements . 43
4.1.2 Setup on MATLAB . 45
4.1.3 Training & Validation on Python 47
4.1.4 Evaluation on MATLAB . 48
4.1.5 Deployment . 50
4.1.6 Training material & conclusion 54

4.2 Toolkit . 55
4.2.1 GUI Functionalities . 57
4.2.2 Training Material & Conclusion 65

5 Training & Validation 66
5.1 Losses: ReLu vs tanh . 67

6 Simulation Results 71
6.1 Simulation MPCs . 73
6.2 Simulation MLPs . 74

7 Experimental Results 79

8 Conclusions 83
8.1 Innovative Programming Results 84
8.2 Simulation and Experimental Results 85
8.3 Prospective Enhancements . 86

A MLP algorithms 87

Bibliography 89

vii

List of Tables

3.1 Experimentally tested LMPCs configuration. 12
3.2 Simulated tested LMPCs configuration. 13
3.3 Default values for hyperparameters. 37

4.1 Examples of activation functions, operating either element-wise or
vector-wise, depending on the function 46

viii

List of Figures

2.1 SAE Levels of Driving Automation™ 3
2.2 One of the QCars of UoS. 4
2.3 MPC schematic. 6
2.4 MPC real-time feasibility. 8
2.5 Typical implementation of NNBO to replace an MPC controller. . . 10

3.1 Vehicle frame and fixed frame. 14
3.2 Wheel frame and vehicle frame. 14
3.3 Vehicle frame and fixed frame with error state representation. . . . 16
3.4 NNBO controller schematic. 19
3.5 Old code affected by error. 22
3.6 Data inspector scope for distance-travelled error. 23
3.7 Graphics new algorithm for distance-travelled error. 24
3.8 Scope of the accumulated error to compute ψref after 15 s. 25
3.9 Data structure for the ideal path. 29
3.10 Eight validation path . 30
3.11 S-shaped path example . 31
3.12 Sinusoidal path example. 32
3.13 Representation of a generic MLP. 33
3.14 Highlight of neuron connections. 34
3.15 Block scheme of back-propagation training. 35
3.16 The 4 QCars available in the laboratory of University of Surrey. . . 38
3.17 Battery charge check. 38
3.18 Track used for experiments. 39

4.1 High-level programming tools representation. 41
4.2 Stream of the developed toolchain. 42
4.3 Expected output after performing Python environment check. . . . 43
4.4 Instance of how a suitable dataset should look like. 44
4.5 Online losses. 48
4.6 Training report. 48

ix

4.7 MATLAB variables from training report. 49
4.8 Final plot for losses. 49
4.9 Setting in data editor for prediction output. 51
4.10 Simulink block for MLP deployment 53
4.11 Properties of the Simulink block for MLP deployment. 53
4.12 Developed toolkit structure scheme. 55
4.13 How the MATLAB folder should look like while using the toolkit. . 56
4.14 Toolkit main GUI. 57
4.15 MPC creation dedicated GUI. 58
4.16 MPC simulation, list of available paths GUI. 59
4.17 MPC simulation, list of available MPCs GUI. 60
4.18 Dataset creation menu. 60
4.19 Dataset creation, choice of prediction horizon. 61
4.20 MLP training, list of MLPs. 61
4.21 MLP training, choice of the datasets. 62
4.22 Developed toolkit structure scheme. 63
4.23 MLP deployment, example of use. 64
4.24 KPIs comparison. 64
4.25 KPIs comparison, subplots. 65
4.26 Rest of the toolkit main GUI. 65

5.1 Comparison between tanh and ReLu losses over epochs. 67
5.3 Comparison between losses. 69
5.4 Other MLP’s structures. 70

6.1 Simulink model schematic for simulations. 71
6.2 Sensitivity analysis of KPIs over longitudinal velocity 73
6.3 Simulation Results for MLP (120-120-20) with tanh activation at

1.5 m/s. 74
6.4 Sensitivity analysis over activation functions. 75
6.5 Sensitivity analysis over hidden layer sizes. 76
6.6 Sensitivity analysis over hidden layer shapes 77
6.7 Final comparison between MPCs and MLPs in Simulation 78

7.1 Simulink model schematic for experimental validations 79
7.2 Experimental Results for MLP (120-120-20) with tanh activation at

0.5 m/s. 80
7.3 Experimental Results for MLP (120-120-20) with tanh activation at

1.0 m/s. 80
7.4 Experimental KPIs of some MLPs. 81
7.5 Experimental vs Simulated MLPs 82
7.6 Experimental vs Simulated benchmark MPC 82

x

Acronyms

ACADO
Toolkit for Automatic Control and Dynamic Optimisation

ANN
Artificial Neural Network

CoG
Centre of Gravity

DAE
Differential-Algebraic Equation

DNN
Deep Neural Network

e.g.
Exempli Gratia

FB
Feed-Back

FF
Feed-Forward

GD
Gradient Descent

GUI
Graphical User Interface

xii

IACA
Integral of the Absolute Value of Control Action Delta

i.e.
Id Est

KPI
Key Performance Indicator

LQR
Linear Quadratic Regulator

LMPC
Linear Model Predictive Control

LTI
Linear Time Invariant

ME
Maximum Lateral Error

MLP
Multi Layer Perceptron

MPC
Model Predictive Control

NMPC
Non-linear Model Predictive Control

NNBO
Neural Network Based Optimisation

ODE
Ordinary Differential Equation

PID
Proportional Integrative Derivative

xiii

PP
Path Planning

PT
Path Tracking

RMSE
Root Mean Square Error of the Lateral Error

SSRAV
Scaled Sensor-Rich Autonomous Vehicle

w.r.t.
With Respect To

xiv

List of Definitions

ACADO Toolkit

ACADO Toolkit is a software environment and algorithm collection for auto-
matic control and dynamic optimisation. It provides a general framework for
using a great variety of algorithms for direct optimal control, including model
predictive control, state and parameter estimation and robust optimisation.
ACADO Toolkit is implemented as self-contained C++ code and comes
along with user-friendly MATLAB interface. The object-oriented design
allows for convenient coupling of existing optimisation packages and for
extending it with user-written optimisation routines. Learn more about the
features of ACADO Toolkit.[1]

Multi-Layer Perceptron

The simplest type of feed-forward ANN. The units are arranged into a set
of layers, and each layer contains some number of identical units. Every
unit in one layer is connected to every unit in the next layer; we say that
the network is fully connected. The first layer is the input layer, and its
units take the values of the input features. The last layer is the output layer,
and it has one unit for each value the network outputs. All the layers in
between these are known as hidden layers, because we don’t know ahead
of time what these units should compute, and this needs to be discovered
during learning. The units in these layers are known as input units, output
units, and hidden units, respectively. The number of layers is known as the
depth, and the number of units in a layer is known as the width [2].

xv

Overfitting

Overfitting occurs when an algorithm fits too closely or even exactly to its
training data, resulting in a model that can’t make accurate predictions or
conclusions from any data other than the training data [3].

Path

Spatial construction that describes a sequence of steps that a physical body
lies in or should lie in. It does not provide specific information about the
timing at which each step is occupied. In this work the SSRAV will follow a
path since there are no information concerning the time-scheduling.

Trajectory

The path that an physical body follows or should follow through space as
a function of time. In this work, the trajectory will be the result of the
path-tracking task that the SSRAV has performed thanks to the control
architecture.

Underfitting

Underfitting is a scenario in data science where a data model is unable to
capture the relationship between the input and output variables accurately,
generating a high error rate on both the training set and unseen data [4].

xvi

Chapter 1

Introduction

The primary goal of this study is to explore a straightforward approach to address
the real-time limitations of a Model Predictive Control (MPC) in a Path Tracking
(PT) task applied to a Scaled Sensor-Rich Autonomous Vehicle (SSRAV). The
intention is to evaluate this approach in both simulation and real-time deployment
scenarios as done in chapters 6 and 7. The motivation for this investigation arose
when it was recognised that the MPC, initially developed and fine-tuned in a
simulation environment through sensitivity analysis, might face challenges in real-
time application due to the hardware limitations as shown in the chapter 3.
Specifically, the computational real-time in-feasibility emerged when the prediction
horizon encountered limitations imposed by the SSRAV hardware. This was despite
the internal model, briefly described in the subsection 3.1.1, being very light.
Thus the computational limitations of the hardware in the SSRAV prompted a
necessary downsizing of the optimisation problem. Indeed, despite the initial
suggestion from sensitivity analysis for an optimal prediction horizon of 40 steps,
practical constraints led to a reduction to 20 steps as resumed in the table 3.2.
This downsizing further required the linearisation of the prediction model, with
the exclusion of longitudinal speed from the control variables, resulting in a Linear
Time-Invariant (LTI) internal model. This LTI model is valid only in the proximity
of the chosen linearisation speeds, effectively transforming the controller into an
LMPC.
The primary objective of this study is to replicate the non-implementable MPC
using a Neural Network-Based Optimisation (NNBO) technique. Following a
concise review of the state of the art in Section 2.4, a pure regression technique
utilising a Multi-Layer Perceptron (MLP) was chosen to execute basic input-output
behaviour cloning. The goal is to minimise the regression error and, consequently,
demonstrate comparable behaviour with the expert controller through the key
performance indicators (KPIs) detailed in Subsection 3.2.

1

Introduction

As elaborated in chapter 4, a systematic approach involved the development
of an entire toolkit from scratch. This toolkit serves as an easy-to-use program
designed to guide users through the entire process. The steps can be summarised
as follows:

I. Creation of the Set of LMPCs: For each chosen working speed a dedicated
Linear MPCs (LMPC) was created. It is crucial that the set comprises LMPCs
with prediction horizons of the same length, ensuring consistency among
dataset rows. A discussion about the length of the final prediction horizons
and working speeds chosen is presented in section 3.1.3.

II. Creation of the Dataset: Data was saved by running the expert LMPCs in
closed-loop simulations along various representative paths called ’training
paths’. The criteria guiding the path selection are explained in Section 3.5.

III. Creation, Setup, and Training of MLPs: Special attention was given to speed
up the process, as detailed in Section 4.1. Here, a general tool chain was
introduced for the swift training and validation of MLPs using MATLAB and
a Python environment integration. This tool-chain can be also employed for
general purposes, indeed it makes an additional outcome of this work. Further
insights into the algorithm it utilises are provided in Section 3.7.

IV. Simulation Deployment of MLPs: The MLPs were deployed in a simulation
environment, and subsequent KPI evaluations were conducted.

V. Experimental Deployment of MLPs: The MLPs were deployed experimentally,
and subsequent KPI evaluations were conducted.

The development of the aforementioned comprehensive toolkit proved to be indis-
pensable, particularly when unexpected results emerged during the experiments.
This toolkit enabled a swift and efficient redesign of the experimental setup, signif-
icantly streamlining the process. Consequently, the ability to quickly iterate on
the setup not only facilitated smoother experimentation but also expedited the
identification and resolution of issues encountered.
Furthermore, as outlined in section 3.4, meticulous attention was devoted to re-
viewing past work. This thorough examination uncovered errors in calculations and
provided valuable insights for improvement. Unfortunately, lack of time limited
the implementation of all suggested fixes.

2

Chapter 2

State of the Art

Autonomous driving is a highly demanding sector in the automotive industry,
requiring the exploration of innovative techniques that leverage advanced sensor
arrays. The Society of Automotive Engineers (SAE) has categorised autonomous
vehicles into six levels, spanning from Level 0 (requiring full manual operation)
to Level 5 (fully autonomous operation). As automation levels advance, ensuring
the safety of autonomous vehicles within dynamic traffic environments becomes a
top priority for stakeholders across academia, industry, research, and policymaking.
Engineers and researchers are actively working to enhance safety measures in re-
sponse to these concerns. Notably, the Safety of the Intended Functionality (SOTIF)
guidelines detailed in ISO/PAS-21448 cover both the hardware and software aspects
of autonomous vehicles. These guidelines aim to achieve comprehensive situational
awareness and mitigate the potential for system failures, thereby promoting safer
autonomous driving experiences. [5].

Figure 2.1: SAE Levels of Driving Automation™ Refined for Clarity and Interna-
tional Audience [6].

3

State of the Art

2.1 Scaled Sensor-Rich Autonomous Vehicle
Mobile robotic systems have garnered significant interest from industries, research
institutions, and governments worldwide, driven by the widespread adoption of
Industry 4.0 [7]. These systems find application across diverse sectors, including
laboratories, industries, warehousing, and transportation [8]. SSRAVs are notably
employed as assessment platforms for autonomous driving, as highlighted in [9],
[10], and [11]. They offer several advantages:

I. They enable cost-effective testing, leading to significant cost savings compared
to experiments involving full-sized vehicles.

II. They provide a repeatable testing environment, facilitating more precise tuning
of control algorithms.

III. They enhance safety, as scaled robotic cars entail less severe consequences in
the event of system failures or collisions.

Consequently, these mobile robots serve as versatile platforms for evaluating Path
Planning (PP) [12], [13], Path Tracking (PT) [14], and vehicle platooning algorithms
[15]. PT controllers, in particular, serve as intermediaries between vehicle dynamics
and the path planner of automated vehicles. They define actuator commands,
typically steering angle and traction/braking torques, to follow predefined paths
while adapting to dynamic and uncertain real-world conditions [16], [17], [18].
SSRAVs play a crucial role in experimentally evaluating the effectiveness of various
PT solutions within this framework.

Figure 2.2: One of the QCars that the laboratory of the University of Surrey is
provided with.

4

State of the Art

2.2 Path tracking control solutions
Since the performance of PT controllers depends on factors such as the complexity of
the vehicle model and the accuracy and robustness of the control scheme, the design
and implementation of PT controllers for automated vehicles have been the subject
of numerous studies [18] [19]. Proposed control strategies in the literature range
from geometry-based (pure pursuit and Stanley controller) to robust controllers
(sliding mode controller and H) and optimisation-based controllers (LQR and MPC)
[18] [19].
MPC techniques, among the latter two categories, are the most widely used for
trajectory tracking due to their ability to handle multi-variable problems and
systematically consider constraints on states and control actions, as well as predict
the expected future behaviour of the system [17]. In the realm of model-based
strategies, examples in the literature include optimal robust linear matrix inequality-
based MPC [20] focusing on minimising battery consumption, and MPC based
on a Space-Time Model (STM) introduced in [21] [22] to optimise vehicle speed
profiles and the reference path. Additionally, an efficient and robust MPC for
trajectory tracking of a small-scale autonomous bulldozer is presented in [23],
demonstrating the capability of the proposed controller to track target trajectories
with low processing time and small tracking errors.
Despite the significant advancements in path tracking performance achieved by
these control methods, they still face several challenges [18] [24]:

I. Design complexity is related to the necessity of incorporating vehicle non-
linearities.

II. Difficulty in obtaining a suitable set of tuning parameters ensuring consistent
performance across a broad range of potential scenarios.

III. Demanding state and parameter estimation requirements.

IV. Robustness with respect to variations in vehicle and environmental parameters.
Moreover, the real-time implementation of implicit MPC formulations is
computationally demanding.

To address these challenges (i-iv) recent machine-learning solutions have been
proposed. Among these, imitation learning (IL) leverages the universal function
approximation capability of artificial neural networks (ANN) [25] [26]. It involves
training networks to imitate the control action computed by another control strategy.
The resulting ANN can possess the same control capability and strong robustness
as the original controller but with much lower computational complexity. This
work aims to address the limitations of MPCs, as reviewed in the next section.

5

State of the Art

2.3 MPC & associated issues
Presently, the attributes of MPCs, encompassing both their merits and limitations,
are widely acknowledged by the majority. MPC was already emerging into the
process industries during the 1980’s. Today it is commonplace and, in some sense,
mature [27]. Moreover, commercial packages are available on a variety of platforms
and "do-it-yourself" implementations are also readily found (e.g. ACADO toolkit).
In short, MPC is a controller that makes predictions thanks to an internal model of
the system to control. A more specific and common formulation of the optimisation
problem is as follows:

Find a set of manipulated variables that minimises a loss function of
future predicted control errors subject to constraints on both manipulated
and controlled variables.

Figure 2.3: MPC schematic. The MPC is implicit, then the optimisation is
performed online. This is a non-single evaluation algorithm then the computational
cost increases together with the number of iteration that the algorithm takes.

6

State of the Art

The general formulation of MPC involves minimising a cost function J over a
finite time horizon N :

J =
N−1Ø
k=0

ℓ(xk, uk) + V (xN), (2.1)

where xk is the state vector, uk is the control input, ℓ is the stage cost function,
and V is the terminal cost function.
The stage cost function ℓ(xk, uk) is often defined as a quadratic form:

ℓ(xk, uk) = (xk − xref,k)⊤Q(xk − xref,k) + u⊤
k Ruk, (2.2)

where Q is the state cost matrix, R is the control input cost matrix, and xref,k is
the reference state at time k.
The terminal cost function V (xN) can be similarly defined as:

V (xN) = (xN − xref,N)⊤P (xN − xref,N), (2.3)

where P is the terminal state cost matrix, and xref,N is the reference state at the
terminal time N .
Subject to the system dynamics constraint:

xk+1 = f(xk, uk), (2.4)

and input and state constraints, which can be either hard or soft:

uk ∈ U , (Hard or Soft) (2.5)
xk ∈ X , (Hard or Soft), (2.6)

where U and X are the input and state constraint sets, respectively.
Hard constraints must be satisfied at every time step, while soft constraints
contribute to the cost function and can be violated within a specified tolerance.
Additionally, output constraints can be considered:

yk = Cxk, (2.7)

with constraints:
yk ∈ Y , (Hard or Soft), (2.8)

where C is the output matrix and Y is the output constraint set.

7

State of the Art

The optimisation problem is typically solved online (implicit MPC) at each time
step, and only the first control input is applied to the system. The process is then
repeated at the next time step with updated measurements.
Still in brief, summarising the features of MPCs in comparison with conventional
controllers: [28]

• Benefit: A well-designed MPC excels in effectively operating within constraints
of the real actuator, model uncertainty, and non-linearity.

• Drawback: The complexity of MPC’s algorithm results in a longer processing
time compared to other controllers, primarily due to real-time optimisation
challenges .

The aforementioned drawback poses an inevitable constraint on the hardware
suitable for deploying MPC. Specifically, when employing a micro-controller, the
feasible set of MPCs for real-time applications is restricted and contingent upon
two key factors:

1. Power of the hardware

2. Computational cost imposed by the MPC

As a consequence, to address this limitation, the choice of hardware must either
lean towards more powerful alternatives, or the optimisation problem must be
re-evaluated and streamlined (e.g., by shortening the prediction horizon, utilising a
more efficient internal model, reducing the number of iterations in the optimisation
process, or relaxing certain hard constraints).

Figure 2.4: MPC real-time feasibility.

8

State of the Art

2.4 Neural Network-Based Optimisation
The literature offers numerous strategies to overcome these limitations, with a
particular focus on methods that avoid the necessity of online optimisation, a
significant contributor to real-time impracticality. Many of these strategies leverage
machine learning techniques during the offline phase. Among them, a straight-
forward approach involves training an NN through pure regression to mimic the
outputs of a traditional optimiser, commonly referred to as imitation learning (IL).
At its essence, imitation learning aims to acquire expertise by observing and learn-
ing from expert demonstrations. Recent advancements in data-driven MPC often
utilise a basic form of imitation learning known as behaviour cloning. This tech-
nique seeks to train controllers that replicate the performance of MPC by sampling
trajectories from the closed-loop MPC system in real-time. However, behaviour
cloning is recognised for its inefficiency in data utilisation and susceptibility to
distribution shifts.
In [29], the use of deep neural networks (DNNs) is simulated, where a DNN
controller is trained on simulated input-output data from a well-designed MPC.
Subsequently, the expert controller is substituted by the artificial neural network
itself. Similarly, in [30], an MPC law is approximated by a DNN that is computa-
tionally efficient for online evaluation and has a small memory footprint, making
it suitable for embedded applications. In another study [31], it is proposed to
learn the optimal control policy defined by a complex model predictive formulation
using deep neural networks offline, enabling the online use of the learned controller
requiring only the evaluation of a neural network. Another example is provided by
[32], where the MPC regulator is approximated offline using a feed-forward MLP.
However, the aforementioned pure regression methods overlook the complexity
of preserving the theoretical properties and guarantees of MPC and necessitate
careful validation through simulation and experimental validations. The common
issue with approaches lacking guarantees is the inability to ensure the safety of the
controller by design.

Despite their differences, all the aforementioned methodologies converge on ad-
dressing a regression task. NNs are recognised as universal function approximators
[33]. However, achieving precise regressions practically proves to be challenging
or even infeasible, inevitably resulting in regression errors. With a sufficiently
complex network architecture and abundant training data, it becomes feasible to
significantly mitigate these regression errors.

9

State of the Art

Nevertheless, as highlighted by Akesson et al. [34], the regression error can esca-
late over time when the network operates in closed-loop control. Consequently, the
performance of an approximate MPC controller may substantially deviate from that
of an exact controller. Hence, approaches lacking assurances necessitate additional
safety mechanisms operating concurrently with the controller. These mechanisms
undertake tasks such as controlling action saturation, detecting constraint viola-
tions, identifying instability, and executing emergency stops. While such setups may
suffice for certain practical applications, such as managing cost-effective unmanned
systems in low-risk environments, they may not meet the requirements of more
critical systems where the theoretical assurances of MPC are indispensable.

The literature also explores methodologies capable of providing guarantees. For
instance, the approach by Ahmed et al. [35] ensures input constraint satisfaction
through saturation and stability at equilibrium. However, guarantees for state
and output constraint satisfaction, as well as stability during regulation, remain
unassured. In this study, instead of training the NMPC policy via regression,
the authors developed an ANN loss function aligned with the cost function of a
regulating NMPC controller. This enabled training the ANN via back-propagation,
facilitated by computing the necessary derivatives using block partial derivatives.
Notably, the authors introduced a crucial constraint to ensure stability at the
equilibrium. Specifically, they aimed to train a network that produces no output
when the system is at equilibrium. They achieved this by designing the ANN
architecture as DNN devoid of bias terms and solely employing the tanh activation
function. Thus, if all inputs to the network were zero, the outputs would also be
zero, similar to a linear control law with no offset.

Figure 2.5 illustrates a typical implementation of Neural Network-Based Opti-
misation (NNBO) to replace an MPC controller.

Figure 2.5: Typical implementation of NNBO to replace an MPC controller.

10

Chapter 3

Methodologies

This chapter outlines the methodologies employed for each aspect of this Master’s
thesis. The specifications of both benchmark MPCs and expert MPCs are listed in
tables 3.1 and 3.2, including the internal model taken into account, which is shown
in subsection 3.1.1, together with a small introduction to the ACADO toolkit (i.e.,
the external toolkit used to formulate the MPC optimisation problem) in 3.1.2.
Moreover, the KPIs used will be described, and their use will be motivated in
section 3.2. Also, particular attention is reserved for the set of expert LMPCs
created and the shape of the dataset, respectively in sections 3.1.3 and 3.7. One of
the goals was to keep all the code clear; in this regard, the MathWorks Automotive
Advisory Board (MAAB) [36] was taken into account. Additionally, all the previous
code made by previous candidates was reviewed, now knowing the mentioned guide.
Finally, the algorithms used in the toolchain to build the MLP will be expressed in
section 3.7.

11

Methodologies

3.1 Model Predictive Problem formulation

As the Model Predictive architecture is not the primary focus of this work, this
subsection will be kept brief. The table below presents the features of the downsized
version of the MPC deployed in the experimental validation. In this study, the
real-time feasible LMPC is referred to as the benchmark LMPC.

Real-time feasible LMPC (benchmark)

Internal Model: Single-Track dynamical lateral model

Sample time
internal model:

0.01s

Discretisation
time to solve
equations:

0.001s

Prediction
Horizon:

20 steps

Disturbances
(online data):

Curvature of the path along the prediction horizon

k =
C
k0 k1 k2 ... k19 k20

D
m−1

Number of
Iterations:

3

Linearisation
speeds (one for
each LMPC): v =

C
0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5

D
m

s

Table 3.1: Experimentally tested LMPCs configuration.

12

Methodologies

In this study, LMPCs impractical for real-time use are termed expert LMPCs.
The data to train LMLPs is derived from these controllers. Without the need for
real-time implementation, both the prediction horizon and the number of iterations
(N) double from 3 to 6. Speeds considered range from 0.5 m/s to 1.5 m/s in
21 values with a fixed 0.05 m/s step, aiming to precisely capture linear model
variations from the linearisation process.

Real-time feasible LMPC (benchmark)

Internal Model: Single-Track dynamical lateral model

Sample time
internal model:

0.01s

Discretization
time to solve
equations:

0.001s

Prediction
Horizon:

40 steps → doubled

Disturbances
(online data):

Curvature of the path along the prediction horizon

k =
C
k0 k1 k2 ... k39 k40

D
m−1

Number of
Iterations:

9 → tripled

Linearization
speeds (one for
each LMPC): v =

C
0.50 0.55 0.60 ... 1.40 1.45 1.50

D
m

s

Table 3.2: Simulated tested LMPCs configuration.

13

Methodologies

3.1.1 Internal model
When dealing with path-tracking tasks, lateral dynamics play a fundamental role.
Here, the single-track lateral dynamical model is used as an internal model of
the LMPC. Moreover, a change of variables has been made to better address the
automatic lane-keeping task.
The following figures illustrate the system of reference and how the mobile frame
is attached to the SSRAV. It is also important to define the system of reference

Figure 3.1: Vehicle frame and fixed frame.

for the wheels, especially the steering ones. This will prove useful in defining the
single-track model used as the internal model reference inside the MPC to solve
the optimal problem.

Figure 3.2: Wheel frame and vehicle frame.

14

Methodologies

In the context of the single-track model, the SSRAV is conceptualised as a
single-body mass capable of motion in a three-degree-of-freedom plane. The system
is characterised by a state vector x with dimensions 4× 1, encompassing the lateral
displacement (y), lateral velocity (ẏ), yaw angle (ψ), and yaw rate (ψ̇). Notably,
this model omits the inclusion of longitudinal states (x and ẋ). This omission
is founded on the assumption of independence between longitudinal and lateral
dynamics. Consequently, we can presume either a constant longitudinal velocity or
utilise an alternative model to describe the longitudinal dynamics of the SSRAV.
Thus the state vector x is mathematically expressed as:

x =


y
ẏ
ψ

ψ̇


where:

• y is the lateral displacement w.r.t. the SSRAV frame.

• ẏ is the lateral velocity w.r.t. the SSRAV frame.

• ψ is the yaw angle represented in figure 3.1.

• ψ̇ is the yaw rate.

While the input u is mathematically expressed as:

u =
è
δ

é
where:

• δ is the steering angle represented in figure 3.2.

The dynamics of the linearised system then can be represented by the following
linear state space:

ẋ = Ax +Bu

At this juncture, as previously indicated in the section’s preamble, a change of
variables becomes instrumental for an enhanced control strategy. Particularly in
the context of PT problems, where a predefined path is given, it is advantageous to
express all quantities in terms of errors with respect to the path. In this case, the
control variables are defined as follows: lateral error (e1), the derivative of lateral
error (ė1), yaw error (e2), and yaw rate error (ė2).

15

Methodologies

The error variables are given by:

e1 = (p− pref) · ĵv

e2 = ψ − ψref

Here, p represents the vehicle position in the fixed frame, pref is the projected
point of the vehicle from the lateral perspective with respect to the path (i.e., the
position the SSRAV should occupy at that instant), ψ is the yaw angle w.r.t. the
fixed frame 3.1, and ψref is the desired yaw angle with respect to the fixed frame,
referenced to the inclination of the path at the point pref.
These error variables provide a more intuitive representation for the control problem,
aligning with the objectives of path tracking and facilitating a clearer understanding
of the SSRAV’s positional and orientation deviations from the desired trajectory.

Figure 3.3: Vehicle frame and fixed frame with error state representation.

16

Methodologies

Thus the new state vector e is mathematically expressed as:

e =


e1
ė1
e2
ė2


While the input ue is mathematically expressed as:

ue =
C
δ

ψ̇ref

D

The dynamics of the linearised system then can still be represented by the following
linear state space:

ė = Ae +Bue

Below, the matrices A and B are explicitly defined. Passages are omitted for
brevity as modelling is considered beyond the thesis scope.

A =


0 1 0 0
0 −2Caf +2Car

mVx

2Caf +2Car

m

−2Caf lf +2Carlr
mVx

0 0 0 1
0 −2Caf lf −2Carlr

IxVx

2Caf lf −2Carlr
Ix

−2Caf l2f +2Carl2r
IzVx



B =


0 0

2Caf

m
−2Caf lf −2Carlr

mVx
− Vx

0 0
2Caf lf

Iz
−2Caf l2f +2Carl2r

IzVx


Where:

• Caf represents the front tire cornering stiffness [N/rad].

• Car represents the rear tire cornering stiffness [N/rad].

• m is the vehicle mass [kg].

• Vx denotes the longitudinal speed (linearisation speed) [m/s].

• Iz stands for the vehicle inertia [kg·m2].

• lf is the distance from the Centre of Gravity (CoG) to the front tyre [m].

• lr is the distance from the CoG to the rear tyre [m].

17

Methodologies

3.1.2 ACADO tool-kit
The implementation of the presented MPC was carried out in the Matlab/Simulink
environment, leveraging the capabilities of the ACADO toolkit and its MATLAB
interface.
The ACADO Toolkit stands as a comprehensive software environment and algo-
rithm collection, coded in C++, tailored for dynamic optimisation and control
design. It offers a versatile framework, accommodating various algorithms for direct
optimal control, encompassing model predictive control, Runge-Kutta, and BDF
integrator for simulating Ordinary Differential Equations (ODEs) and Differential-
Algebraic Equations (DAEs).
Designed with openness and user-friendliness in mind, ACADO Toolkit is an open-
source solution that operates in a self-contained manner, eliminating the need for
external packages. To facilitate seamless integration with MATLAB/Simulink,
ACADO for MATLAB serves as an interface. This interface facilitates the incor-
poration of ACADO integrator and algorithms for direct optimal control into the
Matlab environment.
Key features of ACADO for Matlab include:

• Same properties as ACADO Toolkit: The interface inherits all the properties
and functionalities of the ACADO Toolkit, introducing no new algorithms or
additional features.

• No C++ knowledge required, MATLAB familiarity: Users do not need to
possess any knowledge of C++—including its syntax or compiling rules—to
utilise the interface. This aspect makes ACADO for MATLAB an accessible
entry point for those comfortable with MATLAB but lacking C++ expertise.
The interface adopts MATLAB-style notations and allows direct utilisation of
variables and matrices stored in the Matlab workspace.

• Integration with Matlab black box models: While the ACADO Toolkit supports
a symbolic syntax for expressing differential and algebraic equations, the
interface enables the seamless connection of existing MATLAB black box
models to the ACADO Toolkit.

• Cross-platform compatibility: The interface is compatible with various operat-
ing systems, including Windows, Mac, and Linux.

18

Methodologies

3.1.3 Creation of the set of LMPCs
The initial LMPCs, each with a 20-step prediction horizon, were developed to
operate within a restricted range of specific speeds, detailed in Equation (3.1). It
is noteworthy that the prediction horizon was halved from 40 to 20, emphasising
the need for more efficient computational strategies.

v =
è
0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5

é m
s

(3.1)

The primary goal is to create a unified NNBO controller capable of continuous
operation across the entire speed spectrum, from 0.5 m/s to 1.5 m/s, for enhanced
usability. To achieve this, a model is proposed based on a set of LMPCs. This
strategy enables the controller to emulate optimal performance across the complete
operational range. Additionally, we aim to utilise the initially computed 40-step
prediction horizon, identified as the most effective, to further enhance the controller’s
performance.
In essence, the set of LMPCs is configured to cover the entire specified speed range
with a step size of 0.05 m/s, resulting in the creation of 21 expert controllers. The
toolkit developed for this purpose, leveraging ACADO, proves instrumental in
efficiently generating diverse MPC sets tailored to specific speed intervals.
How to deal with not extracted Q and R

Figure 3.4: NNBO controller schematic.

19

Methodologies

3.2 Key Performance Indicators
Key Performance Indicators (KPIs) play a pivotal role in evaluating the efficacy of
a control strategy. This significance is heightened, particularly when undertaking
comparisons between diverse strategies, as is the focus of this study. In the context
of PT tasks involving error states, the following KPIs are commonly utilised:

• Maximum Lateral Error (ME)
This parameter is highly sensitive to any spikes that may occur within the
system. Essentially, it measures the minimum smoothness of the signal,
specifically the lateral error concerning the path.

• Root Mean Square Error of the Lateral Error (RMSE)
Conversely, this parameter is more representative as it pertains to an entire
set of measurements. In this case, the root mean square is intended to provide
a value that represents the goodness of the signal overall. It is less sensitive
to outliers such as spikes compared to the previous KPI.

• Integral of the Absolute Value of Control Action Delta (IACA)
This value pertains to the displacement of the actuator. Similar to the RMSE,
it is based on the entire set of signals. However, this value is also influenced
by the type of path. For instance, if the path is a circle, the steering wheel
necessarily needs to be displaced. Consequently, even if the path is well-tracked,
the value of this KPI increases due to the integral being performed.

They are mathematically defined as follows:

ME = max
t∈[0,Tf]

|∆y(t)| (3.2)

RMSE =

öõõô 1
Tf

Ú Tf

0
|∆y(t)|2 dt (3.3)

IACA = 1
Tf

Ú Tf

0
|δ(t)| dt (3.4)

where Tf is the duration of the manoeuvre.

20

Methodologies

3.3 MAAB Guidelines
The MathWorks Automotive Advisory Board (MAAB) guidelines align seamlessly
with this work [36]. Although the project was led by a Master’s student and not
shared with others, adhering to standardisation practices remains advantageous
and illustrates good habits, particularly given the project’s automotive focus.
MathWorks underscores the significance of these guidelines for success and teamwork,
both internally and when collaborating with partners or subcontractors. Therefore,
following these guidelines is essential for achieving:

• System integration without problems

• Well-defined interfaces

• Uniform appearance of models, code, and documentation

• Reusable models

• Readable models

• Problem-free exchange of models

• A simple, effective process

• Professional documentation

• Understandable presentations

• Fast software changes

• Cooperation with subcontractors

• Successful transitions of research or pre-development projects to product
development

Here is the hyperlink to download the MAAB guidelines provided by ETH Zurich:
MAAB Guidelines

21

https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Embedded-Control-Systems/AdditionalMaterial/Miscellaneous/MAAB%20Control%20Algorithm%20Modeling%20Guidelines%20using%20MATLAB%20Simulink%20and%20Stateflow.pdf

Methodologies

3.4 Review of the previous Simulink model
Given the origin of this thesis from a previous study where MPC was developed and
tested, it was essential to conduct a comprehensive review, particularly focusing
on the computational aspects. Despite the presence of an existing infrastructure
to leverage, significant challenges were encountered during the evaluation process.
Below is a concise overview of the issues identified and observations made during
this assessment:

3.4.1 Reference distance along the path
Let’s define sv as the actual distance travelled by the vehicle and sp as the distance
along the reference path.
In a PT task, knowing the vehicle’s location only is not sufficient; in fact, under-
standing which part of the path we’re referencing is crucial. This is where the
parameter sp becomes vital. It provides awareness of the current characteristics
of the reference path, as it’s used to parametrically define various path features
such as Xref , Yref , k, and ψref . However, calculating the distance travelled by
the vehicle doesn’t directly translate to the distance travelled along the path due
to path-tracking errors. Consequently, sp and sv can differ significantly in the
reality. In the previous model though, the current path position was computed in
a cumulative way shown below:
It was determined by calculating the lateral projection of the vehicle’s Centre

Figure 3.5: Old code affected by error.

of Gravity (Cog) onto the path. However, this method only corrected the path
travelled by the vehicle and then it was susceptible to cumulative errors, particularly
on longer paths.

22

Methodologies

The new method 3.7, on the other hand, is an uninformed research algorithm
that minimises discrepancies by iteratively computing the closest points along
the path. Essentially, it geometrically computes the reference point while making
assumptions about maximum distances from the path.

Figure 3.6: Data inspector scope on the entity of the distance-travelled error
after 3 rounds in simulation.

The aforementioned effect becomes even more visible in the case of a real
experiment due to the increased general magnitude of the errors. Moreover, the
forward movement of the reference has the collateral effect of causing the controller
to behave as if a look-ahead method were implemented, even if there is not. In
this case, the look-ahead distance becomes larger and larger as the experiment
progresses, causing the SSRAV to start steering before the curves.

23

Methodologies

Figure 3.7: Graphical representation of the geometry behind the new algorithm
developed.

The new algorithm is based on evaluating two sets of points: the SSRAV’s
research horizon (red line A-B), whose length is chosen a priori according to the
magnitude of the respected errors, and the strip of path considered (violet line) at
the given instant. Indeed, the algorithm evaluates a strip of path that is in the
neighbourhood of the previously detected position. Despite being heavier than the
previous one, this algorithm is very precise, as it is necessary to prevent errors over
sp from accumulating. [insert graphic of the algorithm]

24

Methodologies

3.4.2 Reference yaw
Similarly to the online computation of the reference yaw as before, this approach
may encounter issues, particularly with longer paths. To address this, instead
of employing a heavier online algorithm for research, a simpler solution involves
computing the reference yaw offline. It’s important to note that the reference yaw
should be treated as a cumulative value and thus not constrained between −π and
π due to the atan domain problem.
To achieve this offline, a lookup table is created, taking the current path position
sp as input and yielding ψref as output. One challenge faced was extrapolating the
cumulative yaw, especially when using the tangent function.
The previous method computed the reference yaw as follows:

ψ̇ref = vxk (3.5)

The equation above is valid when e2 << 1, meaning that the longitudinal axis of
the SSRAV can be considered parallel to the reference path. In other words, the
assumption here was that vx is perpendicular to the path, which holds true only
when the heading error is null and of course, this condition is not always satisfied.
Moreover, integrals should be avoided as they accumulate errors as was done before
the changes.

ψ̇ =
Ú
ψ̇refdt (3.6)

Figure 3.8: Scope of the accumulated error to compute ψref after 15 s.

In this regard, below is the code for the nested function that computes the yaw
angle (ψ). Note that it employs incremental calculus to confine the pose within
the range of −π to π:

25

Methodologies

3.4.3 Simulink modifications According to MAAB Guide-
lines

In particular, modifications made in the previous model were:

• Providing variables with more understandable names. As the MAAB guideline
tells us, "Adoption of a naming convention is recommended. A naming
convention guides naming blocks, signals, parameters, and data types". Naming
conventions frequently cover issues such as:

– Compliance with the programming language and downstream tools
∗ Length
∗ Use of symbols

– Readability
∗ Use of underscores
∗ Use of capitalisation
∗ Encoding information
∗ Use of "meaningful" names
∗ Standard abbreviations and acronyms

– Data type
∗ Engineering units
∗ Data Ownership
∗ Memory type

• Avoiding the abuse of goto and from blocks. The guide is explicit about this:
their use must be limited for two reasons: to speed up the code and improve
readability.

• Especially in the case of the model for the simulation, there was excessive
use of sum, product, and operational blocks. In this case, it is better to use
MATLAB function calls that summarise the operations in a bunch of lines of
code with proper comments.

26

Methodologies

3.5 LMPC dataset
Due to the spatial dimension of the problem, the creation of the dataset was a
bit tricky. This is because the unseen data that the MLP is going to process is
no longer just the state (actually augmented state since now also the speed is
considered), but the whole prediction horizon (what was called disturbances in
the ex-MPC problem). Thus, the size in terms of memory of the dataset strictly
depends on the prediction horizon. Let’s provide a bunch of numbers:

Basically, the input layer will have the following structure:

Input vector (unseen data)ú ýü û
Prediction Horizonú ýü ûè

k0 k1 ... kN−1 kN

é
Augmented stateú ýü û

Stateú ýü ûè
e1 ė1 e1 ė1 δ

é è
vx

é
(3.7)

Moreover, for the training dataset, it is necessary to add a column regarding
the input to guess. Then the final structure of the dataset will have rows with the
following shape:

Training vectorú ýü û
Inputú ýü ûè

k0 ... kN−1 kN e1 ė1 e1 ė1 δ vx

é Labelúýüûè
δ̇

é
(3.8)

The shape of the dataset (e.g., the input column(s) placed as the last element of the
vector) must respect the requirements that the toolchain developed before requires.
They will be faced in the subsection 4.1.1.

To generate a sufficiently representative dataset, two data-saving strategies were
considered:

a. Utilising a uniform distribution via an open-loop simulation.

b. Employing a closed-loop simulation with a non-uniform distribution, dependent
on the chosen trajectory and the system’s state response.

27

Methodologies

Option (a.) was swiftly discarded due to two primary reasons:

1. Randomly combining inputs led to a dataset with an inaccurate distribution,
resulting in poorly trained areas (e.g., combinations of infeasible curvatures or
unrealistic velocity and position pairings). The distribution became normal,
causing combinations with differing probabilities to have equal probabilities
(statistical inaccuracy).

2. The problem’s scale quickly escalated, resulting in a large dataset. For instance,
assuming a vector length of M , each element with 5 possible values (a highly
restrictive assumption), the resulting number of rows would be 5M .

Ultimately, option (b.) was chosen. However, it comes with the drawback that
the dataset’s outcome is closely tied to the modelled system and the trajectory
traversed by the simulated SSRAV (e.g., a sinusoidal path yields different outcomes
than a circular one).

28

Methodologies

3.6 Chosen paths
It is necessary to distinguish between two kinds of paths: those used for the
validation phase, which should not be included in the training, and those used
for training. Since the MPC architecture was already tested over some paths, the
latter were also used for the validation set. The .mat files where they are saved
are structures that have stored:

• Cumulative length sp sampled each 0.001 m.

• XY reference parameterised over Cumulative length sp,

Pref(sp) =
è
Xref(sp); Yref(sp)

é
(3.9)

• Curvature k(sp) still parameterised over cumulative length sp

• Yaw reference ψref(sp) still parameterised over cumulative length sp

Below is how the structure looks like in MATLAB:

Figure 3.9: Data structure for the ideal path.

29

Methodologies

3.6.1 Validation paths
The validation paths consist of basically three trajectories. They are chosen to
fit the laboratory environment and are directly saved in the proper folder of the
toolkit (refer to Section 4.2). They consist of an S-shaped trajectory, an O-shaped
one, and an eight-shaped one. Their respective aliases are S_path, O_path, and
OO_path.

Figure 3.10: Eight validation path
.

30

Methodologies

3.6.2 Training paths
Here, the difficult part arises. This is because, as briefly mentioned earlier, the
training paths will serve as the foundation for the MLP training process. Naturally,
the variety of training paths in the spectrum will also affect the hyperparameters
of the MLP, and indeed, numerous trials were conducted. Eventually, two kinds of
training paths were utilised:

• Repeated-S paths: These paths consist of repeated semi-circles. They are
symmetrical to ensure that the MLP is not trained with uncentred data. Along
the path, the curvature can assume 3 values: -k, 0, and +k, where k is a
parameter decided beforehand. Nine repeated-S paths were created for nine
different values of k. Below there are two instances:

(a) S-shaped path with a radius of 1 m. (b) S-shaped path with a radius of 0.5 m.

Figure 3.11: S-shaped trajectory example. These plots depict not only the xy
path but also the curvature over the distance sp and the yaw reference ψref , still
parameterised as a function of the distance sp. Notice how the curvature is defined:
its "bang-bang" shape will make the training easier due to the limited values that
the curvature can take.

31

Methodologies

• Sinusoidal paths: These paths consist of a sine wave. The sine wave adopts
a continuous range of curvatures from -k to +k. Consequently, this type of
path makes the training process more complex. Similarly, specific k references
were chosen for this solution. Below is an instance of a sinusoidal path:

(a) Sinusoidal path whose amplitude is 0.75 m. (b) Sinusoidal path whose amplitude is 2.25 m.

Figure 3.12: Sinusoidal path example. As in the previous plots, these ones depict
not only the xy path but also the curvature over the distance sp and the yaw
reference ψref , still parameterised as a function of the distance sp. Notice instead
how the curvature is variable. This will make the training more complex but will
allow the MLP to better generalise the PT task.

3.6.3 Data Cleaning & Data Augmentation
• To avoid biased training, two equal training datasets were created. One dataset

traverses the path from left to right, while the other traverses the path in the
opposite direction. This approach ensures symmetry in the training process.
Formally, data augmentation was performed.

• Another methodology employed to prevent higher speeds from resulting in
fewer measurements was to manually limit the simulation time. By imposing a
limit, each velocity received an equal distribution of rows, ensuring consistent
sampling despite variations in speed. Subsequently, the dataset was cleaned
to remove non-uniform rows.

32

Methodologies

3.7 Learning Algorithms for MLP
As highlighted in the introduction, the choice of the MLP as the selected ANN
architecture comes from the will to prove its effectiveness even if its simplicity is
compared to more complex ANN structures. In the following subsection 3.7.1, we
provide a brief overview of the MLP and discuss the Adam optimiser utilised in the
learning process. Subsequently, in subsection 3.7.2, we delve into a methodology
for conducting trial and error experiments concerning training, focusing on the
selection of optimal hyper-parameters and activation functions.

3.7.1 Multi-Layer Perceptron & Adam Optimiser
Multi-Layer Perceptron (MLP) stands out as the simplest form of Artificial Neural
Network (ANN). Comprising layers with varying quantities of artificial neurons
(referred to as layer width), an MLP exhibits a sequential structure. The initial
layer, known as the input layer, and the concluding layer, referred to as the output
layer, play pivotal roles. The output layer shapes the final output of the network.
Intermediate layers, termed hidden layers, serve as the computational core of the
ANN.

Figure 3.13: Representation of a generic MLP. The drawing of this MLP has been
created thanks to Neural Network SVG Drawer, which allows rendering them [37].

33

https://alexlenail.me/NN-SVG/LeNet.html

Methodologies

The architecture of an MLP is deemed ’dense’ due to its characteristic of
full connectivity between neurons of successive layers, forming a directed graph.
Consequently, data flows unidirectional, from the input layer to the output layer.
Each connection is associated with a parameter called weight w, which multiplies
the value originating from the connected neuron. Additionally, each neuron features
a parameter known as bias b, added to the value of the associated neuron. As a
result, the number of weights exceeds the number of biases. The shape vector of
the MLP, representing the width of each layer, dictates the total number of biases
and weights and how to arrange them for the deployment of the MLP itself. This
will be fundamental for the development of the tool-chain described in section 4.1.

Figure 3.14: Highlight of neuron connections. The drawing of this MLP has been
created thanks to Neural Network SVG Drawer, which allows rendering them [37].

In general, the output and input widths are predetermined. In this application,
the input width depends on the prediction horizon ph and state size affects the
input width, while the output width depends on the actuator that in unitary (i.e.
steering derivative δ̇). The inclusion of velocity in the online parameters expands
the input state feedback from 5 to 6.

Activation functions, applied at the neuron level, contribute to the diversity of
MLPs. Various types of activation functions exist, each with its unique advantages
and drawbacks.

The training process of an MLP involves adjusting the weights and biases to
minimise the difference between predicted and actual outputs. This optimisation is
achieved through an algorithm, which adapts the learning rate for each parameter
individually. The efficacy of the MLP depends on careful considerations of its
architecture, activation functions, and optimisation techniques. This process is
known as back-propagation.

34

https://alexlenail.me/NN-SVG/LeNet.html

Methodologies

In this application, the method used to optimise the update process for the
parameters is the Adam optimiser. Before discussing Adam, it is essential to
provide brief explanations of other optimisation algorithms.
Gradient Descent (GD): Utilising a fixed learning rate, GD’s updating process
is static, solely relying on the gradient of the loss function at the current point.
However, this approach may lead to slow convergence and susceptibility to local
minima.
GD with Momentum: While maintaining a fixed learning rate, GD with Momen-
tum introduces a dynamic updating process by incorporating a decay coefficient.
Picture this as a small ball rolling down the cost function landscape. The inertia
and viscosity gained through the decay coefficient help the algorithm avoid local
minima and accelerate convergence.
GD with RMSProp: Similar to GD with Momentum, GD with RMSProp em-
ploys a fixed learning rate but adjusts the updating process dynamically with a
decay coefficient. It emphasises updating in flat zones and applies gentler updates
in areas with abrupt gradients, making it effective in landscapes with varying
gradients.
Adam: Adam, a compromise between Momentum and RMSProp, combines adap-
tive learning rates with momentum. It maintains two moving averages for each
parameter: the first moment (mean) and the second moment (uncentred variance).
The learning rate is adaptively adjusted based on historical gradients (Momentum)
and their magnitudes (RMSProp). This adaptive mechanism overcomes the limi-
tations of fixed learning rates in GD and the sensitivity to varying landscapes in
RMSProp. Imagine Adam as a versatile explorer gracefully navigating the cost
function landscape with a keen sense of both direction and speed, providing a
balanced convergence speed and robustness.

Figure 3.15: Block scheme of back-propagation training.

35

Methodologies

3.7.2 Hyperparameters & Activation Functions
Determining hyperparameters and activation functions, as well as the dimensions
of any ANN, is inherently challenging as they depend on the shape of the function
being approximated. However, there are techniques that can provide guidance.
Below, we briefly describe the criteria for selecting hyperparameters such as the
number of epochs, batch size, and learning rate.
Initially, it is necessary to list the data that are given and constrained by the
problem. Thus, given a fixed dimension of the dataset and fixed input and output
layers, determining the number of epochs becomes more manageable. Typically, a
range of epochs can be considered. For this application, with the following data
characteristics:

• The training dataset comprises approximately 500,000 rows.
These rows were generated by simulating the MPC over the training path
designed using the methodologies outlined in subsection 3.6.2, across various
longitudinal speeds. Specifically, the validation speeds chosen are defined in
equation 3.1.

• Similarly, the validation dataset consists of approximately 150,000 rows.
The generation process mirrors that of the training dataset, albeit utilising
benchmark paths instead.

• The input layer width is calculated as follows: 6 (for the augmented state) +
40 (for the prediction horizon) + 1 = 47.
Notably, the input layer width is affected by the length of the prediction
horizon. While a longer prediction horizon may enhance MPC optimisation,
it also poses challenges for MLP training due to the increased volume of data
involved. Additionally, the state is augmented to 6 dimensions to account for
the longitudinal speed.

• Conversely, the output layer width remains fixed at 1 (δ̇).
This fixed output is due to its dependence on the number of actuators, which
remains unchanged regardless of the MLP’s deployment.

36

Methodologies

A suitable number of epochs was found to be 100. If subsequent analysis
indicates potential for improvement, further experimentation will be conducted,
but the baseline for all tests will remain at 100 epochs.

In terms of batch size, the literature suggests a starting point of B = 32.
Although B = 32 is more suitable for smaller datasets due to slower training with
smaller batch sizes, the powerful workstation utilised in this study allowed for
B = 32 to be retained as the default batch size.

Similarly, considering the ample amount of available data, a smaller learning
rate is deemed appropriate. Thus, the initial learning rate is set to α = 5.0000×
10−5. Notably, this low value is also chosen in accordance with the characteristics
associated with the Adam optimiser implemented in the tool-chain developed for
this work, as briefly discussed in Section 4.1.

Furthermore, it is essential to mention two features connected with the Adam
optimiser: the momentum, denoted as β1 = 0.9800, and the sum squared weights,
denoted as β2 = 0.9700, both contributing to the optimisation process.

Table 3.3: Default values for hyperparameters.

Hyperparameter Default Value
Number of epochs 100
Batch size (B) 32
Learning rate (α) 5.0000× 10−5

Momentum (β1) 0.9800
Sum squared weights (β2) 0.9700

37

Methodologies

3.8 Experimental Approach
Throughout the experimentation phase, a meticulous approach was taken to ensure
the reliability and consistency of the results obtained. The goal was to ensure
the experimental environment remained comparable test by test. Some taken
precautions are taken below:

• Use of the same SSRAV (QCar) for all trials, despite the availability of multiple
units within the laboratory. By maintaining this uniformity in the testing
environment, it was possible to facilitate accurate comparisons between the
performances of different controllers.

Figure 3.16: The 4 QCars available in the laboratory of University of Surrey.

• Battery charge check. To safeguard against any potential degradation in
SSRAV performance, particular attention was paid to monitoring the battery
charge level. A critical threshold of 11.5V was established, and measures were
taken to ensure that the battery charge always exceeded this limit before
each experiment commenced. This precautionary step aimed to mitigate any
adverse effects on performance resulting from inadequate power supply.

Figure 3.17: Display of the QCar showing battery charge.

38

Methodologies

• Precision in initial positioning and mapping. Despite the option to utilise
previously scanned environmental data, it was decided to perform a new
LIDAR scan for each trial. This approach ensured that the mapping of
the environment was consistently precise in terms of the SSRAV’s initial
position and orientation since the SSRAV is manually placed test by test. By
adhering to this practice, potential discrepancies in the experimental setup
were minimised, thereby enhancing the validity and repeatability of the results
obtained.

• The experimental approach also involved creating a dedicated environment.
Specifically, a specialised track was utilised to simulate realistic friction between
the road and the QCar wheels. The setup is depicted below.

Figure 3.18: Track used for experiments.

• In order to ensure robustness and reliability of the data, multiple measurements
were taken. Each controller was tested three times over the same path at the
same speed. Following the completion of each trial, the mean and standard
deviation of the measurements were calculated to quantify central tendency
and variability, respectively. Subsequently, error bar graphs were constructed
to visually represent the mean values along with the associated uncertainties,
aiding in the interpretation and visualisation of the data.

39

Chapter 4

Development of
programming tools

This thesis entailed the creation of a comprehensive workflow from scratch, ne-
cessitated by the considerable volume of data and the significant computational
effort involved. A crucial aspect of this endeavour is the need for a meticulous
and systematic approach to effectively navigate through extensive datasets and
numerous LMPC instances. The process began with the management and storage
of numerous MPC solutions, followed by a stage focused on training and storing
MLP models derived from datasets originating from the MPCs. These models
were then utilised in various simulations, and the resulting KPIs were saved and
compared. Thus, a well-defined methodology was imperative to prevent data loss,
optimise computational resources, and ensure time-work efficiency.

To tackle this significant challenge, an automated method for creating MPCs
using ACADO was identified. Additionally, to expedite the training process, a
hybrid approach was adopted: the MLP was configured in MATLAB but trained
in Python, leveraging the Python implementation within MATLAB. This decision
was made to optimise computational workload, with a substantial portion executed
in Python. Furthermore, for MLP deployment, a Simulink function was developed.
This integrated approach aimed to streamline the overall process and enhance the
efficiency of both the MPC and MLP components in the study.

40

Development of programming tools

The development of the programs unfolded in two distinct but interlinked parts,
forming a toolchain nested within a toolkit dedicated to NNBO applied to MPC
problems. In this work, they are simply referred to as the "toolchain" and "toolkit."
Their names will be refined in the future, after this thesis, as future developments
progress. In fact, this work will continue beyond this thesis, and the programming
tools will undergo improvements and modifications.

Figure 4.1: The two novelty tools are the MLP-dedicated toolchain and the
NNBO for MPCs-dedicated toolkit. ACADO toolkit is a pre-existent open source
tool instead which is used exclusively for creating MPC-dedicated Optimisation
Problems.

41

Development of programming tools

4.1 MLP builder toolchain
The aim of the first tool-chain is a general application. There was the need of
a tool able to straightforwardly set up and train a MLP to then automatically
deploy it on Simulink on a given plant. In order to perform the training fast, the
best option was performing the former on Python rather than MATLAB. On the
other hand, the usage of Python will make the difficulty in building the framework
increase. Its structure can be summarised in the following way:

1. General requirements

2. Set up in MATLAB

3. Training & Validation in Python

4. Evaluation and Report file generation (.mat, .txt, .fig)

5. Deployment (forward propagation):

(a) On Simulink through a block, useful for control task like in this work and
in general for time-based simulations and real-time too.1

(b) On Matlab through a function to call.
(c) On Python, merely using the same script where the MLP was previously

trained, since the forward propagation is included in the training.

Figure 4.2: Stream of the developed toolchain.

1In this solution the MLP block may replace a controller or any other dynamic component if
well trained.

42

Development of programming tools

4.1.1 Necessary Requirements
• Ensure that your system has a version of Python compatible with MATLAB.

By visiting MATLAB Python Compatibility it is possible to verify the com-
patibility of your Python version. If your current version is incompatible,
you can install a suitable version of Python directly from Python Downloads.
Please pay attention to the specified version on the former link.

• MATLAB Python Integration: Configure MATLAB to interface with a com-
patible Python version. You can confirm that the integration is functioning by
executing the following command in your command window: >>pyenv. You can
also try to call basic Python function as >>py.numpy.array(magic(3)).The
expected output structures are outlined below:

Figure 4.3: Expected output after performing Python environment check.

You can find more information on MATLAB Python Integration.

• Ensure that the Python file MLP_builder.py and yourfilename.csv are
present in the current folder, together with the function itself MLP_builder.m.
Moreover, if you want to perform further deployment, ensure in your folder
there are the corresponding functions and files: DeployMLP_Matlab.m,
DeployMLP_Python.m plus DeployMLP_system.slx and the subsystem ref-
erence DeployMLP.slx.

43

https://www.python.org/downloads/
https://www.python.org/downloads/
https://es.mathworks.com/help/matlab/matlab_external/create-object-from-python-class.html

Development of programming tools

• Ensure that the structure of the .csv file aligns with your requirements. You
can create an empty table using the MATLAB command T=table() and then
write the table to a CSV file using writetable(T,’yourdataset.csv’), sim-
ilar to the operations performed in the MATLAB script dataset_builder.m.
The first N columns should represent the inputs, while the remaining M
columns should correspond to the outputs. It is important to verify that N
and M are correctly defined based on your data and share the same length.
An example is provided below for reference.

Figure 4.4: Instance of how a suitable dataset should look like.

Useful sources:

• Explore the fundamental concepts of MLPs by referring to the content available
at this link: MLP Features [38].

• If you find yourself uncertain about choosing an activation function for your
neural network and seek in-depth explanations, I recommend consulting the
following article: Activation Functions in Neural Networks.

• For a detailed review of the foundation of the Adam optimiser used in this ap-
plication, referring to Analytics Vidhya’s comprehensive guide on deep learning
optimises can be helpful: Comprehensive Guide on Deep Learning Optimises.

44

https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6#%3A~%3Atext%3Dtanh%20is%20also%20like%20logistic%2Csigmoidal%20%28s%20-%20shaped%29.%26text%3DThe%20advantage%20is%20that%20the%2Czero%20in%20the%20tanh%20graph.
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/

Development of programming tools

4.1.2 Setup on MATLAB
This MATLAB phase is ruled by the Matlab function MLP_builder.m. It was
designed to create and train a MLP neural network using a specified dataset
provided in a .csv file. The function provides custom options for parameters
such as the dataset file, shuffling preferences, layer widths, hidden layer structure,
activation functions, and some training options. This function interfaces with
a Python file MLP_builder.py to construct and train the MLP according to
the specified configuration. After training in Python is completed, the function
extracts key features: weights and biases are saved into a Python dictionary named
’MLP_dict’, scaling factors used for data normalisation are stored in a Python
array, and the losses are recorded in a Python array of tuples.

What could be improved in future versions?

• Code generation to implement the deployment code into an embedded system
that uses microcontrollers.

• Other ways of preprocess data rather than only normalisation

User interface
1 % Initialize the structure to fill out
2 MyMLP = MLP_builder ('initialize ');
3
4 % Set training settings
5 MyMLP. DatasetFullPath = 'datasets \ MyDataset .csv ';
6 MyMLP. InputWidth = 10;
7 MyMLP. OutputWidth = 1;
8 MyMLP. OutputActivationFun = 'sine ';
9 MyMLP. HiddenWidths = [8 10 8 3];

10 MyMLP. HiddenActivationFun = {'tanh ','sine ','relu ','
relu '};

11 MyMLP.Epochs = 1500;
12 MyMLP. LearningRate = 0.001;
13 MyMLP. BatchSize = 512;
14 MyMLP. Momentum = 0.9;
15 MyMLP. SumSquaredWeight = 0.99;
16
17 % Train the MLP
18 MLP_builder ('train ', MyMLP);

45

Development of programming tools

The method used wanted to be easy for the user and light to run for MATLAB.
The initialisation allows for the creation of a default struct which will be customised
then by the user. It is important to note that the architecture of the MLP, with
regard to both its widths and depth, is flexible and can vary. While this flexibility
may seem straightforward initially, transitioning from Python to MATLAB in
subsequent stages proved to be nontrivial. In fact, it was necessary to code the
information stored in biases and weights into two long arrays and then decode
them using the array that describe the structure of the MLP itself.

Due to the length and the complexity of the function MLP_builder.m, it is not
reported here. The main code is available downloading the tool-chain.

Mathematical expression MATLAB alias

step f(x) =

0 for x ≤ 0
1 for x > 0

’step’

linear f(x) = x ’lin’

ReLU f(x) =

0 for x ≤ 0
x for x > 0

’relu’

Softmax fi(x⃗) = exiqJ
j=1 e

xj
i = 1, ..., J ’softmax’

tanh f(x) = tanh(x) = (ex − e−x)
(ex + e−x) ’tanh’

sine f(x) = sin(x) ’sine’

sigmoid f(x) = 1
1 + e−x

’sigmoid’

Table 4.1: Examples of activation functions, operating either element-wise or
vector-wise, depending on the function

46

Development of programming tools

4.1.3 Training & Validation on Python
To keep the program lightweight, the only libraries utilised to construct the MLP
were pandas and numpy. This approach allowed for the development of raw code
optimised for our task while maintaining simplicity. While the complete code is
omitted due to its length, a concise pseudo-code is provided below.

Algorithm 1 Python function called by MATLAB
1: Class Definitions:
2: Class ADAMOptimiser: ▷ Class for the ADAM optimiser
3: Class MultiLayerPerceptron: ▷ Class for the Multi-Layer Perceptron
4:
5: Input Activation functions, MLP structure, filepath, mode
6: if mode == "train" then
7: Input train_dataset_name, valid_dataset_name
8: Shuffle train_dataset_name and valid_dataset_name
9: Perform consistency check between dataset and layer widths

10: if consistency check passes then
11: Normalise dataset
12: Trainings using parameters from MATLAB
13: Write report to provided filepath
14: Save weights and biases of the best validation loss
15: else
16: Output "Consistency check failed"
17: end if
18: else if mode == "deploy" then
19: Input weights, biases
20: Deploy MLP with provided weights and biases
21: else
22: Output "Invalid mode. Please choose ’train’ or ’deploy’."
23: end if

47

Development of programming tools

Another challenging aspect of the Python process was rendering the training
state available online, which is not straightforward due to Python running in the
process. The issue arises because the values of the losses computed epoch by epoch
are returned as MATLAB output only at the end of the overall training. To address
this, a workaround was implemented: the Python program creates and writes to a
text file online, and a .exe function capable of reading the file row by row is used
during the process. This setup ensures that when the training starts, a window
similar to the one shown in the next figure automatically appears.

Figure 4.5: Window that automatically opens during the training to show online
losses.

4.1.4 Evaluation on MATLAB
The evaluation phase pertains to the final outcome of the preceding training. Both
validation and training losses are plotted, enabling a posterior analysis of issues
such as overfitting, underfitting, loss shapes, etc. This analysis aids in fine-tuning
the hyperparameters to optimise performance.

Figure 4.6: How the dataset folder should look like after a successful training.

48

Development of programming tools

Figure 4.7: MATLAB variables from training report, in particular from the file
.mat that stores the whole information to deploy the MATLAB-function based
MLP of the toolchain.

Notice how the MLP is represented concisely 4.8 as a vector of length N , where
each element corresponds to the width of the respective layer. The first element
represents the input layer, which, in the previous instance, was utilised for an
image classification task using the MNIST dataset of handwritten digits. The
parameter N denotes the depth of the MLP. Additionally, activation functions were
encoded using string aliases, as detailed in Table 4.1. To facilitate communication
between MATLAB and Python during deployment, each alias was mapped to an
integer, which is utilised by the deployment function (see 4.1.5). Furthermore, for
a comprehensive understanding of the training process, information regarding the
Adam optimises settings is provided, including momentum decay (β1), sum squared
weight (β2), batch size (B), and initial learning rate (α).

Figure 4.8: Final plot window that automatically opens at the end of the training
to show the overall concerning losses.

49

Development of programming tools

4.1.5 Deployment
The deployment will be the only section where some code is reported. This is
because it is the core of the toolchain. The code that we decided to report is
the one used to deploy in Simulink (that is basically the same of the one used in
MATLAB, the only exception is that in MATLAB there were no limitation because
of the variable-size signals that instead are limitational in Simulink.

MATLAB/Simulink deployment
1 function prediction = DeployMLP (UnseenData , ...
2 WeightList , ...
3 BiasList , ...
4 NormFactors , ...
5 infoMLP)
6 % Persistent variable in order to optimise the process
7 persistent W_decode b_decode
8 persistent InNormFactors OutNormFactors DepthMLP
9 %% One -time calculation branch

10 if isempty (W_decode)|| isempty (b_decode)
11 tic;
12 disp('One -time calculations in progress ... ')
13 DepthMLP = length(infoMLP (: ,1)) -1;
14 W_decode = zeros(DepthMLP +1 ,1);
15 b_decode = zeros(DepthMLP +1 ,1);
16 InNormFactors = NormFactors (1: infoMLP (1 ,1));
17 OutNormFactors = NormFactors (length(NormFactors)-

infoMLP (end ,1) +1: end);
18 CurrentLayer = zeros(max(infoMLP (: ,1)) ,1);
19 sizes = [infoMLP (1:end -1 ,1) .* infoMLP (2:end

,1) infoMLP (2:end ,1)];
20 for i=1: DepthMLP
21 W_decode (i+1) = W_decode (i)+sizes(i ,1);
22 b_decode (i+1) = b_decode (i)+sizes(i ,2);
23 end
24 Input_consistency_check (UnseenData);
25 disp('One -time calculations ended ... ')
26 toc;
27 disp('--')
28 end

50

Development of programming tools

MATLAB/Simulink deployment
29 %% Every -time calculation branch
30 CurrentLayer = UnseenData ./ InNormFactors ;
31 for i=1: DepthMLP
32 Biases = BiasList (b_decode (i)+1: b_decode (i+1));
33 Weights = reshape (WeightList (W_decode (i)+1: W_decode (

i+1)),infoMLP (i ,1) ,infoMLP (i+1 ,1));
34 CurrentLayer = activation_function (infoMLP (i+1 ,2) ,

Weights '* CurrentLayer +Biases);
35 end
36 prediction = CurrentLayer .* OutNormFactors ;

It was important to properly set each input and output in the data editor of the
function. This is because of the limitation in propagating signals in Simulink due
to code generation. In fact, the output of the block must have been set to variable
size, where the maximum size is the width of the output layer.

Figure 4.9: Setting in data editor for prediction output.

51

Development of programming tools

MATLAB/Simulink deployment
37 %% Nested functions
38 function result = activation_function (type , z)
39 % This function decode which activation function

it is necessary
40 % to use in according to the code provided by

the decoding matrix.
41 switch type
42 case 1 % sigmoid
43 result = 1 ./ (1 + exp(-z));
44 case 2 % tanh
45 result = tanh(z);
46 case 3 % relu
47 result = max(0, z);
48 case 4 % lin
49 result = z;
50 case 5 % softmax
51 exp_z = exp(z);
52 result = exp_z / sum(exp_z);
53 case 6 % step
54 result = double(z > 0);
55 case 7 % sine
56 result = sin(z);
57 otherwise ; error('Invalid activation

function type ');
58 end
59 end
60 function Input_consistency_check (input_layer)
61 if ~ isvector (input_layer)
62 error('DeployMLP can process no more than

one input at the same time in Simulink ');
63 elseif length(input_layer)~= infoMLP (1 ,1)
64 error('Input size is wrong: detected [%d]

instead of [%d]', length(input_layer), infoMLP (1 ,1));
65 end
66 end
67 end

52

Development of programming tools

Figure 4.10: Simulink block for MLP deployment. This block is masked in order
to be ready-to-use after loading of the MATLAB variables that describe the MLP
structure. The workspace should look like in this figure 4.7.

Figure 4.11: Properties of the Simulink block for MLP deployment. These are
the 4 variables that contains all the information about the MLP.

53

Development of programming tools

4.1.6 Training material & conclusion
Finally a tool-chain that is able to let the user customise the MLP in Matlab while
training it on Python was created. Moreover, after the training is completed, this
versatile framework allows for the potential deployment of the neural network in
MATLAB, Simulink, or Python in according to the user’s needs. The tool-chain is
provided together with some files in order to train the user to use the tool-chain
itself. Among these files there is a readme.txt and a video registration .mp4
together with its .pptm source file.

54

Development of programming tools

4.2 Toolkit
The toolchain just explained in the previous section 4.1 is then used into another
toolkit wholly dedicated to the behaviour cloning of MPCs, in this case a Path
Tracking (PT) application. This toolkit, as done for the toolchain since was
developed from scratch as well. It is specifically designed for the automated process
from creating MPC systems through ACADO to deploy the final MLP in the
experimental. of course This involves not only generating MPCs but also creating
a dataset based on simulations of the MPCs following the methodologies shown in
subsection 3.6.2.

Figure 4.12: Developed toolkit structure scheme.

55

Development of programming tools

The toolkit is designed to be user-friendly, requiring minimal setup. Users
can simply run the main file named main_MLP4QCar.m after ensuring that the
MATLAB working folder is correctly set. Once executed, all subsequent actions
can be performed directly from the MATLAB command window. This approach
was chosen as the optimal solution, considering the complexity of the workflow
described at the beginning of Chapter 4.

Figure 4.13: How the MATLAB folder should look like while using the toolkit.

56

Development of programming tools

4.2.1 GUI Functionalities
The complexity of the problem necessitates extensive trial and error, demanding
automation of the process. For instance, the creation of the set of LMPCs alone
would be time-consuming if not automated. Similarly, simulating datasets of
varying shapes and training MLPs followed by simulation would be a daunting task
without automation. Essentially, this toolkit is tailored for the QCar controller
NNBO problem but can be adapted for any system and any MPC controller by
adjusting the settings in ACADO. Below is the main menu of the toolkit when the
script is executed in MATLAB.

Figure 4.14: Toolkit main GUI.

At this point the user just ensured the toolkit to be set in a proper way.

57

Development of programming tools

Below is the menu that appears when the user presses the number corresponding
to the submenu. When creating the LMPC, the program first checks for the presence
of the Acado Toolkit in the path. If Acado is not found, the program prompts
the user to provide the correct path. In case Acado needs to be downloaded, the
toolkit itself provides a link leading to the Acado Toolkit download page.

Figure 4.15: MPC creation dedicated GUI.

The provided values consist of two vectors: the first vector represents the list of
linearised points, while the second vector represents the prediction horizon. Upon
pressing enter, the created LMPCs will be a combination of these two vectors.
Therefore, if the first vector has length N and the second vector has length M , the
total number of MPCs created will be N ×M .

Option"2" instead leads the user to another script where they can construct the
desired XY path. This process is not detailed here due to space limitations and
because it may vary depending on the application. It’s important to note that this
toolkit is designed to be general-purpose, and the example provided is just one of
the many possible applications.

58

https://acado.github.io/

Development of programming tools

The next step involves simulating the MPCs over the paths created in the
previous step. This simulation marks the initial stage of dataset creation. Here, a
list of the MPCs and training paths generated in the preceding steps is displayed
as in figure 4.16 and 4.17. At this point any combination of them is simulated. The
data generated from these simulations are then systematically stored in a dedicated
folder within the toolkit.

Figure 4.16: MPC simulation, list of available paths GUI.

59

Development of programming tools

Figure 4.17: MPC simulation, list of available MPCs GUI.

With the simulations now finally stored, the next option in the toolkit is to
create a dataset. Users have the option to either mix preexisting datasets or create
a new dataset from scratch.

Figure 4.18: Dataset creation menu.

60

Development of programming tools

Figure 4.19: In dataset creation, the choice of prediction horizon is crucial.
This selection determines the number of columns in the dataset, as illustrated in
Equation 3.8.

The subsequent step involves utilising the created dataset to train the MLPs.
It’s essential to specify the setup, including the depth, layer widths, and activation
functions of the MLP, in the main script main_MLP4QCars.m. The hyperparameters
instead can be modified going to the function that manage the entire process Once
the training process is initiated, a list of MLPs that the software will train is
displayed, as shown in Figure 4.20.

Figure 4.20: MLP training, list of MLPs.

Subsequently, the user will select the datasets to be used, followed by choosing
the training and validation datasets. A screenshot of the graphical user interface
(GUI) that appears is provided on the next page. It is possible to request the
training of multiple MLPs by adding them to the main script. In such cases, the
list of MLPs to be trained will include more than one, as shown in Figure 4.20.
The process is fully automated, but the settings for each MLP and dataset remain
consistent. If a previously created MLP is detected among those stored in the
dedicated folder, the toolkit will prompt the user to decide whether to continue or
not.

61

Development of programming tools

Figure 4.21: MLP training, choice of the datasets.

Now the simulation deployment comes. As in the previous cases the GUI still
consists in the list of controllers. In this case the list of controllers instead of being
composed by MCP like in the first step 4.17 it is composed now but trained MLP.
Then the user will choice one or more MLP to deploy.

62

Development of programming tools

Figure 4.22: Developed toolkit structure scheme.

The deployment of a single MLP will involve testing it at multiple velocities, as
the state now includes velocity as well. Consequently, the controller is no longer
dedicated to a single longitudinal speed, as seen in the case of LMPCs. The
velocities employed will be displayed in a vector within the command window.
Subsequently, simulations are performed, and various reports, plots, and KPIs are
stored in a dedicated folder within the toolkit.

63

Development of programming tools

Figure 4.23: MLP deployment, example of use. Notice the full path of the
dedicated folder where the result are stored is provided on the MATLAB command
window.

The comparison of KPIs is a crucial phase, warranting the creation of a dedicated
section in the main GUI. Within this section, users can compare the KPIs of
different MLPs, which can be selected using the familiar GUI. Similarly, the same
functionality is available for comparing the KPIs of MPCs in their respective section
of the GUI.

Figure 4.24: KPIs comparison.

64

Development of programming tools

Below is proposed an instance of the KPIs comparison.

Figure 4.25: KPIs comparison, subplots.

Figure 4.26: The remainder of the toolkit’s main GUI includes additional options.
Option 9 offers the same functionalities as option 7, but it deploys the MLP in the
real environment, performing experimental tests. Similarly, options 10, 11, and
12 mirror options 7, 8, and 9, respectively, but are tailored for MPCs benchmark
controllers.

4.2.2 Training Material & Conclusion
The training material for the University of Surrey has not been created yet due to
time constraints. Nevertheless, this toolkit represents a novel workflow programming
approach, enabling the entire process from creating an MPC to comparing the
KPIs of the experimental tests of the trained MLPs to be completed in very few
steps.

65

Chapter 5

Training & Validation

In this chapter, only data regarding the training and validation phases are reported.
The methodologies used are those reported in sections 3.7.1 and 3.7.2. The
philosophy employed involves performing a quick sensitivity analysis over the
shape of the MLP, the number of layers and neurons, and the best activation
functions. The hyperparameters are chosen according to the methodologies outlined
in subsection 3.7.2, particularly in table 3.3.

66

Training & Validation

5.1 Losses: ReLu vs tanh
In this section, the plots compare the losses of two identical trainings, differing
only in the activation function used in the hidden layers.

(a) Losses loss with ReLu function (b) Losses loss with tanh function

(c) Losses with ReLu function (d) Losses loss with tanh function

Figure 5.1: When comparing the losses from ReLU hidden layers with those from
tanh hidden layers over epochs, a notable pattern emerges. Specifically, the tanh
activation functions exhibit a somewhat analogous behaviour, characterised by a
slight spike at the beginning of training. In contrast, ReLU training tends to follow
a more linear trajectory, culminating eventually in overfitting. This discrepancy
underscores the different dynamics between the two activation functions and their
impact on the training process.

67

Training & Validation

(a) The validation loss is calculated based on the performance of the model on the
validation dataset, which was generated by running Model Predictive Control (MPC) on
the eight path.

(b) The elapsed time, expressed in seconds, encompasses the entire process, including
both training and data preprocessing steps such as normalisation.

Figure 5.2: The plot shows validation losses and elapsed time for training for six
types of MLPs, with three different structures all featuring the same depth (four
hidden layers). Initially, ReLU activation function was employed, followed by tanh
activation. Despite slightly longer elapsed times, the MLP using tanh activation
exhibited superior validation losses. Consequently, the marginal increase in time
seems justified given the significant reduction in validation losses. This observation
suggests that the tanh activation function in hidden layers is more suitable for
control applications, as indicated by sensitivity analysis.

68

Training & Validation

(a) Depth = 4;
Neurons = 120;

(b) Depth = 4;
Neurons = 160;

(c) Depth = 4;
Neurons = 200;

Figure 5.3: Comparison between losses from ReLu hidden layers and tanh hidden
layers. Note that MLPs whose hidden layers have the same width are faster to
train. Moreover, sometimes higher elapsed times do not imply lower losses (e.g.
MLPs [55 50 10 5] and [50 40 10 5]).

69

Training & Validation

Figure 5.4: Some of other hidden structures tried. It is noticeable how the depth
affects elapsed time and final validation loss.

70

Chapter 6

Simulation Results

The simulations are conducted within the Simulink environment. The model used
for testing the MLPs is analytical and is derived from prior studies on the SSRAV (i.e.
QCar). It’s important to note that there exists a noticeable dissimilarity between
the analytical model and the real plant, as demonstrated in the experimental
findings discussed in Chapter 7. Therefore, the efficacy of the controller on the
model does not guarantee its effectiveness on the actual plant. The methodology
employed for data collection in the simulation is ’you-measure-only-once.’ This is
because simulation results remain unaffected by stochastic events, unlike real-world
experiments. Consequently, in the absence of noise, the results, and consequently
the KPIs, remain consistent.

Figure 6.1: Simulink model schematic for simulations.

71

Simulation Results

The signals utilised in the simulations, both input and output, correspond to
those present in the real model. However, unlike the real scenario, these signals are
not subjected to processing by a Kalman filter. This deviation is due to the absence
of instrumental noise the absence of inaccuracies caused by the measurements.
From here, several plots illustrating the most representative simulations are pre-
sented. The evaluation is focused on the KPIs described in Section 3.2.
In figure 6.2 Multiple LMPCs, differing only in their prediction horizon lengths,
are simulated to determine if there is an optimal horizon length greater than 20
steps. As previously discussed in Section 3.1 and summarised in Table 3.2, various
prediction horizon lengths were evaluated based on recorded KPIs from simulations.
The results indicate that the optimal prediction horizon length, according to the
observed KPIs, is 40 steps. Of course this length depends also on the kind of path
there the simulation are performed.

72

Simulation Results

6.1 Simulation MPCs

(a) Maximum lateral error.

(b) Root mean square lateral error.

(c) Integral of absolute action control.

Figure 6.2: Sensitivity analysis of KPIs over longitudinal velocity from MPC
simulations aimed at determining the optimal prediction horizon.

73

Simulation Results

6.2 Simulation MLPs

(a) Control variables over time (b) xy view

Figure 6.3: Simulation Results for MLP with architecture (120-120-20) and tanh
activation function at 1.5 m/s. Even at higher speeds the errors are still acceptable.
This because the simulated model is not too afar from the internal model used in
the set of LMPCs. Moreover the training was well done for this MLP.

74

Simulation Results

(a) (b) (c)

Figure 6.4: The plots above depict a sensitivity analysis conducted on activation
functions. Although the number of neurons varies, the overall shape remains
consistent. These plots represent MLPs with hidden layers of constant width. It’s
important to note that the training settings for all experiments remain uniform, as
outlined in the default training table (Table 3.3).

75

Simulation Results

(a) (b)

Figure 6.5: Sensitivity analysis was conducted over hidden layer sizes, revealing
that increasing the width generally leads to improvements in KPIs. This trend is
particularly notable for networks utilising the tanh activation function.

76

Simulation Results

(a) (b) (c)

Figure 6.6: Sensitivity analysis conducted over hidden layer shapes. Similar to
the approach used in analysing validation losses and elapsed time in Figure 6.5,
the depth (i.e., number of layers) and overall number of neurons (i.e., sum of the
widths) are kept constant. As observed in Figures 6.6c and 6.6b, pyramidal hidden
layer shapes (i.e., when the first hidden layers are wider than subsequent ones) tend
to yield superior KPIs when the slope is gradual. However, overall, maintaining
a constant width appears to be a reliable approach, consistently delivering good
results.

77

Simulation Results

(a) Maximum lateral error.

(b) Root mean square lateral error.

(c) Integral of absolute action control.

Figure 6.7: A final comparison between MPCs and MLPs in simulation reveals
expected variations due to the influence of stochastic events during training, such
as initialisation and biases. However, it’s noteworthy that some MLPs not only sur-
passed the KPIs of MPCs with shortened prediction horizons but also outperformed
expertly tuned MPCs. This can be attributed to the higher operational frequency
of the Simulink block compared to the initial MPC (i.e., 100Hz). Consequently,
MLPs, despite being approximations of MPCs, can process more inputs in less
time, leading to enhanced performance.

78

Chapter 7

Experimental Results

The simulations were conducted within a Simulink-based environment, where the
QCar model was interfaced with the Simulink workstation. Detailed information
regarding the communication protocol used has been omitted as it falls outside the
scope of this study. Below is a schematic representation of the Simulink model
utilised for experimental validations (see Figure 7.1). Notable differences include the
integration of the real plant and the implementation of a Kalman filter. This filter
is necessary as the signals now originate from sensors, thereby being susceptible to
instrumental noise and inaccuracies.

Figure 7.1: Schematic representation of the Simulink model for experimental
validations. Notable differences include the inclusion of the real plant and the
utilisation of a Kalman filter, necessitated by the fact that the signals are sourced
from sensors, making them vulnerable to instrumental noise and inaccuracies.

79

Experimental Results

(a) Control variables over time (b) xy view

Figure 7.2: Experimental Results for MLP with architecture (120-120-20) and
tanh activation function at 0.5 m/s. At low speeds the errors are still acceptable.

(a) Control variables over time (b) xy view

Figure 7.3: Experimental Results for MLP with architecture (120-120-20) and
tanh activation function at 1.0 m/s. As the speed increases, the errors increase
significantly compared to those in the simulations. Additionally, the KPIs are higher
than those in the MPCs. This discrepancy may be attributed to the dataset’s lack
of representativeness for real-world MLP deployment, originating from simulations.

80

Experimental Results

(a) Maximum lateral error.

(b) Root mean square lateral error.

(c) Integral of absolute action control.

Figure 7.4: Experimental KPIs of some MLPs. Notice how much the charge of
the QCar affected the performance of [40 40 40 tanh].

81

Experimental Results

(a) (b) (c)

Figure 7.5: Comparison of Experimental and Simulated MLPs. Noticeably, the
experiment resulted in significantly lower KPIs. However, as shown in Figure 7.6,
this discrepancy can be attributed to inaccuracies in the internal model.

Figure 7.6: Comparison of Experimental and Simulated benchmark MPC. Sub-
stantial differences between simulation and experiment highlight the inaccuracy of
the internal model in representing the real plant.

82

Chapter 8

Conclusions

The conclusion of this thesis can be delineated into two primary aspects:

a. Novelty Programming Outcomes:
This thesis has contributed novel programming tools, including the MATLAB-
Python MLP builder and the Model Predictive Control Neural Network
Optimised Based (MPC NNBO) toolkit.

b. Simulation and Experimental Results:
Additionally, significant insights have been gleaned from both simulation and
experimental endeavours.

83

Conclusions

8.1 Innovative Programming Results
The MATLAB-Python integration for MLP and the MPC NNBO toolkit constitute
significant advancements discussed in Chapter 4.

The MATLAB-Python toolchain introduces a novel method enabling users to
leverage MATLAB’s intuitive interface while capitalising on Python’s computational
efficiency for training tasks.

As for the MPC NNBO toolkit, it seamlessly integrates with any Model Predictive
Controller (MPC) developed using ACADO, requiring only minimal adjustments.

Both solutions are meticulously crafted with emphasis on user-friendliness and
adaptability, empowering researchers and professionals to streamline their processes
and achieve heightened efficiency.

Looking ahead, these tools will undergo further refinement. The MATLAB-
Python toolchain will be expanded to include additional functionalities such as
enhanced dataset preprocessing and support for alternative activation functions.
Meanwhile, the MPC NNBO toolkit will broaden its scope to encompass not only
path tracking but also other facets of autonomous vehicle control.

Moreover, both the toolkit and toolchain have been shared with the University of
Surrey, alongside comprehensive training materials, video tutorials, example appli-
cations (e.g., handwritten digit classification, function approximation), and detailed
documentation. This dissemination effort constitutes an additional achievement of
this project, poised to benefit future research endeavours.

84

Conclusions

8.2 Simulation and Experimental Results
The objective of this study was to train a MLP using the toolkit mentioned in the
preceding section 8.1. Specifically, the goal was to surpass an already implemented
Model Predictive Controller (MPC), with a non-implementable MPC serving as
the expert controller. In simulation, this objective was achieved, as evidenced by
the plot in Figure 7.4, where certain MLPs exhibited KPIs superior not only to the
benchmark MPC but also to the expert MPC, attributed to the higher operational
frequency allowed by the only-one-evaluation.

However, contrary to expectations, the experimental results showed a significant
discrepancy. The controllers’ performances in the experimental setup were notably
lower compared to simulation, as depicted in Figure 7.5. A similar trend was
observed with the benchmark MPC, as shown in Figure 7.6. This suggests that
the discrepancy was inherent in the formulation of the internal model, particularly
at higher velocities, where it deviated substantially from the real plant in both
cases. Thus,the discrepancy observed between the simulation and experimental
results was not primarily attributed to the approximation made by the trained
models, but rather to the limitations of the expert controller and, subsequently, to
the quality and representativeness of the dataset used for training.

In addition to the limitations and drawbacks associated with this methodology,
such as lengthy training times, the need for well-chosen expert paths, and the
patience required for hyper-parameter tuning, there are significant pitfalls. The
primary limitation is the inability of trained models to generalise beyond a certain
limit. Consequently, while easier constraints such as output saturation are generally
guaranteed when using tanh as the output activation function, harder constraints
like limitations over the state of the plant, which are characteristic of the MPC and
can vary from one training to another, are not assured. However, it’s important
to note that this does not necessarily render the method ineffective; rather, it
indicates that the approach may be sub-optimal in certain scenarios.

85

Conclusions

8.3 Prospective Enhancements
In addressing the underwhelming performance observed at higher velocities, three
primary avenues are proposed within the simple structure of the MLP:

1. Integration of a Realistic Internal Model: One approach involves incor-
porating a more realistic internal model, possibly utilising an ANN to emulate
it. This strategy aims to enhance the model’s ability to adapt to varying
conditions and improve performance.

2. Implementation of Online Adaptation: Another strategy entails devel-
oping an online adaptation mechanism to adjust weights post-pretraining.
This approach enables the model to continuously learn and refine its perfor-
mance in real-time, thereby potentially mitigating performance shortcomings
encountered at higher velocities.

3. Inclusion of Weights as Input during Training: Alternatively, the
MLP could be trained while also considering the weights as additional input
parameters. This method allows for post-training tuning of the weights, albeit
at the expense of simplicity. However, this option may offer less elegance
compared to the other approaches.

Of these options, the integration of a more realistic internal model or the devel-
opment of an online adaptation mechanism presents more intriguing possibilities.
A combination of these approaches could also be explored for a comprehensive
solution.

86

Appendix A

MLP algorithms

Algorithm 2 MLP training
1: Input: Training data (X, Y), learning rate α, batch size B, momentum decay

coefficient β1, sum square β2
2: Normalise input features in X and shuffle rows in (X, Y)
3: Initialise weights and biases randomly
4: Forward Pass:
5: for each training example (x, y) in (X, Y) do
6: Compute the predicted output ŷ using forward propagation
7: Compute the loss L using a suitable loss function (e.g., mean squared error)
8: end for
9: Backward Pass:

10: for each training example (x, y) in (X, Y) do
11: Compute the gradient of the loss with respect to the output layer: δout =

∂L
∂ŷ
⊙ f ′(output)

12: Compute the gradient of the loss with respect to the hidden layer: δhidden =
δout ·W T

out ⊙ f ′(hidden)
13: Update output layer weights: Wout = Wout − α · outputT · δout

14: Update output layer biases: bout = bout − α · sum(δout)
15: Update hidden layer weights: Whidden = Whidden − α · xT · δhidden

16: Update hidden layer biases: bhidden = bhidden − α · sum(δhidden)
17: end for

87

MLP algorithms

Algorithm 3 Adam optimizer algorithm. All operations are element-wise, even
powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8.
ϵ is needed to guarantee numerical stability.

1: procedure Adam(α, β1, β2, f, θ0)
2: ▷ α is the stepsize
3: ▷ β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ▷ f (θ) is the objective function to optimize
5: ▷ θ0 is the initial vector of parameters which will be optimized
6: ▷ Initialization
7: m0 ← 0 ▷ First moment estimate vector set to 0
8: v0 ← 0 ▷ Second moment estimate vector set to 0
9: t← 0 ▷ Timestep set to 0

10: ▷ Execution
11: while θt not converged do
12: t← t+ 1 ▷ Update timestep
13: ▷ Gradients are computed w.r.t the parameters to optimize
14: ▷ using the value of the objective function
15: ▷ at the previous timestep
16: gt ← ∇θf (θt−1)
17: ▷ Update of first-moment and second-moment estimates using
18: ▷ previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt

20: vt ← β2 · vt−1 + (1− β2) · g2
t

21: ▷ Bias-correction of estimates
22: m̂t ←

mt

1− βt
1

23: v̂t ←
vt

1− βt
2

24: θt ← θt−1 − α ·
m̂t√
v̂t + ϵ

▷ Update parameters
25: end while
26: return θt ▷ Optimised parameters are returned
27: end procedure

88

Bibliography

[1] jemdoc+MathJax. ACADO Toolkit. Accessed on Feb 19th, 2024. 2014. url:
https://acado.github.io/ (cit. on p. xv).

[2] Roger Grosse. «Lecture 5: Multilayer Perceptrons». In: inf. téc (2019) (cit. on
p. xv).

[3] IBM. Overfitting. Accessed 2024. url: https://www.ibm.com/topics/
overfitting (cit. on p. xvi).

[4] IBM. Underfitting. Accessed 2024. url: https://www.ibm.com/topics/
underfitting (cit. on p. xvi).

[5] Shoaib Azam, Farzeen Munir, Muhammad Aasim Rafique, Ahmad Muqeem
Sheri, Muhammad Ishfaq Hussain, and Moongu Jeon. «N2C: Neural Network
Controller Design Using Behavioral Cloning». In: IEEE Transactions on
Intelligent Transportation Systems 22.7 (2021), pp. 4744–4756. doi: 10.1109/
TITS.2020.3045096 (cit. on p. 3).

[6] SAE International. SAE J3016 - Visual Chart. Accesso al PDF. 2021. url:
https://www.sae.org/binaries/content/assets/cm/content/blog/
sae-j3016-visual-chart_5.3.21.pdf (cit. on p. 3).

[7] Jiahao Huang, Steffen Junginger, Hui Liu, and Kerstin Thurow. «Indoor
Positioning Systems of Mobile Robots: A Review». In: Robotics 12.2 (2023).
issn: 2218-6581. doi: 10.3390/robotics12020047. url: https://www.mdpi.
com/2218-6581/12/2/47 (cit. on p. 4).

[8] Liam Lynch, Thomas Newe, John Clifford, Joseph Coleman, Joseph Walsh,
and Daniel Toal. «Automated Ground Vehicle (AGV) and Sensor Technologies-
A Review». In: 2018 12th International Conference on Sensing Technology
(ICST). 2018, pp. 347–352. doi: 10.1109/ICSensT.2018.8603640 (cit. on
p. 4).

89

https://acado.github.io/
https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/underfitting
https://www.ibm.com/topics/underfitting
https://doi.org/10.1109/TITS.2020.3045096
https://doi.org/10.1109/TITS.2020.3045096
https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf
https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf
https://doi.org/10.3390/robotics12020047
https://www.mdpi.com/2218-6581/12/2/47
https://www.mdpi.com/2218-6581/12/2/47
https://doi.org/10.1109/ICSensT.2018.8603640

BIBLIOGRAPHY

[9] Astrid Rupp, Markus Tranninger, Raffael Wallner, Jasmina Zubača, Martin
Steinberger, and Martin Horn. «Fast and Low-Cost Testing of Advanced Driver
Assistance Systems using Small-Scale Vehicles». In: IFAC-PapersOnLine 52.5
(2019). 9th IFAC Symposium on Advances in Automotive Control AAC 2019,
pp. 34–39. issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2019.09.006. url: https://www.sciencedirect.com/science/article/
pii/S2405896319306251 (cit. on p. 4).

[10] Yassine Zein, Mohamad Darwiche, and Ossama Mokhiamar. «GPS tracking
system for autonomous vehicles». In: Alexandria Engineering Journal 57.4
(2018), pp. 3127–3137. issn: 1110-0168. doi: https://doi.org/10.1016/
j.aej.2017.12.002. url: https://www.sciencedirect.com/science/
article/pii/S1110016818301091 (cit. on p. 4).

[11] A.M. Ribeiro, M.F. Koyama, A. Moutinho, E.C. de Paiva, and A.R. Fiora-
vanti. «A comprehensive experimental validation of a scaled car-like vehicle:
Lateral dynamics identification, stability analysis, and control application».
In: Control Engineering Practice 116 (2021), p. 104924. issn: 0967-0661. doi:
https://doi.org/10.1016/j.conengprac.2021.104924. url: https:
//www.sciencedirect.com/science/article/pii/S096706612100201X
(cit. on p. 4).

[12] Lixing Liu, Xu Wang, Xin Yang, Hongjie Liu, Jianping Li, and Pengfei
Wang. «Path planning techniques for mobile robots: Review and prospect».
In: Expert Systems with Applications 227 (2023), p. 120254. issn: 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2023.120254. url: https:
//www.sciencedirect.com/science/article/pii/S095741742300756X
(cit. on p. 4).

[13] Juqi Hu, Youmin Zhang, and Subhash Rakheja. «Adaptive Lane Change
Trajectory Planning Scheme for Autonomous Vehicles Under Various Road
Frictions and Vehicle Speeds». In: IEEE Transactions on Intelligent Vehicles
8.2 (2023), pp. 1252–1265. doi: 10.1109/TIV.2022.3178061 (cit. on p. 4).

[14] Spyros G. Tzafestas. «Mobile Robot Control and Navigation: A Global
Overview». In: Journal of Intelligent & Robotic Systems (2018) (cit. on
p. 4).

[15] Qianwen Li, Zhiwei Chen, and Xiaopeng Li. «A Review of Connected and
Automated Vehicle Platoon Merging and Splitting Operations». In: IEEE
Transactions on Intelligent Transportation Systems 23.12 (2022), pp. 22790–
22806. doi: 10.1109/TITS.2022.3193278 (cit. on p. 4).

90

https://doi.org/https://doi.org/10.1016/j.ifacol.2019.09.006
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.09.006
https://www.sciencedirect.com/science/article/pii/S2405896319306251
https://www.sciencedirect.com/science/article/pii/S2405896319306251
https://doi.org/https://doi.org/10.1016/j.aej.2017.12.002
https://doi.org/https://doi.org/10.1016/j.aej.2017.12.002
https://www.sciencedirect.com/science/article/pii/S1110016818301091
https://www.sciencedirect.com/science/article/pii/S1110016818301091
https://doi.org/https://doi.org/10.1016/j.conengprac.2021.104924
https://www.sciencedirect.com/science/article/pii/S096706612100201X
https://www.sciencedirect.com/science/article/pii/S096706612100201X
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120254
https://www.sciencedirect.com/science/article/pii/S095741742300756X
https://www.sciencedirect.com/science/article/pii/S095741742300756X
https://doi.org/10.1109/TIV.2022.3178061
https://doi.org/10.1109/TITS.2022.3193278

BIBLIOGRAPHY

[16] S Dixit, Saber Fallah, Umberto Montanaro, M Dianati, A Stevens, F Mccul-
lough, and A Mouzakitis. «Trajectory planning and tracking for autonomous
overtaking: State-of-the-art and future prospects». In: Annual Reviews in
Control 45 (2018), pp. 76–86. issn: 1367-5788. doi: 10.1016/j.arcontrol.
2018.02.001 (cit. on p. 4).

[17] P. Stano, U. Montanaro, D. Tavernini, M. Tufo, G. Fiengo, L. Novella, and
A. Sorniotti. «Model predictive path tracking control for automated road
vehicles: A review». In: Annual Reviews in Control 55 (2023), pp. 194–236.
issn: 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2022.
11.001. url: https://www.sciencedirect.com/science/article/pii/
S1367578822001377 (cit. on pp. 4, 5).

[18] Mohammad Rokonuzzaman, Navid Mohajer, Saeid Nahavandi, and Shady
Mohamed. «Review and performance evaluation of path tracking controllers
of autonomous vehicles». In: IET Intelligent Transport Systems 15.5 (2021),
pp. 646–670. doi: https://doi.org/10.1049/itr2.12051. eprint: https://
ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12051.
url: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.
1049/itr2.12051 (cit. on pp. 4, 5).

[19] Nguyen Hung, Francisco Rego, Joao Quintas, Joao Cruz, Marcelo Jacinto,
David Souto, Andre Potes, Luis Sebastiao, and Antonio Pascoal. «A review
of path following control strategies for autonomous robotic vehicles: Theory,
simulations, and experiments». In: Journal of Field Robotics 40.3 (2023),
pp. 747–779. doi: https://doi.org/10.1002/rob.22142. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/rob.22142. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/rob.22142 (cit. on p. 5).

[20] Karimi Pour F, Theilliol D, Puig V, and Cembrano G. «Health-aware control
design based on remaining useful life estimation for autonomous racing vehi-
cle.» In: ISA Trans. 2021 Jul;113:196-209. doi: 10.1016/j.isatra.2020.03.032.
Epub 2020 Apr 21. PMID: 32451079. (2021) (cit. on p. 5).

[21] Alexander Liniger and John Lygeros. «Real-Time Control for Autonomous
Racing Based on Viability Theory». In: IEEE Transactions on Control Systems
Technology 27.2 (2019), pp. 464–478. doi: 10.1109/TCST.2017.2772903 (cit.
on p. 5).

[22] Eugenio Alcalá, Vicenç Puig, Joseba Quevedo, and Ugo Rosolia. «Autonomous
racing using Linear Parameter Varying-Model Predictive Control (LPV-
MPC)». In: Control Engineering Practice 95 (2020), p. 104270. issn: 0967-0661.
doi: https://doi.org/10.1016/j.conengprac.2019.104270. url: https:
//www.sciencedirect.com/science/article/pii/S0967066119302187
(cit. on p. 5).

91

https://doi.org/10.1016/j.arcontrol.2018.02.001
https://doi.org/10.1016/j.arcontrol.2018.02.001
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.11.001
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.11.001
https://www.sciencedirect.com/science/article/pii/S1367578822001377
https://www.sciencedirect.com/science/article/pii/S1367578822001377
https://doi.org/https://doi.org/10.1049/itr2.12051
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12051
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12051
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12051
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12051
https://doi.org/https://doi.org/10.1002/rob.22142
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.22142
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.22142
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22142
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22142
https://doi.org/10.1109/TCST.2017.2772903
https://doi.org/https://doi.org/10.1016/j.conengprac.2019.104270
https://www.sciencedirect.com/science/article/pii/S0967066119302187
https://www.sciencedirect.com/science/article/pii/S0967066119302187

BIBLIOGRAPHY

[23] Subhan Khan, Jose Guivant, and Xuesong Li. «Design and experimental
validation of a robust model predictive control for the optimal trajectory
tracking of a small-scale autonomous bulldozer». In: Robotics and Autonomous
Systems 147 (2022), p. 103903. issn: 0921-8890. doi: https://doi.org/
10.1016/j.robot.2021.103903. url: https://www.sciencedirect.com/
science/article/pii/S0921889021001883 (cit. on p. 5).

[24] Victor Mazzilli, Stefano De Pinto, Leonardo Pascali, Michele Contrino,
Francesco Bottiglione, Giacomo Mantriota, Patrick Gruber, and Aldo Sorniotti.
«Integrated chassis control: Classification, analysis and future trends». In:
Annual Reviews in Control 51 (2021), pp. 172–205. issn: 1367-5788. doi:
https://doi.org/10.1016/j.arcontrol.2021.01.005. url: https:
//www.sciencedirect.com/science/article/pii/S1367578821000055
(cit. on p. 5).

[25] B. Kosko. «Fuzzy systems as universal approximators». In: IEEE Transactions
on Computers 43.11 (1994), pp. 1329–1333. doi: 10.1109/12.324566 (cit. on
p. 5).

[26] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. «Multilayer feed-
forward networks are universal approximators». In: Neural Networks 2.5
(1989), pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.1016/0893-
6080(89)90020- 8. url: https://www.sciencedirect.com/science/
article/pii/0893608089900208 (cit. on p. 5).

[27] J. Brian Froisy. «Model predictive control: Past, present and future». In: ISA
Transactions 33.3 (1994), pp. 235–243. issn: 0019-0578. doi: https://doi.
org/10.1016/0019-0578(94)90095-7. url: https://www.sciencedirect.
com/science/article/pii/0019057894900957 (cit. on p. 6).

[28] Cahyantari Ekaputri and Arief Syaichu-Rohman. «Model predictive control
(MPC) design and implementation using algorithm-3 on board SPARTAN
6 FPGA SP605 evaluation kit». In: 2013 3rd International Conference on
Instrumentation Control and Automation (ICA). 2013, pp. 115–120. doi:
10.1109/ICA.2013.6734056 (cit. on p. 8).

[29] Steven Kumar, Aditya Tulsyan, Bhushan Gopaluni, and Philip Loewen. «A
Deep Learning Architecture for Predictive Control». In: IFAC-PapersOnLine
51 (Jan. 2018), pp. 512–517. doi: 10.1016/j.ifacol.2018.09.373 (cit. on
p. 9).

[30] Angelo D. Bonzanini, Joel A. Paulson, Georgios Makrygiorgos, and Ali Mes-
bah. «Fast approximate learning-based multistage nonlinear model predictive
control using Gaussian processes and deep neural networks». In: Comput-
ers & Chemical Engineering 145 (2021), p. 107174. issn: 0098-1354. doi:
https://doi.org/10.1016/j.compchemeng.2020.107174. url: https:

92

https://doi.org/https://doi.org/10.1016/j.robot.2021.103903
https://doi.org/https://doi.org/10.1016/j.robot.2021.103903
https://www.sciencedirect.com/science/article/pii/S0921889021001883
https://www.sciencedirect.com/science/article/pii/S0921889021001883
https://doi.org/https://doi.org/10.1016/j.arcontrol.2021.01.005
https://www.sciencedirect.com/science/article/pii/S1367578821000055
https://www.sciencedirect.com/science/article/pii/S1367578821000055
https://doi.org/10.1109/12.324566
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/https://doi.org/10.1016/0019-0578(94)90095-7
https://doi.org/https://doi.org/10.1016/0019-0578(94)90095-7
https://www.sciencedirect.com/science/article/pii/0019057894900957
https://www.sciencedirect.com/science/article/pii/0019057894900957
https://doi.org/10.1109/ICA.2013.6734056
https://doi.org/10.1016/j.ifacol.2018.09.373
https://doi.org/https://doi.org/10.1016/j.compchemeng.2020.107174
https://www.sciencedirect.com/science/article/pii/S0098135420307110
https://www.sciencedirect.com/science/article/pii/S0098135420307110

BIBLIOGRAPHY

//www.sciencedirect.com/science/article/pii/S0098135420307110
(cit. on p. 9).

[31] Sergio Lucia, Denis Navarro, Benjamin Karg, Héctor Sarnago, and Óscar
Lucía. «Deep Learning-Based Model Predictive Control for Resonant Power
Converters». In: IEEE Transactions on Industrial Informatics 17 (2018),
pp. 409–420. url: https://api.semanticscholar.org/CorpusID:536310
58 (cit. on p. 9).

[32] T. Parisini and R. Zoppoli. «A receding-horizon regulator for nonlinear
systems and a neural approximation». In: Automatica 31.10 (1995), pp. 1443–
1451. issn: 0005-1098. doi: https://doi.org/10.1016/0005-1098(95)
00044-W. url: https://www.sciencedirect.com/science/article/pii/
000510989500044W (cit. on p. 9).

[33] A.R. Barron. «Universal approximation bounds for superpositions of a sig-
moidal function». In: IEEE Transactions on Information Theory 39.3 (1993),
pp. 930–945. doi: 10.1109/18.256500 (cit. on p. 9).

[34] Bernt M. Åkesson, Hannu T. Toivonen, Jonas B. Waller, and Rasmus H.
Nyström. «Neural network approximation of a nonlinear model predictive
controller applied to a pH neutralization process». English. In: Computers
and Chemical Engineering 29.2 (2005), pp. 323–335. doi: 10.1016/j.compch
emeng.2004.09.023 (cit. on p. 10).

[35] M. S. Ahmed and M. A. Al-Dajani. «Neural regulator design». In: Neural
Networks 11.9 (1998), pp. 1695–1709. doi: 10.1016/s0893-6080(98)00097-
5. url: https://www.sciencedirect.com/science/article/pii/S08936
08098000975 (cit. on p. 10).

[36] MathWorks Automotive Advisory Board (MAAB) Guidelines. https://es.
mathworks.com/solutions/mab-guidelines.html. Accessed: March 14,
2024 (cit. on pp. 11, 21).

[37] Alex Lenail. NN-SVG: Neural Network SVG Drawer. https://alexlenail.
me/NN-SVG/LeNet.html. Accessed on March 20, 2024. Year of Access (cit. on
pp. 33, 34).

[38] M.W Gardner and S.R Dorling. «Artificial neural networks (the multilayer
perceptron)—a review of applications in the atmospheric sciences». In: At-
mospheric Environment 32.14 (1998), pp. 2627–2636. issn: 1352-2310. doi:
https : / / doi . org / 10 . 1016 / S1352 - 2310(97) 00447 - 0. url: https :
//www.sciencedirect.com/science/article/pii/S1352231097004470
(cit. on p. 44).

93

https://www.sciencedirect.com/science/article/pii/S0098135420307110
https://www.sciencedirect.com/science/article/pii/S0098135420307110
https://www.sciencedirect.com/science/article/pii/S0098135420307110
https://api.semanticscholar.org/CorpusID:53631058
https://api.semanticscholar.org/CorpusID:53631058
https://doi.org/https://doi.org/10.1016/0005-1098(95)00044-W
https://doi.org/https://doi.org/10.1016/0005-1098(95)00044-W
https://www.sciencedirect.com/science/article/pii/000510989500044W
https://www.sciencedirect.com/science/article/pii/000510989500044W
https://doi.org/10.1109/18.256500
https://doi.org/10.1016/j.compchemeng.2004.09.023
https://doi.org/10.1016/j.compchemeng.2004.09.023
https://doi.org/10.1016/s0893-6080(98)00097-5
https://doi.org/10.1016/s0893-6080(98)00097-5
https://www.sciencedirect.com/science/article/pii/S0893608098000975
https://www.sciencedirect.com/science/article/pii/S0893608098000975
https://es.mathworks.com/solutions/mab-guidelines.html
https://es.mathworks.com/solutions/mab-guidelines.html
https://alexlenail.me/NN-SVG/LeNet.html
https://alexlenail.me/NN-SVG/LeNet.html
https://doi.org/https://doi.org/10.1016/S1352-2310(97)00447-0
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://www.sciencedirect.com/science/article/pii/S1352231097004470

	List of Tables
	List of Figures
	Acronyms
	Introduction
	State of the Art
	Scaled Sensor-Rich Autonomous Vehicle
	Path tracking control solutions
	MPC & associated issues
	Neural Network-Based Optimisation

	Methodologies
	Model Predictive Problem formulation
	Internal model
	ACADO tool-kit
	Creation of the set of LMPCs

	Key Performance Indicators
	MAAB Guidelines
	Review of the previous Simulink model
	Reference distance along the path
	Reference yaw
	Simulink modifications According to MAAB Guidelines

	LMPC dataset
	Chosen paths
	Validation paths
	Training paths
	Data Cleaning & Data Augmentation

	Learning Algorithms for MLP
	Multi-Layer Perceptron & Adam Optimiser
	Hyperparameters & Activation Functions

	Experimental Approach

	Development of programming tools
	MLP builder toolchain
	Necessary Requirements
	Setup on MATLAB
	Training & Validation on Python
	Evaluation on MATLAB
	Deployment
	Training material & conclusion

	Toolkit
	GUI Functionalities
	Training Material & Conclusion

	Training & Validation
	Losses: ReLu vs tanh

	Simulation Results
	Simulation MPCs
	Simulation MLPs

	Experimental Results
	Conclusions
	Innovative Programming Results
	Simulation and Experimental Results
	Prospective Enhancements

	MLP algorithms
	Bibliography

