
POLYTECHNIC UNIVERSITY OF
TURIN

MASTER’s Degree in COMPUTER ENGINEERING
(SOFTWARE)

MASTER’s Degree Thesis

An Integrated Web Platform for Remote
Control and Monitoring of Diverse

Embedded Devices: A Comprehensive
Approach to Secure Communication and

Efficient Data Management

Supervisors

Prof. MAURIZIO REBAUDENGO

Dr. EDOARDO GIUSTO

Ing. PAOLO DOZ

Candidate

ROBERTO CASCHETTO

APRIL 2024





Summary

The project is oriented towards the development of a web platform designed for
the remote control and monitoring of dispersed embedded devices across diverse
geographical areas. The platform will enable the issuance of commands and retrieval
of data from the device, collected by sensors connected to it.

Given the diverse nature of the devices, operating on different systems with
also different Operating Systems, the client component is envisioned to be cross-
platform, implemented using the C programming language. This client will play a
crucial role in authenticating the devices trying to communicate with the server, in
transmitting sensor data, requesting and receiving update packages, and executing
commands received from the server.

On the server side, the backend will be developed using Node.js, with a bifurcated
structure. The first segment will manage the REST API, handling calls for the web
frontend and collecting and managing information from the individual embedded
devices. The second segment will focus on maintaining open connections with the
various active embedded devices, enabling the exchange of specific information and
commands. The frontend, responsible for user interaction, will be developed using
React.js.

Data storage will involve the strategic integration of both SQL and noSQL
databases to efficiently manage the diverse datasets and information collected. The
SQL database will be used to store basic structured information. Meanwhile, the
noSQL database will be employed to store complex and unstructured information
such as the data collected by individual devices. Additionally, an in-memory RAM
database will be utilized to cache the latest update packages. This holistic approach
ensures the creation of a sophisticated web platform tailored for comprehensive
remote device management and monitoring, with a specific focus on data security,
reliability, and efficient communication.

ii



Acknowledgements

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to all those who have contributed to
the realization of this project. Firstly, we extend our appreciation to the team at
Abinsula S.R.L. for their invaluable support, guidance, and expertise throughout
the development process. Their dedication and collaboration were instrumental in
bringing this project to fruition. I would also like to thank my academic advisors for
their insightful feedback, encouragement, and mentorship. Their guidance has been
invaluable in shaping the direction of this development and ensuring its successful
completion.

Furthermore, I would like to express my heartfelt thanks to my family for their
unwavering belief in me and their constant support. Their encouragement has been
a source of strength and motivation, enabling me to reach this significant milestone.

I am deeply grateful to all those who have played a part in this endeavor, and I
sincerely appreciate their contributions to its accomplishment.

iii





Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Requirements Gathering 6
2.1 Requirement Engineering: A Comprehensive Insight . . . . . . . . . 8
2.2 Initial Phase Gathering . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Protocol Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Communication Protocols 13
3.1 Reliability and Security . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Command Execution and Data Retrieval . . . . . . . . . . . . . . . 17

4 Architecture Development 20
4.1 Backend with Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Frontend with React.js . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Backend Architecture 29
5.1 REST API Management . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Device-Specific Information Handling . . . . . . . . . . . . . . . . . 36

6 Frontend Architecture 39
6.1 React.js Implementation . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.2 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3 User’s profile . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.4 Device’s info . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.5 Devices’ groups . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



6.1.6 Devices’ updates . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Data Storage 75
7.1 SQL/NoSQL Integration . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 SQL for Structured Information . . . . . . . . . . . . . . . . . . . . 78
7.3 Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 NoSQL for Unstructured Device Data . . . . . . . . . . . . . . . . . 86
7.5 Redis for Caching Updates . . . . . . . . . . . . . . . . . . . . . . . 87

8 Authentication and Device Management 89
8.1 OS Diversity/Multiplatform Client (C) . . . . . . . . . . . . . . . . 90
8.2 Client Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Multipurpose Client Functionalities . . . . . . . . . . . . . . . . . . 93
8.4 Sensor Data Transmission . . . . . . . . . . . . . . . . . . . . . . . 94

9 Real-Time Connection Maintenance 95
9.1 Server-Side Separation for Active Devices . . . . . . . . . . . . . . . 95
9.2 Information and Command Exchange . . . . . . . . . . . . . . . . . 97

10 Remote Commands 99
10.1 Command Transmission from Server . . . . . . . . . . . . . . . . . 100
10.2 Execution on Receiving End . . . . . . . . . . . . . . . . . . . . . . 102

11 Performance Evaluation 104

12 Conclusion 109
12.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

vi



List of Tables

7.1 Comparison of SQL and NoSQL Databases . . . . . . . . . . . . . . 77
7.2 Comparison of SQL Databases for the Project . . . . . . . . . . . . 79
7.3 Comparison of NoSQL Databases . . . . . . . . . . . . . . . . . . . 87

vii



List of Figures

4.1 Architecture Interactions’ graph . . . . . . . . . . . . . . . . . . . . 25

5.1 Architecture REST API Interactions’ graph . . . . . . . . . . . . . 30
5.2 Architecture TCP Server Interactions’ graph . . . . . . . . . . . . . 31
5.3 Architecture Backend’s graph . . . . . . . . . . . . . . . . . . . . . 32

6.1 Login page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Dashboard Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Dashboard’s chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Edit Profile Information . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Device list page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.6 Device Info Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.7 Device and sensor Info . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.8 Model and Product Information . . . . . . . . . . . . . . . . . . . . 55
6.9 Models’ Information List . . . . . . . . . . . . . . . . . . . . . . . . 56
6.10 Model Creation Page . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.11 Model information . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12 Model, Product and Devices’ information . . . . . . . . . . . . . . . 59
6.13 products’ Information List . . . . . . . . . . . . . . . . . . . . . . . 60
6.14 Product Creation Page . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.15 Product Information Page . . . . . . . . . . . . . . . . . . . . . . . 62
6.16 Product, Model and Devices’ Information . . . . . . . . . . . . . . . 63
6.17 Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.18 Group’s page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.19 Group Info Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.20 Group Creation Page . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.21 Update List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.22 Update Creation Page . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.23 Update Creation Page . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.24 Update Info Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.25 Update Info Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



6.26 Update Info Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Database schema - User’s related information . . . . . . . . . . . . 82
7.2 Database Schema - Product, Model and Device Related Information 83
7.3 Database Schema - Devices and Updates Related Information . . . 84

8.1 Example of a possible config.json file. . . . . . . . . . . . . . . . . . 91

11.1 Load with only one device sending sensor data . . . . . . . . . . . . 105
11.2 Load with one hundred devices sending sensors data . . . . . . . . . 106
11.3 Load with five hundred devices sending sensors data . . . . . . . . . 107

ix





Chapter 1

Introduction

In the dynamic landscape of contemporary technology, the need for efficient man-
agement and monitoring of dispersed and diverse embedded devices has become
essential. This thesis embarks on an exploration of an architecture centered on the
development of a web interface realized to oversee the challenges of remote control
and monitoring of these devices across diverse geographical areas.

The core essence of the initiative lies in empowering the platform to issue
commands and retrieve data from a myriad of devices, each equipped with sensors
collecting different valuable information. This intrinsic capability is designed to
transcend the limitations of geographical, connectivity, maintainability, versioning,
and control constraints, offering a comprehensive solution for effective device
management to handle and solve all these difficulties.

Given the diverse array of devices, each working on different boards and various
operating systems, the client component of this architecture stands as a testament
to versatility. Implemented in the universally compatible C programming language,
the cross-platform client assumes an important role. It not only authenticates
devices seeking communication with the backend but also facilitates the seamless
transmission of sensor data, the request and receipt of update packages, and the
execution of commands received from the server, issued by the users in the web
dashboard.

The server-side architecture adopts a bifurcated structure, with the back-end
entirely developed using Node.js. The first segment takes charge of managing
the REST API requests, orchestrating calls for the web front end, and adeptly
collecting, processing, and handling information from individual devices. In tandem,
the second segment focuses on the dynamic task of maintaining open connections
with active embedded system and transmitting custom commands. This facilitates
the communication, fostering a responsive and interconnected architecture.

The front end, the user’s interface with the intricate infrastructure, is instead
developed with React.js, ensuring a seamless and intuitive user experience.

1



Introduction

Integral to the success of this project is a robust data storage infrastructure. A
strategic integration of both SQL and noSQL databases ensures the management
of diverse information of any possible structure granting optimal performances.
The SQL database is dedicated to storing the basic structured data, such as device
characteristics, users, etc. while the noSQL counterpart handles the more complex
and unstructured information like the sensor data collected by the individual
devices. Complementing this, an in-memory RAM database is employed to cache
the latest update packages that are uploaded by the users from the front end,
keeping the device’s connection statuses, and other simple but frequently accessed
data. In this way it is optimizing response times and alleviating the load on the
different databases during mass updates or information storage/retrieval.

This project adopts a holistic approach, promising the creation of a sophisticated
web platform tailored for comprehensive remote device management and monitoring.
It stands as a testament to the commitment to data security, reliability, and efficient
communication in an ever-evolving technological landscape.

1.1 Background
The genesis of this project is rooted in the strategic vision of the Abinsula S.R.L.
company that has initiated its development. Originating from the essential need
to establish a unified platform for streamlined collaboration with partners, the
primary objective is to furnish a singular web interface accessible to the company
and its associates. This collaborative ecosystem is designed to provide visibility
into the diverse array of devices connected to the network, ensuring a cohesive and
interconnected operational environment.

The conceptualization of this project was not without its complexities, as it
grappled with multifaceted challenges inherent in the identification of devices
across the network, the formulation of robust communication protocols, and the
imperative aspect of securing communications between the client and server. To
systematically address these challenges and potential roadblocks and bottlenecks, a
rigorous requirement engineering phase was deemed indispensable. This additional
step served as a comprehensive forum for the exhaustive deliberation and resolution
of issues related to device discovery, communication protocols, data storage, and
communication security, among other pertinent considerations.

With the architecture carefully defined and a comprehensive roadmap comprising
technologies, procedural steps, and operational protocols firmly established, the
project seamlessly transitioned from conceptualization to actualization. This step
marked the commencement of active development, guided by a well-defined strategy
crafted during the requirement engineering phase.

The background of this project underscores not only its origin within the

2



Introduction

corporate strategy but also the meticulous planning and foresight applied to
overcome the intricacies and challenges that define its developmental landscape.

1.2 Objectives
The overarching objectives of this project are meticulously designed to encom-
pass the intricacies of creating a comprehensive system for the remote control
and monitoring of dispersed embedded devices across diverse geographical areas.
The multifaceted objectives can be distilled into several key components, each
contributing indispensably to the holistic success of the entire architecture.

1. Server Infrastructure Creation: An important aspect of the project involves
the establishment of robust backend infrastructures. This encompasses the
realization of two dedicated servers, each wielding distinct functions. The
first part is specifically engineered to adeptly manage TCP connections with
a myriad of devices dispersed across the network. Concurrently, the second
one is tasked with intricately handling REST API requests. This dual-server
architecture is specifically structured to accommodate API calls from both
client instances – the ones resident on the devices themselves - and those
constituting the frontend clientele. The servers, as bastions of computational
power, bear the onus of carefully validating incoming requests and, where req-
uisite, persisting pertinent information into designated databases, contingent
on the nature of the processed data.

2. User-Friendly Frontend Interface: In tandem with the server infrastructure,
the project envisages the creation of an intuitively designed web page. This
interface is crafted to offer users a seamless and comprehensible view of diverse
information sourced from the networked systems. Beyond data visualization,
the frontend empowers users to issue specific commands to devices and facilitate
the uploading of update packages earmarked for the enhancement of particular
devices.

3. C Client Development: Complementing the server and frontend components,
the project extends its purview to include the development of a C client
tailored explicitly for the devices. This client assumes the critical role of
establishing a secure connection with the servers, transmitting different kind
of data, and also receiving commands, updates and ancillary information from
the server.

4. Database Architecture Design: A concurrent objective involves the creation of
a robust architecture for the three distinct databases that will be integral to
the system. These databases, meticulously defined, are geared too cooperate

3



Introduction

for handling and storing the diverse information that will be transmitted to
the different servers.

The project’s multifaceted objectives converge toward the creation of a sophisti-
cated system tailored for the comprehensive remote management and monitoring
of devices. This approach ensures a holistic solution, addressing challenges related
to communication protocols, device discovery, security, and effective data handling
granting at the same time optimal performances under different load levels.

In cognizance of the project’s complexity and to ensure a robust foundation
for future endeavors, a lot of emphasis was also placed on the meticulous creation
of documentation. This documentation initiative encompassed every facet of the
project, intending to furnish a detailed account of each component’s functionalities
and requisite information. Such a strategic documentation approach serves as a
cornerstone for heightened maintainability, systematic analysis of requirements,
and continuous improvement of the project’s intricacies.

Component-Centric Documentation. Every integral component constituting the
project underwent a meticulous documentation process. This entailed the creation
of dedicated documents elucidating:

• Functionalities: A comprehensive breakdown of each component’s functionali-
ties was documented. This includes detailed information of the operations it
performs, the services it provides, and its role in the overall system architecture.

• Information Requirements: The documentation outlines the specific informa-
tion that each component requires for optimal performance. Understanding
these dependencies is vital for seamless integration and interoperability within
the system.

• Interfaces and Interactions: The documentation delineates how each compo-
nent interfaces with others and the nature of their interactions. This is critical
for comprehending the flow of information and ensuring coherent collaboration
among different project elements.

Maintenance Facilitation. The primary goal of this documentation initiative is
to streamline project maintenance. A well-documented system:

• Facilitates Debugging: In the event of issues or bugs, detailed documentation
serves as a valuable resource for swift and accurate debugging. Developers can
refer to the documentation to understand the intricacies of each component,
aiding in effective issue resolution.

• Simplifies Updates and Enhancements: When it comes to refining or expanding
functionalities, a clear understanding of each component expedites the process.
Developers can confidently make updates or enhancements, armed with a
thorough comprehension of existing structures and operations.

4



Introduction

Requirement Analysis and Improvement. Documentation serves as a founda-
tional artifact for ongoing improvement. It enables:

• Requirement Analysis: By scrutinizing the documented functionalities and
information requirements, stakeholders can conduct in-depth requirement
analyses. This, in turn, provides insights into areas for optimization or
expansion.

• Continuous Improvement: Armed with a detailed understanding of each
component, teams can iteratively refine and improve functionalities. This
aligns with the project’s evolution and ensures it stays adaptive to changing
needs.

In essence, the commitment to comprehensive documentation emerges as a
pivotal pillar of project success. Beyond the immediate advantages of maintenance
facilitation, it acts as a reservoir of insights for continuous improvement and a
testament to the project’s commitment to systematic development practices.

5



Chapter 2

Requirements Gathering

The development trajectory of this project has diligently adhered to the tenets
of the Software Engineering process, navigating through each essential phase.
Fundamental to this process is the imperative step of Requirement Engineering, a
critical phase wherein the intricate functionalities and operations of the platform
are exhaustively studied and engineered. This phase is strategically designed to
transcend potential limitations, creating a robust development plan.

During the Requirement Engineering phase, a comprehensive examination is
undertaken, and a list of crucial requirements is curated. Each requirement is
documented, and priorities are judiciously assigned to ensure a methodical and
strategic approach to development. This phase assumes paramount importance
as it forms the bedrock upon which the entire project is constructed. Any lapses
or oversights during this stage have cascading effects throughout the project,
potentially leading to complexities that are challenging to rectify in subsequent
phases.

The Development phase is executed next in strict adherence to the prioritized
list of requirements, commencing with those deemed of the highest priority and
cascading down to those of lower precedence. This phase, albeit seemingly straight-
forward, assumes a critical role in the project’s integrity. Any error or oversight at
this juncture reverberates throughout the project, necessitating particular attention
to detail and precision in implementation.

A SCRUM-like iterative approach has been incorporated into the development
process, entailing periodic deliveries in conjunction with a small presentation every
few weeks. This cyclic delivery framework facilitates ongoing assessments of the
project’s alignment with client requirements. Additionally, it offers a pragmatic
mechanism for the reevaluation of inserted and omitted requirements. This iterative
refinement process ensures the project’s adaptability to evolving client needs and
provides a mechanism for potential adjustments.

During the requirement engineering phase, a special focus was directed towards

6



Requirements Gathering

the formulation of an efficient and resilient database structure. Recognizing the
enduring nature of the chosen schema, which was intended to persist throughout
the project’s lifecycle, the in-depth analysis of database design became a linchpin
in the entire process. The rationale behind this scrutiny was to establish a schema
that would endure deployment with minimal alterations, mitigating the risk of data
loss or system disruptions although granting also optimal performances.

1. Enduring Database Schema Design: The selected schema for both the SQL
and NoSQL databases was envisaged to be a stalwart foundation for the
project. The longevity of this schema, intended to withstand the entire project
duration, underscored the need for meticulous planning and strategic decisions
during the requirement engineering process.

2. Data Allocation Strategy: A critical facet of the requirement engineering
process involved judiciously segregating the data into the SQL and NoSQL
databases. This allocation strategy was not only influenced by the nature of the
data but also by the performance requirements and scalability considerations
of the project. Key considerations included:

• SQL Database: Data that adhered to a structured format and necessitated
complex querying found its home in the SQL database. This included
information critical for relational operations and intricate transactional
processes.

• NoSQL Database: Unstructured or semi-structured data, requiring flexible
storage and rapid retrieval, was designated to the NoSQL database. This
encompassed datasets associated with device information, sensor data,
and other non-relational entities.

3. Long-Term Stability and Deployment Resilience: The decision-making process
in database design was profoundly influenced by the project’s commitment to
long-term stability and deployment resilience. The objective was to minimize
schema modifications post-deployment, ensuring a stable environment for the
entire project lifecycle.

4. Risk Mitigation through Minimal Schema Modifications: Recognizing the
inherent risks associated with altering the database schema during deployment,
a deliberate effort was made to keep modifications at a minimum. This strategic
approach sought to preclude the potential loss of data or disruptions that
could arise from extensive schema changes post-deployment.

5. Continuous Evaluation and Adaptation: While the initial database schema
provided a robust foundation, it was not static. The requirement engineering
process was designed to accommodate continuous evaluation and adaptation.

7



Requirements Gathering

This flexibility allows for refinement based on evolving project needs, with an
emphasis on minimal intrusion into the established database structure.

The processes of Requirement Engineering and Development coalesce to form a
robust and agile methodology. This approach not only safeguards against potential
pitfalls but also integrates flexibility to accommodate evolving project dynamics.
The planning and strategic decisions invested in the phase regarding database design
are emblematic of the project’s commitment to longevity, stability and performances.
By thoughtfully allocating data and minimizing schema modifications, the project
lays a resilient foundation, poised to endure the dynamic challenges of deployment
and beyond.

2.1 Requirement Engineering: A Comprehensive
Insight

1. Initiation and Exploration:

• The Requirement Engineering process commences with a comprehensive
initiation, where project stakeholders collaboratively explore the funda-
mental objectives and aspirations of the platform.

• A detailed analysis of both functional and non-functional requirements is
conducted, aiming to capture the breadth and depth of the envisioned
system.

2. Stakeholder Collaboration:

• Stakeholder engagement is important, involving constant collaboration to
gain insights into the nuanced requirements and expectations of end-users,
administrators, and other involved parties.

• Iterative workshops and meetings are conducted to foster a dynamic
exchange of ideas and to ensure a holistic understanding of diverse per-
spectives.

3. Requirement Elicitation Techniques:

• A myriad of elicitation techniques, including interviews, surveys, document
analysis, and brainstorming sessions, are judiciously employed to extract
implicit and explicit requirements.

• Prototyping and scenario-based discussions may be utilized to envision
user interactions and system responses.

4. Requirement Documentation:

8



Requirements Gathering

• The identified requirements are meticulously documented, employing
standardized templates to ensure clarity, coherence, and traceability.

• Clear categorization of requirements into functional, non-functional, and
domain-specific aspects is a hallmark of a well-structured requirement
document.

5. Prioritization and Validation:

• Prioritization mechanisms are employed to assign significance to each
requirement, facilitating a phased development approach that addresses
high-priority features first.

• Continuous validation with stakeholders ensures that the documented
requirements align with their expectations and the broader project goals.

6. Requirement Traceability:

• Robust traceability matrices are established to map requirements through
various stages of development, enabling systematic monitoring and verifi-
cation of their implementation.

In essence, the Requirement Engineering process unfolds as an intricate dance
between stakeholders and development teams, fostering a shared understanding of
the project’s objectives. This collaborative, iterative, and systematic approach lays
the groundwork for a development phase that is not just efficient but adaptive to
evolving project dynamics.

The subsequent Development phase, executed with the refined and prioritized
requirements in mind, builds upon this robust foundation, propelling the project
towards its envisioned fruition.

2.2 Initial Phase Gathering
During the initial requirements gathering phase of the project, a multitude of
considerations were addressed. The project’s scope can be broadly categorized
into four primary areas: frontend, backend (comprising TCP and REST API
components), devices, and databases (SQL, NoSQL, and In-RAM databases).

Frontend considerations involved the definition of main screens and function-
alities aimed at providing end-users with a meaningful and seamless experience.
Noteworthy pages include a Dashboard consolidating device information, a page for
viewing and creating devices, models, and products, a space for managing device
groups, and a dedicated area for creating, viewing, and modifying device updates.

Backend functionalities were carefully analyzed and specified, covering essential
aspects such as API calls for frontend management, data delivery to the frontend,

9



Requirements Gathering

API calls for data storage in databases, and coordination of communication with
diverse devices. Specifics for TCP servers included executed commands, data
transmission details, authentication protocols, and mechanisms for customizing
device parameters. Overall, also some performance requirements were specified in
order to guarantee a correct and fluid experience through the entire platform under
the possible stress loads it will have to face.

Device requirements were outlined comprehensively, encompassing communica-
tion protocols, stringent security measures to prevent data compromise, precautions
against impersonation risks, and custom command’s execution and proper authen-
tication. Detailed specifications were provided for sending and receiving data,
authentication methodologies and procedures for devices, and the specific data to
be transmitted from sensors and other pertinent features.

The database architecture was strategically planned, involving the definition
of three distinct databases - SQL (postgres), NoSQL (MongoDB), and In-RAM
(Redis) - each allocated for specific activities. The specifics of what data to store,
how to store it, and all relevant activities integral to effective database utilization
were specifically outlined.

This holistic approach during the requirements-gathering phase ensures a com-
prehensive blueprint for subsequent project development stages. By strategically
dissecting each facet, from user interface considerations to intricate backend and
database specifications, the project is poised for a streamlined and efficient execution
aligned with organizational objectives and end-user expectations.

The Requirements Engineering process was systematically conducted at various
stages, aligning with the commencement of new development phases. Prior to
initiating each phase, an assessment of existing requirements took place, ensuring a
comprehensive understanding of the accomplished work. Subsequently, new require-
ments were formulated in consideration of the forthcoming objectives. This iterative
approach allowed for concise refinement and adaptation of project requirements.

The initial phase of requirements discussion was centered around the frontend
development. Following the completion of frontend development, an evaluation of
these requirements occurred, accompanied by potential additions. Simultaneously,
discussions unfolded concerning the requirements for subsequent phases, such as
server development, database design, etc. A structured documentation approach
was adopted, utilizing a document to capture requirements. Due to the project’s
manageable scale, an organizational hierarchy was implemented, encompassing
macro categories, subcategories, and micro categories.

Macro categories served as overarching themes, for instance, "Frontend". Subse-
quently, subcategories, like "Web Pages" and "API Management", etc. facilitated
a more granular breakdown. Further classification into micro categories ensued,
addressing specific elements like the "Login Page Interface" and "Dashboard Inter-
face". This classification framework obviated the need for numerical enumeration,

10



Requirements Gathering

promoting a clear and intuitive categorization.
Priority discussions ensued after requirement formulation, elucidating the signif-

icance of each requirement within the broader context. Concurrently, preliminary
architectural sketches were crafted, offering a visual representation of the proposed
system’s structure and interactions between the different components. Also some
sketch of the anticipated frontend aesthetics has been generated for a complete
overview over the entire platform. Once the requirements engineering phase con-
cluded, development activities could commence, guided by the established and
prioritized set of requirements.

2.3 Protocol Definition
In delineating the communication protocols for the project, a crucial consideration
was the diverse array of devices anticipated to utilize the C client. These devices
inherently possessed distinctive characteristics, including varying resources, operat-
ing systems, and hardware capabilities. Consequently, the chosen communication
protocol needed to strike a delicate balance between ease of use and minimal
imposition on device resources during encryption and decryption processes.

Given the need for a secure yet resource-efficient solution, the optimal approach
involved steering clear of on-device encryption and decryption overhead. To enhance
security and minimize resource utilization, a pragmatic choice was the adoption of
an SSL protocol in conjunction with a TCP connection. This method preemptively
established a secure and encrypted channel, obviating the necessity for on-device
encryption and decryption, thereby mitigating resource strain. This configuration
ensured a seamless and secure data exchange between the client and server. To
enhance security measures and preempt potential external threats, a custom
certificate was integrated into the system. This certificate, generated beforehand,
was pre-loaded onto the device along with the C client before delivery. Additionally,
a custom certification authority is installed on the devices and undertakes the
authentication of the certificate’s validity before its usage. This proactive step not
only ensured the certificate’s trustworthiness but also guarded against potential
issues such as expiration. In scenarios where the device required a new certificate
and requested one from the server, the certification authority carefully verified its
validity. This comprehensive validation process aimed to thwart any attempts at
intercepting communication and modifying the certificate to gain unauthorized
control. Such robust security measures were implemented to fortify the integrity of
the communication channel and safeguard against external tampering.

Simultaneously, the formatting of messages for transmission over the network
emerged as another critical concern. Deliberating on resource efficiency, a thorough
exploration of various alternatives led to the endorsement of MessagePack, a

11



Requirements Gathering

lightweight library facilitating the transmission of JSON-formatted files. Notably,
this approach yielded a remarkable reduction, approximately 40%, in the overall
data size. This optimization proved especially beneficial for devices with limited
resources, as it curtailed the volume of packets to be transmitted. Consequently,
the chosen protocol and formatting strategy not only upheld security standards
but also demonstrated a judicious consideration of resource constraints, ensuring
optimal performance across a spectrum of devices. Furthermore, the selected
library not only prioritized efficiency during data encoding and transmission but
also facilitated a streamlined decode process. This attribute allowed for the easy
re-composition of the JSON file during decoding, enabling the server to effortlessly
save data in the database with minimal processing. This capability significantly
enhanced overall performance, particularly in scenarios involving multiple devices
concurrently communicating with the server, each sending diverse data for storage.
The result was a reduction in server overhead, as the unpacked data could be
swiftly saved directly to the databases without the need for additional processing.
This dual focus on security and performance underscored the project’s commitment
to optimizing communication processes across varied devices.

12



Chapter 3

Communication Protocols

In the context of the project, the selection of a communication protocol held
important significance, especially considering the diverse nature of the targeted
embedded devices. Ranging from Raspberry Pis to other embedded systems
characterized by limited resources and simplistic operating systems, the paramount
need was to identify a protocol that struck a harmonious balance between simplicity,
speed, and lightweight operation.

The evaluation process involved a meticulous analysis of various libraries, with
a primary focus on achieving an equilibrium between performance, reliability,
and security. A critical consideration in this assessment was the imperative of
ensuring secure communication without unduly burdening devices with excessive
overhead. The overarching objective was to identify a protocol adept at transmitting
data reliably while maintaining optimal performances and resource utilization,
particularly for devices with constrained resources.

The best solution emerged through the amalgamation of two distinct solutions:
SSL for security, creating an encrypted channel for secure data transmission, and
MessagePack for data encoding. This dual-protocol approach not only ensured the
establishment of a secure channel but also facilitated the encoding of data in a
manner that minimized packet sizes, thereby enhancing the overall performances of
data transmission. This strategic combination addressed the project’s fundamental
requirements for secure and resource-efficient communication across a spectrum of
different embedded devices.

3.1 Reliability and Security
Transport Layer Security (TLS) stands as a cryptographic protocol designed to se-
cure a communication channel over computer networks. It primarily ensures privacy
and data integrity between two applications, preventing potential eavesdropping

13



Communication Protocols

and tampering.
Key Features of TLS:

1. Encryption: TLS employs advanced encryption algorithms to protect data dur-
ing transit. This ensures that even if intercepted, the data remains unreadable
without the appropriate decryption key.

2. Authentication: TLS facilitates mutual authentication between the client and
server, assuring both parties of each other’s legitimacy. This process involves
the exchange of digital certificates to verify identity.

3. Data Integrity: TLS guarantees the integrity of transmitted data. Through
cryptographic hash functions, it detects any unauthorized modifications, en-
suring that the received data is identical to what was sent.

4. Forward Secrecy: TLS supports forward secrecy, a feature that generates
unique session keys for each connection. Even if one session key is compromised,
past and future communications remain secure.

5. Compatibility: TLS is widely supported and integrated into various web
browsers, servers, and applications, making it a versatile and interoperable
choice for secure communication.

In the realm of secure communication between an embedded C client and a
Node.js server, the choice of the underlying protocol plays a pivotal role. The
selected protocol must not only ensure the confidentiality and integrity of data
but also guard against various malicious activities such as impersonation, data
modification, or deletion. TLS (Transport Layer Security) stands out as a robust
choice, providing encryption to ensure data privacy, strong mutual authentication
between the client and server, broad support, and compatibility. Its established
protocols and community scrutiny contribute to its reliability. While TLS may
introduce a slightly higher computational overhead, the trade-off in terms of
enhanced security makes it a favorable option. Other alternatives, such as SSH
(Secure Shell) and DTLS (Datagram Transport Layer Security), offer their own
set of advantages but may come with considerations like compatibility issues and
limited support in specific environments. In the rapidly evolving landscape, newer
protocols like QUIC (Quick UDP Internet Connections) bring features such as
low-latency connections but may face challenges related to compatibility. Overall,
the careful consideration of the strengths and limitations of each protocol is crucial
in ensuring a secure and efficient framework.

• TLS (Transport Layer Security)

– Advantages:

14



Communication Protocols

∗ Robust encryption ensuring data privacy.
∗ Strong mutual authentication between client and server.
∗ Broad support and compatibility.
∗ Established protocols and community scrutiny.

– Considerations:
∗ Slightly higher computational overhead.

• SSH (Secure Shell)

– Advantages:
∗ Secure remote access and encrypted communication.
∗ Strong encryption and user authentication.

– Considerations:
∗ Compatibility issues with specific applications.
∗ Primarily designed for terminal-based interactions.

• DTLS (Datagram Transport Layer Security)

– Advantages:
∗ TLS adapted for datagram-based communications.
∗ Ideal for real-time applications.

– Considerations:
∗ Not as widely supported as traditional TLS.
∗ Potential challenges in non-TCP environments.

• QUIC (Quick UDP Internet Connections)

– Advantages:
∗ Designed for low-latency connections.
∗ Built-in multiplexing and encryption.

– Considerations:
∗ Relatively newer protocol.
∗ May face compatibility challenges.

Selection considerations taken into account:

1. Security: Prioritize protocols offering robust encryption and authentication.

2. Compatibility: Assess the compatibility with the specific requirements of the
C client and Node.js server.

15



Communication Protocols

3. Community Support: Consider protocols with a strong community for ongoing
scrutiny and updates.

4. Resource Constraints: Evaluate the computational overhead and resource
requirements, particularly for embedded systems.

In conclusion, while TLS remains a strong contender for its established security
features and widespread support, the choice should align with the project’s unique
demands, taking into account compatibility, resource constraints, and specific
communication requirements between the C client and Node.js server.

While it’s possible to implement encryption methods at the client level, particu-
larly in the C client for embedded systems, this practice is discouraged for several
reasons:

1. Security Risks: Implementing encryption at the client level introduces the
risk of weaker, less-vetted encryption methods. TLS benefits from extensive
community scrutiny and standardized protocols, ensuring a higher level of
security.

2. Limited Customization: Client-level encryption may lack the customization
options provided by widely used protocols like TLS. This could lead to subop-
timal security configurations tailored to the specific needs of the embedded
system.

3. Maintenance Challenges: Client-level encryption often requires manual updates
and maintenance. TLS, being a standardized protocol, is easier to maintain
and update across various devices.

4. Interoperability Concerns: Implementing custom encryption methods may
result in compatibility issues with other systems and services, hindering
interoperability.

5. Community Auditability: TLS is widely used and subjected to continuous
community auditability, ensuring vulnerabilities are promptly identified and
addressed. Custom encryption methods lack this level of scrutiny.

In conclusion, despite the computational overhead associated with TLS, its
widespread adoption, community auditability, and adaptability make it a superior
choice over client-level encryption. The standardized nature of TLS, along with
its security features and community support, ensures a more robust and secure
protocol for embedded systems, even those with limited resources.

16



Communication Protocols

3.2 Command Execution and Data Retrieval
In the context of communication between a server and an embedded system, the
choice of a suitable data serialization format is crucial, particularly when dealing
with resource-constrained environments. MessagePack stands as a compelling
solution, providing a lightweight binary format for serializing data. It is designed
to be both simple and fast, resulting in reduced payload sizes and improved
transmission speeds. The binary format of MessagePack allows for more efficient
encoding and decoding, making it especially advantageous in scenarios where
resources are limited. Compared to not using any specific serialization format,
MessagePack introduces structure to the data, aiding in its interpretation on both
ends of the communication.

Below is a table comparing MessagePack with other alternatives:

• libcurl

– Pros:
∗ Wide protocol support.
∗ Mature and widely used.
∗ Cross-platform.

– Cons:
∗ Can be perceived as heavyweight.

• cJSON

– Pros:
∗ Lightweight JSON parsing.
∗ Simple API.

– Cons:
∗ Limited to JSON handling.

• Mongoose

– Pros:
∗ Networking library.
∗ Lightweight and easy to use.

– Cons:
∗ May be less feature-rich.

• Jansson

17



Communication Protocols

– Pros:
∗ C library for JSON.
∗ Well-documented.

– Cons:
∗ Focuses solely on JSON.

• libmicrohttpd

– Pros:
∗ Embeddable HTTP server.
∗ Lightweight.

– Cons:
∗ May not be feature-rich.

• ZeroMQ

– Pros:
∗ High-performance messaging.
∗ Supports various patterns.

– Cons:
∗ Requires understanding of patterns.

• nghttp2

– Pros:
∗ Implements HTTP/2 and HTTP/1.1.
∗ Efficient communication.

– Cons:
∗ Focused on HTTP protocols.

• JSON

– Pros:
∗ Human-Readable.

– Cons:
∗ Larger Payload.
∗ Additional data overhead.

• XML

18



Communication Protocols

– Pros:
∗ Standardized.
∗ Human-Readable.

– Cons:
∗ Verbosity.
∗ Resource-intensive.

• MessagePack

– Pros:
∗ Efficient binary serialization.
∗ Compact data representation.
∗ Supports multiple languages.

– Cons:
∗ May require additional setup.

In addition to its advantages in compactness and speed, MessagePack intro-
duces ease of use in the decoding process, particularly beneficial for server-side
operations. Its binary format facilitates straightforward decoding into a JSON-like
structure, streamlining the process of interpreting and storing data in a NoSQL
database. This inherent compatibility simplifies the integration of MessagePack
into existing systems, as the server can effortlessly unpack the data and directly
use the resulting JSON-like object for storage or further processing. This seamless
decoding capability enhances the overall performances of data processing workflows,
making MessagePack an even more attractive choice for scenarios where simplicity
and resource optimization are paramount concerns.

19



Chapter 4

Architecture Development

In the ever-evolving landscape of software development, crafting a robust and
scalable infrastructure is pivotal for the success of an application. This document
delineates the architectural blueprint of a sophisticated software application, lever-
aging React.js for the frontend and Node.js for the backend, specifically divided
into two distinct parts – a RESTful API employing Express.js and Passport for
authentication, and a TCP connection handler for real-time communication.

The frontend of the application is developed using React.js, a widely adopted
JavaScript library renowned for building responsive and dynamic user interfaces.
React’s component-based architecture facilitates the creation of reusable UI ele-
ments, promoting modularity and maintainability. The virtual DOM mechanism
ensures optimal performance by minimizing unnecessary re-rendering. Key Features
of React.js Frontend:

1. Component-Based Structure: Dividing the UI into self-contained components
allows for better organization, reusability, and easier debugging.

2. State Management: Utilizing React’s state management ensures efficient
handling of the application’s state, leading to seamless data flow and synchro-
nization.

3. Virtual DOM Optimization: React’s virtual DOM minimizes DOM manipula-
tion, enhancing performance and delivering a smoother user experience.

4. Reusable Components: Component reusability reduces redundancy in code,
promoting a cleaner and more maintainable codebase.

5. Declarative Syntax: React’s declarative syntax simplifies the process of un-
derstanding and maintaining the code, contributing to improved developer
productivity.

20



Architecture Development

6. Community Support: The extensive React.js community provides a plethora
of libraries, tools, and resources, facilitating rapid development and issue
resolution.

The backend architecture is powered by Node.js, offering a scalable and efficient
runtime environment. The backend is subdivided into two components, catering to
RESTful API requirements and real-time TCP connections.

RESTful API with Express.js and Passport features:

1. Express.js Framework: Express.js is employed to establish a robust RESTful
API, simplifying route handling, middleware integration, and request/response
processing.

2. Passport for Authentication: Passport.js, a versatile authentication middle-
ware, ensures secure and customizable user authentication strategies, accom-
modating various authentication methods.

3. Modular Routing: The API is structured with modular routing, enhancing
code readability and facilitating the addition of new features without disrupting
existing functionality.

TCP connection handling features:

1. Scalable TCP Server: The TCP connection handler is designed to manage
real-time communication efficiently, providing a scalable solution for handling
concurrent connections.

2. Event-Driven Architecture: Leveraging Node.js’s event-driven architecture
ensures a non-blocking, highly responsive system for handling asynchronous
TCP communication.

3. WebSocket Integration: For bidirectional communication, WebSocket integra-
tion is implemented to facilitate real-time updates and notifications.

Architecture’s advantages:

1. Full Stack JavaScript: Utilizing JavaScript across the entire stack ensures
consistency, streamlining development, and promoting code sharing.

2. Real-Time Capabilities: The integration of a TCP connection handler enables
real-time features, fostering responsive and interactive user experiences.

3. Modularity and Reusability: The use of React.js and Node.js encourages
modular development, enhancing code maintainability, and supporting future
scalability.

21



Architecture Development

4. Community and Ecosystem: Both React.js and Node.js boast vibrant commu-
nities, providing access to an extensive ecosystem of libraries, tools, and best
practices.

5. Performance Optimization: React.js’s virtual DOM and Node.js’s non-blocking
I/O contribute to a performant application, ensuring responsiveness under
varying workloads.

Overall, the proposed architecture leverages the strengths of React.js and Node.js
to deliver a powerful, scalable, and maintainable software application. By carefully
balancing frontend and backend technologies, the architecture is poised to meet
the challenges of modern web development and provide a foundation for future
enhancements.

The integration of frontend and backend components is a critical aspect of
developing a cohesive and efficient web application. In this section, we delve into
the formal process of linking the frontend, developed using React.js, with the
backend, implemented in Node.js, Express.js, and Passport.

1. RESTful API Endpoint Consumption: The frontend, powered by React.js,
communicates with the backend through HTTP requests to the RESTful API
endpoints. These endpoints act as gateways, allowing the frontend to interact
with the server’s resources and functionalities.

2. Axios for HTTP Requests: To facilitate seamless communication, Axios, a
promise-based HTTP client, is often employed. It simplifies the process of
making asynchronous requests to the backend, handling responses and errors
elegantly.

3. State Management: React’s state management, including the use of hooks like
useState and useEffect, allows the frontend to maintain dynamic content and
respond to changes in data received from the backend. Stateful components
are updated based on the information fetched from the server.

4. Authentication Flow: For secure interactions, the frontend follows a well-
defined authentication flow. User authentication, managed by Passport.js on
the backend, involves the issuance and verification of tokens, typically JWTs
(JSON Web Tokens). These tokens are sent with each request to authenticated
endpoints, ensuring secure communication.

5. Handling Backend Responses: Responses from the backend are processed
within the frontend components. This includes handling successful data
retrievals and managing errors gracefully. Feedback to the user is provided,
ensuring a seamless and transparent user experience.

22



Architecture Development

The integration of frontend and backend components forms a unified ecosystem
where user interactions seamlessly translate into server actions, and real-time up-
dates enhance the overall user experience. The linkage of React.js with Node.js,
Express.js, and Passport ensures a responsive, secure, and feature-rich web applica-
tion that meets the demands of modern user expectations.

The deployment strategy for the project encompasses the utilization of Docker
containers to run distinct instances of the backend, frontend and the three databases.
This section delineates the rationale behind containerization, its advantages, and
how Docker facilitates the swift and efficient orchestration of services.

1. Containerization Strategy.

• Purposeful Separation: Each core component of the system, including the
backend, frontend, and databases, operates within dedicated Docker con-
tainers. This purposeful separation enhances maintainability, scalability,
and facilitates independent updates and scaling for each service.

• Scalability and Resource Allocation: Containerization enables a modular
approach to scalability. Services can be independently scaled based
on demand, and resources can be efficiently allocated to each container,
preventing resource contention and optimizing overall system performance.

2. Docker: A Brief Overview.

• Containerization with Docker: Docker provides a robust containerization
platform that encapsulates applications and their dependencies into iso-
lated units called containers. These containers ensure consistency across
different environments, mitigating the infamous "it works on my machine"
problem.

• Advantages of Docker:
– Portability: Docker containers can run consistently across various

environments, mitigating compatibility issues.
– Isolation: Each container operates independently, preventing interfer-

ence and ensuring the encapsulation of dependencies.
– Efficiency: Containers share the host OS kernel, optimizing resource

utilization and reducing overhead.
– Rapid Deployment: Docker’s lightweight nature enables swift deploy-

ment, configuration, and scaling of services.

3. Docker Compose for Service Orchestration.

• Streamlined Configuration: Docker Compose, a tool for defining and
running multi-container Docker applications, is employed for orchestrating

23



Architecture Development

the simultaneous deployment of multiple containers. This streamlines the
configuration process and ensures a synchronized launch of services.

• Simplified Management: Docker Compose simplifies the management of
interconnected services. The declarative YAML syntax allows for the
definition of service dependencies, easing the coordination of the backend,
frontend, databases, and Grafana instances.

4. Benefits of Containerized Deployment.

• Rapid Development Cycles: Containerization promotes an agile devel-
opment cycle. Changes to one service can be implemented and tested
independently, accelerating the overall development process.

• Resource Efficiency: By sharing the host OS kernel, Docker containers
consume fewer resources compared to traditional virtualization methods.
This enhances overall system efficiency and resource utilization.

• Scalability and Elasticity: Docker’s container-centric architecture facili-
tates seamless scalability. Services can be scaled horizontally or vertically
based on demand, ensuring optimal performance under varying workloads.

In conclusion, the adoption of Docker containers for the deployment of backend,
frontend, and databases aligns with the project’s commitment to agility, efficiency,
and scalability. Docker’s portability, isolation, and rapid deployment capabili-
ties contribute to a streamlined development and operational process. The use
of Docker Compose further enhances the orchestration and synchronization of
services, simplifying the management of interconnected components. Embracing
containerization stands as a strategic decision to foster an agile and efficient system
deployment, ensuring the project’s adaptability and responsiveness to evolving
requirements.

24



Architecture Development

User

Frontend

Interaction with Frontend
/

Visualize results

RestAPIServer

Send Commands and Data to REST API
/

Receive Device Information

PostgreSQLDB

Store Information in PostgreSQL
/

Retrieve Information from PostgreSQL

Redis

Send update info

TCPServer

Send Commands'Status
/

Receive Commands' Status

Store device status

Devices

Send Commands to Devices
/

Receive Command Status from Devices

Send Data to REST API Server

Heartbeat Messages
/

Commands to TCP Server

MongoDB

Receive Sensor Data
from MongoDB

Figure 4.1: Architecture Interactions’ graph

As depicted in Figure 4.1, the user engages directly with the frontend, navigating
through various screens to visualize data. From the web interface, users can interact
with different components through API calls, enabling actions such as reviewing
statistics, uploading updates, and checking available updates. The frontend, in
turn, communicates with the REST API server to send requests for data retrieval
or storage.

The REST API server serves as an essential point in the architecture. It
establishes communication with the TCP server, facilitating the transmission of
commands. This connection, although not direct, was made utilizing the Redis
database, however this approach was not ideal due to the implementation and
timing requirements, so a different approach was used, the event emitter module
provided by Nodejs itself. Then the REST API server also interfaces with the
databases, including MongoDB, to retrieve sensor data for presentation to the
user, and PostgreSQL for managing information related to devices, users, and
more. Moreover, the REST API server accepts API calls from devices, enabling
the storage of data in the MongoDB database.

Concurrently, the TCP server manages direct communication with devices. It is
responsible for sending commands and receiving back the execution statuses. Lastly,
the devices play a crucial role in the system. They can transmit the data collected
by the sensors to the REST API server for storing in the persistent database,
execute the commands received, and periodically dispatch heartbeat messages to
update their online and activity status to the TCP server.

This architectural arrangement establishes a robust and interconnected system,
enabling seamless user interaction, data transmission, and command execution

25



Architecture Development

across different components of the platform.

4.1 Backend with Node.js
The backend engineering phase is pivotal in the development of a robust and scalable
web application. This document outlines the meticulous engineering process using
Node.js, Express.js, and Passport, focusing on the creation of a RESTful API and
a TCP server for handling device connections.

RestAPI development:

1. Project Setup: The engineering process begins with setting up a Node.js project,
utilizing tools like npm for package management. Express.js is integrated to
facilitate the rapid creation of robust and scalable server-side applications.

2. Routing and Endpoint Design: RESTful API routes are meticulously designed
to align with the application’s functionalities. Each endpoint corresponds to a
specific action or resource, providing a clear and logical structure to the API.

3. Middleware Integration: Express.js middleware, including those for error
handling, authentication, and request parsing, are seamlessly integrated. Pass-
port.js, a powerful authentication middleware, is employed to secure API
endpoints through strategies such as JWT (JSON Web Token).

4. Database Integration: Database connections, often using popular databases like
MongoDB or PostgreSQL, are established. Mongoose or Sequelize, respective
Node.js Object Data Modeling (ODM) and Object-Relational Mapping (ORM)
libraries, assist in defining data models and interacting with the database.

5. Security Measures: Security considerations, including input validation, encryp-
tion, and adherence to best practices like the principle of least privilege, are
integrated to fortify the API against common vulnerabilities.

6. Testing and Documentation: The API is rigorously tested using tools like
Mocha or Jest, ensuring the correctness of each endpoint. Documentation,
often generated using tools like Swagger, is created to aid developers in
understanding and utilizing the API effectively.

TCP connection handling:

1. Socket Management: The TCP server is engineered to manage socket connec-
tions efficiently. Node.js’s native net module is commonly used for handling
raw TCP connections.

26



Architecture Development

2. Communication Protocols: Custom communication protocols are established
for seamless interaction between devices and the server. JSON-based or binary
protocols, depending on the application requirements, are implemented.

3. Event-Driven Architecture: The server adopts an event-driven architecture,
leveraging Node.js’s asynchronous capabilities to handle multiple device con-
nections simultaneously. This ensures optimal performance even under heavy
loads.

4. Error Handling and Recovery: Comprehensive error handling mechanisms are
implemented to identify and address issues with device connections promptly.
Automatic recovery mechanisms are designed to maintain continuous operation.

5. Security Measures: Security considerations extend to the TCP server, including
encryption of data in transit and strict validation of incoming connections to
prevent unauthorized access.

6. Scalability and Load Balancing: The server architecture is designed with
scalability in mind. Load balancing strategies, possibly utilizing tools like
nginx or built-in clustering in Node.js, are considered for even distribution of
incoming device connections.

The backend engineering phase, utilizing Node.js, Express.js, and Passport,
ensures the creation of a powerful and secure RESTful API and a responsive TCP
server. Meticulous planning and adherence to best practices contribute to the
development of a backend system that is reliable, scalable, and capable of handling
the diverse demands of a modern web application.

4.2 Frontend with React.js
The frontend engineering process plays a crucial role in the development of a
modern application, and React.js stands out as a key choice for creating a dynamic
and highly responsive user interface. This document focuses on the component
development phase, highlighting best practices and methodologies adopted in the
engineering context.

1. Conceptual Decomposition: The initial phase involves the conceptual decompo-
sition of the user interface into distinct elements, reflecting the modular nature
of React.js. This process enables a clear understanding of functionalities and
data flows within the application.

2. Component Design: Each component is designed independently, considering
specific responsibilities and responsiveness to user inputs. Design is carried
out with reusability in mind, promoting a scalable and maintainable structure.

27



Architecture Development

3. Style and Layout: The application of style rules and layout design is integrated
during the engineering phase. The use of methodologies such as CSS-in-JS or
the adoption of CSS preprocessors contributes to maintaining a cohesive style
and facilitates the management of layout dynamics.

4. State Management: The implementation of state management through React
features, such as useState or useReducer, is integrated to ensure efficient and
predictable handling of interface updates.

5. Navigation and Routing: For complex applications, the navigation and routing
system is designed using common libraries like React Router. This allows for
clean and intuitive management of navigation between different views of the
application.

6. Testing and Validation: Each component undergoes targeted testing procedures
to ensure its robustness and compliance with specifications. The adoption
of testing frameworks like Jest and the integration of static analysis tools
contribute to reducing the presence of bugs and improving overall code quality.

The main advantages of using React.js are:

1. Modularity and Reusability: React’s composable nature allows the creation of
standalone components, fostering modularity and code reuse.

2. Development Efficiency: The state management system and the presence of a
virtual DOM enhance development efficiency, allowing developers to focus on
application logic.

3. Active Community and Resources: React’s extensive developer community
provides a rich source of resources, documentation, and support, facilitating
issue resolution and the adoption of best practices.

4. Agility in Change: The modular structure simplifies the introduction of changes
and adaptation to new features without compromising system integrity.

The frontend engineering phase with React.js is a structured and methodical
process aimed at realizing a sophisticated and highly performant user interface.
Adopting the outlined best practices will contribute to ensuring code quality,
long-term maintainability, and user satisfaction.

28



Chapter 5

Backend Architecture

The backend infrastructure of the project plays a primary role in orchestrating
seamless communication between the frontend and connected devices. This section
delves into a detailed overview of the backend architecture, adopting a bifurcated
approach to enhance performance and streamline functionalities.

1. RESTful API Server: Managing Frontend and Device Interactions. The
backend is specifically segregated into two distinctive servers, each assigned a
specific role. The first, tasked with handling RESTful API requests, serves
a dual purpose. It manages interactions with the frontend, addressing user-
driven actions like login, device information display, and the creation of
device groups. Simultaneously, it administers device-related tasks such as
authenticating devices during the initial connection, negotiating configuration
details for first-time setup, and processing incoming sensor information.

2. TCP Server: Dedicated Device Communication Hub. In contrast, the second
server specializes in managing TCP connections with individual devices. This
server maintains persistent connections with each device, facilitating the
exchange of custom commands, periodic ping commands to ascertain device
status, and other device-specific communications.

The decision to adopt a dual-server architecture stems from the need to prevent
functional overlap and potential server overload caused by diverse request types.
This approach ensures clarity in managing traffic patterns, distinguishing between
user-oriented requests and device-specific commands.

Both servers are implemented in Javascript, fostering a unified coding structure.
This strategic decision not only streamlines the development process but also
contributes to a cohesive system architecture. In particular, Javascript is employed
for TCP connections to harness the advantages of single-threaded execution.

29



Backend Architecture

In the TCP server handling device connections, the use of a single thread
emerges as a crucial optimization strategy. This singular thread manages all
requests emanating from various devices, eliminating the overhead associated with
context switching. This proves especially vital in scenarios with a high influx of
requests, preventing potential bottlenecks, server crashes, or unintended errors.

By distributing functionalities across two servers, the backend can comprehen-
sively manage the diverse nature of incoming and outgoing traffic. The API server
focuses on generalized data and information processing, while the TCP server excels
in handling real-time, device-specific interactions.

The backend architecture, with its dual-server model and strategic use of
Javascript, epitomizes a commitment to performance optimization. This spe-
cialized approach ensures that each server excels in its designated role, fostering
efficient traffic management, reducing potential points of failure, and enhancing
the overall robustness of the backend infrastructure.

Here is a little visualization of the interactions between the different components
involved:

Frontend

RestAPIServer

Send Commands and Data to REST API
/

Receive Device Information

TCPServer

Send Commands'Status
/

Receive Commands' Status

PostgreSQLDB

Store Information in PostgreSQL
/

Retrieve Information from PostgreSQL

Devices

Send Data to REST API Server
/

Receive Commands from REST API Server

MongoDB

Receive Sensor Data
from MongoDB

Figure 5.1: Architecture REST API Interactions’ graph

As illustrated in Figure 5.1, the REST API server assumes a central role within
the system, serving as a primary intermediary among various components. Its
primary responsibility lies in handling requests originating from the frontend,
facilitating the visualization of required data. Upon receiving commands, the
REST API server orchestrates the forwarding of requests to either the MongoDB
database for sensor data statistics or the PostgreSQL database for device or user
information. Subsequently, it returns the retrieved data to the frontend for user

30



Backend Architecture

consumption.
Furthermore, the REST API server takes charge of device authentication through

API calls. It acts as the recipient of sensor data from devices, facilitated by
additional API calls. Notably, the server was used to engage in interactions with
the Redis database to transmit the commands from the Rest API server, however
this was no longer used due to some constraints, so another approach was used, the
event emitter approach provided by Nodejs. This approach allow the TCP server
to listen for events coming from the Rest API server and forward the commands
in real time to the devices allowing the immediate execution of the command on
the device itself. In this context, the Redis database functions as a repository
for update packages, specifically those requiring frequent downloads by numerous
devices and other transitive information.

This comprehensive interaction framework positions the REST API server
as a pivotal component in managing data flow, authentication processes, and
communication across the various segments of the platform.

TCPServer

APIServer

Send Commands'Status
/

Receive Commands'

Devices

Send Commands to Devices
/

Receive Command Status from Devices

Heartbeat Messages
/

Commands to TCP Server

Figure 5.2: Architecture TCP Server Interactions’ graph

As depicted in Figure 5.2, the TCP server stands as a fundamental component
within the system, designated with the task of managing interactions with the
connected devices. Its primary responsibilities encompass the retrieval and trans-
mission of commands to be executed by the devices. The TCP server acts as an
intermediary for forwarding commands to devices and subsequently storing the
status of command executions if requisite.

In addition to its role in command propagation, the TCP server plays an
important role in monitoring the vitality of connected devices. It achieves this
through the reception of heartbeat packets from devices, signifying their operational
status. This mechanism ensures the continuous awareness of the server regarding
the status of individual devices, allowing for timely responsiveness and intervention
as needed.

31



Backend Architecture

Moreover, the TCP server is intricately involved in the orchestration of bidirec-
tional communication. It manages the transmission of commands to devices and
concurrently oversees the retrieval of status updates concerning the execution of
these commands. This dual functionality positions the TCP server as a critical
element in maintaining the real-time synchronization and operational integrity of
the system.

RestAPIServer

EventEmitter

Send Commands'Status
/

Receive Commands' Status

TCPServer

Send Commands'Status
/

Receive Commands'

Figure 5.3: Architecture Backend’s graph

Within the illustrated architectural framework, as depicted in Figure 5.3, a
pivotal facet revolves around the intricate interplay between the TCP server and
the REST API server. Their communication is specialized, primarily oriented
towards the exchange of commands and the subsequent receipt of command results.
Notably, this interaction does not follow a direct trajectory; instead, it is mediated
through the adept utilization of the event emitter library inherent to Node.js.

In this orchestrated communication model, a dedicated listener is established on
the TCP server, perpetually attuned to potential commands emanating from the
REST API server. Upon receipt of a command, the TCP server promptly relays it
to the client, facilitating immediate execution. Simultaneously, the result of the
operation is conveyed back to the TCP server, streamlining the entire process. This
methodology circumvents the need for polling a predetermined list of commands,
thereby enhancing operational efficiency and promoting instantaneous command
execution.

Crucially, this communication paradigm eschews the initial employment of Redis
as an intermediary communication bridge. Instead, it adopts an event-driven

32



Backend Architecture

approach, leveraging the event emitter library. This strategic choice is poised
to further augment the platform’s performance, offering the distinct advantage
of executing commands promptly, devoid of any latency associated with waiting
periods.

This refined event-driven mechanism not only expedites command execution but
also contributes to the optimization of platform performance. The elimination of
polling-related delays ensures that commands are processed immediately, aligning
seamlessly with the real-time operational demands of the system.

In essence, the adoption of this event-driven architecture stands as a testament
to the platform’s commitment to optimal performance and responsiveness. The
deliberate choice to forego traditional intermediary solutions in favor of a more
direct, event-based approach underscores the platform’s agility and adaptability
within a dynamic operational context.

5.1 REST API Management
In the foundational phase of creating the backend server dedicated to handling
RESTful API requests, meticulous consideration is given to the selection of key
Javascript libraries. Express, Morgan, CORS, and Passport collectively form a
robust ensemble to rapidly process a spectrum of incoming requests, ensuring
seamless interactions not only with the frontend but also with other pertinent
components of the system.

Components overview:

1. Express: A Foundation for Web Applications. At the core of the REST API
server lies Express, a powerful and widely adopted web application framework
for Node.js. Express simplifies the process of defining routes, handling HTTP
requests, and structuring responses. Its minimalist design fosters flexibility,
enabling developers to construct a tailored architecture that aligns precisely
with project requirements.

2. Morgan: Streamlining Logging Capabilities. Augmenting the robustness of the
server, Morgan is incorporated to provide a streamlined logging mechanism.
This library facilitates the generation of log outputs, aiding in the systematic
tracking of incoming requests. Morgan’s customizable logging capabilities
prove invaluable for debugging, performance monitoring, and the generation
of insightful analytics.

3. CORS: Mitigating Cross-Origin Resource Sharing Concerns. Cross-Origin
Resource Sharing (CORS) intricacies are effectively addressed through the
integration of the CORS library. CORS facilitates secure communication
between the frontend and backend, overcoming browser restrictions related

33



Backend Architecture

to cross-origin requests. By strategically configuring CORS, the server en-
sures that only authorized origins can access its resources, fortifying security
protocols.

4. Passport: Enabling Authentication Strategies. Passport.js emerges as a
pivotal component for implementing authentication strategies. Its modular
and adaptable architecture supports the integration of various authentication
mechanisms, including username/password, social logins, and more. Passport
seamlessly integrates with Express, streamlining the process of authenticating
users and safeguarding access to sensitive resources.

Strategic implementation:

1. Comprehensive Request Handling: The amalgamation of Express, Morgan,
CORS, and Passport empowers the server to comprehensively handle incoming
requests. Whether originating from the frontend or other system components,
the server processes requests optimally, orchestrating appropriate responses
based on the nature of the user’s needs.

2. Modular Extensibility: The modular nature of the selected libraries enhances
the server’s extensibility. Future adaptations and integrations can be seamlessly
implemented without compromising the existing architecture. This flexibility
is pivotal for accommodating evolving project requirements and ensuring
scalability.

The meticulous selection of Express, Morgan, CORS, and Passport for the
RESTful API server reflects a commitment to establishing a synergistic and resilient
foundation. This framework not only ensures effective communication with the
frontend but also establishes a modular infrastructure poised for adaptability and
growth. By strategically leveraging these libraries, the server stands prepared to
navigate the intricacies of API management with precision and reliability.

In tandem with the communication orchestration handled by Express, Morgan,
CORS, and Passport, the backend architecture incorporates additional libraries to
seamlessly integrate with SQL and MongoDB databases. This strategic integration
is essential for robust data management, encompassing operations such as retrieval,
storage, and processing.

In tandem with the communication orchestration handled by Express, Morgan,
CORS, and Passport, the backend architecture incorporates additional libraries to
seamlessly integrate with SQL and MongoDB databases. This strategic integration
is essential for robust data management, encompassing operations such as retrieval,
storage, and processing.

Knex: SQL Database Interaction. The utilization of Knex as a SQL query
builder and migrator underscores its pivotal role in ensuring the coherence and

34



Backend Architecture

integrity of the SQL database. Key functionalities of Knex within this context
include:

• Database Schema Management: Knex plays a critical role in guaranteeing
the existence of requisite tables within the SQL database. Upon receiving
requests, it verifies the presence of necessary tables and dynamically generates
them if absent. This proactive approach precludes potential issues during data
retrieval or storage operations.

• Request Processing: Incoming requests directed at the SQL database are
meticulously processed by Knex. It extracts pertinent information from
requests, optimizing the data for seamless interaction with the database.
This intermediate processing step contributes to the refinement of subsequent
operations.

• Data Retrieval and Storage: Knex acts as the bridge between the backend
server and the SQL database, facilitating the retrieval and storage of data.
By interfacing with the database, Knex ensures that requested information is
accurately retrieved and appropriately stored, maintaining the integrity of the
database.

• User Authentication Support: User details, required for Passport library
authentication, find a secure repository within the SQL database. Knex
oversees the storage and retrieval of user-related data, enhancing the security
framework by ensuring that only authorized users gain access to sensitive
functionalities.

MongoDB Library: Managing NoSQL Data Flow. In parallel to Knex, the
MongoDB library assumes a central role in handling NoSQL data flow, primarily
interfacing with MongoDB. Its functionalities encompass:

• Data Storage for Devices: Incoming data from devices, encoded in MessagePack
format, is decoded and seamlessly stored in the MongoDB database. This
process ensures the persistence of device-generated information, contributing
to a comprehensive historical record.

• Efficient Query Processing: MongoDB’s query capabilities are harnessed to
promptly process requests related to device data. The library navigates the
intricacies of MongoDB, providing optimal query execution and enhancing the
backend’s responsiveness to requests.

The integration of Knex for SQL database operations and the MongoDB library
for NoSQL data flow establishes a cohesive and versatile data management infras-
tructure. This dual approach not only ensures the reliability and security of SQL

35



Backend Architecture

database interactions but also enables quick handling of device-generated data in
the MongoDB database. By strategically employing these libraries, the backend
not only manages the present data needs but also lays the groundwork for scalable
and adaptive data operations in the future.

5.2 Device-Specific Information Handling
The TCP server, constituting the second pivotal component of the backend infras-
tructure, delineates a distinct set of functionalities compared to its REST API
counterpart. Tailored for handling individual device connections, this segment of
the server relies on a unique set of libraries, namely TLS, FS, and MessagePack-Lite,
each playing a specialized role to ensure secure and efficient communication.

TLS Library: Fortifying Communication Channels. At the heart of securing
communication between the server and individual devices lies the TLS (Transport
Layer Security) library. Its multifaceted role encompasses:

• Secure Channel Establishment: TLS, coupled with the server’s certificate
and key files, orchestrates the establishment of a secure channel. This secure
channel is instrumental in fostering encrypted communication between the
TCP server and connected devices, safeguarding data against unauthorized
access or interference.

• Data Encryption: Leveraging TLS, the TCP server encrypts the data ex-
changed between itself and the connected devices. This encryption ensures
that the information traversing the communication channel remains confiden-
tial and immune to eavesdropping or tampering attempts.

FS Library: Facilitating Key and Certificate File Handling. The FS (File
System) library assumes a required role in handling the key and certificate files
indispensable for TLS-based secure connections. Key functionalities include:

• Key and Certificate Access: FS facilitates the seamless access and retrieval of
the server’s key and certificate files. These files are imperative for initiating
secure connections with devices, and FS ensures their availability for TLS
library integration.

• Dynamic File Handling: As the key and certificate files are dynamically
generated, FS ensures their availability and responsiveness to changes. This
dynamic handling is vital for maintaining the server’s security credentials and
adaptability to evolving security requirements.

MessagePack-Lite: Efficient Data Serialization. While TLS and FS focus on
secure communication establishment, MessagePack-Lite addresses the efficient

36



Backend Architecture

serialization and deserialization of data exchanged with connected devices. Key
functionalities include:

• Binary Data Serialization: MessagePack-Lite excels in the serialization of data
into binary format. This binary serialization enhances data transfer spedds,
minimizing overhead and ensuring swift communication between the TCP
server and devices.

• Compact Data Representation: The compact representation of data facilitated
by MessagePack-Lite optimizes the payload transmitted between the server
and devices. This improvement is particularly important in the context of
real-time data exchange and responsiveness.

The integration of TLS, FS, and MessagePack-Lite into the TCP server estab-
lishes a robust foundation for secure and efficient communication with individual
devices. By prioritizing secure channel establishment, key and certificate handling,
and optimized data serialization, this component ensures a reliable and resilient
architecture for handling the intricacies of device connections. The implementation
not only addresses immediate security concerns but also positions the system for
scalability and adaptability in accommodating future security enhancements.

Once a secure connection is established between the TCP server and an individual
device, a comprehensive device management system comes into play. This system
is meticulously designed to track, authenticate, and interact with connected devices
in a secure and meaningful manner.

Device Identification and Tracking. Upon successful connection establishment,
the TCP server diligently records the IP address of the connected device. This
meticulous tracking mechanism serves a dual purpose:

• Device Inventory: By storing IP addresses, the server maintains a real-time
inventory of all connected devices. This inventory becomes instrumental in
uniquely identifying each device, ensuring that communications are correctly
routed to the intended recipient.

• Connection Monitoring: Continuous tracking allows the server to monitor
the status of each connection. It ensures that the server remains aware of
active devices, facilitating dynamic responsiveness to changes in the device
landscape.

Data Reception and Decoding. Subsequent to the device’s registration, the TCP
server transitions into a listening state, eagerly awaiting incoming data. Upon data
reception, the server initiates a series of operations:

• Message Decoding: The received data, encapsulated in MessagePack format,
undergoes a decoding process. This process involves unpacking the binary data
and converting it into a structured format that the server can comprehend.

37



Backend Architecture

• Padding for Data Structure: To ensure uniformity in data structures, the server
may introduce padding bytes to complete any missing elements. This step is
crucial for maintaining consistency in data processing and interpretation.

Varied Communication Types. The nature of communication between the server
and devices spans multiple types, each serving a distinct purpose:

• Authentication: Authentication messages validate the legitimacy of the con-
nected device. This step ensures that the communicating entity is a recognized
and authorized device, mitigating the risk of unauthorized access.

• Heartbeat: Periodic heartbeat messages signify the vitality of the connected
device. By acknowledging regular heartbeats, the server confirms the contin-
uous presence and functionality of the device, thereby sustaining the TCP
connection.

• Custom Commands: The server can transmit custom commands to connected
devices. These commands, ranging from system operations like reboot or shut-
down, enable remote management of devices, enhancing operational control.

The TCP server’s role extends beyond mere connection establishment. Through
meticulous tracking, data reception, and varied communication types, it ensures a
holistic and secure management system for all connected devices. This comprehen-
sive approach not only fortifies the system against unauthorized access but also
empowers seamless communication and control over the network of devices.

38



Chapter 6

Frontend Architecture

The frontend, serving as the user’s gateway to seamless interaction with the
server and devices, plays an important role in facilitating a rich and intuitive
user-experience. Specifically designed and crafted, the frontend encompasses an
array of functionalities designed to provide comprehensive insights and control over
the connected ecosystem.

1. React: A Paradigm Shift in User-Experience. The decision to employ React
as the framework for the frontend heralds a paradigm shift from a static
multipage application to an agile single-page application (SPA). This shift is
rooted in the inherent advantages that React brings to the table, promising a
more responsive and dynamic user interface.

2. Unveiling the Power of Single-Page Applications. React, renowned for its
virtual DOM rendering and component-based architecture, facilitates the
creation of a SPA. This departure from a traditional multipage structure
bestows several advantages:

• Enhanced Responsiveness: The SPA model ensures a more fluid and
responsive user-experience. By dynamically updating only the necessary
components, React minimizes page reloads, resulting in quicker transitions
between different views.

• Streamlined User Navigation: With React, navigation within the applica-
tion becomes more streamlined. Users can seamlessly traverse between
different views without the jarring interruptions associated with traditional
multipage applications.

• Optimized Resource Utilization: The modular nature of React compo-
nents allows for optimized resource utilization. Components are loaded
on-demand, reducing initial page load times and enhancing overall perfor-
mance.

39



Frontend Architecture

3. Feature-Rich User Interface. The frontend unfolds a feature-rich interface,
offering an array of pages tailored to the different needs:

• Device Registry: Users can peruse a comprehensive list of registered
devices, accessing vital details and configurations associated with each.

• Active Devices Dashboard: A dynamic dashboard provides real-time
insights into active devices, their status, and pertinent information.

• Statistical Analytics: Users can delve into detailed statistics, ranging from
telemetry data to device positions, empowering them with a holistic view
of the connected ecosystem.

4. User-Centric Design Philosophy. The design of the frontend is underpinned by
a user-centric philosophy. The user interface is intuitive, ensuring a seamless
interaction that aligns with the diverse needs of both novice and seasoned
users.

5. Future-Proofing with React. By embracing React, the company not only
addresses the immediate requirements but also future-proofs the frontend
against evolving technological landscapes. React’s robust community support
and continual evolution position the frontend for adaptability and scalability.

In conclusion, the frontend architecture, anchored by React, stands as a tes-
tament to the company’s commitment to transformative user-experiences. The
migration to a SPA model heralds a new era of responsiveness and agility, posi-
tioning the frontend as a dynamic interface empowering users in their interactions
with the server and connected devices.

ReactJS: A Key Enabler of Efficient Development.

• Component-Based Architecture: React’s component-based architecture dove-
tails seamlessly with Agile principles. The modularity allows for the creation
of reusable components, promoting efficiency in development and ensuring a
consistent design language across the application.

• Virtual DOM Rendering: React’s virtual DOM rendering minimizes page
reloads, optimizing the performance of the frontend. This aligns with Agile’s
emphasis on delivering increments of functionality rapidly.

• Continuous Integration and Deployment (CI/CD): Implementing CI/CD prac-
tices ensures that code changes are swiftly integrated, tested, and deployed.
This fosters a continuous flow of deliverables, aligning with Agile’s commitment
to frequent, incremental releases.

User Feedback: An Iterative Catalyst.

40



Frontend Architecture

• User Stories and Acceptance Criteria: User stories, encapsulating user require-
ments, and acceptance criteria, defining the conditions for feature acceptance,
form the backbone of development. This user-centric approach ensures that
the frontend aligns precisely with user expectations, that are the expectations
of the client in this case.

• Continuous User Feedback: A central tenet of Agile methodologies involves
continual user feedback. Regular user testing and feedback loops enable the
team to make timely adjustments, refining the frontend in response to evolving
user needs.

The Agile methodology, complemented by the Scrum framework, proves instru-
mental in steering the ReactJS frontend development. The iterative nature of
Agile, coupled with React’s efficiency-enhancing features, ensures that the frontend
remains responsive, adaptable, and aligned with user expectations throughout the
development lifecycle.

The creation of a user-friendly web frontend necessitates the strategic incorpo-
ration of various libraries and components. This section delineates the carefully
chosen components and libraries employed, underscoring their role in fashioning an
accessible and seamless user interface.

1. Navigating Seamlessly with React Router DOM.

• Purposeful Navigation: The integration of React Router DOM is important
for seamless navigation between distinct pages. This library allows the
navigation of the application effortlessly, ensuring a cohesive and intuitive
user experience.

• Multi-Page Interaction: React Router DOM facilitates the realization
of a multi-page application structure. This capability is fundamental
for accommodating diverse functionalities and presenting them in an
organized manner, optimizing user interaction.

2. Authentication Context for Session Persistence

• Contextual Session Management: The implementation of the Auth Con-
text library addresses the imperative of session persistence. This ensures
that the user’s context persists across various pages, offering a continuous
and secure experience throughout the browsing session.

• Enhanced Security: By securely managing session data, Auth Context
contributes to the overall security of the application. User authentication
and authorization processes are streamlined, fortifying the frontend against
unauthorized access.

41



Frontend Architecture

3. Tailwind CSS: A Framework for Graphical Finesse.

• Streamlined Styling: Tailwind CSS emerges as a foundational framework
for crafting the graphical interface. Its utility lies in the expedited styling
of components, ensuring a visually cohesive and aesthetically pleasing
frontend.

• Customizable Design: Tailwind’s modular approach allows for extensive
customization. This adaptability is instrumental in tailoring the frontend’s
visual elements to align precisely with the desired user interface aesthetics.

4. Custom Components for Bespoke Functionalities.

• Tailored User Experience: In conjunction with the aforementioned libraries,
custom components have been specifically designed and implemented.
These components are purpose-built to deliver bespoke functionalities,
enriching the user-experience and catering to specific user requirements.

• Functionality-Driven Design: Each custom component encapsulates spe-
cific functionalities, ensuring a function-driven design philosophy. This
approach enhances the overall user interaction, providing a responsive
and tailored experience.

In conclusion, the amalgamation of React Router DOM, Auth Context, Tailwind
CSS, and custom components engenders an aesthetic and functional frontend
ecosystem. This ecosystem is not only adept at facilitating seamless navigation
and session persistence but also showcases a visually appealing and functional
interface. The careful selection and integration of these libraries and components
are important in realizing an intuitive and user-centric ReactJS frontend.

The integration of numerous APIs stands as a cornerstone in establishing robust
communication channels between the frontend and the backend server. These APIs
facilitate the seamless exchange of information, encompassing data retrieval and
storage operations within the database. This section elucidates the purposeful
implementation of APIs to orchestrate efficient interactions with the backend server.

1. Purposeful API Integration.

• Establishing Communication: The implementation of APIs serves as a
conduit for establishing clear and purposeful communication channels
between the frontend and the backend server. This communication is
foundational for the exchange of data, enabling a dynamic and responsive
user interface.

• Data Retrieval and Storage: APIs are instrumental in the retrieval of
information from the server as well as the storage of data within the

42



Frontend Architecture

database. These operations are executed through meticulously crafted
API endpoints, ensuring a streamlined and secure data flow between the
frontend and backend components.

2. Efficient Data Transmission.

• Seamless Information Exchange: APIs are designed to facilitate seamless
information exchange between the frontend and backend. By adhering
to established protocols and endpoints, data is transmitted efficiently,
optimizing the overall performance of the application.

• Minimized Latency: The architecture of these APIs prioritizes minimized
latency, ensuring that data retrieval or storage processes occur with
optimal speed. This focus on response times contributes to a rapid and
user-friendly frontend experience.

3. Robust Processing and Validation.

• Data Processing: APIs are endowed with robust data processing ca-
pabilities. This includes parsing incoming data, executing necessary
computations, and formatting information before presenting it to the user.
Such processing enhances the quality and relevance of the data exchanged.

• Validation Mechanisms: Implemented APIs feature validation mechanisms
that guarantee the integrity and security of the transmitted data. These
mechanisms serve as a protective barrier, preventing the ingestion of
erroneous or malicious data into the system.

4. Scalability and Adaptability.

• Scalable Architecture: The API architecture is conceived with scalability
in mind. This ensures that the application can accommodate increased
data flow and user interactions without compromising performance. The
modular design allows for the seamless addition of new functionalities.

• Adaptive Response Handling: APIs are equipped with adaptive response
handling mechanisms. This ensures that the frontend can gracefully
handle diverse responses from the backend server, fostering a resilient and
fault-tolerant system.

In conclusion, the careful implementation of APIs forms a critical juncture in
establishing a synergistic interaction between the frontend and backend components.
These APIs serve as conduits for efficient data transmission, robust processing, and
secure validation. The commitment to minimizing latency and fostering scalability
ensures a responsive and adaptable architecture. The integration of APIs stands as
a testament to the commitment to crafting a dynamic and user-centric application
architecture.

43



Frontend Architecture

6.1 React.js Implementation
The frontend serves as the primary interface facilitating user interaction with
various project components, including servers and devices. This interface operates
in an indirect and abstract manner, shielding users from the inherent complexity
associated with communication among diverse project elements. The web interface
is strategically designed to streamline user comprehension and simplify the execution
of intricate tasks.

The web interface encapsulates the intricacies of interactions between distinct
components, rendering it user-friendly and accessible. Through a series of web
pages, it is possible to seamlessly perform a spectrum of operations essential to the
project’s functionality. It serves as a gateway to engage with the system’s diverse
functionalities, providing an intuitive and efficient means of task execution.

6.1.1 Login
To access the functionalities of the web interface, user authentication is imperative.
Account creation is exclusively permitted by system administrators, ensuring
that only company employees and authorized associates possess access privileges.
Registration is not open to direct user initiation; rather, accounts are specifically
curated, created, and approved by administrators. This stringent control mechanism
ensures the system’s security and restricts access to authorized personnel.

Post-administrator approval and creation of user accounts, the login process
becomes the gateway to the comprehensive suite of functionalities. Users gain entry
into the system through the dedicated login page, leveraging credentials established
during the account creation process.

So, the web interface stands as a primary component in facilitating user en-
gagement with the architecture’s intricate ecosystem. Its design prioritizes clarity,
accessibility, and security, ensuring also that everyone can efficiently navigate and
utilize the platform’s diverse capabilities in a easy way without sacrificing features,
functionalities nor security.

44



Frontend Architecture

Figure 6.1: Login page

6.1.2 Dashboard
Upon successful user authentication, the system automatically redirects the user
to the initial landing page, known as the dashboard. The dashboard serves as
a comprehensive information hub, presenting a wealth of statistics and insights
pertaining to registered devices and the accumulated data. This centralized inter-
face offers a real-time overview of the project’s ecosystem, providing at-a-glance
information on device statuses, such as online or offline indicators in proportion.

The dashboard’s functionality extends beyond mere data presentation; it serves as
a dynamic platform for users to glean meaningful insights into the operational status
of the registered devices. From there it is possible to efficiently monitor device status,
collected data, and recent activities through intuitive visualizations and status
indicators. These may include graphical representations of data trends, network
connectivity, and temporal markers indicating the recency of device updates.

Moreover, the dashboard’s design emphasizes user-friendly navigation, allowing
to seamless drill down into specific device categories or data subsets for more
detailed analyses. This hierarchical approach allows the explororation in granular
details while maintaining an overarching perspective of the project landscape.

The incorporation of interactive elements further enhances user experience,
enabling users to tailor the dashboard to their specific preferences and monitoring
needs. For instance, it may be possible to choose to visualize only certain devices,
data types, or performance metrics, fostering a personalized and adaptive dashboard

45



Frontend Architecture

environment.
The dashboard stands as the primary interface post-login, offering a sophisticated

and informative gateway to the project’s intricate data landscape. Its multifaceted
capabilities empower users to not only stay informed about the current project
state but also to delve deeper into the nuances of device performance and data
dynamics.

Figure 6.2: Dashboard Page

The dashboard is designed to furnish detailed information with a comprehensive
snapshot of the diverse array of devices affiliated with the system. This interface
serves as main hub, providing a broad understanding of the available data, the
status of connected devices, and other pertinent details encompassing the entirety
of devices associated with the platform. It is imperative to note that a device’s
initial connection triggers a registration process, rendering it traceable within the
platform’s ecosystem.

The dashboard, depicted in Figure 6.2, serves as a comprehensive informational
hub, offering an overview of critical metrics related to the connected devices. It
furnishes essential insights, including the total count of connected devices, catego-
rization of connected devices based on models, the distribution of devices across
products, the aggregation of models per product, and the cumulative volume of
data collected by all devices categorized by product. This general presentation
facilitates a high-level understanding of the company’s device landscape, encom-
passing aspects such as device statuses (online/offline) and the aggregate data

46



Frontend Architecture

accumulation across various products.
While the dashboard provides a bird’s-eye view of the device ecosystem, more

detailed and specific information is available on dedicated pages tailored for distinct
functionalities. These granular pages allows to delve deeper into specific aspects of
the platform. Nevertheless, the dashboard stands as the primary interface, offering
a convenient way to gain a comprehensive understanding of the company’s diverse
array of devices.

Moreover, the dashboard serves as an instrumental tool for monitoring the
performance of devices, highlighting crucial indicators such as online device counts,
model-specific distributions, and the overall data collection metrics. This strategic
presentation aids in quickly grasping the current state of the device network without
delving into more specialized pages.

The charts employs an interactive approach to enhance the comprehensibility of
the presented data. The graphical representations incorporated into the dashboard
are designed to be interactive, providing an enriched experience in data exploration.
This interactive capability is particularly exemplified in the utilization of graphs
where users can employ mouse hover actions to reveal detailed labels associated
with specific data points. These labels not only elucidate the nature of the data
but also furnish with precise numerical values, fostering a deeper understanding of
the information being conveyed.

Figure 6.3: Dashboard’s chart

47



Frontend Architecture

Moreover, the interactive functionality extends to the comparative analysis of
data. By clicking on specific labels within the graph, it is possible to selectively
include or exclude them from the visualization. This feature facilitates a dynamic
exploration of the data, allowing the focus on specific elements of interest while
temporarily removing others for a clearer perspective. Such a nuanced approach
to data visualization empowers users to tailor their analytical process, enhancing
their ability to discern patterns and trends.

The decision to integrate interactivity into the graphical elements of the dash-
board is rooted in the commitment to user-centric design principles. By providing
these tools for dynamic exploration and customization, the platform seeks to opti-
mize the clarity and relevance of the presented data. This approach aligns with
the overarching goal of making complex datasets more accessible and user-friendly,
ensuring a meaningful insights from the information at viewer’s disposal.

In summary, the dashboard acts as a strategic control center, providing at-
a-glance insights into the company’s device landscape. Its role extends beyond
basic monitoring, offering a nuanced perspective on device connectivity, model
distribution, and data accumulation across various products. This centralized
interface is pivotal for users seeking a swift and comprehensive overview of the
platform’s operational dynamics. Also, the interactive features embedded in the
dashboard’s graphical representations serve to elevate the user experience by
offering detailed insights and customization options. This deliberate design choice
contributes to the platform’s commitment to providing a robust and user-friendly
environment for data analysis and interpretation.

6.1.3 User’s profile
Subsequently, the platform incorporates a Profile Page, allowing the autonomy to
personalize and manage the individual information of the account. Within this
domain, it is possible to effectually tailor the profile details, including but not
limited to email addresses, passwords, and other pertinent personal information.
This feature is particularly advantageous for ensuring that user accounts are kept
current and aligned with any changes in personal or professional details.

An additional facet of the Profile Page involves the option to upload a personal
customized profile picture. This functionality serves a dual purpose, contributing
to both user identification and the establishment of a more personalized and
recognizable user interface. By allowing users to associate a visual representation
with their profiles, the platform fosters a sense of individualization and facilitates
ease of recognition, thereby enhancing the overall user experience.

Moreover, the Profile Page stands as a secure and user-centric space, ensuring
that modifications to sensitive account information adhere to robust security
protocols. The emphasis on user customization and self-management underscores

48



Frontend Architecture

the platform’s commitment to providing a user-friendly and adaptable environment,
catering to the individual preferences and requirements of each user within the
system.

Figure 6.4: Edit Profile Information

The profile page, as illustrated in Figure 6.4, offers a streamlined and user-
friendly interface for the modification of user-specific information. The simplicity
of the design is evident in the intuitive interaction model, where the user can
effortlessly edit data fields through straightforward input textboxes. Modification
of the data is facilitated by entering the desired changes and subsequently executing
the save operation by selecting the save button. This straightforward process
ensures a seamless and efficient means of updating user information.

Notably, the ease of use extends to the modification of the user’s profile image.
The user is presented with the option to upload a custom image directly from their
local drive. This feature enhances personalization and recognition, as users can
tailor their profile visuals to suit their preferences. Upon selecting and uploading
the desired image, the save operation finalizes the update, encompassing both
textual data modifications and the newly chosen profile image.

This user-centric approach to profile management not only prioritizes simplicity
but also emphasizes accessibility. The straightforward modification process aligns
with user expectations, minimizing the learning curve associated with updating
personal information. This commitment to user-experience is pivotal in ensuring
that users can seamlessly navigate and personalize their profiles without unnecessary
complexity.

49



Frontend Architecture

6.1.4 Device’s info
The platform encompasses a dedicated segment known as the Devices Page, strate-
gically designed to facilitate comprehensive management of products, models, and
devices within the system. Within this interface, users are afforded the capability
to not only peruse the catalog of created products but also to institute new product
entries. This foundational functionality is instrumental in allowing users to main-
tain an organized inventory of distinct products associated with their operational
scope.

Furthermore, the platform extends its utility by incorporating a module for the
delineation and establishment of models. It is imperative to note that models are
intricately linked to specific products, thereby exemplifying a form of specialization
inherent to the overall product hierarchy. Users, through the Devices Page, are
empowered to both visualize existing models and institute novel ones, thereby
contributing to the systematic categorization and management of devices within
the platform.

In this paradigm, the inherent relationship between models and products under-
scores the hierarchical structuring of devices, promoting an organized and logical
framework. The entwined nature of models and products serves as a pivotal
attribute, contributing to the streamlined management of devices and ensuring
coherence in the representation of the overall system architecture.

Figure 6.5: Device list page

As depicted in Figure 6.5, the dedicated device list page offers a comprehensive

50



Frontend Architecture

overview of registered devices, presenting key details that provide a foundational
understanding of the device landscape. The presented information encompasses cru-
cial attributes related to each device, offering insights into their status, connectivity,
and other relevant particulars.

The design of this page is meticulously crafted to furnish users with a succinct yet
informative snapshot of the registered devices. By centralizing essential information
in a cohesive manner, users can efficiently survey the array of devices under
consideration. This approach not only streamlines the user experience but also
lays the groundwork for more detailed exploration.

Each device entry on this page serves as a gateway to more in-depth insights.
Upon selecting a specific device, users are seamlessly directed to dedicated pages
that furnish a wealth of additional information. These individual device pages act
as comprehensive repositories, providing intricate details about the selected device,
its operational status, and associated statistics.

This hierarchical structure, where a general overview is accessible from the
device list page, and detailed specifics are further unveiled on dedicated pages, is
purposefully designed to balance accessibility and depth. Users can tailor their
engagement with the platform based on their informational needs, navigating
effortlessly between the broader device landscape and the granular intricacies of
individual devices.

Furthermore, the user-centric approach extends to the responsive design of these
pages, ensuring a seamless transition between different levels of information. The
aim is to empower users with a flexible and intuitive interface that adapts to their
preferences and exploration patterns.

The device list page stands as an important component within the platform’s
architecture, providing users with a centralized view of registered devices and
serving as a launching point for more detailed investigations. This design philosophy
aligns with the overarching objective of delivering a user-friendly and informative
environment for effective device management.

A notable feature within the Devices Page is the comprehensive presentation
of available devices, each intricately linked to a specific model. It is noteworthy
that the creation of devices is inherently automated and contingent upon success-
ful authentication during the initial connection to the platform. Devices, upon
undergoing a seamless authentication procedure with the server, are seamlessly
incorporated into the devices list, thereby attaining visibility within the system.

The authentication process serves as a critical security measure, warranting
that only authenticated devices are afforded access to the panoply of operations
permissible within the platform. Once a device successfully authenticates, it
assumes its designated place within the devices list, whereupon it gains unfettered
access to the spectrum of operations sanctioned for devices within the platform’s
operational milieu. This judicious approach to device management ensures a secure

51



Frontend Architecture

and controlled ecosystem, aligning with industry best practices for device-centric
platforms.

Within the platform’s user interface, the Devices Page serves as a pivotal
hub for interacting with and obtaining detailed insights into individual products,
models, and devices. A user can navigate through the comprehensive array of
items by selecting them, prompting the system to dynamically load a dedicated
page containing exhaustive information and pertinent statistics. This user-friendly
approach streamlines the process of accessing critical data associated with each
element.

Figure 6.6: Device Info Page

Upon clicking a specific product, model, or device, a distinct page is presented,
meticulously designed to showcase not only the intrinsic details of the selected
entity but also to furnish users with pertinent statistics reflective of its operational
parameters. It is noteworthy that the depth of information varies between models
and devices, with the former offering insights into both the model itself and the
encompassing product to which it is linked. Similarly, devices provide a holistic
view by presenting not only their individual attributes but also incorporating details
from the associated model and overarching product.

As illustrated in Figure 6.6, the device information page serves as a comprehensive
repository of detailed insights into a specific device within the platform. This
dedicated page is designed to offer users a nuanced understanding of the device’s
operational status, geographical location (when available), and an in-depth analysis

52



Frontend Architecture

of the collected sensor data.
The initial segment of the page is devoted to geographical representation. A

map interface is employed to visualize the device’s location, leveraging coordinates
sourced from either an embedded GPS module or stored within the device’s
configuration file. This spatial contextualization provides users with a tangible
reference point, especially valuable for scenarios where the physical placement of
devices holds significance.

Continuing with the commitment to user interactivity, the subsequent sections
of the page incorporate two dynamic graphs. On the left, a graph delineates the
volume of data amassed by each distinct sensor integrated into the device. This
visual representation aids in quickly assessing the data contribution of individual
sensors, contributing to a holistic understanding of the device’s data generation
dynamics.

Simultaneously, the graph on the right offers a temporal dimension by showcasing
the last 30 data samples collected by each sensor. The overlay of each sensor’s data
facilitates comparative analysis, enabling users to discern patterns, anomalies, or
correlations in the sensor data. This interactive graph empowers users to tailor
their exploration, allowing them to focus on specific sensors or exclude certain data
labels for a refined visual examination.

Moreover, the responsive design of this page ensures an optimal viewing experi-
ence, adapting to various screen sizes and orientations. This adaptability enhances
the accessibility of detailed device information across different devices and usage
scenarios.

The device information page, represented in Figure 6.7, extends its functionality
to empower users not only with insights into the device’s status and sensor data but
also with the capability to modify pertinent information. This multifaceted feature
set enhances the platform’s user-centric approach, allowing for a more tailored and
responsive management of individual devices and associated sensors.

53



Frontend Architecture

Figure 6.7: Device and sensor Info

Within the depicted interface shown in figure 6.7, users gain access to a granular
view of the sensors installed on the device, accompanied by details about the device
itself. This includes crucial information about the sensors’ characteristics and,
notably, the device’s telemetry settings. The platform accommodates a dynamic
interaction model, enabling users to not only peruse this information but also to
effect changes as needed.

One key facet of customization lies in the ability to adjust the telemetry value,
essentially determining the frequency at which the device transmits data to the
server for storage. This feature is presented with a range of values, from 0 (indicating
the cessation of data collection) to the maximum frequency allowable, as specified
in the device configuration file. This flexibility in telemetry adjustment empowers
users to align data transmission with specific operational requirements, optimizing
both resource utilization and data currency.

Furthermore, the device information page facilitates modifications to the sensor
attributes. Users can readily modify sensor names, providing a more intuitive and
comprehensible identifier than the default ID. This customization is particularly
valuable in scenarios where a user-friendly nomenclature enhances the clarity of de-
vice management. Additionally, a brief description field is provided, allowing users
to append contextual information about the sensor’s purpose or specific functional-
ities. This descriptive layer contributes to a more comprehensive understanding of
the sensor’s role within the device ecosystem.

The user-friendly interface is designed for ease of interaction, ensuring that
modifications are intuitive and efficient. Upon effecting changes, users can seamlessly
save the updated information by clicking on the corresponding button. This iterative

54



Frontend Architecture

and responsive design aligns with the broader platform philosophy of simplifying
complex tasks and promoting user autonomy.

Figure 6.8: Model and Product Information

In the end of the page, shown in Figure 6.8, it encapsulates a comprehensive
display of essential details concerning both the model and the associated product.
This amalgamation of information serves as a centralized repository, offering users
a holistic view of pertinent attributes associated with the specific product.

Within this interface, users can readily access a wealth of information pertaining
to the model. This includes, but is not limited to, details such as the model’s serial
number and its given name. This foundational data provides users with a clear
and unambiguous identifier for the model, facilitating streamlined navigation and
management within the platform.

Complementing the model information, the interface also incorporates key
insights into the associated product. This encompasses fundamental details such as
the product’s identification number, often referred to as its ID, and the product’s
name. The integration of these details ensures that users are not only apprised of
the model specifics but also gain a contextual understanding of the broader product
to which it is tethered.

In a broader context, this unified presentation of model and product information
aligns with the platform’s overarching philosophy of providing users with compre-
hensive insights to facilitate informed decision-making. By offering a consolidated
view, the platform seeks to enhance user efficiency and effectiveness in managing
and understanding the intricacies of their device inventory.

In essence, the device information page epitomizes the platform’s commitment
to delivering detailed and accessible insights. By integrating geographical context

55



Frontend Architecture

and interactive data visualizations, this page serves as a focal point for users aiming
to delve into the intricacies of individual devices, fostering informed decision-
making and analysis. The page not only serves as an informational hub but also
as an interactive platform for users to fine-tune and customize device and sensor
parameters. This blend of insight and control enhances the adaptability and user
empowerment aspects of the platform, fostering a more robust and user-centric
device management experience. This user interface serves as a testament to the
commitment to user-centric design principles. It not only disseminates information
but does so in a manner that prioritizes clarity, coherence, and ease of use. The
model and product information interface stands as a pivotal component in the
platform’s architecture, enriching user interactions and contributing to a more
nuanced understanding of the devices and models in their purview.

Figure 6.9: Models’ Information List

Returning to the main page, as depicted in Figure 6.5, a dedicated section is
allocated to the management of various device models, as illustrated in Figure
6.9. This segment is instrumental in facilitating the creation and administration
of distinct models, a prerequisite for the successful connection and registration of
devices within the platform.

Within the platform’s operational framework, the creation of models holds
paramount significance. These models serve as a foundational layer, forming the
basis upon which individual devices establish their identity and functionality. The
process involves the manual creation of models, wherein users define and configure

56



Frontend Architecture

specific attributes that characterize a particular model. This comprehensive detail-
ing encompasses essential parameters that delineate the operational characteristics
of devices associated with the model.

The creation of models linked to products is a mandatory precursor to the
seamless integration of devices into the platform. Each device, upon connection,
aligns itself with a predefined model, establishing a standardized framework for data
transmission, device behavior, and compatibility with updates. This systematic
approach streamlines device management, ensuring a coherent and structured
environment within the platform.

Figure 6.10: Model Creation Page

The interface presented in Figure 6.9 not only allows the manual creation of
new models specifically linked to existing products, shown in figure 6.10, but also
provides a holistic view of existing models. Users can peruse a comprehensive
list of models, each encapsulating vital information such as the model name and
associated product. This consolidated representation affords users a quick overview
of the existing models within the platform.

Moreover, the user interface is designed to foster an intuitive and user-friendly
experience. The process of creating a new model involves specifying attributes and
configurations relevant to the intended functionality of devices aligned with that
model. This includes associating the model with a specific product, establishing a
hierarchical relationship that contributes to the organized structuring of devices
within the platform.

In essence, the dedicated models section within the platform serves as a pivotal
control point, enabling users to define, manage, and organize the diverse array
of devices based on standardized models. This strategic layer of abstraction not
only enhances the platform’s operational efficiency but also contributes to the
establishment of a coherent and scalable framework for device integration and
management.

57



Frontend Architecture

Figure 6.11: Model information

Upon selecting a specific model from the provided list, users are directed to a
dedicated page, akin to those illustrated in Figures 6.6, 6.7, and 6.8. However, the
information presented on this page is subtly distinct, as exemplified in Figure 6.11.
This tailored section furnishes users with a nuanced perspective, offering insights
into the operational dynamics of the selected model.

In the upper segment of the page, a series of interactive charts unfolds, providing
a visual representation of pertinent data related to the model’s ecosystem. These
charts specifically illuminate details regarding the online status of devices affiliated
with the model, coupled with an in-depth exploration of data collected by the
top five devices within the same model category. This visual analytics approach
empowers users with a comprehensive understanding of the model’s performance
metrics and the contribution of individual devices towards data generation.

Furthermore, the interface extends beyond graphical representations to furnish
users with explicit details pertaining to the selected model. This includes founda-
tional information such as the model’s name, associated product, and a succinct
description elucidating its intended purpose and functionality within the platform.
This consolidated display encapsulates essential metadata, providing users with a
holistic overview of the model’s attributes and its significance within the broader
context of the platform.

The user interface is intuitively designed to facilitate seamless navigation and
comprehension. Users can effortlessly traverse through the presented informa-
tion, leveraging the interactive charts for dynamic insights and scrolling through
detailed textual information for a comprehensive understanding of the model’s
characteristics.

58



Frontend Architecture

In essence, the model-specific page serves as a centralized repository of actionable
intelligence. It amalgamates visual analytics with textual insights, empowering
users to make informed decisions regarding the operational status and relevance of
a particular model within the broader spectrum of the platform. This strategic
interface not only enriches the user experience but also contributes to the platform’s
overarching goal of providing a robust and intuitive environment for the management
and analysis of diverse device models.

Figure 6.12: Model, Product and Devices’ information

Continuing the exploration of the model-centric page, a detailed exposition
unfolds, presenting a layered comprehension of crucial elements encapsulated by
the selected model. This comprehensive representation, delineated in Figure 6.12,
not only encompasses the model’s intrinsic attributes but also extends its purview
to encompass vital details regarding the associated product and the constellation
of devices tethered to the model.

In the upper echelon of this interface, an amalgamation of graphical and textual
elements converges to offer users a multifaceted understanding. The graphical
segment, characterized by interactive charts, delves into the operational dynamics
of the model. These charts, as previously delineated, furnish users with real-time
insights into the online status of devices within the model and the granular specifics
of data contributions from the top five devices. This visual analytics layer serves as
an invaluable tool for users seeking to discern performance trends and hierarchies
within the model’s device landscape.

Simultaneously, the interface unfurls textual information pertaining to both
the model and its associated product. This includes fundamental attributes such
as the model’s nomenclature, the linked product, and a concise yet elucidative

59



Frontend Architecture

description outlining the model’s intended utility and functionality within the
broader platform ecosystem. This synthesis of graphical representation and textual
exposition contributes to a holistic comprehension of the model’s significance and
operational nuances.

Navigating further down the page, a tableau of information unfolds, shedding
light on all devices interlinked with the selected model. This comprehensive listing
facilitates a panoramic view of the model’s device ensemble, offering a nuanced
understanding of the diverse devices tethered to its framework. The synergy
between the top-tier device performance charts and the inclusive device registry
affords users a contextualized appraisal of the model’s overall device landscape.

In essence, this model-centric interface serves as a pivotal nexus, uniting disparate
yet interrelated facets of the platform’s ecosystem. It not only empowers users
with actionable insights into the model’s real-time performance but also provides a
panoramic view of its associated product and the ensemble of devices contributing
to its operational footprint. This strategic amalgamation of graphical analytics
and textual elucidation aligns with the platform’s overarching ethos of furnishing
users with an intuitive and comprehensive toolset for effective model management
and analysis.

Figure 6.13: products’ Information List

Reverting to the primary interface showcased in Figure 6.9, a designated section
is expressly earmarked for the oversight of diverse products, as exemplified in
Figure 6.13. This sector assumes a pivotal role in expediting the origination and
oversight of discrete products, an imperative prelude to the seamless integration
and management of devices within the platform.

60



Frontend Architecture

Figure 6.14: Product Creation Page

Within this segment, users are bestowed with the functionality to meticulously
create new products manually, as shown in the figure 6.14. This procedural
prerequisite is indispensable to facilitate the unimpeded connection and enrollment
of devices into the platform’s fold. The user interface here, while intuitive, underpins
the foundational operational paradigm where the genesis of distinct products is
an essential precursor to the broader orchestration of the interconnected device
ecosystem.

This purposeful delineation aligns with the platform’s architectural underpinning,
emphasizing a modular and hierarchical structure. The ability to create and
delineate products serves as a linchpin, fostering an environment where devices,
models, and overarching system dynamics are seamlessly interwoven. In essence, this
interface encapsulates the foundational stratum wherein the strategic organization
of products not only begets a framework for device integration but also lays the
groundwork for subsequent model-product interlinkages.

The platform’s user-centric design underscores the importance of rendering
ostensibly complex operations in a user-friendly and comprehensible manner. The
dedicated section for product management, as exemplified by the graphical user
interface, encapsulates this ethos by affording users an accessible means to wield
control over the initiation and configuration of diverse products, thereby catalyz-
ing the subsequent harmonization of devices within the platform’s overarching
infrastructure.

61



Frontend Architecture

Figure 6.15: Product Information Page

Upon selecting any element within the list, a wealth of additional insights
becomes accessible, as elucidated in Figure 6.15. The standard array of charts is
prominently displayed atop the interface. This suite of visual representations, metic-
ulously crafted for optimal user comprehension, encompasses a diverse spectrum of
critical metrics.

The initial chart furnishes a comprehensive breakdown of online devices stratified
by models. This stratification serves to spotlight the top five models that boast the
highest online device counts. Such nuanced visibility into the distribution of devices
across distinct models offers a pivotal vantage point for assessing the comparative
performance of different models within the product ecosystem.

Segueing to the subsequent chart, the interface offers a succinct portrayal of
device version distribution. Specifically, it delineates the count of devices associated
with a specific version. This insightful presentation discerns the top five versions
that command the highest installation frequencies. This nuanced metric holds
intrinsic value in deciphering the prevalence of specific software iterations across
the device spectrum.

The final chart within this interface paradigm casts a spotlight on the volume
of data amassed by devices, delineated by distinct model types. By presenting the
top five models in terms of data collection, the interface bequeaths a consolidated
overview of the data generation landscape. This delineation proves instrumental
in gauging the efficacy of different models in contributing to the overarching data
repository.

In essence, this interface amalgamates intricate datasets into visually accessible
formats, empowering users to extract actionable insights effortlessly. The strategic

62



Frontend Architecture

placement of these charts within the product information interface aligns with
the broader user-centric design philosophy of the platform. By affording users the
ability to drill down into granular product-level analytics, the interface serves as a
linchpin for strategic decision-making and performance optimization.

Figure 6.16: Product, Model and Devices’ Information

Finally, the Figure 6.16 encapsulates a holistic portrayal of a product’s ecosystem.
This comprehensive interface delivers pivotal insights into the product’s foundational
elements, interweaving crucial details about the product itself, its associated models,
and the myriad devices tethered to these models.

At the interface’s zenith, a meticulous arrangement of charts meticulously
unfolds. These visualizations, emblematic of the platform’s commitment to user-
centric data interpretation, crystallize intricate datasets into cogent presentations.
The initial chart navigates the landscape of device distribution across associated
models, spotlighting the top-performing models within the product ambit. This
stratification serves as a linchpin for comprehending the distributional dynamics of
devices within the broader product ecosystem.

Segueing to the subsequent layer of insights, the interface delineates the exhaus-
tive spectrum of models associated with the product. Each model is presented
with its salient information, furnishing users with a nuanced understanding of the
compositional nuances within the product’s repertoire. This strategic arrangement
aids users in discerning the individual characteristics and performance attributes
of each model, fostering informed decision-making.

The interface reaches its zenith by presenting a detailed inventory of devices
linked to the diverse models associated with the product. This comprehensive
device registry affords users an unobstructed view of the entire device landscape

63



Frontend Architecture

within the product domain. From here, users can seamlessly pivot to individual
device profiles for deeper dives into device-specific metrics and functionalities.

In summation, this interface represents the culmination of the platform’s design
ethos — an amalgamation of user-friendly data visualizations and exhaustive
datasets. It serves as an instrumental compass for users navigating the intricate
nexus of products, models, and devices, empowering them with the clarity needed
for strategic decision-making and system optimization.

This strategic presentation strategy augments the user experience, offering
a consolidated overview that aids in informed decision-making and facilitates a
nuanced understanding of the interconnected elements within the system. By
encapsulating relevant data hierarchies, users can seamlessly traverse through the
structural layers of products, models, and devices, gaining comprehensive insights
at each level.

Figure 6.17: Tabular Data

Across the diverse tables within the platform’s interfaces, a spectrum of versatile
operations awaits users, designed to augment the accessibility and manipulability of
data. One such operation is the search functionality, affording users the capability
to pinpoint specific information by querying entries based on their names. This
feature enhances the precision and efficiency of information retrieval within the
expansive datasets encapsulated by the platform, as we can see in figure 6.17.

Furthermore, the capacity to orchestrate the display of tabular data is enriched
through the implementation of sorting mechanisms. Users are empowered to arrange
data entries in ascending or descending order based on various attributes, thereby
facilitating a structured and customizable view of the information landscape.

In pursuit of an interface that harmonizes with diverse user preferences, the

64



Frontend Architecture

platform introduces a pagination system. This feature allows users to tailor the
number of displayed items per page according to their preference. While the default
setting is configured to exhibit five entries, users can opt for increased density, with
options to display 10 or 25 items per page. This adaptive design caters to varying
user needs, balancing between a concise overview and in-depth perusal of data.

Furthermore, the platform augments user control by incorporating a concise
menu accessible through three dots adjacent to each entry. This menu serves as a
gateway to pivotal operations, notably enabling users to modify existing entries or
effectuate their removal from the dataset. This intuitive mechanism streamlines
the data management process, ensuring that users wield a seamless and efficient
means to refine and curate the information repository.

In essence, these features collectively epitomize the platform’s commitment to
user-centricity, ensuring that the manipulation and interpretation of data are not
only comprehensive but also tailored to individual user preferences and require-
ments.

6.1.5 Devices’ groups
The Groups Page within the platform furnishes users with a strategic interface to
oversee and manage distinct collections of devices, facilitating a nuanced organi-
zational framework. Users, empowered by this feature, can create and designate
various groups to serve specific operational purposes. These groups may be tailored
to streamline the management of updates, categorizing devices based on deploy-
ment scenarios such as production or testing phases, among other customizable
parameters.

Figure 6.18: Group’s page

Upon accessing the Groups Page, a user is presented with an overview of the
diverse groups they have created, as we can see in Figure 6.18. This feature
enhances the platform’s adaptability to diverse use cases, allowing users to create
bespoke organizational structures that align with their operational objectives. For

65



Frontend Architecture

instance, the creation of distinct groups for devices deployed in production, those
designated for testing, or other customized classifications ensures a systematic
approach to device management, as shown in Figure 6.20.

Each created group is interactive, affording users the capability to click on
individual groups to access a more detailed view. This expanded view provides
comprehensive insights into all devices contained within the selected group. Such
granular information equips users with a holistic understanding of the devices
affiliated with specific operational contexts, thereby supporting informed decision-
making, as represented in Figure 6.19.

This strategic organization of devices into groups optimizes operational workflows,
especially in scenarios where devices serve varied roles or undergo distinct phases
within the overall operational lifecycle. The ability to customize groups based on
specific criteria enhances the adaptability of the platform, catering to the dynamic
and diverse needs of users.

The Groups Page offers users a sophisticated toolset for structured device
management. This feature not only contributes to enhanced operational efficiency
but also reflects the platform’s commitment to providing users with a flexible and
user-centric environment for navigating and managing their device ecosystem.

Figure 6.19: Group Info Page

The Groups Page facilitates the organized categorization and management of
devices based on predefined criteria. Users are empowered to create new groups
with a seamless and intuitive process, enhancing the platform’s flexibility and
adaptability to diverse organizational needs.

Upon accessing the Groups Page, users encounter a user-friendly interface
designed for the creation and administration of device groups. The initiation of a
new group is streamlined through an easily identifiable button, providing users with
a straightforward starting point for the grouping process. This intentional design
ensures accessibility and efficiency in the utilization of group creation features.

Within the group creation workflow, users navigate a systematic process that
begins with the selection of models of interest. This step allows users to delineate

66



Frontend Architecture

the scope of the group by specifying the particular device models they intend to
include. By adhering to a model-centric grouping strategy, the platform upholds
safety protocols associated with updates and ensures compatibility within each
device grouping.

Following model selection, users proceed to curate the group by handpicking
individual devices from the available pool. This meticulous approach enables users
to tailor each group composition according to specific operational requirements.
Notably, the platform imposes constraints that prohibit the creation of groups
comprising devices of mixed models. This deliberate limitation is grounded in
safety considerations related to updates and broader compatibility concerns.

The platform’s commitment to safety and precision is underscored by these
design choices, as it prioritizes the creation of logically consistent and operationally
secure device groups. This strategic approach aligns with industry best practices
and underscores the platform’s dedication to providing users with a robust and
secure environment for managing their device ecosystem.

The Groups Page emerges as a feature-rich component, embodying the platform’s
commitment to user-centric design and operational integrity. By facilitating the
creation of model-specific device groups, the platform ensures that users can
confidently organize their devices in a manner that aligns with stringent safety
standards and operational efficiency.

Figure 6.20: Group Creation Page

The Updates Section constitutes a crucial segment of the platform, serving as
a centralized hub for overseeing and managing the update processes. Within this
section, users gain access to pertinent information regarding existing updates, the
ability to initiate the creation of new updates, and a comprehensive overview of
update-related data.

67



Frontend Architecture

Upon entry into the Updates Section, users are presented with a summary of
ongoing and completed updates. This feature provides a bird’s-eye view of the
update landscape, offering insights into the status, versioning, and deployment
particulars of each update. The clarity afforded by this overview ensures that users
are well-informed about the update history, fostering an environment conducive to
strategic decision-making.

6.1.6 Devices’ updates
The platform extends functionality to create new updates, allowing users to seam-
lessly initiate and configure updates for their connected devices. This process
involves specifying essential parameters such as version details, scheduled deploy-
ment times, and associated devices. The intuitive interface guides users through
the update creation process, maintaining a user-friendly experience while ensuring
precision in update management.

Figure 6.21: Update List

Furthermore, the Updates Section offers an expansive array of information
related to each update. Users can delve into specific updates to access detailed
statistics, deployment timelines, and any associated success or error metrics. This
granularity empowers users with a profound understanding of the impact and
efficacy of individual updates, contributing to a robust feedback loop for continuous
improvement.

Incorporating features such as sorting and filtering within the update information
table enhances user functionality. Users can conveniently organize updates based on
various parameters, facilitating efficient scrutiny of pertinent data. The platform’s
commitment to user-centric design is evident in these provisions, enabling users
to tailor their interactions with update-related information to suit their specific
requirements.

In summary, the Updates Section emerges as a pivotal element in the platform’s
architecture, designed to offer users a comprehensive suite of tools for managing

68



Frontend Architecture

and monitoring updates. Its multifaceted capabilities contribute to the platform’s
overarching goal of providing users with a sophisticated yet accessible environment
for orchestrating seamless and effective updates across their device ecosystem.

Figure 6.22: Update Creation Page

Within the platform’s update management functionality, users are afforded a
comprehensive suite of features when initiating the creation of a new update. This
process is meticulously structured to encompass key parameters, ensuring precision
and flexibility in the deployment of updates across the device ecosystem.

A fundamental aspect of the update creation process is the specification of the
version for the impending update. This allows users to clearly define the iteration
and progression of the software or firmware being deployed, thereby contributing
to a systematic and traceable update history.

The platform’s update management extends its functionality to include the
explicit designation of compatible devices for the newly created update. Users
can judiciously select the devices within their ecosystem that are slated to receive
the update. This granular control over compatibility ensures that updates are
strategically rolled out to devices, promoting a targeted and efficient update
deployment strategy.

Furthermore, users have the capability to establish compatibility relationships
with prior updates. This involves specifying from which previous update versions
the current one can be seamlessly upgraded. This inter-update compatibility feature
enhances the platform’s versatility, accommodating diverse scenarios and update

69



Frontend Architecture

scenarios within the device environment.

Figure 6.23: Update Creation Page

A pivotal aspect of the update creation process is the selection of the update
package. Users are provided with a streamlined interface to upload and attach the
update package to the update creation workflow. This entails a meticulous selection
process, ensuring that the correct and validated update package is associated with
the corresponding update version.

Once these parameters are meticulously configured, users are presented with
the option to save the update package. This critical step finalizes the update
creation process, preserving the configured parameters and readying the update for
subsequent deployment to the specified devices within the ecosystem.

In summary, the update creation process within the platform epitomizes a user-
centric approach, providing administrators with a robust set of tools to orchestrate
precise, versioned, and compatible updates across their device landscape. This
feature aligns with industry best practices in software and firmware management,
fostering an environment of controlled and secure updates within the organizational
infrastructure.

70



Frontend Architecture

Figure 6.24: Update Info Page

Upon accessing the detailed information page of a particular update within the
platform, users are presented with a comprehensive array of data encapsulating
various facets of the update’s lifecycle. This informative display is strategically
designed to furnish administrators with a holistic understanding of the update’s
scope and impact on the device ecosystem.

Key elements of the update information page include insights into the compatible
versions. This feature provides clarity on the range of software or firmware versions
with which the update harmoniously aligns. Such transparency is crucial for
administrators to make informed decisions regarding versioning strategies and
ensures compatibility adherence across the device landscape.

The update information page further delineates the list of compatible devices,
offering a granular view of the devices earmarked to receive the update. This
detailed enumeration aids administrators in conducting a precise assessment of the
update’s distribution across the device inventory, fostering strategic and targeted
deployment.

71



Frontend Architecture

Figure 6.25: Update Info Page

A pivotal aspect of the update information page is the documentation of updates
that have been successfully executed on devices. This historical record offers
valuable insights into the performance and efficacy of past update deployments.
Conversely, the page also provides visibility into updates that encountered issues
during deployment, furnishing administrators with critical information for diagnostic
and remedial purposes.

Additionally, the update information page meticulously catalogues devices
awaiting the impending update in the pending list. This proactive visibility
empowers administrators to anticipate forthcoming changes within the device
ecosystem, facilitating strategic planning and resource allocation.

An intuitive feature embedded within the update information page is the seamless
navigation to additional layers of information. For instance, users can expeditiously
access detailed information about individual devices, compatible updates, and other
pertinent data points directly from this centralized page.

In conclusion, the update information page stands as a robust and user-friendly
interface, consolidating multifaceted data related to each update. This consolidated
view not only streamlines administrative tasks but also fosters an environment of
transparency and informed decision-making within the platform’s update manage-
ment framework.

72



Frontend Architecture

Figure 6.26: Update Info Page

The platform is meticulously crafted to present a user-friendly interface that
effectively conceals the inherent complexity within the underlying project infras-
tructure. This strategic design philosophy aims to streamline and simplify the
intricate communication processes between the two servers and the client, thereby
affording users the ability to execute complex tasks with ease. It is noteworthy
that this accessibility is extended to users irrespective of their proficiency levels,
ensuring a seamless user experience even for individuals without advanced skills in
the operational environment.

The emphasis on intuitive design principles becomes evident in the platform’s
architecture, which prioritizes clarity and simplicity. By abstracting the intricacies
of the underlying project, the platform serves as a conduit for users to engage
effortlessly with the system, obviating the need for specialized or advanced technical
competencies. This deliberate simplification enhances usability and empowers users
to navigate the platform confidently, undertaking tasks of considerable complexity
without being encumbered by the technical nuances of the underlying infrastructure.

Moreover, the platform’s user interface is strategically tailored to facilitate the
execution of intricate operations through a straightforward and accessible framework.
This design philosophy aligns with the overarching goal of democratizing access to
the platform’s functionalities, ensuring that users can perform sophisticated tasks
without grappling with the complexities inherent in the communication protocols
between servers.

73



Frontend Architecture

By providing users with an environment where the complexity is elegantly
abstracted, the platform aligns with contemporary standards of user-centric design.
This approach not only enhances the overall user experience but also contributes to
increased efficiency, as users can focus on the tasks at hand rather than navigating
through convoluted technical intricacies.

In summation, the platform’s design ethos centers on user empowerment through
simplicity. This intentional strategy ensures that users, regardless of their technical
acumen, can leverage the platform’s capabilities efficiently, fostering a productive
and inclusive user experience within the dynamic landscape of the project.

74



Chapter 7

Data Storage

The backbone of any robust system lies in its ability to efficiently handle, store,
and manage information. This section outlines the comprehensive data storage
strategy employed in the project, emphasizing the need for a meticulous approach
to information organization and management. The server plays a pivotal role in
managing a diverse range of information, including user requests, device authentica-
tion, telemetry, and system commands. Efficient data handling is critical to ensure
seamless communication between the frontend, backend, and connected devices.
The need to store data arises from various sources, such as user interactions with
the frontend, device registrations, telemetry from connected devices, and system
statistics. Effective data storage is imperative to maintain a record of user activities,
device statuses, and facilitate data-driven decision-making.

Recognizing the diversity in the nature of information, the project adopts a
hybrid approach utilizing both SQL and NoSQL databases. This ensures a balanced
and efficient storage mechanism for both structured and unstructured data. Dividing
the handling of data into two separate backend components facilitates streamlined
processing. The REST API server manages requests from the frontend, including
user-related actions and device information. Simultaneously, the TCP server
specializes in handling real-time connections with individual devices, focusing on
authentication, command execution, and data exchange.

During the requirement engineering phase, particular attention was given to
designing a database schema that aligns with the project’s long-term objectives.
This step is important to maintain schema consistency, minimize modifications
during deployment, and avoid data loss. The strategic use of SQL databases for
structured data and NoSQL databases for unstructured data offers a synergy that
provides the project with the best of both worlds. This approach balances the load
of information storage and retrieval, ensuring optimal performance.

To further optimize data retrieval and reduce the load on databases, Redis
is incorporated as an in-memory caching solution. It strategically stores critical

75



Data Storage

information, ensuring swift responses during scenarios requiring frequent updates.
While the deployment of multiple databases and caching mechanisms introduces
complexity, the resulting gains in performance, scalability, and system robustness
justify the architectural choice.

In conclusion, the project’s data storage strategy is intricately designed to
address the diverse nature of data structures while ensuring long-term stability,
schema consistency, and efficient handling. By adopting a hybrid database approach,
balancing SQL and NoSQL databases, and integrating Redis for intelligent caching,
the system is poised to deliver optimal performance and scalability, meeting the
demands of a dynamic and data-intensive environment.

7.1 SQL/NoSQL Integration
In the realm of modern software development, the choice between SQL (Structured
Query Language) and NoSQL databases is often a critical decision influenced
by diverse data management needs. This section outlines the strategic decision
to leverage the strengths of both SQL and NoSQL databases within the project,
elucidating the rationale, benefits, and the bifurcated backend architecture designed
for optimal data handling.

SQL databases excel in managing structured data through predefined schemas,
while NoSQL databases offer flexibility, particularly with unstructured or semi-
structured data. Recognizing the complementary strengths of these databases, the
project adopts a hybrid approach. By integrating SQL and NoSQL databases, the
project aims to capitalize on the advantages of each paradigm. This amalgamation
facilitates the storage of both structured and unstructured data, striking a balance
between the rigidity of SQL and the flexibility of NoSQL.

The benefits of this Hybrid Database Architecture are:

• Load Balancing: Utilizing two databases distributes the load of data storage
and retrieval, preventing bottlenecks and ensuring optimal performance. Each
database is designated to handle specific types of data, contributing to efficient
load balancing.

• Schema Simplification: The hybrid approach simplifies the complexity associ-
ated with database schema creation. SQL databases manage structured data,
while NoSQL databases handle unstructured data, streamlining schema design
and enhancing overall system maintainability.

• Backend Differentiation: To effectively manage data in the hybrid environment,
distinct backends are implemented for SQL and NoSQL databases. This
demarcation allows tailored handling of data, optimizing processing and
retrieval operations for each database type.

76



Data Storage

Two separate backends are developed, each dedicated to interfacing with different
database types. This clear separation ensures that the unique characteristics and
requirements of SQL and NoSQL databases are accommodated with precision.
Distinct libraries are employed for interfacing with SQL and NoSQL databases,
acknowledging the disparate nature of these data storage mechanisms. This tailored
approach optimizes data retrieval, storage, and processing for each database type.
Data processing within the APIs’ backend is customized to align with the specific
needs of SQL and NoSQL databases. This involves nuanced handling of queries,
transactions, and data manipulation to leverage the unique strengths of each
database paradigm. While the hybrid database architecture introduces additional
layers of complexity, the strategic advantages gained in terms of performance,
scalability, and adaptability outweigh the inherent intricacies. The overhead
introduced by managing two distinct databases is justified by the performance
gains, improved readability, and scalability achieved through this hybrid approach.

In conclusion, the decision to adopt a hybrid database architecture reflects
a nuanced understanding of the project’s data management requirements. By
harmonizing SQL and NoSQL databases, the project maximizes the benefits of
both paradigms, ensuring efficient load balancing, simplified schema management,
and optimized backend processes. The dual backend architecture, tailored database
access libraries, and customized data processing in APIs demonstrate a meticulous
approach to harnessing the strengths of SQL and NoSQL databases. While ac-
knowledging the elevated complexity, the resultant advantages position the project
for enhanced performance, adaptability, and sustained scalability.

Aspect SQL Databases NoSQL Databases
Data Structure Structured Flexible (JSON, BSON,

etc.)
Schema Fixed Schema Dynamic Schema

Scalability Vertical (Scaling Up) Horizontal (Scaling Out)
Complex Queries Excellent Limited (Simple queries)

Transaction Support ACID Properties Limited (BASE
properties)

Consistency Strong Eventual
Community Support Strong Varied

Use Cases Complex Queries,
Transactions

Flexible Schema, High
Volume

Table 7.1: Comparison of SQL and NoSQL Databases

Strengths of both worlds:

• SQL Databases:

77



Data Storage

1. Well-suited for structured data like user information, device models, and
update packages.

2. Excellent for complex queries and transactions, beneficial for handling
structured information efficiently.

• NoSQL Databases:

1. Suited for unstructured or semi-structured data, making it ideal for
telemetry data, sensor information, etc.

2. Scalability is a significant advantage, especially when dealing with a high
volume of data from various devices.

3. Flexible schema accommodates the dynamic nature of certain types of
data.

7.2 SQL for Structured Information
This section delves into the rationale and approach behind leveraging a SQL
database to store structured information in the project. The focus is on harnessing
the efficiency and organization offered by SQL databases, with a particular emphasis
on storing critical data related to users, devices, models, products, and device
update packages.

SQL databases excel in structuring and organizing data efficiently. The tabular
format and predefined schema allow for a systematic arrangement of information,
which is crucial when dealing with well-defined and interrelated data entities. The
relational model of SQL databases facilitates the establishment of relationships
between different entities. This relational nature is advantageous when dealing
with complex data structures, such as associating users with registered devices,
device models, and product information.

User-related data, including user profiles, authentication details, and access
permissions, are stored in the SQL database. This structured storage ensures easy
retrieval and management of user-centric information. Details about registered
devices, their specifications, and configurations find a home in the SQL database.
The relational capabilities allow for linking devices to specific users, creating a
comprehensive overview of device ownership. Information pertaining to the various
models and products offered by the company is systematically stored. The SQL
database structure supports the classification and categorization of products, aiding
in efficient retrieval. Structured information about update packages for devices is
a critical aspect of the SQL database. The ability to organize and relate update
packages to specific devices is crucial for seamless update management.

The structured data entities stored in the SQL database can be seamlessly
combined and queried to derive more complex and detailed information. This

78



Data Storage

synergy enhances the analytical capabilities of the system. While introducing a
level of complexity, the use of a SQL database for structured information is a
trade-off for the immense advantages gained in terms of query efficiency, data
integrity, and the ability to manage intricate relationships.

In conclusion, the decision to store structured information in a SQL database is
rooted in the unparalleled advantages offered by the SQL model. By capitalizing
on its organizational prowess, relationship management capabilities, and efficient
data retrieval, the project ensures a robust foundation for handling critical data
entities such as user information, device details, company products, and update
packages. This approach enhances the system’s ability to manage, analyze, and
derive valuable insights from structured data.

Criteria MySQL Microsoft
SQL Server

PostgreSQL

Open Source Yes No Yes
License Cost Free Paid Free

Community Support Strong Strong Very Strong
Advanced Features Limited Extensive Extensive

(JSON, GIS)
Scalability Good Excellent Excellent

Performance Fast Very Fast Very Fast
ACID Compliance Yes Yes Yes

Ease of Administration Moderate Moderate Very Easy
Extensibility Good Limited Excellent

Concurrency Control Good Excellent Excellent
Suitability for Complex

Queries
Good Excellent Excellent

Data Integrity Good Excellent Excellent
Compatibility with GIS Limited Limited Excellent

(PostGIS)
Why Suitable for

Project
Good balance Strong

enterprise
Best fit

(advanced
features,

scalability,
extensibility)

Table 7.2: Comparison of SQL Databases for the Project

A brief description of the different fields:
• Open Source: PostgreSQL and MySQL are open source, while Microsoft SQL

Server is not.

79



Data Storage

• License Cost: PostgreSQL and MySQL are free, while Microsoft SQL Server
is a paid solution.

• Community Support: PostgreSQL has a very strong and active community,
ensuring good support.

• Advanced Features: PostgreSQL supports advanced features like JSON, GIS
(Geographic Information System), making it versatile.

• Scalability: All three databases are scalable, but PostgreSQL excels in this
aspect.

• Performance: All three databases perform well, with PostgreSQL and Microsoft
SQL Server being very fast.

• ACID Compliance: All three databases adhere to ACID properties for ensuring
data integrity.

• Ease of Administration: PostgreSQL is known for its ease of administration.

• Extensibility: PostgreSQL supports custom functions and types, making it
highly extensible.

• Concurrency Control: PostgreSQL and Microsoft SQL Server excel in managing
concurrent transactions.

• Suitability for Complex Queries: PostgreSQL is well-suited for handling
complex queries.

• Data Integrity: All three databases provide strong data integrity.

• Compatibility with GIS: PostgreSQL stands out with its excellent support for
GIS through the PostGIS extension.

7.3 Database Schema
The architectural underpinning of the SQL database is characterized by a deliberate
simplicity and adaptability, engineered to facilitate seamless modifications to
the database structure in response to evolving requirements. This foundational
approach ensures that future alterations to the database schema are executed
with optimal ease, minimizing data loss to the greatest extent possible. The
schema, delineated into three principal domains, encompasses user-related facets,
components associated with products, models, and devices, and elements pertaining
to devices and updates.

80



Data Storage

Within the realm of user-related data, the schema encapsulates essential in-
formation germane to user profiles, authentication credentials, and authorization
attributes. This segment serves as the bedrock for user management, authentica-
tion processes, and access control mechanisms, fostering a secure and personalized
interaction between users and the platform.

The facet dedicated to products, models, and devices constitutes a primary
component of the schema, orchestrating the relational dynamics between these
entities. Product-centric data includes descriptors such as product names and over-
arching information, while models are intricately linked to products, representing
a specialized categorization within the product taxonomy. Devices, forming the
operational nodes of the system, possess a dedicated schema section capturing
vital attributes and configurations. This structured approach provides a coherent
representation of the hierarchical relationships between products, models, and
devices.

The third facet of the schema is geared towards devices and updates, encapsu-
lating data pertinent to device interactions and the lifecycle of updates. Device-
specific details, including telemetry configurations and operational parameters, find
a repository in this segment. Concurrently, the schema accommodates the nuances
of update management, encompassing versioning, compatibility considerations,
and the status of update installations. This section intricately choreographs the
communication and synchronization between devices and the overarching update
infrastructure.

In embracing such a tripartite schema, the database architecture not only en-
sures the efficient management of user-related data and hierarchical product-device
relationships but also furnishes a robust foundation for overseeing the dynamic evo-
lution of devices through systematic update management. This intentional design
philosophy positions the database as a resilient and adaptable repository, primed
for seamless scalability and evolution in tandem with the platform’s functional
evolution.

81



Data Storage

Figure 7.1: Database schema - User’s related information

The foundational segment of the database schema pertains to user-related
entities, as delineated in Figure 7.1. Within this domain, user information is
systematically organized, featuring a role-based system that categorizes users into
distinct hierarchical roles within the organizational structure. This role system
serves as a mechanism for stratifying user privileges and responsibilities, ensuring
a nuanced and controlled access environment.

A crucial component within this user-centric schema is the role assignment,
where users are assigned specific roles indicative of their position and authority levels
within the organizational hierarchy. This hierarchical arrangement contributes to
the establishment of a well-defined user structure, promoting efficient role-based
access control across the platform.

Complementing the role system, the inclusion of company specifications within
the schema is notable. Each user is associated with a specific company, delin-
eating their organizational affiliation. This affiliation is crucial in establishing
the contextual framework for user roles, as the combination of role and company
attributes affords a granular understanding of the user’s rank and standing within
the organizational landscape.

Moreover, the schema accommodates the linkage between products and compa-
nies, facilitating a seamless association between the products offered by a company
and the users affiliated with that particular company. This linkage streamlines the

82



Data Storage

delineation of product access and management responsibilities among users, rein-
forcing the cohesive integration of user roles, companies, and associated products.

Figure 7.2: Database Schema - Product, Model and Device Related Information

The subsequent segment of the database schema is dedicated to the intricacies
of products, models, and devices, as elucidated in Figure 7.2. This section encapsu-
lates the hierarchical relationships and informational linkages that underpin the
composition of devices and sensors within the platform.

At the core of this schema lies the concept of products, serving as foundational
entities that encapsulate distinct offerings or solutions within the platform. These
products, delineated by pertinent information, form a crucial link to subsequent
layers of the schema, notably models. Models, as represented in the schema,
encapsulate comprehensive information pertinent to their nature and function.
This linkage between products and models establishes a structured framework
for organizing and categorizing the diverse models associated with a particular
product.

The crux of this section resides in the representation of devices. Devices, pivotal
entities within the platform’s ecosystem, harbor comprehensive information stored

83



Data Storage

within their configuration files. The device-centric schema extends to include details
about sensors connected to each device. These sensors, integral components of the
platform’s functionality, contribute to the diverse data collection capabilities of
devices. Each sensor’s relevant information, also stored in the device’s configuration
file, enriches the platform’s understanding of the sensor landscape.

Furthermore, the schema incorporates the concept of device groups, providing a
mechanism for aggregating and managing devices based on specified criteria. These
groups facilitate streamlined device management, particularly in scenarios where
operational coherence or specific functionalities demand collective attention to a
subset of devices.

Figure 7.3: Database Schema - Devices and Updates Related Information

Concluding the database schema exploration, the final segment, illustrated in
Figure 7.3, revolves around the integral connection between devices and updates

84



Data Storage

within the platform’s architecture. In this schema, devices are once again posi-
tioned at the epicenter, intricately linked with updates, thereby delineating the
compatibility and evolution of the platform’s firmware.

An important aspect of this schema is the establishment of a direct association
between devices and software releases. This linkage serves to explicitly identify
devices compatible with specific releases. Upon defining compatibility, a dedicated
table, denoted as deviceUpdates, is instantiated to meticulously store pertinent
information germane to the update process. This granular repository ensures a
nuanced comprehension of the unfolding events during the update progression.

Moreover, the release creation process extends beyond device compatibility to
encompass a delineation of compatible releases for a given device. This reciprocal
linkage between devices and releases augments the platform’s versatility in managing
updates and accommodating diverse release scenarios.

The schema culminates in the manifestation of three distinct lists — success,
pending, and error lists — derived from the information encapsulated within the
deviceUpdates table. These lists provide a detailed breakdown of the update process,
offering insights into the current status (success, pending, error) and supplementary
details, including installation timestamps and related information. This meticulous
categorization ensures an exhaustive and comprehensible representation of the
dynamic update landscape.

In summary, The user-centric segment of the database schema not only orches-
trates a sophisticated role-based access control system but also intricately weaves
together user roles, company affiliations, and product linkages. This holistic design
ensures a nuanced representation of the organizational structure, enabling effective
user management, access control, and contextualized association with products of-
fered by the respective company entities. The products, models, and devices-centric
segment of the database schema establishes a hierarchical and interconnected frame-
work. It seamlessly navigates from products to models and, ultimately, to devices,
encompassing sensors and device groups along the way. This structured representa-
tion not only provides a comprehensive view of the platform’s hardware landscape
but also facilitates effective management and organization of devices, models, and
associated sensors. The PostgreSQL database schema intricately captures also
the interplay between devices and updates within the platform. By delineating
compatibility, recording update processes, and categorizing outcomes, this schema
provides a robust foundation for effective update management, contributing to the
overall resilience and adaptability of the platform.

85



Data Storage

7.4 NoSQL for Unstructured Device Data
The choice of MongoDB as the NoSQL database for the project is underpinned by
its inherent flexibility in handling diverse data types without the rigid structural
constraints imposed by traditional SQL databases. This characteristic is particularly
advantageous in managing data from devices with varying sensor configurations
and data formats.

In MongoDB, data is organized into collections, providing a natural and scalable
way to accommodate the dynamic nature of the information received from devices.
Each registered device in the SQL database corresponds to a distinct collection in
MongoDB. Within these collections, sensor data is stored with an additional field
denoting the sensor’s unique identifier. This design facilitates the representation of
disparate sensor outputs within a single entry.

The unstructured nature of the data becomes evident as different sensors as-
sociated with a device can report distinct sets of parameters. For instance, one
sensor may transmit temperature readings, while another might relay information
on load, stress, and usage percentage in a unified dataset. The flexibility extends
to the ability to introduce new sensors without necessitating alterations to the
existing codebase. Additionally, modifications to the sensors, such as changes in
the monitored parameters or the introduction of new sensors, can be seamlessly
accommodated without causing disruptions to the system.

This adaptability ensures that the system can readily assimilate changes in the
device ecosystem, fostering scalability and future-proofing against evolutions in
sensor technologies.

A brief description of the different fields:

• Data Structure: Defines the fundamental organization of data in the database.

• Schema Flexibility: Indicates the degree to which the database accommodates
changes in the data model.

• Scalability: Describes the approach to handling increasing amounts of data or
traffic.

• Query Language: Specifies the language or method used for querying the
database.

• Consistency Model: Defines how the database ensures consistency of data
across nodes.

• Use Case Suitability: Highlights the types of applications or scenarios for
which the database is well-suited.

86



Data Storage

Feature MongoDB CouchDB Cassandra
Data Structure Document-

oriented
Document-
oriented

Column-family

Schema Flexibility Dynamic and
flexible schema

Schema-free Dynamic and
flexible schema

Scalability Horizontal
scaling with
sharding

Horizontal
scaling

Linear
scalability

Query Language Rich and
expressive
queries

MapReduce
queries

CQL
(Cassandra
Query
Language)

Consistency Model Strong
consistency

Eventual
consistency

Tunable
consistency
levels

Use Case Suitability Versatile,
suitable for
diverse data
types and
applications

Document-
oriented,
suitable for
applications
with rapidly
changing data

Wide-column
store, suitable
for time-series
data and
high-write
workloads

Table 7.3: Comparison of NoSQL Databases

7.5 Redis for Caching Updates

In the pursuit of optimizing database performance and mitigating potential bot-
tlenecks, the project incorporates Redis as an in-memory caching solution. This
section elucidates the strategic utilization of Redis, detailing its role in alleviating
the load on databases during intensive data requests and updates.

Redis serves as a dedicated in-memory cache to store critical information intelli-
gently. The primary objective is to alleviate the strain on databases, particularly
during scenarios involving mass updates or frequent retrieval of data. During
instances where a bulk update of devices necessitates fetching the latest version
of an update, Redis steps in to provide a rapid response. By caching frequently
requested data, Redis significantly reduces the number of queries made to the SQL
and NoSQL databases, optimizing response times and enhancing overall system
performance. The strategic use of Redis ensures that high-impact, frequently ac-
cessed data is readily available in-memory. This allocation minimizes the strain on
NoSQL databases, allowing them to focus on storing and retrieving other essential

87



Data Storage

information, such as the plethora of sensor data generated by connected devices
and retrieved by frontend clients. By caching pertinent information in Redis, the
system achieves a delicate balance. It reduces the number of queries directed at the
NoSQL database, preventing query overload and maintaining sufficient resources
for handling the influx of sensor data—a crucial aspect considering the anticipated
high volume of data generated by connected devices.

Being an in-memory database, Redis ensures lightning-fast data retrieval. This
is particularly advantageous for scenarios where quick responses are imperative,
such as fetching updates during mass device updates. Redis excels in resource
efficiency by storing data in RAM. This minimizes the time spent on disk I/O
operations, contributing to a more responsive and resource-optimized system.

In conclusion, the integration of Redis as an in-memory caching solution presents
a strategic enhancement to the project’s data management architecture. By
judiciously caching frequently requested information, Redis effectively reduces the
load on the databases during intensive data requests. The advantages, including
accelerated response times, minimized query overhead, efficient resource allocation,
and the overall resource efficiency of Redis, position it as a important additional
component to ensure a high-performance and scalable system.

88



Chapter 8

Authentication and Device
Management

The creation of the client software represented a pivotal phase in the project, as
the client was intended to be pre-installed on the devices prior to deployment.
Given the inherent challenges associated with updating or modifying the client
post-deployment — a process that would necessitate device disconnection and
potentially disrupt services — the imperative was to develop a robust and reliable
client. This client was expected to operate seamlessly over extended durations
without encountering significant issues.

This emphasis on robustness and reliability was driven by the need for the client
to function continuously, minimizing the requirement for future interventions or
updates that could potentially disrupt the normal operation of the deployed devices.
The aim was to establish a client architecture that could withstand the rigors of
long-term deployment and ensure sustained performance without compromising
the integrity of the devices and the services they provide.

Key considerations in the client development included ensuring the ability to
handle potential challenges, adapt to various operating conditions, and facilitate
seamless operation without compromising the overall system’s functionality. Addi-
tionally, the client needed to incorporate mechanisms for error handling, robust
data transmission, and effective communication with the backend infrastructure.

In essence, the creation of the client software was a critical undertaking, requiring
careful consideration of various factors to ensure its resilience, reliability, and ability
to operate autonomously for extended periods, thereby contributing to the overall
success and sustainability of the deployed system. An example of the interaction
between the server and the client has been already shown in the Figure 5.2.

89



Authentication and Device Management

8.1 OS Diversity/Multiplatform Client (C)
The selection of the C programming language for the client software was driven by
the diverse nature of the devices within the deployment environment, encompassing
varying operating systems. Opting for C facilitated the creation of a compiled,
executable program that could seamlessly run on devices across different platforms.
This decision provided several advantages, including the ability to create a low-level
client capable of executing on a diverse range of devices.

One of the primary benefits of employing C for the client software was the
potential for cross-platform compatibility. By compiling the code into machine-
level instructions specific to each device architecture, the resultant program could
be executed on devices running different operating systems. This approach ensured
a standardized client implementation, streamlining the deployment process across
a heterogeneous device landscape.

Moreover, the use of a low-level language like C afforded the opportunity for
fine-tuned optimization, particularly crucial when dealing with devices with limited
computational resources. The inherent performance efficiency of C allowed for
the implementation of resource-intensive operations at a low level, contributing
to enhanced overall client performance. This was particularly advantageous for
devices with constrained resources, where efficiency was paramount.

In summary, the adoption of the C programming language for the client software
was a strategic decision emerged from the requirement engineering phase, rooted in
the need for cross-platform compatibility and optimal performance across diverse
devices. This choice aligns with the project’s goal of developing a robust, adaptable
client capable of functioning seamlessly in varied operational environments.

8.2 Client Authentication
Security is a fundamental concern within the project, given the multifaceted nature
of potential threats, ranging from data manipulation to unauthorized access and
cyber attacks. To fortify the platform against these threats, a comprehensive set of
security measures has been meticulously devised.

A pivotal step in enhancing security involves the implementation of robust
authentication mechanisms for each connecting device. This authentication process
is strategically designed to validate the identity of devices seeking connection to the
server. By mandating device authentication, the system ensures that only legitimate
and recognized devices are permitted to interact with the server. This stringent
verification mechanism serves as a crucial deterrent against the introduction of
counterfeit devices, preempting the transmission of erroneous data, potential cyber
attacks, or any other malicious attempts aimed at disrupting the seamless operation

90



Authentication and Device Management

of the entire platform.
The authentication protocol acts as a gatekeeper, effectively mitigating the

risk of unauthorized access and reinforcing the integrity of the platform. This
foundational security measure contributes significantly to the overall resilience of the
system, creating a secure environment for the exchange of data and communication
between authenticated devices and the server.

The initiation of the authentication phase commences with the systematic reading
of the ‘config.json‘ file. This configuration file, an integral component uploaded
alongside the C client to all devices, encapsulates comprehensive information
pertaining to the device. This information encompasses various key attributes
essential for the device’s interaction with the server.

Within the confines of the ‘config.json‘ file, the device is endowed with a unique
identifier, a product identifier, a model identifier, the transmission frequency for
relaying sensor data to the server, heartbeat frequency to update the device’s
status, details about individual sensors, including their identifiers, sensor types,
and the nature of the data they transmit. Additionally, an array housing ten
distinct passwords, designated for authenticating communication with the server,
is stipulated within the configuration. Furthermore, the provision is made for
recording the device’s spatial coordinates if such positional information is available.

This meticulous compilation of device-specific data within the ‘config.json‘ file
lays the groundwork for subsequent authentication procedures. The information
encapsulated within this configuration file plays a pivotal role in orchestrating
a secure and validated interaction between the device and the server during the
authentication phase.

Figure 8.1: Example of a possible config.json file.

91



Authentication and Device Management

Upon successful extraction of device-specific information from the ‘config.json‘
file, the client proceeds to establish a secure TCP connection with the server,
utilizing the uploaded certificate in conjunction with the client and ‘config.json‘
files.

With a secure communication channel now in place, the client enters the prepara-
tory phase before transmitting data across the network. In this preparatory step,
the client encapsulates its data using the MessagePack format, resulting in a notable
data size reduction of approximately 40%. This reduction is achieved through an
encoding operation, converting the device-specific data into a binary representation.
The binary data is primed for efficient transmission to the server.

Subsequently, the encoded, packed data is dispatched to the server, facilitating
streamlined communication between the device and the server. This meticulous
process, involving secure connections and optimized data packaging, forms a robust
foundation for the secure and efficient exchange of information within the system.

Upon receipt of the client’s transmitted data, the server analyze the information
sent by the client to verify its alignment with the records stored in its database. If
the validation process confirms the validity of the client’s data and the device is
successfully recognized, the server initiates a response sequence.

The server dispatches an acknowledgment signal (Return code 200 which implies
’Success’ plus a success field in the returned data structure) to the client, accompa-
nied by a temporary key designated for secure communication between the client
and the server. Additionally, the server may furnish optional information intended
for updating the client’s configuration. This optional data transfer serves to syn-
chronize any modifications made in the server’s database with the corresponding
information on the client side. This meticulous synchronization ensures that both
the server and the client possess congruent and up-to-date datasets, facilitating
seamless and accurate interactions within the system.

Following the successful authentication of the device, substantiated by the
confirmation of its authenticity as a genuine component within the system, the
server facilitates communication by assigning a temporary key unique to that
specific device.

With the allocated temporary key, the client device gains the ability to query
the server for available updates. In the event of updates being identified, the client
device initiates the update procedure. Conversely, if no updates are detected, the
client device proceeds with the routine execution of its program and check again
later for possible updates. Consequently, the authenticated device stands prepared
to engage in various operations, including the transmission of sensor data to the
server and the initiation of permissible actions such as update requests, reflecting
the seamless and secure communication established between the client and the
server.

92



Authentication and Device Management

8.3 Multipurpose Client Functionalities
Upon successful authentication, the client seamlessly transitions into a continuous
operational loop, executing periodic interactions with the server. Each interaction
leverages the pre-established secure channel, and data is meticulously packaged into
message packs, adhering to the security and efficiency considerations previously
elucidated.

Key among the client’s functionalities is its robust handling of reconnection
in the event of a lost connection with the server. This mechanism ensures the
client’s persistent connectivity, mitigating potential disruptions in its operation.
Furthermore, the client incorporates a heartbeat functionality, implemented through
a dedicated external thread. At regular intervals, typically every X minutes
(configurable but set to 5 minutes by default), the client dispatches a heartbeat
message to the server. This simple yet crucial message serves the purpose of
notifying the server of the client’s online status, connection integrity, and readiness
to receive messages.

It is imperative to note that the heartbeat message is unidirectional, and the
client does not await a response, while the server will just record the activity of
the device and update its status. This design choice optimizes the efficiency of the
process, as the primary objective is to provide the server with periodic updates on
the client’s operational status without introducing unnecessary delays.

A pivotal aspect of the client’s functionality revolves around the management of
updates. A dedicated thread, running approximately 1 to 2 times a day, diligently
checks the REST API server for the availability of new updates. This process
involves querying the server to ascertain if any updates are awaiting deployment.
If updates are identified, the client proceeds to download the requisite update
versions, prioritizing the acquisition of the latest available version. In the absence
of updates, the thread will go into sleep and the client continues its routine
operations seamlessly.

Notably, the client exhibits versatility in receiving updates through two distinct
channels. The first involves the periodic querying of the REST API server, ensuring
that the client stays abreast of the latest developments and security patches. In
this scenario, the client autonomously initiates the update process upon detecting
an available update.

The second channel involves the receipt of update commands directly via the
TCP connection with the TCP server. In response to a custom command from the
server signaling the availability of an update, the client promptly undertakes the
download and installation process. This capability proves invaluable in scenarios
demanding swift update deployment, especially in cases of security vulnerabilities
requiring immediate patching.

Upon completion of the download, the client verifies the integrity of the update

93



Authentication and Device Management

package using a checksum. If the checksum validation succeeds, indicating the
integrity of the update, the client proceeds with the installation process. Following
a successful installation, the client orchestrates an automatic restart of the device,
ensuring the seamless application of the update.

In essence, the client’s update management functionality encompasses auto-
mated periodic checks, autonomous update initiation based on REST API queries,
and responsiveness to direct update commands via the TCP connection. This
multifaceted approach ensures the timely and secure deployment of updates, con-
tributing to the overall robustness and security of the deployed devices. The client’s
post-authentication phase, instead, involves continuous, secure communication with
the server, incorporating reconnection strategies and periodic heartbeat messages
to maintain a resilient and uninterrupted connection.

8.4 Sensor Data Transmission
Subsequent to the establishment of a secure connection and the successful comple-
tion of the authentication process, the client is poised to commence the periodic
transmission of sensor data to the server. This involves sending data at inter-
vals determined by the telemetry parameter configured in the client’s associated
configuration file or updated dynamically by the server at the user’s request.

To facilitate this process, a dedicated thread operates periodically, reading
data from the sensors. The sensor-generated data is automatically stored in the
non-volatile memory of the device. The client accesses this information by reading
corresponding JSON files, each file corresponding to a specific sensor and containing
the data recorded by that sensor. Subsequently, the client compiles the data into a
packed format using MessagePack and transmits it to the server. Given the inherent
characteristics of the TCP protocol, any transmission issues, such as data loss or
synchronization discrepancies, are addressed through automatic retransmission of
the requisite packets until successful delivery is ensured. This mechanism guarantees
the integrity and reliability of the transmitted sensor data.

94



Chapter 9

Real-Time Connection
Maintenance

Upon successful connection to the server, a device is granted a limited number
of authentication attempts. If authentication is successful, a persistent TCP
connection is established, enabling direct communication between the device and
the server. While the transmission of sensor data follows the route of the REST API
server, the TCP connection remains inactive until a command from the frontend
is directed to the device through the server. Maintaining an open connection is
crucial to prevent disruptions and ensure the ability to reconnect with individual
devices.

TCP is inherently capable of sustaining open connections for extended dura-
tions. However, to guarantee seamless functionality, a heartbeat mechanism is
implemented. At regular intervals, typically every 5 minutes (configurable), the
client sends a heartbeat message to the server. This proactive measure aims to
uphold the integrity of the connection and serves as a confirmation of the device’s
ongoing activity. Upon receiving the heartbeat packet, the server updates the last
activity date of the device, providing a timestamp to the frontend indicating the
most recent activity and affirming the device’s continued operational status.

9.1 Server-Side Separation for Active Devices
In the architectural design of the system, an important consideration is the server-
side separation for active devices. This delineation involves a thoughtful partitioning
of server responsibilities to efficiently handle various functionalities and data flows,
particularly catering to the diverse needs of active devices within the network.

The server exhibits a bifurcated structure, with one facet devoted to the man-
agement of RESTful API requests. This segment is instrumental in servicing

95



Real-Time Connection Maintenance

diverse frontend requests, including user authentication, device information display,
device group creation, and more. Additionally, it plays a crucial role in managing
device-related tasks, such as authenticating newly connected devices, facilitating
initial configurations, and handling the exchange of sensor data. The decision
to bifurcate these functionalities into a dedicated server component is strategic,
aiming to streamline and optimize the handling of varied and concurrent requests.
By keeping this server singularly focused on data and information management,
potential pitfalls related to overlapping functionalities and overwhelming request
loads are mitigated.

JavaScript, the language of choice for both segments of the server, is employed to
maintain a unified approach. This design choice not only ensures a cohesive structure
but is particularly advantageous for the component responsible for handling TCP
connections.

The second facet of the server is entrusted with managing TCP connections with
individual devices. Unlike the RESTful API server, this section maintains open
connections with each device, orchestrating custom commands, exchanging ping
commands for real-time device status checks, and handling device-specific instruc-
tions. This architectural decision is deliberate, aiming to segregate the handling of
general data and information from the intricacies of device communication.

By isolating TCP connection management, the server can effectively discern and
address the unique traffic patterns associated with device-specific communications.
This tailored approach enhances the server’s ability to handle diverse device requests
efficiently. A single-threaded JavaScript execution is employed for TCP connections
to facilitate streamlined request processing, avoiding potential overhead from
context switching and ensuring a seamless experience even during high-demand
scenarios.

The rationale behind this bifurcated server architecture is rooted in optimizing
performance, maintaining code clarity, and proactively addressing potential scala-
bility challenges. By allocating distinct servers for data-centric and device-specific
operations, the system can intelligently distribute and prioritize tasks, providing
a responsive and robust environment for both frontend interactions and device
communications.

The separation of concerns also simplifies system monitoring, debugging, and
maintenance. The distinct servers enable granular tracking of data traffic and
device interactions, facilitating a more nuanced understanding of system behavior
and performance.

In conclusion, the server-side separation for active devices reflects a meticulous
design approach. It not only ensures optimal performance and responsiveness but
also lays the groundwork for scalability and maintainability, essential attributes for
a dynamic and evolving system landscape.

96



Real-Time Connection Maintenance

9.2 Information and Command Exchange
One of the primary aspects of the IoT platform is the seamless exchange of
information and commands between the server and the client. This intricate process
involves several phases, including the establishment of a secure channel, device
authentication, and the routine transmission of data. Beyond the fundamental data
flow, other critical components, such as heartbeat information and the execution of
commands from the server, add layers of complexity and significance to the system.

1. Secure Channel Creation: The communication process initiates with the
creation of a secure channel between the server and the client. This phase is
integral to ensuring that data transmission occurs in a protected environment,
safeguarding against unauthorized access and potential security breaches.
The utilization of TLS (Transport Layer Security) combined with certificate-
based authentication enhances the integrity of the communication channel,
establishing a foundation for secure and encrypted data transfer.

2. Device Authentication: Upon the establishment of the secure channel, the next
crucial step involves device authentication. The client undergoes a meticulous
authentication process, presenting its credentials to the server. These creden-
tials are typically stored in a configuration file, containing vital information
about the device, including its ID, product ID, model ID, authentication
passwords, and other relevant parameters. The server cross-verifies these
credentials with its database, ensuring the legitimacy of the connecting device.
Successful authentication results in the issuance of a temporary key, enabling
further secure communication.

3. Routine Data Transmission: With the secure channel in place and device
authentication completed, the client is poised to transmit data periodically
to the server. This routine data transmission is orchestrated based on the
telemetry parameters specified in the configuration file. A dedicated thread
within the client periodically reads sensor data, encapsulates it using the
MessagePack format for efficiency, and transmits it to the server. The reliability
of the TCP protocol ensures that, in case of transmission issues, packets are
retransmitted until successful delivery is confirmed.

4. Heartbeat Mechanism: To maintain the longevity of the connection and
keep the server informed of the client’s active status, a heartbeat mechanism
comes into play. At regular intervals, the client sends a heartbeat message
to the server, indicating its operational status. This heartbeat message not
only serves as an indicator of device activity but also assists in updating
the last activity date of the device in the server’s records. This proactive

97



Real-Time Connection Maintenance

approach ensures that the server and client remain in sync regarding the
device’s operational status.

5. Command Execution: Beyond routine data transmission, the server has the
capability to send commands to the client, initiating specific actions. These
commands, ranging from software updates to custom operations like reboot or
shutdown, demonstrate the bidirectional nature of the communication process.
The client, upon receiving a command, interprets and executes it as instructed
by the server, contributing to the dynamic and responsive nature of the entire
IoT ecosystem.

In essence, the data exchange mechanism serves as the lifeblood of the IoT
platform, orchestrating a symphony of secure, authenticated, and routine commu-
nications. Each component, from secure channel creation to command execution,
plays a fundamental role in ensuring the efficiency, reliability, and security of the
overarching IoT infrastructure.

98



Chapter 10

Remote Commands

The command execution feature is a robust implementation across the entire
platform, offering users the capability to perform predefined operations on the
connected devices. This functionality initiates in the frontend, providing users with
an intuitive interface to interact with their devices comprehensively. Users can access
a list of all connected devices, select specific devices, and execute various operations
through a popup menu. Additionally, the system allows for the execution of custom
commands, predefined actions designed to facilitate straightforward functions on
the available devices.

• Frontend Interface: The user interface serves as the gateway for commanding
devices. In the frontend, users can effortlessly navigate through a list of
connected devices. A user-friendly popup menu facilitates the selection of
different operations, empowering users to interact seamlessly with individual
devices or groups of devices. This intuitive approach simplifies the user
experience and enhances the accessibility of device management.

• Custom Commands: Custom commands, although predetermined and not
user-writable, offer a spectrum of convenient functionalities. These commands
are crafted in advance to provide users with a set of predefined operations
that cater to common requirements. While it is not possible to write custom
scripts commands, the predefined options encompass diverse actions, ensuring
a versatile range of operations. These can include simple commands like device
shutdown, reboot, or requesting the device to check for available updates.

• Command Execution Workflow: Upon user selection of a specific command,
the server orchestrates the transmission of the command to the targeted device
for execution. The command types are diverse, catering to various scenarios
and operational needs. Examples range from elementary commands such as

99



Remote Commands

turning off a device to more intricate operations like initiating a device reboot
or prompting the device to search for and install available updates.

• Versatility of Commands: The array of available commands contributes to
the versatility of the platform. Users can seamlessly perform routine actions
or respond to specific device requirements through a unified interface. This
versatility aligns with the platform’s commitment to user-centric control and
ensures that users can dynamically engage with their devices to meet changing
operational needs.

• Operational Impact: The execution of commands directly influences the opera-
tional state of devices. Whether it’s for routine maintenance, troubleshooting,
or responding to specific requirements, users can promptly initiate actions from
the frontend. This instantaneous responsiveness enhances the user experience
and facilitates efficient device management.

In essence, the command execution feature augments the user’s ability to exert
control and influence over connected devices. By providing a range of predefined
operations and a user-friendly interface, the platform ensures that users can interact
seamlessly with their devices, contributing to a robust and responsive IoT ecosystem.

10.1 Command Transmission from Server
The execution of commands within the platform is a sophisticated yet streamlined
process, designed to seamlessly transition from user interaction on the frontend to
the actual execution of commands on connected devices, abstracting any complexity
present in the operations to be executed between the different components involved.
In this detailed exploration, we delve into the intricate interplay between the REST
API server and the TCP server, elucidating each step of the command execution
flow.

• User Interaction and Command Selection: The process begins with user
interaction on the frontend, where a diverse array of commands is made
available. Users can effortlessly select commands from a popup menu associated
with each device or even execute custom commands predefined by the system.
This user-friendly interface serves as the entry point for initiating various
operations on connected devices.

• Generation of REST API Call: Upon the user’s command selection, a REST
API call is dynamically generated. This call encapsulates a wealth of informa-
tion, including specifics about the command to be executed, the target device,
and any additional parameters essential for the successful execution of the
command.

100



Remote Commands

• Transmission to REST API Server: The REST API server, acting as the
central orchestrator, receives the user-initiated REST API call. This server is
instrumental in facilitating communication between the frontend and the un-
derlying infrastructure. It processes the received command-related information
and prepares it for transmission to the TCP server.

• Efficient Communication Between REST API and TCP Servers: A robust
communication channel, established between the REST API server and the
TCP server, ensures efficient data transmission. This direct linkage guaran-
tees that the command-related information swiftly reaches the TCP server,
minimizing latency and maximizing reliability.

• TCP Server’s Role in Device Identification: The TCP server, upon receipt of
the command-related information, undertakes the crucial task of identifying
the target device within its list of actively connected devices. In instances
where the device is not found, indicating a lack of current connectivity, the
TCP server generates an error response. However, when the device is identified
successfully, it is primed to receive the impending command.

• Secure Command Transmission to Device: With the target device identified,
the TCP server initiates the secure transmission of the command to the
associated TCP connection linked to that specific device. This secure commu-
nication pathway ensures the confidentiality and integrity of the command
during transit.

• Device Execution and Potential Response: The identified device, having
received the command, commences its execution. If the execution necessitates
an acknowledgment or response from the device, the TCP server patiently
awaits the device’s reply. This meticulous waiting period ensures that the
server remains synchronized with the real-time status of the device.

• Transmission of Device Response to REST API Server: Upon receiving the
device’s response or acknowledgment, the TCP server relays this vital in-
formation back to the REST API server. This bidirectional communication
guarantees a cohesive and synchronous exchange of information, maintaining
the integrity of the entire system.

• Device Status Update on the REST API Server: The REST API server,
now armed with the response from the device, orchestrates the update of
the device’s status. This update encompasses the outcome of the command
execution, whether successful or encountering an error. The device’s status is
promptly adjusted to reflect the most recent state.

101



Remote Commands

This comprehensive and systematic flow ensures not only the accurate conveyance
of user-initiated commands to respective devices but also provides real-time up-
dates on the execution outcome. The seamless integration between the REST
API server and the TCP server establishes a responsive and reliable command
execution mechanism within the platform, fostering a user experience characterized
by efficiency and transparency.

10.2 Execution on Receiving End
The process of command execution is a pivotal aspect of the platform’s functionality,
ensuring that user-initiated commands are seamlessly carried out on connected
devices. This section outlines the intricate workflow involved in executing commands
and managing device responses.

• Command Reception and Device State Evaluation: Upon receiving a command
from the TCP server, the device assesses its current state. Critical operations,
such as installing updates or transmitting data to the server, may be in
progress. In such cases, the device intelligently waits for these activities to
conclude before proceeding with the execution of the command. This careful
evaluation prevents potential conflicts and ensures the smooth execution of
commands.

• Command Execution Logic: The execution of commands is orchestrated
using the C programming constructs. The system() function call becomes
instrumental in carrying out the requested command on the device. This
simplicity in execution enhances the device’s ability to swiftly respond to
diverse commands issued by the server.

• Handling Commands Requiring Device Shutdown: For commands necessitat-
ing a device shutdown, the server dispatches the command without waiting
for an immediate acknowledgment. The device, upon receiving such a com-
mand, gracefully shuts down and subsequently reconnects to the server upon
restarting. This asynchronous handling of shutdown commands ensures a
streamlined process without unnecessary delays.

• Acknowledgment and Error Handling: Upon completion of a command, the
device sends the command execution results. In case no results are expected
from the command’s execution, an acknowledgment (sort of ack) message is
sent back to the server. This acknowledgment serves as confirmation that
the command was executed successfully. The server awaits this response and,
based on its receipt, adjusts the device’s status accordingly. In the event of

102



Remote Commands

an issue during command execution, the server promptly updates the device’s
status to reflect the encountered error.

• Real-time Status Updates: The platform emphasizes real-time communication,
and this extends to the immediate updating of device statuses. Whether it’s
a routine command execution or the resolution of an encountered error, the
server maintains an accurate and up-to-date record of each connected device’s
status. This real-time feedback loop contributes to the overall responsiveness
and reliability of the platform.

• Ensuring Command Integrity: To guarantee the integrity of command ex-
ecution, the platform relies on robust communication protocols. The TCP
nature of the connection ensures reliable data transmission, and the waiting
mechanism for acknowledgments enhances the overall reliability of command
execution.

In essence, the command execution workflow is designed to be dynamic and
adaptive, allowing also the addition of new custom commands in the future. It
intelligently manages ongoing device operations, executes commands efficiently, and
maintains real-time synchronization between devices and the server. This meticulous
approach contributes to a responsive and dependable ecosystem, empowering users
with effective control over their connected devices.

103



Chapter 11

Performance Evaluation

To validate the robustness and scalability of the entire architecture, a comprehensive
series of stress tests was conducted. The primary objective was to assess the
system’s performance under various loads and ensure its capability to effectively
manage numerous concurrent connections. These stress tests involved subjecting
the platform to increasing levels of load to systematically evaluate its responsiveness
and stability.

The methodology employed in these stress tests encompassed a spectrum of
scenarios, by simulating realistic usage patterns and progressively increasing the
load, the tests aimed to identify potential bottlenecks, gauge the system’s capacity,
and ascertain its overall reliability.

The stress tests were designed to emulate conditions that the platform might
encounter in real-world scenarios, considering factors such as the number of simul-
taneous user connections, data processing intensity, and the frequency of device
interactions. This comprehensive approach provided a holistic perspective on the
platform’s performance metrics and its ability to sustain optimal functionality
under diverse operational conditions.

Furthermore, the stress testing phase included the monitoring and analysis of
key performance indicators, such as response times and resource utilization. This
examination allowed for the identification of potential weaknesses or areas for
improvement within the architecture.

The outcomes of these stress tests not only verified the platform’s adherence
to performance expectations but also facilitated the refinement of the system
by addressing any identified limitations. This iterative process of testing and
enhancement ensured that the architecture could reliably and efficiently support
the anticipated workload, laying a solid foundation for its deployment in real-world
scenarios with confidence in its scalability and responsiveness.

104



Performance Evaluation

Figure 11.1: Load with only one device sending sensor data

As depicted in Figure 11.1, a meticulous examination of resource utilization
during the initial phase of testing reveals commendably low resource consumption.
Notably, this observation is underscored by the modest response times recorded,
with any discernible delays primarily attributed to external connectivity issues.
The results illustrate that, under minimal load conditions, the architecture exhibits
an impressive capacity to handle interactions, as evidenced by the nominal strain
on system resources.

Particularly noteworthy is the analysis of resource usage with the engagement
of a solitary device communicating with the server. This scenario showcases the
architecture’s adeptness in efficiently managing a connection, as evidenced by the
notably low levels of resource utilization. The system demonstrates resilience and
proficiency even in this rudimentary testing scenario, setting a promising foundation
for more comprehensive evaluations.

This initial phase of testing lays the groundwork for subsequent assessments under
increased load scenarios, where the architecture’s robustness and scalability will be
systematically scrutinized. The forthcoming sections of the stress testing regimen
will provide more nuanced insights into the platform’s performance characteristics

105



Performance Evaluation

and offer a basis for continuous refinement and optimization.

Figure 11.2: Load with one hundred devices sending sensors data

Elevating the operational load to accommodate 100 devices introduces a scenario
analogous to the one illustrated in Figure 11.2. In this context, a discernible
augmentation in both resource utilization and response times is observed, albeit
not of a drastic magnitude. It is imperative to acknowledge the intrinsic challenge
posed by the simultaneous communication of 100 devices with the server. Despite
this heightened demand, the overall resources utilized remain within acceptable
limits, particularly when considering the hardware configuration employed for the
testing procedures.

The nuanced increase in resource consumption and response times under this
elevated load underscores the architecture’s ability to manage a substantial number
of concurrent connections without a precipitous decline in performance. This
observation is indicative of the platform’s commendable scalability and resilience
in handling a considerably larger device cohort.

A critical aspect to note is the ongoing optimization efforts and refinements
being applied to further enhance the platform’s efficiency under varying loads. The
identified resource utilization metrics, while acceptable, prompt a commitment to

106



Performance Evaluation

continuous improvement to fortify the platform’s performance parameters.
These subsequent phases will contribute to a comprehensive understanding of

the platform’s scalability, identifying potential areas for refinement, and reinforcing
its robustness in accommodating diverse operational demands.

Figure 11.3: Load with five hundred devices sending sensors data

Subsequently, with a further augmentation in the device count to 500, the
ensuing scenario aligns with the depiction in Figure 11.3. Evidently, both the
response time and the volume of requests per second exhibit fluctuations, contingent
upon the synchronization of devices transmitting data concurrently. Notably, the
resource utilization demonstrates a subtle escalation compared to the precedent
case involving 100 devices, as illustrated in Figure 11.2.

It is discerned from the presented scenario that as the number of devices is
increased, even markedly, there is a proportional increment in resource utilization.
This incremental augmentation, however, remains within reasonable limits, not
even doubling in size, with five times more devices. Importantly, the platform’s
inherent capability to effectively manage a substantial influx of devices concurrently
is manifest. The observed fluctuations in response time and request throughput un-
derscore the dynamic nature of the platform’s operation, adapting to the intricacies

107



Performance Evaluation

of simultaneous data transmission from a considerable device cohort.
This assessment emphasizes the platform’s commendable scalability, ensuring

efficient operation and responsiveness even under the heightened stress of 500 devices.
It is pivotal to acknowledge the nuanced dependencies on device synchronization and
the resultant impact on response metrics, which is inherent to scenarios involving
a large number of concurrently communicating devices.

As part of the ongoing evaluation, further refinements will be considered to
mitigate the observed fluctuations, enhancing the platform’s resilience and fortifying
its capacity to seamlessly accommodate the demands imposed by a significantly
increased device load. Subsequent phases of stress testing will delve into more intri-
cate scenarios, providing a comprehensive evaluation of the platform’s performance
across diverse operational scenarios.

108



Chapter 12

Conclusion

As we draw the curtain on the exploration and documentation of this comprehensive
IoT project, it’s vital to reflect on the journey, achievements, and the path forward.

• Project Recap: The inception of this project aimed to create a robust and
scalable IoT ecosystem, seamlessly connecting devices, servers, and end-users.
Through particular attention into planning and strategic implementation, each
phase unfolded with a commitment to quality, security, and efficiency.

• Achievements: The project has achieved significant milestones, including the
successful deployment of backend services, the development of a feature-rich
frontend, and the integration of multiple databases to handle diverse data
types efficiently. The implementation of secure communication protocols,
client authentication mechanisms, and the ability to handle frequent updates
showcases the project’s versatility.

• Infrastructure and Architecture: The chosen infrastructure, consisting of
Docker containers for databases and services, demonstrates a commitment
to scalability and ease of deployment. The separation of backend and fron-
tend components, along with the implementation of custom made graphs for
statistics, ensures a well-organized and maintainable system.

• Database Strategies: The strategic use of both SQL and NoSQL databases
leverages the strengths of each for structured and unstructured data, enhancing
overall performance, scalability, and data management. The incorporation of
Redis as an in-memory cache further optimizes data retrieval processes.

• Security Measures: The project places particular emphasis on security, im-
plementing measures such as device authentication, secure communication
channels, and periodic heartbeat checks. This proactive approach mitigates
potential threats and ensures the integrity of the entire IoT ecosystem.

109



Conclusion

• Client-Side Development: The client-side development, crafted in the C
programming language, exemplifies a commitment to efficiency and versatility.
The client’s ability to handle periodic data transmissions, manage updates
seamlessly, and maintain a persistent connection underscores its robustness.

• User Interface and Experience: The frontend, developed with React, not only
provides essential functionalities like device registration and statistics display
but also ensures a responsive and user-friendly experience. The transition
from a multi-page to a single-page application enhances overall responsiveness.

• Future Directions: Looking ahead, the project is poised for continued growth
and innovation. The proposed future directions encompass machine learning
integration, enhanced frontend features, and the exploration of emerging
technologies such as edge computing and blockchain for heightened performance
and security.

• Final Thoughts: In conclusion, this IoT project stands as a testament to
meticulous planning, technical prowess, and a forward-thinking approach. Its
impact extends beyond the codebase, reaching into the realms of scalability,
security, and user experience. As we navigate the future, the project is well-
equipped to embrace emerging technologies, meet evolving user needs, and
continue its journey as a beacon of innovation in the IoT domain.

12.1 Achievements
Over the course of the project development, several key milestones and accomplish-
ments have been achieved, contributing to the robustness, efficiency, and security
of the overall system.

• REST API Management Implementation: The integration of Express, Morgan,
Cors, and Passport libraries for handling REST API requests has been a pivotal
achievement. This set of libraries facilitates seamless communication with
the server, allowing efficient processing of requests and delivering appropriate
responses. The use of Passport for user authentication enhances security,
mitigating unauthorized access risks.

• Database Management with Knex and MongoDB: The utilization of Knex
for SQL database interactions and MongoDB for NoSQL database operations
is a significant achievement. Knex ensures the SQL database’s integrity by
handling table creation and data processing efficiently. Meanwhile, MongoDB
caters to the flexibility required for handling diverse data structures, crucial
for accommodating variable sensor data from different devices.

110



Conclusion

• TCP Server Implementation for Device Communication: The development of
the TCP server component stands out as a critical achievement. Leveraging
TLS, FS, and MessagePack-Lite libraries ensures secure communication chan-
nels with individual devices. The server’s ability to log device IP addresses,
decode incoming data, and perform various operations based on communica-
tion types (e.g., authentication, heartbeat, custom commands) demonstrates a
comprehensive and tailored approach to managing device-server interactions.

• Documentation Strategy: A strong emphasis on comprehensive documentation
has been instrumental in ensuring project maintainability. Each project com-
ponent has dedicated documentation, detailing functionalities, requirements,
and interactions. This approach enhances transparency, facilitates analysis,
and simplifies future improvements.

• Scalable Frontend with React: The decision to migrate from a static multi-
page application to a dynamic single-page application using React represents
a noteworthy achievement. This transition not only enhances user experience
but also lays the foundation for a more responsive and scalable frontend.

• Effective Use of Docker for Service Deployment: Deploying databases, backend,
frontend, and statistics framework in separate Docker containers is a strategic
achievement. Docker’s containerization offers a streamlined, configurable, and
easily deployable solution, enhancing project scalability and maintainability.

• Hybrid SQL and NoSQL Data Storage Strategy: The thoughtful integration of
both SQL and NoSQL databases showcases a nuanced approach to data storage.
Structured data finds its place in the SQL database, while unstructured sensor
data benefits from the flexibility of MongoDB. This hybrid approach optimizes
performance, readability, and scalability.

• Efficient Data Caching with Redis: The decision to implement Redis for
data caching is an achievement that addresses the challenge of frequent data
requests. By caching crucial information, Redis reduces the load on databases
during mass updates, ensuring faster response times and improved overall
system performance.

• Client Development in C for Cross-Platform Compatibility: Choosing the
C programming language for client development is a notable achievement,
considering the diverse nature of devices running different operating systems.
This decision allows for compiled, runnable programs that are universally
compatible, offering high performance and low-level control.

• Security Measures for Device Authentication: Implementing robust security
measures, especially in the authentication process, is a noteworthy achievement.

111



Conclusion

By authenticating each device before establishing communication, the system
ensures the integrity of incoming data, mitigates cyber threats, and safeguards
against malicious activities.

These achievements collectively contribute to the success of the project, providing
a solid foundation for further enhancements and ensuring a resilient and scalable
IoT platform.

12.2 Future Directions
As we reflect on the current state of the project, it’s essential to consider potential
avenues for growth, enhancement, and adaptation to emerging technologies. The
following outlines some key areas and future directions that could propel the project
towards continued success.

• Machine Learning Integration for Predictive Analytics: Explore the incorpo-
ration of machine learning algorithms to analyze historical data and predict
device behavior. This could contribute to proactive maintenance, identify-
ing potential issues before they escalate, and optimizing the overall system’s
performance.

• Enhanced Frontend Features: Expand the frontend’s capabilities by integrating
more advanced features. This could include customizable dashboards and
user-specific settings. Additionally, incorporating progressive web app (PWA)
features for offline functionality would improve user experience.

• Continuous Security Audits and Updates: Establish a routine for continuous
security audits and updates to stay ahead of potential vulnerabilities. Regularly
review and enhance security protocols, considering the evolving nature of cyber
threats and the importance of maintaining a secure IoT ecosystem.

• Integration with External Services: Explore integrations with external services
and APIs to enrich the functionality of the platform. This could include
weather data integration, third-party analytics tools, or collaboration with
other IoT platforms for interoperability.

• User Feedback Mechanism: Implement a robust mechanism for collecting
user feedback and feature requests. This can provide valuable insights into
user needs and expectations, guiding the development team in prioritizing
enhancements and improvements.

• Implementation of Digital Twins: Consider incorporating the concept of
digital twins, creating virtual replicas of physical devices. This allows for

112



Conclusion

in-depth monitoring, simulation, and analysis of device behavior, enabling
more accurate predictions and optimizations.

These future directions represent exciting possibilities for advancing the project’s
capabilities, staying at the forefront of IoT innovation, and addressing the evolving
needs of users and stakeholders. The roadmap for future development should be
flexible, allowing for adaptation to emerging technologies and industry trends.

113


	List of Tables
	List of Figures
	Introduction
	Background
	Objectives

	Requirements Gathering
	Requirement Engineering: A Comprehensive Insight
	Initial Phase Gathering
	Protocol Definition

	Communication Protocols
	Reliability and Security
	Command Execution and Data Retrieval

	Architecture Development
	Backend with Node.js
	Frontend with React.js

	Backend Architecture
	REST API Management
	Device-Specific Information Handling

	Frontend Architecture
	React.js Implementation
	Login
	Dashboard
	User's profile
	Device's info
	Devices' groups
	Devices' updates


	Data Storage
	SQL/NoSQL Integration
	SQL for Structured Information
	Database Schema
	NoSQL for Unstructured Device Data
	Redis for Caching Updates

	Authentication and Device Management
	OS Diversity/Multiplatform Client (C)
	Client Authentication
	Multipurpose Client Functionalities
	Sensor Data Transmission

	Real-Time Connection Maintenance
	Server-Side Separation for Active Devices
	Information and Command Exchange

	Remote Commands
	Command Transmission from Server
	Execution on Receiving End

	Performance Evaluation
	Conclusion
	Achievements
	Future Directions


