
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Designing and Evaluating Mapping of
CNN layers on an edge-CGRA

Supervisors

Prof. Daniele Jahier PAGLIARI

Dr. Alessio BURRELLO

Prof. Maurizio MARTINA

Dr. Pasquale Davide SCHIAVONE

Eng. Juan SAPRIZA

Candidate

Nicolò CARPENTIERI

Academic Year 2023-2024

Abstract

Convolutions play a crucial role in image processing and computer vision. They are
extensively used for tasks like image enhancement, filtering, and feature detection.
Furthermore, convolution operations are the most common computing patterns in
machine learning domains. Consequently, it is essential to efficiently implement
convolution operations on hardware architectures to obtain superior performance
when accelerating convolutional neural networks.
The primary aim of this thesis is to explore different convolution methods for
adapting convolutional neural networks to Coarse-Grained Reconfigurable Arrays
(CGRAs). CGRAs represent a departure from conventional computing architectures,
offering enhanced flexibility and energy efficiency. In contrast to Application-Specific
Integrated Circuits (ASICs), known for their efficiency but lack of flexibility, and
Graphics Processing Units (GPUs), which are versatile but consume high power,
CGRAs strike a balance by enabling instruction-level programming. This approach
reduces the complexity and latency associated with configuring Field-Programmable
Gate Arrays (FPGAs) at the bit level, leading to a harmonious blend of performance,
space optimization, and energy efficiency.
CGRAs serve as energy-efficient and high-speed accelerators in IoT processors and
embedded systems to enhance the performance of demanding computational opera-
tions. These architectures comprise a grid of Processing Elements (PEs) arranged
in a two-dimensional layout. Connectivity among these elements enables seamless
data transfer between adjacent PEs, thereby streamlining arithmetic computations,
particularly accumulation, commonly found in convolution operations.
This thesis conducts a thorough assessment of software development approaches
for Convolutional Neural Networks (CNNs), with a specific emphasis on enhancing
energy efficiency and minimizing latency. The study compares the conventional
direct convolution method with the IM2COL technique, which reorganizes input
data into a columnar format to facilitate matrix multiplication-based convolution
operations. While IM2COL has the potential to enhance computational efficiency,
it also leads to increased memory demands due to data replication. To tackle,
on edge devices, the energy consumption related to data movement, the thesis
explores two stationary dataflow methods: weight and output stationary. The

ii

weight stationary method aims to optimize weight reuse within PEs to reduce
energy consumption, whereas the output stationary approach concentrates on
mitigating the energy overhead associated with managing partial sums by keeping
them localized to the register file (RF) of the PEs. Additionally, the thesis exploits
three types of parallelism to boost throughput and diminish latency: parallelism
in output channels, parallelism in input channels, and parallelism in filter spatial
dimensions. The former is dependent on output stationary, while the latter is based
on weight stationary.
The findings of this study indicated that the most effective approach is the par-
allelization of the filter, utilizing weight stationary for optimizing both energy
efficiency and latency. Coupling the CGRA accelerator with our optimized weight-
stationary kernels, we achieve a performance of 0.8 MAC/cycle, 12.5× better than
the ones of the baseline RISC-V processor. In terms of memory, our approach
consumes as low as 34 µJ, 3.3× lower than the RISC-V processor.

iii

Acknowledgements

I express my profound gratitude to all my mentors for their constant encouragement
and support throughout my thesis experience. Special thanks go to Prof. Daniele
Jahier Pagliari, Dr. Alessio Burrello, Prof. Maurizio Martina, Dr. Pasquale Davide
Schiavone, and Eng. Juan Sapriza for their invaluable mentorship and guidance.
Their profound technical knowledge and outstanding personal qualities have made
a lasting impression on me. I also express my sincere thanks to them for their
patience and insightful advice, which were instrumental in each phase of my thesis
work. This valuable research project would not have been possible without their
exceptional assistance. I am also thankful for their generosity in supplying me
with the necessary equipment and tools vital for the successful completion of my
research.
I would also like to extend my heartfelt thanks to my family and friends, whose
support has been invaluable. Consentitemi di esprimere questi sentimenti con
le parole più sincere: vorrei ringraziare la mia famiglia, mia mamma, mio papà,
mio fratello. Vorrei ringraziare mamma perchè è e continuerà ad essere il faro
della mia vita, quella calda luce che anche nei momenti più freddi e bui sa come
guidarti; vorrei ringraziare mio padre, per tutti i sacrifici che ha fatto, e perchè se
ho intrapreso questo percorso universitario, lo devo anche a lui; vorrei ringraziare
mio fratello, perchè nonostante la distanza che ci separa, continuerai ad essere la
mia principale fonte di ispirazione. Vorrei ringraziare mio nonno, per la sua energia
e voglia di vivere che mi hai e mi stai continuando a trasmettere. Voglio ringraziare
zio Giancarlo, zia Angela e Chiara, la mia seconda famiglia.
Last but not least, I want to thank me. To the day in which I learned how to read,
an important pillar of my life. To the people who have contributed, in badness and
goodness, to make me the person who I am today. To my past and future failures,
where I have built and I will build myself. To my feelings, which remember us how
much we are fragile but at the same time they remind us that we are human being,
and we gather our strength from them.
Sapere aude.

iv

Recognize that there will always be rocks in the road ahead of you. You have to
choose if those rocks are stumbling blocks that stop you on your journey or

stepping stones that create a new path. – Friedrich Nietzsche

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1

2 Background 4
2.1 Deep Neural Networks . 4

2.1.1 The Basic of Neural Networks 4
2.1.2 Convolutional Neural Networks 5
2.1.3 Convolutional layers . 5

2.2 Hardware Acceleration of CNN . 10
2.2.1 Temporal Hardware Architecture 10
2.2.2 Spatial Hardware Architecture 11
2.2.3 Coarse-grained reconfigurable architecture (CGRA) 12

3 Related Works 16
3.1 HEEPsilon platform . 16
3.2 X-HEEP . 17
3.3 OpenEdgeCGRA . 19

3.3.1 CGRA Architecture . 19
3.3.2 Assembler & Simulator . 21

4 Methods 23
4.1 Convolution Mapping . 23

4.1.1 Direct Convolution . 23
4.1.2 Im2col . 24

4.2 Parallelization axis . 25
4.2.1 Weight Parallelism . 25

vii

4.2.2 Output Channel Parallelism 27
4.2.3 Input Channel Parallelism 29

4.3 Kernel Operation Mapping . 32
4.3.1 Weight Parallelism Mapping Analysis 32
4.3.2 Input channel Parallelism Mapping Analysis 33
4.3.3 Output channel Parallelism Mapping Analysis 35

5 Experimental Results 37
5.1 Experimental Setup . 37

5.1.1 CGRA preparation and deployment 37
5.1.2 Evaluation Metrics . 38

5.2 Latency and Energy analysis . 40
5.3 Ablation Study: Exploration of layer scalability on CGRA 42
5.4 Ablation Study: Memory interleaved impact 42

6 Conclusions 46

7 Appendix 49
7.1 Assembly code . 49

7.1.1 Weight Parallelism . 49
7.1.2 Output channel Parallelism 51
7.1.3 Input channel Parallelism 56

Bibliograpy 59

viii

List of Tables

2.1 2D convolutional layer parameters. 9
2.2 Comparison of different architectures, adapted from [51]. 15

3.1 Instruction Set of OpenEdgeCGRA, taken from [20]. 20
3.2 PE 32-bit word instruction format, taken from [20]. 21

4.1 Overview of Mapping Strategies detailing the number of instructions
(instr.) per stage. Numbers in parentheses indicate the number of
cycles each loop executes. 32

5.1 Latency comparison in milliseconds (ms) 41
5.2 Energy consumption comparison in microjoules (µJ) 41

ix

List of Figures

1.1 Architecture comparison, taken from [17] 2

2.1 Schematic of a Neural Network Node 5
2.2 Convolution operation 1 layer . 6
2.3 Convolution operation for the first output element. 8
2.4 Architecture comparison in terms of flexibility, performance, and

energy efficiency. Taken from [51]. 14

3.1 Architecture of the HEEPsilon platform used as a test bench for
this analysis, where the OpenEdgeCGRA is instantiated along with
X-HEEP. 17

3.2 X-HEEP architecture, taken from [58]. 18
3.3 Top-level view of the CGRA architecture with a 4 × 4 PE array. In

addition PE-level architectural view. Image taken from [59]. 19

4.1 Convolution operation for the first output element. 23
4.2 Im2col implementation, with B = 1, IX = IY = 5, FX = FY = 2,

C = 2, K = n . 24
4.3 (Top) 2D convolution scheme. (Bottom) Direct convolution with

weight parallelism. Nine PEs perform dot products. The other PEs
load new inputs or sum partial outputs. 26

4.4 Convolution with output channel parallelism. Each K filter multi-
plies the selected input window, to obtain K different results. In
this representation: B = 1, IX = IY = 6, FX = FY = 3, C = 2,
K = 16 . 27

4.5 Output channel parallism mapping onto OpenEdgeCGRA 28
4.7 Input channel parallism mapping onto OpenEdgeCGRA 30
4.6 Convolution with input channel parallelism. Each PEs is assigned a

different input channel C. In this representation: B = 1, IX = IY =
6, FX = FY = 3, C = 16, K = 2 . 30

4.8 Im2col and CGRA function parallelized. 31

x

4.9 Operation distribution for weight parallelism. Other includes index
updates, branch operations, and index manipulation. 33

4.10 Operation distribution for the input and output channel parallelism
. Other includes index updates, branch operations, and index ma-
nipulation. 34

4.11 Im2col effect on the selected input image 35

5.1 Energy vs. Latency comparison. 40
5.2 Impact on memory and performance of different hyperparameters.

Pareto-optimal results are highlighted with a greater color intensity. 42
5.3 HEEPsilon with memory interleaved banks. 43
5.4 Impact of memory interleaved on the different implementations . . 44
5.5 Im2col-IP with interleaved memory 44

xi

Acronyms

ALAP
As-Late-As-Possible

AI
Artificial Intelligence

ASAP
As-Soon-As-Possible

ALU
Arithmetic-Logic Unit

ASIC
Application Specific Integrated Circuit

CGRA
Coarse-Grain Reconfigurable Array

CNN
Convolutional Neural Network

CIL
Compute-Intensive Loop

CPU
Central Processing Unit

DFG
Data Flow Graph

xiii

DRAM
Dynamic Random Access Memory

DNN
Deep Neural Network

DMA
Direct Memory Access

FPGA
Field Programmable Gate Array

FU
Functional Unit

GPU
Graphics Processing Unit

ISA
Instruction Set Architecture

IoT
Internet of Thing

Im2col
Image-to-Column

IP
Input-Channel Parallelism

MAC
Multiply-and-Accumulate

ML
Machine Learning

OP
Output-Channel Parallelism

xiv

OS
Output Stationary

PC
Program Counter

PE
Processing Element

RF
Register File

RTL
Register Transfer Level

SoA
State of the Art

U
Utilization

WS
Weight Stationary

WP
Weight Parallelism

xv

Chapter 1

Introduction

CNNs are currently widely used in various modern applications of AI [1]. Ever
since their groundbreaking application in image recognition [2], CNNs have been
utilized in a plethora of fields, including self-driving cars [3], cancer detection [4],
and playing complex games [5]. In various fields, CNNs have achieved performance
levels that exceed human accuracy. However, this enhanced accuracy comes with a
trade-off: high computational complexity. Historically, general-purpose compute
engines, particularly GPUs, have been the primary choice for CNN processing [6].
However, as we approach the end of Moore’s law, there is a growing awareness that
specialized hardware is essential to continuously improve computing performance
while maintaining energy efficiency [7]. It is essential to note that in addition to
providing specialized hardware, optimizing the software design for convolutional
operations can also play a crucial role in further improving both accuracy and
energy efficiency [8]. These software optimizations encompass various techniques
such as algorithmic improvements, parallelization strategies, and hardware-software
co-design, all of which can significantly contribute to achieving better overall system
performance in CNN based applications. Today, applications belonging to the
IoTs, and high-end embedded system domains are becoming the main targets for
CNNs [9, 10]; as a consequence, speed, energy efficiency, and scalability are of
high importance, while general-purpose processors (i.e., CPUs and low-end GPUs)
tend to become unsuitable for these tasks. FPGA based accelerators have begun
to take their place as versatile solutions [11], as well as ASIC implementations,
providing significant performance gains for CNNs [12]. In addition to the already
listed solutions, another reconfigurable architecture, known as Coarse Grained
Reconfigurable Architecture (CGRA), is being increasingly used as accelerators for
machine learning algorithms [13]. CGRAs are arrays of PEs that are connected
in a 2-D network, linear, or hierarchical style. Each PE consists of a FU and a
RF. FUs of PE can be multipliers, adders, shifters, and other logical operations
[14]. When comparing CGRAs with other hardware accelerators, it can be stated

1

Introduction

Figure 1.1: Architecture comparison, taken from [17]

that while ASICs accelerators are more performant than CGRA accelerators, they
suffer from limited usability and programmability; using GPUs as accelerators
could provide more benefits, but they are often limited to parallel loops, and,
moreover, they have a large area and power overhead; ultimately, FPGAs are
reconfigurable and general-purpose devices, but they are power hungry and have a
lot of reconfiguration latency due to the large configuration bitstream [13]. CGRAs
unlike FPGAs are normally programmed at the instruction level, whereas FPGAs
are programmed at the bit level. As mentioned in [14] and [15], CGRAs represent a
trade-off between spatial and temporal architectures. Spatial architectures, such as
FPGAs and ASICs, execute many computational tasks simultaneously using a wide
array of configurable logic blocks or custom-designed circuits. In contrast, temporal
architectures, such as CPUs and GPUs, process instructions sequentially over
time, optimizing for a series of operations to be executed by the same computing
resources. CGRAs leverage the flexibility of spatial architectures with the efficiency
of temporal processing, offering a balanced approach for applications that require
both parallel processing capabilities and adaptability, as also shown in Figure 1.1.
Research on CGRAs and their applications was in the silent phase until recent years,
when they were used to speed up processor performance [16]. Numerous studies
have already been carried out on harnessing CGRAs architectures to enhance the
performance of CNNs [18, 19]. This thesis addresses specifically the problem of
mapping convolutions, focusing on the OpenEdgeCGRA [20] architecture for edge
computing applications.
The main goal is to outline efficient practices that allow to leverage this accelerator,

2

Introduction

minimizing the impact of the overheads it imposes. For this reason, an investigation
of various state-of-the-art computational and memory management strategies
has done, aiming to uncover the most efficient mapping technique that balances
performance and resource constraints. Specifically, a two-fold contribution is
presented:

• Exploration of different implementation paradigms for convolution, different
tensor parallelism axes and different memory organization;

• the results of the different implementations are benchmarked, measuring
energy, latency, performance, and memory usage, and insights on the best
mapping technique for low-power CGRA are provided.

This analysis highlights the predominance of direct convolution, coupled with
weight parallelism, which reaches up to 3.4× and 12.5× in terms of energy and
latency, respectively, compared to a plain CPU implementation, achieving an overall
average performance of 0.8 MAC/cycle. In general, the thesis is organized as follows.

• Chapter 2 provides background on the context of DNNs and the most important
hardware used for developing machine learning algorithms.

• Chapter 3 describes the specialized hardware used for the analysis of this
thesis.

• Chapter 4 gives an overview of the CNNs. It also describes the various
implementations used for this research.

• Chapter 5 focuses on visualizing and analyzing the most significant results
achieved during this project.

• Chapter 6 is dedicated to providing concluding remarks and discussing future
work.

3

Chapter 2

Background

2.1 Deep Neural Networks

DNNs mark a significant milestone in the evolution of Artificial Intelligence and
Machine Learning, drawing inspiration from the architecture and capabilities of
the human brain [21]. They are particularly adept at capturing complex patterns
and addressing challenging problems. This thesis will explore CNNs, focusing on
their effectiveness in being efficiently integrated with edge-based CGRA.

2.1.1 The Basic of Neural Networks

A neural network consists of interconnected nodes, referred to as artificial neurons
or perceptrons, which collaborate to process information to make predictions or
decisions. At the core of this system is the neuron, which plays a crucial role in
receiving inputs, combining them through weighted sums, applying an activation
function, and generating an output, as illustrated in Figure 2.1. The process of
activations and adjusting weights is fundamental for the learning and adaptive
capabilities of the neural network, distinguishing it from other models. Initially,
neural networks, then called shallow neural networks, could handle a limited set of
tasks but struggled with complex problems due to their simplistic structure with
only a few hidden layers. This constraint hindered their ability to capture intricate
patterns in the data. In contrast, DNNs feature multiple hidden layers that assist
in processing data from input to output. These additional layers enable DNNs to
learn and represent data hierarchically, capturing both fundamental details and
complex abstractions. This ability to extract features at different levels is crucial
for their effectiveness in addressing complex, high-dimensional data challenges.

4

Background

Figure 2.1: Schematic of a Neural Network Node

2.1.2 Convolutional Neural Networks
CNNs exploit the inherent structural information found in the data they analyze
[22]. This is especially notable in image data, which exhibit repetitive patterns,
elements that combine to form a whole, local characteristics, and self-replication
within the same context. CNNs take advantage of these patterns as a fundamental
assumption, capitalizing on the fact that these patterns remain consistent even
with shifts—changes in the data’s position do not affect its significance. This
quality makes CNNs particularly efficient for tasks involving image data, as they
can identify and leverage these shared traits to enhance their performance. CNNs
are adept at managing image and video processing tasks due to their distinctive
design, which enables them to excel in tasks such as object recognition, image
classification, and segmentation. A typical CNN comprises convolutional layers
that extract and handle features from the input data, as well as pooling layers
that condense the dimensionality of these features to a more manageable level.
This process aids in preserving crucial information while notably reducing the
computational burden. Among various pooling methods, max pooling is the most
common [23]. With max pooling, the top value from each segment of the feature
map is preserved, ensuring that the most significant features are highlighted while
minimizing the overall data volume.

2.1.3 Convolutional layers
The core component of a CNN is its convolutional layers, which are located
within the hidden layers of the network and perform the essential function of
convolving the input with a feature map. This operation is remarkable due to
its resemblance to how the visual cortex processes stimuli [24]. In contrast, fully
connected layers, although straightforward and capable of learning diverse features,
encounter significant obstacles, notably their inability to inherently detect patterns

5

Background

Figure 2.2: Convolution operation 1 layer

across different positions because of the absence of translation invariance. This
limitation reduces their effectiveness for tasks that require recognizing patterns
in various positions. Additionally, fully connected layers are burdened with a
high number of parameters, resulting in elevated computational requirements and
inefficiencies. Conversely, contemporary image processing applications increasingly
depend on convolutional operations. Convolutional layers naturally demonstrate
shift invariance, enabling more efficient and optimized pattern recognition. This
characteristic makes them particularly well-suited for image processing tasks, where
the capacity to identify patterns regardless of their location within the image is
crucial for achieving high accuracy and efficiency. The convolution operation is
characterized by the following formula:

(f ∗ g)[n] =
∞Ø

m=−∞
f [m]g[n − m]

This process involves carefully moving a feature map over the input data incre-
mentally, conducting multiplicative operations, as demonstrated in Figure 2.2 to
illustrate a single convolution step. This method differs from fully connected layers
as it significantly reduces the number of parameters by implementing parameter
sharing. In contrast to fully connected networks, where each neuron connects to
all neurons in the previous layer, convolutional layers utilize a set of adaptable
filters. These filters are systematically applied across the input data, allowing
the network to efficiently learn and detect features with fewer parameters, thus

6

Background

improving computational efficiency and reducing the model’s complexity. Convolu-
tion operations enable CNNs to extract and recognize these features from images,
beginning with fundamental elements such as edges and textures and progressing
to more intricate patterns. As the data traverses through the network, subsequent
layers apply convolutions to these initial discoveries, progressively constructing
more abstract representations. This hierarchical processing empowers CNNs to
distinguish and identify complex patterns and objects within the data, enhancing
their capacity to efficiently execute advanced image recognition tasks.
A convolutional layer is mainly composed by 2 parts:

• Convolution: the main component of a layer,

• Activation Function: an activation function is a simple function used to
introduce non-linearities to the layer. It allows us to model more complex
structures and data; typically this function usually can range from a simple
ReLU, to a sigmoid, up to a Leaky ReLu.

In addition, to define the structure of the convolution, some paramaters must be
set:

• Stride: it defines how much does the filter moves through the input at each
step: with a stride 1 the filter moves one input data at a time, for stride 2 it
is pretty much as if the filter skips one iteration each time etc.

• Padding: in order to not lose information by the borders of the input, usually
a layer of padding is added: it is necessary to converge around the borders
the input with 0 values. This parameter also avoids for border values to be
computed less times than interior ones.

• Dilatation: it modifies the spacing between the elements of the convolutional
kernel. In traditional convolutional operations, each element of the kernel is
placed adjacent to each other. However, with dilation, there is a gap between
the kernel elements.

In a convolutional layer, the complexity and functionality are influenced by several
parameters, which are intricately related to the convolution’s dimensionality. Focus-
ing on the 2D convolution scenario, we delve into the structure of the three critical
tensors involved: the output tensor, the weight tensor, and the input tensor. The
process of 2D convolution transforms these interactions into a 3D space concerning
the output tensor. This transformation introduces four key parameters to describe
the output’s dimensions. The first parameter, denoted OX , corresponds to the
width of the output, while the second parameter, OY , represents its height. The
third dimension, denoted as K, signifies the number of output channels that the
convolution operates across, highlighting the layer’s capacity to handle multiple

7

Background

Figure 2.3: Convolution operation for the first output element.

features or filters simultaneously. The fourth dimension, B, which is optional,
represents the batch size, indicating how many samples are processed together in
one forward pass through the network. Similarly, the weights associated with a 2D
convolution are organized along four dimensions: FX and FY for the width and
height of the filters, respectively, ensuring that each filter’s spatial dimensions are
accounted for. The dimension C synchronizes the number of channels in the weights
with the input channels, facilitating the matching of feature detection across similar
depth levels. The last dimension is K, representing the total number of filters.
The input data are likewise structured in a four-dimensional format, with IX and
IY representing the width and height of the input image or feature map, ensuring
that spatial information is preserved. The C dimension mirrors that of the weights,
maintaining consistency in channel depth between the input and the filters applied.
The B dimension, aligned with the weights and output tensors, organizes the data
into batches for efficient processing. This four-dimensional approach to handling
the convolution operation ensures a comprehensive framework for manipulating
spatial and depth information throughout the network. An exaustive representation
of the different dimensions is depicted in Figure 4.1. In this representation: B = 1,
Ix = 6, Iy = 4, Fx = Fy = 3, C = 2, K = 2. Certain relationships among the
dimensions are not completely independent, especially concerning the width and
height of the input and the shape of the output, as well as the weights’ shape. This
interconnection becomes apparent during the convolution process, where a window
of weights moves across a portion of the input to generate a single output cell. The
input dimensions are thereby affected by the output and weights dimensions because
of the operational mechanics of convolution. The stride and dilation parameters
play a crucial role in altering how the weights move over the input, providing a key
to understanding this relationship. The relationship between the input shape and
the other two tensors shape can be then modeled through the following equations:

IX = StrideX ∗ (OX − 1) + DilatationX ∗ (FX − 1) + 1
IY = StrideY ∗ (OY − 1) + DilatationY ∗ (FY − 1) + 1

(2.1)

8

Background

Therefore, when analyzing a 2D convolution, there are a grand total of 7 dimensions
that are actually independent and needed. The computation of a single output cell
is as follows:

O[k][oy][ox] =
CØ
ci

FYØ
fyi

FXØ
fxi

W [ci][fyi][fxi] ∗ I[ci][oy + fyi][ox + fxi]

The following table recaps the list of parameters that are used for a 2D convolutional
layer:

Acronym Name
B Number of batches
K Number of output channels
C Number of input channels

OY Output height
OX Output width
IY Input height
IX Input width
FY Kernel height
FX Kernel width

Table 2.1: 2D convolutional layer parameters.

In conclusion, DNNs have represented a significant advancement in the field of AI
and ML, showcasing exceptional abilities across a range of tasks. They are proficient
at extracting complex data representations through multiple layers, leading to
breakthroughs in various domains. Nonetheless, their implementation comes with its
share of challenges. Issues such as the risk of memorizing training data (overfitting),
the substantial computational resources required, and the extensive need for labeled
datasets present significant barriers to their practical use. Innovative approaches like
transfer learning, which adapts pre-trained models for new tasks, data augmentation
to artificially enlarge training datasets, and the design of novel network structures
provide avenues to overcome these obstacles. The evolution of DNNs is characterized
by continual progress, fueled by ongoing research and innovation. As the field
moves forward, it is expected that addressing current challenges will result in even
more resilient and adaptable applications of deep learning, further establishing the
pivotal role of DNNs in reshaping the landscape of AI and ML.

9

Background

2.2 Hardware Acceleration of CNN
The acceleration of CNNs in various applications has been rapid since the start of
the previous decade. This progress was made possible by the introduction of high-
speed GPUs that could meet the substantial memory bandwidth and computational
demands arising from the growing scale of CNNs. The deep learning solutions not
only limit their applications to heavy computing machines, but they also pave the
way for innovation in environments where computing resources are more constrained.
However, there is also an increasing interest in utilizing CNNs on edge devices that
have restricted hardware resources and energy. The hardware solutions for CNNs
development and deployment range from general purpose architectures (CPUs
and GPUs) to spatial architectures (FPGA and ASIC). The layer parallelization
over the different hyper-parameter plays a crucial role in both fully connected and
convolution layers, allowing for easy parallelization to enhance inference speed.
Hardware acceleration can take the form of traditional hardware optimizations
with increased computational parallelism or modern accelerators that integrate
both hardware and software design capabilities. The current trend in efficient
CNN applications involves CNN acceleration through a combination of hardware
and software co-design. The subsequent sections will delve into a comparison of
various architectures, with a specific focus on distinguishing between temporal
architectures (such as CPUs and GPUs) and spatial architectures (e.g., ASICs and
FPGAs), exploring the range of available hardware architectures suitable for CNNs.
Spatial architectures perform multiple computational tasks at once by leveraging a
broad network of configurable logic blocks or bespoke circuits. Conversely, temporal
architectures handle instructions in a sequential manner, aiming to sequentially
execute a series of operations with the same set of computing resources. This thesis
explores particularly the CGRA architecture, which embodies characteristics of
both spatial and temporal architectures. By combining the adaptability of spatial
architectures with the sequential efficiency of temporal processing, CGRAs provide
a versatile solution for applications demanding parallel processing power as well as
flexibility.

2.2.1 Temporal Hardware Architecture
In general, CPUs and GPUs typically utilize temporal architectures characterized
by a significant number of ALUs that act as processing units under centralized
control. In this temporal architecture framework, ALUs do not have individual local
memory and cannot communicate directly with each other. To achieve parallelism,
CPUs follow the single-instruction multiple-data (SIMD) model, while GPUs adhere
to the single-instruction multiple-thread (SIMT) execution model. Within these
temporal platforms, convolution layers in CNNs are often carried out using matrix

10

Background

multiplication. Enhancing the efficiency of matrix multiplication can be supported
by software libraries such as OpenBLAS and Intel MKL for CPUs, and cuBLAS
and cuDNN for GPUs. Using GPUs as accelerators could give more benefits but
often limited to parallel loops, and moreover, they have a large area and power
overhead [13]. Specialized hardware architectures designed specifically for CNN
applications are less common in these architectures due to their general-purpose
nature and adaptability to a wide range of applications.

2.2.2 Spatial Hardware Architecture
In general, designs based on ASIC and FPGA typically employ spatial architectures.
Within spatial architectures, ALUs can have their own dedicated local memory and
control logic, referred to as PEs. These PEs are interconnected in a processing chain,
facilitating data exchange and direct communication among themselves, unlike
ALUs in temporal architectures. For accelerators utilizing spatial architecture
on ASIC or FPGA platforms, the primary bottleneck arises from memory access.
To mitigate this, an array of PEs with small local buffers and a global buffer is
utilized to minimize data retrieval from DRAM. Moreover, energy consumption
in such architectures is predominantly driven by data movement between memory
and processing elements due to the constrained on-chip memory and data transfer
bandwidth. Various initiatives have been undertaken to address this challenge by
leveraging emerging memory technologies like Dynamic Random Access Memory
(DRAM), Resistive Random Access Memory (ReRAM), and Hybrid Memory Cube
(HMC) to enable the direct integration of the processing engine and memory storage,
known as Processing-in-Memory (PIM). The PIM approach aims to reduce data
movement by executing certain computations within the memory itself, thereby
mitigating the performance penalties associated with memory accesses. Noteworthy
studies employing DRAM, ReRAM, and HMC-based PIM architectures for acceler-
ating DNNs include DrAcc [25], PRIME [26], PattPIM [27], and Neurocube [28].
Subsequent subsections provide a detailed analysis of each spatial architecture.

Application Specific Integrated Circuit (ASIC)

An Application Specific Integrated Circuit (ASIC) is a type of integrated circuit
(IC) designed for a specific use or application rather than for general-purpose use.
In contrast to adapting the deep learning algorithm to the CPU or GPU hardware
structure for acceleration, the primary method for speeding up the convolution
learning algorithm using ASIC involves tailoring dedicated hardware acceleration
algorithms, such as specialized designs for convolutional neural network algorithms
[29, 30, 31, 32]. ASICs are specifically customized to accelerate a particular
algorithm or class of algorithms, resulting in typically effective acceleration and

11

Background

low power consumption. However, this specialization also leads to limited re-
configurability and high development costs. ASIC designs can deliver optimal
performance, prompting the integration of custom function modules into a system
on chip (SoC) to create a heterogeneous computing architecture. Nonetheless, due
to the rigid nature of ASIC designs, resources cannot be repurposed, limiting them
to specific tasks.

Field Programmable Gate Array(FPGA)

A Field Programmable Gate Array (FPGA), is a versatile type of programmable
digital chip that comprises a large array of gates that can be programmed and
reconfigured as needed. In a modern FPGA, there is an array of programmable
blocks, some of which are highly flexible. These blocks may include look-up tables
for basic boolean logic operations, registers for temporary storage of data, and
interconnecting resources. FPGAs are commonly used to enhance the performance
of applications that require intensive computations, high throughput, low latency
calculations, or have strict power constraints. The use of FPGA-based accelerators
has been gaining attention from researchers due to their benefits such as excellent
performance, high energy efficiency, rapid development cycles, and versatility [33,
34, 35]. However, FPGAs also have limitations such as low area efficiency, high
power consumption, large configuration bit-streams, and lengthy reconfiguration
times, attributed to their fine-grained logic cells and static reconstruction.

2.2.3 Coarse-grained reconfigurable architecture (CGRA)
Coarse-grained reconfigurable architectures (CGRAs) are a natural coarse-grained
implementation of the concept of reconfigurable computing proposed in 1960s
[36]. This architectural design emerged in the 1990s [37, 38] and has been rapidly
evolving since the 2000s [39, 40]. CGRAs are increasingly attracting attention due
to their near-ASIC energy efficiency and performance, coupled with post-fabrication
programmability similar to software [41, 42, 43]. The detailed comparison illus-
trated in Figure 2.4 compares CGRAs with ASICs, FPGAs, GPUs, and CPUs
based on their energy efficiency, flexibility, and performance. In the academic realm,
CGRAs are considered strong competitors to traditional computing architectures,
as demonstrated by the substantial amount of research showcased at prestigious
conferences [44, 45] and the significant support from organizations such as the
Defense Advanced Research Projects Agency (DARPA)[46]. Moreover, in the
industry, CGRAs are gaining attention. For example, Samsung has integrated
aCGRA accelerator into its 8K high-definition television (HDTV) and Exynos
System-on-Chips (SoC) [47, 48]. PACT Inc. has successfully deployedCGRA intel-
lectual property (IP) cores in the satellite payload of Astrium [49]. Intel initiated

12

Background

a project to integrate CGRAs into its Xeon processor in 2016 [50]. Despite these
commercial applications, CGRAs are more prevalent in academia than in industry
due to the technology’s ongoing maturation process. To start, an introduction of
CGRAs as the fundamental concept of this research is presented. ACGRA is a
computational framework characterized by the following attributes:
Flexibility in Specific Domains CGRAs exhibit a level of flexibility after man-
ufacturing that lies between general-purpose and fixed-function devices. Their
hardware can be configured by software at runtime, but their processing elements
(PEs) are not as robust as those found in general-purpose processors (CPUs), and
their interconnections are less intricate compared to FPGAs [51]. This design offers
just the right amount of adaptability for particular domains. In contrast to the
broad flexibility of general-purpose devices like FPGAs and CPUs, domain-specific
flexibility customizes the hardware for specific applications and minimizes redun-
dant resources. Consequently, within the targeted domain, CGRAs are typically
1–2 orders of magnitude more energy-efficient than FPGAs and over 2–3 orders of
magnitude more energy-efficient than CPUs [52, 53, 54]. However, the advantage
of CGRAs tends to diminish for general-purpose applications [43]. Therefore, the
domain-specific flexibility emerges as a crucial factor contributing to the balance
that CGRAs strike between energy efficiency and adaptability.
Integrating Spatial and Temporal Computation Spatial computation in
CGRAs leverages parallel computing resources and data transfer channels for
processing, while temporal computation utilizes time-multiplexing resources. Con-
sequently, the configuration of a CGRA involves determining the spatial and
temporal coordinates of each node and arc in the data flow graph (DFG), a task
typically handled by compilers. The combination of spatial and temporal compu-
tation provides a more flexible and powerful structure for executing applications.
Compared to architectures that solely support temporal computation, such as
CPUs, CGRAs eliminate the need for expensive deep pipelines and centralized
communication overhead by efficiently scheduling computations over time. This
temporal computation allows for a dynamic reallocation of resources based on
the computational needs, reducing idle times and enhancing overall processing
efficiency. In contrast to architectures focused solely on spatial computation, like
traditional FPGAs, programmable array logic (PAL) architectures, and ASICs,
CGRAs enhance area efficiency by allowing a more flexible and dense arrangement
of computational units. This spatial computation leverages the physical layout
to perform multiple operations in parallel, maximizing the use of available silicon
space. By combining both temporal and spatial computation approaches, CGRAs
can dynamically reconfigure the spatial layout of computational units to adapt to
different tasks over time. This fusion means that a CGRA can adjust its hardware
configuration to match the specific requirements of a task, blending the efficiency
of spatial architectures in performing parallel operations with the flexibility of

13

Background

Figure 2.4: Architecture comparison in terms of flexibility, performance, and
energy efficiency. Taken from [51].

temporal architectures in handling diverse computational workloads. Consequently,
this dual approach significantly improves area efficiency by optimizing the uti-
lization of the chip’s real estate, ensuring that more computations can be carried
out within a smaller footprint. Thus, CGRAs provide a versatile and efficient
solution that leverages the best of both worlds, making them particularly suited for
a wide range of applications where flexibility, performance, and area efficiency are
critical. Configuration or Data-Driven Execution In contrast to processors
that execute operations in a linear, control flow-oriented manner (as predefined
by compilers), CGRAs primarily rely on configuration flow or data flow to drive
their operations. The configuration of CGRAs specifies PE operations and inter-
connections. All PEs defined by a configuration operate synchronously under the
same control flow (thread). Although configurations are influenced by control flow,
the operations within each configuration run in parallel or in a pipelined fashion,
leveraging compiler-driven parallelism.
Notably, configuration-based CGRAs can exploit effective explicit data flow through
interconnections, a feature not supported by conventional instruction sets. A data-
drivenCGRA is an instantiation of an explicit data flow machine [55], which entirely
disregards control flow execution. Within a configuration, any operation with
its operands ready for processing will be executed, offering candidates from all
operations in that configuration. In comparison to control-flow or instruction-
driven execution seen in multicore processors, configuration/data-driven execution
can prevent overly serialized PE execution, harness fine-grained parallelism, and
facilitate efficient synchronization among PEs. This execution approach also
facilitates explicit data communication, reducing the energy overhead associated
with data movement. Thus, configuration/data-driven execution stands out as a

14

Background

pivotal factor contributing to the superior performance and energy efficiency of
CGRAs.

Table 2.2: Comparison of different architectures, adapted from [51].

Architecture Flexibility Temporal Spatial Reconfig.
time

Config.
driven

Dataflow-
driven

CGRA Domain ✓ ✓ ns-µs ✓ ✓
FPGA General ×(a) ✓ ms-s ✓ ✓
ASIC Fixed ×(b) ✓ × ×(c) ✓

Multicore General ✓ ✓ ns × ×(d)

a FPGAs can perform temporal computation, but it is not practical considering the
overhead and effectiveness.
b ASICs support hardware resource sharing as temporal computation to some extent.
c ASICs do not support reconfiguration, but there might exist configuration codes.
d Dataflow mechanisms can be supported in software at the task/thread level, e.g.,
data-triggered multi-threading.

In summary, CGRAs are characterized as specialized hardware that is flexible
within a specific domain, enabling computation to occur spatially and temporally,
with configuration flow or data flow directing the execution. This comprehensive
definition, encompassing and refining previous definitions that have been contentious
or one-sided [56, 17], eliminates any ambiguity. As indicated in Table 2.2, these
three attributes set CGRAs apart from other computing architectures. While
FPGAs share similarities with CGRAs in terms of adaptable spatial computing
(reconfigurable computing), FPGAs differ as they are a more detailed, general-
purpose flexible architecture and tend to lack support for temporal computation due
to their slower reconfiguration process compared to CGRAs (nanoseconds versus
milliseconds), making it challenging to pipeline reconfiguration with kernel-level
computation. Although certain commercial FPGAs do offer runtime reconfiguration
(RTR), the widespread applicability of RTR remains uncertain [57]. Multicore
processors resemble CGRAs in structure, featuring multidimensional processing
element arrays and message-passing interconnections. Nonetheless, their processing
units consist of individual sequential cores driven by control flow or instructions.

15

Chapter 3

Related Works

In this chapter, we dive into the exploration of various platforms critical to advancing
the capabilities of edge computing, focusing particularly on their role in improving
real-time data processing in a variety of applications. The main emphasis is on
leveraging heterogeneous architectures that combine the computational power of
host processors with the specialized efficiency of custom accelerators. This approach
aims to address the twin issues of performance and power efficiency that are common
in edge-computing devices. This exploration is anchored in the detailed analysis
of three distinct but interrelated platforms: the HEEPsilon platform, X-HEEP,
and OpenEdgeCGRA, each offering unique contributions towards achieving the
twin goals of optimized performance and energy efficiency in edge computing
environments.

3.1 HEEPsilon platform
The rapid growth of edge computing is driven by the increasing need for real-time
data processing in various applications. Despite this progress, challenges persist
due to performance and power efficiency limitations in edge-computing devices.
To address these challenges, there has been a rise in heterogeneous architectures
that combine host processors with specialized accelerators customized for specific
applications. This approach leads to enhanced performance and reduced power
consumption. This chapter focuses on describing the heterogeneous environment
used, with particular emphasis on the accelerator. The heterogeneous architecture
used in this research is known as HEEPsilon, comprising a RISC-V microcontroller
(X-HEEP) and a CGRA architecture named OpenEdgeCGRA. The OpenEdgeC-
GRA is a low-power, general-purpose, scalable, instruction-based CGRA designed
for executing healthcare applications efficiently with minimal area and power re-
quirements. Although not optimized for running intensive kernels like CNNs, this

16

Related Works

CGRA was selected for its open-source nature and validation in silicon. Figure 3.1
illustrates the HEEPsilon platform, which includes a CPU and memory allowing
for real application evaluation.

Figure 3.1: Architecture of the HEEPsilon platform used as a test bench for
this analysis, where the OpenEdgeCGRA is instantiated along with X-HEEP.

3.2 X-HEEP
The eXtendible Heterogeneous Energy-Efficient Platform (X-HEEP) is positioned
as an innovative open-source platform specifically designed to natively support
the integration of ultra-low-power edge computing accelerators [58]. Through
the implementation of power saving strategies, such as clock gating, X-HEEP
emphasizes energy efficiency. These strategies are integrated with connected
accelerators, e.g., OpenEdgeCGRA, through dedicated power control interfaces.
The platform is distinguished by its architecture, illustrated in Figure 3.2, which
includes core components allowing extensive customization to meet specific appli-
cation requirements. This customization is made possible by the exploration of
various core types, bus topologies, and memory addressing modes, along with a
granular configuration of memory banks to fit the constraints of integrated acceler-
ators. X-HEEP’s cores come from the OpenHW Group’s CORE-V family, selected
for their maturity and multiple successful implementations in silicon. In addition,
the platform incorporates a wide range of IPs from the PULP project for the bus,
memory models and debug unit, and peripherals from the OpenTitan project,
all chosen for their proven reliability and comprehensive hardware abstraction

17

Related Works

functions. X-HEEP further enriches its offerings with custom IPs such as boot
ROM, power manager, a fast interrupt controller, and a DMA.

Figure 3.2: X-HEEP architecture, taken from [58].

Turning to X-HEEP’s programmable modules, the platform exposes a configurable
number of slave and master ports to the external XAIF interface, facilitating the
integration of one or more accelerators. This configurability enhances connectivity
with state-of-the-art accelerators and agile integration into microcontrollers for
real-world applications. Slave ports, using the OBI protocol, provide easy access
and configuration for memory-like accelerators, while master ports meet the band-
width requirements of processor-like accelerators, such as OpenEdgeCGRA, which
leverages four 32-bit master ports for read and write operations independent of
main memory. An additional peripheral interface connected to X-HEEP’s periph-
eral bus supports custom external peripherals, extended by a FIFO interface to
facilitate simple DMA-peripheral connections, enabling efficient data transfers to
main memory with DMA support.
For the purposes of this study, focusing on the usage of OpenEdgeCGRA, the
selected configuration utilized CV32E20 as the core, employing the default bus
configuration, a multi-master architecture (termed N-to-M). Additionally, the study
explored two different scenarios of memory organization: initially employing 16
continuous memory banks of 32 kB each, followed by a transition to 16 interleaved
memory banks of the same size. The contiguous mode offers limited bandwidth to
applications, like CNN mapping, that require multiple masters to access contiguous
data stored in memory, but allows for power-gating or setting in retention mode
the banks that are not actively used. Conversely, the interleaved mode offers higher

18

Related Works

bandwidth to applications that access contiguous data in memory, at the cost of
keeping all the banks active all the time. On the contrary, the interleaved mode
provides higher bandwidth for such applications, necessitating that all banks remain
active. The study delves into latency and power evaluations for the contiguous
scenario, with a focus on just the latency analysis for the interleaved mode.

3.3 OpenEdgeCGRA

Figure 3.3: Top-level view of the CGRA architecture with a 4 × 4 PE array. In
addition PE-level architectural view. Image taken from [59].

OpenEdgeCGRA is a CGRA design characterized by its open-hardware nature and
low power consumption [20]. It can function as a memory-mapped accelerator within
a system, as detailed in the preceding section. Complementing this CGRA setup
is a C-based firmware library that facilitates the interaction between applications
and the accelerator. To test and validate the entire system, simulation tools like
Verilator, Questasim have been employed. The size of the reconfigurable array,
including the number of cells and their arrangement, is adjustable to support design
exploration based on the specific application field.

3.3.1 CGRA Architecture
A block scheme of the CGRA architecture is shown in Figure 3.3. The default setup
used consists of a 4 × 4 grid of identical PEs that are interconnected with their
four nearest neighbors in a torus arrangement, facilitating data movement within
the reconfigurable mesh. Each PE comprises an ALU, two multiplexed inputs, an
output register, a flag register that stores the 1-bit zero and sign flags from the

19

Related Works

preceding instruction, a four-element register file, and a private program memory
of 32 words. Operation is time-multiplexed, with each PE executing the instruction
indicated by the column program counter (PC) at every clock cycle, allowing for
the execution of modulo-scheduled loops. Additionally, each PE can utilize its
internally stored values or the output from any of its four closest neighbors (top,
left, bottom, or right). The proposed accelerator is directly linked to the main
memory via four master ports (one for each column), managed by DMA.

Table 3.1: Instruction Set of OpenEdgeCGRA, taken from [20].

Type of operation Opcode
Arithmetic operations SADD, SSUB, SMUL
Shifts SLT, SRT, SRA
Bit-wise operations LAND, LOR, LXOR,

LNAND, LNOR, LXNOR
Selects BSFA, BZFA
Loads and stores LWD, LWI, SWD, SWI
Conditional and unconditional branches BEQ, BNE, BLT, BGE, JUMP
No operation NOP
Finish EXIT

Furthermore, simultaneous access to the data can occur if the system bus allows
for multiple master-slave transactions to take place concurrently (specifically, in
this study, an n-to-m configuration bus is utilized, as previously explained). Each
column holds the addresses for read and write operations, which can be set up from
the CPU. The CGRA instruction set enables the computation of a diverse range
of kernels using 32-bit basic arithmetic and logical operations. The Arithmetic
Logic Units (ALUs) are capable of executing arithmetic operations such as signed
addition, subtraction, and multiplication, arithmetic and logic shifts, and bit-wise
operations. The ALUs also support conditional operations based on the zero
and sign flags (BXFA and BSFA, respectively), facilitating the implementation of
branches through if-conversion. Nevertheless, a Multiply-and-Accumulate (MAC)
instruction, which could enhance performance, is not included. Furthermore, both
conditional and unconditional jumps are permitted, enabling the implementation
of kernels with if statements and for loops. It is important to note that jumps are
controlled by the hardware on a column-by-column basis, as multiple kernels can be
mapped or executed simultaneously, each potentially requiring one or more columns.
Input/output transfers are handled through direct and indirect loads and stores.
Direct loads/stores access the memory location specified by the read and write
addresses, with automatic incrementation. In contrast, indirect loads/stores encode
the address within the instruction itself, which is then stored in a dedicated register.

20

Related Works

Table 3.2: PE 32-bit word instruction format, taken from [20].

Field muxAsel muxBsel aluOp rfSel rfWe muxFsel imm
Bits 31:28 27:24 23:18 17:16 15 14:12 11:0

The Instruction Set Architecture (ISA) supported by the CGRA is summarized in
Table 3.1, while Table 3.2 illustrates the CGRA instruction word format, displaying
the static fields for all instructions. Fields are associated with the multiplexers that
govern the operations carried out in the ALU and the sources of operands. This
setup eliminates the necessity for a decoder and enables the hardware to execute a
single instruction per cycle for basic operations. The time taken for loads and stores
in a cycle is dependent on the system bus, while multiplications are completed in
three cycles. The CGRA includes a context memory of 2 KiB that contains the
instructions defining the kernels that can be dynamically loaded into the PEs based
on the application requirements. This memory is linked to the system bus and is
programmed by the CPU. A CGRA synchronizer arranges the acceleration requests
from the CPU on the available columns of PEs by duplicating and executing the
instructions in the PEs, as elaborated in [60]. If a kernel request can be processed
in the available columns at runtime, the instructions from the kernel are transferred
from the context memory to the private memory of the corresponding PEs, and the
execution begins. Otherwise, the synchronizer delays the request until sufficient
resources are available. Consequently, kernels are assigned to specific columns
within the PEs mesh at runtime rather than during compilation, resulting in a
flexible utilization of resources. The synchronizer includes a group of 32 control slave
registers to set up and initiate the execution of the kernel. Some of these registers
also offer performance counters for measuring the performance and utilization of
kernel execution. Lastly, the kernel configuration memory (comprising 15 elements)
is employed to outline the kernels stored in the context memory. It specifies, for
each kernel, the number of columns needed, the starting position of the instructions
in the context memory, and the quantity of instructions that the kernel encodes
and must be copied into the private memory of the PEs.

3.3.2 Assembler & Simulator
An assembler is included in the framework to convert descriptions of mapped
operations into binary configuration words. This simplifies the programming
process for controlling the execution of CGRA, as operations can be articulated in
a human-readable format. The framework contains implementations of benchmark
kernels, which are described as mapped operations in assembly language. These
kernels are categorized into two groups: manually mapped kernels and kernels
produced by the SAT-MapIt modulo scheduling compiler [59]. In this study, the

21

Related Works

option to manually map kernels was selected, a choice made feasible also by the
ability to emulate the CGRA used in HEEPsilon with CGRA instruction precision
using the ESL-CGRA simulator. Additionally, as part of the CGRA companion
software suite, there are tools available for generating test C code functions, enabling
the execution of kernels from an application to validate the CGRA functionality
and compare performance against software run-time on the host processor.

22

Chapter 4

Methods

This work explores different optimization directions to map a convolutional kernel
onto the OpenEdgeCGRA. In particular, the implementation paradigm, i.e., the
data layout coupled with its access order, is first explored. Then, the computation’s
parallelization over the CGRA’s PEs is investigated. For all experiments, they
are always considered convolutions with groups = 1, and a filter of dimension
FX × FY = 3 × 3 [61].

4.1 Convolution Mapping

4.1.1 Direct Convolution
The direct convolution’s approach to processing, by avoiding data manipulation
and instead fetching data straight from memory, ensures that the raw integrity of
the input image is preserved. However, this method incurs significant overhead
due to the non-sequential nature of data loading, necessitating complex addressing
schemes to access the required data points efficiently. To minimize this overhead, a
Channel-Height-Width (CHW) data layout is typically used [62]. Consequently,

Figure 4.1: Convolution operation for the first output element.

23

Methods

while the simplicity of direct convolution in terms of not altering input data might
seem advantageous, it demands a more sophisticated memory management strategy
to mitigate the performance costs associated with its inherent data addressing
challenges.

4.1.2 Im2col

Figure 4.2: Im2col implementation, with B = 1, IX = IY = 5, FX = FY = 2,
C = 2, K = n

On the other hand, the Im2col transformation is the most adopted implementation
in CPU and GPU kernel libraries, such as PULP-NN [63], Mxnet [64], or Tensor-
flow [65]. It transforms multi-channel 2D Convolutions into a vector-matrix product
by turning each input activations’ patch (originally a 3D tensor) into a 1D vector
of dimension input channels (C) × filter rows (FX) × filter columns (FY), which is
multiplied with the 2D weights matrix, of dimension C × FX × FY × K (output
channels); note that this transformation simplifies the memory accesses, which
become sequential. The Im2col process for one input window is illustrated in Figure
4.2, showing the creation of two buffers, demonstrating the Im2col characteristic of
arranging the selected elements contiguously in memory. As shown in the described
figure, this process requires more memory to store the buffer of reordered inputs
and additional instructions to create this buffer, which could be non-negligible. In
this scenario, with this CGRA used, the Im2col transformation can leverage the
loads with automatic index increment. In [62], the authors show that the Height-
Width-Channel (HWC) data layout is the most advantageous for the creation of
the Im2col reorder buffer. Hence, we select it for our implementation.

24

Methods

4.2 Parallelization axis
The computation in a CNN involves six nested loops (shown in algorithm 1), which
can be swapped without changing the result [63].

Algorithm 1 Pseudo-code for convolution operation
for k in K (output channel) do

for c in C (input channel) do
for o_y in OY (output column) do

for o_x in OX (output row) do
for f_y in FY (filter column) do

for f_x in FX (filter row) do
mac_operation()

end for
end for

end for
end for

end for
end for

These loops, shown above, correspond to i) output channels (K), ii) input chan-
nels (C), iii) output columns (OY), iv) output rows (OX), v) filter columns (FY),
and vi) filter rows (FX). In this study, the parallelization of the C, K, or Fx/y loops
is explored. There is no parallelization of the OX/Y loops, as it would allow reuse
of neither the weights nor the inputs, caused by hardware resource limitations.

4.2.1 Weight Parallelism
This method leverages the parallelization of the filter loops, FX and FY . In this
setup, each weight element of a single input and output channel is assigned to a
different PE.
For a 3×3 filter, this means that nine weight elements are distributed across nine
PEs. Once these weights are retrieved from memory, the system performs multiple
MAC operations by updating the inputs for each PE. The partial outputs generated
by the PEs then move through the spatial array of the CGRA.
This procedure is illustrated in Figure 4.3. In addition to the nine PEs engaged in
computations, the final row (comprising three PEs) is tasked with updating the
address to load the new input triplet (3×1), while the other 3×2 inputs can be
efficiently reused by shifting them from the first two rows of PEs when computing
the next output pixel on the same output image row. During this stage, the last
column of PEs aggregates the nine computed partial sums and, if necessary, adds

25

Methods

Figure 4.3: (Top) 2D convolution scheme. (Bottom) Direct convolution with
weight parallelism. Nine PEs perform dot products. The other PEs load new inputs
or sum partial outputs.

them to a previous partial sum when processing input channels ci > 0. The last
PE is designated for storing the accumulated partial sum in memory. This cycle is
repeated for the entire input spatial position before a new set of weights is loaded
to process the next input channel. The outputs are sequentially generated starting
from OX , OY , and, finally, K. Importantly, this mapping scheme, which benefits
from a CHW input layout, would not benefit from using the Im2col transformation.
In order to conduct a thorough analysis, the following pseudo-code presents the
binomial: convolution mapping and OpenEdgeCGRA. This approach involves
analyzing one input channel each time the OpenEdgeCGRA function is invoked.
Consequently, to complete the convolution process, the CGRA needs to be called
K × C times, as shown in algorithm 2.

Algorithm 2 Call scheme of weight parallelism
for k in K (output channel) do

for c in C (input channel) do
cgra_call()

end for
end for

26

Methods

4.2.2 Output Channel Parallelism

Figure 4.4: Convolution with output channel parallelism. Each K filter multiplies
the selected input window, to obtain K different results. In this representation:
B = 1, IX = IY = 6, FX = FY = 3, C = 2, K = 16

This mapping aims to produce results simultaneously for different output channels.
This parallelism exploits the output stationary. This latter concept is based on
minimize the latency and the energy consumption for reading and writing partial
sums by keeping them in the RF of each PE [66]. The combination of both of
them, allows to assign a different output channel to each different PE, which stores
a different set of weights, and the same input elements are broadcast to all PEs,
to produce 16 output channels at the same spatial location in parallel, as shown
in Figure 4.4. A detailed illustration of this approach can be found in Figure 4.5,
which shows the mapping of input and filter within the OpenEdgeCGRA (Figure
4.5(a), as well as the MAC operation for this specific setup. It is important to
note that in this case, there is no opportunity for parallelizing the MAC operation,
unlike weight parallelism, where only 9 PEs are dedicated to the MAC operation
while the rest handle other tasks. In this scenario, each PEs is fully occupied: in
the first case with the multiplication and in the other case with the accumulation.
When the last input pixel of the selected window is processed in each PEs, all of
them must store the partial sum, saved in their respective register files, as depicted
in Figure 4.5. What is not shown in the image is the process related to fetching
the new input. In each PEs’ RF are contained both the address of last input
and weight element fetched. This mapping leverages both direct convolution and
the Im2cols technique for implementation. The Im2cols method streamlines the
fetching of new input elements, as it reorders the input window such that the
displacement for accessing a new input element remains consistent, specifically,
an offset of 4. Direct convolution, by contrast, encounters challenges in such
scenarios, especially when transitioning to the analysis of the subsequent input row.
This necessitates a counter to manage these transitions effectively. Overall, the
Im2col implementation reduces the instruction count required to achieve the same

27

Methods

(a) Register File Content

(b) The 3 different phases of the MAC instruction

Figure 4.5: Output channel parallism mapping onto OpenEdgeCGRA

functionality when compared to direct convolution. A preliminary comparison
between this approach and weight parallelism suggests that this algorithm may
exhibit lower latency performance, primarily due to the third phase where each
PEs executes a store operation, whereas in weight parallelism, only one PEs is
responsible for storing. Furthermore, while weight stationary employs a pipeline
scheme (with 9 PEs processing new inputs, 3 accumulating previous results, 3
capturing new inputs, and the final one handling the store operation), here there is
no opportunity for pipelining in this case since all PEs are fully utilized.

Direct Convolution

The provided pseudo-code, from algorithm 3, illustrates the parallelism mapping of
the output, which is achieved through direct convolution. Similar to before, the
OpenEdgeCGRA function is invoked within two nested loops. In this scenario, the
convolution process is centered on the output channels. This implies that once the
chosen input window traverses all the K output channels, a new input window
must be selected to produce a distinct output element.

Algorithm 3 Call scheme of output parallelism (direct convolution)
for i in Ox (output row) do

for j in Oy (input column) do
cgra_call()

end for
end for

28

Methods

Im2col

The implementation of Im2col is distinct from the previous one mainly due to
the memory allocation for the input window position. This technique organizes
the window in a way that its elements are placed contiguously in memory. The
code’s goal, illustrated in algorithm 4, is to optimize execution time by leveraging
parallelism between the Im2col and cgra_call() functions. The Im2col function
is called before entering the loop to pre-organize the first selected input window
into a vector. This prepares the necessary data so that the CGRA can be executed
immediately with the already organized input vector in memory. Subsequently,
while the CGRA is performing its task, Im2col is invoked again to arrange the next
input vector. This overlap of the executions of Im2col and cgra_call() aims to
reduce downtime and increase overall efficiency.

Algorithm 4 Call scheme of output parallelism (Im2col)
im2col()
for i in Ox (output row) do

for j in Oy (input column) do
cgra_call()
im2col()

end for
end for

4.2.3 Input Channel Parallelism

This method involves performing MAC operations relative to various input channels
in parallel, as depicted in Figure 4.6. It utilizes the Im2col technique to enable
sequential access to the input and filter data. Note that using direct convolution
for this parallelism strategy would be suboptimal given that the latency to access
the data from each single PE would strongly increase given their storage position.
In this mapping strategy, for each iteration of the most external loops (K, OX ,
OY), every PE handles a distinct set of input channels (C/16 per PE) for the same
output channel and spatial position.

29

Methods

(a) Register File Content

(b) The 3 different phases of the MAC instruction

Figure 4.7: Input channel parallism mapping onto OpenEdgeCGRA

This scenario bears many similarities to the previous one, which involved output
channel parallelism. Figure 4.7(a) illustrates the register file content for each
processing element. The implementation of the MAC operation mirrors that of
the output channel implementation. In this instance, each PE is responsible for
multiplying the input pixel by the weight of the corresponding input channel, but
the accumulation phase differs significantly. Here, to compute a single output, it is
necessary to sum the various partial results stored within the register file of each
PE. The evaluation of this process is depicted in the second phase of Figure 4.7.
Ultimately, all partial sums are aggregated within a single PE, which is then tasked

Figure 4.6: Convolution with input channel parallelism. Each PEs is assigned
a different input channel C. In this representation: B = 1, IX = IY = 6,
FX = FY = 3, C = 16, K = 2

30

Methods

with storing the computed output. Although there are multiple PEs available to
potentially parallelize the MAC operation, the primary challenge lies in the storage
phase. Unlike the output channel scenario where 16 different output results are
stored, here only one output result is stored. Consequently, to produce 16 distinct
elements as output, the OpenEdgeCGRA executing this algorithm is called more
times compared to the output channel parallelism approach. An initial comparison
among this approach and the two previous ones suggests that this method represents
the least efficient algorithm of the three. The algorithm’s inefficiency stems from
the absence of a stationary method in the input channel parallelism approach.
Unlike weight parallelism, which holds 9 distinct filter elements within the RF of
each PEs, and output channel parallelism, where every PEs reuses the same partial
result for processing new inputs, the input channel parallelism fails to exploit any
data reuse, and in addition all 16 PEs are occupied to handle one store operation.
This makes the least efficient algorithm among the three methods.

Algorithm 5 Call scheme of input paral-
lelism

im2col()
for i in K (output channel) do

for j in Ox (input column) do
for h in Oy (output column) do

cgra_call()
im2col()

end for
end for

end for

Figure 4.8: Im2col and CGRA func-
tion parallelized.

It is initially apparent that this implementation suffers from inefficiencies in both
the convolution mapping strategy and the algorithmic execution. The primary
source of this inefficiency stems from its operation: as it processes each input
channel sequentially to produce a unique output element, it requires switching to a
new input window and a new filter. Furthermore, Figure 4.8 uncovers a noteworthy
observation: the principal factor affecting latency is the im2col function, as the
CGRA hardware experiences less strain in comparison to im2col. This technique
differs from other convolution methods by reducing one loop in the CGRA invocation
process. While typical approaches use two nested loops with CGRA hardware, this
specific convolution implementation decreases the number of loops, leading to a
partial acceleration of the convolution process and somewhat reduced efficiency.
This is because, despite more function calls resulting from the missing nested loop, it
does not fully maximize the advantages of stationarity exploited by other methods.

31

Methods

Comparing this viewpoint with the traditional approach helps in understanding
the intricacies of this implementation’s performance.

4.3 Kernel Operation Mapping
The mapping of a Compute-Intensive Loop CIL such as a convolution onto a CGRA
can be divided into three main parts: prologue, kernel and epilogue. The role
of the prologue in setting up the initial conditions or configurations tasks, such
as loading data into memory, initializing counters, or configuring the CGRA’s
processing elements. The epilogue phase focuses on the finalization steps, such
as writing computed results back to memory. These instructions are executed
only once at the beginning and end of the CGRA call respectively, while the
kernel is the set of instructions that are executed iteratively, typically accounting
for the largest portion of latency and resource utilization. It describes the types
of operations it performs (e.g., arithmetic operations, logical operations) and its
impact on the overall performance of the CGRA. An analysis of the kernel phase
of each mapping strategy defined above is reported in following section, allowing
for an initial estimation of their bottlenecks. It is noteworthy that each of the four
implementations does not only consist of an inner kernel, but may also include one
or more external loops. A summary of the various configurations can be found in
Table 4.1.

Table 4.1: Overview of Mapping Strategies detailing the number of instruc-
tions (instr.) per stage. Numbers in parentheses indicate the number of cycles
each loop executes.

Conv-WP Im2col-IP Im2col-OP Conv-OP

Prologue 2 2 2 2
External Loop (III) × × × 6 (K

16)
External Loop (II) × × × 5 (C)
External Loop (I) 5 (OY ∗ OX)† × 6 (K

16) 5 (FY)
Inner Kernel 4 (OX − 1)† 9 (FX ×FY ×C

16)‡ 9 (FX × FY × C)‡ 9 (FX)‡

Epilogue 6 6 1 1
† See Figure 4.9 for the kernel associated with Weight Parallelism.
‡ Refer to Figure 4.10 for the generic kernel mapping.

4.3.1 Weight Parallelism Mapping Analysis
The WP mapping is composed of a main internal loop and an external internal
loop. The main loop is composed of only 4 instructions that allow the execution of

32

Methods

Figure 4.9: Operation distribution for weight parallelism. Other includes index
updates, branch operations, and index manipulation.

the nine multiplications, the sum reduction, the load of a new input triplet, and the
final store. However, as mentioned in section 4.2.1, once a new output row has to be
processed, also the other 6 inputs (2×3) should change, necessitating 5 additional
instructions (border loop) to load the additional data and update indexes, as shown
in Figure 4.9. In this case, the main loop is executed OX × OY × C × K times
with an utilization of 78%, while the border one is executed only once per row,
i.e., OY × C × K times. To finalize the analysis, the prologue loads the input and
weight memory addresses into the register file of the 9 chosen processing elements
for executing the MAC operation. The 6 instructions in the epilogue phase aim to
finish the final MAC operation.

4.3.2 Input channel Parallelism Mapping Analysis
Among the mapping strategies evaluated, the Im2col-IP (and weight parallelism
methods) stand out due to their minimal instruction footprint. It has a total of
19 instructions, marking the lowest count when compared to the output channel
parallelism implementations. It does involve one external loop primarily due to
the utilization of the Im2col method, which reduces the number of instructions
required to manage border scenarios, such as transitioning to the next output row,
or next input channel, or output channel. As before, the prologue is in charge
of loading the addresses of the input elements and filters, setting the stage for
the subsequent convolution operation. In this case, 16 inputs and weights are
loaded (corresponding to 16 input channels). Next, the mul and sum operations
are executed by all PEs. Then, in the last 5 instructions, the input and weight
addresses and the iteration counter are updated, followed by the loop’s branch
instruction. The iteration is repeated as soon as the selected input windows is

33

Methods

analyzed completely, as shown in Figure 4.10. Most PEs execute a nop during the
last three instructions because only one to two PEs are in charge of updating the
iteration counter and branching for the whole CGRA.
The epilogue is in charge of add the parial result stored inside all the PEs. It
takes six cycles for adding them and store the result accumulated. This mapping
strategy encounters efficiency challenges, primarily due to its low store-to-MAC
ratio. Specifically, a single output result requires executing a number of instructions
as determined by the following equation:

9 × FX × FY × C

PE
(4.1)

where:

• 9 represents the number of instructions for the inner kernel.

• FX is the filter width.

• FY is the filter height.

• C is the number of input channels.

• PE represents the number of PEs, and is equivalent to 16.

Consequently, to complete the convolution, this algorithm must be invoked K ×
OX × OY times. This frequent invocation, driven by the sparse store operations
amidst a high volume of MACs, underscores the strategy’s inefficiency in resource
utilization and in latency.

Figure 4.10: Operation distribution for the input and output channel parallelism
. Other includes index updates, branch operations, and index manipulation.

34

Methods

4.3.3 Output channel Parallelism Mapping Analysis
The kernel of this mapping is exactly the same of the Im2col-IP (both of these
techniques use as inner kernel an amount of 9 instructions, resulting with 69%
of utilization), but its context is completely different. In addition, also its two
implementations (one with the direct convolution, and the other by exploiting
Im2col technique) also has a different context. By examining its kernel, the
process remains consistent as before: initially, 16 inputs and weights are loaded
in the first two steps, corresponding to 16 output channels. Subsequently, all
processing elements perform the mul and sum operations. Following this, the
input and weight addresses, along with the iteration counter, are modified in
the final 5 steps, culminating in the loop’s branch instruction. An in-depth
analysis of the Im2col-IP method compared to direct convolution, especially in the
context of output channel parallelism, uncovers significant differences. As shown in
Table 4.1, the direct convolution method, known as Conv-OP, involves as many
as four external loops, in contrast to the Im2col-OP method, which uses only two
loops. This distinction is crucial, as illustrated in Figure 4.11(a), highlighting the
operational differences between utilizing the Im2col-IP technique and choosing
direct convolution. Regarding Im2col-IP, even though there is a larger memory
usage because of the input buffer creation, organizing the input window in adjacent

(a) Im2col implementation

(b) Direct convolution implementation

Figure 4.11: Im2col effect on the selected input image

35

Methods

memory segments greatly simplifies the code implementation.
This organization eliminates the necessity for a position-tracking counter, making
the entire process more straightforward. The contiguous memory allocation enables
a simpler access pattern, thus improving computational efficiency.
On the contrary, as illustrated in Figure 4.11(b), the direct convolution method
requires the use of two separate counters: one for input rows and another for input
columns. This condition not only adds complexity to the code but also results in an
inefficient utilization of instructions. Each step—such as fetching the counter value
from memory, reducing it, and updating the value—adds an extra overhead that
collectively hampers the computational process. The necessity for two counters
to navigate the input data underscores a fundamental inefficiency inherent in the
direct convolution approach, contrasting with the enhanced data management
provided by the Im2col-IP technique.
In addition, for both implementation, the most external loop contains one more
instruction, related to the store instruction executed by all PEs. The store-to-load
multiplied incremental (MAC) ratio is increased compared to the implementation
Im2col-IP. To produce 16 different output results, the calculation requires a specific
number of instructions, as determined by the following equation:

9 × FX × FY × C × K

PE
(4.2)

where:

• 9 represents the total number of instructions required for the inner kernel.

• FX is the filter width.

• FY is the filter height.

• C is the number of input channels.

• K is the number of output channels.

• PE represents the number of Processing Elements, equal to 16.

Consequently, to complete the convolution, this algorithm must be invoked OX ×OY

times.

36

Chapter 5

Experimental Results

5.1 Experimental Setup
In this study, we introduce the methodology for implementing convolution opera-
tions on a CGRA embedded within a PYNQ Z2 platform. The deployment process
encompasses several stages, beginning with the creation of the FPGA bitstream
and progressing to the application of convolution operations. This is followed
by generating the instruction list for the CGRA, culminating in the execution of
the actual application. Moreover, a detailed exploration of evaluation metrics is
presented, with a particular emphasis on assessing latency, energy consumption,
memory usage, and MAC (Multiply-Accumulate) operations per cycle.

5.1.1 CGRA preparation and deployment
FPGA Bitstream generation

The process of FPGA bitstream generation for the PYNQ Z2 explicitly involves
configuring the FPGA to host an instance of the HEEPsilon: mainly an instance
of the X-HEEP microcontroller along with the OpenEdgeCGRA accelerator. The
FPGA bitstream generation process is highly customized based on the selection
of core types, bus topologies, and memory addressing modes, aligning with the
discussion made in section 3.2. This step tailors the FPGA’s configuration to
optimally support the specific requirements of the convolution application and the
CGRA’s architecture. Xilinx Vivado is used for this purpose.

Convolution Application Process

The convolution application process is based on the implementation techniques
described in the previous chapter. This involves selecting and applying specific

37

Experimental Results

algorithms and methods for performing convolution, which could include selecting
between the WP method, instead of output channel parallelism, or input channel
parallelism. The choice of technique affects how the convolution is executed within
the CGRA, which impacts performance, accuracy, and resource utilization.

CGRA Instruction List Generation

Following the development of the application, an instruction list for the CGRA is
generated. This crucial step transforms the convolution application into a dynamic
configuration tailored for the CGRA within the FPGA. This process is distinct
from generating an FPGA bitstream, which configures the overall FPGA resources
in a static manner. Instead, for time-multiplexed or module-scheduled CGRAs, the
generated instruction list adapts the CGRA’s reconfigurable fabric to efficiently
execute the convolution application by reconfiguring the datapath on a cycle-by-
cycle basis. The dynamic method described here differs from spatial CGRAs, which
set up the CGRA’s operation initially and keep that configuration constant during
the entire convolution process, similar to how a systolic array operates. Due to the
typical understanding of "bitstream" as representing fixed settings in FPGAs, the
term "instruction list" is employed in this context to specify a series of changes, each
defining the data path setup for a single cycle, instead of a bitwise modification
of hardware elements. This distinction is crucial to prevent misunderstandings,
as the flexible nature of the instruction list in time-multiplexed CGRAs offers a
more dynamic and versatile method for running applications on reconfigurable
computing systems.

Running the Convolution Application on the PYNQ Z2

Finally, the convolution application runs on the FPGA. This involves loading the
FPGA bitstream to configure the FPGA itself and then deploying the CGRA
bitstream to set up the CGRA for the convolution operation. Once configured, the
FPGA, using CGRA, runs the convolution application. This step may involve pro-
cessing data inputs and producing outputs, which are the results of the convolution
operations.

5.1.2 Evaluation Metrics
The evaluation of convolution mapping strategies on the described platform is
detailed through specific metrics to provide insights into both utilization and
efficiency. This includes comparisons involving the CPU, specifically an Ibex
processor, alongside the CGRA-based computations to ensure a comprehensive
evaluation of performance and efficiency.

38

Experimental Results

Latency: Defined as the duration necessary to complete a full convolution process,
which encompasses both the creation of the im2col (if applicable) and the execution
of the kernel. For CPU-based computations, labeled as "CPU" in the comparative
graphs, an Ibex processor was utilized. The Ibex processor, designed for efficiency
and compact implementation, is a 32-bit RISC-V core. Convolution computations
on the Ibex processor were optimized using the -Ofast compiler attribute, aiming
to enhance execution speed by allowing compiler optimizations that may not strictly
adhere to language standards but maximize performance. This consideration is
crucial for a fair comparison, as optimizations can significantly impact measured
latency and energy consumption. The initial loading time for instructions before
the commencement of the first iteration is disregarded in latency measurements.
An attempt to replace the Ibex core with a RI5CY core was explored to investigate
potential performance improvements. However, this substitution was not successful
for implementation on the FPGA platform due to the significantly larger footprint
of the RI5CY core. This increased footprint resulted in an inability to generate a
functional bitstream for the FPGA.
Energy: The power consumption of an integrated system, including CGRA, CPU,
and memory subsystems, is considered. For the CPU scenario, energy consumption
is specifically attributed to the Ibex processor under the -Ofast optimization
setting, as described before. The comparative analysis includes this dimension to
provide a balanced view of how different computational strategies — CGRA-based
versus CPU-based — fare in terms of energy efficiency. The power for the CGRA
was determined from post-synthesis simulations using a TSMC 65 nm technology
process, indicating the CGRA’s requirement of approximately 0.4 mm2 area.
Memory Usage: The memory footprint of each strategy is evaluated based on
the required storage for input and output samples, along with the weight filters.
This metric is essential for understanding scalability, particularly when adjusting
hyper-parameters to observe latency and memory usage trends. Memory usage is
measured by calculating the 32-kilobyte memory banks instantiated.
MAC/Cycle: To benchmark the execution speed against other state-of-the-
art implementations, the performance metric of MAC operations per clock cycle
(MAC/cycle) is utilized. This is determined by evaluating the overall MAC operation
involved in the convolution process and then dividing it by the number of cycles
required. The total number of MAC operation is calculated using the following
formula:

MAC = FX × FY × C × OX × OY × K (5.1)

where:

• FX and FY represent the dimensions of the filter kernel in the X and Y
directions, respectively.

39

Experimental Results

• C stands for the number of channels in the input feature map.

• OX and OY are the dimensions of the output feature map in the X and Y
directions, respectively.

• K denotes the number of output channels applied during the convolution.

5.2 Latency and Energy analysis
We run a baseline convolution with C = K = OX = OY = 16, and a 3 × 3 filter.
For each mapping method, we measure execution latency and energy consumption
of the three main blocks involved: CGRA, CPU, and memory. The results,
when compared against a CPU-only implementation in Figure 5.1, showcase the
energy and latency improvements achieved by the different approaches, with the
WP approach highlighting significant efficiencies. It reaches energy and latency
improvements of 3.4× and 9.9×, respectively, at an average power of 2.5 mW,
the highest among the CGRA-approaches. The detailed outcomes of all the
measurements are systematically presented in Table 5.1 for latency and Table 5.2
for energy consumption.
Latency Analysis: Observations from Table 5.1 indicate that all implementations
achieve execution latencies in the order of 10 ms. This uniformity suggests a
consistent efficiency across various strategies in handling convolution computations.
Particularly noteworthy is the minimal impact of CPU involvement in the output
channel parallelism, where the CPU’s contribution to the total execution time
is marginal. The slight CPU latency observed in the Conv-OP approach (0.102
ms) is attributed to the management of output data reordering, necessitated by
insufficient register space for output address storage. This scenario underscores a

Figure 5.1: Energy vs. Latency comparison.
40

Experimental Results

critical design constraint that required CPU intervention for accurately positioning
the output data. On the other hand, the CPU’s contribution in the Im2col-OP
approach is linked to the execution of Im2col. The Im2col-IP method, as shown in
Table 5.1, exhibits a higher latency predominantly due to the frequent computations
of Im2col. The method’s design, which necessitates the computation of Im2col
for each output position and its repetition for every output channel, significantly
inflates the computational overhead, thereby affecting the latency.
Energy Consumption Analysis: Reviewing the data in Table 5.2 shows that
the CGRA’s energy consumption remains consistent across methods, around 20
µJ. The most significant distinction among the strategies becomes apparent in the
comparison of memory energy consumption. Specifically, WP method not only
demonstrates the most efficient use of CGRA in terms of energy but also stands out
for its memory access efficiency, resulting in the lowest overall energy consumption.
This outcome highlights optimized data reuse management, significantly limiting
memory accesses and, consequently, reducing the dynamic energy consumption
of the memory subsystem. Notably, among the four methods analyzed, WP is
the only one where memory energy consumption is lower than that of the CGRA.
In contrast, in other methods, the greater energy consumption is associated with
memory rather than the CGRA, emphasizing the importance of efficient memory
management in improving overall energy efficiency.

Version CPU (ms) CGRA (ms) Total (ms)
CPU 63.0 0.0 63.4
IM2Col-IP 20.0 15.0 35.4
Conv-OP 0.102 12.0 12.5
IM2Col-OP 0.95 11.0 12.4
WS 0.0 6.0 6.4

Table 5.1: Latency comparison in milliseconds (ms)

Version Memory (µJ) CPU (µJ) CGRA (µJ) Total (µJ)
CPU 43 57 0 101
IM2Col-IP 62 14 21 96
Conv-OP 29 0.093 22 52
IM2Col-OP 28 0.871 21 49
WS 14 0 16 30

Table 5.2: Energy consumption comparison in microjoules (µJ)

41

Experimental Results

5.3 Ablation Study: Exploration of layer scala-
bility on CGRA

We evaluate the performance deviation from the baseline case explored in the
previous section by swiping the layer hyperparameters. We vary OX and OY in
[16, 64], C and K in [16, 144], increasing by 1 the dimension of each parameter until
32, and then in steps of 16 given the similar scalability. We limit our search to the
maximum memory available in the system (512 kiB from HEEPsilon’s RAM banks).
The results, illustrated in Figure 5.2, show that WP has the greatest robustness
to hyperparameter changes, with increasing layer dimensions always leading to
improved performance. WP remains the best approach for any hyperparameter
combination, reaching up to 0.665MAC/cycle with C =16, K =16, and OX = OY =
64. It is noteworthy that increasing OX and OY translates into an improvement in
performance for the WP case thanks to two different contributions: first, the larger
the input size, the higher the reuse of the loaded weights; second, a larger feature
map reduces the occurrence of row changes while swiping the input activations,
thus, the associated overhead of border loop.
On the other hand, all the other approaches see a drop in performance every time
their parallelization dimensions are not a multiple of the number of PEs (i.e.,
16), reaching their lowest performance (∼ 0.1MAC/cycle) when the parallelization
dimension is equal to 17 due to the strong imbalance in the workload distribution.
In this case, the Im2col-OP results the least robust with a performance reduction
of 3.62× when compared to its best case.

5.4 Ablation Study: Memory interleaved impact
Memory interleaving is a strategy employed to enhance memory access speed by
segmenting the memory into multiple modules and accessing them concurrently.

Figure 5.2: Impact on memory and performance of different hyperparameters.
Pareto-optimal results are highlighted with a greater color intensity.

42

Experimental Results

Figure 5.3: HEEPsilon with memory interleaved banks.

The concept involves distributing memory addresses among various memory banks
or modules in a non-sequential fashion. This configuration enables a processor to
access distinct memory sections simultaneously, thereby decreasing the latency for
memory access and enhancing the overall system performance.
On the other hand, continuous memory allocation refers to the storage of data in a
consecutive manner within a single memory module or bank. The main distinction
lies in the way data is retrieved: memory interleaving allows for simultaneous access
to data by distributing it across several modules, improving data transfer rate and
decreasing response time. In contrast, continuous memory access follows a linear
order, which may result in increased response time and diminished performance.
All the analysis conducted for this section is based on the following configuration:
C=K=OX=OY =16. The general configuration of this new environment is depicted
in Figure 5.3.
As previously mentioned, this memory arrangement enhances performance by
reducing latency in nearly all implementations. In Figure 5.4, it is evident that
only the Im2col-IP technique does not exhibit any latency improvements. As
explained in section 4.2.3, this technique has a unique setup where the primary
factor affecting latency is the im2col function rather than the cgra_call function.
Consequently, even if the latter factor diminishes thanks to the interleaved memory,
the im2col function remains the predominant contributor to latency, as depicted
in Figure 5.5.
The initial reference point in Figure 5.4 is a baseline configuration, which quantifies
the latency incurred by the X-HEEP’s processor (RISC-V) during the execution
of a convolution operation. This baseline serves as a standard comparison for

43

Experimental Results

Figure 5.4: Impact of memory interleaved on the different implementations

evaluating the performance of different optimization methods applied to convolu-
tion operations. To leverage the interleaved memory configuration and the output
channel parallelism, a unique weight storage approach was adopted, diverging
from the conventional CHW (Channel, Height, Width) and HWC (Height, Width,
Channel) data layouts. Instead, the weights were arranged in a specialized order
that prioritizes the output channels. This custom storage format sequentially saves
one element from each filter before moving to the next, effectively cycling through
the filters across all output channels first. By doing this, the memory storage
pattern aligns with the operational demands of the output channels, ensuring that
each output channel’s filter element is stored consecutively and so belonging to a
different interleaved memory bank, thereby optimizing the memory access patterns
for the convolution operation. This configuration significantly improves latency
performance in terms of output channel parallelism. Specifically, the performance
of Conv-OP doubles, increasing from 0.24 to 0.51MAC/cycle. Similarly, the perfor-
mance of Im2col-OP also nearly doubles, improving from 0.25 to 0.53MAC/cycle.

Figure 5.5: Im2col-IP with interleaved memory
44

Experimental Results

Additionally, WP sees a 33% increase in its efficiency metrics. Furthermore, the
WP, already highly optimized in its codebase, reaches its peak in performance.
Leveraging memory interleaving offers a pathway to elevate this already efficient
performance further, pushing it from a 0.60 to a 0.80MAC/cycle, reaching up to 12.5×
in terms of latency compared to a CPU implementation.

45

Chapter 6

Conclusions

In the current state of the art, Convolutional Neural Networks (CNNs) are ex-
tensively utilized in a variety of modern applications, making them a focal point
for researchers. It is worth noting that, apart from offering dedicated hardware,
enhancing the software design for convolutional operations can also significantly
enhance both accuracy and energy efficiency. These software enhancements en-
compass a range of techniques including algorithmic advancements, parallelization
methods, and hardware-software co-design. On the other side, there is a plethora
of specialized hardware options available such as Field-Programmable Gate Ar-
rays (FPGAs), Graphics Processing Units (GPUs), Application-Specific Integrated
Circuits (ASICs), and Coarse-Grained Reconfigurable Architectures (CGRAs). Re-
search on CGRAs and their applications had been relatively quiet until recent years,
but there have been numerous studies focusing on leveraging CGRA architectures
to boost the performance of CNNs.
The primary focus of this thesis is to tackle the issue of mapping convolutions on
CGRA. It involves exploring different cutting-edge computational and memory
management approaches to identify the most effective mapping method that strikes
a balance between performance and resource limitations.
During the thesis research, it becomes apparent how challenging it is to explore the
vast convolution implementation space. This complexity arises from the numerous
available methods for implementing convolution. It is crucial to consider the
hardware resources of the analyzed CGRA while exploring these implementation
strategies.
One crucial finding from this study is the significance of attempting to parallelize
various hyperparameters across the available number of processing elements within
the CGRA. It is essential to make use of this insight while also beginning to consider
the stationarity of the different element such as weight element, input element and
partial sum.
Throughout the thesis, we carried out an extensive examination of the outcomes,

46

Conclusions

focusing on the influence of various convolution implementations such as weight
parallelism, output channel parallelism, and input channel parallelism. Furthermore,
we observed the effects of transitioning from contiguous memory to an interleaved
memory structure. An additional significant aspect that came to light was the
investigation into the effects of altering various hyperparameters.

Future work

The research conducted in this thesis has demonstrated the significance of op-
timization in mapping CNNs onto a CGRA. There are various potential future
research directions that can further expand on this thesis. This work has laid a solid
foundation by demonstrating various optimization strategies and their impacts on
performance. However, despite these advancements, the CGRA’s general-purpose
design, which includes capabilities for conditional jump instructions, still lacks
specialized instructions like MAC, which are critical for such applications. This
reveals a clear path for future research to incorporate such specialized instructions
to optimize the hardware further for deep learning tasks.
Moreover, the current challenges associated with the CGRA’s handling of blocking
loads have been identified as a significant bottleneck. The blocking LW instruction,
with its 2-cycle duration and resulting throughput of 1/2, imposes a latency that
cannot be overlooked. This is in contrast to, i.e. a processor with a 4-stage pipeline
where concurrent load requests can lead to more efficient utilization and reduced
overall latency. The constraint of the CGRA, which can be likened to a system
with just two stages, leads to a lack of capacity to deliver high throughput for
instructions with longer latency, highlighting another area that could be enhanced.
Furthermore, the thesis suggests that by incorporating an additional output register
within the Processing Elements (PEs), a method known as spatial dimension
parallelism could be implemented. This technique would alleviate the need for
each PE to store weight elements, as they could instead utilize weights from the
output registers of neighboring PEs. The current setup, where the output register
is ’locked’ due to the presence of weights, could be enhanced with an extra output
register, thus enabling a more advanced parallelism scheme.
These insights indicate several avenues for future work. Enhancing OpenEdgeCGRA
with MAC instructions, introducing pipeline mechanisms to improve instruction
throughput, and expanding the capabilities of PEs through additional registers are
all prospective developments that could substantially increase its computational
efficiency.
In conclusion, this thesis has not only addressed the complex challenge of mapping
convolutions onto CGRAs, but has also made a significant contribution to the field

47

Conclusions

with the identification of optimized methods for computation and memory manage-
ment. The methods introduced, such as optimizing hyperparameters in parallel
and switching to interleaved memory layouts, represent a substantial advance in
the pursuit of more effective CGRA architectures. A thorough examination was
conducted to illustrate how various convolution techniques and adjustments to
hyperparameters can impact outcomes, delineating potential avenues for enhanc-
ing performance and developing hardware specifically tailored for deep learning
applications.

48

Chapter 7

Appendix

7.1 Assembly code

7.1.1 Weight Parallelism
This is the assembly code for the weight parallelism implementation, the best
solution founded for both latency and energy evaluation.

1 0,,,
2 LWD R0 ,LWD R0 ,LWD R0 ,NOP
3 LWD R0 ,LWD R0 ,LWD R0 ,NOP
4 NOP ,NOP ,NOP ,NOP
5 LWD R0 ,LWD R0 ,LWD R0 ,NOP
6 1,,,
7 LWD R1 ,LWD R1 ,LWD R1 ,NOP
8 LWD R1 ,LWD R1 ,LWD R1 ,NOP
9 LWD R1 ,LWD R1 ,LWD R1 ,NOP

10 "SADD ROUT , R0 , ZERO "," SADD ROUT , R0 , ZERO "," SADD ROUT , R0 , ZERO",LWD R1
11 2,,,
12 "LWI R3 , R0"," LWI R3 , R0"," LWI R3 , R0",NOP
13 "LWI R3 , R0"," LWI R3 , R0"," LWI R3 , R0"," SADD R0 , ${ output_row * output_col }, ZERO"
14 "LWI R3 , RCB "," LWI R3 , RCB "," LWI R3 , RCB "," SADD R0 , ${ output_row - 1}, ZERO"
15 "SADD R1 , RCL , 0",NOP ,NOP ,NOP
16 3,,,
17 "SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1",NOP
18 "SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SSUB R0 , R0 , 1"
19 "SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1",NOP
20 NOP ," SADD ROUT , RCL , ZERO "," SADD R1 , ZERO , 0", NOP
21 4,,,
22 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
23 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
24 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
25 "LWI ROUT , R1",NOP ," BEQ R1 , 0, 6", NOP
26 5,,,
27 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
28 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
29 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
30 "LWI ROUT , R1",NOP ," SWI RCR , RCL "," BEQ RCT , 0, 9"

49

Appendix

31 6,,,
32 NOP ,NOP ,NOP ," SADD R2 , R2 , RCL"
33 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD R2 , R2 ,

RCL"
34 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD R2 , R2 ,

RCL"
35 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R2 , RCR , ZERO"
36 7,,,
37 "SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R2 , R2 , RCB"
38 "SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SSUB R0 , R0 , 1"
39 "LWI R3 , RCB "," LWI R3 , RCB "," LWI R3 , RCB "," SSUB R0 , R0 , 1"
40 "SADD R1 , R1 , 4",NOP ,NOP ," SADD R2 , R2 , RCT"
41 8,,,
42 "SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," BEQ RCB , 0, 14"
43 "SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," BNE R0 , 0, 5"
44 "SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SMUL R2 , R3 , R1"," SADD ROUT , R0 , ZERO"
45 NOP ," SSUB ROUT , RCL , 4",NOP ," SADD R2 , R2 , RCB"
46 9,,,
47 NOP ,NOP ,NOP ," SADD R2 , R2 , RCL"
48 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD R2 , R2 ,

RCL"
49 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD R2 , R2 ,

RCL"
50 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R2 , RCR , ZERO"
51 10,,,
52 "SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO",NOP
53 "SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO",NOP
54 "LWI R3 , RCB "," LWI R3 , RCB "," LWI R3 , RCB",NOP
55 NOP ,NOP ,NOP ,NOP
56 11,,,
57 NOP ,NOP ,NOP ,NOP
58 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO",NOP
59 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO",NOP
60 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4", NOP
61 12,,,
62 "SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO",NOP
63 "SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO "," SADD R3 , RCB , ZERO",NOP
64 "LWI R3 , RCB "," LWI R3 , RCB "," LWI R3 , RCB "," SADD R0 , ${ output_row }, ZERO"
65 NOP ,NOP ," SADD ROUT , R3 , ZERO",NOP
66 13,,,
67 NOP ,NOP ,NOP ,NOP
68 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO",NOP
69 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R2 ,

ZERO"
70 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," BEQ RCL , 0, 7"
71 14,,,
72 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
73 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
74 NOP ,NOP ," SADD R2 , R2 , RCL "," SADD R2 , RCR , ZERO"
75 NOP ,NOP ," SWI RCR , RCL",NOP
76 15,,,
77 NOP ,NOP ,NOP ," SADD R2 , R2 , RCL"
78 NOP ,NOP ,NOP ," SADD R2 , R2 , RCL"
79 NOP ,NOP ,NOP ," SADD R2 , R2 , RCL"
80 NOP ," SADD R1 , ROUT , 4",NOP ,NOP
81 16,,,
82 NOP ,NOP ,NOP ," SADD R2 , R2 , RCB"
83 NOP ,NOP ,NOP ,NOP
84 NOP ,NOP ,NOP ,NOP
85 NOP ,NOP ,NOP ," SADD R2 , ZERO , RCT"
86

50

Appendix

87 17,,,
88 NOP ,NOP ,NOP ,NOP
89 NOP ,NOP ,NOP ,NOP
90 NOP ,NOP ,NOP ,NOP
91 "LWI R3 , RCR",NOP ,NOP ," SADD R2 , R2 , RCB"
92 18,,,
93 NOP ,NOP ,NOP ,NOP
94 NOP ,NOP ,NOP ,NOP
95 NOP ,NOP ,NOP ,NOP
96 "SADD ROUT , RCL , R3",NOP ,NOP ,NOP
97 19,,,
98 EXIT ,NOP ,NOP ,NOP
99 NOP ,NOP ,NOP ,NOP

100 NOP ,NOP ,NOP ,NOP
101 NOP ," SWI RCL , R1",NOP ,NOP

This code is tailored to the specific number of input dimensions. Such code offers
greater flexibility compared to others, as it relies on only one hyperparameter, the
input dimension. This is another significant factor contributing to its robustness
compared to other implementations.

7.1.2 Output channel Parallelism
IM2COL

1 0,,,
2 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
3 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
4 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
5 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
6 1,,,
7 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
8 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
9 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2

10 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
11 2,,,
12 NOP ,NOP ," SADD ROUT , ${ output_channel //16} , ZERO",NOP
13 NOP ,NOP ,NOP ,NOP
14 NOP ,NOP ,NOP ,NOP
15 NOP ,NOP ,NOP ,NOP
16 3,,,
17 NOP ,NOP ," SWI ROUT , 8", NOP
18 NOP ,NOP ,NOP ,NOP
19 NOP ,NOP ,NOP ,NOP
20 NOP ,NOP ,NOP ,NOP
21 4,,,
22 NOP ,NOP ," SADD ROUT , ${9 * input_channel }, ZERO",NOP
23 NOP ,NOP ,NOP ,NOP
24 NOP ,NOP ,NOP ,NOP
25 NOP ,NOP ,NOP ,NOP
26 5,,,
27 NOP ,NOP ," SWI ROUT , 4", NOP
28 NOP ,NOP ,NOP ,NOP
29 NOP ,NOP ,NOP ,NOP
30 NOP ,NOP ,NOP ,NOP

51

Appendix

31 6,,,
32 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
33 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
34 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
35 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
36 7,,,
37 "LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"
38 NOP ,NOP ,NOP ,NOP
39 NOP ,NOP ,NOP ,NOP
40 NOP ,NOP ,NOP ,NOP
41 8,,,
42 NOP ,NOP ,NOP ,NOP
43 "SADD ROUT , RCT , ZERO "," SADD ROUT , RCT , ZERO "," SADD ROUT , RCT , ZERO "," SADD ROUT ,

RCT , ZERO"
44 NOP ,NOP ,NOP ,NOP
45 "SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT ,

RCB , ZERO"
46 9,,,
47 NOP ,NOP ,NOP ,NOP
48 NOP ,NOP ,NOP ,NOP
49 "SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT ,

RCB , ZERO"
50 NOP ,NOP ,NOP ,NOP
51 10,,,
52 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
53 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
54 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
55 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
56 11,,,
57 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
58 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
59 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
60 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
61 12,,,
62 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
63 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
64 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
65 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
66 13,,,
67 "SADD R2 , R2 , 4" ," SADD R2 , R2 , 4" ," SADD R2 , R2 , 4" ," SADD R2 , R2 , 4"
68 NOP ,NOP ,NOP ,NOP
69 NOP ,NOP ,NOP ,NOP
70 NOP ,NOP ,NOP ,NOP
71 14,,,
72 "LWI ROUT , 4",NOP ,NOP ,NOP
73 NOP ,NOP ,NOP ,NOP
74 NOP ,NOP ,NOP ,NOP
75 NOP ,NOP ,NOP ,NOP
76 15,,,
77 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP
78 NOP ,NOP ,NOP ,NOP
79 NOP ,NOP ,NOP ,NOP
80 NOP ,NOP ,NOP ,NOP
81 16,,,
82 "BNE ROUT , ZERO , 6",NOP ,NOP ,NOP
83 "SWI RCT , 4",NOP ,NOP ,NOP
84 NOP ,NOP ,NOP ,NOP

52

Appendix

85 NOP ,NOP ,NOP ,NOP
86 17,,,
87 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
88 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
89 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
90 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
91 18,,,
92 NOP ,NOP ,NOP ,NOP
93 "SADD ROUT , R2 , ZERO "," SADD ROUT , R2 , ZERO "," SADD ROUT , R2 , ZERO "," SADD ROUT , R2 ,

ZERO"
94 "LWI ROUT , 8",NOP ,NOP ,NOP
95 NOP ,NOP ,NOP ,NOP
96 19,,,
97 "SADD R2 , RCB , ZERO "," SADD R2 , RCB , ZERO "," SADD R2 , RCB , ZERO "," SADD R2 , RCB , ZERO

"
98 NOP ,NOP ,NOP ,NOP
99 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP

100 NOP ,NOP ,NOP ,NOP
101 20,,,
102 NOP ,NOP ,NOP ,NOP
103 "BNE RCB , ZERO , 4",NOP ,NOP ,NOP
104 "SWI ROUT , 8",NOP ,NOP ,NOP
105 NOP ,NOP ,NOP ,NOP
106 21,,,
107 EXIT ,NOP ,NOP ,NOP
108 NOP ,NOP ,NOP ,NOP
109 NOP ,NOP ,NOP ,NOP
110 NOP ,NOP ,NOP ,NOP

Direct Convolution

1 0,,,
2 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
3 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
4 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
5 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
6 1,,,
7 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
8 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
9 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2

10 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
11 2,,,
12 NOP ,NOP ," SADD ROUT , ${ output_channel //16} , ZERO",NOP
13 NOP ,NOP ,NOP ,NOP
14 NOP ,NOP ,NOP ,NOP
15 NOP ,NOP ,NOP ,NOP
16 3,,,
17 NOP ,NOP ," SWI ROUT , 16" , NOP
18 NOP ,NOP ,NOP ,NOP
19 NOP ,NOP ,NOP ,NOP
20 NOP ,NOP ,NOP ,NOP
21 4,,,
22 NOP ,NOP ," SADD ROUT , ${ input_channel }, ZERO",NOP
23 NOP ,NOP ,NOP ,NOP
24 NOP ,NOP ,NOP ,NOP
25 NOP ,NOP ,NOP ,NOP
26 5,,,

53

Appendix

27 NOP ,NOP ," SWI ROUT , 12" , NOP
28 NOP ,NOP ,NOP ,NOP
29 NOP ,NOP ,NOP ,NOP
30 NOP ,NOP ,NOP ,NOP
31 6,,,
32 NOP ," SADD ROUT , 3, ZERO",NOP ,NOP
33 NOP ,NOP ,NOP ,NOP
34 NOP ,NOP ,NOP ,NOP
35 NOP ,NOP ,NOP ,NOP
36 7,,,
37 NOP ," SWI ROUT , 8",NOP ,NOP
38 NOP ,NOP ,NOP ,NOP
39 NOP ,NOP ,NOP ,NOP
40 NOP ,NOP ,NOP ,NOP
41 8,,,
42 "SADD ROUT , 3, ZERO",NOP ,NOP ,NOP
43 NOP ,NOP ,NOP ,NOP
44 NOP ,NOP ,NOP ,NOP
45 NOP ,NOP ,NOP ,NOP
46 9,,,
47 "SWI ROUT , 4",NOP ,NOP ,NOP
48 NOP ,NOP ,NOP ,NOP
49 NOP ,NOP ,NOP ,NOP
50 NOP ,NOP ,NOP ,NOP
51 10,,,
52 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
53 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
54 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
55 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
56 11,,,
57 "LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"
58 NOP ,NOP ,NOP ,NOP
59 NOP ,NOP ,NOP ,NOP
60 NOP ,NOP ,NOP ,NOP
61 12,,,
62 NOP ,NOP ,NOP ,NOP
63 "SADD ROUT , RCT , ZERO "," SADD ROUT , RCT , ZERO "," SADD ROUT , RCT , ZERO "," SADD ROUT ,

RCT , ZERO"
64 NOP ,NOP ,NOP ,NOP
65 "SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT ,

RCB , ZERO"
66 13,,,
67 NOP ,NOP ,NOP ,NOP
68 NOP ,NOP ,NOP ,NOP
69 "SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT , RCB , ZERO "," SADD ROUT ,

RCB , ZERO"
70 NOP ,NOP ,NOP ,NOP
71 14,,,
72 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
73 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
74 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
75 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
76 15,,,
77 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
78 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
79 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
80 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"

54

Appendix

81 16,,,
82 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
83 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
84 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
85 "SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4" ," SADD R0 , R0 , 4"
86 17,,,
87 "SADD R2 , R2 , 4" ," SADD R2 , R2 , 4" ," SADD R2 , R2 , 4" ," SADD R2 , R2 , 4"
88 "LWI ROUT , 4",NOP ,NOP ,NOP
89 NOP ,NOP ,NOP ,NOP
90 NOP ,NOP ,NOP ,NOP
91 18,,,
92 NOP ,NOP ,NOP ,NOP
93 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP
94 NOP ,NOP ,NOP ,NOP
95 NOP ,NOP ,NOP ,NOP
96 19,,,
97 NOP ,NOP ,NOP ,NOP
98 "BNE ROUT , ZERO , 10" ,NOP ,NOP ,NOP
99 "SWI RCT , 4",NOP ,NOP ,NOP

100 NOP ,NOP ,NOP ,NOP
101 20,,,
102 "SADD R2 , R2 , ${ first_cycle }" ," SADD R2 , R2 , ${ first_cycle }" ," SADD R2 , R2 , ${

first_cycle }" ," SADD R2 , R2 , ${ first_cycle }"
103 "LWI ROUT , 8",NOP ,NOP ,NOP
104 NOP ,NOP ,NOP ,NOP
105 NOP ,NOP ,NOP ,NOP
106 21,,,
107 NOP ,NOP ,NOP ,NOP
108 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP
109 NOP ,NOP ,NOP ,NOP
110 NOP ,NOP ,NOP ,NOP
111 22,,,
112 NOP ,NOP ,NOP ,NOP
113 "BNE ROUT , ZERO , 8",NOP ,NOP ,NOP
114 "SWI RCT , 8",NOP ,NOP ,NOP
115 NOP ,NOP ,NOP ,NOP
116 23,,,
117 "SADD R2 , R2 , ${ second_cycle }" ," SADD R2 , R2 , ${ second_cycle }" ," SADD R2 , R2 , ${

second_cycle }" ," SADD R2 , R2 , ${ second_cycle }"
118 "LWI ROUT , 12" ,NOP ,NOP ,NOP
119 NOP ,NOP ,NOP ,NOP
120 NOP ,NOP ,NOP ,NOP
121 24,,,
122 NOP ,NOP ,NOP ,NOP
123 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP
124 NOP ,NOP ,NOP ,NOP
125 NOP ,NOP ,NOP ,NOP
126 25,,,
127 NOP ,NOP ,NOP ,NOP
128 "BNE ROUT , ZERO , 6",NOP ,NOP ,NOP
129 "SWI RCT , 12" ,NOP ,NOP ,NOP
130 NOP ,NOP ,NOP ,NOP
131 26,,,
132 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
133 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
134 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
135 SWD R3 ,SWD R3 ,SWD R3 ,SWD R3
136 27,,,
137 NOP ,NOP ,NOP ,NOP
138 "SADD ROUT , R2 , ZERO "," SADD ROUT , R2 , ZERO "," SADD ROUT , R2 , ZERO "," SADD ROUT , R2 ,

ZERO"

55

Appendix

139 "LWI ROUT , 16" ,NOP ,NOP ,NOP
140 NOP ,NOP ,NOP ,NOP
141 28,,,
142 "SADD R2 , RCB , ZERO "," SADD R2 , RCB , ZERO "," SADD R2 , RCB , ZERO "," SADD R2 , RCB , ZERO

"
143 NOP ,NOP ,NOP ,NOP
144 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP
145 NOP ,NOP ,NOP ,NOP
146 29,,,
147 NOP ,NOP ,NOP ,NOP
148 "BNE RCB , ZERO , 4",NOP ,NOP ,NOP
149 "SWI ROUT , 16" ,NOP ,NOP ,NOP
150 NOP ,NOP ,NOP ,NOP
151 30,,,
152 EXIT ,NOP ,NOP ,NOP
153 NOP ,NOP ,NOP ,NOP
154 NOP ,NOP ,NOP ,NOP
155 NOP ,NOP ,NOP ,NOP

The assembly code presented reveals a performance bottleneck stemming from its
dependence on two key hyperparameters: the output and input channels. While
the effect of the output channel is reduced by distributing the workload across 16
Processing Elements (PEs), as evidenced by dividing the output channel by 16, the
input channel does not experience the same level of parallelization. Consequently,
each PE is burdened with an unequal workload, with a heavier emphasis on the
input channel. This disparity implies that although parallelization helps alleviate
the impact of the output channel on performance, the input channel remains a
crucial factor that could potentially lead to suboptimal performance, particularly
in terms of latency.

7.1.3 Input channel Parallelism

1 0,,,
2 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
3 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
4 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
5 LWD R0 ,LWD R0 ,LWD R0 ,LWD R0
6 1,,,
7 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
8 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
9 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2

10 LWD R2 ,LWD R2 ,LWD R2 ,LWD R2
11 2,,,
12 "SADD ROUT , ZERO , ${9 * input_channel //16}" , NOP ,NOP ,NOP
13 NOP ,NOP ,NOP ,NOP
14 NOP ,NOP ,NOP ,NOP
15 NOP ,NOP ,NOP ,NOP
16 3,,,
17 "SWI ROUT , 4",NOP ,NOP ,NOP
18 NOP ,NOP ,NOP ,NOP
19 NOP ,NOP ,NOP ,NOP
20 NOP ,NOP ,NOP ,NOP

56

Appendix

21 4,,,
22 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
23 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
24 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
25 "LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"," LWI R1 , R0"
26 5,,,
27 "LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"
28 "LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"
29 "LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"
30 "LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"," LWI ROUT , R2"
31 6,,,
32 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
33 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
34 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
35 "SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT , R1"," SMUL ROUT , ROUT

, R1"
36 7,,,
37 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
38 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
39 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
40 "SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"," SADD R3 , ROUT , R3"
41 8,,,
42 "SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 ,

R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}"
43 "SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 ,

R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}"
44 "SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 ,

R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}"
45 "SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}" ," SADD R0 ,

R0 , ${ input_channel * 4}" ," SADD R0 , R0 , ${ input_channel * 4}"
46 9,,,
47 "SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 ,

R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}"
48 "SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 ,

R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}"
49 "SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 ,

R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}"
50 "SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}" ," SADD R2 ,

R2 , ${ input_channel * 4}" ," SADD R2 , R2 , ${ input_channel * 4}"
51 10,,,
52 "LWI ROUT , 4",NOP ,NOP ,NOP
53 NOP ,NOP ,NOP ,NOP
54 NOP ,NOP ,NOP ,NOP
55 NOP ,NOP ,NOP ,NOP
56 11,,,
57 "SSUB ROUT , ROUT , 1",NOP ,NOP ,NOP
58 NOP ,NOP ,NOP ,NOP
59 NOP ,NOP ,NOP ,NOP
60 NOP ,NOP ,NOP ,NOP
61 12,,,
62 "BNE ROUT , ZERO , 4",NOP ,NOP ,NOP
63 "SWI RCT , 4",NOP ,NOP ,NOP
64 NOP ,NOP ,NOP ,NOP
65 NOP ,NOP ,NOP ,NOP
66 13,,,
67 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 ,

ZERO"

57

Appendix

68 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 ,
ZERO"

69 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 ,
ZERO"

70 "SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 , ZERO "," SADD ROUT , R3 ,
ZERO"

71 14,,,
72 "SADD ROUT , ROUT , RCB "," SADD ROUT , ROUT , RCB "," SADD ROUT , ROUT , RCB "," SADD ROUT ,

ROUT , RCB"
73 NOP ,NOP ,NOP ,NOP
74 NOP ,NOP ,NOP ,NOP
75 "SADD ROUT , ROUT , RCT "," SADD ROUT , ROUT , RCT "," SADD ROUT , ROUT , RCT "," SADD ROUT ,

ROUT , RCT"
76 15,,,
77 NOP ,NOP ,NOP ,NOP
78 NOP ,NOP ,NOP ,NOP
79 NOP ,NOP ,NOP ,NOP
80 "SADD ROUT , ROUT , RCB "," SADD ROUT , ROUT , RCB "," SADD ROUT , ROUT , RCB "," SADD ROUT ,

ROUT , RCB"
81 16,,,
82 NOP ,NOP ,NOP ,NOP
83 NOP ,NOP ,NOP ,NOP
84 NOP ,NOP ,NOP ,NOP
85 "SADD ROUT , ROUT , RCR",NOP ,NOP ," SADD ROUT , ROUT , RCL"
86 17,,,
87 NOP ,NOP ,NOP ,NOP
88 NOP ,NOP ,NOP ,NOP
89 NOP ,NOP ,NOP ,NOP
90 NOP ,NOP ,NOP ," SADD ROUT , ROUT , RCR"
91 18,,,
92 NOP ,NOP ,NOP ,NOP
93 NOP ,NOP ,NOP ,NOP
94 NOP ,NOP ,NOP ,NOP
95 NOP ,NOP ,NOP ,SWD ROUT
96 19,,,
97 EXIT ,NOP ,NOP ,NOP
98 NOP ,NOP ,NOP ,NOP
99 NOP ,NOP ,NOP ,NOP

100 NOP ,NOP ,NOP ,NOP

Upon initial inspection, this code appears to be based on the same logic as described
in Section 7.1.1, as it also involves only one hyper-parameter dependency, which
is the input channel. However, in this research, this particular implementation
performs the poorest in terms of both latency and energy consumption. The
underlying cause for this outcome lies in its operation: while there is indeed only
one dependency, the number of store operations is limited to just one throughout
the entire execution.

58

Bibliograpy

[1] Yann LeCun, Y. Bengio, and Geoffrey Hinton. «Deep Learning». In: Nature
521 (May 2015), pp. 436–44. doi: 10.1038/nature14539 (cit. on p. 1).

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. «ImageNet Classifi-
cation with Deep Convolutional Neural Networks». In: Neural Information
Processing Systems 25 (Jan. 2012). doi: 10.1145/3065386 (cit. on p. 1).

[3] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. «DeepDriving:
Learning Affordance for Direct Perception in Autonomous Driving». In: Dec.
2015, pp. 2722–2730. doi: 10.1109/ICCV.2015.312 (cit. on p. 1).

[4] Panakanti Shashanka and Tatireddy Subba Reddy. «Dermatologist-Level
Classification of Skin Cancer Using Cascaded Ensembling of Convolutional
Neural Network». In: 2023 International Conference on Research Methodolo-
gies in Knowledge Management, Artificial Intelligence and Telecommunication
Engineering (RMKMATE). 2023, pp. 1–5. doi: 10.1109/RMKMATE59243.
2023.10368872 (cit. on p. 1).

[5] Xiang Fu. «GomokuPro: An Implementation of Enhanced Machine Learning
Algorithm Utilizing Convolutional Neural Network in Gomoku Strategy and
Predictions Model». In: 2022 7th International Conference on Intelligent
Computing and Signal Processing (ICSP). 2022, pp. 1671–1677. doi: 10.
1109/ICSP54964.2022.9778476 (cit. on p. 1).

[6] Kyoung-Su Oh and Keechul Jung. «GPU implementation of neural networks».
In: Pattern Recognition 37.6 (2004), pp. 1311–1314. issn: 0031-3203. doi:
https://doi.org/10.1016/j.patcog.2004.01.013. url: https://www.
sciencedirect.com/science/article/pii/S0031320304000524 (cit. on
p. 1).

[7] Chiao-Yu Liang, Yang-Rwei Chang, Po-Hsiang Yang, and Horng-Yuan Shih.
«A High Efficiency Hardware Accelerator for Convolution Neural Network».
In: 2023 9th International Conference on Applied System Innovation (ICASI).
2023, pp. 157–159. doi: 10.1109/ICASI57738.2023.10179516 (cit. on p. 1).

59

https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/RMKMATE59243.2023.10368872
https://doi.org/10.1109/RMKMATE59243.2023.10368872
https://doi.org/10.1109/ICSP54964.2022.9778476
https://doi.org/10.1109/ICSP54964.2022.9778476
https://doi.org/https://doi.org/10.1016/j.patcog.2004.01.013
https://www.sciencedirect.com/science/article/pii/S0031320304000524
https://www.sciencedirect.com/science/article/pii/S0031320304000524
https://doi.org/10.1109/ICASI57738.2023.10179516

Bibliography

[8] Fpga based hardware accelerator for convolution neural network. 2022, pp. 260–
264. doi: 10.1109/ICMACC54824.2022.10093648 (cit. on p. 1).

[9] Ke Cheng, Jiaxuan Fu, Yulong Shen, Haichang Gao, Ning Xi, Zhiwei Zhang,
and Xinghui Zhu. «Manto: A Practical and Secure Inference Service of Con-
volutional Neural Networks for IoT». In: IEEE Internet of Things Journal
10.16 (2023), pp. 14856–14872. doi: 10.1109/JIOT.2023.3251982 (cit. on
p. 1).

[10] Xiaoyang Wang, Zhe Zhou, Zhihang Yuan, Jingchen Zhu, Yulong Cao, Yao
Zhang, Kangrui Sun, and Guangyu Sun. «FD-CNN: A Frequency-Domain
FPGA Acceleration Scheme for CNN-Based Image-Processing Applications».
In: 22.6 (Nov. 2023). issn: 1539-9087. doi: 10.1145/3559105. url: https:
//doi.org/10.1145/3559105 (cit. on p. 1).

[11] Yixing Li et al. «A GPU-Outperforming FPGA Accelerator Architecture for
Binary Convolutional Neural Networks». In: ACM JETC 14 (2017), pp. 1–16.
url: https://api.semanticscholar.org/CorpusID:37965395 (cit. on
p. 1).

[12] Francesco Conti and Luca Benini. «A Ultra-Low-Energy Convolution Engine
for Fast Brain-Inspired Vision in Multicore Clusters». In: vol. 2015. Mar. 2015.
doi: 10.7873/DATE.2015.0404 (cit. on p. 1).

[13] Ali A. D. Farahani, Hakem Beitollahi, and Mahmood Fathi. «A Dynamic Gen-
eral Accelerator for Integer and Fixed-Point Processing». In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 28.12 (2020), pp. 2509–
2517. doi: 10.1109/TVLSI.2020.3023106 (cit. on pp. 1, 2, 11).

[14] Yanan Lu, Leibo Liu, Jianfeng Zhu, Shouyi Yin, and Shaojun Wei. «Architec-
ture, challenges and applications of dynamic reconfigurable computing». In:
Journal of Semiconductors 41.2 (Feb. 2020), p. 021401. doi: 10.1088/1674-
4926/41/2/021401. url: https://dx.doi.org/10.1088/1674-4926/41/
2/021401 (cit. on pp. 1, 2).

[15] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han,
Shouyi Yin, and Shaojun Wei. «A Survey of Coarse-Grained Reconfigurable
Architecture and Design: Taxonomy, Challenges, and Applications». In: ACM
Computing Surveys 52 (Oct. 2019), pp. 1–39. doi: 10.1145/3357375 (cit. on
p. 2).

[16] Li Zhou, Jianfeng Zhang, and Hengzhu Liu. «Dual-Issue CGRA for DAG
Acceleration: 4th International Conference of Pioneering Computer Scientists,
Engineers and Educators, ICPCSEE 2018, Zhengzhou, China, September
21-23, 2018, Proceedings, Part I». In: Jan. 2018, pp. 505–511. isbn: 978-981-
13-2202-0. doi: 10.1007/978-981-13-2203-7_40 (cit. on p. 2).

60

https://doi.org/10.1109/ICMACC54824.2022.10093648
https://doi.org/10.1109/JIOT.2023.3251982
https://doi.org/10.1145/3559105
https://doi.org/10.1145/3559105
https://doi.org/10.1145/3559105
https://api.semanticscholar.org/CorpusID:37965395
https://doi.org/10.7873/DATE.2015.0404
https://doi.org/10.1109/TVLSI.2020.3023106
https://doi.org/10.1088/1674-4926/41/2/021401
https://doi.org/10.1088/1674-4926/41/2/021401
https://dx.doi.org/10.1088/1674-4926/41/2/021401
https://dx.doi.org/10.1088/1674-4926/41/2/021401
https://doi.org/10.1145/3357375
https://doi.org/10.1007/978-981-13-2203-7_40

Bibliography

[17] Mark Wijtvliet, Luc Waeijen, and Henk Corporaal. «Coarse grained recon-
figurable architectures in the past 25 years: Overview and classification». In:
2016 International Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation (SAMOS) (2016), pp. 235–244. url: https:
//api.semanticscholar.org/CorpusID:18520899 (cit. on pp. 2, 15).

[18] Jungi Lee and Jongeun Lee. «Specializing CGRAs for Light-Weight Con-
volutional Neural Networks». In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41.10 (2022), pp. 3387–3399. doi:
10.1109/TCAD.2021.3123178 (cit. on p. 2).

[19] Masakazu Tanomoto, Shinya Takamaeda-Yamazaki, Jun Yao, and Yasuhiko
Nakashima. «A CGRA-Based Approach for Accelerating Convolutional Neu-
ral Networks». In: 2015 IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip. 2015, pp. 73–80. doi: 10.1109/MCSoC.
2015.41 (cit. on p. 2).

[20] Rubén Rodríguez Álvarez, Benoıt Denkinger, Juan Sapriza, José Miranda
Calero, Giovanni Ansaloni, and David Atienza Alonso. «An Open-Hardware
Coarse-Grained Reconfigurable Array for Edge Computing». In: Proceedings
of the 20th ACM International Conference on Computing Frontiers. CF
’23. Bologna, Italy: Association for Computing Machinery, 2023, pp. 391–
392. isbn: 9798400701405. doi: 10.1145/3587135.3591437. url: https:
//doi.org/10.1145/3587135.3591437 (cit. on pp. 2, 19–21).

[21] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient Process-
ing of Deep Neural Networks: A Tutorial and Survey. Aug. 13, 2017. arXiv:
1703.09039[cs]. url: http://arxiv.org/abs/1703.09039 (visited on
08/22/2023) (cit. on p. 4).

[22] Keiron O’Shea and Ryan Nash. «An Introduction to Convolutional Neural
Networks». In: CoRR abs/1511.08458 (2015). arXiv: 1511.08458. url: http:
//arxiv.org/abs/1511.08458 (cit. on p. 5).

[23] Ahnaf Farhan, Olga Kosheleva, and Vladik Kreinovich. «Why Max and
Average Poolings are Optimal in Convolutional Neural Networks». In: 2018.
url: https://api.semanticscholar.org/CorpusID:53056693 (cit. on
p. 5).

[24] Mobeen Ahmad, Jooyeon Joe, and Dongil Han. «CortexNet: Convolutional
Neural Network with Visual Cortex in human brain». In: 2018 IEEE In-
ternational Conference on Consumer Electronics - Asia (ICCE-Asia). 2018,
pp. 206–212. doi: 10.1109/ICCE-ASIA.2018.8552151 (cit. on p. 5).

61

https://api.semanticscholar.org/CorpusID:18520899
https://api.semanticscholar.org/CorpusID:18520899
https://doi.org/10.1109/TCAD.2021.3123178
https://doi.org/10.1109/MCSoC.2015.41
https://doi.org/10.1109/MCSoC.2015.41
https://doi.org/10.1145/3587135.3591437
https://doi.org/10.1145/3587135.3591437
https://doi.org/10.1145/3587135.3591437
https://arxiv.org/abs/1703.09039 [cs]
http://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://api.semanticscholar.org/CorpusID:53056693
https://doi.org/10.1109/ICCE-ASIA.2018.8552151

Bibliography

[25] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun Yang. «DrAcc:
a DRAM based Accelerator for Accurate CNN Inference». In: 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC) (2018), pp. 1–6.
url: https://api.semanticscholar.org/CorpusID:49303184 (cit. on
p. 11).

[26] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. «PRIME: a novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory». In: Proceedings
of the 43rd International Symposium on Computer Architecture. ISCA ’16.
Seoul, Republic of Korea: IEEE Press, 2016, pp. 27–39. isbn: 9781467389471.
doi: 10.1109/ISCA.2016.13. url: https://doi.org/10.1109/ISCA.2016.
13 (cit. on p. 11).

[27] Yuhao Zhang, Zhiping Jia, Hongchao Du, Runzhen Xue, Zhaoyan Shen, and
Zili Shao. «A Practical Highly Paralleled ReRAM-Based DNN Accelerator by
Reusing Weight Pattern Repetitions». In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 41.4 (2022), pp. 922–935.
doi: 10.1109/TCAD.2021.3071116 (cit. on p. 11).

[28] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. «Neurocube: a programmable digital neuromorphic architec-
ture with high-density 3D memory». In: SIGARCH Comput. Archit. News 44.3
(June 2016), pp. 380–392. issn: 0163-5964. doi: 10.1145/3007787.3001178.
url: https://doi.org/10.1145/3007787.3001178 (cit. on p. 11).

[29] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi, Beat
Muheim, and Luca Benini. «Origami: A Convolutional Network Accelerator».
In: Proceedings of the 25th Edition on Great Lakes Symposium on VLSI.
GLSVLSI ’15. Pittsburgh, Pennsylvania, USA: Association for Computing
Machinery, 2015, pp. 199–204. isbn: 9781450334747. doi: 10.1145/2742060.
2743766. url: https://doi.org/10.1145/2742060.2743766 (cit. on p. 11).

[30] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. «Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks». In: Feb. 2016. doi: 10.1109/ISSCC.2016.7418007 (cit. on p. 11).

[31] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar.
«ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars». In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 2016, pp. 14–26. doi: 10.
1109/ISCA.2016.12 (cit. on p. 11).

62

https://api.semanticscholar.org/CorpusID:49303184
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/TCAD.2021.3071116
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.1145/2742060.2743766
https://doi.org/10.1145/2742060.2743766
https://doi.org/10.1145/2742060.2743766
https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/ISCA.2016.12

Bibliography

[32] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. «YodaNN: An
Ultra-Low Power Convolutional Neural Network Accelerator Based on Binary
Weights». In: (June 2016) (cit. on p. 11).

[33] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. «Optimizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks». In: Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. FPGA ’15. Monterey, Cali-
fornia, USA: Association for Computing Machinery, 2015, pp. 161–170. isbn:
9781450333153. doi: 10.1145/2684746.2689060. url: https://doi.org/
10.1145/2684746.2689060 (cit. on p. 12).

[34] Srihari Cadambi, Abhinandan Majumdar, Michela Becchi, Srimat Chakradhar,
and Hans Peter Graf. «A programmable parallel accelerator for learning
and classification». In: Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques. PACT ’10. Vienna,
Austria: Association for Computing Machinery, 2010, pp. 273–284. isbn:
9781450301787. doi: 10.1145/1854273.1854309. url: https://doi.org/
10.1145/1854273.1854309 (cit. on p. 12).

[35] Clement Farabet, Cyril Poulet, Jefferson Han, and Yann Lecun. «CNP: An
FPGA-based processor for Convolutional Networks». In: Aug. 2009. doi:
10.1109/FPL.2009.5272559 (cit. on p. 12).

[36] Gerald Estrin. «Organization of computer systems: the fixed plus variable
structure computer». In: IRE-AIEE-ACM ’60 (Western). 1960. url: https:
//api.semanticscholar.org/CorpusID:16384320 (cit. on p. 12).

[37] Reiner Hartenstein, Alexander Hirschbiel, Michael Riedmuller, Karin Schmidt,
and Michael Weber. «A Novel Asic Design Approach Based On A New Machine
Paradigm». In: Solid-State Circuits, IEEE Journal of 26 (Aug. 1991), pp. 975–
989. doi: 10.1109/4.92017 (cit. on p. 12).

[38] Sabih H. Gerez, Sonia M. Heemstra de Groot, Erwin R. Bonsma, and Marc
J. M. Heijligers. «Overlapped Scheduling Techniques for High-Level Synthesis
and Multiprocessor Realizations of DSP Algorithms». In: Advanced Techniques
for Embedded Systems Design and Test. Ed. by Juan Carlos López, Román
Hermida, and Walter Geisselhardt. Boston, MA: Springer US, 1998, pp. 125–
150. isbn: 978-1-4757-4419-4. doi: 10.1007/978-1-4757-4419-4_6. url:
https://doi.org/10.1007/978-1-4757-4419-4_6 (cit. on p. 12).

[39] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy
Lauwereins. «ADRES: An Architecture with Tightly Coupled VLIW Processor
and Coarse-Grained Reconfigurable Matrix». In: International Conference
on Field-Programmable Logic and Applications. 2003. url: https://api.
semanticscholar.org/CorpusID:39182312 (cit. on p. 12).

63

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/1854273.1854309
https://doi.org/10.1145/1854273.1854309
https://doi.org/10.1145/1854273.1854309
https://doi.org/10.1109/FPL.2009.5272559
https://api.semanticscholar.org/CorpusID:16384320
https://api.semanticscholar.org/CorpusID:16384320
https://doi.org/10.1109/4.92017
https://doi.org/10.1007/978-1-4757-4419-4_6
https://doi.org/10.1007/978-1-4757-4419-4_6
https://api.semanticscholar.org/CorpusID:39182312
https://api.semanticscholar.org/CorpusID:39182312

Bibliography

[40] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and
E.M. Chaves Filho. «MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications». In: IEEE Transactions
on Computers 49.5 (2000), pp. 465–481. doi: 10.1109/12.859540 (cit. on
p. 12).

[41] Mark Horowitz. «1.1 Computing’s energy problem (and what we can do about
it)». In: 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC). 2014, pp. 10–14. doi: 10.1109/ISSCC.2014.
6757323 (cit. on p. 12).

[42] G. Theodoridis, D. Soudris, and S. Vassiliadis. «A Survey of Coarse-Grain
Reconfigurable Architectures and Cad Tools». In: Fine- and Coarse-Grain
Reconfigurable Computing. Ed. by Stamatis Vassiliadis and Dimitrios Soudris.
Dordrecht: Springer Netherlands, 2007, pp. 89–149. isbn: 978-1-4020-6505-7.
doi: 10.1007/978-1-4020-6505-7_2. url: https://doi.org/10.1007/
978-1-4020-6505-7_2 (cit. on p. 12).

[43] L. Liu, Z. Li, Y. Chen, C. Deng, S. Yin, and S. Wei. «HReA: An energy-
efficient embedded dynamically reconfigurable fabric for 13-dwarfs processing».
In: IEEE Transactions on Circuits and Systems II: Express Briefs 65.3 (2017),
pp. 381–385. doi: 10.1109/TCSII.2017.2728814 (cit. on pp. 12, 13).

[44] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matthew Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Oluko-
tun. «Plasticine: A reconfigurable architecture for parallel patterns». In: 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA) (2017), pp. 389–402. url: https://api.semanticscholar.org/
CorpusID:10243767 (cit. on p. 12).

[45] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. «Stream-Dataflow Acceleration». In: ACM SIGARCH Computer Ar-
chitecture News 45 (June 2017), pp. 416–429. doi: 10.1145/3140659.3080255
(cit. on p. 12).

[46] Defense Advanced Research Projects Agency (DARPA). DARPA. 2017. url:
https://www.darpa.mil/ (cit. on p. 12).

[47] Sukjin Kim, Young-Hwan Park, Jaehyun Kim, Minsoo Kim, Wonchang Lee,
and Shihwa Lee. «Flexible video processing platform for 8K UHD TV». In:
Aug. 2015, pp. 1–1. doi: 10.1109/HOTCHIPS.2015.7477475 (cit. on p. 12).

[48] Samsung. Exynos 5 Octa 5430. 2014. url: http://www.samsung.com/semi
conductor/minisite/exynos/products/mobile%20processor/exynos-5-
octa-5430/ (cit. on p. 12).

[49] PACT XPP TECHNOLOGIES. PACT. url: http://www.pactxpp.com/
(cit. on p. 12).

64

https://doi.org/10.1109/12.859540
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1007/978-1-4020-6505-7_2
https://doi.org/10.1007/978-1-4020-6505-7_2
https://doi.org/10.1007/978-1-4020-6505-7_2
https://doi.org/10.1109/TCSII.2017.2728814
https://api.semanticscholar.org/CorpusID:10243767
https://api.semanticscholar.org/CorpusID:10243767
https://doi.org/10.1145/3140659.3080255
https://www.darpa.mil/
https://doi.org/10.1109/HOTCHIPS.2015.7477475
http://www.samsung.com/semiconductor/minisite/exynos/products/mobile%20processor/exynos-5-octa-5430/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobile%20processor/exynos-5-octa-5430/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobile%20processor/exynos-5-octa-5430/
http://www.pactxpp.com/

Bibliography

[50] INTEL. INTEL. 2016. url: https://newsroom.intel.com/news-release
s/intel-tsinghua-university-and-montage-tech (cit. on p. 13).

[51] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie Han,
Shouyi Yin, and Shaojun Wei. «A Survey of Coarse-Grained Reconfigurable
Architecture and Design: Taxonomy, Challenges, and Applications». In: ACM
Comput. Surv. 52.6 (Oct. 2019). issn: 0360-0300. doi: 10.1145/3357375.
url: https://doi.org/10.1145/3357375 (cit. on pp. 13–15).

[52] Bingfeng Mei, Bjorn De Sutter, Tom Vander Aa, Maryse Wouters, Andreas
Kanstein, and S. Dupont. «Implementation of a Coarse-Grained Reconfig-
urable Media Processor for AVC Decoder». In: Journal of Signal Processing
Systems 51 (June 2008), pp. 225–243. doi: 10.1007/s11265-007-0152-8
(cit. on p. 13).

[53] Mahendra Kumar Angamuthu Ganesan, Sundeep Singh, Frank May, and
Jürgen Becker. «H. 264 Decoder at HD Resolution on a Coarse Grain Dy-
namically Reconfigurable Architecture». In: 2007 International Conference
on Field Programmable Logic and Applications (2007), pp. 467–471. url:
https://api.semanticscholar.org/CorpusID:17979368 (cit. on p. 13).

[54] Leibo Liu, Chenchen Deng, Dong Wang, Min Zhu, Shouyi Yin, Peng Cao, and
Shaojun Wei. «An energy-efficient coarse-grained dynamically reconfigurable
fabric for multiple-standard video decoding applications». In: Proceedings of
the IEEE 2013 Custom Integrated Circuits Conference, CICC 2013, San Jose,
CA, USA, September 22-25, 2013. IEEE, 2013, pp. 1–4. doi: 10.1109/CICC.
2013.6658434. url: https://doi.org/10.1109/CICC.2013.6658434
(cit. on p. 13).

[55] Arthur H. Veen. «Dataflow machine architecture». In: ACM Comput. Surv.
18.4 (Dec. 1986), pp. 365–396. issn: 0360-0300. doi: 10.1145/27633.28055.
url: https://doi.org/10.1145/27633.28055 (cit. on p. 14).

[56] R. Hartenstein. «A decade of reconfigurable computing: a visionary retrospec-
tive». In: Proceedings Design, Automation and Test in Europe. Conference
and Exhibition 2001. 2001, pp. 642–649. doi: 10.1109/DATE.2001.915091
(cit. on p. 15).

[57] Russell Tessier, Kenneth Pocek, and Andre Dehon. «Reconfigurable Comput-
ing Architectures». In: Proceedings of the IEEE 103 (Mar. 2015), pp. 332–354.
doi: 10.1109/JPROC.2014.2386883 (cit. on p. 15).

[58] Simone Machetti, Pasquale Davide Schiavone, Thomas Christoph Müller,
Miguel Peón-Quirós, and David Atienza. X-HEEP: An Open-Source, Config-
urable and Extendible RISC-V Microcontroller for the Exploration of Ultra-
Low-Power Edge Accelerators. 2024. arXiv: 2401.05548 [cs.AR] (cit. on
pp. 17, 18).

65

https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-tech
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-tech
https://doi.org/10.1145/3357375
https://doi.org/10.1145/3357375
https://doi.org/10.1007/s11265-007-0152-8
https://api.semanticscholar.org/CorpusID:17979368
https://doi.org/10.1109/CICC.2013.6658434
https://doi.org/10.1109/CICC.2013.6658434
https://doi.org/10.1109/CICC.2013.6658434
https://doi.org/10.1145/27633.28055
https://doi.org/10.1145/27633.28055
https://doi.org/10.1109/DATE.2001.915091
https://doi.org/10.1109/JPROC.2014.2386883
https://arxiv.org/abs/2401.05548

Bibliography

[59] Cristian Tirelli et al. «SAT-based Exact Modulo Scheduling Mapping for
Resource-Constrained CGRAs». In: ACM Journal on Emerging Technologies
in Computing Systems (2024). arXiv: 2402.12834 (cit. on pp. 19, 21).

[60] Loris Duch, Soumya Basu, Rubén Braojos, David Atienza, Giovanni Ansaloni,
and Laura Pozzi. «A multi-core reconfigurable architecture for ultra-low
power bio-signal analysis». In: 2016 IEEE Biomedical Circuits and Systems
Conference (BioCAS). 2016, pp. 416–419. doi: 10 . 1109 / BioCAS . 2016 .
7833820 (cit. on p. 21).

[61] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning. Vol. 1.
MIT Press, 2017 (cit. on p. 23).

[62] Liangzhen Lai et al. «CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-M CPUs». In: CoRR abs/1801.06601 (2018). arXiv: 1801.06601. url:
http://arxiv.org/abs/1801.06601 (cit. on pp. 23, 24).

[63] Angelo Garofalo et al. «PULP-NN: accelerating quantized neural networks
on parallel ultra-low-power RISC-V processors». In: Phil. Trans. of the Royal
Society A 378.2164 (2020), p. 20190155 (cit. on pp. 24, 25).

[64] Tianqi Chen et al. «MXNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems». In: CoRR abs/1512.01274
(2015). arXiv: 1512.01274. url: http://arxiv.org/abs/1512.01274
(cit. on p. 24).

[65] Sanjay Krishnan et al. «Artificial Intelligence in Resource-Constrained and
Shared Environments». In: SIGOPS Oper. Syst. Rev. 53.1 (July 2019), pp. 1–6.
issn: 0163-5980. doi: 10.1145/3352020.3352022. url: https://doi.org/
10.1145/3352020.3352022 (cit. on p. 24).

[66] Vivienne Sze et al. «Designing DNN Accelerators». In: Efficient Processing
of Deep Neural Networks. Springer Cham, 2022. Chap. 5, pp. 73–118 (cit. on
p. 27).

66

https://arxiv.org/abs/2402.12834
https://doi.org/10.1109/BioCAS.2016.7833820
https://doi.org/10.1109/BioCAS.2016.7833820
https://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://doi.org/10.1145/3352020.3352022
https://doi.org/10.1145/3352020.3352022
https://doi.org/10.1145/3352020.3352022

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Deep Neural Networks
	The Basic of Neural Networks
	Convolutional Neural Networks
	Convolutional layers

	Hardware Acceleration of CNN
	Temporal Hardware Architecture
	Spatial Hardware Architecture
	Coarse-grained reconfigurable architecture (CGRA)

	Related Works
	HEEPsilon platform
	X-HEEP
	OpenEdgeCGRA
	CGRA Architecture
	Assembler & Simulator

	Methods
	Convolution Mapping
	Direct Convolution
	Im2col

	Parallelization axis
	Weight Parallelism
	Output Channel Parallelism
	Input Channel Parallelism

	Kernel Operation Mapping
	Weight Parallelism Mapping Analysis
	Input channel Parallelism Mapping Analysis
	Output channel Parallelism Mapping Analysis

	Experimental Results
	Experimental Setup
	CGRA preparation and deployment
	Evaluation Metrics

	Latency and Energy analysis
	Ablation Study: Exploration of layer scalability on CGRA
	Ablation Study: Memory interleaved impact

	Conclusions
	Appendix
	Assembly code
	Weight Parallelism
	Output channel Parallelism
	Input channel Parallelism

	Bibliograpy

