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Abstract

In recent years, cyber-physical systems are gaining increasing attention due to
their versatility of use in various application fields. Their peculiar characteristic of
integration between computational aspects and physical processes determines the
necessity of addressing new vulnerabilities and security issues. Attacks launched
in the cyber domain can have consequences on the physical components, posing
serious risks to industrial and daily life activities, such as transportation systems
or healthcare. Cyber-physical systems are composed of a set of interconnected
devices that take measurements from the physical world through sensors and aim
at processing the measured data for some purpose. This thesis examines the
problem of estimating the state of cyber-physical systems subjected to sensor
attacks, known as secure state estimation, starting with a mathematical analysis
of the problem based on the existing literature. Since the cyber-physical systems
framework is intrinsically distributed, the measurement acquisition occurs in a
decentralized fashion. On the other hand, the computational aspect of problem
resolution can be handled in two different ways. Firstly, we focus on the centralized
approach, such that the sensor measurements are sent to a single, central computing
device, which processes the data with a global perspective. An observer algorithm
is designed and examined for this purpose, and its performance is compared
with a state-of-the-art algorithm. Subsequently, a decentralized strategy is also
employed for computations, as it is considered more suitable for cyber-physical
systems due to privacy and fault vulnerabilities arising from the presence of a
unique computing device. An innovative observer tailored for solving secure state
estimation in this setting is introduced and evaluated. Two example problems are
addressed, a theoretical one and a potential real-world application, employing the
aforementioned algorithms for numerical simulations. Considering that centralized
observers yield superior performance compared to their distributed counterparts,
albeit with various practical and security-related drawbacks, this work focuses on
the development and evaluation of decentralized algorithms, for which a standard
has not yet been established in the literature.
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Chapter 1

Introduction

1.1 Cyber-physical systems
A cyber-physical system (CPS) is an integration of computation with physical
processes whose behavior is defined by both cyber and physical parts of the system
[1]. It consists of a collection of computing devices, communicating with one another
and interacting with the physical world via sensors and actuators in a feedback loop
[2]. A cyber-physical system is the intersection of the physical and the cyber parts,
therefore the interaction between the physical and the computational components
must be analyzed, rather than considering them as separate entities [1]. The
development of processing, wireless communication, and sensor technologies has
led to the manufacture of low-cost, highly capable components for cyber-physical
systems, even though some types of these systems have been used in industry since
the 1980s. Due to the versatility of application fields and the potential advantages
it offers for society, economy, and the environment, research attention on CPSs
has intensified, gaining recognition from academia, industry, and also governments.
This research has the potential to have a profound impact on how engineering
systems are designed and developed to address societal demands in a number of
areas, including energy, environment, and healthcare, as illustrated in [3] and in [4]:

• Energy Systems: sustainable energy generation, transmission, and distribution
are the main objectives. Real-time distributed sensing, measurement, and
analysis can improve the responsiveness and dependability of electric energy
production and distribution.

• Transportation Systems: the primary goal is to address sustainability, efficiency,
traffic congestion, and safety through the development of intelligent vehicles,
public transportation, and traffic systems.

• Agriculture: the implementation of a wide range of modern agricultural
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management strategies and technologies has the goal of increasing accuracy in
agriculture.

• Healthcare and Medical Systems: designing and developing medical systems
and technologies with improved intelligence, interoperability, efficiency, and
reliability.

The aforementioned examples represent only a small fraction of the numerous
fields in which these types of systems can be applied. Other possible areas of
use are assisted living, process control, avionics, critical infrastructure control,
distributed robotics, defense systems, and manufacturing [5]. On the other hand,
the distributed nature of these large-scale systems, together with the integration of
computing, communication, and control, results in increased vulnerabilities and
security weaknesses [6]. Since sensors and actuators are essential parts of control
systems, focusing on their security is crucial. Sensors measure critical variables
and communicate them to the controllers, which compute the control inputs based
on the sensor measurements. The actuators synthesize the control inputs to enable
the system to accomplish tasks like tracking and regulation. Along with these, a
communication network possibly connected to the Internet is used to enable the
exchange of information between sensors, actuators and controllers. Therefore,
this connection makes CPS more exposed to attacks that target the physical
component, even though they are launched in the cyber domain. As a result,
new security problems that differ from those of traditional cyber security have
emerged [7]. Malicious attacks can cause major performance degradation and even
system failure by jamming communication channels and introducing false data into
sensors, modifying their measurements. The security of cyber-physical systems has
drawn increasing attention from the control community in an effort to evaluate and
minimize the negative effects of such intrusions, since these systems are frequently
essential parts of key infrastructures and are becoming more autonomous, i.e. they
do not need human intervention to operate [8]. Some of the major attacks on
control systems are mentioned in [9] and summarized in Table 1.1.

1.2 Secure state estimation problem
Closely linked to the security issue of CPS is the secure state estimation (SSE)
problem, whose objective is to reconstruct the system state in the presence of
attacks on sensors. Malicious attacks on actuators, which are also possible and are
addressed in [7], are not considered here. No information is available regarding the
magnitude, statistical description, or temporal evolution of the adversarial attacks;
otherwise, standard techniques used to cope with noise could also be applied to
the attacks. The unique assumption made on sensor attacks is sparsity, i.e. the

2



Introduction

Attack Year Target Type Consequences
Maroochy 2000 Water services in

Queensland,
Australia.

Cyber attack to
SCADA network.

Evacuation of
untreated sewage
into storm water
drains and local
waterways.

Stuxnet 2009 Iranian uranium
enrichment plant.

Cyber attack to
SCADA systems.

Significant
damage to
centrifuges.

RQ-170 2011 US RQ-170
unmanned aerial
vehicle (UAV).

GPS signal
spoofing.

Loss of control of
the UAV in Iran.

ABS 2013 Mazda RX7 ABS
sensors (test bed).

Non-invasive
spoofing attacks
for Anti-lock
Braking Systems.

Experimental
test.

Ukraine 2015 Ukrainian power
distribution
networks.

Spoofing of
control commands
through malware.

Outages and
lasting damages.

Jeep hack 2015 Jeep car on a
highway in St.
Louis (USA).

Remote
manipulation of
Electronic
Control Units
through cellular
connection.

Under control
test.

Table 1.1: Examples of real and experimental CPS attacks.

attacker has access to only a small portion of the overall number of sensors. Given
the distributed nature of the system, along with the large dimensionality, this
assumption is considered realistic. However, the SSE problem is intrinsically a
non-polynomial (NP) hard problem since the set of attacked sensors is unknown
and combinatorial candidates should be checked [10]. The first possible strategy is
brute force search, i.e. try all possible attack configurations. The SSE problem can
be formulated as a non-convex ℓ0 minimization problem, which can be solved by
an ℓ0 decoder. This approach is suited for small systems since the computational
complexity grows combinatorially with the number of sensors, leading to excessive
memory and time requirements for relatively larger systems. For this reason,
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Fawzi et al. (2014) [7] propose a computationally efficient relaxation method, which
recasts the original non-convex ℓ0 optimization problem into a convex ℓ1/ℓr problem,
by leveraging the sparsity assumption. This relaxed convex problem can be solved
in polynomial time by a so-called ℓ1/ℓr decoder. Shoukry and Tabuada (2016)
[11] develop gradient-descent algorithms with increased computational efficiency,
thanks to the adoption of event-triggered techniques. They can be considered an
improvement of compressive sensing techniques where part of the signal is sparse,
i.e. the attacks, and the other part is governed by linear dynamics, i.e. the state.
The major drawback of these state-of-the-art algorithms is the loss of soundness
and completeness guarantees for the convex relaxation methods and the restrictive
convergence sufficient conditions for the gradient-descent ones [6], [12]. Moreover,
[7] assumes the time invariance of the attack support, whereas [11] considers the
knowledge of a tight upper bound of the number of attacks.

1.3 Decentralization: distributed secure state
estimation problem

Given the intrinsic distributed nature of CPSs, conventional optimization algorithms,
which we refer to as centralized, cannot always be applied to solve optimization
problems over cyber-physical networks since they require data management by
a single entity [13], called Fusion Center (FC): the measurements acquired by
distributed sensors are transmitted to a central high-performing computing device,
which collects and processes all the data. The recent trend is to remove the fusion
center and decentralize not only the acquisition but also the processing of the data,
since in CPSs it is typically undesirable, and at times impossible, to collect them
at a unique node [13]. The main reasons why distributed processing is typically
preferred over the centralized one are [14]:

• a centralized processing architecture is unfeasible for large-scale networks, i.e.
networks with a significant number of sensors, in terms of energy utilization
and introduction of delays [15], due to the need of long-range communications
to transmit data to the FC;

• a centralized processing architecture is not resilient to a failure in the FC, which
would stop the overall processing. Decentralization enhances the network’s
robustness to the presence of a certain number of sensor faults;

• a decentralized processing architecture preserves agent information privacy:
each sensor can keep some information private.

Moreover, the distributed approach is also economically advantageous: the usually
expensive and high-performance fusion center is removed, and a network of sensors
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with limited memory capacity, performing minimal operations and communicating
with each other, is employed.
From these considerations, the distributed secure state estimation (DSSE) problem
arises: a set of nodes is required to collectively track the state of a linear dynamical
system using measurements from their own sensors and messages exchanged with
neighboring nodes via a communication network [16], in the presence of adversarial
attacks. In contrast to the SSE problem, where the FC has the goal of reconstructing
the system state in the presence of attacks on some sensors, having access to global
information, in the DSSE problem each sensor only relies on local information,
i.e. its own measurements and the one-hop neighbors’ messages. Therefore, the
DSSE is regarded as more complex, and the algorithms used to solve it are usually
sub-optimal with respect to the centralized ones.

1.4 Contributions
The objectives of this thesis include the implementation and testing of algorithms for
solving state estimation problems in the presence of sparse sensor attacks, along with
performance comparison with respect to a state-of-the-art observer. In particular,
an innovative algorithm is developed, named Distributed Sparse Observer, for
solving the state estimation problem in a distributed setting, consistently with the
intrinsic decentralized nature of CPSs.

1.5 Organization
The thesis is organized as follows.
In Chapter 2, the SSE problem is introduced and analyzed, based on current
developments in the literature. The Sparse Observer algorithm is implemented to
address this type of problem. Then, a decentralized perspective is employed, and
the distributed version of the problem is examined. Drawing inspiration from the
centralized version, the Distributed Sparse Observer is developed.
In Chapter 3, the algorithms mentioned above are employed to address an il-
lustrative, synthetic SSE problem, with the aim of comparing their respective
performances in various cases of interest. First, the Sparse Observer is compared
with the Event-Triggered Projected Luenberger observer, which is considered a
standard algorithm in this field of study. Then, the same problem is solved using a
decentralized approach and the Distributed Sparse Observer is employed for this
purpose.
In Chapter 4, the localization problem is introduced, representing a potential
real-world application of growing interest in recent times. It can be formulated
as a state estimation problem, suitable to be solved by the distributed version of
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the observer. As in Chapter 3, numerical simulations are conducted to compare
the results obtained under different possible connection topologies and models of
sensor attacks.
Lastly, Chapter 5 is dedicated to final considerations, conclusions, and potential
future developments.
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Chapter 2

Algorithms

2.1 Secure state estimation problem statement
As in [7] and [11], CPSs are modeled as discrete-time linear time-invariant dynamical
systems

x(k + 1) = Ax(k)
y(k) = Cx(k) + a(k)

(2.1)

where x(k) ∈ Rn is the system state at time k ∈ N, y(k) ∈ Rq are the observed
measurements, a(k) ∈ Rq is the attack vector, A ∈ Rn,n is the system matrix
and C ∈ Rq,n is the sensors measurement matrix. Assuming that each sensor i
takes a scalar measurement yi(k) ∈ R, the attack vector is defined such that the
ith component ai(k) /= 0 if the corresponding sensor i ∈ {1, . . . , q} is attacked;
otherwise, if the ith sensor is not attacked, it follows that ai(k) = 0 and the
corresponding output yi(k) is not corrupted.
Two assumptions are made on the attacks: the first is the sparsity of vector a(k),
i.e. no more than s≪ q components of a(k) are non-zero, which can be expressed
using the ℓ0-norm as ∥a(k)∥0 ≤ s. The other assumption is the time invariance
of the set of attacked sensors, i.e. the support of the attack vector is constant
over time. This hypothesis is considered realistic when the time required for the
malicious agent to take control of a node is significant with respect to the time
scale of the estimation algorithm [7].

SSE problem. For some τ ≤ n, given matrices A and C, the aim is to estimate
the initial state x(0) of the plant from the corrupted observations
y = (y(0)T , . . . , y(τ − 1)T )T ∈ Rqτ , i.e. in the presence of sparse sensor attacks
a(k).

After obtaining the τ vectors y(0), . . . , y(τ − 1), the fusion center uses a decoder
D : Rqτ → Rn to estimate the initial state x(0) of the plant.
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Definition 1. s errors are correctable after τ steps by the decoder D : Rqτ → Rn

if for any x(0) ∈ Rn, any K ⊂ {1, . . . , q} with |K| ≤ s, and any sequence of vectors
a(0), . . . , a(τ −1) in Rq such that supp(a(k)) ⊂ K, we have D(y(0), . . . , y(τ −1)) =
x(0) where y(k) = CAkx(0) + a(k) for k = 0, . . . , τ − 1.

Therefore, s errors are correctable after τ steps, i.e. the system is resilient against
s attacks after τ steps, if there exists a decoder that can correct s errors after τ
steps. The following proposition gives a necessary and sufficient condition for s
errors to be correctable:

Proposition 1. s errors are correctable after τ steps if and only if for all z ∈ Rn\{0},
|supp(Cz) ∪ supp(CAz) ∪ · · · ∪ supp(CAτ−1z)| > 2s.

The proof can be found in [7]. From Proposition 1, it follows that it is not possible
to recover the initial state x(0) if matrix 2.2

O =


C

CA
...

CAτ−1

 ∈ Rqτ,n (2.2)

with τ = n, i.e. the observability matrix, has rank smaller than n. In other
words, if the system is not observable, then it is also not resilient. Another direct
consequence of the proposition is that the number of correctable errors is always
less than q/2, for any τ , i.e. the number of attacked sensors cannot exceed half of
the total number of sensors.
The optimal decoder D0 : Rqτ → Rn is defined such that D0(y) is the solution of
the optimization problem

min
x∈Rn, a∈Rqτ

1
2∥a∥0

s.t. a = y −Ox
(2.3)

where ∥a∥0 denotes the number of nonzero components in a. Solving this problem
means searching for the sparsest attack vector a consistent with the measured data

y =


y(0)

...
y(τ − 1)

 =
1
O I

2Ax̃
ã

B

where O is defined in 2.2, I ∈ Rqτ,qτ is the identity matrix, x̃ = x(0) ∈ Rn and

ã =


a(0)

...
a(τ − 1)

 ∈ Rqτ .

8
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Proposition 2. Assume that s errors are correctable after τ steps, i.e. Proposition
1 holds. Then the decoder D0 corrects s errors.

The system a = y −Ox, reformulated as

y =
1
O I

2Ax
a

B
(2.4)

in the variables x ∈ Rn and a ∈ Rqτ , is underdetermined, since matrix (O I) ∈
Rqτ,n+qτ , therefore there are qτ equations, i.e. measurements, in n + qτ unknowns,
i.e. the initial state and the τ attack vectors. Basic linear algebra states that a
system like 2.4 has infinitely many solutions (provided that there exists at least one).
Therefore, without additional information it is impossible to recover (xT , aT )T from
y. The information exploited here is the sparsity of the attack vector a. This can be
considered as a compressive sensing problem, which consists in reconstructing an s-
sparse vector x from y = Cx, where C ∈ Rq,n, with q < n [17]: compressive sensing
theory states that an s-sparse vector x ∈ Rn, with s≪ n, can be recovered from
compressed linear measurements y = Cx, y ∈ Rq, with q < n, if C satisfies certain
conditions. The drawback of the D0 decoder is that the optimization problem
2.3 is non-polynomial (NP) hard, so it can only be solved using a combinatorial
approach, due to the use of the ℓ0-norm. Therefore, this approach is unfeasible.
One possible strategy consists in replacing the ℓ0-norm by the ℓ1-norm, i.e. its best
convex approximation [18].
The decoder D1 : Rqτ → Rn is defined such that D1(y) is the solution of the
following convex optimization problem:

min
x∈Rn, a∈Rqτ

1
2∥a∥1

s.t. a = y −Ox
(2.5)

where ∥a∥1 = qq
i=1 |ai| denotes the ℓ1-norm of a. Since the ℓ1-norm is convex, the

optimization problem 2.5, known as partial basis pursuit (partial since only a part
of the unknown vector is sparse) or ℓ1-minimization, is convex and can be efficiently
solved. On the other hand, since it is a relaxation of the original ℓ0 problem, the
decoder D1 is sub-optimal with respect to the optimal decoder D0.
Finally, problem 2.5 can be formulated as a Lasso (also known as basis pursuit
denoising problem, introduced by Tibshirani (1996) [19]) to consider the possible
presence of measurement noise:

min
x∈Rn, a∈Rqτ

1
2

.....y − 1O I
2Ax

a

B.....
2

2
+ λ∥a∥1 (2.6)

where λ > 0. This problem formalizes a trade-off between the accuracy with which
Ox + a approximates y, and the complexity of the solution, intended as the number

9
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of nonzero entries in a. The larger is the regularization parameter λ, the more
problem 2.6 is biased towards finding low-complexity solutions, i.e. solutions with
many zeros. Actually, problem 2.6 is a partial Lasso, since only a part of the
vector to estimate is sparse, i.e. the attack vector, whereas the state is in general
non-sparse. A straightforward and easy-to-implement method for solving Lasso
problems is the iterative shrinkage-thresholding algorithm, proposed by Daubechies
et al. in [20].

2.1.1 Iterative Shrinkage-Thresholding algorithm
Given matrix C ∈ Rq,n, a k-sparse vector x̃ ∈ Rn (with k ≪ n), and noisy
measurements y = Cx̃ + η, where η ∈ Rq is the measurement noise, the following
"weighted" Lasso problem is considered:

min
x∈Rn

1
2∥y − Cx∥2

2 + ΛT |x| (2.7)

where Λ ∈ Rn is the vector of regularization parameters, |x| = (|x1|, . . . , |xn|)T

and ΛT |x| is a weighted ℓ1-norm. One of the most common approaches for solving
problems like 2.7 is the class of iterative shrinkage-thresholding (IST) algorithms
[21].
Given x ∈ Rn, the component-wise shrinkage-thresholding operator SΛ : Rn → Rn,
for any Λ = (λ1, . . . , λn)T ∈ Rn

+, is defined as:

Sλi
(xi) :=


xi − λi if xi > λi

xi + λi if xi < −λi

0 if |xi| ≤ λi

Algorithm 1 IST
Input: C, y, γ > 0, Λ
Output: x̂ = estimate of x̃
Initialization: x(1) ∈ Rn, e.g. x(1) = 0

1: for t = 1, . . . , Tmax do
2: x(t + 1) = SγΛ[x(t) + γCT (y − Cx(t))]
3: end for
4: x̂ = x(Tmax)

where γ ∈ R+ is the learning rate, defined such that γ < ∥C∥−2
2 to guarantee

the convergence to the minimum of the Lasso functional. The convergence of the
IST algorithm is proven in [20], [21]. The value of Tmax is determined by the

10
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chosen stopping criterion. The IST algorithm is considered a natural extension
of a gradient-based method since each iteration consists of a gradient step and
a shrinkage-thresholding step. The main advantage of this algorithm is its ease
of implementation. On the other hand, it is acknowledged as a slow method. Its
iterative structure makes the IST algorithm easily adaptable for dynamic and
distributed systems, as further discussed in the following sections.

2.1.2 Sparse Observer
The SSE problem can be stated in an equivalent dynamic perspective [22].

Online SSE problem. For some τ ≤ n, given matrices A and C, the aim is to
estimate, at any time instant k, the τ -delayed state x(k− τ + 1) from the corrupted
measurements (y(k − τ + 1)T , . . . , y(k)T )T . If τ = 1, this is an online (not delayed)
SSE.

The aim is to estimate the τ -delayed state x(k − τ + 1) and the constant support
of the attack vectors, using the last qτ measurements, such that at each time
instant k the new q measurements y(k) are included, whereas the oldest ones are
discarded. Therefore, the value of τ represents the extension of the measurements
time window. This problem can be solved by developing an online version of the
IST algorithm, here referred to as Sparse Observer, where:

y(k) =


y(k − τ + 1)

...
y(k)

 , a(k) =


a(k − τ + 1)

...
a(k)

 , η(k) =


η(k − τ + 1)

...
η(k)



Algorithm 2 Sparse Observer
Input: A, O, x0, γ > 0, Λ, τ ≤ n

Output: ẑ(k) =
A

x̂(k − τ + 1)
â(k)

B
= estimate of

A
x(k − τ + 1)

a(k)

B
Initialization: x(1) = x0 ∈ Rn, ẑ(τ) = 0 ∈ Rn+qτ , G = (O Iqτ )

1: for k = τ, . . . , T do
2: y(k) = Ox(k − τ + 1) + η(k) + a(k) ← System Dynamics
3: ẑ(k + 1

2) = SγΛ[ẑ(k) + γGT (y(k)−Gẑ(k))] ← IST step
4: â(k + 1) = â(k + 1

2)
5: x̂(k + 1) = Ax̂(k + 1

2) ← State update
6: end for

Algorithm 2 is a Luenberger-like observer since it executes one IST step, i.e. the
gradient step, followed by the application of the soft-thresholding operator, at
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each time instant k. Moreover, it exploits the knowledge of the system dynamics,
multiplying the state estimate by A. The IST step can be executed one or more
times, but the characteristic of the algorithm is that it is not run to convergence to
the Lasso solution. At each time instant k, the Lasso problem can be formulated
as:

min
x∈Rn, a∈Rqτ

1
2

.....y(k)−
1
O I

2Ax
a

B.....
2

2
+ ΛT

-----
A

x
a

B----- (2.8)

where, since the state is expected to be non-sparse, the first n components of the
regularization parameters vector Λ ∈ Rn+qτ are null.
If τ is set to 1, the time window collapses, and only the last q measurements y(k)
are considered at each instant k. Therefore, in this case the Sparse Observer solves
a non-delayed version of the SSE problem, i.e. the current state x(k) is estimated
at each k.

2.1.3 Event-Triggered Projected Luenberger observer
For completeness, the Event-Triggered Projected Luenberger (ETPL) observer is
presented in this section. ETPL, proposed by Shoukry and Tabuada in [11], is
one of the state-of-the-art algorithms for solving SSE problems in the absence of
measurement noise and with the assumption of knowing a tight upper bound on
the number of sensors under adversarial attack.

Algorithm 3 Event-Triggered Projected Luenberger Observer
Input: A, C, x0, s, τ ≤ n

Output: ẑ(k) =
A

x̂(k − τ + 1)
Ê(k)

B
= estimate of

A
x(k − τ + 1)

E(k)

B
Initialization: x(1) = x0 ∈ Rn, ẑ(τ − 1) = 0 ∈ Rn+qτ

1: for k = τ, . . . , T do
2: x(k + 1) = Ax(k) ← System Dynamics
3: y(k) = Cx(k) + a(k)
4: Y (k) = Ox(k − τ + 1) + E(k)
5: ẑT (k) = Āẑ(k − 1) + N̄y(k) ← Time Update Step
6: ẑΠ(k) = Π(ẑT (k)) ← Projection Step
7: ẑ(k) = ẑΠ(k)
8: count = 0
9: while V (ẑΠ(k)) ≥ (1− ν)V (ẑΠ(k − 1)) & count < 100 do

10: count = count + 1
11: ẑ(k) = ẑΠ(k) + L(Y (k)−QẑΠ(k)) ← ETPL Update Step
12: ẑΠ(k) = Π(ẑ(k))
13: end while
14: end for
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where N̄ =


0

N1
...

Nq

 and Y (k), E(k), Ā, O, Q = (O I), N1, . . . , Nq are defined as

illustrated in [11]. Π and V , whose definition can be found in [11], are the projection
operator and the Lyapunov candidate function, respectively.
The ETPL algorithm implementation considered here differs from that of the paper
for the following reasons:

• the system input u(k) is not considered;

• since the restrictive convergence sufficient condition provided in [11] is not
satisfied by the systems analyzed in the following chapters, a stopping condition
is added to the original one, i.e. the count variable. As a consequence, the
value of ν is chosen as null, since we have observed that by increasing the value
of ν, the while loop condition tends to reduce to the sole stopping condition
count < 100;

• fixing the Luenberger gain L = Q+, i.e. the Moore-Penrose inverse of Q, the
inner loop of the ETPL algorithm in [11] can be replaced with one update
step.
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2.2 Distributed secure state estimation problem
statement

As introduced in Section 1.3, the decentralized nature of CPSs does not always allow
having a central server with access to all measurements and data. In a distributed
processing setting, each agent aims to solve a global optimization problem, having
a partial knowledge of it, i.e. its own measurements and the information exchanged
with the neighboring nodes. The DSSE problem can be solved by treating it as a
consensus problem: the objective of each sensor is to reach consensus on the state
of the system [16].
The exchange of information among sensors occurs through a communication
network, which is modeled by means of graph theory. A directed graph G = (V , E)
consists of a set of vertices (or nodes) V = {1,2, . . . , q} with cardinality q (i.e.
the number of sensors) and a set of edges E ⊆ V × V, with the property that
(i, i) ∈ E for all i ∈ V. The set of neighbors Ni of a vertex i ∈ V is the set of
vertices connected to i by an edge, such that N (i) = {j ∈ V|(j, i) ∈ E}. If for each
(j, i) ∈ E , also (i, j) ∈ E , the graph G is undirected, i.e. all edges are bidirectional.
A graph is said to be strongly connected if for every pair of nodes (i, j) there exists
a path of directed edges that goes from i to j [13], in such a way that there are not
disconnected clusters of nodes. Strongly connected graphs and one-hop neighbors
communications are considered here.
The topology (or connectivity) of a weighted graph G is represented by a stochastic
matrix Q ∈ Rq,q. A matrix is said to be stochastic if Qi,j ≥ 0 and qq

j=1 Qi,j = 1: a
stochastic matrix is a non-negative square matrix whose rows sum to unity. The
main properties of a stochastic matrix are that all the eigenvalues λi are in the unit
circle, i.e. |λi| ≤ 1, and Q1 = 1, i.e. 1 is an eigenvector of matrix Q associated
with the Perron-Frobenius eigenvalue |λP F | = 1, also known as leading eigenvalue.
Ordering the eigenvalues by magnitude 1 = |λP F | > |λ2| ≥ · · · ≥ |λq|, the essential
spectral radius of a stochastic matrix Q is defined as esr(Q) = |λ2|, i.e. the second
largest eigenvalue in magnitude.
The matrix Q is said to be adapted to a graph G = (V , E) if Qi,j = 0 for all (j, i) /∈ E .
Consequently, it results that Qi,j > 0 for all (j, i) ∈ E and the value Qi,j represents
the reliability of the information coming from node j to node i. Each row Qi with
i ∈ {1, . . . , q} contains the weights of the links incoming to node i. If Qi,j = Qj,i for
any (i, j), matrix Q is said to be doubly-stochastic, i.e. stochastic and symmetric,
and the corresponding graph G is undirected.
As a simple example, the problem could be to estimate the state x̃ ∈ Rn given
the linear measurements y = Cx̃ + η + a ∈ Rq, such that each node stores its
own scalar measurement yi ∈ R and Ci, i.e. the ith row of matrix C. In this case,
each agent computes a local estimate x(i) ∈ Rn of x̃, which is the only information
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 , N = {1,2,3}, E = {(1,1), (2,1), (3,1), (1,2), (2,3), (3,3)}

Figure 2.1: Example of a simple topology.

that it can share with the neighboring nodes. Denoting the local estimate of
node i ∈ {1, . . . , q} at time k as x(i)(k) ∈ Rn, the goal is to design a distributed
algorithm where each agent updates the local estimate x(i)(k) so that it converges
asymptotically to a global estimate x∗ ∈ Rn of x̃, by means of local computation
and neighboring communication only [13], as graphically shown in Figure 2.2. Each

x(1)(k)

x(2)(k)

x(q)(k)

x∗

Figure 2.2: Consensus of local state estimates.

local estimate x(i)(k) at time k of the ith sensor can be considered as the ith row of
a matrix X(k):

X(k) =


x

(1)
1 (k) x

(1)
2 (k) . . . x(1)

n (k)
x

(2)
1 (k) x

(2)
2 (k) . . . x(2)

n (k)
... ... . . . ...

x
(q)
1 (k) x

(q)
2 (k) . . . x(q)

n (k)

 ∈ Rq,n
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To compute the estimate at iteration k+1, each agent i forms a convex combination
of its current estimate x(i)(k) with the estimates received from the other agents:

X(k + 1) = QX(k) (2.9)
This consensus algorithm can be interpreted as a distributed algorithm:

x(i)(k + 1) =
qØ

j=1
Qi,jx

(j)(k) = Qi,ix
(i)(k) +

Ø
j∈N (i)\{i}

Qi,jx
(j)(k) (2.10)

From [23], the following results are derived.
Definition 2. Consider equation 2.9. The stochastic matrix Q solves the consensus
problem if there exist αi ∈ R, ∀i ∈ {1, . . . , n} such that

lim
k→∞

X(k) = lim
k→∞

QkX(0) = 1[α1 α2 . . . αn] ∈ Rq,n

where 1 ∈ Rq is a vector of ones.
Q solves the average consensus problem if

lim
k→∞

X(k) = 1[α1 α2 . . . αn] with αi = 1
q

qØ
j=1

x
(j)
i (0)

Theorem 1. Let Q be a stochastic matrix, where λ1 = λP F = 1 and λ1 > |λ2| ≥
. . . ≥ |λq|. Then, Q achieves consensus, i.e. solves the consensus problem. If Q is a
doubly-stochastic matrix, then Q achieves average consensus.
Theorem 2. The convergence of the consensus algorithm is exponential and the
convergence rate is determined by the essential spectral radius esr(Q) = |λ2|.
We now focus on solving distributed optimization problems of the form:

min
x∈Rn

f(x) with f(x) =
qØ

i=1
fi(x) (2.11)

where fi : Rn → R, i = {1, . . . , q} are convex functions. The goal of the multi-agent
system is to solve problem 2.11 in a collaborative way [14]. Each fi is assumed
to be known only by the corresponding agent i. The agents aim to solve a global
optimization problem, finding a common solution x∗ = argminx∈Rn

qq
i=1 fi(x), but

each node has only a partial knowledge of the problem, i.e. the respective function
fi [13]. Each agent i has its own local estimate x(i) ∈ Rn that can be shared
based on the topology of the connection graph, represented by the matrix Q. Since
here the problem of interest is the DSSE, the Lasso problem 2.6 (with τ = 1) is
formulated as follows:

min
x∈Rn, a∈Rq

qØ
i=1

51
2

.....yi −
1
C I

2
i

A
x
a

B.....
2

2
+ λ∥a∥1

6
(2.12)

where yi ∈ R is the scalar measurement of sensor i and (C I)i is the ith row of
matrix (C I). A distributed version of the IST algorithm is implemented.
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2.2.1 Distributed Iterative Shrinkage-Thresholding
algorithm

Given matrix C ∈ Rq,n, a k-sparse vector x̃ ∈ Rn (with k ≪ n), and noisy
measurements y = Cx̃ + η, where η ∈ Rq is the measurement noise, the "weighted"
Lasso problem 2.7 is rewritten as a distributed convex optimization problem:

min
x∈Rn

qØ
i=1

51
2∥yi − Cix∥2

2 + ΛT |x|
6

(2.13)

Each node i seeks to recover the sparse vector x̃ from its own scalar measurement
yi and to enforce agreement, i.e. consensus, with the estimates computed by other
sensors in the network [15]. The DIST algorithm is implemented for this purpose.
Compared to the IST, proving the convergence of the DIST algorithm is more
complex. A possible proof is proposed in [24], under some specific assumptions. Each
iteration consists of a gradient and consensus step, and a shrinkage-thresholding
step. In the consensus step, the agent i computes a weighted mean of its neighbors’
states, where the weights are given by the ith row of matrix Q, i.e. algorithm 2.10
is executed. The DIST algorithm’s ease of implementation is counterbalanced by
its slow execution speed, similarly to the IST.

Algorithm 4 DIST
Input: C, Q, y, γ > 0, Λ
Output: x̂(i) = estimate of x̃ by sensor i, ∀i ∈ {1, . . . , q}
Initialization: x(i)(1) ∈ Rn, e.g. x(i)(1) = 0, ∀i ∈ {1, . . . , q}

1: for t = 1, . . . , Tmax do
2: for i = 1, . . . , q do
3: x(i)(t + 1) = SγΛ

5 qq
j=1

Qi,jx
(j)(t) + γCT

i (yi − Cix
(i)(t))

6
4: end for
5: end for
6: x̂(i) = x(i)(Tmax)

where γ ∈ R+ is the learning rate, defined such that γ < ∥C∥−2
2 to guarantee

the convergence to the minimum of the Lasso functional. The value of Tmax is
determined by the chosen stopping criterion.
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2.2.2 Distributed Sparse Observer
As the SSE problem in Section 2.1.2, the DSSE problem can also be stated and
solved in an equivalent dynamic perspective. The aim of each node is to estimate
the current state x(k) and the constant support of the attack vectors, as well as to
reach consensus with the other agents’ estimates, using the last measurement yi(k)
and the current state of the neighboring nodes, weighted by matrix Q components.
This problem can be solved by developing an online version of the DIST algorithm,
here referred to as Distributed Sparse Observer. This algorithm constitutes an
original contribution, not found in the existing literature and developed in this
thesis work. It is inspired by the widely recognized centralized version, here referred
to as Sparse Observer, adapting it to a decentralized setting. This algorithm does
not employ a temporal window of measurements, i.e. τ = 1.

Algorithm 5 Distributed Sparse Observer
Input: A, C, Q, x0, γ > 0, Λ

Output: ẑ(i)(k) =
A

x̂(i)(k)
â(i)(k)

B
= estimate of

A
x(k)
a(k)

B
by sensor i, ∀i ∈ {1, . . . , q}

Initialization: x(1) = x0 ∈ Rn, ẑ(i)(1) = 0 ∈ Rn+q ∀i ∈ {1, . . . , q}, G = (C Iq)
1: for k = 1, . . . , T do
2: x(k + 1) = Ax(k) ← System Dynamics
3: y(k) = Cx(k) + η(k) + a(k)
4: for i = 1, . . . , q do
5: ẑ(i)(k + 1

2) = SγΛ

5 qq
j=1

Qi,j ẑ
(j)(k) + γGT

i (yi(k)−Giẑ
(i)(k))

6
← DIST step

6: â(i)(k + 1) = â(i)(k + 1
2)

7: x̂(i)(k + 1) = Ax̂(i)(k + 1
2) ← State update

8: end for
9: end for

The same considerations done for Algorithm 2 are valid for Algorithm 5: it executes
one DIST step at each time instant k and it exploits the knowledge of the system
dynamics A. At each time instant k, the Lasso problem can be formulated as:

min
x∈Rn, a∈Rq

qØ
i=1

51
2

.....yi(k)−
1
C I

2
i

A
x
a

B.....
2

2
+ ΛT

-----
A

x
a

B-----
6

(2.14)
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Chapter 3

Secure dense state
estimation under sparse
sensor attacks

3.1 Problem definition
In this chapter, a random, synthetic CPS modeled as a discrete-time linear time-
invariant dynamical system is considered:

x(k + 1) = Ax(k)
y(k) = Cx(k) + η(k) + a(k)

(3.1)

where x(k) ∈ Rn, with n = 10, is the system state at time k ∈ N, y(k) ∈ Rq, with
q = 20, are the observed measurements, η(k) ∈ Rq is the random measurement noise
vector, such that η(k) ∼ N (0, σ2), with σ = 10−2, and a(k) ∈ Rq is the attack vector,
defined such that ∥a(k)∥0 ≤ s, with s = 2, and with random uniformly distributed
support set constant over time. Moreover, the random components of the attack
vector are uniformly distributed in the range ai(k) ∈ [−2, −1]∪ [1, 2]. This type of
attack is known as unaware, since it is assumed that the malicious attacker does not
know the value of the sensor measurement yi(k). Initially, time-invariant attacks are
considered, such that ai(k) = ai, ∀k ∈ N. In Section 3.4, time-varying attacks with
a constant random support set are examined. The matrices A ∈ Rn,n, C ∈ Rq,n and
the initial state x0 are generated independently, according to a standard normal
distribution. The system matrix A is then normalized to guarantee stability. The
term dense state estimation derives from the non-sparse nature of the state vector.
Our goal is to compare the performance of the proposed Sparse Observer (Algorithm
2) with that of the state-of-the-art ETPL observer (Algorithm 3) for solving the
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online SSE problem, and to evaluate the distributed version of the observer, named
Distributed Sparse Observer (Algorithm 5).

3.2 Numerical simulations
In this section, the results of the numerical simulations are reported. Each algorithm
is executed for 100 runs, each T = 1000 time steps long. At each time step
k ∈ {1, . . . , T}, an estimate x̂(k) of the real state vector x̃(k), along with an
estimate â(k) of the real attack vector ã(k), are computed. The time evolution of
two metrics is evaluated, averaged over the multiple runs [22]:

• the state estimation error ∥x̃(k)− x̂(k)∥2
∥x̃(k)∥2

;

• the attack support error qq
j=1 |1(ãj(k) /= 0)− 1(âj(k) /= 0)|, where 1(v) = 1 if

v is true and 0 otherwise.

In the distributed case, the ith sensor provides an estimate of the state x̂(i)(k) and
of the attack vector â(i)(k), therefore the metrics are evaluated separately for each
sensor. The performances of the centralized and distributed sparse observers are
strictly related to the choice of the value of the regularization parameters vector
Λ ∈ Rn+qτ components. Therefore, a tuning of these hyperparameters is performed,
before conducting the simulations. Since the state is expected to be non-sparse, the
corresponding first n components of Λ are null, i.e. no regularization is needed for
the state vector. On the other hand, the components corresponding to the attack
vectors must be appropriately chosen. Different λ values are tested and for each of
them, 250 runs are executed, each T = 1000 time steps long. The optimal value
is chosen as the one that provides the smallest mean state estimation error. The
regularization term in problem 2.8 (with τ = 1) becomes:

ΛT

-----
A

x
a

B----- = (0 . . . 0ü ûú ý
∈Rn

λ . . . λü ûú ý
∈Rq

)

----------------



x1
...

xn

a1
...

aq



----------------
= 0 · |x1|+ . . .+0 · |xn|+λ · |a1|+ . . .+λ · |aq|

The same applies to the τ > 1 case.
Furthermore, to improve the rate of attack detection, defined as the number of
times that the support of the attack vector is correctly estimated, which means that
the sensors under attack are identified, the nonzero components of the attack vector
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estimate â(k) below a certain scalar threshold are replaced with zeros. Therefore,
the value of this threshold must also be tuned.

âi(k) =
âi(k) if |âi(k)| > âthres

0 if |âi(k)| ≤ âthres

(3.2)

where âthres ∈ R.

3.2.1 Sparse Observer

The performance of the Sparse Observer is compared with that of the ETPL
observer for three different values of the time window length τ . The learning rate γ
is defined as γ = ∥(O I)∥−2

2 −1 ·10−8, to guarantee the convergence to the minimum
of the Lasso functional. Table 3.1 shows the chosen values, after appropriate tuning,
of the regularization parameter and of the attack estimate threshold for the Sparse
Observer algorithm. Figure 3.1 shows how the regularization parameter λ is chosen
for τ = 1 (the same procedure is used for τ = 2 and τ = 10). As regards the ETPL
algorithm, âthres is set to 0.2 for any τ .
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Figure 3.1: Sparse observer λ tuning for τ = 1.
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Sparse Observer
τ = 1 τ = 2 τ = 10

γ · λ 9 · 10−5 1 · 10−4 2 · 10−5

âthres 0.2 0.2 0.02

Table 3.1: Sparse Observer λ and âthres values for different time window lengths.

The results of the numerical simulations are shown in Figures 3.2, 3.3, 3.4.
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Figure 3.2: Sparse Observer vs ETPL with n = 10, q = 20, s = 2, τ = 1.
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Figure 3.3: Sparse Observer vs ETPL with n = 10, q = 20, s = 2, τ = 2.
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Figure 3.4: Sparse Observer vs ETPL with n = 10, q = 20, s = 2, τ = 10.

Table 3.2 shows the mean value over the T = 1000 time instants of the state
estimation error.

Mean state estimation error
τ = 1 τ = 2 τ = 10

Sparse Observer 0.0384 0.0505 0.0532
ETPL 0.0570 0.0363 0.0261

Table 3.2: Mean state estimation error over time for different time window lengths.

For τ = 1, i.e. considering only the last q measurements y(k) at each time instant
k to produce an online estimate, the Sparse Observer outperforms ETPL in terms
of state estimation error, whereas ETPL converges faster to the correct attack
support, even though both exhibit satisfactory performance in attack detection.
Increasing the time window extension to τ = 2 and to τ = 10, the mean state
estimation error increases for the Sparse Observer, while decreases for ETPL. The
Sparse Observer performance degradation in state estimation for greater τ values is
due to the fact that employing more measurements also means incorporating more
attacks. On the other hand, this behavior does not hold for ETPL, which, on the
contrary, improves the convergence of the state estimate to the real dense state for
growing values of τ , thanks to the intrinsic structure of this observer, which allows
it to take advantage of using more measurements. As regards the attack support
error, the same considerations made for the τ = 1 case can be extended to τ = 2
and τ = 10: ETPL converges faster to the true attack vector, but nonetheless, the
Sparse Observer provides good attack detection performance.
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3.2.2 Distributed Sparse Observer
In this section, the same online SSE problem (with τ = 1) is solved using a
distributed approach, considered more suitable to the intrinsic decentralized archi-
tecture of CPSs. Since distributed methods require the exchange of information
among sensors, a communication network is needed. The connection graph topology
considered here is represented by a doubly-stochastic matrix Q ∈ R20,20, such that
each node i has 9 incoming (and 9 outgoing) edges, including the self-loop, i.e.
each row Qi of matrix Q has 9 nonzero elements, qq

j=1 Qi,j = 1 and Q = QT .
This standard topology matrix is indicated as Q[9] to distinguish it from the other
topologies examined in Section 3.3.
A looser definition of consensus is employed for the estimates provided by the
q = 20 different nodes. At time instant k, each sensor i ∈ {1, . . . , q} computes

ẑ(i)(k) =
A

x̂(i)(k)
â(i)(k)

B
= estimate of

A
x(k)
a(k)

B
(3.3)

The consensus time instant tcons is defined as the time instant k from which the
following two conditions are satisfied:

1. the state estimates x̂(i)(k) ∈ Rn, ∀i ∈ {1, . . . , q} are such that, for each
component j ∈ {1, . . . , n}:

max
i

x̂
(i)
j (k)−min

i
x̂

(i)
j (k) ≤ 5 · 10−2 (3.4)

2. the attack vector estimates â(i)(k), ∀i ∈ {1, . . . , q} have the same support set.
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Figure 3.5: Distributed Sparse observer λ tuning.

The learning rate γ is defined as γ = mini∥(C I)i∥−2
2 − 1 · 10−8, whereas hyperpa-

rameter tuning leads to λ = 1 · 10−6

γ
(Figure 3.5) and âthres = 0.1.

In Figure 3.6, the results of the numerical simulations are illustrated; each line
corresponds to a specific sensor.
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Figure 3.6: Distributed Sparse Observer with n = 10, q = 20, s = 2, standard
topology Q = Q[9]. Each line corresponds to a specific sensor.
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3.3 Topology analysis
In this section, different topologies from the standard one are considered, with the
aim of determining how the topology affects the performance of the distributed
algorithm by varying the number of connections among sensors. The evaluated
topologies are the following, ordered based on the increasing number of connections
per node:

• Q = Q[5], doubly-stochastic matrix such that each node i has 5 incoming
(and 5 outgoing) edges, including the self-loop. Each sensor is connected to 4
different nodes, which correspond to 20% of the total number of sensors.

• Q = Q[9], doubly-stochastic matrix such that each node i has 9 incoming
(and 9 outgoing) edges, including the self-loop (standard topology defined and
employed in Section 3.2.2). Each sensor is connected to 8 different nodes,
which correspond to 40% of the total number of sensors.

• Q = Q[13], doubly-stochastic matrix such that each node i has 13 incoming
(and 13 outgoing) edges, including the self-loop. Each sensor is connected to
12 different nodes, which correspond to 60% of the total number of sensors.

Since in the distributed case each sensor provides its own estimate, the state
estimation error and the attack support error must be averaged twice to obtain a
scalar mean value: first with respect to the T time instants and then with respect
to the number q of sensors. Table 3.3 shows the corresponding results for each
topology Q.

Mean state
estimation error

Mean attack
support error

Q = Q[5] 0.0558 0.0415
Q = Q[9] 0.0532 0.0376
Q = Q[13] 0.0521 0.0363

Table 3.3: Mean state estimation error and mean attack support error over time
and over q = 20 sensors, for each topology.

It follows that, as expected, the mean errors decrease for an increasing number of
connections among agents. In particular, the performance improves more using 9
instead of 5 connections than going from 9 to 13 connections. In fact, the mean
state estimation error decreases by 4.7% from Q[5] to Q[9] and by 2.1% from Q[9] to
Q[13]. Analogously, the mean attack support error diminishes by 9.4% from Q[5] to
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Q[9] and by 3.5% from Q[9] to Q[13]. Figures 3.7 and 3.8 illustrate the results for
Q = Q[5] and Q = Q[13], respectively.
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Figure 3.7: Distributed Sparse Observer with n = 10, q = 20, s = 2, Q = Q[5].
Each line corresponds to a specific sensor.
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Figure 3.8: Distributed Sparse Observer with n = 10, q = 20, s = 2, Q = Q[13].
Each line corresponds to a specific sensor.

To further investigate the performance differences arising from varying the number
of connections among sensor nodes, additional metrics are employed:

• ϕcons represents the fraction of runs that achieve consensus within T = 1000
time instants with respect to the total number of runs.

• tmax
cons denotes the maximum consensus time instant tcons among all the runs.

28



Secure dense state estimation under sparse sensor attacks

• tmean
cons is the mean consensus time instant tcons over all the runs.

• MRAD stands for Mean Rate of Attack Detection and denotes the mean value
over the runs of the rate of attack detection, i.e. the number of times that
the support of the attack vector is correctly estimated after consensus among
nodes estimates is reached.

ϕcons tmax
cons tmean

cons MRAD

(s) (s)
Q = Q[5] 1 568 256.84 744.16
Q = Q[9] 1 491 237.08 763.92
Q = Q[13] 1 482 231.32 769.68

Table 3.4: Distributed Sparse Observer performance comparison between different
topologies.

Firstly, ϕcons = 1 for each topology matrix Q examined, which means that consensus
is achieved within T in all the 100 runs. Then:

• tmax
cons decreases by 13.6% from Q[5] to Q[9] and by 1.8% from Q[9] to Q[13];

• tmean
cons decreases by 7.7% from Q[5] to Q[9] and by 2.4% from Q[9] to Q[13];

• MRAD increases by 2.7% from Q[5] to Q[9] and by 0.8% from Q[9] to Q[13];

The same considerations made for Table 3.3 are valid for Table 3.4. Therefore,
we can conclude that the number of connections given by matrix Q[9], i.e. 8
neighboring nodes for each sensor plus the self-loop, is sufficient to have satisfactory
results, both in terms of estimation and of consensus among agents. In Figure 3.9,
the consensus time instant tcons and the rate of attack detection are represented
as a function of the specific execution to graphically visualize the performance
differences among the three topologies. From these two graphs, it is possible to
notice that the rate of attack detection is complementary to the consensus time
instant with respect to T : once consensus among the estimates computed by the
q agents is reached, the sensors under attack are correctly detected at each time
instant k ∈ {tcons, . . . , T} for each of the 100 executions. The same conclusion can
be derived from the corresponding mean values reported in Table 3.4.
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Figure 3.9: Consensus time instant tcons and rate of attack detection for each run,
topologies comparison.
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3.4 Time-varying attacks
Until now, the malicious attacks in the CPS model 3.1 have been considered as
time-invariant with constant support. In this section, time-varying adversarial
attacks a(k) with constant support are employed, in order to examine the developed
algorithms performance differences with the previous case. In practice, the time-
varying attack vector a(k) is generated by taking the s = 2 nonzero components of
the previously created attack vector ai ∈ [−2, −1] ∪ [1, 2] and adding a different
uniformly distributed random number in the range [−0.3, 0.3] for each time instant
k ∈ {1, . . . , T}. A possible time evolution of the time-varying sensor attacks is
represented in Figure 3.10.
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Figure 3.10: Example of the time evolution of the time-varying sensor attacks.

31



Secure dense state estimation under sparse sensor attacks

3.4.1 Sparse Observer
The Sparse Observer performance in the presence of time-varying attacks is com-
pared with the results obtained in Section 3.2.1 for constant attacks for three
different values of the time window length τ (Figures 3.11, 3.12, 3.13). Moreover,
Table 3.5 illustrates the mean state estimation error of Sparse Observer and ETPL
employing the time-varying attack model. The regularization parameters vector Λ
and the attack estimate threshold âthres maintain the same values illustrated in
Table 3.1.
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Figure 3.11: Sparse Observer, time-invariant vs time-varying attacks with n = 10,
q = 20, s = 2, τ = 1.
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Figure 3.12: Sparse Observer, time-invariant vs time-varying attacks with n = 10,
q = 20, s = 2, τ = 2.
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Figure 3.13: Sparse Observer, time-invariant vs time-varying attacks with n = 10,
q = 20, s = 2, τ = 10.

Mean state estimation error
τ = 1 τ = 2 τ = 10

Sparse Observer 0.0902 0.0932 0.0586
ETPL 0.0570 0.0362 0.0261

Table 3.5: Mean state estimation error over time for different time window lengths
(time-varying attacks case).

In the time-varying attacks case, the ETPL observer outperforms the Sparse
Observer in terms of state estimation error for any value of τ ∈ {1, 2, 10}. In fact,
while the results using ETPL are almost identical in the two attack model cases,
the Sparse Observer is found to be non-robust to non-constant attacks for small
values of τ . In particular, the mean state estimation error increases by 135% for
τ = 1 and by 84.6% for τ = 2, with respect to the values in Table 3.2. On the other
hand, for τ = 10 the mean estimation error increases by just 10.2% with respect
to the constant attacks case. This means that the Sparse Observer becomes more
robust to the presence of time-varying attacks by extending the measurement time
window length.
As regards the attack estimate results, the figures above demonstrate that the
Sparse Observer attack support error presents almost the same trend for the two
types of attacks. To further emphasize this aspect, Figures 3.14, 3.15, 3.16 display
the rate of attack detection as a function of the run, for τ = 1, τ = 2 and τ = 10,
respectively, and Table 3.6 contains the corresponding mean values. The same

33



Secure dense state estimation under sparse sensor attacks

conclusion can be drawn, as the variation of the attacks over time does not affect
the Sparse Observer ability to detect the attacked sensors.

Mean rate of attack detection
τ = 1 τ = 2 τ = 10

Time-invariant attacks 989.80 984.30 981.87
Time-varying attacks 989.75 984.31 981.90

Table 3.6: Mean rate of attack detection over the runs for different time window
lengths, time-invariant vs time-varying attacks (Sparse Observer).
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Figure 3.14: Rate of attack detection for each run with τ = 1, time-invariant vs
time-varying attacks (Sparse Observer).
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Figure 3.15: Rate of attack detection for each run with τ = 2, time-invariant vs
time-varying attacks (Sparse Observer).
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Figure 3.16: Rate of attack detection for each run with τ = 10, time-invariant vs
time-varying attacks (Sparse Observer).
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3.4.2 Distributed Sparse Observer

The Distributed Sparse Observer algorithm is tested with time-varying sensor
attacks for the three different connection topologies Q introduced in Section 3.3.
The results of the numerical simulations are shown in Figures 3.17, 3.18, 3.19. Table
3.7 illustrates the respective mean values, whereas Table 3.8 contains the additional
metrics defined to investigate the consensus performance. The regularization
parameters vector Λ and the attack estimate threshold âthres maintain the same
values illustrated in Section 3.2.2. For any Q, the mean state estimation error

Mean state
estimation error

Mean attack
support error

Q = Q[5] 0.0656 0.0414
Q = Q[9] 0.0632 0.0376
Q = Q[13] 0.0629 0.0363

Table 3.7: Mean state estimation error and mean attack support error over time
and over q = 20 sensors, for each topology (time-varying attacks case).

increases from the time-invariant to the time-varying attacks case: by 17.6% for
Q[5], by 18.8% for Q[9], and by 20.7% for Q[13]. As concerns the mean attack support
error, the values are essentially unchanged. These considerations are graphically
supported by Figures 3.17, 3.18, 3.19.
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Figure 3.17: Distributed Sparse Observer, time-varying attacks with n = 10,
q = 20, s = 2, Q = Q[5]. Each line corresponds to a specific sensor.
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Figure 3.18: Distributed Sparse Observer, time-varying attacks with n = 10,
q = 20, s = 2, Q = Q[9]. Each line corresponds to a specific sensor.
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Figure 3.19: Distributed Sparse Observer, time-varying attacks with n = 10,
q = 20, s = 2, Q = Q[13]. Each line corresponds to a specific sensor.

From Table 3.8, ϕcons = 1 for any topology matrix Q examined, which means that
consensus is achieved within T in all the 100 runs, as in Table 3.4. As regards the
other metrics, they all present worse values with respect to the constant attacks
case:

• tmax
cons increases by 75.4% for Q[5], by 102.9% for Q[9] and by 98.1% for Q[13];

• tmean
cons increases by 76% for Q[5], by 72.8% for Q[9] and by 69.5% for Q[13];

• MRAD decreases by 26.2% for Q[5], by 22.6% for Q[9] and by 20.9% for Q[13];
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ϕcons tmax
cons tmean

cons MRAD

(s) (s)
Q = Q[5] 1 996 451.95 549.05
Q = Q[9] 1 996 409.55 591.45
Q = Q[13] 1 955 392.01 608.99

Table 3.8: Distributed Sparse Observer performance comparison between different
topologies (time-varying attacks case).

In Figure 3.20, the consensus time instant tcons and the rate of attack detection
are represented as a function of the specific execution to graphically visualize the
performance differences among the two different types of attacks for the standard
topology Q = Q[9] (the same trends are observed for the other topologies as well).
Also in the non-constant attacks case, the rate of attack detection is complemen-
tary to the consensus time instant with respect to T : the sensors under attack
are correctly detected at each time instant k ∈ {tcons, . . . , T} for each of the 100
executions. The same conclusion can be derived from the corresponding mean
values reported in Table 3.8.
However, it is possible to notice that the mean rate of attack detection decline
from the time-invariant to the time-varying attacks case, clearly evident in Table
3.9, is a direct consequence of the growth of tmean

cons , since the rate of attack detec-
tion is computed once consensus is reached. If partial consensus time instant is
considered, i.e. the time instant k from which only the second of the two consensus
conditions defined in Section 3.2.2, the one relative to attacks, is verified, then
the performances are similar for the two considered cases, as illustrated in Figure
3.21. This consideration is consistent with the behavior of the attack support error,
which, as previously said, assumes almost the same values in the two cases.

MRAD
Q = Q[5] Q = Q[9] Q = Q[13]

Time-invariant attacks 744.16 763.92 769.68
Time-varying attacks 549.05 591.45 608.99

Table 3.9: Mean rate of attack detection for different topologies, time-invariant
vs time-varying attacks (Distributed Sparse Observer).
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Figure 3.20: Consensus time instant tcons and rate of attack detection for each
run with Q = Q[9], time-invariant vs time-varying attacks.
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Figure 3.21: Rate of attack detection computed from partial consensus time
instant for each run with Q = Q[9], time-invariant vs time-varying attacks.
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3.5 Hyperparameters variations
In the previous sections, numerical simulations have been executed with system
state dimension n = 10, q = 20 sensors, and s = 2 sensor attacks. In this section,
new numerical simulations are performed using different values of n, q, and s, to test
the algorithms in different configurations. Three experiments are conducted, and for
each n, q, s setting, the algorithms are executed for 100 runs, each T = 1000 time
steps long. The performance is evaluated considering the mean state estimation
error and the mean attack support error for each setting.
In the first experiment, n = 10 and q = 20 are fixed, while the number of sensors
under attack s varies in the range [1, 6]. In Figures 3.22, 3.23 are illustrated the
corresponding results. As regards the Distributed Sparse Observer, Table 3.10
contains the values of the additional metrics defined to further investigate consensus
performance. Figures 3.24, 3.25 show the Distributed Sparse Observer results for
s = 1 and s = 6, respectively. The regularization parameters vector Λ and the
attack estimate threshold âthres maintain the same values illustrated in Section 3.2.
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Figure 3.22: Mean state estimation error for different values of s.
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Figure 3.23: Mean attack support error for different values of s.

ϕcons tmax
cons tmean

cons MRAD

(s) (s)
s = 1 1 422 138.82 978.84
s = 2 1 491 237.08 976.76
s = 3 1 490 291.69 974.45
s = 4 1 479 329.81 972.96
s = 5 1 516 336.87 971.94
s = 6 1 495 367.62 971.55

Table 3.10: Distributed Sparse Observer performance comparison between different
values of s.

As expected, both the mean state estimation error and the mean attack support
error increase for greater values of s since more measurements are corrupted by
adversarial attacks. For the Distributed Sparse Observer, it results that ϕcons = 1
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for each value of s examined, which means that consensus is achieved within T in
all the 100 runs. The mean consensus time instant tmean

cons gradually increases for
greater s values, whereas the mean rate of attack detection, computed from the
partial consensus time instant, is nearly the same in all the cases.
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Figure 3.24: Distributed Sparse Observer with n = 10, q = 20, s = 1, Q = Q[9].
Each line corresponds to a specific sensor.
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Figure 3.25: Distributed Sparse Observer with n = 10, q = 20, s = 6, Q = Q[9].
Each line corresponds to a specific sensor.
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In the second experiment, n = 10 and s = 2 are fixed, while the total number
of sensors q varies in the range [15, 45], in steps of 5. In Figures 3.26, 3.27 are
illustrated the corresponding results. As regards the Distributed Sparse Observer,
Table 3.11 contains the values of the additional metrics defined to further investigate
consensus performance. Figures 3.28, 3.29 show the Distributed Sparse Observer
results for q = 15 and q = 45, respectively. For q = 20, the considered connection
topology is the standard one Q = Q[9], defined in Section 3.2.2. For the other
cases, equivalent connection matrices are employed, i.e. doubly-stochastic matrices
such that each node is connected to a number of agents equal to 40% of the total
number of nodes. The regularization parameters vector Λ maintain the same values
illustrated in Section 3.2, while the attack estimate threshold âthres is gradually
reduced for increasing values of q.
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Figure 3.26: Mean state estimation error for different values of q.
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Figure 3.27: Mean attack support error for different values of q.

ϕcons tmax
cons tmean

cons MRAD

(s) (s)
q = 15 1 357 224.92 978.83
q = 20 1 491 237.08 976.76
q = 25 1 474 305.22 980.92
q = 30 1 776 407.84 970.95
q = 35 1 675 434.98 983.08
q = 40 0.99 996 526.78 978.64
q = 45 0.98 885 532.59 978.03

Table 3.11: Distributed Sparse Observer performance comparison between different
values of q.

Overall, the mean state estimation error decreases for greater values of q since more
measurements are available to the FC for the centralized algorithms. On the other
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hand, in the distributed case, each node has access to its own scalar measurements
besides the estimates exchanged with neighboring nodes, which is the only term
whose dimension depends on q. The mean attack support error does not exhibit a
well-defined trend as q varies, for the various algorithms. As regards the Distributed
Sparse Observer, from Table 3.11, it follows that the consensus performance in
terms of ϕcons, tmax

cons and tmean
cons tends to deteriorate for increasing values of q. This

derives from the fact that consensus among estimates must be reached by a greater
number of sensors. The mean rate of attack detection, computed from the partial
consensus time instant, is nearly the same in all the cases.
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Figure 3.28: Distributed Sparse Observer with n = 10, q = 15, s = 2. Each line
corresponds to a specific sensor.
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Figure 3.29: Distributed Sparse Observer with n = 10, q = 45, s = 2. Each line
corresponds to a specific sensor.
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In the last experiment, the default values of the hyperparameters are doubled, such
that n = 20, q = 40, and s = 4. Table 3.13 shows the results in terms of mean
state estimation error and mean attack support error for each algorithm in the
standard and doubled configurations. The regularization parameter and the attack
estimate threshold values are further tuned, and the chosen values are shown in
Table 3.12. As regards the ETPL algorithm, âthres is set to 0.4 for any τ .

Sparse Observer Distributed Sparse Observer
τ = 1 τ = 2 τ = 10

γ · λ 7 · 10−4 5 · 10−4 9 · 10−5 1 · 10−7

âthres 0.5 0.4 0.1 0.25

Table 3.12: λ and âthres values for n = 20, q = 40, s = 4.

Mean state estimation error Mean attack support error
n = 10,

q = 20, s = 2
n = 20,

q = 40, s = 4
n = 10,

q = 20, s = 2
n = 20,

q = 40, s = 4

Sparse
O

bserver

τ = 1 0.0384 0.1033 0.0164 0.2133
τ = 2 0.0505 0.1293 0.0275 0.3877
τ = 10 0.0532 0.2374 0.0339 0.5957

ET
PL

τ = 1 0.0570 0.0309 0.0026 0.0022
τ = 2 0.0363 0.0213 0.0195 0.0493
τ = 10 0.0261 0.0154 0.0192 0.0364

D
istributed
Sparse

O
bserver

0.0532 0.1671 0.0376 0.6247

Table 3.13: Mean state estimation error and mean attack support error comparison
between standard and doubled settings.
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From Table 3.13, it results that the mean state estimation error and the mean
attack support error values increase considerably for both the centralized and
distributed versions of the Sparse Observer. On the other hand, the mean state
estimation error decreases for ETPL, which exploits the assumption of knowing
a tight upper bound on the number of sensors under attack. Table 3.14 contains
further results about the Distributed Sparse Observer. The consensus performance
in the new setting is much worse compared to the standard configuration, as not
only does consensus among estimates need to be reached by twice the number of
sensors, but also the number of components of the state to be estimated double.
In Figure 3.30 are illustrated the Distributed Sparse Observer results for n = 20,
q = 40, s = 4.

ϕcons tmax
cons tmean

cons MRAD

(s) (s)
n = 10, q = 20, s = 2 1 491 237.08 976.76
n = 20, q = 40, s = 4 0.79 999 849.30 790.25

Table 3.14: Distributed Sparse Observer performance comparison between stan-
dard and doubled settings.
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Figure 3.30: Distributed Sparse Observer with n = 20, q = 40, s = 4. Each line
corresponds to a specific sensor.
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Chapter 4

Real-world application:
localization problem

4.1 Introduction to localization
Localization consists in estimating the position of a target. In recent years, much
attention has been devoted to the development of indoor localization services,
taking advantage of the evolution of Wireless Sensor Networks (WSNs) [25]. A
WSN is a network of microprocessors equipped with sensors that can be exploited
for localization tasks in indoor environments or in outdoor adverse conditions
where global positioning system (GPS) is not suitable due to high hardware costs
or environmental conditions. The potential applications of WSNs are numerous:
object tracking, traffic monitoring, measuring radiation levels, detecting seismic
activities, location detection of products in warehouses or of medical personnel and
equipment in hospitals [26], [27].
Indoor localization can be accomplished by measuring the Received Signal Strength
(RSS), i.e. the power transmitted by the target. Two different approaches are
possible: distance-prediction based or fingerprinting based. Distance-prediction
based systems estimate the position of the target by calculating its distances from at
least three reference points using a known radio propagation model [28]. The main
disadvantage of this method is that it suffers from multi-path and refraction effects
due to the presence of obstacles, possibly moving [25]. Fingerprinting methods are
employed to overcome these inaccuracy issues. They consist in creating a signature
map in order to represent the physical space by capturing the variations of the
dynamic nature of indoor radio propagation [28].
Here we focus on RSS-fingerprinting methods for indoor localization. These
techniques rely on the strength attenuation of radio signals during propagation,
which consequently can be used to determine the distance of the target broadcasting
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the signal [29]. The RSS at distance d is commonly modeled as [30]:

Pr(d) = Pt − PL(d0)− 10n log10

1 d

d0

2
− ησ (4.1)

where Pr(d) is the receiving power at distance d in dBm (decibel-milliwatts), Pt

is the transmitting power and PL(d0) is the average of the path loss value mea-
surements at a reference distance d0 (usually, d0 = 1 m). The constant n, known
as attenuation coefficient, depends on the transmission medium, e.g. indoor/out-
door environment, and ranges typically from 2 to 4. ησ is a zero-mean Gaussian
distributed random noise with standard deviation σ.
The WSN, composed of q sensors, is randomly deployed in the room where lo-
calization of the target has to be performed. A rectangular room is considered,
whose area is divided into p cells. In this setting, localization of the target means
detecting the cell occupied by the device. The number of cells p represents a
trade-off between localization accuracy and complexity. The higher is p, the more
accurate is the localization, since the cells have a smaller size, at the cost of greater
storage and time requirements and increased problem complexity.
RSS-fingerprinting methods generally consist of two phases: the training (or off-line)
phase and the runtime (or on-line) phase. Given a target and a WSN, during the
training phase a signature map or dictionary is created: the target is placed in turn
in each cell, e.g. in the center of the cell, and broadcasts a signal. Each of the q
sensors measures and stores the corresponding RSS values. Therefore, each sensor
i builds its own dictionary, represented by the vector Di = (Di,1, . . . , Di,p)T ∈ Rp.
Globally, the WSN builds a dictionary D ∈ Rq,p, such that the component Di,j is
the RSS-measurement acquired by the ith sensor when the device is in cell j.

D =


D1,1 D1,2 . . . D1,p

D2,1 D2,2 . . . D2,p
... ... . . . ...

Dq,1 Dq,2 . . . Dq,p

 ∈ Rq,p (4.2)

Due to the presence of noise, both in the signal transmission and caused by stable
or moving obstacles in the localization area, each sensor i can take multiple RSS-
measurements for the same cell, since redundancy helps to enhance the probability
of accurate localization [25]. Here, for the sake of simplicity, a single acquisition is
considered for each cell.
During the runtime phase, the actual localization is performed by exploiting the
dictionary built during the training step. The moving target broadcasts a signal,
and each sensor measures the RSS value, such that the ith sensor acquires only one
measurement yi ∈ R. The online measurements are compared with the fingerprints
obtained during the offline phase to perform localization.
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The training phase, which is typical of fingerprinting methods, has the advantage
of increasing the accuracy of the localization performed during the online phase.
On the other hand, dictionary construction is time consuming and, moreover, each
sensor has to store and exchange a large amount of data. To address these issues,
the localization task can be reformulated as a sparse approximation problem [30]
and, since RSS is additive, more than one target can be localized. Given j ≥ 1
targets moving in a room, the positions of the targets are represented by a vector
of length p such that only j entries are non-zero, the ones corresponding to the
occupied cells. Since the devices to track are usually few compared to the number
of cells, the position vector is j-sparse. Compressive sensing theory is helpful to
solve this type of problem, since it involves an underdetermined linear system under
sparsity constraints [25], [28], [30].

4.1.1 Distributed localization
Once the training phase is completed and dictionary D is given, two possible
settings can be employed for the runtime phase:

• Centralized setting: the sensors convey their data to a centralized fusion center,
which runs the localization algorithm. The FC stores the global dictionary D
and the runtime measurements (y1, ..., yq)T ∈ Rq acquired by the sensors.

• Distributed setting: each sensor stores its runtime measurement yi ∈ R and
its own dictionary Di ∈ Rp (ith row of D) and does not share them. Moreover,
each agent i has its own local estimate x̂(i) ∈ Rp and shares it with the
neighboring nodes it is connected to. The connection topology is represented
by a stochastic matrix Q.

The advantages of the distributed approach over the centralized one have been
discussed in Section 1.3. In the next sections, we focus on solving a localization
problem using the distributed version of the Sparse Observer, implemented in
Section 2.2.2.
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4.2 Problem definition
A localization problem where j targets move in a square room, discretized in
p = 100 square cells, is examined. It is assumed that the square room has a 10 m
side, and therefore each cell has a side of 1 m and an area of 1 m2. The WSN
is composed of q = 25 sensors randomly deployed in the room. The dictionary
D ∈ Rq,p is considered given, i.e. the training phase has already been completed,
and we focus on the runtime phase. The CPS can be modeled as a discrete-time
linear time-invariant dynamical system:

x(k + 1) = Ax(k)
y(k) = Dx(k) + η(k) + a(k)

(4.3)

where x(k) ∈ {0, 1}p represents the current positions of the targets, such that
if xi(k) = 1, one of the targets is placed in the cell i at time k ∈ N, y(k) ∈ Rq

are the acquired RSS-measurements, η(k) ∈ Rq is the random measurement noise
vector, such that η(k) ∼ N (0, σ2), with σ = 10−2, and a(k) ∈ Rq is the attack
vector, defined such that ∥a(k)∥0 ≤ s, with s = 2, and with random uniformly
distributed support set constant over time. Moreover, the attack vector components
are defined as ai(k) = ai = 30, ∀k ∈ N, therefore unaware time-invariant attacks are
considered. In Section 4.5, time-varying attacks with a constant random support set
are examined. The initial state x0 ∈ {0, 1}p is generated with uniformly distributed
random support.
From this setting, it follows that the localization problem can be cast into a
Lasso problem, exploiting the sparsity of the state vector x(k), since only j ≪ p
components of the state are nonzero. In the absence of malicious sensor attacks, at
each time instant k the Lasso problem can be formulated as:

min
x∈Rp

1
2∥y(k)−Dx∥2

2 + ΛT |x| = min
x∈Rp

qØ
i=1

51
2∥yi(k)−Dix∥2

2 + ΛT |x|
6

(4.4)

where Λ ∈ Rp is the regularization parameters vector. Analogously, in the presence
of s-sparse sensor attacks:

min
x∈Rp, a∈Rq

qØ
i=1

51
2

.....yi(k)−
1
D I

2
i

A
x
a

B.....
2

2
+ ΛT

-----
A

x
a

B-----
6

(4.5)

where (D I)i is the ith row of matrix (D I), I ∈ Rq,q is the identity matrix and
Λ ∈ Rp+q.
Our goal is to employ the distributed version of the observer, named Distributed
Sparse Observer (Algorithm 5), to solve this localization problem and evaluate its
performance, in the presence of adversarial attacks on s = 2 sensors.
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4.3 Numerical simulations
In this section, the results of the numerical simulations are reported. The Dis-
tributed Sparse Observer algorithm is executed for 100 runs, each T = 1000 time
steps long. At each time step k ∈ {1, . . . , T}, an estimate x̂(i)(k) of the real state
vector x̃(k), along with an estimate â(i)(k) of the real attack vector ã(k), are
computed by each sensor i ∈ {1, . . . , q}. Since in this case the state is not dense
and the relevant information is the state vector support, which determines in which
cells the targets are present, the time evolution of the following metrics is evaluated,
averaged over the multiple runs:

• the state support error qp
j=1 |1(x̃j(k) /= 0)− 1(x̂j(k) /= 0)|, where 1(v) = 1 if

v is true and 0 otherwise;

• the mean Euclidean distance between the real and estimated positions of the
targets in the square room over the j targets;

• the attack support error qq
j=1 |1(ãj(k) /= 0)− 1(âj(k) /= 0)|.

The state support error metric is useful since it indicates if the cell currently
occupied by the target is correctly detected. On the other hand, if the cell is
not properly estimated, it provides no information about the distance between
the estimated target position and the correct one. For this reason, the Euclidean
distance metric is introduced. In particular, it is supposed that each target occupies
the center of its respective cell, which corresponds to a pair of coordinates in space.
Defining the origin of the reference system allows the computation of the Euclidean
distance of each estimated target position from the closest real target that is not
already correctly estimated in the specific time instant k. Figure 4.1 provides
an example of how the Euclidean distance is computed with j = 4 targets. The
regularization parameters vector Λ ∈ Rp+q is defined as:

ΛT

-----
A

x
a

B----- = (λx . . . λxü ûú ý
∈Rp

λa . . . λaü ûú ý
∈Rq

)

----------------



x1
...

xp

a1
...

aq



----------------
=

= λx · |x1|+ . . . + λx · |xp|+ λa · |a1|+ . . . + λa · |aq|

Before executing the simulations, a tuning of the components of vector Λ is
performed. Initially, sensor attacks are not taken into account, i.e. the attack-free
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localization problem is solved. Different λx values are tested and for each of them,
250 runs are executed, each T = 1000 time steps long. The optimal value is chosen
as the one that provides the smallest mean consensus time instant. Then, s = 2
sensor attacks are introduced: different λa values are tested, keeping λx fixed at
the value obtained from the previous tuning, and for each of them, 250 runs are
executed, each T = 1000 time steps long. The optimal value is chosen as the
one that provides the highest mean rate of attack detection or, equivalently, the
smallest mean consensus time instant for the attack estimates.
Moreover, as done is Section 3.2, a threshold âthres below which the components
of the estimated attack vector are considered null is defined. Lastly, since the
state estimate is expected to be j-sparse, only the j largest components of x̂(i)(k),
∀i ∈ {1, . . . , q} and ∀k ∈ N, are considered, setting to zero all the others.
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Figure 4.1: Example of Euclidean distance computation with j = 4 targets and
p = 100 cells.
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4.3.1 Localization with sensor attacks
The performance of the Distributed Sparse Observer is assessed for solving the
localization problem with s = 2 sensor attacks, in the presence of either j = 2 or
j = 4 moving targets. The connection graph standard topology considered here is
represented by a stochastic matrix Q ∈ R25,25, such that node i has 11 incoming
edges, including the self-loop, i.e. each row Qi of matrix Q has 11 nonzero elements
and qq

j=1 Qi,j = 1. This standard topology is indicated as Q[11] to distinguish it
from the other topologies examined in Section 4.4. Differently from Section 3.3,
here we do not consider doubly-stochastic topology matrices in order to address a
more general case.
A looser definition of consensus is employed for the estimates provided by the
q = 25 different nodes. At time instant k, each sensor i ∈ {1, . . . , q} computes

ẑ(i)(k) =
A

x̂(i)(k)
â(i)(k)

B
= estimate of

A
x(k)
a(k)

B
(4.6)

The consensus time instant tcons is defined as the time instant k from which the
following two conditions are satisfied:

1. the state vector estimates x̂(i)(k), ∀i ∈ {1, . . . , q} have the same support set;

2. the attack vector estimates â(i)(k), ∀i ∈ {1, . . . , q} have the same support set.

The learning rate γ is defined as γ = mini∥(D I)i∥2
2 − 1 · 10−8, whereas hyperpa-

rameter tuning leads to the values in Table 4.1. Figures 4.2, 4.3 show how the
regularization parameters λx and λa are chosen for j = 2 (the same procedure is
used for j = 4).

Distributed Sparse Observer
j = 2 j = 4

γ · λx 1 · 10−6 5 · 10−7

γ · λa 8 · 10−4 8 · 10−4

âthres 0.1 0.1

Table 4.1: Distributed Sparse Observer λx, λa and âthres values for each number
of targets.

The results of the numerical simulations are shown in Figures 4.4, 4.5, where each
line corresponds to a specific sensor. To properly compare the performance of the
algorithm, the same attack a(k) and noise η(k) vectors are used in the two cases.
The initial condition x0, originally generated for j = 2 targets, is extended for the
j = 4 case to have a total of 4 nonzero components.
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Figure 4.2: Distributed Sparse observer λx tuning for j = 2.
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Figure 4.3: Distributed Sparse observer λa tuning for j = 2.
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Figure 4.4: Distributed Sparse Observer with p = 100, q = 25, s = 2, j = 2,
standard topology Q = Q[11]. Each line corresponds to a specific sensor.

Table 4.2 contains the values of the state support error, the mean Euclidean distance
and the attack support error averaged over the T time instants and the q sensors.
As expected, the value of the mean state support error is lower for the j = 2 targets

Mean state
support error

Mean Euclidean
distance

Mean attack
support error

j = 2 0.3016 35.4444 0.0425
j = 4 0.7145 37.7622 0.0425

Table 4.2: State support error, mean Euclidean distance and attack support error
averaged over time and over q = 25 sensors, for each number of targets.

case with respect to the j = 4 case. In particular, by doubling the number of
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Figure 4.5: Distributed Sparse Observer with p = 100, q = 25, s = 2, j = 4,
standard topology Q = Q[11]. Each line corresponds to a specific sensor.

targets, the mean state support error increases by 137%. On the other hand, the
mean Euclidean distance increases only by 6.54%. From these results, it follows
that the error in detecting the correct cell occupied by the targets increases with
the number of targets, while the distance in space between the estimated positions
and the real ones remains relatively constant. As regards the attack support error,
the mean value is the same in both cases, leading to the conclusion that the number
of targets to track does not influence this metric. Table 4.3 shows the values of the
additional metrics defined in Section 3.3, plus the Mean Rate of Position Detection
(MRPD), which denotes the mean value over the runs of the rate of position
detection, i.e. the number of times that the support of the state vector is correctly
estimated after consensus among nodes estimates is reached. From Figure 4.6 it is
clear that the rate of position detection is complementary to the consensus time
instant with respect to T . Therefore, once consensus among the nodes’ estimates
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is achieved, the positions of the targets are correctly detected at each time instant
k ∈ {tcons, . . . , T} for each of the 100 executions. The same consideration applies
to the rate of attack detection, which means that the corresponding plot coincides
with the rate of position detection one and, for this reason, it is not reported here.
As a consequence, the MRPD and MRAD values, computed after consensus is
reached, coincide. To provide more informative data, in Table 4.3 the MRAD
values are computed from the partial consensus time instant, i.e. the time instant
k from which only the second consensus condition, the one relative to attacks, is
verified.

ϕcons tmax
cons tmean

cons MRPD MRAD

(s) (s)
j = 2 1 996 451.74 549.26 972.07
j = 4 1 998 596.24 404.76 972.00

Table 4.3: Distributed Sparse Observer performance comparison between j = 2
and j = 4 targets.

Firstly, ϕcons = 1 for each number of targets j examined, which means that
consensus is achieved within T in all the 100 runs, and the maximum consensus
time instant tmax

cons is nearly the same in both cases. Then:

• tmean
cons increases by 32% from j = 2 to j = 4 targets;

• MRPD decreases by 26% from j = 2 to j = 4 targets.

Lastly, MRAD computed from the partial consensus time instant is approximately
the same for the two cases. It is possible to conclude that the number of targets to
localize influences the performance of the Distributed Sparse Observer algorithm in
terms of consensus time instant and, consequently, position detection. In particular,
the sensors require more time to reach a consensus among the state estimates for a
greater number of targets. On the other hand, the mean rate of attack detection
does not depend on the number of targets, consistently with the attack support
error performance. This conclusion is graphically supported by Figure 4.7, which
shows the MRAD computed from the partial consensus time instant as a function
of the execution.
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Figure 4.6: Consensus time instant tcons and rate of position detection for each
run with Q = Q[11], j = 2 vs j = 4 targets.
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Figure 4.7: Rate of attack detection computed from partial consensus time instant
for each run with Q = Q[11], j = 2 vs j = 4 targets.
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4.4 Topology analysis
In this section, different topologies from the standard one are considered, with the
aim of determining how the topology affects the performance of the Distributed
Sparse Observer algorithm for solving the localization problem by varying the
number of connections among sensors. The case with j = 4 targets is considered
here (the same trends are observed for the j = 2 case as well). The evaluated
topologies are the following, ordered based on the increasing number of connections
per node:

• Q = Q[6], stochastic matrix such that each node i has 6 incoming edges,
including the self-loop. Each sensor receives information from 5 different
nodes, which corresponds to 20% of the total number of sensors.

• Q = Q[11], stochastic matrix such that each node i has 11 incoming edges, in-
cluding the self-loop (standard topology defined and employed in Section 4.3.1).
Each sensor receives information from 10 different nodes, which corresponds
to 40% of the total number of sensors.

• Q = Q[16], stochastic matrix such that each node i has 16 incoming edges,
including the self-loop. Each sensor receives information from 15 different
nodes, which corresponds to 60% of the total number of sensors.

Table 4.4 contains the values of the state support error, the mean Euclidean distance
and the attack support error averaged over the T time instants and the q sensors,
for each topology Q.

Mean state
support error

Mean Euclidean
distance

Mean attack
support error

Q = Q[6] 0.7054 36.9628 0.0541
Q = Q[11] 0.7145 37.7622 0.0425
Q = Q[16] 0.7017 36.9876 0.0413

Table 4.4: State support error, mean Euclidean distance and attack support error
averaged over time and over q = 25 sensors for each topology, with j = 4 targets.

Figures 4.8 and 4.9 illustrate the results for Q = Q[6] and Q = Q[16], respectively.
Table 4.5 contains the additional metrics defined to investigate the consensus
performance. As in Table 4.3, MRAD is computed from the partial consensus time
instant onward.
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Figure 4.8: Distributed Sparse Observer with p = 100, q = 25, s = 2, j = 4,
Q = Q[6]. Each line corresponds to a specific sensor.

From Table 4.4, it is possible to notice that the mean attack support error decreases
by 21.4% from Q[6] to Q[11] and only by 2.8% from Q[11] to Q[16]. On the other
hand, the mean state support error and the mean Euclidean distance seem to
exhibit an unexpected trend. In particular, the mean state support error increases
by 1.29% from Q[6] to Q[11] and, as regards the Euclidean distance, topology Q[6]

provides a lower value than that obtained with Q[16]. Actually, these results provide
only a partial view, and it is necessary to further analyze the performance of the
different topologies with the metrics in Table 4.5. With the topology matrix Q[6],
it results that ϕcons = 0.98, which means that consensus is not achieved within
T = 1000 time instants in 2 out of the 100 executions. Specifically, consensus is
not reached since the first of the two consensus conditions defined in Section 4.3.1,
the one involving the state estimates, is not satisfied. For the other two topologies,
ϕcons = 1.
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Figure 4.9: Distributed Sparse Observer with p = 100, q = 25, s = 2, j = 4,
Q = Q[16]. Each line corresponds to a specific sensor.

ϕcons tmax
cons tmean

cons MRPD MRAD

(s) (s)
Q = Q[6] 0.98 997 625.13 375.86 961.73
Q = Q[11] 1 998 596.24 404.76 972.00
Q = Q[16] 1 998 581.79 419.21 974.22

Table 4.5: Distributed Sparse Observer performance comparison between different
topologies, with j = 4 targets.
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Moreover, the maximum consensus time instant tmax
cons is practically the same for

the three different topology matrices. As regards the other metrics:

• tmean
cons decreases by 4.62% from Q[6] to Q[11] and by 2.42% from Q[11] to Q[16];

• MRPD increases by 7.69% from Q[6] to Q[11] and by 3.57% from Q[11] to Q[16];

• MRAD increases by 1.07% from Q[6] to Q[11] and by 0.23% from Q[11] to Q[16];

Figure 4.10 represents the rate of attack detection computed from the partial
consensus time instant. Figure 4.11 shows the consensus time instant and the rate
of position detection with respect to the specific run. The "x" marks indicate that
consensus has not been reached in that particular run. Also for topologies Q[6] and
Q[16], the rate of position detection is complementary to the consensus time instant
with respect to T .
Overall, topology Q[6] exhibits poor performance, whereas the addition of 5 con-
nections from Q[11] to Q[16] does not determine a significant improvement in the
values of the considered metrics. Therefore, we can conclude that the number of
connections given by matrix Q[11], i.e. 10 incoming edges for each sensor plus the
self-loop, is sufficient to have satisfactory results, both in terms of estimation and
of consensus among agents.
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Figure 4.10: Rate of attack detection computed from partial consensus time
instant for each run, topologies comparison.
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Figure 4.11: Consensus time instant tcons and rate of position detection for each
run, topologies comparison.

67



Real-world application: localization problem

4.5 Time-varying attacks
Until now, the malicious attacks in the CPS model 4.3 have been considered as time-
invariant with constant support. In this section, time-varying adversarial attacks
a(k) with constant support are employed, in order to examine the Distributed
Sparse Observer algorithm performance differences with the previous case. In
practice, the time-varying attack vector a(k) is generated by taking the support
of the previously created attack vector and defining each of the s = 2 nonzero
components ai(k) as a uniformly distributed random number in the range [25, 35],
for each time instant k ∈ {1, . . . , T}. A possible time evolution of one of the s = 2
nonzero components of the time-varying sensor attacks is represented in Figure
4.12 (for clarity, only the first 200 time steps are displayed). The other nonzero
component follows an equivalent trend.
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Figure 4.12: Example of the time evolution of one nonzero component of the
time-varying sensor attacks (first 200 time steps).
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4.5.1 Localization with sensor attacks
The Distributed Sparse Observer algorithm is tested for solving the localization
problem with j = 4 targets with time-varying sensor attacks for the three different
connection topologies Q introduced in Section 4.4. The results of the numerical
simulations are shown in Figures 4.13, 4.14, 4.15. Table 4.6 illustrates the respective
mean values, whereas Table 4.7 contains the additional metrics defined to investigate
the consensus performance. The regularization parameters vector Λ and the attack
estimate threshold âthres maintain the same values illustrated in Section 4.3.1.
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Figure 4.13: Distributed Sparse Observer, time-varying attacks with p = 100,
q = 25, s = 2, j = 4, Q = Q[6]. Each line corresponds to a specific sensor.
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Figure 4.14: Distributed Sparse Observer, time-varying attacks with p = 100,
q = 25, s = 2, j = 4, Q = Q[11]. Each line corresponds to a specific sensor.

Mean state
support error

Mean Euclidean
distance

Mean attack
support error

Q = Q[6] 0.7131 37.3849 0.0541
Q = Q[11] 0.7195 38.0911 0.0424
Q = Q[16] 0.7092 37.3670 0.0414

Table 4.6: State support error, mean Euclidean distance and attack support error
averaged over time and over q = 25 sensors for each topology, with j = 4 targets
(time-varying attacks case).

For any Q, the mean state estimation error and the mean Euclidean distance
increase slightly, approximately by 1%, from the time-invariant to the time-varying
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Figure 4.15: Distributed Sparse Observer, time-varying attacks with p = 100,
q = 25, s = 2, j = 4, Q = Q[16]. Each line corresponds to a specific sensor.

attacks case. As regards the mean attack support error, the values are essentially
unchanged. In this case too, a more in-depth analysis is needed.

ϕcons tmax
cons tmean

cons MRPD MRAD

(s) (s)
Q = Q[6] 1 997 680.89 320.11 961.83
Q = Q[11] 0.99 998 635.45 365.55 972.03
Q = Q[16] 0.98 998 617.43 383.57 974.10

Table 4.7: Distributed Sparse Observer performance comparison between different
topologies, with j = 4 targets (time-varying attacks case).
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From Table 4.7, tmax
cons exhibits the same values as in the constant attacks case for

any Q. As regards the other metrics:

• ϕcons increases from 0.98 to 1 for Q[6], while decreases from 1 to 0.99 for Q[11]

and from 1 to 0.98 for Q[16];

• tmean
cons increases by 8.92% for Q[6], by 6.58% for Q[11] and by 6.13% for Q[16];

• MRPD decreases by 14.83% for Q[6], by 9.69% for Q[11] and by 8.5% for Q[16];

The mean rate of attack detection is essentially unchanged with respect to the
time-invariant attacks case, as previously noted for the mean attack support
error. Overall, increasing the number of connections results in less degradation of
performance with respect to the constant attacks case, in terms of consensus time
instant and position detection. On the other hand, it is possible that consensus is
not reached in some of the executions, 1% for Q[11] and 2% for Q[16]. A possible
solution could be to impose more restrictive assumptions on the topology matrices,
e.g. the use of doubly-stochastic matrices, such that the number of outgoing edges
is equal to that of incoming edges, for each node.
In Figure 4.16, the consensus time instant tcons and the rate of position detection
are represented as a function of the specific execution to graphically visualize the
performance differences among the two types of attacks for the standard topology
Q = Q[11] (the same trends are observed for the other topologies as well). The "x"
marks indicate that consensus has not been reached in that particular run. Also in
this case, the rate of position detection is complementary to the consensus time
instant with respect to T . Figure 4.17 shows the rate of attack detection computed
from the partial consensus time instant.
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Figure 4.16: Consensus time instant tcons and rate of position detection for each
run with Q = Q[11], time-invariant vs time-varying attacks..
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Figure 4.17: Rate of attack detection computed from partial consensus time
instant for each run with Q = Q[11], time-invariant vs time-varying attacks..
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Chapter 5

Conclusions

In this work, we have first defined the secure state estimation problem from a
mathematical perspective, and we have analyzed it on the basis of the existing liter-
ature. Subsequently, various algorithms have been compared to solve an illustrative
example, with the aim of estimating the non-sparse state of a simulated, random
CPS. A Luenberger-like observer, named Sparse Observer, has been implemented
using the IST algorithm, whose convergence has been deeply studied and proven
in literature. Sparse Observer performance has been compared with the results
obtained using the ETPL observer, which adopts event-triggered techniques to
enhance the computational performance and is considered a standard algorithm.
The main contribution of our work is the design of a distributed version of the
observer, in order to overcome the security and reliability issues arising from the
presence of a central computing device. The idea is to decentralize not only measure-
ment acquisition but also computation execution to fully leverage the distributed
structure of CPSs. The objective of each agent is to find an estimate of the system
state based on local information while simultaneously reaching consensus with other
agents. The same Distributed Sparse Observer has then been employed for solving
a mobile target localization problem in an indoor environment. It results that the
distributed approach exhibits satisfactory performance, comparable to that of its
centralized counterpart and of the state-of-the-art ETPL observer, considering that,
unlike the latter, it is not assumed to know a tight upper bound on the number
of sensors under attack. Moreover, each node has only a partial knowledge of the
problem and a common solution is obtained through the exchange of information
among connected agents.
Years of research have led to highly efficient algorithms, which require the presence
of a centralized FC that has access to global information and measurements received
by the sensors. On the other hand, a standard regarding the distributed approach
has not yet been established in the literature and convergence conditions for the
distributed algorithms are more challenging to formulate and demonstrate.
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Conclusions

This thesis aims to provide a possible development in this context, providing a
distributed algorithm based on consensus between agents, which allows compliance
with privacy and resilience requirements in the event of failures and does not
require long-range information exchanges. Future work could be to employ the
Distributed Sparse Observer algorithm in on-field tests to evaluate its performance
on real-world problems, e.g. a real experimental localization problem could be
addressed.
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