
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Performance-Aware Scheduling in Real
Time Operating System

Supervisors

Prof. ALESSANDRO SAVINO

Prof. MAURIZIO REBAUDENGO

Candidate

LUCA COSTA

APRIL 2024

Acknowledgements

Alle persone entrate nella mia vita durante questo percorso.
Alla mia famiglia.
A voi...GRAZIE.

‘"La felicità è vera solo se condivisa" - Chris McCandless

i

Abstract

One of the main job of an operating system is to schedule tasks’ activities. Tasks
scheduling is a software routine which assign the execution of a task to a CPU
core since each of them can execute one at any given time. The policy behind the
scheduling algorithm is critical because it influences the overall performance of the
operating system.
Modern microprocessors have built-in special-purpose registers in which the counts
of hardware-related activities (number of instructions executed, number of memory
loads and stores, number of branches taken, etc.) are saved. These special-purpose
registers are called Hardware Performance Counters (HPCs).
This work aims to use the information stored in these registers trying to improve the
performance of a real time operative system integrating it in the default scheduling
algorithm.

Table of Contents

List of Tables iii

List of Figures v

Acronyms vi

1 Introduction 1

2 Environment 3
2.1 RISCV Architecture . 3

2.1.1 RI5CY . 4
2.2 Hardware Performance Counters in RI5CY 5

2.2.1 HPCs basic notion . 5
2.2.2 HPCs implementation and access 5
2.2.3 Performance Counter Mode Register (PCMR) 5
2.2.4 Performance Counter Event Register (PCER) 6
2.2.5 Performance Counter Counter Register (PCCR) 6

2.3 GVSoC . 9
2.4 PULP Project . 10

2.4.1 PULPissimo . 11
2.4.2 PULP software prospective 12

3 FreeRTOS 14
3.1 Real-Time Operating System (RTOS) 14
3.2 FreeRTOS overview . 15

3.2.1 FreeRTOS kernel . 15
3.2.2 FreeRTOS kernel Memory allocation 17
3.2.3 FreeRTOS applications memory management 17

3.3 FreeRTOS task . 18
3.3.1 Task/Process basic concept 18
3.3.2 Task implementation . 20

i

3.3.3 Task states . 22
3.3.4 Task representation . 23
3.3.5 Task Priority . 24
3.3.6 Idle Task . 24

3.4 FreeRTOS time measurement and tick interrupt 24
3.5 FreeRTOS scheduling overview . 25

3.5.1 Fixed-priority preemptive scheduling 25
3.5.2 Cooperative Scheduling . 26

3.6 FreeRTOS scheduling features implementation 26
3.6.1 Scheduler execution . 26
3.6.2 Scheduler context switch . 30

3.7 FreeRTOS Ready list implementation 33

4 Work implementation 35
4.1 Project goal . 35
4.2 Kernel configuration . 35
4.3 Hardware Performance Counter . 37
4.4 Task . 42
4.5 New Scheduling Algorithm Implementation 44
4.6 Identification of the HPCs . 47
4.7 Cost’s formulation . 48
4.8 Ready List Rearrangement . 50

5 Results and performance analysis 54
5.1 Benchmarks selection . 54
5.2 Benchmarks environment set up . 56
5.3 Results and analysis . 60

6 Conclusion and future works 76

ii

List of Tables

2.1 Performance Counter Mode Register setting 6
2.2 Performance Counter Event Register setting 7
2.3 Performance Counter Counter Registers 8

5.1 Group 1 : Critical tasks . 55
5.2 Group 2 : Non-critical tasks . 55
5.3 Benchmarks for each use case . 56
5.4 Multiplication factors of tasks’ loop 58
5.5 Use case 1 total cost . 67
5.6 Use case 2 total cost . 67
5.7 Use case 3 total cost . 68
5.8 Use case 4 total cost . 68
5.9 Use case 1 : rijndael_enc HPCs total values 68
5.10 Use case 1 : rijndael_dec HPCs total values 69
5.11 Use case 1 : bitonic HPCs total values 69
5.12 Use case 1 : lift HPCs total values 69
5.13 Use case 1 : gsm_enc HPCs total values 70
5.14 Use case 1 : minver HPCs total values 70
5.15 Use case 1 : dijkstra HPCs total values 70
5.16 Use case 2 : dijkstra HPCs total values 71
5.17 Use case 2 : minver HPCs total values 71
5.18 Use case 2 : rijndael_enc HPCs total values 71
5.19 Use case 2 : bitonic HPCs total values 72
5.20 Use case 2 : lift HPCs total values 72
5.21 Use case 3 : minver HPCs total values 72
5.22 Use case 3 : rijndael_dec HPCs total values 73
5.23 Use case 3 : gsm_enc HPCs total values 73
5.24 Use case 3 : dijkstra HPCs total values 73
5.25 Use case 4 : rijndael_enc HPCs total values 74
5.26 Use case 4 : rijndael_dec HPCs total values 74
5.27 Use case 4 : bitonic HPCs total values 74

iii

5.28 Use case 4 : lift HPCs total values 75
5.29 Use case 4 : dijkstra HPCs total values 75

iv

List of Figures

2.1 Block Diagram of RI5CY RISC-V Core [3] 4
2.2 GVSoC structure [6] . 10
2.3 PULPissimo block diagram from [8] 12
2.4 PULP Software Environment [7] . 13

3.1 Memory Representation of a process [12] 19

5.1 Turnaround time use case 1 . 62
5.2 Turnaround time use case 2 . 63
5.3 Turnaround time use case 3 . 64
5.4 Turnaround time use case 4 . 65
5.5 Total turnaround time . 66

v

Acronyms

IoT
Internet of Things

HPC
Hardware Performance Counters

PULP
Parallel Ultra Low Power

OS
Operative System

RTOS
Real Time Operating System

ISA
Instruction Set Architecture

PCMR
Performance Counter Mode Register

PCER
Performance Counter Event Register

PCCR
Performance Counter Counter Register

TCDM
Tightly-Coupled Data-Memory

vi

CPU
Central Processing Unit

API
Application Programming Interface

SDK
Software Development Kit

HAL
Hardware Abstraction Level

TCB
Task Control Block

vii

Chapter 1

Introduction

The spread of embedded systems has a big impact on different industry sectors
and in the way we interact with the world. Furthermore, the expansion of IoT
(Internet of Things) has accelerated the adoption of these systems. Embedded
systems can be found everywhere, driving a wide array of applications ranging from
consumer electronics and automotive systems to industrial machinery and medical
devices. Their popularity allowed successful research in microcontroller technology,
miniaturization and connectivity, enabling the development of numerous embedded
solutions.
RISC-V Instruction Set Architecture had a great impact for the development of
embedded solutions due to its open source nature and to its highly customizability
and flexibility. These features made this ISA very popular for the development of
custom processor targeting embedded systems, thus it has been adopted in various
industry and academic researches.
Among all the project adopting RISC-V ISA, PULP Project is one who achieved a
great reputation worldwide. Developed from the collaboration of the Integrated
Systems Laboratory (IIS) of ETH Zürich and Energy-efficient Embedded Systems
(EEES) group of the University of Bologna, it is a platform targeting the IoT
devices meeting the power and the timer constraints of a real-time embedded
system.
GVSoC is an open-source simulator, specifically targeting the PULP architecture,
born in order to facilitate the development of custom applications and analysis
over new hardware designs. This event-driven simulator allowed the developers to
work on the platform without the need to physically possess the board, simulating
it with a small percentage of error.
Power efficiency, real-time performance, and security is a must in systems target of
these projects. For these reasons the OS kernel running on the embedded system is
a crucial point. The kind of OS specifically designed for embedded system, denoted
as RTOS, deals with the real-time computations of processes. FreeRTOS is an

1

Introduction

operative system belonging to this family. The part of the real-time OS which
should guarantee real-time performance is the kernel scheduler, the one processing
events and data with specific time requirements. The scheduler is in charge of
taking the decision on the next task/process to run when a switch context occurs.
Even if the schedulers of the RTOS put a lot of focus on the constraints about the
time window in which the events must be processed, modern architectures and the
new hardware design and technology can speed up the execution of tasks.
Hardware Performance Counters (HPCs) are special registers, usually built in the
microprocessor, storing the occurrences of specific hardware events. Thanks to
performance counters a developer can profile several aspects like the performance
of the OS itself or the performance and the debugging of the developed custom
software application.
This work presents a new scheduling algorithm policy implemented on FreeRTOS
running on a PULP platform, PULPissimo. The platform has been simulated with
GvSoc. Chapter 2 gives a detailed explanation of the environment over which
FreeRTOS run, covering the RISC-V ISA, GVSoc and the PULP Platform Project.
Chapter 3 gives an inside to the features of FreeRTOS, ranging from implementation
of the task to the scheduler and the associated structures. Chapter 4 describes the
implementation of the new scheduler policy. Chapter 5 offers the results of the
analysis performed with the new developed algorithm. Finally, Chapter 6 explains
the possible future works to be adopted in order to improve the actual solution.

2

Chapter 2

Environment

2.1 RISCV Architecture

The RISC-V ISA has been designed to have an important feature: being highly
flexible and customizable. It offers support for an extensive range of data type
and memory architectures and base instructions can be extended with custom
ones enabling a broad spectrum of tailored implementations to address specific
application needs [1].
The critical advantage of RISC-V architecture is its open-source essence, allowing
to use, modify or distribute the ISA without having any restrictions and without
being obliged to pay any charges for licensing [1]. All these features have risen its
popularity, enjoying widespread adoption across academic and industrial domains
alike.
According to [2] the RISC-V ISA is defined as a base integer ISA voluntarily limited
to a minimal set of instructions, offering a sufficiently comprehensive target for
compilers, linkers and operating system. The base ISA provides a software tool
chain "template" upon which more tailored processor ISAs can be developed. The
RISC-V Foundation have developed two versions of the base ISA : the RV32 and
RV64. They differ in the size of the user address space respectively 32-bit and 64-bit.
The base integer ISA can be enhanced with multiple instruction-set extensions, but
can not be altered.
As previously stated, due to its high customizability, a series of standard extensions
has been defined in order to support and increase software development around this
environment. These standard extensions as the non-standard ones bring additional
functionality to the base ISA. A name has been conventionally assigned to these
extensions which is used as suffix to RV32 or RV64.
Below is reported a small description for each standard extension used in this work.

3

Environment

- "I" extension
It is mandatory for all RISC-V implementation. It expands the instructions
supporting operations over integer data (e.g. memory load and store).

- "M" extension
It brings new instructions which allow multiplication and division on integer
values.

- "F" extension
It allows performing computation with single-precision floating-point data.

- "C" extension
It stands for Compression. Thanks to this extension some of the 32-bit RISC-V
base instructions falling under particular conditions are shrunk to 16-bit using
a compression scheme.

2.1.1 RI5CY
It is a RISC-V processor core with 4-stage core with the optional 32-bit FPU
implemented by the F extension and the pulp custom extension.
In Figure 2.1 is shown the block diagram of the RI5CY core.

Figure 2.1: Block Diagram of RI5CY RISC-V Core [3]

4

Environment

2.2 Hardware Performance Counters RI5CY
2.2.1 HPCs basic notion
Hardware Performance Counters (HPCs) are special-purpose registers built-in in
recent microprocessors where are stored the counts of specific hardware-related
activities [4]. They belong in the category of the Control and Status Register
(CSR).
They have been designed to track hardware events and performance measures at the
micro-architectural level during program execution providing deep understanding
into the behaviour and efficiency of software applications.
Hardware Performance Counters can be configured by software allowing developers
to monitor events of their interest. Their utility crosses different domains including
software performance analysis and system tuning.

2.2.2 HPCs implementation and access
In the RI5CY processor core has 24 performance counters. Each of them is 32-bit
wide, an implementation not compliant with the RISC-V standard. The per-
formance counters are accessed through two pseudo-instruction provided by the
RISC-V Instruction Set Architecture.
The csrr pseudo-instruction is used to perform a read.
The csrw pseudo-instruction is used to perform a write.

2.2.3 Performance Counter Mode Register (PCMR)
The Performance Counter Mode Register enable/disable the performance counters.
A detailed description is given in Table 2.1
Its memory address is 0xCC1.
It can be reset writing the reset value 0x0003.

5

Environment

Bit Position Access Mode Description

0 R/W

If this bit is set to 0 the
performance counter will be activated.

Complementary they
will be deactivated setting it to 1.

After reset, this bit is set.

1 R/W

If this bit is set to 1,
saturating arithmetic is employed

in the performance counter operations.
Following a reset, this bit is enabled.

Table 2.1: Performance Counter Mode Register setting

2.2.4 Performance Counter Event Register (PCER)
The Performance Counter Event Register allows to enable/disable the counting
of an event associated to a specific performance counter. When disabled the
performance counter will stop counting the occurrences of the event and its value
will not change anymore.
Its memory address is 0xCC0.
It can be reset writing the reset value 0x0000.
A detailed description is given in Table 2.2

2.2.5 Performance Counter Counter Register (PCCR)
The performance counter counter register are effectively the ones where is stored
the count of the correspondent event. A detailed description is given in Table 2.3

6

Environment

Bit Position Access Mode Associated HPC name
0 R/W CYCLES
1 R/W INSTR
2 R/W LD_STALL
3 R/W JMP_STALL
4 R/W IMISS
5 R/W LD
6 R/W ST
7 R/W JUMP
8 R/W BRANCH
9 R/W BRANCH_TAKEN
10 R/W RVC
11 R/W LD_EXT
12 R/W ST_EXT
13 R/W LD_EXT_CYC
14 R/W ST_EXT_CYC
15 R/W TCDM_CONT
16 R/W CSR_HAZARD

Table 2.2: Performance Counter Event Register setting

7

Environment

Address Name Description

0x780 CYCLES Count the number of cycles
the core was running

0x781 INSTR Count the number of
instructions executed

0x782 LD_STALL Number of load data hazards
0x783 JMP_STALL Number of jump register hazards

0x784 IMISS
Cycles waiting for instruction fetches.

i.e. the number of instructions wasted due
to non-ideal caches

0x785 LD Number of memory loads executed.
Misaligned accesses are counted twice

0x786 ST Number of memory stores executed.
Misaligned accesses are counted twice

0x787 JUMP Number of jump instructions
seen, i.e. j, jr, jal, jalr

0x788 BRANCH Number of branch instructions
seen, i.e. bf, bnf

0x789 BRANCH_TAKEN Number of taken branch instructions
seen, i.e. bf, bnf

0x78A RVC Number of compressed instructions

0x78B LD_EXT
Number of memory loads to EXT executed.

Misaligned accesses are counted twice.
Every non-TCDM access is considered external

0x78C ST_EXT
Number of memory stores to EXT executed.

Misaligned accesses are counted twice.
Every non-TCDM access is considered external

0x78D LD_EXT_CYC Cycles used for memory loads to EXT.
Every non-TCDM access is considered external

0x78E ST_EXT_CYC Cycles used for memory stores to EXT.
Every non-TCDM access is considered external

0x78F TCDM_CONT Cycles wasted due to
TCDM/log-interconnect contention

0x790 CSR_HAZARD Cycles wasted due to CSR access

0x79F ALL A write to this register will
set all counters to the supplied value

Table 2.3: Performance Counter Counter Registers

8

Environment

2.3 GVSoC
GVSoC is an open-source simulator specifically targeting the PULP architecture.
It is an event-driven simulator capable to replicate a PULP platform by modeling
the micro-architecture and putting up the common components like cores, memory,
cluster, peripherals, interconnect and TCDM [5]. In GVSoC, the simulation system
adopts a component-based methodology to model the system. Interactions among
components occur exclusively through clearly defined connections between a master
port of one component and a slave port of another. Each port delineates a collection
of methods that the component can invoke on the other component [6].
Due to its remarkable performance compared to others simulator present in the
actual scenario, it is on of the best choice for developers which have to test new
functionalities and the related performances brought in the PULP environment. It
has been found to have less than 10% error with respect to the physical SoC and
to be 2500 times faster than others simulators [5].
GVSoC is able to simulate the main hardware components like CPU, Mem-
ory(TDCM/L2), DMA, Interconnect, I-Cache, Accelerators and I/O. Its func-
tionality takes place thanks to its three major components:

• C++ files modelling the behaviour of each component.

• JSON configuration files to modify as needed the parameters of the architec-
ture.

• Python scripts also denoted as generators. Instantiate and assemble each
component of the system to be simulated. Each Python components has a set
of properties which are passed to the C++ model through JSON file.

The compilation of GVSoC produces a shared library named libpulp.so which
contains the engine code and allows loading code of other components through
other shared library. The functionalities of GVSoC are exposed through an API
written in C called GVSoC API. GVSoC can be executed with several kinds of
tools. One of the tool is the gvsoc_launcher which is the default one. The figure
2.2 report the structure of the GVSoC simulator.

9

Environment

Figure 2.2: GVSoC structure [6]

2.4 PULP Project
PULP, acronym of Parallel Ultra Low Power, is a platform born to meet the
computational requirements of IoT applications domain while keeping its power
consumption at the lowest [7].
The PULP team who brought to life this project since the beginning has designed
it in order to be open-source and to make customization and flexibility two main
key points. These principles allowed PULP to be a suitable platform for research
and development in the academic and industry domain.
PULP platform is built upon the open-source RISC-V instruction-set architecture
and unleashed two versions: 32-bit and 64-bit. The platform covers several RISC-V
processors: CV32E40P (RI5CY), IBEX (Zero-riscy), Micro-riscy, CVA6 (Ariane)

10

Environment

and Snitch.
Peripherals are crucial part when building a system especially in IoT environment.
The team developed customized accelerators, interconnect solutions (i.e. logarithmic
interconnect, APB-peripheral BUS, AXI4-interconnect) DMA engines and various
peripherals like GPIO,SPI, I2S, JTAG and so on.
The most basic PULP-based systems are microcontrollers which can be configured
to use any of the 32-bit RISC-V cores developed (RI5CY, Zero-riscy, Micro-riscy).
PULP project includes two single-core microcontroller units:

PULPino : a minimal single-core RISC-V SoC. An overview is given in figure ??.

PULPissimo : an improved version of the PULPino microcontroller unit. The
SoC includes a logarithmic interconnect, a built on chip µDMA and optional
accelerators. It is the one adopted for the work of this thesis. A detailed
description is given in 2.4.1

2.4.1 PULPissimo
PULPissimo is a microcontroller implemented in the newest PULP chips [8]. A of
the block diagram is given in Figure 2.3. It is a single core platform including:

Core
includes either the RI5CY core or the Ibex core, serving as the primary
processing unit. The work of this thesis is based on RI5CY.

Autonomous Input/Output Subsystem
This subsystem handles input and output operations independently, reducing
the burden on the main core and improving overall system efficiency.

Memory Subsystem
PULPissimo features a new memory subsystem, enhancing memory manage-
ment and access efficiency.

Hardware Processing Engines
These engines provide dedicated hardware acceleration for specific tasks,
improving performance for targeted workloads.

Simple Interrupt Controller
The architecture incorporates a new interrupt controller, simplifying interrupt
handling and improving system responsiveness.

11

Environment

Peripherals
PULPissimo introduces new peripherals to support various input/output
operations and connectivity requirements.

SDK
A new SDK is provided to facilitate software development for the PULPis-
simo architecture, offering tools, libraries, and documentation to streamline
application development.

Figure 2.3: PULPissimo block diagram from [8]

PULPissimo supports Input/Output (I/O) operations on various interfaces, includ-
ing: SPI (as master), I2S, Camera Interface, I2C, UART and JTAG.

2.4.2 PULP software prospective
The PULP PMSIS (Micro-controller Software Interface Standard) includes the
Board Support Package, the Application Programming Interface and drivers re-
quired in order to be able to run applications on PULP-based MCU.
PULP works with GNU GCC and LLVM compilers. They support RISC-V stan-
dard ISA and other extensions like Xpulpv3, which is the one adopted in this work.

12

Environment

The HAL (Hardware Abstraction Level) includes a collection of functions designed
to abstract the underlying hardware like concealing the registry level of the memory
map. It simplifies the development process by offering common entry points for
accessing hardware functionalities [7].

PULP SDK (Software Development Kit) is a set of tool chain, libraries and
scripts. One of the tool is the GVSoC event-driven simulator discussed in chapter
2 section 2.3. The aim of PULP SDK is to help and facilitate the development of
applications for PULP-based system.

PULP FreeRTOS includes FreeRTOS plus additional drivers for the development of
real-time applications always based on PULP system. The execution of programs
is done through RTL simulator (simulating the hardware design) or GVSoC.
In figure 2.4 is given an illustration of how all the software components described
in this chapter interact to make the execution possible.

Figure 2.4: PULP Software Environment [7]

13

Chapter 3

FreeRTOS

3.1 Real-Time Operating System (RTOS)

A Real-Time Operating System is an Operating System designed for real-time
computing applications. This kind of OS implement a scheduler which provide
a deterministic execution pattern making it particularly suitable for embedded
systems that have to process events and data with time requirements [9]. These
requirements state that the embedded system must react to a specific event within
a precisely defined timeframe. This functionality is essential in systems where even
slight delays can have significant negative impact, such as life support systems or
air traffic control mechanisms, or more in general when processes or threads must
execute within a designated deadline.
A Real-Time Operating System provides robust management of system resources,
enabling developers to manage the distribution of processing power, prioritizing
critical tasks over less essential ones.
Real-time applications usually consist of a mix of both hard and soft real-time
requirements [10]. The RTOS can be distinguished in three categories:

Hard Real-Time Operating Systems
These systems are tailored for applications where missing a time constraint
entails the system failure;

Soft Real-Time Operating Systems
In this kind of systems you always try to meet the time constraints, but the
missing of a deadline is not disastrous;

14

FreeRTOS

Firm Real-Time Operating Systems
These systems lie between hard and soft real-time operating systems (RTOS).
Here, failing to meet a deadline is still deemed a system failure but it doesn’t
imply a disaster.

3.2 FreeRTOS overview
FreeRTOS is a free and open-source real-time operating system suitable for embed-
ded real-time applications running on microcontrollers or microprocessors. It is
under the Massachusetts Institute of Technology (MIT) license and can be used for
any use (commercial and non) without having to pay any fees. [10].
It has been built focusing on reliability and user-friendliness. FreeRTOS has min-
imal ROM, RAM and processing overhead and offers a single and independent
solution for more than 40 different architectures (including latest RISC-V micro-
controllers) and more than 15 development tools. FreeRTOS includes a kernel
alongside an expanding collection of IoT libraries, suitable for deployment across
various industry domains with a binary image is in the range of 4000 to 9000 bytes.
FreeRTOS supports compilation with approximately twenty different compilers and
as already mentioned can run on more than 40 different processors architectures.
Every pairing of the supported compiler and processor is a unique FreeRTOS
port. FreeRTOS is distributed as a collection of C source files. While some of
these files are shared across all ports, others are specific for each port. For each
official FreeRTOS port is provided a demo application as reference. This demo
application comes pre-configured to facilitate the correct assembly of source files
and the inclusion of necessary header files.

3.2.1 FreeRTOS kernel
The FreeRTOS kernel is a real-time kernel (or real-time scheduler) enabling applica-
tion built-upon to meet their hard real-time demands. Applications are organized
as a set of autonomous execution threads. On a processor with a single core, only
one executing thread can be active at any given time. The kernel determines the
execution order by evaluating the priority assigned to each thread by the application
designer. The application designer may decide to assign higher priorities to threads
fulfilling hard real-time requirements, while assigning lower priorities to threads
addressing soft real-time needs. This prioritization scheme guarantees that hard
real-time threads have the precedence over soft real-time threads in execution order
[10].
The kernel is configured through constants defined in a header file named FreeR-
TOSConfig.h. The purpose of FreeRTOSConfig.h header file is to customize the

15

FreeRTOS

FreeRTOS kernel for a particular application, thus it should be situated within an
application directory rather than within one of the FreeRTOS kernel source code
directories.
Several stable methodologies exist for developing high-quality embedded software
without relying on a multithreading kernel. According to [10] kernel brought a lot
of benefits like :

Abstracting away timing information
The real-time operating system (RTOS) oversees execution timing and pro-
vides the application with a time-related application programming interface
(API). This simplifies the structure of the application code and reduces the
overall code size;

Maintainability/Extensibility
By abstracting timing details, fewer interdependencies between modules are
introduced, facilitating controlled and predictable software evolution. As the
kernel manages timing, application performance is less vulnerable to variations
in the underlying hardware;

Code reuse
The software can be structured with greater modularity and reduced interde-
pendencies, thus can be reused;

Improved efficiency
The application code leveraging an RTOS can be entirely event-driven, elimi-
nating the need to spend processing time in polling for events that have not
occurred;

Power Management
The efficiency gains achieved through RTOS utilization enable the processor to
allocate more time to low-power modes thanks to the presence of the Idle Task;

16

FreeRTOS

3.2.2 FreeRTOS kernel Memory allocation
The RTOS requires RAM each time a task, queue, or other RTOS object are
instantiated. RAM can be allocated in two ways:

• dynamically and in an automated way from the heap making use of RTOS
API object creation functions;

• Statically at compile time, where the developer specifies the size of memory.

The application developers can decide in which mode memory will be allocated by
setting the constant configSUPPORT_DYNAMIC_ALLOCATION and
configSUPPORT_STATIC_ALLOCATION respectively to 1 and 0 or vice versa. In the
first case memory will be allocated dynamically, in the latter it will be allocated
statically. In the work presented in this thesis it has been used dynamic allocation,
thus in the following chapter will be used only function API calls that allocates
memory dynamically.

3.2.3 FreeRTOS applications memory management
Applications can allocate memory from the FreeRTOS heap when required. FreeR-
TOS provides various heap management schemes, each with specific features.
FreeRTOS offers also the possibility to the application writer to chose its own
implementation of heap management. As stated in [11] implementation offered by
the OS are the following :

heap_1 : Among all is the simplest solution. It is suitable for applications where
tasks are never deleted. It is a scenario common in many applications using
FreeRTOS;

heap_2 : Employs a best fit algorithm and let already allocated memory blocks
to be freed. However, with this implementation adjacent free blocks can’t be
merged into a single large block;

heap_3 : It entails a basic wrapper for the standard C library malloc() and free()
functions, ensuring thread safety;

heap_4 : This implementation employs a first fit algorithm and, unlike heap_2,
merges adjacent free memory blocks into a single large block;

17

FreeRTOS

heap_5 : This implementation utilizes the same first fit and memory coalescence
algorithms as heap_4, and allows the allocation of multiple non-contiguous
memory regions in the heap area;

The total size the heap can be defined by setting the costant
configTOTAL_HEAP_SIZE declared in FreeRTOSConfig.h

3.3 FreeRTOS task
3.3.1 Task/Process basic concept
A process is the unit of work in a system. It can be defined informally as a program
in execution. As mentioned in [12] it’s important to highlights the difference
between a program and a process. A program is essentially a passive entity, a
file (often called executable file) stored on a disk containing a list of instructions.
When this file is loaded into memory it becomes a process, an active entity capable
to perform tasks and interact with the resources of the system. A process is
represented in memory by several components as shown in Figure 3.1 :

Text Segment : the text segment, also referred as the code segment, contains the
executable code of the program. It includes the machine instruction executed
sequentially by the CPU to perform a specific task. Usually this segment can
be accessed in read-only mode and is shared among multiple instances of the
same program.

Stack Segment : the stack segment is a memory area used to store local variables,
function parameters and return addresses. It dynamically grows and shrink in
response to function calls and returns;

Data Segment : the data section contains global and static variables. This
segment is read-write since these variables can change their values during the
execution of the program;

Heap Segment : the heap segment is a memory region allocated dynamically
used to store data which allocated at run-time. This area memory can be
accessed in read or write mode.

18

FreeRTOS

Figure 3.1: Memory Representation of a process [12]

Each process is represented in the operating system by a Process Control Block
(PCB), also called Task Control Block (TCB). The PCB serves as the repository
for any information that can be used from the OS for that process/task. It holds
important information of the related tasks such as :

• the process state : this part is described in detail in 3.3.3;

• the program counter : it stores the memory address of the next instruction
to be executed by the process. As the program executes, the program counter
dynamically updates, ensuring the program counter is updated to point to
the next instruction in memory;

• the CPU registers : in these registers are included both special-purpose (i.e
the program counter and status register) and general-purpose (i.e. accumulator,
index registers, and stack pointer) registers. They change in number and type
depending on the architecture. The values must be stored in presence of a
context switch or interrupt;

• the process ID (PID) : it is a number used as the identifier of the process.
This label allows the operating system to recognize a specific task during

19

FreeRTOS

process management and commumnication;

• the memory-management information : it contains comprehensive infor-
mation about the process’s memory allocation like the base address and the
size of its code, data, stack and heap segment. Depending on the OS it could
include the address of segment and page tables.

3.3.2 Task implementation
In FreeRTOS tasks are implemented as C functions, so it is basically a small
program in its own right [10].
Tasks must implement a function that returns void and accepts a void pointer as a
parameter. A task function should have the structure shown in Listing 3.1. An
application writer must never let a FreeRTOS task to return from the function it
implements for any reason, so it doesn’t include a return statement. If a task is no
longer necessary, it should be explicitly deleted.

1 void vATaskFunction (void ∗pvParameters)
2 {
3

4 f o r (; ;)
5 {
6 −− Task a p p l i c a t i o n code here . −−
7 }
8

9 /∗ Tasks must not attempt to re turn from t h e i r implementing
10 f unc t i on or otherw i se e x i t . In newer FreeRTOS port
11 attempting to do so w i l l r e s u l t in an configASSERT () being
12 c a l l e d i f i t i s de f in ed . I f i t i s nece s sa ry f o r a task to
13 e x i t then have the task c a l l vTaskDelete (NULL) to ensure
14 i t s e x i t i s c l ean . ∗/
15 vTaskDelete (NULL) ;
16

17 }

Listing 3.1: FreeRTOS task function

You can generate other tasks from within the task function itself, each having a
distinct execution instance with its own stack. The FreeRTOS API function to
create a task is TaskCreate() having the prototype listed in 3.2:

20

FreeRTOS

1 BaseType_t xTaskCreate (TaskFunction_t pvTaskCode ,
2 const char ∗ const pcName ,
3 configSTACK_DEPTH_TYPE usStackDepth ,
4 void ∗ pvParameters ,
5 UBaseType_t uxPr ior i ty ,
6 TaskHandle_t ∗ pxCreatedTask) ;

Listing 3.2: FreeRTOS task create prototype API function

As stated in [13], here is given a detailed description of the parameters required in
Listing 3.2 :

pvTaskCode
It is the pointer to the function performed by the task;

pcName
A name given to the task. The purpose of this parameter is to help developers
during debugging session, and it is not used in any relevant way by FreeRTOS.
The constant configMAX_TASK_NAME_LEN sets the maximum length for a task
name, including the NULL terminator. Providing a longer string leads to its
truncation;

usStackDepth
This variable is used by the kernel to know how many bits has to be allocated
for the stack associated to that task;

pvParameters
This parameter is of type pointer to void to enable the task parameter to
effectively receive a parameter of any type indirectly through casting;

uxPriority
Specifies the priority of the task used by the kernel scheduler. Priorities can
range from 0, representing the lowest priority, to (configMAX_PRIORITIES –
1), which is the highest priority. If this variable holds a greater value it will
be truncated to the maximum priority available;

pxCreatedTask
This variable provides a handle to the created task. It enables referencing

21

FreeRTOS

the task in API calls to modify the task priority or delete the task. If the
application does not require the task handle, it can be assigned the NULL
value.

The returned values are:

pdPASS
It means the task creation process has been completed successfully;

errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY
It means the task creation process has failed due to insufficient heap memory
available

The xTaskCreate API function allocates memory for the Task Control Block as for
the stack. Then it properly initializes the task by calling the prvInitialiseNewTask
kernel function and finally add it to the list of the task in the Ready state.

3.3.3 Task states
An application can create and execute several tasks during its lifetime. In a single-
core processor, only one task at a time can be executed. This means a task can be
in one of two states: Running and Not Running [10]. A task enters the Running
state when the processor is actively executing its code. A task in the Not Running
state, it is temporarily paused, and its state is preserved allowing to be resumed
later. When its execution has been resumed (enters the Running State), the task
continues from the instruction it was about to execute before entering the Not
Running state. The Not Running state can be expanded in the following ones :

Blocked
a task is in this state when it is waiting for a particular event to occur. The
event the task is waiting for can fall into two different categories:

a. Temporal (time-related) events These events happen either upon the
expiration of a specified delay period or when an absolute time is reached;

b. Synchronization events These events are triggered by another task or
interrupt;

A task can block on a synchronization event with a timeout, effectively waiting
for both types of events simultaneously.

22

FreeRTOS

Suspended
A task which is Not Running and doesn’t fall in any of the two categories
mentioned before is in the Ready State. They are ready to be selected by the
scheduler and start or resume the execution.

3.3.4 Task representation
Each task is represented in the operating system by its Task Control Block. Here a
brief decription of the most important variable of the struct named TCB_t shown
in Listing 3.3:

pxTopOfStack
It points to the address of the last item inserted into the stack;

xStateListItem
It is an item used to be inserted into a list used by the scheduler to manage
tasks in different states. The lists in which this item can be stored identify
the current state of the task;

xEventListItem
It is an item used to be inserted into a list used by tasks to wait for synchro-
nization events. This item allows the scheduler to quickly identify and unblock
tasks when the corresponding event occurs;

pxStack
It points to the start address of the stack;

1 typede f s t r u c t tskTaskControlBlock {
2

3 /∗− − − − − − − − − − − −other va r i ab l e s − − − − − − − − − − −∗/
4

5 v o l a t i l e StackType_t ∗pxTopOfStack ;
6 ListItem_t xStateL i s t I t em ;
7 ListItem_t xEventListItem ;
8 UBaseType_t uxPr i o r i t y ;
9 StackType_t ∗pxStack ;

10 char pcTaskName [configMAX_TASK_NAME_LEN] ;
11 UBaseType_t uxBasePr ior i ty ;
12

23

FreeRTOS

13 } tskTCB ;
14

15 typede f tskTCB TCB_t;

Listing 3.3: FreeRTOS most relevant variables in tcb struct

3.3.5 Task Priority

In FreeRTOS as in other RTOS tasks are marked by a priority number. The
priority associated to the task is used by the scheduler to know which task need to
be switched in first when occurs a context switch.
The priority of a task is assigned during its creation through the uxPriority param-
eter but can be changed later on by calling the API function vTaskPrioritySet().
The application-defined and compile-time configuration constant
configMAX_PRIORITIES sets the number of the available priorities which can range
from 0 to (configMAX_PRIORITIES – 1).

3.3.6 Idle Task

In FreeRTOS there must be always one task in the Running state, so when the
scheduler is started a task called Idle Task is automatically created. The Idle Task
must have a priority number equal to 0, allowing other tasks with higher priority
to enter the Running state first.

3.4 FreeRTOS time measurement and tick inter-
rupt

The FreeRTOS real-time kernel measures time using a tick count variable [11]. This
tick count is incremented by a timer interrupt known as the RTOS tick interrupt.
With each increment of the tick count, the kernel checks if it is time to unblock or
wake a task, allowing for precise time measurement up to the resolution defined by
the frequency of the timer interrupt.

24

FreeRTOS

3.5 FreeRTOS scheduling overview
The FreeRTOS scheduling algorithm determines which task will be moved from the
Ready state to the Running one. The behaviour of the scheduler can be changed
by setting three constant in the FreeRTOSConifg.h header file :
configUSE_PREEMPTION, configUSE_TIME_SLICING
and configUSE_TICKLESS_IDLE. If configUSE_TICKLESS_IDLE is set to 1 the tick
interrupt is turned completely off for extended periods. This option should be used
by specifically for scenario in which is required to minimize the power consumption
of the embedded system. If this variable is left undefined it will be automatically
set to the default value of 0.
In all single-core configuration, the FreeRTOS scheduler follows a "take in turn"
policy for tasks that share the same priority. This policy, also known as Round
Robin Scheduling, ensures that Ready state tasks of equal priority are selected
to enter the Running state in turn and not guarantee equal time-sharing between
those tasks.

3.5.1 Fixed-priority preemptive scheduling
The default FreeRTOS scheduling algorithm policy is the Fixed-Priority Premptive
with Round-Robin time slicing of tasks sharing the same priority.

- Fixed Priority
It means the scheduler is not allowed to change to priority that has been
assigned to the task when it ha been created. The priority of a task can be
changed or by the task itself or by another task;

- Preemptive
A preemptive scheduler will ’preempt’ a task from the Running state if there is
at least one task with higher priority in the Ready state. A task is preempted
when it is switched out without its will (i.e. without an explicit yielding or
blocking). The preemption can happen at any given time, not only when
occurs a tick interrupt;

- Time Slicing
Is technique employed to distribute processing time among tasks of equal
priority. It ensures fair utilization of CPU resources among the cited tasks
and prevent them from monopolizing the CPU;

The configIDLE_SHOULD_YIELD compile time configuration constant can be used

25

FreeRTOS

to change how the Idle task is scheduled:

• configIDLE_SHOULD_YIELD sets to 0 : The idle task is keept in the Running
state for the entire time slice unless preempted by a task with a higher priority;

• configIDLE_SHOULD_YIELD sets to 1 : The idle task yields giving the reamin-
ing time slice time to other tasks having its same priority;

The FreeRTOS scheduler can be configured to use prioritized preemptive scheduling
without time slicing by setting the configUSE_TIME_SLICING to 0. When time
slicing is disabled, the scheduler only selects a new task to enter the Running state
when either:

• a higher priority task enter the Ready state;

• The task in the Running state transitions to the Blocked or Suspended state;

When time slicing is turned off fewer context switches occure. The advantage is to
reduce the scheduler processing overhead, the negative point instead is to assign
different amount of processing time to tasks sharing the same priority.

3.5.2 Cooperative Scheduling
The FreeRTOS scheduling algorithm is cooperative when the
configUSE_PREEMPTION constant is set to 0. In the cooperative scheduler algorithm,
a context switch only occurs when the task in the Running state transitions to the
Blocked state or explicitly yields by calling taskYIELD(). Time slicing is useless
because tasks are never preempted, thus configUSE_TIME_SLICING can be set to
any value.

3.6 FreeRTOS scheduling features implementa-
tion

3.6.1 Scheduler execution
The FreeRTOS scheduler is runned by calling the FreeRTOS API function
vTaskStartScheduler. This function is called inside the main body of the application
code as shown in Listing 3.4. After scheduler is run, only interrupts and tasks will
be executed.

26

FreeRTOS

1

2 /∗ Def ine a task func t i on . ∗/
3

4 void vATask(void)
5 {
6

7 f o r (; ;)
8 {
9

10 /∗ Task code goes here . ∗/
11

12 }
13

14 }
15

16 void main (void)
17

18 {
19 system_init () ;
20

21 /∗ Create at l e a s t one task , in t h i s case the task func t i on
de f ined above i s c r ea ted . Ca l l i ng vTaskStartScheduler () be f o r e any

ta sk s have been crea ted w i l l cause the i d l e task to ente r the
Running s t a t e . ∗/

22

23 xTaskCreate (vTaskCode ,
24 " task name" ,
25 STACK_SIZE,
26 NULL,
27 TASK_PRIORITY,
28 NULL) ;
29

30 /∗ Star t the s chedu l e r . ∗/
31

32 vTaskStartScheduler () ;
33

34 /∗ This code w i l l only be reached i f the i d l e task could not be
c reated i n s i d e vTaskStartScheduler () . An i n f i n i t e loop i s used to
a s s i s t debugging by ensur ing t h i s s c e n a r i o does not r e s u l t in main
() e x i t i n g . ∗/

35

36 f o r (; ;) ;
37

38 }

Listing 3.4: How properly run FreeRTOS scheduler

27

FreeRTOS

In Listing 3.5 is shown the main important section of the body of the
vTaskStartSCheduler API function.

1 void vTaskStartScheduler (void)
2 {
3 BaseType_t xReturn ;
4

5 /∗ The I d l e task i s be ing c reated us ing dynamical ly a l l o c a t e d RAM
. ∗/

6

7 xReturn = xTaskCreate (prvIdleTask ,
8 configIDLE_TASK_NAME,
9 configMINIMAL_STACK_SIZE ,

10 (void ∗) NULL,
11 portPRIVILEGE_BIT ,
12 &xIdleTaskHandle) ;
13

14

15 i f (xReturn == pdPASS)
16 {
17 /∗ I n t e r r u p t s are turned o f f here , to ensure a t i c k does not

occur be f o r e or during the c a l l to xPortStar tSchedu le r () . The
s ta ck s o f the c rea ted ta sk s conta in a s t a tu s word with i n t e r r u p t s
switched on so i n t e r r u p t s w i l l au tomat i ca l l y get re−enabled when
the f i r s t task s t a r t s to run . ∗/

18

19 portDISABLE_INTERRUPTS() ;
20

21 xNextTaskUnblockTime = portMAX_DELAY;
22 xSchedulerRunning = pdTRUE;
23 xTickCount = (TickType_t) configINITIAL_TICK_COUNT ;
24

25 traceTASK_SWITCHED_IN() ;
26

27 /∗ Se t t i ng up the t imer t i c k i s hardware s p e c i f i c and thus in
the por tab l e i n t e r f a c e . ∗/

28

29 i f (xPortStar tSchedu le r () != pdFALSE)
30 {
31 /∗ Should not reach here as i f the s chedu l e r i s running

the func t i on w i l l not re turn . ∗/
32 }
33 e l s e
34 {
35 /∗ Should only reach here i f a task c a l l s

xTaskEndScheduler () . ∗/
36 }
37 }
38 e l s e

28

FreeRTOS

39 {
40 /∗ This l i n e w i l l only be reached i f the ke rne l could not be

s tar ted , because the re was not enough FreeRTOS heap to c r e a t e the
i d l e task or the t imer task . ∗/

41

42 configASSERT (xReturn !=
errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY) ;

43 }
44

45 /∗ Prevent compi le r warnings i f INCLUDE_xTaskGetIdleTaskHandle i s
s e t to 0 , meaning xIdleTaskHandle i s not used anywhere e l s e . ∗/

46

47 (void) xIdleTaskHandle ;
48 }

Listing 3.5: vTaskStartScheduler FreeRTOS API body function relevant
instructions

In FreeRTOS there must be at least one task in the Running state, thus as first the
Idle task is created. The function will return only if there is enough heap memory
space to allocate the Idle task. If the idle task has been created successfully all
interrupts are disabled because they could interfere when xPortStartScheduler
function is called. They will be re-enabled when the first task start to run.
The Tick is set and a call to trace_TASK_SWITCHED_IN is made.
traceTASK_SWITCHED_IN is a function belonging to the FreeRTOS tracing features,
which provides runtime visibility into the execution of tasks, interrupts, and other
events within the FreeRTOS kernel. The traceTASK_SWITCHED_IN function is
called whenever a task is switched in. It allows for tracing or logging of task
switching events, which can be useful for debugging, performance analysis, or
profiling purposes. By default, this function may be implemented as a no-op if
tracing is not enabled in the FreeRTOS configuration.
At the end a call to the function xPortStartScheduler is made. This function
is architecture-specific and is responsible for initializing the hardware-specific
components required to start the scheduler.
The xPortStartScheduler function performs the following tasks:

• Setting up the hardware timer: The scheduler relies on a hardware timer to
generate periodic interrupts, which are used to trigger task context switches.
The xPortStartScheduler function initializes this timer and sets up the inter-
rupt handler for the timer interrupt;

• Setting up the system tick timer: The FreeRTOS scheduler uses a system tick
timer to track time and manage task scheduling. The xPortStartScheduler

29

FreeRTOS

function initializes this timer and configures it to generate interrupts at regular
intervals, typically at a frequency of 1 kHz;

• Enabling interrupts: Once the hardware timer and system tick timer are set
up, the xPortStartScheduler function enables interrupts to allow the scheduler
to respond to timer interrupts and schedule tasks accordingly;

• Transitioning to the scheduler: After initializing the necessary hardware com-
ponents and enabling interrupts, the xPortStartScheduler function transitions
control to the FreeRTOS scheduler, allowing it to begin scheduling tasks;

• Set up the hardware ready for the scheduler to take control. This generally
sets up a tick interrupt and sets timers for the correct tick frequency;

3.6.2 Scheduler context switch
When a context switch needs to take place, the vTaskSwitchContext API function
is called (its main body with the most relevant instructions are shown in Listing
3.6). More specifically, the vTaskSwitchContext function performs the following
actions:

• Saves the context (registers, stack pointer, etc.) of the currently executing task.

• Selects the next task to run from the ready list.

• Restores the context of the selected task, allowing it to continue execution
from where it was previously interrupted.

30

FreeRTOS

1 void vTaskSwitchContext (void)
2 {
3 i f (uxSchedulerSuspended != (UBaseType_t) pdFALSE)
4 {
5 /∗ The schedu l e r i s c u r r e n t l y suspended − do not a l low a

context switch . ∗/
6 xYieldPending = pdTRUE;
7 }
8 e l s e
9 {

10 xYieldPending = pdFALSE ;
11 traceTASK_SWITCHED_OUT() ;
12

13 . . .
14

15 /∗ S e l e c t a new task to run us ing e i t h e r the g e n e r i c C or
port opt imised asm code . ∗/

16

17 taskSELECT_HIGHEST_PRIORITY_TASK() ;
18 traceTASK_SWITCHED_IN() ;
19

20 . . .
21

22 }
23 }

Listing 3.6: vTaskStartScheduler FreeRTOS API body function relevant
instructions

The traceTASK_SWITCHED_IN as been already described in 3.6.1.
The traceTASK_SWITCHED_OUT is the same as traceTASK_SWITCHED_IN but re-
ferred to the task the scheduler is switching out.
The taskSELECT_HIGHEST_PRIORITY_TASK function is responsible for selecting the
highest priority task that is ready to run. It scans the ready list to find the highest
priority task that is ready to run typically selecting the task with the highest
priority value. The Listing 3.7 shows the macro expansion.

1 #d e f i n e taskSELECT_HIGHEST_PRIORITY_TASK()
\

2 {
\

3 UBaseType_t uxTopPrior ity ;
\

4

5 portGET_HIGHEST_PRIORITY(uxTopPriority , uxTopReadyPriority) ;
\

31

FreeRTOS

6

7 configASSERT (listCURRENT_LIST_LENGTH(&(pxReadyTasksLists [
uxTopPrior ity])) > 0) ; \

8

9 listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB , &(pxReadyTasksLists [
uxTopPrior ity])) ; \

10 } \

Listing 3.7: taskSELECT_HIGHEST_PRIORITY_TASK function expansion

Line 3
UBaseType_t uxTopPriority declares a local variable uxTopPriority of type
UBaseType_t, which represents the highest priority task’s priority.

Line 5
portGET_HIGHEST_PRIORITY(uxTopPriority, uxTopReadyPriority) is a port-
specific function or macro that determines the highest priority task that is
ready to run. It typically scans the ready list or priority list to find the highest
priority task and stores its priority value in uxTopPriority. uxTopReadyPrior-
ity is a port-specific variable that may be used to store additional information
related to the highest priority task.

Line 7
configASSERT(listCURRENT_LIST_LENGTH(&(pxReadyTasksLists[
uxTopPriority]))>0) declares a local variable uxTopPriority of type
UBaseType_t, which represents the highest priority task’s priority.

Line 9
listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB,
&(pxReadyTasksLists[uxTopPriority])) retrieves the next task from the ready
list corresponding to the highest priority and stores its task control block
(TCB) pointer in pxCurrentTCB. The task control block represents the state
and context of the task.

32

FreeRTOS

3.7 FreeRTOS Ready list implementation
The Ready list is the list where are referenced tasks in the Ready state. It is used
by the scheduler to chose which task to pick up during a context switch. In Listing
3.8 is shown is definition inside the task.c file of the FreeRTOS source code.

1 PRIVILEGED_DATA s t a t i c List_t pxReadyTasksLists [
configMAX_PRIORITIES] ;

2

Listing 3.8: FreeRTOS task prototype function

pxReadyTasksLists is declared as a static global array having as much entry as the
maximum value of priority given by the macro configMAX_PRIORITIES. Declaring
it static made it accessible only within the file where it is defined. Each entry of
the array is of type List_t. The struct List_t is defined in file list.h as in Listing
3.9.

1 typede f s t r u c t xLIST
2 {
3

4 listFIRST_LIST_INTEGRITY_CHECK_VALUE
5 v o l a t i l e UBaseType_t uxNumberOfItems ;
6 ListItem_t ∗ configLIST_VOLATILE pxIndex ;
7 MiniListItem_t xListEnd ;
8 listSECOND_LIST_INTEGRITY_CHECK_VALUE
9

10 } List_t ;

Listing 3.9: FreeRTOS task prototype function

Each item of the array is composed of :

• a variable pxIndex pointing to a ListItem_t type : this variable as an index
to scan through the tasks;

• a xListEnd variable of type MiniListItem_t : it is used to mark the end of
the list;

• the uxNumberOfItems which indicates the number of items present at the
related index of the pxReadyTasksLists;

33

FreeRTOS

The struct ListItem_t is shown in Listing 3.10.

1 s t r u c t xLIST_ITEM
2 {
3

4 listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE
5 configLIST_VOLATILE TickType_t xItemValue ;
6 s t r u c t xLIST_ITEM ∗ configLIST_VOLATILE pxNext ;
7 s t r u c t xLIST_ITEM ∗ configLIST_VOLATILE pxPrevious ;
8 void ∗ pvOwner ;
9 s t r u c t xLIST ∗ configLIST_VOLATILE pxContainer ;

10 listSECOND_LIST_ITEM_INTEGRITY_CHECK_VALUE
11

12 } ;
13 typede f s t r u c t xLIST_ITEM ListItem_t ;

Listing 3.10: FreeRTOS task prototype function

At each index of the pxReadyTasksLists are saved tasks in the Ready state. Tasks
with a priority number equal to i can be found at index i of the Ready list. Each
Ready list index is implemented as a Circular Doubly Linked List. From each item
of the list you can access the previous item through the pxPrevious pointer and to
the next one through pxNext. The void pointer pvOwner points to the TCB of
the task. It is cast as void to avoid compilation error since the struct of the TCB
is defined elsewhere and it is not included in list.h file. The pxContainer instead
points to the list where the task is saved.

34

Chapter 4

Work implementation

4.1 Project goal
The aim of the work of this thesis is trying to improve the performance of the
FreeRTOS Operative System modifying the default schedule’s behaviour. The new
scheduling algorithm make use of the hardware event counter stored in the HPCs
to work properly. It can be enabled or disabled allowing to perform later analysis
with respect to the original implementation. For all tasks executed the kernel keep
tracks of the number of events occurring when the task is in the Running state.
The values stored in the chosen performance counter registers are used to calculate
a cost. The scheduler exploits this cost to decide which is the next task to pick up
in each context switch.

4.2 Kernel configuration
To be able to implement the new algorithm scheme as optional it has been ex-
ploited the FreeRTOSConfig.h file described in 3.2.1. As showed in Listing 4.1
it has been added a macro named configeUSE_PCER_SCHEDULING_POLICY which
allow to enable or disable the new policy by setting it respectively to 1 and 0.

1

2 #d e f i n e configeUSE_PCER_SCHEDULING_POLICY 1
3

4

Listing 4.1: configeUSE_PCER_SCHEDULING_POLICY macro definition

In the FreeRTOS.h header file of the FreeRTOS kernel source code it is checked

35

Work implementation

if the configeUSE_PCER_SCHEDULING_POLICY macro has been already defined. If
the macro was not declared and defined in the configuration file of the developer’s
custom application the default implementation adopted by the kernel is to set it to
0, thus using the default scheduling algorithm.
Then for each performance counter register a macro has been defined. A total of 17
macros allow enabling or disable a specific performance counter register by setting
it to 1 or 0. It has been taken this approach because the application developer can
choose the hardware events to monitor simply by modifying the value of the macro.
In Listing 4.2 is shown the declaration of the macros.

1

2 #d e f i n e PCRs_STATE_CSR_PCER_CYCLES 0
3 #d e f i n e PCRs_STATE_CSR_PCER_INSTR 0
4 #d e f i n e PCRs_STATE_CSR_PCER_LD_STALL 1
5 #d e f i n e PCRs_STATE_CSR_PCER_JMP_STALL 0
6 #d e f i n e PCRs_STATE_CSR_PCER_IMISS 1
7 #d e f i n e PCRs_STATE_CSR_PCER_LD 0
8 #d e f i n e PCRs_STATE_CSR_PCER_ST 0
9 #d e f i n e PCRs_STATE_CSR_PCER_JUMP 0

10 #d e f i n e PCRs_STATE_CSR_PCER_BRANCH 1
11 #d e f i n e PCRs_STATE_CSR_PCER_TAKEN_BRANCH 1
12 #d e f i n e PCRs_STATE_CSR_PCER_RVC 0
13 #d e f i n e PCRs_STATE_CSR_PCER_LD_EXT 1
14 #d e f i n e PCRs_STATE_CSR_PCER_ST_EXT 1
15 #d e f i n e PCRs_STATE_CSR_PCER_LD_EXT_CYC 0
16 #d e f i n e PCRs_STATE_CSR_PCER_ST_EXT_CYC 0
17 #d e f i n e PCRs_STATE_CSR_PCER_TCDM_CONT 1
18 #d e f i n e PCRs_STATE_CSR_PCER_CSR_HAZARD 1

Listing 4.2: FreeRTOS PCCRs associated macros

Additionally has been modified the body of the function system_init (Listing 4.3)
which set the system at the start up. The new functions (described in Section 4.3)
initialize and set the performance counters.

1 void system_init (void)
2 {
3 . . .
4

5 v P e r f I n i t i a l i z e () ;
6 vPerfStopCounting () ;
7 vPer fSetAl lCounters (0) ;
8

9 . . .
10 }

36

Work implementation

Listing 4.3: pcer_v2.h header file

4.3 Hardware Performance Counter
An important step of the work has been writing an API which allows the application
writer to set up the performance counter through special registers and to perform a
read or a write in one of the PCCRs, which holds the counter of the relative event.
The developing of a functional API has started from the file pcer_v2.h, showed in
Listing 4.4, which is already present in the pulp-freertos source code with some
code written.

1

2 #i f n d e f _ARCHI_RISCV_PCER_V1_H
3 #d e f i n e _ARCHI_RISCV_PCER_V1_H
4

5

6 #d e f i n e CSR_PCER_CYCLES 0 /∗ Count the number o f c y c l e s the core
was running ∗/

7 #d e f i n e CSR_PCER_INSTR 1 /∗ Count the number o f i n s t r u c t i o n s
executed ∗/

8 #d e f i n e CSR_PCER_LD_STALL 2 /∗ Number o f load use hazards ∗/
9 #d e f i n e CSR_PCER_JMP_STALL 3 /∗ Number o f jump r e g i s t e r hazards

∗/
10 #d e f i n e CSR_PCER_IMISS 4 /∗ Cycles wa i t ing f o r i n s t r u c t i o n

f e t c h e s . i . e . the number o f i n s t r u c t i o n s wasted due to non−i d e a l
caches ∗/

11 #d e f i n e CSR_PCER_LD 5 /∗ Number o f memory loads executed .
Misa l igned a c c e s s e s are counted twice ∗/

12 #d e f i n e CSR_PCER_ST 6 /∗ Number o f memory s t o r e s executed .
Misa l igned a c c e s s e s are counted twice ∗/

13 #d e f i n e CSR_PCER_JUMP 7 /∗ Number o f jump i n s t r u c t i o n s seen , i . e .
j , j r , j a l , j a l r ∗/

14 #d e f i n e CSR_PCER_BRANCH 8 /∗ Number o f branch i n s t r u c t i o n s seen , i
. e . bf , bnf ∗/

15 #d e f i n e CSR_PCER_TAKEN_BRANCH 9 /∗ Number o f taken branch
i n s t r u c t i o n s seen , i . e . bf , bnf ∗/

16 #d e f i n e CSR_PCER_RVC 10 /∗ Number o f compressed i n s t r u c t i o n s ∗/
17 #d e f i n e CSR_PCER_LD_EXT 11 /∗ Number o f memory loads to EXT

executed . Misa l igned a c c e s s e s are counted twice . Every non−TCDM
acce s s i s cons ide r ed e x t e r n a l ∗/

18 #d e f i n e CSR_PCER_ST_EXT 12 /∗ Number o f memory s t o r e s to EXT
executed . Misa l igned a c c e s s e s are counted twice . Every non−TCDM
acce s s i s cons ide r ed e x t e r n a l ∗/

37

Work implementation

19 #d e f i n e CSR_PCER_LD_EXT_CYC 13 /∗ Cycles used f o r memory loads to
EXT. Every non−TCDM acce s s i s cons ide r ed e x t e r n a l ∗/

20 #d e f i n e CSR_PCER_ST_EXT_CYC 14 /∗ Cycles used f o r memory s t o r e s to
EXT. Every non−TCDM acce s s i s cons ide r ed e x t e r n a l ∗/

21 #d e f i n e CSR_PCER_TCDM_CONT 15 /∗ Cycles wasted due to TCDM/ log−
i n t e r c onnec t content ion ∗/

22 #d e f i n e CSR_PCER_CSR_HAZARD 16 /∗ Cycles wasted due to CSR acc e s s ∗/
23

24 #d e f i n e CSR_PCER_NB_EVENTS 17
25 #d e f i n e CSR_PCER_NB_INTERNAL_EVENTS 17
26 #d e f i n e CSR_NB_PCCR 31
27

28

29 #d e f i n e CSR_PCER_EVENT_MASK(eventId) (1<<(eventId))
30 #d e f i n e CSR_PCER_ALL_EVENTS_MASK 0 x f f f f f f f f
31

32 #d e f i n e CSR_PCMR_ACTIVE 0x1 /∗ Act ivate count ing ∗/
33 #d e f i n e CSR_PCMR_SATURATE 0x2 /∗ Act ivate s a t u r a t i o n ∗/
34

35 s t a t i c i n l i n e void pcerEventsSet (unsigned i n t eventMask)
36 {
37 asm v o l a t i l e (" csrw 0xCC0 , %0" : : " r " (eventMask)) ;
38 }
39

40 s t a t i c i n l i n e unsigned i n t pcerEventsGet ()
41 {
42 unsigned i n t r e s u l t = 0 ;
43 asm v o l a t i l e (" c s r r %0, 0xCC0" : "=i " (r e s u l t)) ;
44 re turn r e s u l t ;
45 }
46

47 s t a t i c i n l i n e void pcerModeSet (unsigned i n t confMask)
48 {
49 asm v o l a t i l e (" csrw 0xCC1 , %0" : : " r " (confMask)) ;
50 }
51

52 s t a t i c i n l i n e void pcerModeGet (unsigned i n t confMask)
53 {
54 unsigned i n t r e s u l t = 0 ;
55 asm v o l a t i l e (" c s r r %0, 0xCC1" : "=i " (r e s u l t)) ;
56 }
57

58 s t a t i c i n l i n e void pcerSetAl lCounters (unsigned i n t va lue) {
59 asm v o l a t i l e (" csrw 0x79F , %0" : : " r " (va lue)) ;
60 }
61

62 s t a t i c i n l i n e unsigned i n t pcerGetValue (const unsigned i n t counter Id)
{

63 unsigned i n t va lue = 0 ;

38

Work implementation

64 switch (counter Id) {
65 case 0 : asm v o l a t i l e (" c s r r %0, 0x780 " : "=r " (va lue)) ; break ;
66 case 1 : asm v o l a t i l e (" c s r r %0, 0x781 " : "=r " (va lue)) ; break ;
67 case 2 : asm v o l a t i l e (" c s r r %0, 0x782 " : "=r " (va lue)) ; break ;
68 case 3 : asm v o l a t i l e (" c s r r %0, 0x783 " : "=r " (va lue)) ; break ;
69 case 4 : asm v o l a t i l e (" c s r r %0, 0x784 " : "=r " (va lue)) ; break ;
70 case 5 : asm v o l a t i l e (" c s r r %0, 0x785 " : "=r " (va lue)) ; break ;
71 case 6 : asm v o l a t i l e (" c s r r %0, 0x786 " : "=r " (va lue)) ; break ;
72 case 7 : asm v o l a t i l e (" c s r r %0, 0x787 " : "=r " (va lue)) ; break ;
73 case 8 : asm v o l a t i l e (" c s r r %0, 0x788 " : "=r " (va lue)) ; break ;
74 case 9 : asm v o l a t i l e (" c s r r %0, 0x789 " : "=r " (va lue)) ; break ;
75 case 10 : asm v o l a t i l e (" c s r r %0, 0x78A" : "=r " (va lue)) ; break ;
76 case 11 : asm v o l a t i l e (" c s r r %0, 0x78B " : "=r " (va lue)) ; break ;
77 case 12 : asm v o l a t i l e (" c s r r %0, 0x78C " : "=r " (va lue)) ; break ;
78 case 13 : asm v o l a t i l e (" c s r r %0, 0x78D" : "=r " (va lue)) ; break ;
79 case 14 : asm v o l a t i l e (" c s r r %0, 0x78E " : "=r " (va lue)) ; break ;
80 case 15 : asm v o l a t i l e (" c s r r %0, 0x78F " : "=r " (va lue)) ; break ;
81 case 16 : asm v o l a t i l e (" c s r r %0, 0x790 " : "=r " (va lue)) ; break ;
82 }
83 re turn value ;
84 }
85

86 #e n d i f

Listing 4.4: pcer_v2.h header file

CSR_PCER_EVENT_MASK
This macro shift the value 1 as many position as the eventId value. It is useful
to set the mask for the Performance Counter Event Register enabling the
counting of the wanted PCCR;

pcerModeSet, pcerModeGet
These two functions allow respectively to write and read a value into the
Performance Counter Mode Register (see Section 2.2.3);

pcerEventSet, pcerEventeGet
They allow to write and read a value in the Performance Counter Event
Register (see Section 2.2.4);

pcerSetAllCounters
This function allow writing a value passed as parameter of the function in all
the PCCRs, by writing in the PCCR named "ALL" (see Table 2.3);

39

Work implementation

pcerGetValue
This function allow reading the value of a speficic performance counter counter
register given its counterId. Each register is associated to an Id through the
macro declared on top of the file;

On top of this it has been created a new file called perf_API.h which include
pcer_v2.h. In Listing 4.5 are reported the main important functions:

vPerfInitialize
This function create a mask that will be used as paramater of the function
pcerEventSet. Thanks to the macro defined in the FreeRTOS.h header file
will be created a mask only for those PCCR the application developer want
to track. If a performance counter is enabled by the application developer
the macro CSR_PCER_EVENT_MASK with the Id of the event and the result is
ORED with the previous value of eventMask;

vPerfReadAllValues
This function allow to read the value of the PCCRs enabled by the macro
defined in FreeRTOS.h and store it into an array of unsigned integer which is
passed as parameter;

usPcerGetNumActive
It returns the number of PCCRs which are enabled by the macro declaration
in FreeRTOS.h;

vPerfStartCounting
This function make the PCCRs to start counting the occurences of their
associated event;

vPerfStopCounting
On the contrary of vPerfStartCounting it stop the counting of the events by
writing in the PCM Register;

vPerfResetandStopCounting
It performs the same operation of the vPerfStartCounting after having set all
counters to 0;

40

Work implementation

1 #inc lude " a r ch i / r i s c v /pcer_v2 . h "
2 #inc lude "FreeRTOS . h "
3 #inc lude " printfCustom . h "
4 #inc lude <s t d i o . h>
5

6 s t a t i c i n l i n e void v P e r f I n i t i a l i z e (void)
7 {
8

9 unsigned i n t eventMask = 0 ;
10 #i f (PCRs_STATE_CSR_PCER_CYCLES == 1)
11 eventMask = eventMask | CSR_PCER_EVENT_MASK(CSR_PCER_CYCLES) ;
12 #e n d i f
13 #i f (PCRs_STATE_CSR_PCER_INSTR == 1)
14 eventMask = eventMask | CSR_PCER_EVENT_MASK(CSR_PCER_INSTR) ;
15 #e n d i f
16

17 . . .
18

19 #i f (PCRs_STATE_CSR_PCER_TCDM_CONT == 1)
20 eventMask = eventMask | CSR_PCER_EVENT_MASK(

CSR_PCER_TCDM_CONT) ;
21 #e n d i f
22 #i f (PCRs_STATE_CSR_PCER_CSR_HAZARD == 1)
23 eventMask = eventMask | CSR_PCER_EVENT_MASK(

CSR_PCER_CSR_HAZARD) ;
24 #e n d i f
25 pcerEventsSet (eventMask) ;
26

27 }
28

29 s t a t i c i n l i n e void vPerfResetandStartCounting (void)
30 {
31 pcerSetAl lCounters (0) ;
32

33 pcerModeSet (CSR_PCMR_ACTIVE | CSR_PCMR_SATURATE) ;
34 }
35

36 s t a t i c i n l i n e void vPer fStartCount ing (void)
37 {
38 pcerModeSet (CSR_PCMR_ACTIVE | CSR_PCMR_SATURATE) ;
39 }
40

41

42 s t a t i c i n l i n e void vPerfStopCounting (void)
43 {
44 pcerModeSet (0) ;
45 }
46

41

Work implementation

47

48 s t a t i c i n l i n e void vPerfReadAllValues (unsigned i n t ∗ pcrValues)
49 {
50 unsigned i n t i = 0 ;
51

52 #i f (PCRs_STATE_CSR_PCER_CYCLES == 1)
53 pcrValues [i] = pcerGetValue (CSR_PCER_CYCLES) ;
54 i ++;
55 #e n d i f
56

57 . . .
58

59 #i f (PCRs_STATE_CSR_PCER_CSR_HAZARD == 1)
60 pcrValues [i] = pcerGetValue (CSR_PCER_CSR_HAZARD) ;
61 i ++;
62 #e n d i f
63 }
64

65 s t a t i c i n l i n e unsigned i n t usPcerGetNumActive ()
66 {
67 unsigned i n t count = 0 ;
68 #i f (PCRs_STATE_CSR_PCER_CYCLES == 1)
69 count++;
70 #e n d i f
71

72 . . .
73

74 #i f (PCRs_STATE_CSR_PCER_CSR_HAZARD == 1)
75 count++;
76 #e n d i f
77 re turn count ;
78 }

Listing 4.5: perf_API.h header file

4.4 Task
For what concern the tasks it has been implemented additional variables in the Task
Control Block allowing the new scheduling algorithm to perform as well. These new
structures are reported in Listing 4.6 and they are correctly initialized when the
task is created, in the body of prvInitialiseNewTask function, as shown in Listing 4.7.

1

2 unsigned i n t ∗PCRsValue ;
3 unsigned i n t ∗PCRsNum;

42

Work implementation

4 unsigned i n t NumActivePCRs ;
5 #i f (configeUSE_PCER_SCHEDULING_POLICY == 1)
6 unsigned i n t co s t ;
7 #e n d i f
8

Listing 4.6: TCB new structures

It’s important to notice that only the variable cost is declared and initialized if the
macro configeUSE_PCER_SCHEDULING_POLICY is set to 1, letting the others avail-
able for any other possible future implementation. Additionally, the initialization
of these new structures is not performed for the IDLE task because it will be a
computational waste of resources and time.

PCRsValue
It is an array of unsigned int allocated dynamically. After being correctly
initialized it will contain as much entry as the number of performance counter
registers enabled by the application writer through the macros of the FreeR-
TOS.h header file;

PCRsNum
It is a dynamically allocated array of unsigned int. As for the PCRsValue
contains as much entry as the number of performance counter registers. Item
at index i contains the Id of the performance counter whose value is stored at
index i of PCRsValue;

NumActivePCRs
This variable holds the number of performance counter enabled by the macros;

cost
It hold the cost computed over the values holded in the performance counters.
It is used to scheudle the task at every context switch;

43

Work implementation

1 i f (strcmp (pcName , configIDLE_TASK_NAME) !=0) {
2 pxNewTCB−>NumActivePCRs = usPcerGetNumActive () ;
3 #i f (configeUSE_PCER_SCHEDULING_POLICY == 1)
4 pxNewTCB−>cos t = 0 ;
5 #e n d i f
6

7 i f ((pxNewTCB−>PCRsValue = (unsigned i n t ∗) pvPortMalloc (
s i z e o f (unsigned i n t) ∗pxNewTCB−>NumActivePCRs)) == NULL)

8 pr int fC (" Errore n e l l ’ a l l o c a z i o n e d e l l ’ array PCRsValue\n "
) ;

9 f o r (uint8_t i =0; i<pxNewTCB−>NumActivePCRs ; i++){
10 pxNewTCB−>PCRsValue [i] = 0 ;
11 }
12 i f ((pxNewTCB−>PCRsNum = (unsigned i n t ∗) pvPortMalloc (

pxNewTCB−>NumActivePCRs ∗ s i z e o f (unsigned i n t))) == NULL)
13 pr int fC (" Errore n e l l ’ a l l o c a z i o n e d e l l ’ array PCRsNum\n") ;
14 unsigned i n t i = 0 ;
15 #i f (PCRs_STATE_CSR_PCER_CYCLES == 1)
16 pxNewTCB−>PCRsNum[i] = 0 ;
17 i ++;
18 #e n d i f
19

20 . . .
21

22 #i f (PCRs_STATE_CSR_PCER_CSR_HAZARD == 1)
23 pxNewTCB−>PCRsNum[i] = 16 ;
24 i ++;
25 #e n d i f
26

27 }

Listing 4.7: Initialization of the new structures of the TCB

4.5 New Scheduling Algorithm Implementation
In this section are described the changes applied in the body’s functions which
manage the behaviour of the scheduler. As in Listing 4.8 inside the body of the
xPortStartScheduler function, right before the calling of xPortStartFirstTask which
makes the first task execute, the performance counter registers start to count the
occurrence of the events.

1 BaseType_t xPortStar tSchedu le r (void)
2 {
3 extern void xPortStartF i r s tTask (void) ;

44

Work implementation

4

5 . . .
6

7 vPerfStartCount ing () ;
8

9 xPortStartF i r s tTask () ;
10

11 . . .
12

13 }

Listing 4.8: xPortStartScheduling body function changes

The main work is focused in the function managing the context switch, called
vTaskSwitchContext, showed in Listing 4.9. It is useless to perform all the added
functionality to the IDLE task, so they will be executed after an if statement
checking the current task isn’t the IDLE one by its name. Additionally, the if
statement filters out the tasks who has been deleted and need to be switched out
yet, thus no more present in the ReadyList.
For what concern the task switching out, first of all the performance counter
registers are stopped. Then by calling the vPerfReadAllValues function the values
stored in these special registers are read and stored in a temporary array called
values, which contains as many items as the number of performance counter registers
enabled by macros. This array is used to update the total count of each event
during the lifetime of the task and to compute the cost.
The computation of the cost is performed in line 18. A detailed description is given
in Section 4.7.
Once the cost has been computed the scheduler rearranges the ReadyList using
two possible different solutions (line 21, 22), as explained in Section 4.8. The list is
reordered such that next task to be switched in is the one less penalized by the
formulation of the cost.
It’s important to notice that since the cost is initialized with the value 0, each of
the created tasks are allowed to run in turn in the first round. Once the tasks have
entered the Running state once during their lifetime, their next execution is totally
ruled by the new policy. After a task has been switched in the scheduler reset the
performance counters and make them starting count the events.
Two possible solution can be adopted in counting the events:

1. Saving the value of performance counter when the task is switched out during
a context switch, restore them when that task is switched in and saves this
values in a proper structure. When the task is switched out again the number
of events are computed as the difference of the new values and the ones
previously saved.

45

Work implementation

2. Each time a task is switched in during a context switch the values of the
performance counter are not saved, instead they are reset to the 0 value. When
the same task is switched out the performance counter are stopped and their
value are read.

Of the two possible solutions the second one has been adopted.

1 void vTaskSwitchContext (void)
2 {
3 . . .
4

5 xYieldPending = pdFALSE ;
6 traceTASK_SWITCHED_OUT() ;
7

8 . . .
9

10 List_t ∗ pxList = &(pxReadyTasksLists [pxCurrentTCB−>
uxPr i o r i ty]) ;

11

12 i f (strcmp (pxCurrentTCB−>pcTaskName , configIDLE_TASK_NAME) !=0
&& (pxCurrentTCB−>xStateL i s t I t em . pxContainer == pxList))

13 {
14 unsigned i n t va lue s [pxCurrentTCB−>NumActivePCRs] ;
15 vPerfStopCounting () ;
16

17 vPerfReadAllValues (va lue s) ;
18 f o r (unsigned i n t i =0; i<pxCurrentTCB−>

NumActivePCRs ; i++){
19 pxCurrentTCB−>PCRsValue [i] += va lue s [i] ;
20 }
21 #i f (configeUSE_PCER_SCHEDULING_POLICY == 1)
22 pxCurrentTCB−>cos t = usTaskComputeCostMalus (

pxCurrentTCB−>PCRsValue , pxCurrentTCB−>PCRsNum, pxCurrentTCB−>
NumActivePCRs) ;

23

24 i f ((pxList−>uxNumberOfItems) >1)
25 {
26 vLis t Inser tByCost1 (pxList ,&(pxCurrentTCB−>

xStateL i s t I t em)) ;
27 // vLis t Inser tByCost2 (pxList ,&(pxCurrentTCB−>

xStateL i s t I t em)) ;
28 }
29 #e n d i f
30 }
31

32 taskSELECT_HIGHEST_PRIORITY_TASK() ;
33 traceTASK_SWITCHED_IN() ;
34

46

Work implementation

35 . . .
36

37

38 i f (strcmp (pxCurrentTCB−>pcTaskName , configIDLE_TASK_NAME)
!=0)

39 vPerfResetandStartCounting () ;
40 }
41

42 }

Listing 4.9: vTaskSwitchContext body function changes

4.6 Identification of the HPCs
In this section is explored the identification of the events occurring during the
execution of the task sutibale in the formulation of the cost function. From the
PCCRs listed in Table 2.3 have been selected: JR_STALL, LD_STALL, I_MISS, JUMP,
BRANCH, BRANCH_TAKEN and RVC. These registers counts events having bad impact
on the performance of a task in terms of execution time.

The JR_STALL counts the number of jump instructions which introduce a stall due
to a Read after Write. This happens when there is a conditional branch where
two operands need to be compared before making the decision, but one of the
operand need to be written yet by a previous instruction. Typically, this operand
is a register from which the instruction reads the value it is holding.

The LD_STALL counts the number of data hazard encountered when a load in-
struction is executed. Typically this happens when a Read-After-Write takes place,
so when the load instruction is trying to read a register which have to be written
by a previous instruction. To avoid reading a wrong value stalls are introduced in
the pipeline.

The I_MISS counts the number of cycles wasted due to non-ideal caching of
the instructions in memory. The cycle wasted refers to the fetch phase of the
pipeline.

The BRANCH and the BRANCH_TAKEN are used to derive the number of untaken
branches by computing the difference. In a pipelined processor the next instruction
is fetched before the previous ones have been completed. This means that the CPU
fetches the instruction of the branch as if it is taken before it is aware about taking
it or not. An untaken branch translates in the next sequential instruction who has
been fetched to be aborted, resulting in a waste of CPU time.

47

Work implementation

The JUMP register counts the number of unconditional jump family instructions
executed. This leads to the same problem mentioned with the BRANCH and the
BRANCH_TAKEN events.

Finally the RVC counts the number of compressed instructions executed. If the
hardware has not been designed correctly the expansion of the instructions during
the decode phase can lead to important overhead, thus drops in performance.

4.7 Cost’s formulation
The cost, one for each task, is a parameter used by the scheduler to reorder the
ReadyList, thus crucial in the choice of the next task to pick up for execution after
a tick interrupt has occurred.
The formulation used in this work sees the cost as a penalty parameter for the task.
The task associated to a lower cost will be the next one to be picked up from the
ReadyList by the scheduler during a context switch.
The cost is computed as the sum of the weighted events identified in Section 4.6.

cost = W1 ∗ JMP_STALL_EVENTS + W2 ∗ LD_STALL_EVENTS
+W3 ∗ IMISS_EVENTS + W4 ∗ BRANCH_EVENTS

−W4 ∗ TAKEN_BRANCH + W5 ∗ JUMP_EVENTS
+W6 ∗ RVC_EVENTS

(4.1)

The weights associated to the events must follow this restriction :

7Ø
i=1

Wi = 1

The value of the weights must be set correctly by hand in the configuration header
file. If one of the selected performance counter registers in Section 4.6 is disabled
by the macro the cost will not include it automatically, so attention must be paid
in updating the weights according to the restriction.
In Listing 4.10 is shown how the cost is computed after the proper resources has
been identified while in Listing 4.11 is shown the definition of the weights in the
FreeRTOS.h kernel configuration source header file.

1 unsigned i n t usTaskComputeCostMalus (unsigned i n t ∗PCRValues , unsigned
i n t ∗NumPCR, unsigned i n t n) {

2 unsigned i n t co s t = 0 ;
3

48

Work implementation

4 f o r (unsigned i n t i =0; i< n ; i++){
5 switch (NumPCR[i])
6 {
7 case CSR_PCER_JMP_STALL:
8 co s t += W1 ∗ PCRValues [i] ;
9 break ;

10 case CSR_PCER_LD_STALL:
11 co s t += W2 ∗ PCRValues [i] ;
12 break ;
13 case CSR_PCER_IMISS:
14 co s t += W3 ∗ PCRValues [i] ;
15 break ;
16 case CSR_PCER_BRANCH:
17 co s t += W4 ∗ PCRValues [i] ;
18 break ;
19 case CSR_PCER_TAKEN_BRANCH:
20 co s t −= W4 ∗ PCRValues [i] ;
21 break ;
22 case CSR_PCER_JUMP:
23 co s t += W5 ∗ PCRValues [i] ;
24 break ;
25 case CSR_PCER_RVC:
26 co s t += W6 ∗ PCRValues [i] ;
27 break ;
28 d e f a u l t :
29 break ;
30 }
31 }
32 co s t = cos t /60 ;
33

34

35 re turn co s t ;
36 }

Listing 4.10: usTaskComputeCostMalus function body

1

2 #d e f i n e JMP_STALL 10
3 #d e f i n e LD_STALL 10
4 #d e f i n e IMISS 10
5 #d e f i n e BRANCH_UNTAKEN 10
6 #d e f i n e JUMP 10
7 #d e f i n e RVC 10
8

9 #d e f i n e W1 JMP_STALL
10 #d e f i n e W2 LD_STALL
11 #d e f i n e W3 IMISS
12 #d e f i n e W4 BRANCH_UNTAKEN

49

Work implementation

13 #d e f i n e W5 JUMP
14 #d e f i n e W6 RVC

Listing 4.11: Weights definition in FreeRTOS.h

A new cost is computed in every time windows which start from the task being
switched in and the moment in which the same task it is switched out.

4.8 Ready List Rearrangement
In this section is explored the way in which the priority list, used by the scheduler
to choose the task to be switched in during a context switch, is reordered. Two
implementation as been developed. In the first solution the rearrangement is
performed by calling the vListInsertByCost1 function placed in the list.c source
kernel file. This function order the task in the ReadyList in increasing order of cost.
This means the task which have a lower cost is always placed as the "first" item
and will be the one switched in during a context switch. In Listing 4.12 is showed
the implementation. In the following section this implementation is denoted as
’Solution 1’.
However, this solution can lead to an important issue. If there is a task for which
the calculated cost in a context switch is always the lowest among all, then it will
be always the one selected by the scheduler and executes until the task itself is
deleted. For this reason another approach has been followed and implemented by
the function vListInsertByCost2, listed in Listing 4.13. In the following section
this implementation is denoted as ’Solution 2’.
This method sees tasks executing in rounds. In each round every task in the
ReadyList are executed once and the costs computed in each round determines
the order of execution for the next round, placing them always in crescent order
of cost. To keep trace of how many tasks have been executed during a round a
counter has been associated to the ReadyList. The counter allow to place the task
to be rescheduled in the list after those tasks which haven’t been executed yet in
the actual round . Every time the counter reaches the number of items in the list
it means the round has finished (all the tasks performed their execution in that
round), thus the counter is reset to 0.

1

2 void vLis t Inser tByCost1 (List_t ∗ const pxList , ListItem_t ∗ const
pxNewListItem) {

3

4 listTEST_LIST_INTEGRITY(pxList) ;
5 listTEST_LIST_ITEM_INTEGRITY(pxNewListItem) ;

50

Work implementation

6

7

8 ListItem_t ∗ pxIndexEnd = (ListItem_t ∗) &(pxList−>xListEnd) ;
9 uxListRemove (pxNewListItem) ;

10

11

12 i f (usTaskGetCost (pxIndexEnd−>pxPrevious−>pvOwner)<= usTaskGetCost
(pxNewListItem−>pvOwner)) {

13 vList InsertBeforeEndMarker (pxList , pxNewListItem) ;
14 }
15 e l s e {
16 ListItem_t ∗ p x I t e r a t o r ;
17 f o r (p x I t e r a t o r = pxIndexEnd ; usTaskGetCost (pxI t e ra to r −>

pxNext−>pvOwner) <= usTaskGetCost (pxNewListItem−>pvOwner) ;
p x I t e r a t o r = pxI te ra to r −>pxNext) ;

18 pxNewListItem−>pxNext = pxI te ra to r −>pxNext ;
19 pxNewListItem−>pxPrevious = p x I t e r a t o r ;
20

21 pxI te ra to r −>pxNext−>pxPrevious = pxNewListItem ;
22 pxI te ra to r −>pxNext = pxNewListItem ;
23

24 pxNewListItem−>pxContainer = pxList ;
25 (pxList−>uxNumberOfItems)++;
26 }
27 }

Listing 4.12: vListInsertByCost1 body function

1

2 void vLis t Inser tByCost2 (List_t ∗ const pxList , ListItem_t ∗ const
pxNewListItem) {

3

4

5 BaseType_t found = pdFALSE ;
6

7 listTEST_LIST_INTEGRITY(pxList) ;
8 listTEST_LIST_ITEM_INTEGRITY(pxNewListItem) ;
9

10 pxList−>pxIndex = (ListItem_t ∗) &(pxList−>xListEnd) ;
11

12

13 i f ((pxList−>counter) == (pxList−>uxNumberOfItems))
14 (pxList−>counter) == 0 ;
15

16 uxListRemove (pxNewListItem) ;
17 pxList−>pxIndex = (ListItem_t ∗) &(pxList−>xListEnd) ;
18

19 i f ((pxList−>uxNumberOfItems) == 2)

51

Work implementation

20 {
21 vList InsertBeforeEndMarker (pxList , pxNewListItem) ;
22 }
23 e l s e {
24 i f (pxList−>counter == 0) {
25 vList InsertBeforeEndMarker (pxList , pxNewListItem) ;
26 }
27 e l s e {
28 ListItem_t ∗ pxI t e r ;
29 ListItem_t ∗ const pxIndexEnd = (ListItem_t ∗) &(pxList−>

xListEnd) ;
30 i f (usTaskGetCost (pxIndexEnd−>pxPrevious−>pvOwner) <=

usTaskGetCost (pxNewListItem−>pvOwner)) {
31 vList InsertBeforeEndMarker (pxList , pxNewListItem) ;
32 }
33 e l s e {
34 pxI t e r = pxIndexEnd ;
35 f o r (unsigned i n t i =0; i<pxList−>counter ; i++){
36 pxI t e r = pxIter −>pxPrevious ;
37 }
38 i f (usTaskGetCost (pxIter −>pvOwner) >= usTaskGetCost (

pxNewListItem−>pvOwner))
39 {
40 pxNewListItem−>pxNext = pxI t e r ;
41 pxNewListItem−>pxPrevious = pxIter −>pxPrevious ;
42

43 pxIter −>pxPrevious−>pxNext = pxNewListItem ;
44 pxIter −>pxPrevious = pxNewListItem ;
45

46 pxNewListItem−>pxContainer = pxList ;
47 (pxList−>uxNumberOfItems)++;
48 }
49 e l s e {
50 f o r (; usTaskGetCost (pxIter −>pxNext−>pvOwner) >

usTaskGetCost (pxNewListItem−>pvOwner) ; px I t e r=pxIter −>pxNext) {} ;
51

52 pxNewListItem−>pxNext = pxIter −>pxNext ;
53 pxNewListItem−>pxPrevious = pxI t e r ;
54

55 pxIter −>pxNext−>pxPrevious = pxNewListItem ;
56 pxIter −>pxNext = pxNewListItem ;
57

58 pxNewListItem−>pxContainer = pxList ;
59 (pxList−>uxNumberOfItems)++;

60 }
61 }
62 }
63 (pxList−>counter)++;

52

Work implementation

64 i f ((pxList−>counter) == (pxList−>uxNumberOfItems)) {
65 (pxList−>counter) = 0 ;
66 }
67 }
68 }

Listing 4.13: vListInsertByCost2 body function

53

Chapter 5

Results and performance
analysis

5.1 Benchmarks selection
The analysis of the performance reached by the new implementation of the scheduler
have been carried out with the benchmarks offered by the Tacle-Bench repository.
It has been used this collection of benchmarks because as reported in [14] the
programs have been developed by different research groups, they don’t rely on
system-specific header files through #include directives or on an operating system
for their execution and are written in C. The input data for all benchmarks is
embedded directly within the C source code itself. Additionally, any functions that
might be needed from mathematical libraries are provided within the C source
code as well. All these features make this collection suitable for applications in
general embedded or bare-bone systems.
Among all the benchmarks, priority in the selection was given to the ones picked
up from MiBench repository [15], specifically built for the embedded domain. The
selected benchmarks have been divided in two groups. The first group, showed in
Table 5.1, is a collection of tasks which should be rewarded by the implementation
of the new scheduler. Tasks belonging to this category are called ’Critical’.

54

Results and performance analysis

Name Description Code Size Origin
rijndael_dec Rijndael AES decryption 820 MiBench
rijndael_enc Rijndael AES encryption 734 MiBench

lift A lift controller 361 MartinSchoeberl[16]
bitonic Bitonic sorting network 117 MiBench

Table 5.1: Group 1 : Critical tasks

On the contrary, the second group identifies the ’Non-Critical’ tasks which
should be penalized. The tasks belonging to this group are listed in Table 5.2.

Name Description Code Size Origin
gsm_enc GSM provisional standard encoder 1491 MediaBench[17]
minver Floating point matrix inversion 141 SNU-RT [18]

dijkstra All pairs shortest path 117 MiBench

Table 5.2: Group 2 : Non-critical tasks

From these benchmark tests several use cases have been defined. The performance
analysis has been performed over them. Each use case is composed of a different set
or subset of tasks belonging from the Critical and Non-critical group, thus adding
diversity and making the results more valuable in the analysis. The use cases are
reported in Table 5.3.

55

Results and performance analysis

USE CASES
Use Case 1 Use Case 2 Use Case 3 Use Case 4

rijndael_dec
rijndael_enc

lift
bitonic
gsm_enc
dijkstra
minver

Table 5.3: Benchmarks for each use case

5.2 Benchmarks environment set up
This section describes how the environment has been set up to run the benchmarks.
Each benchmark is executed in FreeRTOS as a standalone task. The FreeRTOS
created tasks execute a function consisting of a loop iterated N times, where in
each iteration is called the main function of the benchmark you want to execute.
When the loop ends the task delete itself calling the API function vTaskDelete
passing the NULL parameter. To make the main function of the test benchmarks
available you need to export the main benchmark function in your main file and all
the source *.c and *.h files must be linked by the compiler exploiting the makefile.
In Listing 5.1 is shown an example.

1

2 #inc lude <FreeRTOS . h>
3 #inc lude <task . h>
4

5 /∗ c s t d l i b ∗/
6 #inc lude <s t d i o . h>
7

8 #inc lude " system . h "
9 #inc lude " t imer_irq . h "

10

11 extern void mainBitCount () ;
12

13 void vAppl icat ionMal locFai ledHook (void) ;
14 void vAppl icat ionId leHook (void) ;
15 void vApplicat ionStackOverf lowHook (TaskHandle_t pxTask , char ∗

pcTaskName) ;
16 void vApplicationTickHook (void) ;
17

18 #d e f i n e N 100
19

56

Results and performance analysis

20

21 void ta skB i ton i c (void ∗ pvParameters) {
22

23 unsigned i n t time = xTaskGetTickCount () ;
24 f o r (unsigned i n t i = 0 ; i<N ; i++)
25 {
26 mainBitonic () ;
27 }
28 time = xTaskGetTickCount () − time ;
29 p r i n t f (" B i ton i c time : %u\n" , time) ;
30 vTaskDelete (NULL) ;
31 }
32

33 i n t main (void)
34 {
35 prvSetupHardware () ;
36

37 xTaskCreate (taskBi ton ic ,
38 " B i ton i c " ,
39 configMINIMAL_STACK_SIZE∗2 ,
40 (void ∗)NULL,
41 configMAX_PRIORITIES−1,
42 NULL) ;
43 vTaskStartScheduler () ;
44 re turn 1 ;
45 }

Listing 5.1: c source code example

Once the simulated FreeRTOS is launched it will never stop even if all the created
tasks are delete, because there will be always at least one task executing: the IDLE
task. To force the exiting from the execution of the OS a call to xPortEndSched-
uler() is performed once the IDLE task is switched in. This event occurs only
after all tasks have finished executing their function, thus after they have been all
deleted.
The selected benchmarks have different size in therms of line of code. This trans-
lates in a significant difference in lifetime execution which can produce unreliable
results. The execution time of each task has been made less or more equal with
a margin of error by fixing the number N of iteration in each task function of a
multiplication factor (see Table 5.4).
Additionally, in the vTaskDelete API function it has been added some code which
performs the following operations : first it update the total count of events and
second prints their value on stdout.

57

Results and performance analysis

Name Multiplication Factor
rijndael_dec 3
rijndael_enc 3

lift 25.5
bitonic 800
gsm_enc 4
dijkstra 1/2
minver 525

Table 5.4: Multiplication factors of tasks’ loop

1

2 void vTaskDelete (TaskHandle_t xTaskToDelete)
3 {
4 TCB_t ∗pxTCB;
5 taskENTER_CRITICAL() ;
6 {
7 pxTCB = prvGetTCBFromHandle (xTaskToDelete) ;
8

9 unsigned i n t va lue s [pxTCB−>NumActivePCRs] ;
10 i f (pxTCB == pxCurrentTCB) {
11 vPerfStopCounting () ;
12 vPerfReadAllValues (va lue s) ;
13 f o r (unsigned i n t i =0; i<pxTCB−>NumActivePCRs ; i++){
14 pxTCB−>PCRsValue [i] += va lue s [i] ;
15 }
16 }
17 vTaskPrintPerformanceValue (pxTCB−>PCRsValue , pxTCB−>PCRsNum,

pxTCB−>NumActivePCRs) ;
18

19 . . .
20

21 }

Listing 5.2: c vTaskDelete added line code

In Listing 5.3 is shown the custom application configuration used to obtain the
results.

1

58

Results and performance analysis

2 #inc lude <s tdde f . h>
3 #i f d e f __PULP_USE_LIBC
4 #inc lude <a s s e r t . h>
5 #e n d i f
6

7 #i f de f ined (__GNUC__)
8 #inc lude <s t d i n t . h>
9 #e n d i f

10

11 #d e f i n e configCLINT_BASE_ADDRESS 0
12 #d e f i n e configUSE_PREEMPTION 1
13 #d e f i n e configUSE_TIME_SLICING 1
14 #d e f i n e configUSE_IDLE_HOOK 1
15 #d e f i n e configUSE_TICK_HOOK 1
16 #d e f i n e configCPU_CLOCK_HZ DEFAULT_SYSTEM_CLOCK
17 #d e f i n e configTICK_RATE_HZ ((TickType_t) 100)
18 #d e f i n e configMAX_PRIORITIES (3)
19 #d e f i n e configMINIMAL_STACK_SIZE ((unsigned shor t) 256)
20 #d e f i n e configAPPLICATION_ALLOCATED_HEAP 1
21 #d e f i n e configTOTAL_HEAP_SIZE ((s i z e_t) (128 ∗ 1024)

)
22 #d e f i n e configMAX_TASK_NAME_LEN (20)
23 #d e f i n e configUSE_TRACE_FACILITY 1
24 #d e f i n e configUSE_16_BIT_TICKS 0
25 #d e f i n e configIDLE_SHOULD_YIELD 0
26 #d e f i n e configUSE_MUTEXES 1
27 #d e f i n e configQUEUE_REGISTRY_SIZE 8
28 #d e f i n e configCHECK_FOR_STACK_OVERFLOW 2
29 #d e f i n e configUSE_RECURSIVE_MUTEXES 1
30 #d e f i n e configUSE_MALLOC_FAILED_HOOK 1
31 #d e f i n e configUSE_APPLICATION_TASK_TAG 0
32 #d e f i n e configUSE_COUNTING_SEMAPHORES 1
33 #d e f i n e configGENERATE_RUN_TIME_STATS 0
34

35 #d e f i n e configUSE_NEWLIB_REENTRANT 1
36 #d e f i n e configUSE_CO_ROUTINES 0
37 #d e f i n e configMAX_CO_ROUTINE_PRIORITIES (2)
38

39 #d e f i n e configUSE_TIMERS 0
40 #d e f i n e configTIMER_TASK_PRIORITY (configMAX_PRIORITIES − 1)
41 #d e f i n e configTIMER_QUEUE_LENGTH 4
42 #d e f i n e configTIMER_TASK_STACK_DEPTH (configMINIMAL_STACK_SIZE)
43

44 #i f n d e f uartPRIMARY_PRIORITY
45 #d e f i n e uartPRIMARY_PRIORITY (configMAX_PRIORITIES − 3)
46 #e n d i f
47

48 #d e f i n e INCLUDE_vTaskPrioritySet 1
49 #d e f i n e INCLUDE_uxTaskPriorityGet 1

59

Results and performance analysis

50 #d e f i n e INCLUDE_vTaskDelete 1
51 #d e f i n e INCLUDE_vTaskCleanUpResources 1
52 #d e f i n e INCLUDE_vTaskSuspend 1
53 #d e f i n e INCLUDE_vTaskDelayUntil 1
54 #d e f i n e INCLUDE_vTaskDelay 1
55 #d e f i n e INCLUDE_eTaskGetState 1
56 #d e f i n e INCLUDE_xTimerPendFunctionCall 0
57 #d e f i n e INCLUDE_xTaskAbortDelay 1
58 #d e f i n e INCLUDE_xTaskGetHandle 1
59 #d e f i n e INCLUDE_xSemaphoreGetMutexHolder 1
60

61 #i f d e f __PULP_USE_LIBC
62 #d e f i n e configASSERT (x) a s s e r t (x)
63 #e l s e
64 #d e f i n e configASSERT (x) do { i f ((x) == 0) {

taskDISABLE_INTERRUPTS() ; f o r (; ;) ; } } whi l e (0)
65 #e n d i f
66 #d e f i n e configUSE_PORT_OPTIMISED_TASK_SELECTION 0
67 #d e f i n e configKERNEL_INTERRUPT_PRIORITY 7
68 #d e f i n e configeUSE_PCER_SCHEDULING_POLICY 1
69 #e n d i f /∗ FREERTOS_CONFIG_H ∗/

Listing 5.3: FreeRTOSConfig.h header file

The process of data collection has been automatized with a bash script and a
python one. The bash script create the txt file passed as parameter and in a
loop repeated 15 times run an instance of GVSoC through the makefile waiting
the process to finish. All the output printed during each execution of GVSoC is
redirected and appended to the created .txt file. The python script instead runs
the bash script waiting its end and then process the .txt file, passed as a parameter
in the command line when launching the script, filtering the revelant information.

5.3 Results and analysis
This section explores the results obtained by this work and cover an analysis on
them. The turnaround time and the total count of the events identified in Section
4.6 are the metrics target of the analysis. The main focus is given to the turnaround
time since the goal of the work is to speed up the performance of the OS.
By taking a look at the log .txt file it has been noticed that in each of the 15
repetition the value of the turnaround time and the final count of the values stored
in the performance counter registers are always the same. This is possible since the
scheduler of a real-time system is deterministic. Thus, it is useless to investigate
further in the analysis performing measures like the average, the median, the
variance and the standard deviation.
In Figures 5.1, 5.2, 5.3, 5.4 is represented the turnaround time of tasks in each

60

Results and performance analysis

use case for all the implementations, the default one and the news created for this
work.
The ’Solution 1’ solution brings a big improvement to the performance of the
system. The task belonging to the Critical group, thus the one which should be
rewarded by this solution, finish their execution earlier with respect to the default
implementation: their turnaround time is improved up to almost 64%. For what
concern the Non-Critical tasks we can see that in 5.1, 5.2, 5.3, there is a small per-
centage of improvement with an exception for the minver task having a turnaround
time slightly higher. In 5.4 instead the Non-Critical task dijkstra, has performed
imperceptibly worse with respect the the default scheduling implementation.
Even if few tasks had a drop of the performance in terms of turnaround time, we
can see from Figure 5.5 that the total execution time (the sum of the turnaround
time of each task) in each use case is lower compared with the ’Default’ solution.
More specifically in Use Case 1 we have an upgrade of 23%, in Use Case 2 it is of
22%, in Use Case 3 is of 15% and finally for Use Case 4 we have a 21% improvement
in terms of total turnaround time.
Tables 5.5, 5.6, 5.7, 5.8 shows the total costs calculated for each task during its
lifetime in each scenario. From Table 5.9 to Table 5.29 are reported the total value
of the HPCs for each task in each use case. For the two new solutions adopted the
total cost is generally higher. This behaviour is possible since the way in which
the task are scheduled is different and all the environment is simulated. However
based on the cost of its relative implementation, ’Solution 1’ solution demonstrates
an upgrade in performance because a task producing a low cost doesn’t have to
wait to be executed again due to the time slicing property of the default algorithm.
They way in which the priority list is reordered allows the turnaround time of the
rewarded tasks to be lower compared to the original solution because a task will
be the only one executing until the moment a tick interrupt occurs the computed
cost is lower than the other tasks’ one.
For what concern the ’Solution 2’ solutions we can see the turnaround time is
imperceptibly higher with respect to the Default one. This implementation avoids
a task to wait indefinitely due to a cost of some other tasks which is always lower,
but the way in which the list is reordered and the way in which the next task to be
switched is chosen doesn’t produce an effect considerably different from the original
solution. For this reason the results obtained are practically identical, indeed the
Default one is preferable.

61

Results and performance analysis

Figure 5.1: Turnaround time use case 1

62

Results and performance analysis

Figure 5.2: Turnaround time use case 2

63

Results and performance analysis

Figure 5.3: Turnaround time use case 3

64

Results and performance analysis

Figure 5.4: Turnaround time use case 4

65

Results and performance analysis

Figure 5.5: Total turnaround time

66

Results and performance analysis

Use case 1 : Total cost
Default Solution 1 Solution 2

rijndael_dec 50102396 50102489 50102520
rijndael_enc 49733203 49733234 49733327

lift 71823527 71823603 71823603
bitonic 146649573 146649683 146649683
gsm_enc 320584630 320597411 320575863
dijkstra 401741839 401764781 401741953
minver 518833045 518818089 518833169

Table 5.5: Use case 1 total cost

Use case 2 : Total cost
Default Solution 1 Solution 2

rijndael_enc 49733203 49733234 49733327
lift 71823417 71823448 71823603

bitonic 146649573 146649697 146649635
dijkstra 401740850 401764780 401740912
minver 518833045 518818125 518833169

Table 5.6: Use case 2 total cost

67

Results and performance analysis

Use case 3 : Total cost
Default Solution 1 Solution 2

rijndael_dec 50102397 50102428 50102521
gsm_enc 320604347 320591464 320581255
dijkstra 401741886 401764842 401741952
minver 518833045 518818053 518833169

Table 5.7: Use case 3 total cost

Use case 4 : Total cost
Default Solution 1 Solution 2

rijndael_enc 49733251 49733282 49733282
rijndael_dec 50102459 50102428 50102569

lift 71823478 71823602 71823602
bitonic 146649511 146649697 146649635
dijkstra 401740863 401702451 401742001

Table 5.8: Use case 4 total cost

Use case 1 : rijndael_enc
Default Solution 1 Solution 2

LD_STALL 21825355 21825371 21825381
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 24814822 24814841 24814850

BRANCH 32544186 32544219 32544238
BRANCH_TAKEN 29503933 29503946 29503955

RVC 52773 52749 52813
Total cost 49733203 49733234 49733327

Table 5.9: Use case 1 : rijndael_enc HPCs total values

68

Results and performance analysis

Use case 1 : rijndael_dec
Default Solution 1 Solution 2

LD_STALL 22196934 22196963 22196960
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 24683362 24683395 24683390

BRANCH 33354246 33354305 33354298
BRANCH_TAKEN 30186119 30186143 30186141

RVC 53973 53969 54013
Total cost 50102396 50102489 50102520

Table 5.10: Use case 1 : rijndael_dec HPCs total values

Use case 1 : bitonic
Default Solution 1 Solution 2

LD_STALL 32115337 32115353 32115353
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 84838126 84838147 84838147

BRANCH 71910742 71910778 71910778
BRANCH_TAKEN 42269973 42269989 42269989

RVC 53973 55394 55394
Total cost 146649573 146649683 146649683

Table 5.11: Use case 1 : bitonic HPCs total values

Use case 1 : lift
Default Solution 1 Solution 2

LD_STALL 28117845 28117868 28117868
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 30714134 30714155 30714155

BRANCH 133186073 133186115 133186115
BRANCH_TAKEN 120354846 120354863 120354863

RVC 160321 160328 160328
Total cost 71823527 71823603 71823603

Table 5.12: Use case 1 : lift HPCs total values

69

Results and performance analysis

Use case 1 : gsm_enc
Default Solution 1 Solution 2

LD_STALL 276981220 276981295 276981118
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 28867393 28881800 28858424

BRANCH 78262052 78257253 78264635
BRANCH_TAKEN 63585048 63582010 63587367

RVC 59013 59073 59053
Total cost 320584630 320597411 320575863

Table 5.13: Use case 1 : gsm_enc HPCs total values

Use case 1 : minver
Default Solution 1 Solution 2

LD_STALL 13762324 13760030 13762350
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 38649804 38648092 38649832

BRANCH 103465562 103458654 103465614
BRANCH_TAKEN 50612149 50610431 50612171

RVC 413567504 413561744 413567544
Total cost 518833045 518818089 518833169

Table 5.14: Use case 1 : minver HPCs total values

Use case 1 : dijkstra
Default Solution 1 Solution 2

LD_STALL 245174464 245177997 245174485
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 4543350 4546004 4543370

BRANCH 320599728 320610314 320599778
BRANCH_TAKEN 168643552 168646203 168643569

RVC 67849 76669 67889
Total cost 401741839 401764781 401741953

Table 5.15: Use case 1 : dijkstra HPCs total values

70

Results and performance analysis

Use case 2 : dijkstra
Default Solution 1 Solution 2

LD_STALL 245174311 245177996 245174324
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 4543236 4546004 4543250

BRANCH 320599272 320610314 320599298
BRANCH_TAKEN 168643438 168646203 168643449

RVC 67469 76669 67489
Total cost 401740850 401764780 401740912

Table 5.16: Use case 2 : dijkstra HPCs total values

Use case 2 : minver
Default Solution 1 Solution 2

LD_STALL 13762324 13760039 13762350
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 38649804 38648103 38649832

BRANCH 103465562 103458668 103465614
BRANCH_TAKEN 50612149 50610439 50612171

RVC 413567504 413561754 413567544
Total cost 518833045 518818125 518833169

Table 5.17: Use case 2 : minver HPCs total values

Use case 2 : rijndael_enc
Default Solution 1 Solution 2

LD_STALL 21825355 21825371 21825381
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 24814822 24814841 24814850

BRANCH 32544186 32544219 32544238
BRANCH_TAKEN 29503933 29503946 29503955

RVC 52773 52749 52813
Total cost 49733203 49733234 49733327

Table 5.18: Use case 2 : rijndael_enc HPCs total values

71

Results and performance analysis

Use case 2 : bitonic
Default Solution 1 Solution 2

LD_STALL 32115337 32115363 32115350
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 84838126 84838154 84838140

BRANCH 71910742 71910794 71910768
BRANCH_TAKEN 42269973 42269995 42269984

RVC 55341 55381 55361
Total cost 146649573 146649697 146649635

Table 5.19: Use case 2 : bitonic HPCs total values

Use case 2 : lift
Default Solution 1 Solution 2

LD_STALL 28117829 28117845 28117868
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 30714113 30714132 30714155

BRANCH 133186037 133186070 133186115
BRANCH_TAKEN 120354830 120354843 120354863

RVC 160268 160244 160328
Total cost 71823417 71823448 71823603

Table 5.20: Use case 2 : lift HPCs total values

Use case 3 : minver
Default Solution 1 Solution 2

LD_STALL 13762324 13760021 13762350
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 38649804 38648081 38649832

BRANCH 103465562 103458640 103465614
BRANCH_TAKEN 50612149 50610423 50612171

RVC 413567504 413561734 413567544
Total cost 518833045 518818053 518833169

Table 5.21: Use case 3 : minver HPCs total values

72

Results and performance analysis

Use case 3 : rijndael_dec
Default Solution 1 Solution 2

LD_STALL 22196935 22196951 22196961
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 24683362 24683381 24683390

BRANCH 33354246 33354279 33354298
BRANCH_TAKEN 30186119 30186132 30186141

RVC 53973 53949 54013
Total cost 50102397 50102428 50102521

Table 5.22: Use case 3 : rijndael_dec HPCs total values

Use case 3 : gsm_enc
Default Solution 1 Solution 2

LD_STALL 276981259 276981230 276981102
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 28883892 28871707 28862397

BRANCH 78258448 78261909 78264035
BRANCH_TAKEN 63578265 63582435 63585332

RVC 59013 59053 59053
Total cost 320604347 320591464 320581255

Table 5.23: Use case 3 : gsm_enc HPCs total values

Use case 3 : dijkstra
Default Solution 1 Solution 2

LD_STALL 245174466 245178009 245174484
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 4543357 4546018 4543370

BRANCH 320599738 320610340 320599778
BRANCH_TAKEN 168643557 168646214 168643569

RVC 67882 76689 67889
Total cost 401741886 401764842 401741952

Table 5.24: Use case 3 : dijkstra HPCs total values

73

Results and performance analysis

Use case 4 : rijndael_enc
Default Solution 1 Solution 2

LD_STALL 21825358 21825374 21825381
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 24814829 24814848 24814850

BRANCH 32544196 32544229 32544238
BRANCH_TAKEN 29503938 29503951 29503955

RVC 52806 52782 52813
Total cost 49733251 49733282 49733327

Table 5.25: Use case 4 : rijndael_enc HPCs total values

Use case 4 : rijndael_dec
Default Solution 1 Solution 2

LD_STALL 22196948 22196951 22196961
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 24683376 24683381 24683390

BRANCH 33354272 33354279 33354298
BRANCH_TAKEN 30186130 30186132 30186141

RVC 53993 53949 54013
Total cost 50102459 50102428 50102521

Table 5.26: Use case 4 : rijndael_dec HPCs total values

Use case 4 : bitonic
Default Solution 1 Solution 2

LD_STALL 32115324 32115363 32115350
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 84838112 84838154 84838140

BRANCH 71910716 71910794 71910768
BRANCH_TAKEN 42269962 42269995 42269984

RVC 55321 55381 55361
Total cost 146649511 146649697 146649635

Table 5.27: Use case 4 : bitonic HPCs total values

74

Results and performance analysis

Use case 4 : lift
Default Solution 1 Solution 2

LD_STALL 28117841 28117867 28117870
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 30714127 30714155 30714162

BRANCH 133186063 133186115 133186125
BRANCH_TAKEN 120354841 120354863 120354868

RVC 160288 160328 160361
Total cost 71823478 71823602 71823650

Table 5.28: Use case 4 : lift HPCs total values

Use case 4 : dijkstra
Default Solution 1 Solution 2

LD_STALL 245174306 245168393 245174325
JR_STALL 0 0 0
I_MISS 0 0 0
JUMP 4543232 4538793 4543250

BRANCH 320599268 320581542 320599298
BRANCH_TAKEN 168643435 168638999 168643449

RVC 67492 52722 67489
Total cost 401740863 401702451 401740913

Table 5.29: Use case 4 : dijkstra HPCs total values

75

Chapter 6

Conclusion and future works

In this work is presented a new scheduling algorithm to be adopted in real-time
operating system which has been developed trying to improve the performance of
the OS itself in therms of tasks’ execution time. The new implementation exploits
the values stored in some special purpose registers called hardware performance
counter registers. The values hold by these registers are the occurrences of specific
hardware related events. The analysis has been performed on results obtained
using benchmarks located in the Tacle-bench Github repository. The data showed
that one of the two solution developed actually improved the performance of the
OS. Considering the sum of the turnaround time for each task in each selected
scenario we have an average improvement of 20.25%.
Even if the solution proposed demonstrates to bring an improvement to the OS it
has some gaps. Some possible future works, built upon the actual one, can be to
consider some of the events used in the formulation of the cost in relation to others
hardware occurrences. An example could be to consider the number of stall as a
percentage related to the number of instruction executed and not as an absolute
value. Furthermore the analysis can be extended by changing the weights assigned
to each event and see how the scheduler performance changes giving more or less
importance to specific events. Moreover these weights can be made dynamic. They
can be defined as static global variable inside the task.c source kernel file and the
scheduler can change their value depending on the type of events occurring more
frequently when tasks are executing, potentially adopting some algorithm based on
Artificial Intelligence.

76

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Environment
	RISCV Architecture
	RI5CY

	Hardware Performance Counters in RI5CY
	HPCs basic notion
	HPCs implementation and access
	Performance Counter Mode Register (PCMR)
	Performance Counter Event Register (PCER)
	Performance Counter Counter Register (PCCR)

	GVSoC
	PULP Project
	PULPissimo
	PULP software prospective

	FreeRTOS
	Real-Time Operating System (RTOS)
	FreeRTOS overview
	FreeRTOS kernel
	FreeRTOS kernel Memory allocation
	FreeRTOS applications memory management

	FreeRTOS task
	Task/Process basic concept
	Task implementation
	Task states
	Task representation
	Task Priority
	Idle Task

	FreeRTOS time measurement and tick interrupt
	FreeRTOS scheduling overview
	Fixed-priority preemptive scheduling
	Cooperative Scheduling

	FreeRTOS scheduling features implementation
	Scheduler execution
	Scheduler context switch

	FreeRTOS Ready list implementation

	Work implementation
	Project goal
	Kernel configuration
	Hardware Performance Counter
	Task
	New Scheduling Algorithm Implementation
	Identification of the HPCs
	Cost's formulation
	Ready List Rearrangement

	Results and performance analysis
	Benchmarks selection
	Benchmarks environment set up
	Results and analysis

	Conclusion and future works

