
POLITECNICO DI TORINO

Master Degree in Data Science and Engineering

Master Thesis

Sequential Domain Generalisation
for Egocentric Action Recognition

Supervisor
Prof. Giuseppe Averta
Co-supervisors:
Dott.ssa Chiara Plizzari
Dott. Simone Alberto Peirone
Dott. Marco Ciccone

Candidate
Amirshayan Nasirimajd

April 2024

Sequential Domain Generalisation for Egocentric Action Recognition
Master thesis. Politecnico di Torino, Turin.

© Amirshayan Nasirimajd. All rights reserved.
March 2024.

The work in this thesis has been submitted for publication in IEEE Robotics and
Automation Letters (RA-L).

ii

https://www.ieee-ras.org/publications/ra-l
https://www.ieee-ras.org/publications/ra-l

Abstract

Due to the widespread popularity and accessibility of wearable devices, a sub-
stantial volume of egocentric (first-person) video data has become readily accessible.
This has resulted in a growing interest of researchers in the field of egocentric vision
understanding. This field of study holds significant potential in several areas, es-
pecially in robotics and the analysis of human behaviour. Indeed, gaining insights
into human behaviour from an egocentric perspective can offer valuable insights to
robotics experts, facilitating the development of robots with more human-like visual
capabilities and a deeper comprehension of their surroundings similar to humans.

One of the main applications of egocentric vision is recognising the activities
carried out by the wearer. However, one limitation when deploying action recog-
nition models to real-world scenarios is that visual appearance data such as RGB
inputs vary a lot when presented with new data distributions different from the
training set, which inevitably leads to a decline in model performance. This issue
is commonly known as the domain shift. Extensive efforts have been performed to
increase model robustness across diverse domains (domain generalization).

To tackle this problem, we present an action recognition method that relies on
actions’ temporal context. In addition, to capture the actions’ temporal context we
decided to use the action sequences. The rationale behind this is that sequences of
actions do not depend on the layout or appearance of the environment. Exploiting
action sequences, we aim to produce a more generalized model and mitigate the
adverse impact of domain shift.

In this thesis, we present Sequential Domain Generalisation (SeqDG), which is
a reconstruction-based architecture to improve the generalization of action recogni-
tion models. This is accomplished through the utilization of a language model and a
dual encoder-decoder that refines the feature representation. The model is trained
with a visual-text sequence reconstruction objective (SeqRec) that utilises contex-
tual information from both text and visual modalities to reconstruct a sequence’s
central action. Furthermore, we introduce SeqMix, a technique that mixes actions
that share the same label but come from different domains to make the model more
robust to visual changes.

We evaluate our approach’s effectiveness and benefits in domain generalization
on the EPIC-KITCHENS [1] and EGTEA [2] dataset. Our model is trained on a set
of environments and tested on new unseen environments, showing the generalization
benefits of the proposed approach. Extensive experiments show that our method
improves by up to +2.4% compared to the baseline. This evidence suggests the
proposed method’s ability to improve model robustness and generalisation during
domain shifts.

Contents

List of Tables iii

List of Figures iv

1 Introduction 1
1.1 Research goal and contributions . 3

2 Related Works 5
2.1 Introductory Concepts . 5

2.1.1 Machine Learning and Deep Learning 5
2.1.2 Perceptrons . 6
2.1.3 Multi-Layer Perceptrons . 7
2.1.4 Activation Functions . 8
2.1.5 Loss Functions . 11
2.1.6 Learning and Optimization 12
2.1.7 Regularization . 13

2.2 Convolutional Neural Network (CNN) 14
2.2.1 Convolutional Layer . 15
2.2.2 Pooling layers . 16

2.3 Sequential Data . 17
2.3.1 Recurrent Neural Network(RNN) 17
2.3.2 Long Short-Term Memory(LSTM) 18
2.3.3 Transformers . 19

2.4 Egocentric Action Recognition . 21
2.4.1 3D Base Action Recognition 22
2.4.2 2D Base Action Recognition 24
2.4.3 Multimodal Egocentric Action Recognition 24
2.4.4 Context Base Egocentric Action Recognition 25

2.5 Domain Generalization & Unsupervised Domain Adaptation 27
2.5.1 General Adversarial Methods 27
2.5.2 Video Adversarial Domain Adaptation 27
2.5.3 Egocentric Domain Adaptation 29

i

2.5.4 Adversarial free Domain Adaptation 29
2.5.5 Domain Generalization . 30

3 Sequential Domain Generalisation for Egocentric Action Recogni-
tion (SeqDG) 32
3.1 Motivation . 32
3.2 Overview . 33
3.3 Sequential Data Definition . 34
3.4 SeqMix: Sequence Mix . 35
3.5 Sequence Feature Embedding . 36
3.6 Sequence Reconstruction . 37
3.7 Action Classification . 39
3.8 Inference Time . 40

4 Experiments 41
4.1 Datasets . 41

4.1.1 Epic-Kitchens-55 . 41
4.1.2 Epic-Kitchens-100 . 42
4.1.3 Extended Georgia Tech Egocentric Activity (EGTEA) . . . 44

4.2 Implementation details . 44
4.3 SeqDG Cross-domain Results . 45

4.3.1 Comparison with state-of-the-art 46
4.4 SeqDG Intra-domain Results . 47

4.4.1 Comparison With State-Of-The-Art 47
4.5 Ablations . 48

4.5.1 SeqDG components . 48
4.5.2 Epic-Kitchen-100 UDA Challenge 49
4.5.3 Sequence length . 50
4.5.4 Sequences Similarity across the domain 50
4.5.5 Hyper-parameters variation 51
4.5.6 Modalities Ablation . 52
4.5.7 Language Model . 52
4.5.8 Qualitative Results . 53

5 Conclusions 54

Bibliography 56

ii

List of Tables

4.1 Comparison with state-of-the-art in the Cross-Domain setting of the
Epic-Kitchen-100 UDA benchmark (target validation split). Models
are evaluated in terms of Top-1 and Top-5 Verb, Noun and Action
accuracy (%). 46

4.2 Epic-Kitchen-55 Results . 47
4.3 EPIC-Kitchens-100 Intra-domain Comparison 48
4.4 EGTEA state-of-the-art comparison 48
4.5 Ablation study on the different components of SeqDG on EK-100 in

terms Top-1 accuracy (%) using RGB information only. 49
4.6 Top-1 accuracy on UDA’s EPIC-Kitchens-100 leaderboard. Our sub-

mission is highlighted. 49
4.7 Comparison of different modalities on EK-100. 52
4.8 Comparison of different Language Models for SeqDG. 52

iii

List of Figures

1.1 Egocentric data sample gathered across different activities, and from
people in different places in the world that wearing camera gadgets,
taken from the [3]. 2

2.1 Perceptrons are simplified models of artificial neurons, inspired by
the structure and function of biological neurons in the human brain,
The following figure is taken from [4]. 6

2.2 A perceptron unit as a simple function used in artificial neural net-
works. 7

2.3 A Multi-Layer Perceptron (MLP) mimics human neural networks
with n inputs, multiple hidden layers, and k outputs. Here the con-
nection between each layer presents the weights that will determine
the output of each neuron. 8

2.4 The activation functions plotting. 9
2.5 Here we can see the over-fitting point is the point where validation

loss increases while the training still decreases. 14
2.6 A sample dropout during training, where a group of nodes are ran-

domly eliminated in an epoch of training, resulting in learning their
task by other nodes and increasing robustness. 14

2.7 A sample of CNNs where image features are extracted step by step
and then fed to a fully connected network. 15

2.8 Convolutional function sample process. 16
2.9 Different Pooling methods. 17
2.10 Recurrent Neural Networks (RNNs) where each stat h(t) provides

the output O(t) . 18
2.11 A Long Short-Term Memory(LSTM) cell. 20
2.12 The encoder-decoder architecture of transformers. 21
2.13 The left image is the Inflated Inception-V1 architecture and the right

image is its detailed inception submodule the figure is taken from [5]. 22
2.14 The SlowFast two stream illustration from the paper [6]. In this

figure, the top sampling is the low frame rate for the slow pathway,
and the lower stream is the high frame rate for fast pathway. 23

2.15 The TSM overall illustration from the paper [7]. 24

iv

2.16 The TBN architecture in using three modalities, taken from the pa-
per [8] . 25

2.17 The temporal window sliding throughout the video, taken from the
paper [9] . 26

2.18 The MTCN processing the audio and visual information using trans-
formers, taken from the paper [9] 26

2.19 The architecture of domain adversarial model, taken from the [10]. . 28
2.20 The TA3N architecture, taken from the paper [11]. 28
2.21 The MM-SADA architecture, taken from the paper [12] 29
2.22 The presented CIA model in the paper of [13]. 30
2.23 The presented architecture for RNA model, in the paper [14] 31
3.1 SeqDG architecture. We are given visual and textual inputs XV

and XT . A classification token CLS is appended to the visual input
for classification. Visual inputs are fed to an encoder ENCV, result-
ing in intermediate visual embeddings ZV

i , while textual features
are passed through an identity function to get ZT

i . The latter are
masked (Z̄V

i and Z̄T
i) and fed to two separate decoders DECV and DECT

for visual and text reconstruction (LrV and LrT). The transformed
classification token Z0:1 is fed to classifier h for action classification
(LC). 35

3.2 An example of SeqMix involves a sequence of actions from kitchen
di (opening the fridge, picking up milk, opening the lid, pouring
milk). We want to replace the "pick up milk" action to create a
mixed sequence. Therefore, we choose an action video clip with the
same label from Kitchen dj and replace the equivalent action in the
sequence from Kitchen di. This results in the final mixed sequence
of kitchens di and dj. 36

3.3 During the test time the model froze completely and only the visual
classifier will classify the sequence to classify the middle action. . . 40

4.1 The three domains of visual data for Epic-Kitchens-55 presented in
the MM-SADA [12] paper. 42

4.2 Distribution of actions in Epic-Kitchens-55 for the MM-SADA [12]
split. 43

4.3 Samples of new data of Epic-Kitchens-100, where new kitchen, some
old kitchen re-captured data or changed. 43

4.4 The EGTEA[2] dataset sample frames. 44
4.6 The number of repeated sequences with different numbers of actions

between two different domains in the UDA split of Epic-Kitchen-100[1]. 51
4.7 Parameter analysis of the weights associated with the visual and

textual reconstruction losses of SeqDG (RGB). 51
4.8 Qualitative examples showing success and failure cases of SeqDG. . 53

v

Chapter 1

Introduction

Artificial Intelligence (AI) stands at the forefront of some of the most significant
developments in the field of computer science. The concept of simulating human
learning capabilities through observation has become a foundational principle in
the advancement of AI. This is achieved by the advancement in machine learning
a subfield of AI, which allows machines to acquire the capacity to overcome and
solve challenges by learning from available examples (data). In recent years, a large
increase in accessible data and the growing processing power of GPUs have boosted
the adoption of artificial neural networks as a learning method and the popularity
of deep learning methods.

Deep learning illustrated its ability to solve complex tasks, and this resulted in
the popularity of deep learning in the computer vision field. Within this field, many
classical issues have been successfully addressed through deep learning techniques,
such as object detection, object classification, and segmentation. Initially, these
advancements were concentrated on image data before progressing to more compli-
cated and challenging data, including videos. Consequently, the integration of deep
learning techniques into video understanding tasks has forged a new trajectory and
has given rise to novel research inquiries, such as robotic, and autonomous vehicle
production.

Compared to images, videos introduce a greater level of complexity due to their
inclusion of temporal dimension information, motion patterns, and increased di-
mensionality. For instance, deducing the ongoing activities in a video cannot be
achieved through a single frame; it necessitates the incorporation of temporal infor-
mation spanning the entire video duration. Numerous studies have undertaken the
task of enhancing video comprehension by employing spatial-temporal data blocks
for video analysis, such as the utilization of 3D convolutional layers [5, 15, 16], or
some other approaches that aim to incorporate a lighter of temporal information
through 2D convolutional layers [7, 17, 18, 19].

Furthermore, an additional issue within video understanding involves the matter
of annotations and labels. Annotating video data is a resource-intensive process

1

1 – Introduction

Figure 1.1: Egocentric data sample gathered across different activities, and from people
in different places in the world that wearing camera gadgets, taken from the [3].

that is time and cost-consuming. As a consequence, the diversity of video data
tends to be lower in comparison to image data. This problem introduces the possi-
bility that the training data distributions do not represent enough amount of data
distributions. Therefore, Any model trained for a specific task might experience a
decline in its exceptional performance due to the disparities between the training
and testing datasets. Such a situation arises when the testing dataset introduces
a completely new distribution of data to the model. This shift in data distribu-
tion between the training and testing phases results in what is known as a domain
shift. Consequently, this discrepancy in domains leads to a reduction in the model’s
performance. As a result, it becomes vital to address this concern by maximizing
the utilization of available data and enhancing the model’s ability to adapt to new
domains. Commonly this is done by using unlabeled data from the new domain
(target domain), which this process is known as the unsupervised domain adapta-
tion (UDA). However, the availability of unlabeled data from the target domain is
not always guaranteed. Therefore, we need to maximize the model generalization
by the data from the available domain for training. This approach is normally
referred to as Domain Generalization (DG).

In terms of video understanding, the introduction of wearable gadgets like Go-
Pros, or Google Glass has made a new type of data readily available: first-person
view (egocentric) recordings, such as sample data available in Fig. 1.1. This data

2

1 – Introduction

is particularly interesting for researchers because, unlike the majority of videos
captured in third-person view, it offers a window into human behaviour from the
wearer’s perspective. By studying egocentric data, we can gain valuable insights
into how humans perform tasks and interact with their environment. This knowl-
edge can then be applied to improve robots, allowing them to better mimic human-
like actions and decision-making processes.

However, while video understanding is a complex task it can become more chal-
lenging if it is represented in an egocentric view, due to some specific characteristics
of egocentric videos. In these videos camera normally is mounted on the head of
the person, and close to the scene, as a result, the field of view can become narrow,
and as a result, there will be not a complete representation of the environment.
Furthermore, the constant movement of the camera wearer will represent the dy-
namic change in visual information which makes the understanding of the video
even more complex for the machine. In addition, the lack of availability of diverse
datasets is even more for egocentric data than other types of video data.

Consequently, the lack of data variation, along with additional egocentric video
challenges amplifies the impact of domain shift on egocentric data compared to
other types of video data. As a result, there has been extensive research on facing
the domain shift problem for egocentric data [12, 14, 20, 13].

Nevertheless, most of these works are focused on a single action process of ego-
centric data, while one of the characteristics of egocentric data is the relations of
the continuous actions that form the context of the actions. This context is because
of the wearer’s goal which results in a sequence of related actions that have been
done by the wearer to fulfil his/her goal. In addition, the similarity between the
goals in different domains results in a similarity between the sequence of actions in
different domains. Therefore, the context in videos is domain-agnostic, and it can
be explored as a solution for domain shift.

consequently, this thesis focuses on the use of sequences as a solution for do-
main generalization of egocentric action recognition. Moreover, by looking at the
repeated sequences we try to learn the context and use them to make robust pre-
dictions.

1.1 Research goal and contributions
This work focuses on investigating the context effect on the robust understanding
of long-term egocentric videos across different domains. In addition, we highlight
this effect by assessing the similarity of sequences in different domains. knowing
that human interaction is according to its goal and similar goals result in a repeated
pattern within different environments. Therefore, we tried to take advantage of this
phenomenon to provide a novel approach to generalize the model and mitigate the
domain shift effect.

3

1 – Introduction

Consequently, we propose SeqDG, a novel approach for domain generalization in
egocentric action recognition. SeqDG extracts the context of the action sequence
and introduces a visual-text reconstruction objective. Here, for each modality (vi-
sual or textual), the model reconstructs actions masked in the sequence by using
information from the opposite modality. Additionally, to optimize the model’s abil-
ity to extract domain-agnostic features, we introduce sequences containing a mix
of different actions across different domains.

Finally, we prove our approach performance in domain generalization by as-
sessing our model in several well-known benchmarks. We analyse our proposed
model on the EPIC-KITCHENS-100 [1] and EGTEA [2] benchmarks. The results
indicated by SOTA performance illustrate the model’s effectiveness in unseen en-
vironments in egocentric action recognition by using the sequence, and language
model at the same time.

4

Chapter 2

Related Works

This chapter lays the groundwork for the thesis by introducing the background
information and related works essential to understanding the research. Moreover,
We begin by providing a foundation in core concepts in section 2.1. This section
equips you with the necessary background knowledge. Subsequently, sections 2.2
and 2.3 delve deeper into more advanced concepts.

Also, this Chapter presents a comprehensive overview of some of the key existing
research conducted in this field. We divide the work that has been done into two
groups. First, we will start to introduce well-known models in action recognition
and video understanding in section 2.4.4. Then, in section ??, we will focus on
some of the common practices in the field of domain generalization and adaptation.

2.1 Introductory Concepts
This section will explain the general concepts of deep learning, which are relevant to
the work presented in this thesis. First, we will delve into the fundamental principles
of machine learning in subsection 2.1.1. This will provide a solid foundation for
understanding deep learning concepts. Then, we will focus specifically on deep
learning primary concepts in the remainder of the section. Here, we will explore
core concepts like perceptrons, activation functions, etc.

2.1.1 Machine Learning and Deep Learning
Machine learning (ML) and deep learning (DL) [21] are two powerful tools rapidly
transforming various aspects of our lives. While both fall under the umbrella of
artificial intelligence (AI). The concept of Machine Learning is about empowering
computers to learn and improve without the need for explicit coding. Moreover, ML
algorithms can learn a task by analyzing vast amounts of data, ML algorithms can
identify patterns and relationships, enabling them to make predictions or decisions
on unseen data [22].

5

2 – Related Works

Figure 2.1: Perceptrons are simplified models of artificial neurons, inspired by the
structure and function of biological neurons in the human brain, The following figure is
taken from [4].

Furthermore, DL is a subfield of ML where its algorithm is inspired by the hu-
man brain function. In addition, DL models can learn complex tasks by introducing
artificial neural networks (ANNs), which mimic the human brain neurons in learn-
ing, where a complicated task is distributed over many neurons, and each neuron
is only responsible for doing a simple function. [21]

2.1.2 Perceptrons

The idea of the human neurons inspired the artificial neural networks. In this
idea, each neuron will do a simple process and forward it to the next one. The
simplest artificial neuron is called a perceptron [23], which is a simple binary linear
classification function. Moreover, it receives a set of inputs and performs a weighted
sum function to determine its output. It can be broken down into three main
components:

• Inputs: Represented by a vector X = (x1, x2, . . . , xn), where n is the number
of input features.

• Weights: Represented by another vector W = (w1, w2, . . . , wn), where each
weight wi corresponds to the importance of the ith input.

• Bias: A constant term b added to the weighted sum, allowing the perceptron
to shift the decision boundary.

6

2 – Related Works

𝑥1

𝑥2

𝑥3

𝑥𝑛

1

∑ ො𝑦

𝑤1

𝑤2

𝑤3

𝑤𝑛

𝑏

𝑆𝑈𝑀 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡

Figure 2.2: A perceptron unit as a simple function used in artificial neural networks.

The perceptron’s functionality can be formulated mathematically. The weighted
sum of the inputs is calculated as:

Z =
nØ

i=1
wixi + b (2.1)

This value, Z, is then passed through a threshold function, denoted by σ as the
step function:

σ(Z) =

1 if Z ≥ 0
0 if Z < 0

(2.2)

The step function classifies the input as belonging to one class (output of 1) or
another class (output of 0) based on a linear decision boundary.

2.1.3 Multi-Layer Perceptrons
Multi-layer perceptrons (MLPs)[24, 25] represent a complex mimicking of the hu-
man neural networks compared to single perceptron, and they form the foundational
architecture in the artificial neural networks (ANNs), offering a complex framework
for solving machine learning tasks. They consist of multiple layers of interconnected
nodes (neurons). As indicated in Fig. 2.3 the layers typically include an input layer
to receive data, one or more hidden layers responsible for capturing complex pat-
terns within the input, and an output layer to produce the desired predictions

7

2 – Related Works

𝑥1

𝑥2

𝑥3

𝑥𝑛

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

ℎ𝑎
(1)

ℎ4
(1)

ℎ1
(2)

ℎ2
(2)

ℎ3
(2)

ℎ𝑏
(2)

ℎ4
(2)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

ℎ𝑐
(1)

ℎ4
(1)

𝑦1

𝑦2

𝑦3

𝑦𝑘

𝑦4

𝐼𝑛𝑝𝑢𝑡𝑠 𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 𝑂𝑢𝑡𝑝𝑢𝑡𝑠

Figure 2.3: A Multi-Layer Perceptron (MLP) mimics human neural networks with n
inputs, multiple hidden layers, and k outputs. Here the connection between each layer
presents the weights that will determine the output of each neuron.

or classifications. Each connection between nodes is associated with a weight wi.
Through a process known as backpropagation 2.1.6, MLPs adjust these weights
during training to minimize the discrepancy between predicted and actual outputs,
thereby enhancing their ability to learn the final task.

The process for the i-th layer within a Multi-Layer Perceptron (MLP) can be
mathematically represented using the following formula:

Ôi = ϕ(Ôi−1.Wi−1,i + bi) (2.3)

Where the Ôi is the output of the layer i, and the Wi−1,i is the weight matrix
between layer i and i − 1, b is the bias, ϕ is the activation 2.1.4 function, and the
Ôi−1 is the output of the previous layer. Moreover, the activation function 2.1.4 ϕ
is present to introduce non-linearity into the model, allowing it to learn complex
relationships between the inputs and the output. Finally, The process of feeding
the first layer with the inputs, and forwarding the output of each layer to the next
layer, until the final layer produces the output ŷ is called the feedforward process,
and it is the main function of the MLPs to produce their results.

2.1.4 Activation Functions
MLPs are powerful tools for tackling complex problems one of the important com-
ponents of MLPs is activation functions. They take the weighted sum of inputs from

8

2 – Related Works

510 5 10

0.5

1

−0.5

−1

y

x

−0.5−1 0.5 1

0.5

1

−0.5

−1

y

x

−0.5−1 0.5 1

0.5

1

−0.5

−1

y

x
−2−4 2 4

3

5

−3

−5

y

x

(a) Binary step

(c) ReLU

(b) Sigmoid

(d) Leaky ReLU

Figure 2.4: The activation functions plotting.

previous layers, often along with a bias term, and apply a non-linear transforma-
tion to determine the neuron’s output. This is done to avoid linear transformations,
limiting the ability of MLPs to learn complex patterns.

Moreover, the activation functions affect the learning process of models, and
to better understand them we will introduce some of the well-known activation
functions as indicated in Fig. 2.4. Additionally, the choice of function depends on
the specific problem and network architecture. Understanding these core functions
empowers you to unlock the true potential of MLPs and build powerful machine-
learning models.

9

2 – Related Works

Binary Step Function

The binary step function is a threshold-based classifier. It is one of the simplest
activation functions, and it decides whether to activate the neuron or not. In
addition, it is Mathematically expressed as:

f(x) =

1 if x ≥ 0
0 otherwise.

(2.4)

This function outputs a 1 (activated) if the input (x) is greater than or equal to
0, and a 0 (deactivated) otherwise. While conceptually simple, its limitations, like
not being differentiable which is needed for the learning process as described in the
subsection 2.1.6, and restrict its use in modern MLPs.

Sigmoid Function

Besides the binary step function, a popular choice for non-linear activation in artifi-
cial neural networks is the sigmoid function. This function belongs to the category
of logistic functions and offers a key advantage: its derivative can be easily calcu-
lated. This characteristic is crucial for training these networks. Regardless of the
value fed into the sigmoid function, the output will always fall within a specific
range – between 0 and 1. Described by the formula:

f(x) = 1
1 + exp(−x) (2.5)

This function ensures the output remains within a manageable range. However,
its vanishing gradients in certain regions can hinder training in deep MLPs.

ReLU (Rectified Linear Unit)

The ReLU (Rectified Linear Unit) [26] activation function has become popular
for its efficiency and effectiveness. It acts like a binary step function for negative
values, but for positive input values, letting them pass through unchanged. Unlike
some other activation functions, ReLU’s output isn’t confined to a specific range.
Additionally, the positive half of its operating range boasts a constant, positive
slope when we calculate its derivative, which is helpful for training purposes.In
addition, it can defined as:

f(x) =

x if x > 0
0 otherwise.

(2.6)

This function is computationally inexpensive and avoids the vanishing gradient
problem (a commonly known problem in the deep learning process). However,
ReLU can suffer from "dying ReLU" issues where neurons get stuck at zero.

10

2 – Related Works

Leaky ReLU

Leaky ReLU [26] is a variant of ReLU that introduces a small positive slope for
negative inputs. Represented as:

f(x) =

x if x > 0
0.1x ifx ≤ 0.

(2.7)

This allows a small gradient to flow even for negative inputs, potentially pre-
venting neurons from getting stuck and improving training.

2.1.5 Loss Functions
To better understand a model’s performance, we quantify the discrepancy between
an artificial neural network’s predicted outputs (ŷ) and the actual, desired outputs
(y). This numerical value, crucial in supervised learning frameworks, serves as a
guide during the training process. Therefore, the objective becomes minimising
the loss function, prompting the network to adjust its internal parameters (weights
and biases) to progressively improve its predictive accuracy. Common loss functions
include mean squared error (MSE) for regression tasks and cross-entropy for
classification problems. The choice of loss function depends on the specific problem
and the nature of the output variable.

Mean Squared Error (MSE)

The mean squared error (MSE) loss function is a common loss function for evalu-
ating a model’s performance in regression tasks. It calculates the average squared
difference between the predicted outputs (ŷ) of a model and the ground truth values
(y) in the training data. Mathematically, MSE is expressed as:

MSE(ŷ, y) = 1
N

× Σ(yi − ŷi)2 (2.8)

where N represents the total number of data points and the summation iterates
over all data points (i). This formulation essentially squares the errors for each
prediction, penalizing larger deviations more heavily. By minimizing the MSE
loss function during training, the model learns to adjust its internal parameters to
produce predictions that closely align with the actual values, resulting in improved
regression accuracy. MSE is particularly suitable for problems where the magnitude
of errors is crucial, as squaring the errors emphasizes larger discrepancies.

Cross-Entropy Loss

The cross-entropy loss[27, 28] function is fundamental in classification tasks. In
addition, it measures the difference between the probability distributions of an

11

2 – Related Works

artificial neural network’s predictions (ŷ) and the true labels (y). Unlike the mean
squared error function used in regression, cross-entropy focuses on the information
content of these distributions. Mathematically, it’s often formulated as:

CrossEntropy(ŷ, y) = −Σ(yilogŷi) (2.9)

2.1.6 Learning and Optimization
Considering the objective of the ANN models to be able to map the inputs to the
desired output, and minimize the discrepancy between the predicted and actual
outputs (loss function), the ANN models go through a gradual learning process.
In this process, we iteratively reduce the distance between the output and the
desired output. The method that is commonly used for this goal is called gradient
descent (GD), an optimization method that focuses on minimizing the loss function
iteratively. The GD method starts at a random point and uses the negative of
the slope, which is the gradient of the function, to determine the direction of the
minimum point. Then, by using a hyperparameter called the learning rate, it
determines the magnitude of the move towards the minimum point. Additionally,
the gradual movement is repeated until the minimum is found or a pre-defined
stopping criterion is met, such as reaching a maximum number of iterations or
achieving a sufficiently low loss value.

Gradient Descent and Backpropagation

Let’s delve deeper into the learning process by exploring the math behind it. To
optimize the network using Gradient Descent (GD) [29, 30], we need to determine
the direction for updating each weight. This is achieved by calculating the derivative
of the loss function, starting from the output layer and working our way backwards
to the first layer. This calculation process is known as backpropagation [31, 32].

To better understand let’s consider that the J(θ) is the objective function, where
we focus on minimizing it according to the parameter θ. Therefore, we can define
our problem as follows:

θ∗ = argθminJ(θ),

J(θ) = E(x,y)∼p(x,y)L(x, y; θ) = 1
N

NØ
i=1

L(xi, yi; θ),
(2.10)

Where here we assumed the objective function is the mean of the loss function
L. Moreover, the objective function J(θ) is also called the empirical risk of the
model. Having two sets of samples p(x, y) as the training sample set, and p∼(x, y)
as the test set, we use the name empirical to indicate the difference between these
sample sets.

12

2 – Related Works

In addition, to achieve the best θ parameter we update its value over time using
GD method at each time step t. However, we can use GD if and only if the objective
function is convex. As a result, the derivative of the objective function at time t
is calculated as ∇J(x, y; θt), and by having the derivative the θt+1 is calculated as
follows:

θt+1 = θt − γ∇J(x, y; θt) (2.11)

Here γ is an indicator of the magnitude of change in our model, and it is called the
learning step.

2.1.7 Regularization
One of the common problems in training Artificial Neural Networks (ANNs) is over-
fitting. This occurs when the model becomes too focused on learning the specific
patterns and noise present in the training data. As a result, the ANN excels at
mapping the training data but performs poorly on unseen data. This is because the
model has not learned to generalize the underlying relationships within the data,
instead memorizing the training examples themselves. Therefore, there have been
several methods presented in terms of increasing the model performance, and we
will discuss some well-known methods.

Early Stop

One of the common methods for stopping over-fitting is an early stop. In this
method, the training data is divided into two splits (training and validation). There-
fore, during the training, the early stopping method continuously monitors the
model’s performance on a separate validation set as training progresses. Once the
model’s performance on the validation set starts to decline, indicating overfitting
on the training data, training is stopped. This prevents the model from further
memorizing irrelevant details and allows it to focus on generalizable knowledge,
ultimately leading to better performance on unseen data.

Dropout

Another common known to avoid over-fitting is called dropout [33]. During each
training epoch, dropout randomly disables a set percentage of neurons in a layer.
These "dropped-out" neurons don’t contribute to the calculations, forcing the net-
work to learn redundancies. Instead of relying on specific connections, the network
must adapt to function well with different active neurons each time. This discour-
ages the network from overfitting to the training data and promotes learning more
robust features that generalize better to unseen data. It’s like training a diverse
ensemble of slightly different networks within your main one, leading to improved
performance on new information.

13

2 – Related Works

Figure 2.5: Here we can see the over-fitting point is the point where validation loss
increases while the training still decreases.

dropout

×

×

×

×

×

×

×

Figure 2.6: A sample dropout during training, where a group of nodes are randomly
eliminated in an epoch of training, resulting in learning their task by other nodes and
increasing robustness.

2.2 Convolutional Neural Network (CNN)

One of the important applications of ANNs is in computer vision. In recent years
there has been a huge advancement in this area due to the introduction of Convo-
lutional Neural Network (CNN). Convolutional Neural Networks (CNNs) [32, 34]

14

2 – Related Works

Feature Maps

Convolutions Subsampling
Convolutions

Feature Maps Feature Maps

output

Fully connected network

Figure 2.7: A sample of CNNs where image features are extracted step by step and
then fed to a fully connected network.

is a powerful type of Artificial Neural Network (ANN) specifically designed to han-
dle visual information for tasks such as image recognition and analysis tasks. In
comparison to normal ANNs that treat images as flat arrays of input values, CNNs
scan areas of the image to extract information in a grid-like fashion. This enables
CNNs to extract meaningful features and patterns from images more efficiently
than traditional ANNs.

Furthermore, The core building blocks of a CNN are the convolutional layer
and pooling layer, Which will be discussed. First in the subsection 2.2.1, we will
introduce the convolutional layer and then in the subsection 2.2.2 we will talk about
pooling layers.

2.2.1 Convolutional Layer
Convolution is a well-known mathematics operation for signal processing, which
indicates the interaction between two functions f and g, and it is defined as follows:

(f ∗ g)(t) :=
Ú −∞

∞
f(τ)g(t − τ)dτ (2.12)

In the case of discrete functions, the following equation will be used:

(f ∗ g)(n) = sum∞
n=−∞f [m]g[n − m] (2.13)

However, the implementation of this method in computer vision is to create lay-
ers that apply a series of filters (also called kernels) that slide across the image,
analyzing small regions at a time. Each filter detects specific features, like edges,
lines, or shapes. As the filters move across the image, they generate activation
maps, highlighting the presence of those features in different locations. By stack-
ing multiple convolutional layers, CNNs can progressively build up more complex
features from simpler ones, ultimately leading to object recognition.

As indicated in Fig. 2.8, we can see a kernel with a size of n × n moves along
the image and create the feature grid.

15

2 – Related Works

101110

111111

110000

010100

010100

101011

4444

4221

3221

2322

010

111

010
∗ =

Figure 2.8: Convolutional function sample process.

2.2.2 Pooling layers
Beyond convolutional layers, CNNs often use pooling layers to downsample the
activation maps. This is done to reduce feature dimensionality while trying to
not lose important information. This helps to reduce the network’s complexity
and prevents overfitting. In addition, To reduce the spatial dimensions (width and
height) of the feature maps generated by convolutional layers, pooling layers apply
a filter (often a small square) that slides across the feature map with a certain stride
(step size). For each position of the filter, a pooling operation is performed on the
elements within the filter’s boundaries. There are three main methods for pooling
operations, which are max pooling, average pooling, and min pooling. However,
the most common method is max pooling, where the highest value in the area of
the filter will be sampled.

16

2 – Related Works

17102012

1893011

2127151

27813
911

21

1830

2715

13.518.25

14.259.25

Max Pooling

Average Pooling

Min Pooling

Figure 2.9: Different Pooling methods.

2.3 Sequential Data
While ANN models excel at uncovering hidden patterns in data, not all data is
created equal. Moreover, some types of data find meaning over time or by being
processed in an inherent order. These types of data are called sequential data, such
as videos, Audio data, or Text data. This type of data presents unique challenges
and opportunities with themselves and results in different approaches to unfold their
information. Here, we will discuss some of the well-known approaches towards these
types of data.

2.3.1 Recurrent Neural Network(RNN)
Recurrent Neural Networks (RNNs) [35] are a powerful type of ANN architecture
designed specifically for handling sequential data. While traditional neural networks
are built for static inputs, RNNs can perform tasks where the order of information
matters. Therefore, They are the ideal type of models for applications in natural
language processing (NLP), speech recognition, and time series forecasting.

The core of an RNN model is the concept of internal memory state. This state
captures information from previous elements in the sequence and influences the pro-
cessing of current and future elements. Mathematically, an RNN can be represented
as follows:

[t]h(t) = f(U × x(t) + W × h(t − 1)) (2.14)

17

2 – Related Works

Figure 2.10: Recurrent Neural Networks (RNNs) where each stat h(t) provides the
output O(t)

Here the h(t) represents the hidden state vector at time step t, which indicates the
network’s memory processed sequence so far. Then, the x(t) is the input at the
time step t, U and W represent the weights learned during training, and f is the
activation function.

Furthermore, the equation presents how the hidden state is updated at each time
step t, where the current input (x(t)) is multiplied by weight matrix U , and the
previous hidden state (h(t−1)) is multiplied by weight matrix W . Then the sum of
these products is passed through the activation function f to create the new hidden
state h(t). This process exists for the whole sequence length, allowing the RNN to
progressively build its understanding based on the order of the information.

However, RNNs suffer from a major problem, which is the vanishing gradient
problem. For long sequences, the effect of earlier elements in the sequence can
diminish as the backpropagation algorithm updates the weights. This is where other
methods are introduced such as Long Short-Term Memory (LSTM) networks, which
are specifically designed to address this limitation and enable RNNs to effectively
learn long-term dependencies within sequential data.

2.3.2 Long Short-Term Memory(LSTM)
The limitation in Recurrent Neural Networks (RNNs) such as the vanishing gra-
dient problem, hinders their ability to learn long-term dependencies within time-
dependent data. As a result, the Long Short-Term Memory (LSTM) [35] networks
come in. LSTMs are a specific type of RNN architecture designed to address this
limitation.

A gating mechanism introduced by LSTMs that controls the flow of information
within the network. This allows LSTM’s cells to selectively remember or forget
information over time. While a standard RNN cell simply updates its hidden state
based on the previous state and current input, LSTMs incorporate memory cells

18

2 – Related Works

and gates that regulate the flow of information. Therefore, LSTMs are able to learn
complex relationships between elements in long sequences, where earlier elements
might significantly influence later ones.

Mathematically, an LSTM unit can be represented by a series of equations in-
volving gates and cell states:

f(t) = σ(Wf ∗ [x(t), h(t − 1)])
i(t) = σ(Wi ∗ [x(t), h(t − 1)])

c̃(t) = tanh(Wc ∗ [x(t), h(t − 1)])
C(t) = f(t) ∗ C(t − 1) + i(t) ∗ c̃(t)

o(t) = σ(Wo ∗ [x(t), h(t − 1)])
h(t) = o(t) ∗ tanh(C(t))

(2.15)

Here, σ indicates the sigmoid activation function. The tanh shows the hyperbolic
tangent activation function. Wf , Wi, Wc, and Wo are specific weights to each gate.
These formulations define how the forget gate (f(t)), input gate (i(t)), candidate
cell state (c̃(t)), cell state (C(t)), output gate (o(t)), and hidden state (h(t)) are
calculated at each time step. The forget gate controls the amount of information,
which is forgotten from the previous cell state, the input gate determines how much
new information is incorporated, and the output gate regulates what information
from the current cell state flows to the hidden state, which is ultimately used for
prediction.

Finally, by utilizing these gates, LSTMs can effectively learn long-term depen-
dencies within sequences, making them a powerful tool for various tasks involving
sequential data. This capability has led to significant advancements in areas like
machine translation, speech recognition, and time series forecasting.

2.3.3 Transformers
While RNN and LSTM gain huge advancement in working the sequential data
tasks, they are suffering from different limitations such as slow training due to
sequential processing, and not being able to completely capture long-range depen-
dencies within sequences. These problems lead to the creation of transformers [36],
a powerful alternative architecture addressing these disadvantages of traditional
sequential ANN models.

Transformers introduced the attention mechanism as a substitute method to
understand the relationship in sequence instead of sequential processing data one
by one. Using the attention mechanism they can learn to put a weight focus on
a specific part of specific parts of the input sequence that are most relevant for
processing tasks, and they do this in parallel. This parallel processing power makes
Transformers significantly faster to train compared to traditional methods.

19

2 – Related Works

𝐶𝑡−1

ℎ𝑡−1

𝜎 𝜎 𝑡𝑎𝑛ℎ 𝜎

X +
X 𝑡𝑎𝑛ℎ

X

𝒉𝒕

𝑓𝑡 𝑖𝑡 𝑐𝑡 𝑂𝑡

𝐶𝑡

ℎ𝑡

𝑿𝒕

Figure 2.11: A Long Short-Term Memory(LSTM) cell.

The attention as the core of transformers follows the following equation:

Attention(Q, K, V) = softmax(QKT

√
dk

) ∗ V (2.16)

Here Q represents the query, which is a vector encoding the current element
being processed, and K is the key, vectors encoding all elements in the sequence.
Then V indicates the value, which is also vectors that encode all elements in the
sequence, and finally dk denotes the dimensionality of the key vector.

Moreover, for each element in the sequence, this equation will calculate the at-
tention weights using its relevance to the query (current element). Having these
weights, we can create a context vector by summing the attention score base
weighted values of all elements, this process is called encodings. As a result of
incorporating information from relevant parts of the sequence, the context vector
can illustrate a better understanding of the current element.

Furthermore, by stacking multiple self-attention layers, transformers can better
fine-tune their understanding of the sequence and capture long-term dependencies.
In addition, they were able to use the attention weights to introduce the encoder-
decoder architecture as it has been shown in Fig. 2.12. This architecture creates an
understanding of elements in an encoded vector space in the encoding phase, and by
using the attention from the encoder they are able to recreate this understanding
in a desirable form in the decoding phase. Therefore, transformers gain notice-
able advances in different fields such as machine translation, and multiple models
for encoder phase [37, 38, 39, 40] and decoder phase [41, 42, 43] of transformers
introduced.

20

2 – Related Works

Figure 2.12: The encoder-decoder architecture of transformers.

2.4 Egocentric Action Recognition
Egocentric action recognition (EAR) is a subfield of video understanding that fo-
cuses on understanding and classifying human actions from the first-person view.
This perspective is captured by wearable camera gadgets like head-mounted cam-
eras or smart glasses, providing a view of the world similar to human perception.
Unlike normal action recognition in third-person videos, egocentric action recog-
nition suffers from several challenges, such as a limited field of view due to the
closeness of the camera to the scene, or constant change in the scene due to the

21

2 – Related Works

Figure 2.13: The left image is the Inflated Inception-V1 architecture and the right
image is its detailed inception submodule the figure is taken from [5].

human motion. Therefore, multiple works tried to mitigate these effects and intro-
duced EAR action recognition models[44, 45, 46, 47, 48].

In this section, we are going to introduce the common approaches to the EAR
problem starting from 3D base approaches 2.4.1 and moving forward to the most
recent ones.

2.4.1 3D Base Action Recognition
Egocentric action recognition models can be categorized into two categories 2D [49,
18, 7, 19, 8, 50, 51] base and 3D [12, 52, 16, 53, 15, 17], base models. In 3D base
models Inflated 3D ConvNet (I3D) [5] is one of the well-known methods. This
model was introduced to understand the use of the temporal context of videos by
leveraging the 3D convolutional neural networks(3D CNNs). The 3D nature of the
I3D model was able to extract both spatial and temporal features from video data.
Therefore, the I3D is considered a well-suited architecture for recognizing human
actions within videos.

As indicated in Fig. 2.13, the I3D is built by taking advantage of using the 2D
ConveNets as the building blocks, specifically the Inception architecture [54]. The
main idea of I3D was around the inflating of the 3D filters and pooling kernels
into their 3D counterparts. Therefore, the I3D model was able to learn the spatio-
temporal features by directly using raw video sequences. In this model, multiple
layers of convolutional layers will reduce the dimensionality, using the pooled ac-
tivations. To do this the 2D filters repeated N times along the time dimension to
reduce the dimension by the factor of 1/N . Additionally, The I3D model kept the
two-stream architecture using the RGB, Optical Flow streams. This is done to use

22

2 – Related Works

T

C

H,W

prediction

High frame rate

C

αT

C
C

αT
αT βC

βC

βC

T
T

T
Low frame rate

Figure 2.14: The SlowFast two stream illustration from the paper [6]. In this figure,
the top sampling is the low frame rate for the slow pathway, and the lower stream is the
high frame rate for fast pathway.

the benefits of the recurrent information that is not available in the RGB streams.
Another well-known 3D base model is the SlowFast[6]. The SlowFast model

was introduced as a video understanding model with the idea of extracting the
temporal information at different granularities. This model focuses on extracting
information from two types of movement speed in video, the fast-paced micro-
movements, and the slow overarching gestures. Having both types of movement
pace information at the same time in the video enabled SlowFast to achieve a more
comprehensive understanding of the video, while most traditional approaches lack
the ability to capture the two movement speeds simultaneously. As a result of
SlowFast’s capabilities, it is considered one of the most common methods in the
field of action recognition.

Looking at Fig. 2.14, SlowFast deployed a two-stream architecture for two differ-
ent temporal resolutions. The two streams are called the slow pathway and the fast
pathway. The slow pathway puts its attention on extracting information from the
slower, semantic aspects of the video. To do so they use a low frame rate sampling
in the video and investigate the large temporal contexts to identify overarching ac-
tions. On the other hand, the fast pathway focuses on high frame rate sampling to
better capture information from faster, finer-grained motions within the video. In
addition, the fast pathway uses the full temporal resolution of the video, enabling
the model to assess rapid movements and subtle details.

Having both slow and fast pathways, the SlowFast [6] will fuse them to build
a more comprehensive understanding of the video. After the fusion of the model,

23

2 – Related Works

Video

N Segments
…

…S1
S2

SN

Sample

…

…

N Frames

2D Conv

Channel C

Te
m

po
ra

l T

Temporal
Shift 2D Conv …

+
Identity

Frames

Feature Map

Figure 2.15: The TSM overall illustration from the paper [7].

we are able to capture both short-term and long-term temporal information within
the video. This approach resulted in higher accuracy in action classification, and
flexibility to adapt by adjusting sampling rate. .

2.4.2 2D Base Action Recognition
While 3D models were able to capture the time dimension, they lacked efficiency in
terms of computation time and training. As a result, several works focused on using
the 2D CNN models as an efficient substitute for the 3D models. The Temporal
Shift Module (TSM) architecture [7] is one of the well-known models for using 2D
CNNs in video understanding. The TSM was able to ta. The Author of [7] was able
to tackle the challenge of capturing temporal relationships within videos without
incurring significant computational overhead.

The TSM introduced a simple idea to integrate the information from different
parts of the temporal context into one another. To do so, Author [7] use shuffling
the feature across the temporal dimension. While traditional 2D CNNs can demon-
strate great performance at capturing spatial features within a single video frame,
they are suffering from the ability to capture crucial information about how these
features evolve during the time dimension. As illustrated in Fig. 2.15, TSM tackles
this limitation by shifting a subgroup of feature channels along the temporal axis
from past and future frames with the current frame. As a result, the model learns
to highlight the temporal dependencies.

2.4.3 Multimodal Egocentric Action Recognition
While most of the general action recognition architectures excel at action recog-
nition, they still struggle to provide strong performance in egocentric videos due
to the special characteristics of egocentric data such as a limited field of view, or
sudden ego-motion. As a result, several methods focus on mitigating the effects
of these features and provide a more robust method for egocentric action recogni-
tion. Temporal Binding Networks (TBN) [8] is a method specialized in egocentric
vision by leveraging not only the visual information but also the audio information

24

2 – Related Works

Figure 2.16: The TBN architecture in using three modalities, taken from the paper [8]

presented in the video.
Looking at Fig. 2.16, we can see The TBN uses three modalities (RGB, Flow, and

Audio) for a more robust classification. The author of [8] focuses on the importance
of sound as the indicator by indicating that the sound of chopping vegetables is
as informative as visual data when recognizing the action of cooking. In addition,
to use these modalities at the same time the TBN uses a multi-modal fusion for
combining the three modalities’ information.

One of the important aspects of TBN is the temporal binding strategy. Ad-
ditionally, instead of combining the features from different modalities at a single
point in time, it tries to investigate the interaction and evolution of these features
over time. As a result, it considers data from different temporal offsets and builds
a more comprehensive understanding of the action in the video.

Furthermore, the TBN uses a mid-level fusion approach, where each of the three
modalities is processed by a separate convolutional layer at first. and before the
classification, they combined to make a unified representation of the interactions of
the features. In addition, it also takes advantage of sparse sampling by sampling
features at specific time intervals during the videos, and by that, they try to do a
trade-off between the temporal information and computation efficiency.

2.4.4 Context Base Egocentric Action Recognition
While most models in action recognition focus on the atomic processing of each
action clip, without considering context the Multimodal Temporal Context Network
(MTCN) [9] introduced an architecture that benefits the use of context for action
recognition.

The MTCN architecture utilizes a window of size w to analyze sequences of

25

2 – Related Works

close bin take aubergine turn on tap wash aubergine cut auberginetake knifeturn off tap

24
:3

4.
29

24
:3

5.
19

24
:3

7.
10

24
:3

7.
66

24
:3

7.
76

24
:3

8.
92

24
:3

9.
06

24
:5

1.
31

24
:5

0.
93

24
:5

1.
83

24
:5

5.
72

24
:5

6.
48

24
:5

6.
77

25
:0

4.
15

Figure 2.17: The temporal window sliding throughout the video, taken from the paper
[9]

Visual & Audio Transformer

Auxiliary

squeeze sponge take washing liquid put washing liquid squeeze sponge take washing liquid put washing liquid

washing liquidtake

CLS
V

CLS
N

p
i+2

p
i+3

m
a

m
a

m
a

p
i+1

p
i

g
a

g
a

g
a

g
v

g
v

g
v

p
i-1

p
i+1

p
i

p
i-1

m
v

m
v

m
v

h
V

h
V

h
V

h
V

h
V

h
N

h
V

h
N

h
V

h
N

h
N

h
N

h
N

h
N

squeeze sponge take washing liquid put washing liquid<mask>

Masked Language Model

p
i-1

sequence probability

p
i+1

p
i

p
i-1

h
V

h
N

h
V

h
N

h
V

h
N

Figure 2.18: The MTCN processing the audio and visual information using transform-
ers, taken from the paper [9]

actions within a video for single-action classification, as shown in Fig. 2.17. For
each action, the MTCN model treats it as the central element of a window with
size w. The model then processes the consecutive actions within this window to
learn and exploit the temporal context, leading to better and more comprehensive
results.

MTCN also focuses on the integration of the two modalities (RGB, and Audio),
and to use both modalities efficiently it will introduce transformers encoders. These
transformers encoder process the fusion of visual and audio features. In addition,
both audio and visual information will be fed to transformers with positional em-
bedding and using self-attention the transformers will provide a compact feature
representation for both modalities. This process is illustrated in the Fig. 2.18.

Another important factor introduced by the MTCN was the incorporation of
language models. This integration ensures that the model considers the broader
context to improve its predictions. Specifically, the authors in [9] propose using a
language model trained on verb and noun labels at test time. Additionally, they
employ a top-k prediction strategy, where all possible action sequences are gener-
ated. Then, an exhaustive search is performed to identify the sequence with the
highest score based on the language model’s output. Finally, an impact factor is ap-
plied to weigh the language model’s results with the visual prediction to determine
the final model output.

While MTCN shows promising results in using context, their approach has sev-
eral drawbacks, first of all, they do not take into account the domain shift, and the
opportunity to use the sequence to mitigate the domain shift effects. Second, using
the language model at the test time with brute force search is time-consuming and

26

2 – Related Works

not applicable to real-life scenarios.

2.5 Domain Generalization & Unsupervised Do-
main Adaptation

Egocentric action recognition models, though successful in their training data, often
experience performance drops when deployed in new environments. This is because
the visual characteristics of actions can differ significantly between training and
deployment domains.

To address this challenge, researchers have developed techniques in domain adap-
tation (DA) [55, 56, 57] and domain generalization (DG) [58, 59, 60, 61, 62, 63]
specifically for egocentric action recognition. This section will explore these mod-
els, starting with foundational adversarial unsupervised domain adaptation (UDA)
methods (discussed in Section 2.5.1) and then progressing to DG methods.

2.5.1 General Adversarial Methods
The adversarial methods were initially introduced by the Domain-Adversarial Method
[10]. The domain adversarial approach [10] was introduced to address challenges
related to domain shifts in deep learning and computer vision. In this approach, as
described in [10], a domain adaptation method is proposed that leverages unlabeled
data from the target domain during training alongside source domain data. This
unsupervised incorporation of target data aims to improve the model’s robustness
in the target domain.

Furthermore, inspired by the generative adversarial networks [64], the domain
adversarial [10] introduced a domain classifier into the model, as illustrated in the
Fig. 2.19. This domain classifier works in parallel to the main architecture to
discriminate the target data from source data. However, the discriminator model
will use the negative loss during backpropagation to trick the model into focusing
on features that are more relevant to the task than features that are more relevant
to the visual representation.

2.5.2 Video Adversarial Domain Adaptation
While the domain adversarial network [10] was a great model in domain adapta-
tion, they were still a general model for general tasks in computer vision and deep
learning. Therefore, new models introduced more specific domain adaptation mod-
els for tasks such as action recognition in video understanding. One of the most
well-known models in this area is the Temporal Attentive Adversarial Adaptation
Network (TA3N)[11].

27

2 – Related Works

Figure 2.19: The architecture of domain adversarial model, taken from the [10].

Video model

Spatial
module

ℒ𝑦

Temporal module

𝑅2

…
…

𝑅𝐾

Temporal Relation module

…
…

𝑔𝜙
(2)

𝑔𝜙
(2)

…

1 3

2 4

𝑔𝜙
(3)

𝑔𝜙
(3)

…

3 4

4 5

1

2

𝑔𝜙
(K)

𝑔𝜙
(K)

…

3 4

4 5

1

2

…

…

𝐺𝑠𝑓 𝐺𝑦

𝐺𝑠𝑑

ℒ𝑠𝑑

𝐺𝑡𝑑 ℒ𝑡𝑑

𝑅3

Domain Attention

𝐺𝑟𝑑
𝑛 ℒ𝑟𝑑

𝑛
Domain Attention module 𝑨𝒏

𝑨𝟐

𝑨𝟑

𝑨𝑲

…
…

Domain entropy 𝑯(𝒅)

ℒ𝑎𝑒

Class entropy 𝑯(ෝ𝒚)

ConvNetRaw
video

…

Frame-level
feature
vectors

G
R

L

Domain
classifier

𝐺𝑠𝑑
domain

pred.

class pred.

Figure 2.20: The TA3N architecture, taken from the paper [11].

The TA3N introduced a multi-layer adversarial mechanism to capture video in-
formation at different layers from frame level to feature layers. This mechanism
allowed the TA3N to have a more comprehensive distinction between the two do-
mains. In addition, TA3N use an auxiliary loss to combine the different adversarial
layers’ impact during training.

Looking at Fig. 2.20, we can see beside multiple layers of the discriminator for
the reverse gradient. The TA3N also incorporates a temporal attention mecha-
nism. This mechanism focuses on the videos’ temporal dynamics as the essential
and informative part. TA3N align the source and target data by using this atten-
tion mechanism. Therefore, the TA3N was able to present a more accurate video
recognition when the model was applied to a new domain.

28

2 – Related Works

Supervised

 F Flow

F RGB
RGB

D
GRL

Flow

D

GRL

Adversarial

C

Self- Classification

G

RGB

G

Flow

A
V

G

source
target

target (inference only)

Figure 2.21: The MM-SADA architecture, taken from the paper [12]

2.5.3 Egocentric Domain Adaptation
TA3N showed promising results in video understanding, but the focus of this model
was on third-person videos, without trying to mitigate challenges that exist in ego-
centric vision. Therefore, several models introduced for better approaching the
domain shift problems in egocentric vision. The Multi-modal Self-Supervised Ad-
versarial Domain Adaptation (MM-SADA) [12] was one of the models introduced
for tackling the existing challenge in the domain gap between the training and
testing data in egocentric vision.

Looking at Fig. 2.21, we can see this model introduced two modalities stream
(RGB, and Optical Flow) for classification. Additionally, to better integrate these
modalities it uses a self-supervised method, where it tries to map the optical flow
of actions to their RGB instance representations. This task does not need any label
and it will result in the model’s inherent relationship between these modalities.

Furthermore, MM-SADA also tries to mitigate the domain shift effect using two
adversarial sections for each modality. This approach’s goal is to utilise shared
feature extractor networks for both RGB and optical flow data. They focus on
learning a generic representation for each modality and using the self-supervised
focus of the training to align both modalities’ representation into becoming more
domain agnostic.

2.5.4 Adversarial free Domain Adaptation
In the world of UDA, some models are not based on adversarial methods, such as
The Cross-modal Interactive Alignment (CIA) [13]. This model is another unsu-
pervised domain adaptation model that introduced multi-modal learning, However,
in contrast to previous works that focus on utilizing cross-modal by self-supervised
learning, this model focuses on the cross-modal interaction first. In the [13], the
writers by using cross-modal consensus, highlight the most transferable aspects of

29

2 – Related Works

Figure 2.22: The presented CIA model in the paper of [13].

data.
In Fig. 2.22, the ⊕ denotes element-wise summation, ⊗ is element-wise multi-

plication, and ⊛ means the correlation operation.
Furthermore, considering Fig. 2.22, we can see the CIA model uses three modal-

ities (RGB, Flow and Audio) at the same time. These modalities will be fed to the
model as input, and by introducing the Mutual Complementarity module (MC)
the CIA improve the transferability for every modality. This was achieved for each
modality by learning the domain-transferable knowledge from different modalities.
As a result, the CIA was able to leverage this cross-modal complementarity.

2.5.5 Domain Generalization
In Domain Generalization the target data is not available and the model only
focuses on training using the source data. One of the DG well-known methods
in egocentric action recognition is Relative Norm Alignment (RNA). The Relative
Norm Alignment (RNA) [14] is another method that focuses on the egocentric
action recognition robustness during the domain shift. In addition, the model
focuses on the generalization of the egocentric models by introducing a new type
of loss over different modalities to align them for a better prediction.

Furthermore, In the RNA method the author [14] introduces the problem of
unbalanced contribution from the two modalities (RGB, and Audio) that they use
for action classification. They indicate that during the training the model can
become biased towards one of the modalities and lose useful information from the
other one. As a result, they introduce the RNA loss to align the two modalities as
follows:

LRNA = (E(h(XV))
E(h(XA)) − 1)2, (2.17)

Where here the XV and XA are feature representations of visual and audio modal-
ities, respectively. Also, the E(h(X)) is the mean value of L2 feature norms of

30

2 – Related Works

Figure 2.23: The presented architecture for RNA model, in the paper [14]

vector X.
Looking at Fig. 2.23, we can see how the author of the [14] illustrates the model

structure during training. In addition, the model receives the two modalities as the
input during the training time and the RNA loss will be calculated along the clas-
sification loss. Then the sum of both losses will be backpropagated throughout the
model. This results in achieving a more balance presentation of the two modalities
after finishing the training and during the test time.

31

Chapter 3

Sequential Domain
Generalisation for
Egocentric Action
Recognition (SeqDG)

This chapter delves into our contribution to domain generalization in egocentric vi-
sion. We propose a novel approach, Sequential Domain Generalisation for Egocen-
tric Action Recognition (SeqDG), that leverages context, specifically sequence in-
formation, to achieve domain-agnostic action classification and improve robustness
against domain shift. We begin by discussing the motivation behind our method
in Section 3.1. Next, Section 3.2 provides a general overview of the entire SeqDG
method. Finally, subsequent sections introduce the details of each component.

3.1 Motivation
Domain shift poses a significant challenge for egocentric action recognition models.
The challenges that exist in egocentric action recognition along with the lack of
diversity in training data lead to a strong dependence on the specific environment
where objects, interactions, and actors are captured. This heavy reliance reduces
the model’s ability to recognize the same actions in unseen visual settings. Fur-
thermore, egocentric videos often involve human actors with distinct behaviours
and interaction styles, adding another layer of complexity to the model’s prediction
task.

A key factor to consider when working on action recognition especially EAR
is that human actions unfold sequentially, with each step contributing to a final
goal. This highlights the importance of temporal context in action recognition.

32

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

For example, consider two people pouring milk in their separate kitchens (distinct
environments). While their surroundings differ, they likely follow similar steps:
opening the fridge, grabbing the milk container, removing the lid, and finally pour-
ing the milk. Although specific details might vary based on factors like container
shape or fridge door style, the overall sequence and completion of these actions
remain consistent across environments, with minimal variations. As a result of this
domain-agnostic behaviour, we tried to see how leveraging the temporal relation-
ships between actions can enhance our network’s ability to recognize actions even
in diverse settings.

Furthermore, these action sequences hold the key to generalizability across visual
domains. Because they are independent of the environment’s layout or appearance,
the model can focus on learning the core structure of action patterns. This ability
to learn the gist of actions is crucial for recognizing them in new visual settings.

Additionally, analyzing sequences of continuous actions provides a richer un-
derstanding of user intent. A single action might be ambiguous on its own. By
examining the sequence of actions, the model can gain a more comprehensive per-
spective on the user’s ultimate goal.

As a result, we propose a domain generalisation method for egocentric action
recognition (SeqDG) that benefits the similarity of action sequences across various
visual environments to improve the generalisation of action recognition models.
We introduced a visual-text sequence reconstruction objective called SeqRec, and
we use the benefits of both text and visual modalities to extract the context for
reconstructing the central action in the sequence. Knowing that textual information
represents context with minimum effect from the environment, the textual narration
is used to address the problem of domain shift in visual data. Moreover, we present
a technique called SeqMix to increase the model robustness in changing the visual
domain. This technique achieves its goal by mixing actions that have similar labels
but they are different in terms of the visual domain.

3.2 Overview
This section presents an overall explanation of the proposed method (SeqDG),
which aims to improve the robustness of egocentric action recognition models across
different domains. The challenge addressed here is the performance drop these
models experience when encountering unseen environments due to domain shift.
Our approach leverages the similarity of action sequences with a similar goal across
different visual environments.

Moreover, while using action sequences solely to classify a single action indi-
cates promising results [9], it is still limited to overcoming the domain shift, due
to being dependent on visual information to extract the sequence information. To
address these limitations, we propose a visual-text sequence reconstruction objec-
tive (SeqRec, Section 3.6). SeqRec focuses on reconstructing the central action of

33

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

a sequence using contextual information from surrounding actions, incorporating
both text and visual data. During training, SeqRec utilizes textual narrations to
mitigate the domain shift that can occur in visual representations. Additionally,
we propose a method for explicitly integrating information from multiple domains
by mixing actions from different domains (SeqMix, Section 3.4). This process helps
the model become more robust to changes in the visual appearance of actions. We
refer to this overall approach as SeqDG. By combining these techniques, SeqDG
encourages the model to learn visual representations for action recognition that are
less dependent on specific domains.

3.3 Sequential Data Definition
In our work, each action ai is defined by its video clip vi, the free-form text narration
ti, the belonging visual domain di, and its pair labels (verb, noun), that define the
final label of action as follows yi = (yV

i , yN
i). Additionally, labels are from a set of

Nv and Nn, verb and noun classes respectively, while the domain label di is one of
K visual domains. Moreover, the actions ai = (vi, ti, yi, di) also define the action
sequence Si to understand the action ai by the ordered set of W actions centred
around action ai, represented by:

Si = {ai−W/2, . . . , ai, . . . , ai+W/2}, (3.1)

Furthermore, using pre-trained visual features and text extractors each action’s
visual frames and text narration in sequence will be converted to the correspond-
ing visual appearance XV

i ∈ RW ×DV and textual XT
i ∈ RW ×DT features, where DV

and DT correspond to the number of features for the video and the text respectively.

34

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

Figure 3.1: SeqDG architecture. We are given visual and textual inputs XV and XT .
A classification token CLS is appended to the visual input for classification. Visual inputs
are fed to an encoder ENCV, resulting in intermediate visual embeddings ZV

i , while textual
features are passed through an identity function to get ZT

i . The latter are masked (Z̄V
i

and Z̄T
i) and fed to two separate decoders DECV and DECT for visual and text reconstruction

(LrV and LrT). The transformed classification token Z0:1 is fed to classifier h for action
classification (LC).

3.4 SeqMix: Sequence Mix
Actions in sequences Si are from the same source of videos, thus they borrow
similar visual appearance from the environment. However, considering the context
of the sequence, a domain-agnostic model should transform two similar sequences
with the same context from different visual domains into a similar feature space.
As a result, we introduced the Sequence Mix (SeqMix) to increase generalisation
and decrease the domain dependence of the model. To do so we mix actions from
different domains to stimulate the model to concentrate more on the semantics of
the action itself and less on domain-specific visual biases. Given an action sequence
Si, we replace action ai (central action) in the sequence with a different action aj

from another sequence Sj. The two actions are from different visual domains but
share the same action label:

(ai, aj) : di /= dj ∧ yi = yj (3.2)

here di, dj and yi, yj are the domain and action labels of the two samples respec-
tively.

35

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

Figure 3.2: An example of SeqMix involves a sequence of actions from kitchen di

(opening the fridge, picking up milk, opening the lid, pouring milk). We want to replace
the "pick up milk" action to create a mixed sequence. Therefore, we choose an action
video clip with the same label from Kitchen dj and replace the equivalent action in the
sequence from Kitchen di. This results in the final mixed sequence of kitchens di and dj .

3.5 Sequence Feature Embedding

The model takes mixed sequences, denoted as Si, as input. It utilizes these se-
quences to create a feature embedding space by considering the individual actions
(Si elements) within the sequence. To understand the input information more
deeply, we leverage the attention mechanism from the Transformer architecture.
Additionally, the visual and text features are fed into separate Transformer en-
coders, denoted as ENCV and I, respectively.

Since the Transformer’s self-attention mechanism is insensitive to the order of
elements, we employ positional encoding to retain information about the action
sequence. A learnable positional embedding (p ∈ RW ×Dp) is applied to each
action, tagging its absolute position within the sequence with respect to a temporal
window of size W . Furthermore, two distinct learnable classification tokens (CLSV

and CLSN , both in RDA) are added to represent the predicted verb and noun
of the central action. Finally, the input (XV

i and XT
i) undergoes the following

transformation:

36

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

ZV
i = ENCV

1
[XV

i + pi, CLSV , CLSN]
2

ZT
i = I

1
XT

i

2 (3.3)

where the final outputs are ZV
i ∈ R(W +2)×D and ZT

i ∈ RW ×D, and they indicate
the embeddings encoding that shows the relationships between different actions in
the sequence.

We used the self-attention mechanism of transformers [36], to encourage the
model to share information between the actions in the sequence. This allows the
model to naturally learn relationships between different elements in a sequence.
These relationships are built through a stack of multi-head attention, feed-forward
(FF) layers, residual connection, and normalization layers (LN).

Let H l be the features encoded at the l-th layer. Features produced at each
layer of the transformer encoder are:

H l
attn = LN(fSA(H l) + H l) (3.4)

H l+1 = LN(FF(H l
attn) + H l

attn) (3.5)
where fSA(·) is the self-attention operator defined as:

fSA = σ

A
q(H l)k(H l)√

D

B
v(H l) (3.6)

where q, k and v are learnable projections of the input features, D is the size of the
input features and σ(·) is the softmax function.

3.6 Sequence Reconstruction
We aim to enable the network to prioritize context when creating visual embed-
dings. To achieve this, we hypothesize that a domain-agnostic embedding can
reconstruct a feature representation using only the surrounding context, due to the
fact the representation of agnostic features is solely related to action, not visual
representation. To test this hypothesis and encourage the network to become more
domain-agnostic, we mask the visual and textual features of the central action
(zV

i and zT
i) in a sequence. Subsequently, the model is tasked with reconstructing

the masked action using decoder DECV (visual) and decoder DECT (Text) that
employ cross-attention between the two decoders it reconstructs the masked fea-
ture embeddings. Moreover, the reconstruction process is guided by the unmasked
features of the other modality. This means the masked visual features are recon-
structed with the help of the surrounding textual features, and vice versa for textual
features.

37

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

This process makes the network learn how to leverage the action context within
the sequence. By strategically masking visual and textual features, the network is
forced to rely on the surrounding information to reconstruct them. This fosters the
development of domain-agnostic features, as the network learns to represent the
action based on generic context rather than specific visual or textual cues.

To better understand the process of masking, by having the visual ZV
i and

textual ZT
i features, we mask the central action of each feature embedding by

putting it equal to zero:

Z̄V
i = {zV

i−W/2, . . . , z̄V
i , . . . , zV

i+W/2},

Z̄T
i = {zT

i−W/2, . . . , z̄T
i , . . . , zT

i+W/2},
(3.7)

In the equation above, z̄V
i and z̄T

i represent the masked features of the central action
in the sequence, for visual and textual feature embeddings respectively. Only the
central action is masked during each iteration.

As previously mentioned, we employ two decoders: a visual feature decoder
DECV and a textual feature decoder DECT . The visual feature decoder utilizes
the combined information of the masked visual feature and the unmasked tex-
tual feature. Similarly, the textual feature decoder works with the masked textual
feature and the unmasked visual feature. These decoders collaborate through a
cross-attention mechanism.

ẐV
i = DECV (Z̄V

i , ZT
i) = softmax

A
q(Z̄V

i)k(ZT
i)√

D

B
v(Z̄V

i),

ẐT
i = DECT (Z̄T

i , ZV
i) = softmax

A
q(Z̄T

i)k(ZV
i)√

D

B
v(Z̄T

i),
(3.8)

Here, q, k, and v represent learnable projections of the input features. ẐV
i and

ẐT
i denote the reconstructed visual and textual features, respectively.

Due to the inherent differences between the two modalities (visual and textual),
distinct loss functions are employed. For visual feature reconstruction, we utilize the
L2 distance between the original and reconstructed features, denoted by Lrv. For
textual features, we employ cross-entropy loss between the action token represented
by the reconstructed feature and the actual action, denoted by LrT . This approach
encourages the visual feature encoder to generate features that capture contextual
information based on the provided action sequence. Consequently, these encoded
features enhance sequential representation, a critical factor for generalizing across
diverse environments.

Lrv = MSE(ẐV
i , ZV

i),
LrT = CrossEntropy(ẐT

i , ZT
i)

(3.9)

38

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

3.7 Action Classification
In the final classification stage, we employ two separate classification heads, de-
noted as hV and hN , to classify the verb and noun, respectively, which are the key
components of the action. These heads receive a classification summary of relevant
information for classifying the central action and contextual information in the form
of special tokens (CLSV and CLSN) from the action sequence obtained through
the visual transformer. The CLSV token represents the information needed to clas-
sify verb class, and CLSN represents the information needed to classify noun class.
Subsequently, the heads, hV and hN process these inputs and generate the verb
and noun logits, ŷV

i and ŷN
i , as the final outputs:

ŷV
i = hV (CLSV), ŷN

i = hN(CLSN) (3.10)

Further, the two heads, hV and hN are trained using cross-entropy loss on the
target action of classification, the central action ai, classified for verbs (LV

C) and
nouns (LN

C) separately. This is achieved by utilizing the corresponding ground truth
action labels, which represent the pair of the verb and noun (hatyV

i , ŷN
i). Finally,

the total classification loss is calculated as the mean of the verb and noun loss
functions.

LV
C = CrossEntropy(ŷV

i , yV
i),

LN
C = CrossEntropy(ŷN

i , yN
i),

LC = 0.5 × (LV
C + LN

C),
(3.11)

The network is trained by backpropagation of the sum of the classification and
reconstruction losses, and the final objective is to minimize this overall loss:

L = LC + λ1LrV + λ2LrT (3.12)

where λ1 and λ2 weight the two reconstruction losses.

39

3 – Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)

ENCV

Video sequence
XV

CLsN

ZV

Verb
Classifier

Noun
Classifier

CLsV

Figure 3.3: During the test time the model froze completely and only the visual classifier
will classify the sequence to classify the middle action.

3.8 Inference Time
As illustrated in Fig. 3.3, the encoder-decoder architecture, trained with text narra-
tions through the reconstruction task, guides the visual encoder, ENCV , to more
effectively integrate information from neighbouring actions. During testing, se-
quences comprised solely of video clips, vi, are processed by ENCV and the clas-
sifiers, hV , and hN . Predictions are made on the central action using a sliding
window mechanism for sequence data of surrounding actions for testing. Impor-
tantly, textual annotations are not required at inference time, since the narrations
are representations of labels which are not available. In addition, also by consid-
ering the goal of the training during the inference time we should have a robust
visual encoder.

40

Chapter 4

Experiments

This chapter discusses the experiments conducted and the results obtained. Sec-
tion 4.1, introduces the main benchmarks used for our evaluation. The following
section 4.2, details the general experimental setup and implementation specifics.
We then present the results in sections 4.4 and 4.3, covering both intra-domain
and cross-domain settings. Finally, section 4.5 analyzes the effectiveness of each
component.

4.1 Datasets
In order to show the effectiveness of our approach, we used three datasets, which
indicate the model performance over these datasets. These datasets are considered
some of the state-of-the-art benchmarks in egocentric action recognition, and the
diversity of their data in different domains provides us with a good assessment of
our model performance. The datasets we used are the Epic-Kitchen-55 [65], Epic-
Kitchens-100 [1], and Extended Georgia Tech Egocentric Activity (EGTEA) [2].
Each dataset will be discussed in detail in the following sections.

4.1.1 Epic-Kitchens-55
Epic-Kitchens-55 [65] is a well-known dataset in egocentric vision. This dataset
consists of 32 environments and offers a great opportunity for assessing the domain
shift problem. A well-known split from this dataset, commonly used to analyze
approaches in domain generalization and adaptation, is the MM-SADA split [12].
This split provides data in three distinct domains over eight different verbs as the
action labels for this dataset (’put’, ’take’, ’open’, ’close’, ’wash’, ’cut’, ’mix’, and
’pour’). These three domains are referred to as D1, D2, and D3, as illustrated
in Fig. 4.1 with samples from each domain. Furthermore, the eight class labels
are the 80% of training action segment for these domains, This approach by [12]

41

4 – Experiments

Figure 4.1: The three domains of visual data for Epic-Kitchens-55 presented in the
MM-SADA [12] paper.

was to ensure adequate samples per domain and class, without balancing them in
the training set. Additionally, Fig 4.3 indicates the eight classes throughout the
domains are imbalanced to offer additional challenges to the problem.

4.1.2 Epic-Kitchens-100

Epic-Kitchens-100 [1] is another well-known egocentric vision dataset, This dataset
is an extended version of the Epic-Kitchens-55 with more than 100 hours of collected
videos, with 20M frames, and 90k actions by pairing 300 nouns and 97 verbs in 700
variable-length videos, that had been captured in 45 different environments. This
dataset has a more complete annotation of fine-grained actions in comparison to
Epic-Kitchens-55 with +128% more action segments.

The diversity of this dataset introduces challenges, particularly in unsupervised
domain adaptation (UDA), and domain generalization. To address this, a special
split of the dataset was introduced, dividing the data into two sets: source and tar-
get. Each set consists of multiple domains but remains distinct from the other set.
Notably, the source set provides labelled actions for both training and validation,
while the target set lacks labels for training, and target validation is only used to
assess the strength of approaches for adaptation and generalization.

42

4 – Experiments

Take Put Open Wash Close Cut Pour Mix
Action Class

0

5

10

15

20

25

30

Pr
op

or
tio

n
of

 A
ct

io
n

Se
gm

en
ts

 (%
)

Domain
D1
D2
D3

Figure 4.2: Distribution of actions in Epic-Kitchens-55 for the MM-SADA [12] split.

Figure 4.3: Samples of new data of Epic-Kitchens-100, where new kitchen, some old
kitchen re-captured data or changed.

43

4 – Experiments

Figure 4.4: The EGTEA[2] dataset sample frames.

4.1.3 Extended Georgia Tech Egocentric Activity (EGTEA)
The final well-known benchmark we used to assess the power of our approach, not
for domain generalization but for intra-domain performance, is the Extended Geor-
gia Tech Egocentric Activity (EGTEA) dataset [2]. EGTEA is a large-scale ego-
centric action recognition dataset featuring high-definition (HD) videos (1280x960).
It encompasses 28 hours (de-identified) of untrimmed videos with approximately
10,000 annotations of actions from a set of 106 action labels related to cooking ac-
tivities. These annotations come from 86 unique sessions performed by 32 subjects

4.2 Implementation details
In this section, we will discuss the implementation setting and the environments
where experiments are done for different benchmarks. Moreover, we will discuss
the data input dimensions, training details, and pre-trained model that had been

44

4 – Experiments

used in our work.
In the case of Epic-Kitchen-55 (MM-SADA split), we use the TSM [7] features

pre-trained on each of the three domains and extracted for other domains. The
features are extracted into 5 clips with a dimension of 2048. Moreover, we used all
5 clips to train our model.

Furthermore, For Epic-Kitchen-100 the TBN [8] features are pre-trained on the
source split of the dataset. The extracted features contain 25 clips with a dimension
of 1024. However, to train our method we only used 5 clips that were uniformly
sampled from the 25 clips.

For EGTEA features the SlowFast [6] pre-trained features released by the au-
thors of MTCN [9]. Additionally, the 10 clips for each action are extracted, and
each clip has a dimension of 2304. We used all 10 clips for the EGTEA training
dataset.

During the training of our approach, to capture the gist information of all clips
we used a Temporal Relation Network (TRN) [19] layer for each action. To encode
the narrations for the textual part of training the BERT pre-trained model is used
as described in [37]. Using the BERT gives us the textual feature size of 768, and
to unify the dimension of the textual and visual features we project the latter using
a fully connected layer to the same dimension as textual (768-D).

Finally, All models are trained with the SGD optimiser, using batch size 32 and
an initial learning rate of 0.005. Training lasts 100 for Epic-Kitchen-55 and Epic-
Kitchen-100, and 50 epochs for EGTEA. The learning rate is decreased by a factor
of 10 at epochs 50 and 75 for Epic-Kitchen-55 and Epic-Kitchen-100, and at epochs
25 and 38 for EGTEA.

4.3 SeqDG Cross-domain Results

This section is dedicated to exploring how our method improves action recognition
in the face of domain shift. The method’s domain generalization capabilities will
be assessed against other well-known methods in domain adaptation and domain
generalization. To accomplish this, we will use Epic-Kitchen-100 and Epic-Kitchen-
55 datasets.

In Epic-Kitchen-100, we will assess the improvement of our model performance
compared to a baseline, which is a simple classifier on top of the inputs. Then, we
will compare our gain on action recognition to the gain achieved by other methods
on action recognition based on their reported baselines in their respective papers.
At the same time, for Epic-Kitchen-55, we will only assess the model on the three
domains (D1, D2, and D3) and indicate the improvement according to the baseline
of each domain.

45

4 – Experiments

4.3.1 Comparison with state-of-the-art
In Table 4.1 (Epic-Kitchen-100), our model achieves superior results with approxi-
mately 2.4% higher accuracy on top-1 action classification. This indicates its ability
to handle domain shift likely due to its more domain-agnostic nature. For a fair
comparison, we employed three modalities (RGB, Audio, and Flow) based on prior
findings in other research. Additionally, to ensure a direct comparison with MTCN
[9], we report results using only RGB and Audio modalities, achieving a roughly
2.1% improvement over the baseline.

Furthermore, in Table 4.2, we can see our model achieves about 47.6% on average
over all the domains. In addition, compared to the Baseline we achieved about 4.4%
improvement on the mean performance. These results can indicate our model’s
ability in domain-agnostic prediction during domain shift in this dataset.

Modalities Top-1 Accuracy (%)
Method Sequence RGB Flow Audio Verb Noun Action

UDA

Source Only - ✓ ✓ ✓ 46.7 27.8 19.2
TA3N [1] - ✓ ✓ ✓ 48.5 28.9 19.6 (▲ +0.4)

Source Only - ✓ ✓ ✓ 47.1 27.4 19.0
MM-SADA [12] - ✓ ✓ ✓ 48.4 28.3 19.3 (▲ +0.3)

Source Only - ✓ ✓ ✓ 47.6 28.4 19.6
CIA [13] - ✓ ✓ ✓ 48.3 29.5 20.3 (▲ +0.7)

Source Only - ✓ ✓ ✓ 46.7 26.7 18.2
RNA [20] - ✓ ✓ ✓ 50.8 29.1 20.0 (▲ +1.8)

DG

Source Only - ✓ ✓ ✓ 47.2 27.4 19.0
MM-SADA (SS) [12] - ✓ ✓ ✓ 47.8 27.9 19.2 (▲ +0.2)

Source Only - ✓ ✓ ✓ 46.7 26.7 18.2
RNA [20] - ✓ ✓ ✓ 50.7 27.9 19.8 (▲ +1.6)

Source Only ✓ ✓ ✗ ✓ 38.3 22.4 14.3
MTCN [9] ✓ ✓ ✗ ✓ 39.8 25.5 14.8 (▲ +0.5)

Source Only ✓ ✓ ✗ ✓ 38.7 23.8 14.8
SeqDG ✓ ✓ ✗ ✓ 41.3 26.8 16.9 (▲ +2.1)

Source Only ✓ ✓ ✓ ✓ 46.4 26.6 18.2
SeqDG (No text) ✓ ✓ ✓ ✓ 47.5 28.9 19.5 (▲ +1.3)

SeqDG ✓ ✓ ✓ ✓ 49.1 29.8 20.6 (▲ +2.4)

Table 4.1: Comparison with state-of-the-art in the Cross-Domain setting of the Epic-
Kitchen-100 UDA benchmark (target validation split). Models are evaluated in terms of
Top-1 and Top-5 Verb, Noun and Action accuracy (%).

46

4 – Experiments

Setting D1 −→ D2 D1 −→ D3 D2 −→ D1 D2 −→ D3 D3 −→ D1 D3 −→ D2
Baseline 43.3 42.0 42.5 43.4 43.2 45.0
SeqDG 45.3(▲ +2.0) 47.3(▲ +5.3) 48.5(▲ +6.0) 46.9(▲ +3.5) 46.2(▲ +3.0) 51.4(▲ +6.4)

Table 4.2: Epic-Kitchen-55 Results

4.4 SeqDG Intra-domain Results
This section explores how our method improves intra-domain action recognition.
The method’s domain generalization capabilities not only enhance performance
during domain shifts but also lead to more robust predictions within the same
domain. This is because considering context remains valuable during testing within
the same domain due to the increased similarity in how actions are performed by
the same actor.

Moreover, to benchmark our performance, we present the results of a baseline
model. This baseline uses a simple classifier head on top of the features, without
any of the core components of our proposed method. On the EPIC-Kitchens-100
Dataset, our approach achieved a higher top-1 action accuracy. Our method, in
comparison, captured an average improvement of +5.2 on top-1 accuracy.

Finally, to better evaluate our model’s performance against state-of-the-art meth-
ods, we compare our method on both the Epic-Kitchen-100 and EGTEA datasets.
We include the MTCN model [9], which integrates sequence and context infor-
mation. Additionally, we compare our method with well-known egocentric action
recognition methods on the EGTEA dataset.

4.4.1 Comparison With State-Of-The-Art
In Table 4.3, we indicate the results to compare our method not only by the baseline
but also in comparison with MTCN [9], and also the † is used to show LM as test
time for fair comparison with MTCN. Additionally, It had been indicated, as our
method was able to achieve +5.2 according to the baseline, and in comparison
to MTCN [9] which was able to achieve +3.5 in intra-domain, we were able to
outperform this method.

Further, in Table 4.4 we showed the model’s power to outperform other state-of-
the-art. We achieved 74.1% accuracy on the Top-1 accuracy of action. Moreover,
the performance of our model without a text-based test-time language model (in-
dicated by †) is about 1.5% better than the best performance achieved by other
methods, specifically MTCN [9]. When considering the test-time language model,
we achieved a further improvement of 0.6% compared to MTCN [9].

47

4 – Experiments

Modalities Top-1 Acc. (%) ∆ Mean
Method Sequence RGB Flow Audio Verb Noun Action Acc. (%)

Baseline ✓ ✓ ✗ ✓ 60.0 42.8 30.8 -
MTCN [9] ✓ ✓ ✗ ✓ 60.6 48.2 33.0 +2.2
MTCN† [9] ✓ ✓ ✗ ✓ 61.5 49.3 34.3 +3.5

Baseline ✓ ✓ ✗ ✓ 60.1 42.8 31.1 -
SeqDG ✓ ✓ ✗ ✓ 63.9 49.1 36.1 +5.0
SeqDG† ✓ ✓ ✗ ✓ 63.6 49.7 36.3 +5.2

Table 4.3: EPIC-Kitchens-100 Intra-domain Comparison

Method Top-1 Acc. (%) Mean Class Acc. (%)

Kapidis et al. [53] 68.9 60.5
Lu et al. [66] 68.6 60.5
SlowFast [6] 70.4 61.9
Min et al. [67] 68.5 62.8
MTCN [9] 72.5 64.8
SeqDG 74.0 66.5

MTCN† [9] 73.5 65.8
SeqDG† 74.1 66.9

Table 4.4: EGTEA state-of-the-art comparison

4.5 Ablations
In this section, we will present an ablation study of the model components, ana-
lyzing the effect of each part on overall performance. We will assess the results of
each component in subsection 4.5.1. Then, in the next subsection 4.5.3, we will
analyze the impact of different sequence lengths. Following that, we will discuss
the reasoning behind hyper-parameter variation. Subsequently, in subsection 4.5.6,
we will present the results of using different modalities. Finally, the next two sub-
sections, 4.5.7 and 4.5.8, will detail the results of different language models and
qualitative results, respectively.

4.5.1 SeqDG components
In Table 4.5, we present the results of our model using only RGB input to isolate
the effects of each component. We begin with a baseline performance on RGB-only
data. The table then shows how the addition of each component incrementally
improves the model’s performance.

Looking at Table 4.5, we can see that the baseline model, which does not include
a sequence, performs the worst. Adding a sequence to the model results in a 0.4%

48

4 – Experiments

Sequence SeqMix LrA LrT Verb Noun Action
- - - - 33.5 21.6 11.6
✓ - - - 32.9 22.7 12.0
✓ ✓ - - 33.9 23.2 12.1
✓ ✓ ✓ - 33.5 23.7 12.4
✓ ✓ - ✓ 34.2 23.6 12.2
✓ ✓ ✓ ✓ 34.3 24.2 12.8

Table 4.5: Ablation study on the different components of SeqDG on EK-100 in terms
Top-1 accuracy (%) using RGB information only.

improvement over the baseline. Further improvement is achieved by incorporating
SeqMix, yielding a total of 0.5% improvement relative to the baseline. Finally,
adding visual reconstruction loss and text reconstruction loss leads to additional
improvements of 0.8% and 0.6%, respectively, compared to the baseline model. The
most significant improvement, however, is achieved by combining all components,
resulting in a 1.2% gain over the baseline.

4.5.2 Epic-Kitchen-100 UDA Challenge

To further demonstrate our work’s effectiveness, particularly the sequence mix
methodology, we participated in the EPIC-KITCHENS-100 Unsupervised Domain
Adaptation (UDA) Challenge for Action Recognition at the 2023 Conference on
Computer Vision and Pattern Recognition (CVPR). We achieved second place in
this specific task and ranked fourth overall (as shown in Table 4.6). Notably, we
achieved these results using only a sequence-based prediction approach combined
with our SeqMix method. This success highlights the strength of our approach
when employing multiple modalities with different backbones.

Rank Method Verb Noun Action

1 Ns-LLM 58.22 40.33 30.14
2 VI-I2R [68] 57.89 40.07 30.12
3 Audio-Adaptive-CVPR2022 [69] 52.95 42.26 28.06
4 sshayan [70] 58.11 35.89 27.72
5 plnet [71] 55.51 35.86 25.25

Table 4.6: Top-1 accuracy on UDA’s EPIC-Kitchens-100 leaderboard. Our submission
is highlighted.

49

4 – Experiments

1 2 3 4 5 6 7
Sequence Length

25

30

35

40

45

50

Ac
cu

ra
cy

Verb
Noun
Action

(a) Intra-domain sequence length ef-
fect.

1 2 3 4 5 6 7
Sequence Length

25

30

35

40

45

50

Ac
cu

ra
cy

Verb
Noun
Action

(b) Cross-domain sequence length ef-
fect.

4.5.3 Sequence length

Figure 4.5b, and 4.5a illustrate the relationship between performance and the num-
ber of actions in a sequence, also known as sequence length. The best results are
achieved with sequences containing five actions. Performance decreases for both
shorter and longer sequences. This can be explained by the limitations of shorter
sequences. They might not provide enough temporal context, which refers to the
order and timing of the actions. Conversely, longer sequences might not be uni-
versally applicable across different domains. Additionally, they might introduce
the dimensionality curse by bringing irrelevant actions that are not related to the
core functionality of the sequence and cannot be effectively understood by simply
looking at the other actions in the sequence. Due to these factors, we have chosen
a sequence length of five for all our experiments.

4.5.4 Sequences Similarity across the domain

To test our hypothesis, we also calculated the number of distinct sequences repeated
across the two domains in Epic-Kitchen-100 [1]. Fig. 4.6 shows the number of
sequences repeated between different domains in the UDA split of Epic-Kitchen-
100 [1]. We calculated the sequence number based on the sequence of verbs, nouns,
and actions separately.

Furthermore, we extended this analysis to consider not only the full sequences
but also all repeated subsequences, down to a length of two. As evident in Fig. 4.6,
the number of action sequences and noun sequences shows minimal improvement
beyond a length of five. This finding supports our choice of a five-action window
for sequence modelling based on the results of our hyperparameter testing.

50

4 – Experiments

Figure 4.6: The number of repeated sequences with different numbers of actions between
two different domains in the UDA split of Epic-Kitchen-100[1].

0.5 1 1.5 2 2.5 3 3.5 4 4.5
11.5
12.0
12.5
13.0
13.5

λrA

λrT = 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5
λrT

λrA = 1

Figure 4.7: Parameter analysis of the weights associated with the visual and textual
reconstruction losses of SeqDG (RGB).

4.5.5 Hyper-parameters variation
Figure 4.7 explores the impact of varying the weights assigned to the visual and
textual reconstruction losses within a multimodal learning framework. The ex-
periment involves systematically increasing the weight of one loss function while
keeping the other fixed. This ablation study allows us to isolate the influence of
each loss term on the overall performance of the model. The results demonstrate
that the model achieves its optimal performance when the reconstruction objective
prioritizes both modalities equally, assigning a weight of 1.0 to both the visual and
textual reconstruction losses. This suggests that the model benefits from learning
a robust joint representation that captures the complementary information present
in both visual and textual data.

51

4 – Experiments

Setting RGB Flow Audio Verb Noun Action

Source Only ✓ - - 33.5 21.6 11.6
SeqDG ✓ - - 34.3 24.2 12.8

Source Only ✓ ✓ - 42.1 24.3 15.3
SeqDG ✓ ✓ - 45.0 28.4 18.0

Source Only ✓ - ✓ 38.7 23.8 14.8
SeqDG ✓ - ✓ 41.3 26.8 16.9

Source Only ✓ ✓ ✓ 46.4 26.6 18.2
SeqDG ✓ ✓ ✓ 49.1 29.8 20.6

Table 4.7: Comparison of different modalities on EK-100.

4.5.6 Modalities Ablation
Beyond visual appearance, other modalities inputs like audio and optical flow can
also be susceptible to domain shift in various ways. For instance, the way objects
interact with their environment, as captured by optical flow, and the sounds they
produce, as captured by audio, can be influenced by their shape and material
composition.

Table 4.7 showcases the performance of SeqDG on multimodal tasks, where we
observe even more significant improvements compared to using a single modality
alone. This finding not only suggests that our method can be effortlessly applied to
other sensory inputs but also highlights the value of the complementary information
provided by these additional modalities in aiding the reconstruction process.

4.5.7 Language Model
To showcase the robustness of SeqDG to variations in textual encoders, we evaluate
its performance using different language models for extracting the textual features
employed during reconstruction. Even though these language models have vastly
different sizes, we observe similar accuracy for verb and noun recognition. This
reinforces the notion that text in SeqDG serves primarily as a guiding force to
mitigate domain shift during reconstruction, rather than being a core component
of the final inference process. The reasults is indicated in

Model Verb Acc. (%) Noun Acc. (%) Action Acc. (%)

Source Only 33.5 21.6 11.6
CLIP [72] 34.4 23.2 12.3
MiniLM [73] 34.8 23.6 12.4
BERT [37] 34.3 24.2 12.8

Table 4.8: Comparison of different Language Models for SeqDG.

52

4 – Experiments

4.5.8 Qualitative Results

Figure 4.8: Qualitative examples showing success and failure cases of SeqDG.

To illustrate the power of leveraging temporal context, Figure 4.8 showcases qual-
itative examples where a baseline model, lacking the ability to analyze sequences,
would falter. In contrast, our approach successfully predicts the correct label by
capitalizing on the informative sequence of actions. For instance, a baseline model
might struggle to identify the final action of "making a sandwich" if presented solely
with an image of spreading mayonnaise on bread. However, by analyzing the entire
sequence – retrieving bread, applying condiments, adding fillings – our model can
accurately predict the final goal.

Additionally, it’s important to acknowledge limitations. While sequence analysis
empowers our approach, there can be scenarios where the central actions within a
sequence hold a weak connection to the surrounding actions. Imagine a scenario
where someone retrieves a set of objects from a cupboard. Here, the act of re-
trieving objects itself doesn’t provide much context about the specific purpose. In
such cases, our approach might extract limited meaningful information from the
sequence, potentially leading to an incorrect prediction. This highlights the impor-
tance of considering both the strengths and limitations of sequence-based models
when designing robust AI systems.

53

Chapter 5

Conclusions

In this work, we tackled the challenge of how domain shift affects egocentric ac-
tion recognition. Egocentric videos, by their nature, are challenging data. As a
result, they tend to have a strong dependency on the visual information of the en-
vironment. Recognizing that these dependencies can reduce the performance when
the environment changes, we proposed a solution to mitigate them. This solution
leverages context as a moderator of visual representation.

We argued that context acts as a robust element because it’s less affected by
shifts in the model environment. While an object’s interaction with an actor can
change based on the environment (think frying an egg on a camping stove vs. a
home kitchen), the underlying reasoning behind the action often remains the same.
To illustrate, consider cooking fried eggs. The sequence of actions needed – picking
up the egg, cracking it, pouring it into a pan – remains consistent for the same
goal, with a lower probability of changing during an environment shift. Therefore,
inspired by this reasoning, we introduced SeqDG, which increases robustness to
domain shift.

Similar to unsupervised domain adaptation (UDA), SeqDG tackles domain gen-
eralization (DG). However, unlike UDA, SeqDG assumes that data from the unseen
domain is completely unavailable. To address this challenge, we leveraged the train-
ing data to become a robust model by taking the best advantage of available data,
and SeqDG demonstrates this improved robustness through classification using se-
quences rather than individual actions. This approach highlights the context’s role
in boosting domain generalization. We introduce the novel mixed sequence method
(SeqMix), which constructs sequences by combining actions from different domains
while maintaining the label order from the seen training data. This method com-
pels the model to learn domain-agnostic features. Additionally, we employ visual-
textual reconstruction (SeqRec) to investigate the influence of the language model
during training and its contribution to building a more robust model for domain
generalization.

Finally, by presenting our results on different benchmarks (Epic-Kitchen-100 [1],

54

5 – Conclusions

and EGTEA [2]), we showed the superiority of our model by achieving +2.4%
accuracy on top-1 action in Epic-Kitchen-100. By analyzing the results, we are also
able to indicate the effect of the sequence along which each element is presented
in the SeqDG. This finding highlights the potential of context in DG, suggesting
that future research could explore how to leverage context for improved model
performance across the different domains.

55

Bibliography

[1] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, E. Kazakos, J. Ma,
D. Moltisanti, J. Munro, T. Perrett, W. Price, et al., “Rescaling egocentric
vision: Collection, pipeline and challenges for epic-kitchens-100,” International
Journal of Computer Vision, pp. 1–23, 2022.

[2] Y. Li, M. Liu, and J. M. Rehg, “In the eye of beholder: Joint learning of gaze
and actions in first person video,” in Proceedings of the European conference
on computer vision (ECCV), pp. 619–635, 2018.

[3] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu, M. Martin, T. Nagarajan, I. Ra-
dosavovic, S. K. Ramakrishnan, F. Ryan, J. Sharma, M. Wray, M. Xu, E. Z.
Xu, C. Zhao, S. Bansal, D. Batra, V. Cartillier, S. Crane, T. Do, M. Doulaty,
A. Erapalli, C. Feichtenhofer, A. Fragomeni, Q. Fu, C. Fuegen, A. Gebrese-
lasie, C. Gonzalez, J. Hillis, X. Huang, Y. Huang, W. Jia, W. Khoo, J. Kolar,
S. Kottur, A. Kumar, F. Landini, C. Li, Y. Li, Z. Li, K. Mangalam, R. Mod-
hugu, J. Munro, T. Murrell, T. Nishiyasu, W. Price, P. R. Puentes, M. Ra-
mazanova, L. Sari, K. Somasundaram, A. Southerland, Y. Sugano, R. Tao,
M. Vo, Y. Wang, X. Wu, T. Yagi, Y. Zhu, P. Arbelaez, D. Crandall, D. Damen,
G. M. Farinella, B. Ghanem, V. K. Ithapu, C. V. Jawahar, H. Joo, K. Kitani,
H. Li, R. Newcombe, A. Oliva, H. S. Park, J. M. Rehg, Y. Sato, J. Shi, M. Z.
Shou, A. Torralba, L. Torresani, M. Yan, and J. Malik, “Ego4d: Around the
World in 3,000 Hours of Egocentric Video,” in IEEE/CVF Computer Vision
and Pattern Recognition (CVPR), 2022.

[4] R. Pramoditha, “The concept of artificial neurons (perceptrons) in neural net-
works,” 2021.

[5] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model
and the kinetics dataset,” in proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6299–6308, 2017.

[6] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video
recognition,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6202–6211, 2019.

[7] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient video
understanding,” in Proceedings of the IEEE/CVF international conference on

56

Bibliography

computer vision, pp. 7083–7093, 2019.
[8] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen, “Epic-fusion: Audio-

visual temporal binding for egocentric action recognition,” in Proceedings of
the IEEE/CVF international conference on computer vision, pp. 5492–5501,
2019.

[9] E. Kazakos, J. Huh, A. Nagrani, A. Zisserman, and D. Damen, “With a little
help from my temporal context: Multimodal egocentric action recognition,”
arXiv preprint arXiv:2111.01024, 2021.

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. March, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” Journal of machine learning research, vol. 17, no. 59, pp. 1–35, 2016.

[11] M.-H. Chen, Z. Kira, G. AlRegib, J. Yoo, R. Chen, and J. Zheng, “Temporal
attentive alignment for large-scale video domain adaptation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 6321–6330,
2019.

[12] J. Munro and D. Damen, “Multi-modal domain adaptation for fine-grained
action recognition,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 122–132, 2020.

[13] L. Yang, Y. Huang, Y. Sugano, and Y. Sato, “Interact before align: Leveraging
cross-modal knowledge for domain adaptive action recognition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 14722–14732, 2022.

[14] M. Planamente, C. Plizzari, E. Alberti, and B. Caputo, “Domain generaliza-
tion through audio-visual relative norm alignment in first person action recog-
nition,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 1807–1818, 2022.

[15] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spa-
tiotemporal features with 3d convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, pp. 4489–4497, 2015.

[16] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, and R. Gir-
shick, “Long-term feature banks for detailed video understanding,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 284–293, 2019.

[17] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for ac-
tion recognition in videos,” Advances in neural information processing systems,
vol. 27, 2014.

[18] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action recogni-
tion,” in European conference on computer vision, pp. 20–36, Springer, 2016.

[19] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational reason-
ing in videos,” in Proceedings of the European conference on computer vision
(ECCV), pp. 803–818, 2018.

57

Bibliography

[20] M. Planamente, C. Plizzari, S. A. Peirone, B. Caputo, and A. Bottino, “Rela-
tive norm alignment for tackling domain shift in deep multi-modal classifica-
tion,” International Journal of Computer Vision, pp. 1–21, 2024.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[22] T. M. Mitchell, “Machine learning,” 1997.
[23] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[24] F. Rosenblatt et al., Principles of neurodynamics: Perceptrons and the theory
of brain mechanisms, vol. 55. Spartan books Washington, DC, 1962.

[25] M. Minsky and S. A. Papert, Perceptrons, reissue of the 1988 expanded edi-
tion with a new foreword by Léon Bottou: an introduction to computational
geometry. MIT press, 2017.

[26] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 807–814, 2010.

[27] C. E. Shannon, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[28] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal
Statistical Society Series B: Statistical Methodology, vol. 20, no. 2, pp. 215–232,
1958.

[29] H. Robbins and S. Monro, “A stochastic approximation method,” The annals
of mathematical statistics, pp. 400–407, 1951.

[30] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a re-
gression function,” The Annals of Mathematical Statistics, pp. 462–466, 1952.

[31] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Transactions on
Electronic Computers, no. 3, pp. 299–307, 1967.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information process-
ing systems, vol. 25, 2012.

[35] R. M. Schmidt, “Recurrent neural networks (rnns): A gentle introduction and
overview,” arXiv preprint arXiv:1912.05911, 2019.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

58

Bibliography

deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[38] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pre-
training approach,” arXiv preprint arXiv:1907.11692, 2019.

[39] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,
“Xlnet: Generalized autoregressive pretraining for language understanding,”
Advances in neural information processing systems, vol. 32, 2019.

[40] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Al-
bert: A lite bert for self-supervised learning of language representations,” arXiv
preprint arXiv:1909.11942, 2019.

[41] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training,” 2018.

[42] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling
language modeling with pathways,” Journal of Machine Learning Research,
vol. 24, no. 240, pp. 1–113, 2023.

[43] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[44] S. Sudhakaran and O. Lanz, “Convolutional long short-term memory networks
for recognizing first person interactions,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops, pp. 2339–2346, 2017.

[45] S. Sudhakaran and O. Lanz, “Attention is all we need: Nailing down
object-centric attention for egocentric activity recognition,” arXiv preprint
arXiv:1807.11794, 2018.

[46] S. Sudhakaran, S. Escalera, and O. Lanz, “Lsta: Long short-term attention for
egocentric action recognition,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9954–9963, 2019.

[47] A. Furnari and G. M. Farinella, “Rolling-unrolling lstms for action anticipation
from first-person video,” IEEE transactions on pattern analysis and machine
intelligence, vol. 43, no. 11, pp. 4021–4036, 2020.

[48] M. Planamente, A. Bottino, and B. Caputo, “Self-supervised joint encoding of
motion and appearance for first person action recognition,” in 2020 25th In-
ternational Conference on Pattern Recognition (ICPR), pp. 8751–8758, IEEE,
2021.

[49] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person activity
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1894–1903, 2016.

[50] S. Sudhakaran, S. Escalera, and O. Lanz, “Gate-shift networks for video action
recognition,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1102–1111, 2020.

59

Bibliography

[51] A. Cartas, J. Luque, P. Radeva, C. Segura, and M. Dimiccoli, “Seeing and
hearing egocentric actions: How much can we learn?,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0,
2019.

[52] S. Singh, C. Arora, and C. Jawahar, “First person action recognition using
deep learned descriptors,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2620–2628, 2016.

[53] G. Kapidis, R. Poppe, E. van Dam, L. Noldus, and R. Veltkamp, “Multi-
task learning to improve egocentric action recognition,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0,
2019.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9, 2015.

[55] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier dis-
crepancy for unsupervised domain adaptation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3723–3732, 2018.

[56] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with
deep adaptation networks,” in International conference on machine learning,
pp. 97–105, PMLR, 2015.

[57] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable: An adaptive
feature norm approach for unsupervised domain adaptation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 1426–1435,
2019.

[58] R. Volpi, H. Namkoong, O. Sener, J. C. Duchi, V. Murino, and S. Savarese,
“Generalizing to unseen domains via adversarial data augmentation,” Advances
in neural information processing systems, vol. 31, 2018.

[59] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with ad-
versarial feature learning,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5400–5409, 2018.

[60] Q. Dou, D. Coelho de Castro, K. Kamnitsas, and B. Glocker, “Domain gener-
alization via model-agnostic learning of semantic features,” Advances in neural
information processing systems, vol. 32, 2019.

[61] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain
generalization via conditional invariant adversarial networks,” in Proceedings
of the European conference on computer vision (ECCV), pp. 624–639, 2018.

[62] S. Bucci, A. D’Innocente, Y. Liao, F. M. Carlucci, B. Caputo, and T. Tom-
masi, “Self-supervised learning across domains,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5516–5528, 2021.

[63] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tom-
masi, “Domain generalization by solving jigsaw puzzles,” in Proceedings of

60

Bibliography

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2229–2238, 2019.

[64] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

[65] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “Scaling egocen-
tric vision: The epic-kitchens dataset,” in European Conference on Computer
Vision (ECCV), 2018.

[66] M. Lu, D. Liao, and Z.-N. Li, “Learning spatiotemporal attention for egocentric
action recognition,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pp. 0–0, 2019.

[67] K. Min and J. J. Corso, “Integrating human gaze into attention for egocentric
activity recognition,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1069–1078, 2021.

[68] Y. Cheng, F. Fang, and Y. Sun, “Team vi-i2r technical report on epic-kitchens-
100 unsupervised domain adaptation challenge for action recognition 2021,”
arXiv preprint arXiv:2206.02573, 2022.

[69] Y. Zhang, H. Doughty, L. Shao, and C. G. Snoek, “Audio-adaptive activity
recognition across video domains,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 13791–13800, 2022.

[70] A. Nasirimajd, S. A. Peirone, C. Plizzari, and B. Caputo, “Epic-kitchens-
100 unsupervised domain adaptation challenge: Mixed sequences prediction,”
arXiv preprint arXiv:2307.12837, 2023.

[71] M. Planamente, G. Goletto, G. Trivigno, G. Averta, and B. Caputo, “Polito-
iit-cini submission to the epic-kitchens-100 unsupervised domain adaptation
challenge for action recognition,” arXiv preprint arXiv:2209.04525, 2022.

[72] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models
from natural language supervision,” in International conference on machine
learning, pp. 8748–8763, PMLR, 2021.

[73] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transform-
ers,” Advances in Neural Information Processing Systems, vol. 33, pp. 5776–
5788, 2020.

61

	List of Tables
	List of Figures
	Introduction
	Research goal and contributions

	Related Works
	Introductory Concepts
	Machine Learning and Deep Learning
	Perceptrons
	Multi-Layer Perceptrons
	Activation Functions
	Loss Functions
	Learning and Optimization
	Regularization

	Convolutional Neural Network (CNN)
	Convolutional Layer
	Pooling layers

	Sequential Data
	Recurrent Neural Network(RNN)
	Long Short-Term Memory(LSTM)
	Transformers

	Egocentric Action Recognition
	3D Base Action Recognition
	2D Base Action Recognition
	Multimodal Egocentric Action Recognition
	Context Base Egocentric Action Recognition

	Domain Generalization & Unsupervised Domain Adaptation
	General Adversarial Methods
	Video Adversarial Domain Adaptation
	Egocentric Domain Adaptation
	Adversarial free Domain Adaptation
	Domain Generalization

	Sequential Domain Generalisation for Egocentric Action Recognition (SeqDG)
	Motivation
	Overview
	Sequential Data Definition
	SeqMix: Sequence Mix
	Sequence Feature Embedding
	Sequence Reconstruction
	Action Classification
	Inference Time

	Experiments
	Datasets
	Epic-Kitchens-55
	Epic-Kitchens-100
	Extended Georgia Tech Egocentric Activity (EGTEA)

	Implementation details
	SeqDG Cross-domain Results
	Comparison with state-of-the-art

	SeqDG Intra-domain Results
	Comparison With State-Of-The-Art

	Ablations
	SeqDG components
	Epic-Kitchen-100 UDA Challenge
	Sequence length
	Sequences Similarity across the domain
	Hyper-parameters variation
	Modalities Ablation
	Language Model
	Qualitative Results

	Conclusions
	Bibliography

