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Summary

In recent years, the growth of affordable wearable cameras, exemplified by devices
like GoPro, has yielded a growing interest in first-person perspective, denoted as
egocentric vision. The proximity of the camera to actions allows for a deep analysis
of human behaviour and human-environment interaction. The benefit of egocentric
vision finds exploitation in numerous applications, including augmented and mixed
reality, human-robot interaction and behavior understanding.

Tasks related to video analysis demand a focus on the integration of diverse
modalities due to their inherently multimodal nature. The inclusion of additional
modalities provides complementary information, addressing limitations and en-
hancing the robustness and accuracy of egocentric action recognition systems.
Nevertheless, the integration of diverse modalities introduces challenges arising
from data heterogeneity, distinct preprocessing needs, and varying computational
demands specific to each modality.

Recent studies in egocentric vision have explored graph-based approaches to
build hierarchical representations of human activities, or extract topological maps
of physical space. Additional research has showcased the adaptability of Graph
Neural Networks (GNNs) in the domain of multimodal context. This thesis extends
this exploration to leverage Graph Neural Networks (GNN) for action recognition,
enhancing temporal reasoning over action sequences and supporting integration
and cooperation between different modalities. We combine Graph Neural Networks
(GNN) with a cross-modal attention mechanism, enabling reciprocal exploration of
content between different modalities and enabling robust cooperation.

To further demonstrate the effectiveness of our approach in exploiting the
synergies between the modes, we explore scenarios where a specific modality is
not available during test time, attributed to factors like computational constraints
or efficiency requirements. Our cross-modal interaction mechanism learns robust
representations, showcasing robustness in the face of potential modality loss.

Experiments reveal a significant boost in accuracy compared to various baselines.
This underscores the efficiency of GNN in handling multimodal contexts across
diverse scenarios.
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Chapter 1

Introduction

In recent times, there has been a notable surge in the popularity of Egocentric Action
Recognition (EAR) and, more broadly, first-person video analysis. This upsurge can
be attributed to the widespread availability of lightweight and affordable wearable
cameras, such as GoPro and similar devices. A first-person perspective provides
a close-up view that allows for in-depth analysis of human behaviors, finding
applications in areas where the first-person perspective appears to be useful or
necessary, such as human-environment interaction, augmented and virtual reality,
as well as in healthcare where egocentric vision systems serve as valuable tools for
patient monitoring and surgical training.

Egocentric vision closely mimics the perceptual dynamics of a human observer.
A critical aspect of human perception involves the interconnection of various sensory
inputs. In contrast, much of the Initial research in the field of computer vision has
been oriented towards unimodal investigations. The trend has undergone a shift
with the development of multi-stream architectures [1], which have transcended
the limitations of unimodal approaches. Two-stream architectures became popular,
which employ both RGB and Optical Flow information as input, and a natural
extension of them arose, including more branches and different input modalities.
Each modality is assumed to be complementary to the rest and, thus, helpful to
improve the classification of actions.

Moreover, contemporary research has ventured into the exploration of utilizing
graphs for the purpose of action recognition. This encompasses the deployment
of hierarchical graphs to represent activities, with each node encapsulating a
unique action [2]. Furthermore, investigations have delved into the construction of
topological graphs mapping physical space, wherein each node signifies a distinct
zone within the video clip [3]. Recent developments in the field have also leveraged
graph structures to effectively model interactions between hands and objects [4].

This emerging trend in action recognition research highlights a diverse spectrum
of graph-based approaches, showing the versatility of graphical representations in
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capturing intricate relationships and contextual nuances in video data.
Within the scope of this thesis, our aim is to show the power and versatility

of graphs and Graphical Neural Networks (GNNs) in aggregating information
from various modalities in the context of action recognition. By harnessing the
capabilities of GNNs, we can effectively encapsulate the temporal dynamics present
in video data, enabling a more nuanced understanding of the underlying temporal
dependencies that characterise actions.

To highlight the effectiveness of our approach in leveraging modal synergies,
we investigate scenarios where specific modalities are unavailable during testing
due to factors such as computational constraints or efficiency requirements. Our
cross-modal interaction mechanism, reinforced by strategic implementations, demon-
strated resilience in learning representations, even in the face of potential modality
loss. This step emphasizes the significance of exploring real-world scenarios that
test the effectiveness and robustness of a solution.

Our final implementation, MARE-Graph, has yielded a notable performance
improvement compared to various baselines, with an average increase of 7.20% in
accuracy for action classification.
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Chapter 2

Fundamental Topics

2.1 Convolutional Neural Network
The domain of computer vision has undergone a remarkable evolution driven
by the assimilation of advanced deep-learning techniques and the progression
of hardware technology. The advent of Convolutional Neural Networks (CNNs)
has been a pivotal factor, contributing significantly to enhanced performance in
models dedicated to image and video tasks. Initially conceived for the processing
of 2-dimensional images, such as the versatile VGG [5] architecture, CNNs have
proven to possess a versatile nature, extending their applicability to the analysis
of diverse data forms, including audio spectrograms. Architectures like VGG
employ a series of convolutional and pooling layers in a stacked configuration, while
Resnet [6] introduced the concept of residual connections to boost performance.
A noteworthy inclusion in this overview is the Inception Network [7], which has
notably mitigated computational costs through the incorporation of inception layers.
These architectonic frameworks remain at the forefront of ongoing research.

The typical structure of a CNN unfolds through successive layers, encompassing:

• Fully Connected Layers: These layers establish connections between every
neuron, facilitating comprehensive feature learning across the entire input.

• Convolutional Layers: These layers perform the convolution operation,
extracting features from the input data through filters.

• Activation Layer: Applied after convolutional and fully connected layers,
the activation layer introduces non-linearity to the network, enabling it to
learn complex patterns and relationships within the data.

• Pooling Layers: Employed for down-sampling, pooling layers reduce the
spatial dimensions of the input, preserving the essential features.

3
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2.1.1 Fully Connected Layer
Neural networks are a collection of interdependent non-linear functions, with each
function embodied by a neuron, also known as a perceptron [8]. In fully connected
layers, each neuron conducts a linear transformation on the input vector utilizing a
weights matrix. Subsequently, a non-linear activation function f is applied to the
resulting product.

Mathematically represented as:

f(X, θ) = W · X + b (2.1)

X is a vector input of size D, W is the weight matrix with dimensions D × O (O
being the output dimension), and b is the bias term added to the feature.

Figure 2.1: Structure of a Feed-Forward Neural Network: Information progresses
from the initial layer, traversing various hidden layers, to the output layer.

In the context of classification-based CNNs, the final layers typically consist of
one or more FC layers. The final layer’s output undergoes a softmax operation to
generate probabilities across the various classes. Figure 2.1 illustrates a single FC
layer mapping an input to an output.

2.1.2 Convolutional Layer
A convolutional layer within a neural network operates similarly to a sliding dot
product, wherein a kernel traverses the input matrix, computing dot products
as vectors. The convolutional layer, characteristic of neural networks, exhibits
non-uniform connectivity, whereby not all input nodes within a neuron are linked
to output nodes, imparting increased adaptability for learning.

4



Fundamental Topics

This sparse connectivity ensures that not all input nodes exert influence on each
output node, thereby optimizing learning efficiency. Moreover, the constrained num-
ber of weights per layer proves advantageous for accommodating high-dimensional
inputs, particularly in domains involving image data. This unique attribute of
convolutional layers contributes to the efficacy of convolutional neural networks
(CNNs) [9] in discerning intricate features, such as shapes and textures, within
image data, underscoring their aptitude for advanced visual pattern recognition.
The mathematical equation for a convolutional layer operation in a neural network
can be expressed as follows:

Y (i, j) = (X ⋆ K)(i, j) =
Ø
m

Ø
n

X(m, n) · K(i − m, j − n) (2.2)

Let X be the input matrix, K be the convolutional kernel, and ∗ represent the
convolution operation.

Figure 2.2: 2D Convolution: The elements within the matrix on the left undergo
weighting based on the kernel values and are subsequently mapped to the output
matrix.

Figure 2.2 illustrates convolutional layer operation.

2.1.3 Activation Layer
An activation layer is incorporated to introduce non-linearity into the produced
feature maps. The prevalent activation function employed in CNNs is the Rectified
Linear Unit (ReLU), which eliminates negative values in the features by setting
them to 0.

Mathematically, ReLU can be expressed as:

f(x) = max(0, x) (2.3)

Here, x represents a value within the input feature map. This activation function
enhances the network’s ability to capture complex patterns and relationships within
the data by introducing non-linear transformations.
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2.1.4 Pooling Layer
Pooling involves reducing the dimensionality of features by aggregating information
through methods like averaging or selecting the maximum value within localized
regions. The prevalent technique is Max Pooling, where the maximum value
is chosen over a small kernel window, systematically sliding across the feature
map to generate a compact representation. Alternative pooling methods, such
as averaging, exist, and they can operate over the entire feature map to create a
global representation.

Figure 2.3: Max Pooling: each patch from the input is reduced to a single value
using an aggregation function, specifically a max function in this instance.

Refer to Figure 2.3 for an illustration of a sample maxpooling operation on a
2-dimensional matrix using a 2 × 2 kernel with a slide length of 2.

2.2 Optimization
Optimization plays a crucial role in the landscape of deep learning, where the
primary objective is the minimization of a designated loss function. Gradient
descent is an iterative process that plays a crucial role in this effort, dynamically
adjusting the neural network’s weights to iteratively reduce the loss by navigating
along the negative gradient. Through the backpropagation mechanism, gradients for
each weight in every layer are computed by leveraging the chain rule of differential
calculus.

The weights undergo updating in the following manner:

θt+1 = θt − η
1
N

NØ
i=1

∇L(θt, xi) (2.4)

Here, L(θ) denotes the loss function concerning the parameters θ, N is the size
of the training set, t is the time step, η serves as the learning rate, dictating the
convergence speed towards the minimum. This process is referred to as batch
gradient descent, where the term "batch" denotes the entire dataset.To address the
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challenges posed by extensive datasets, a practical approach involves grouping the
data into mini-batches.

The mathematical formulation of is expressed as:

θt+1 = θt − η
1
B

BØ
i=1

∇L(θt, xi) (2.5)

where B is the size of the mini-batches and θ is updated based on the average
gradient over the mini-batches.

2.3 Attention: Self and Cross Attention
The attention mechanism [10], a pivotal algorithm in the field of deep learning,
originally devised for enhancing feature representation in key sentence fragments
within natural language processing, has found widespread applications in recent
years. It has been extensively employed to address computer vision tasks, guiding
deep neural networks (DNNs) in focusing on specific image features to enhance the
understanding of semantic information in images. Beyond its semantic comprehen-
sion capabilities, the attention mechanism proves valuable in feature fusion, visual
cue discovery, and temporal information selection-areas. Recently, attention has
been extended to explore these areas.

We can distinguish between two types of attention mechanisms:

• Self-Attention:
In the context of self-attention, the mechanism is employed to explore relation-
ships and dependencies within the same set of data. Each element interacts
with all other elements in the set, allowing for the assignment of different
weights to each element based on its relationships with others. This mechanism
is useful for enriching the representation of features belonging to the same
modality based on their semantic similarity and temporal relationships.

• Cross-Attention:
Conversely, cross-attention focuses on exploring relationships between two
distinct sets. Each element of one set (usually referred to as the query)
interacts with all elements of the other set (referred to as key and value). This
is particularly valuable for feature fusion belonging to different modalities.

In summary, self-attention enhances relationships within the same set, enabling
the assignment of varying weights based on semantic and temporal relationships.
On the other hand, cross-attention is instrumental in investigating relationships
between distinct sets, facilitating feature fusion across different modalities.
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Consider an input sequence X = [x1, x2, . . .] residing in RN×d, representing
a sequence of N elements or tokens. Each input element undergoes embedding,
resulting in Z. The embedding Z is subjected to three projection matrices: WQ ∈
Rd×dq, WK ∈ Rd×dk, and WV ∈ Rd×dv, where dq = dk. These matrices generate
three distinct embeddings, namely Q (Query), K (Key), and V (Value) The formula
for calculating the attention output is obtained by multiplying the attention weights
by the values:

Output = Attention(Q, K, V ) = softmax
A

QKT

√
dk

B
· V (2.6)

Here, the attention operation returns a weighted combination of values V based on
the normalized weights calculated using the softmax function, which depends on
the relationships between queries Q and keys K.

2.4 Transformer
The Transformer model [10], a paradigm-shifting architecture in deep learning,
introduces a groundbreaking approach to sequence-to-sequence tasks without re-
lying on traditional recurrence or convolution mechanisms. At the heart of its
innovation lies the concept of attention, a mechanism designed to dynamically
weigh the importance of different elements within a sequence. Unlike conventional
architectures, the Transformer leverages attention to capture long-range depen-
dencies and relationships between elements, enabling it to excel in tasks such as
machine translation and natural language processing. This introduction delves into
the Transformer’s unique design, emphasizing how attention mechanisms redefine
the model’s ability to process and contextualize information across sequences.

The Transformer model adopts an encoder-decoder architecture (Fig. 3.10),
diverging from conventional methods by eliminating dependencies on recurrence
and convolutions for output generation. The encoder, situated on the left side of the
Transformer, maps input sequences to continuous representations, which are then
passed to the decoder. In turn, the decoder, located on the right side, utilizes the
encoder’s output and its own preceding output to produce the final sequence. The
model operates in an auto-regressive manner, where each step considers previously
generated symbols as additional input for generating subsequent ones. The encoder
comprises six identical layers, each containing a multi-head self-attention sublayer
and a fully connected feed-forward sublayer with ReLU activation. Residual
connections and normalization layers follow each sublayer. Notably, positional
information is incorporated using positional encodings, as the Transformer lacks
inherent awareness of word sequence positions. The decoder mirrors the encoder’s
structure but introduces a unidirectional nature, focusing only on preceding words
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through masking in the multi-head attention mechanism. Positional encodings are
also integrated into the decoder’s input embeddings to provide positional context.

Figure 2.4: The Transformer - model architecture.
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2.5 Vision Transformer
A Vision Transformer (ViT) [11] stands as a model designed for image classification
and various computer vision tasks, adapting the foundational Transformer archi-
tecture initially developed for natural language processing (NLP). ViTs introduce
pivotal modifications to the Transformer structure to optimize its performance for
image processing. A noteworthy alteration is evident in ViTs’ approach to image
representation. While Transformer models in NLP represent text as sequential
words, ViTs address the unique nature of images by representing them as a sequence
of patches, small rectangular regions typically measuring 16x16 pixels. Following
the partitioning of the image into patches, each patch is transformed into a vector,
capturing its distinctive features. These features are typically extracted using a
convolutional neural network (CNN), adept at discerning key attributes crucial
for image classification. Subsequently, these vector representations of individual
patches undergo processing through a Transformer encoder, a composite of self-
attention layers. This design tweak facilitates the ViT’s capacity to efficiently
analyze image features and nuances, showcasing the model’s versatility in handling
visual data.

Figure 2.5: Overview of the model: The image is partitioned into patches of fixed
size, each of which is linearly embedded, augmented with position embeddings,
and then processed through a conventional Transformer encoder. For classification
purposes, the standard method involves introducing an additional learnable "classi-
fication token" to the sequence
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2.6 Graph Neural Networks
Convolutional Neural Networks (CNNs) have been extensively employed for pro-
cessing data structured in a Euclidean grid, such as images and videos. However,
many real-world scenarios involve data characterized by non-Euclidean structures,
as seen in social networks or protein structures. Generalizing CNNs to graphs poses
challenges, given that convolution and pooling operations are inherently defined
on grid-like structures, risking the loss of topological information upon forced
adaptation. Graph Neural Networks (GNNs) [12] emerge as deep learning models
specifically tailored for processing data with intricate graph-based relationships.
The versatility of GNNs and graph modeling finds applications across various
domains, including medicine, physics, and social sciences, addressing tasks like
node classification, link prediction, and graph classification. This versatility makes
GNNs particularly valuable wherever topology plays a crucial role.

Figure 2.6: Illustration of the possible applications of Graph Neural Networks

In graph theory, a graph G(V, E) is a data structure comprising a set of vertices
(nodes) i ∈ V and a set of edges eij ∈ E connecting vertices i and j. The adjacency
matrix A captures the connection information, where eij = 1 if nodes i and j are
connected and eij = 0 otherwise. Graph Neural Networks (GNNs) are specialized
models designed to operate on graphs, treating nodes as entities with distinct
properties represented as features.

The GNN operates through a series of steps: Message Passing, Aggregation,
and Update.

• Message Passing: GNNs learn structural information by considering nodes
connected in a graph. The neighborhood Ni of a node i comprises nodes j
connected to i by an edge. The GNN engages in Message Passing, where node
features of neighbors are transformed and transmitted to the source node.

• Aggregation: Transformed messages are aggregated using functions like
sum, mean, max, or min. The aggregated messages, denoted as m

(k)
N(u), are

computed based on the transformed node features of neighbors.

11
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Figure 2.7: The input graph undergoes a sequence of neural network operations,
represented by the squares. The new vector representations of neighbouring nodes
are aggregated to obtain the new source node information

• Update: The GNN layer updates the source node’s features using the aggre-
gated messages. This step ensures that the node knows not only about itself
but also about its neighbors. The update involves combining the source node’s
feature vector with the aggregated messages, typically performed through
addition or concatenation operations.

In each iteration of message-passing within a Graph Neural Network (GNN),
the embedding h(k)

u associated with each node u ∈ V is updated by assimilating
information from the graph neighborhood N(u) of u (Figure 2.6). The message-
passing update can be represented as:

h(k+1)
u = UPDATE(k)

1
h(k)

u , AGGREGATE(k)
1
{h(k)

v , ∀v ∈ N(u)}
22

(4.2)
This can be further expressed as:

h(k+1)
u = UPDATE(k)

1
h(k)

u , m
(k)
N(u)

2
(4.3)

where UPDATE(k) and AGGREGATE(k) are arbitrary differentiable functions
(i.e., neural networks), and m

(k)
N(u) is the "message" aggregated from the graph

neighborhood N(u) of u. In each iteration, the AGGREGATE function takes
the set of embeddings of nodes in the graph neighborhood N(u) and generates a
message m

(k)
N(u) based on this aggregated neighborhood information. The UPDATE

function then combines this message m
(k)
N(u) with the previous embedding h(k)

u of
node u to produce the updated embedding. The initial embeddings at k = 0 are set
to the input features for all nodes, i.e., h(0)

u = xu, for all u ∈ V . After performing
K iterations of GNN message passing, the output of the final layer is used to define
the embeddings for each node:

zu = h(K)
u , for all u ∈ V (4.4)

It is noteworthy that GNNs defined in this manner are inherently permutation-
equivariant due to the set-based nature of the AGGREGATE function.
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2.6.1 Graph Convolutional Networks
One of the prevalent baseline models in the realm of graph neural networks is the
Graph Convolutional Network (GCN)[13], which adopts the Kipf normalized aggre-
gation along with the self-loop update methodology. The GCN model formulates
the message-passing function as:

h(k)
v = σ

W (k) Ø
v∈N(v)∪{v}

hvñ
|N(u)||N(v)|


In this formulation, the Kipf normalized aggregation function is utilized to gather

information from the neighbors of a node, including the node itself (self-loop).
The resulting embedding of node v at the k-th iteration, h(k)

v , is thus determined
by the weighted sum of the embeddings of its neighbors, with weights given by
the weight matrix W and normalized. This iterative update process represents
the message-passing mechanism across the graph, incorporating neighborhood
information into the representation of the current node.

2.6.2 SAGEConv
GraphSAGE [14] constitutes a comprehensive framework designed for acquiring
node embeddings through a systematic learning process. The model’s efficiency in
training is facilitated by an inductive approach that involves neighborhood sampling
and aggregation. In this methodology, the sampling operation is responsible for
the random selection of neighbors for each node within the graph. Subsequently,
an aggregation step is executed, wherein the features of the sampled neighbors are
harnessed to construct node embeddings. This process iterates from the top layer
down to the final layer, ultimately producing the output embedding. This resultant
embedding is then employed for updating the model’s weights and can be applied
to fulfill specific tasks within diverse applications.

The paper introduces three candidate aggregation functions, each designed to
capture and consolidate information from neighboring vectors. The first is the mean
aggregator, which computes the elementwise mean of neighboring vectors. The
second, the LSTM aggregator, employs a more complex LSTM [15] architecture for
information integration. Lastly, the pooling aggregator utilizes a fully-connected
neural network followed by max-pooling to effectively aggregate and distill relevant
information.

The expression for SAGEConv is as follows:

x′
i = W1xi + W2 · aggregationj∈N(i)xj (2.7)
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Related Works

3.1 Action Recognition from Videos

Human Activity Recognition (HAR) is a pivotal aspect of computer vision. The
evolution of HAR can be traced from initial reliance on RGB data, with handcrafted
feature-based approaches dominating the early stages. The advent of deep learning
ushered in a new era, marked by neural network-based methods, such as two-
stream Convolutional Neural Network (CNN) [1], Recurrent Neural Network (RNN)
[16], 3D CNN [17], and Transformer-based approaches [18]. In recent years, the
integration of diverse sensor modalities has garnered attention. The concept of
multi-modality, leveraging complementary characteristics between different data
modalities, has further improved action recognition accuracy. However, challenges
arise in data acquisition, feature extraction, fusion, and temporal synchronization.
The paradigm of three-dimensional networks has become a cornerstone in capturing
intricate spatiotemporal relationships, exemplified by the Inflated 3-dimensional
CNN (I3D) introduced by [17]. This innovative architecture strategically processes
sequential frames, offering a nuanced understanding of video features across both
temporal and spatial dimensions. To address computational efficiency, channel-
separated convolutions have been introduced, providing an effective means to
reduce computational costs. The SlowFast [19] approach further enhances video
processing by adopting a two-stream methodology, leveraging both dense and
sparse sampling strategies. This approach proves instrumental in capturing both
temporal dynamics and spatial semantics. Embracing the complexity of multi-
stream networks, TSN [20] pioneers temporal aggregation by segmenting action
clips into multiple segments. Akin to TSN, the Temporal Binding Network (TBN)
[21] employs a comparable approach, introducing asynchronous data sampling for
a more comprehensive understanding of video dynamics.
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3.2 Multi-modal Learning
Methods in multi-modal learning involve the integration of information from
diverse sources, aiming to assess the viability of such fusion strategies. Despite
demonstrating promise in enhancing model performance, these techniques, as
evidenced by studies [22], are not without drawbacks. A thorough investigation into
the comparison between single-modal and multi-modal training, as conducted by
[23] in the context of classification tasks, reveals notable disparities in the overfitting
dynamics across different modalities. Specifically, multi-modal networks exhibit a
tendency to overfit at an accelerated pace due to their heightened complexity.

3.2.1 Problem definition

Multisensory perception entails the interaction of diverse modalities, such as audio
and video. The fundamental objective is the mapping of features belonging to
different modalities within a common categorical set Z. To achieve this goal, various
unimodal networks can be employed, and the structure of the multimodal network
can be formalized as M = N1

m
N2, where the symbol m denotes the fusion opera-

tion, and N1 and N2 represent two networks in the case of two modalities. The
multimodal network M learns a shared representation by integrating information
from different modalities. The process of inter and intra-modal learning involves
representing objects from distinct perspectives, leveraging synergies among the
involved modalities. Monomodal representation entails mapping individual input
streams to a high-level semantic representation. Conversely, multimodal represen-
tation harnesses the correlational power of each modality through the aggregation
of features. Multimodal fusion strategies play a crucial role in exploiting synergies
within multimodal data, facilitating a more comprehensive understanding of the
context. This approach overcomes limitations associated with individual modalities,
promoting a deeper and integrated understanding of the examined phenomenon.

3.2.2 Conventional methods

Conventional methodologies encompass a diverse array of fusion techniques, ranging
from early to hybrid schemes. In the Early Fusion paradigm, low-level features di-
rectly extracted from each modality undergo amalgamation before the classification
stage. Late Fusion entails the independent classification of features derived from
distinct modalities, which are subsequently fused. Hybrid Fusion integrates multi-
modal features derived from both early and late fusion stages in preparation for
the conclusive decision-making step. Fig. 3.1 graphically illustrates the distinction
among the three approaches.
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• Early Fusion (Feature-Level Fusion): Early Fusion facilitates the amal-
gamation of low-level features extracted from various modalities, offering a
unified and comprehensive information repository. The extracted features
exhibit inherent heterogeneity attributed to the diverse nature of modalities
and discrepancies in appearance. However, this fusion process, while providing
a holistic representation, introduces the potential risk of yielding a singular,
comprehensive representation that may lead to prediction errors.

• Late Fusion Techniques: Late Fusion techniques encompass methodologies
such as majority voting and low-rank multimodal fusion. These methods
are employed to aggregate final prediction scores derived independently from
each modality. In this approach, each modality autonomously contributes
to decision-making, potentially posing challenges to the overall integration
performance.

• Intermediate Fusion: Intermediate Fusion involves the spatial amalgamation
of representations obtained at varying scales and dimensions from diverse
data streams. The resulting representations exhibit disparities, introducing
complexities during the merging process and presenting challenges that need
to be addressed for effective integration.

Figure 3.1: Conventional multimodal fusion methods. Left: Early Fusion (Feature-
Level Fusion), center : Late Fusion, Right: Intermediate Fusion

3.2.3 Attention mechanism based
In accordance with the taxonomy provided by [24], methodologies grounded in
attention mechanisms can be classified into distinct categories: early summation,
early concatenation, hierarchical attention (multi-stream to one stream), hierar-
chical attention (one stream to multi-stream), cross-attention, and cross-attention
to concatenation. Given XA and XB from two arbitrary modalities, Z(A) and Z(B)
represent the respective embeddings of tokens. The resulting token embedding
sequence, denoted as Z, is generated through multimodal interactions. The Trans-
former layers/block is denoted as Tf(∗). Each modality is elucidated as follows:

16



Related Works

• Early Summation: This approach entails the weighted summation of token
representations derived from disparate modalities prior to the classification
process. Early summation involves the judiciously weighted amalgamation of
initial features originating from diverse modalities, with manually specified
weights. Formally:

Z = Tf(αZ(A) ⊕ βZ(B)) = MHSA(Q(AB), K(AB), V(AB))

where m denotes element-wise sum, and α and β are weightings.

• Early Concatenation: Within this modality, sequences of token representa-
tions from various modalities are concatenated and subsequently input into
Transformer layers.

Z = Tf([Z(A); Z(B)])

Early concatenation affords the consideration of all multimodal token positions
as a unified sequence, thereby enhancing the contextual encoding of each
modality.

• Hierarchical Attention (Multi-stream to One Stream): This approach
encompasses the utilization of independent Transformer layers to encode
multimodal inputs, followed by the concatenation and fusion of their outputs
through another Transformer.

Z = Tf3([Tf1(Z(A)); Tf2(Z(B))])

Hierarchical attention (multi-stream to one stream) serves as an instantiation
of late interaction/fusion.

• Hierarchical Attention (One Stream to Multi-stream): Exemplified
by InterBERT [25], this hierarchical attention modality involves encoding
concatenated multimodal inputs through a shared single-stream Transformer,
succeeded by two distinct Transformer streams.

[Z(A); Z(B)] = Tf1([Z(A); Z(B)]) Z(A) = Tf2(Z(A)) Z(B) = Tf3(Z(B))

This method preserves cross-modal interactions while concurrently upholding
the autonomy of unimodal representations.
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• Cross-Attention: In instances where two-stream Transformers are employed,
the embeddings of Query (Q) are exchanged in a cross-stream fashion to
discern cross-modal interactions.Z(A) = MHSA(QB, KA, VA)

Z(B) = MHSA(QA, KB, VB)

Cross-attention facilitates the discernment of cross-modal interactions, nonethe-
less, it may exhibit a limitation in considering the global cross-modal context.

• Cross-Attention to Concatenation: The concatenation of two cross-
attention streams is processed by another Transformer to model the global
context. 

Z(A) = MHSA(QB, KA, VA),
Z(B) = MHSA(QA, KB, VB),
Z = Tf([Z(A); Z(B)]).

The delineation of these methodologies, as expounded above, furnishes a
comprehensive framework encapsulating diverse attention-based multimodal
interaction modalities, each characterized by distinct attributes and challenges.
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Figure 3.2: Attention mechanism based multimodal fusion methods: (a) Early
Summation, (b) Early Concatenation, (c) Hierarchical Attention (from multi-stream
to one-stream), (d) Hierarchical Attention (from one-stream to multi-stream), (e)
Cross-Attention, and (f) Cross-Attention to Concatenation. In this context, "Q"
represents the Query embedding, "K" denotes the Key embedding, and "V" stands
for the Value embedding. The term "TL" refers to the Transformer Layer.
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3.3 Graph-Based Action Recognition
Researchers have investigated the application of Graph Neural Networks (GNNs)
in various video understanding tasks, including action recognition, temporal action
localization, and video object segmentation. GNNs are employed to perform spatial
and semantic relation reasoning over time among visual components, considering
the critical role of spatio-temporal relations in video understanding. [26] provides
a comprehensive overview on graph-based action recognition.

In the context of Video Action Recognition, Wang and Gupta [27] propose a
graph-based approach for capturing long-range temporal contexts. They construct
a space-time region graph, connecting humans and objects across frames, and
utilize Graph Convolution Networks (GCNs) for action prediction. Ou et al. [28]
enhance the spatial-temporal graph by introducing actor-centric object-level graphs
and relation-level graphs. Zhang et al. [29] propose multi-scale reasoning over
the temporal graph, employing Graph Attention Networks (GAT) and a learnable
adjacency matrix. Gao et al. [30] extend GCN-based relation modeling to zero-shot
action recognition, leveraging knowledge graphs. Zhao et al. [31] introduce graph-
based higher-order relation modeling for long-term action recognition, utilizing
GNNs to aggregate information from multiple graphs.

In Skeleton-Based Action Recognition, Yan et al. [32] propose an ST-GCN
network that connects joints in a human skeleton based on natural connectivity.
Shi et al. [33] introduce a fully-connected graph with learnable edge weights, while
Li et al. [34] connect physically-apart skeleton joints. Zhao et al. [35] improve
joint connectivity and use GCNs to capture relations between joints. Shi et al. [36]
maintain edge features in addition to node features via directed graph convolution.
Liu et al. [37] capture long-range spatial-temporal dependencies using dilated
windows and multi-scale GCNs.

Various modifications to standard graph convolution layers have been explored.
Si et al. [38] incorporate GCNs into LSTM units, while Cheng et al. [39] propose
shift graph convolution networks inspired by shift CNNs. Cheng et al. [40] decouple
aggregation in GCNs by splitting channels into multiple groups.

These advancements in GNN-based approaches contribute to improved perfor-
mance in video understanding tasks, demonstrating the effectiveness of modeling
spatio-temporal relationships through graph-based reasoning.

20



Related Works

3.3.1 Skeleton Based Action Recognition
Skeletal information plays a crucial role in the recognition of human actions,
as the spatio-temporal relationships among different parts of the human body
provide insights into motion and action patterns. The approach of skeleton-based
action recognition involves identifying human actions from a sequence of skeletal
data extracted from a video. Recognizing the inherent graph structure of the
human skeleton with natural joint connections, Yan et al. [32] propose an ST-GCN
network. This network initially establishes connections between joints in the same
frame based on natural connectivity and then extends these connections to the
same joints in two consecutive frames to preserve temporal information. The
application of Graph Convolution Networks (GCNs) on the joint graph facilitates
the learning of both spatial and temporal action patterns, resulting in a significant
improvement over previous methods. Shi et al. [33] enhance the approach by
introducing a fully-connected graph with learnable edge weights between joints
and a data-dependent graph derived from the input skeleton. GCNs are applied to
all three graphs. In contrast to the conventional updating of only node features
in GCNs, Shi et al. maintain edge features and concurrently learn both node
and edge feature representations through directed graph convolution. Departing
from previous approaches that focus on local spatial and temporal contexts in
consecutive frames, Liu et al. [37] capture long-range spatial-temporal dependencies.
This involves constructing multiple dilated windows over the temporal dimension,
running separate GCNs on multiple graphs with varying scales within each window,
and aggregating the results to capture multi-scale and long-range dependencies.
Some studies have explored modifications to standard graph convolution layers for
improved adaptation to action recognition. Shi et al. integrate GCNs into LSTM
units, incorporating GCN-based updates for gates, hidden state, and cell memory.
Inspired by shift CNNs [41], Cheng et al. [39] propose shift graph convolution
networks, introducing multiple feature partitions at a joint and updating each
partition using features from the corresponding neighboring joint.

Figure 3.3: ST-GCN: Spatial-temporal graph is constructed based on skeleton
sequences. Successive layers of spatial-temporal graph convolution (ST-GCN) are
systematically applied.
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3.3.2 Graph Based Temporal Reasoning
In the realm of video analysis, temporal reasoning entails the capability to identify
and understand not only the temporal sequence of events but also the temporal
dependencies between different actions. Traditional methodologies, grounded
in temporal classifiers applied to low-level video features like I3D [17] features,
have historically included sliding window approaches [42], segmental models [43],
and recurrent networks [44]. However, these conventional approaches confront
challenges in effectively capturing long-range action patterns and adapting to
scenarios characterized by limited observations, as exemplified in a first-person
video scenario extracted from the EPIC-Kitchens dataset [45]. To surmount these
challenges, Graph-based Temporal Reasoning Module (GTRM) [46], leveraging
the power of Graph Convolutional Networks (GCNs). The GTRM is strategically
integrated with existing models to adeptly learn temporal relations among actions,
facilitating the explicit modeling of interdependencies between adjacent actions
and refining the outcomes. Evaluations conducted on demanding datasets, such as
EGTEA [47] and EPIC-Kitchens [45], underscore the enhancement brought about
by the GTRM, particularly in scenarios characterized by limited observations and
protracted video durations, where backbone models, especially those employing
recurrent networks, witness performance improvements.

Figure 3.4: The backbone model identifies the poured water segment as back-
ground. With GTRM addition, it successfully detects this as "drink water" by
learning temporal relations between actions and adjusting segment boundaries
based on multiple actions.
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3.3.3 Object-Relation Reasoning Graph
Current methodologies primarily utilize either object-level graphs or scene graphs
to depict the dynamics of objects and their relationships in videos. However,
they often neglect the direct modeling of intricate transitions in relationships.
Ou et al. [28] proposes an innovative framework known as the Object-Relation
Reasoning Graph (OR2G) to address the intricacies of action reasoning in video
sequences. By amalgamating both an object-level graph (Fig. 3.5), and a relation-
level graph (Fig. 3.6), the OR2G adeptly captures transitions in object attributes
while concurrently reasoning about the dynamic shifts in relationships between
objects. Additionally, the study introduces a Graph Aggregating Module (GAM),
incorporating a multi-head edge-to-node message passing operation. The GAM
plays a crucial role in channeling information from relation nodes back to object
nodes, thereby augmenting the synergy between the object-level graph and the
relation-level graph.

• Object-level Graph Reasoning: To enhance the understanding of objects,
two distinct high-level features are utilized. Firstly, the visual feature vO

i

is extracted through ResNet [6]. Simultaneously, the semantic feature sO
i is

derived by embedding the object category into a semantic feature space. Given
that actions hinge on the action subject, an actor-centric object-level graph is
devised, positioning the person node as its central element.

Figure 3.5: Object-level Graph: visual and semantic features are extracted from
the object locations to construct the nodes in the graph. The node features of the
graph are refined at the object-level with spatial and temporal aggregations

• Relation-level Graph Reasoning: The nodes within the relation-level
graph play the role of capturing the intricate connections between the subject
and objects, denoted as relation nodes. Firstly, the spatial feature characterizes
the spatial relationships between the subject and objects through relative
spatial position descriptors. The second feature is the semantic feature derived
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from embedding the visual relationship category between the subject and
objects into the semantic feature space.

Figure 3.6: Relation-level Graph: spatial relationships between the subject and
objects and semantic feature construct the nodes in the graph The node features
of the graph are refined with temporal aggregation

• Graph Aggregating Module: The object-level graph is responsible for
transferring and processing information related to the object nodes, whereas
the relation-level graph handles the information of the relation nodes. To
enhance their coupling, a graph aggregating module featuring a multi-head
attention edge-to-node message passing operation has been introduced. This
mechanism facilitates the feedback of information from the relation-level graph
to the object-level graph, specifically in the spatial dimension. The formulation
for updating the person node in each frame is expressed as:

GA
p = 1

dp

qh
i=1 headi(GR

p , GR
p , GR

p )WA

where GA
p represents the updated person node, GR

p is the feature matrix of
all the edges connected to node p, dp is a normalization factor, headi denotes
the attention mechanism. The central node, along with the updated object
nodes and the resultant output from the object-level graph, are combined and
processed to yield the comprehensive output of the graph aggregating module.
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3.4 Multi-stream Architectures

3.4.1 Two-Stream Inflated 3D ConvNet (I3D)

A pivotal advancement in the evolution of deep learning involves the ability to extend
2D Convolutional Neural Networks (ConvNets) into 3D, leveraging knowledge
gained from pretraining on extensive datasets such as ImageNet. This process
entails taking a 2D architecture and transforming all filters and pooling kernels
from their typical square form to cubic, where N × N filters become N × N × N.
To achieve this transformation, the authors of [17] propose a method known as
inflating 2D ConvNets into 3D. Leveraging the linearity property, the weights of
the 2D filters are duplicated N times along the time dimension and then rescaled
by dividing them by N. By implementing this approach, the outputs of pointwise
non-linearity layers, as well as average and max-pooling layers, remain consistent
with the 2D case. This technique effectively allows for the bootstrapping of 3D
filters from their 2D counterparts, enabling the seamless integration of temporal
information into the neural network architecture. To capture detailed information
pertaining to motion, the authors propose a methodological approach involving
the independent training of an I3D network dedicated to RGB inputs and another
specialized for optical flow inputs. During the testing phase, predictions generated
by these networks are subjected to averaging.

Figure 3.7: The Inflated Inception-V1 architecture
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3.4.2 Temporal Segment Network (TSN)
Within the context of video analysis, the Temporal Segment Network (TSN) [20]
emerges as a innovative solution designed to address a critical limitation present in
two-stream Convolutional Neural Networks (ConvNets) [1]. TSN operates within a
distinct video-level framework, specifically developed to overcome the challenges
associated with modeling prolonged temporal structures, a task for which traditional
ConvNets exhibit shortcomings. In response to this limitation, TSN introduces a
novel approach to effective temporal modeling. This video-level framework operates
on a sequence of sparsely sampled short snippets extracted from the entirety of
the video under analysis. What sets TSN apart is its incorporation of both spatial
stream ConvNets and temporal stream ConvNets to process these short snippets.
Each snippet independently generates a preliminary prediction for action classes,
and a consensus is subsequently derived among these predictions to formulate
a comprehensive video-level prediction. In the mathematical formulation of the
Temporal Segment Network (TSN), consider a video V partitioned into K segments
of equal duration, denoted as S1, S2, ..., SK . The TSN function is defined as:

TSN(T1, T2, ..., TK) = H (G (F (T1; W ), F (T2; W ), ..., F (TK ; W )))

Here, (T1, T2, ..., TK) represents the sequence of snippets each randomly sampled
from its corresponding segment Sk, and F (Tk; W ) is the function representing a
ConvNet with parameters W operating on the short snippet Tk, producing class
scores for all classes. The segmental consensus function G combines outputs from
various short snippets to derive a consensus on class hypotheses among them. Based
on this consensus, the prediction function H estimates the probability distribution
for each action class across the entire video.

Figure 3.8: Temporal Segment Network, spatial stream ConvNets and temporal
stream ConvNets process short sparsely sampled snippets
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3.4.3 Temporal Binding Network (TBN)
The Temporal Binding Network (TBN) [21] introduces a novel approach to multi-
modal fusion, focusing on the integration of modalities within specified Temporal
Binding Windows (TBWs). In this paradigm, modalities (m1, m2) are fused with
diverse temporal offsets, all confined within a predetermined time window of width
±b. This process is formalized as

y = h (G (ftbw(m1j, m2k))) k ∈
59

jr2

r1
− b

:
,
9

jr2

r1
+ b

:6
ftbw denotes a multimodal feature extractor operating within the TBW, ri is the

modality’s framerate and j the time step. Now, contrasting TBN with an extended
version of the Temporal Segment Network (TSN) [20], two key distinctions become
evident. Firstly, TSN relies on independent temporal aggregation of each modality
across segments, with the modalities only combined through late fusion. Unlike
TSN, TBN enables the advantageous combination of modalities within a segment,
enhancing its temporal integration capabilities. Secondly, in TSN, modalities
are trained independently, and their predictions are combined during inference.
Conversely, TBN adopts a simultaneous training approach, where all modalities
are trained collectively, and their combination is learned jointly.

Figure 3.9: Temporal Binding Network (left): all modalities are trained collectively,
and their combination is learned jointly within specified Temporal Binding Windows
(TBWs).
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3.4.4 Temporal Relational Reasoning (TRN)
Temporal Relation Reasoning Network (TRN) [48] employ a similar approach
to Temporal Segment Networks (TSN) [20] by passing video snippets through
a 2D Convolutional Neural Network (CNN) until reaching the pre-classification
layer. However, in contrast to directly obtaining class confidence scores, TRN
focuses on generating features at the segment level. To facilitate modeling temporal
relationships between segments, a modified relational module, particularly sensitive
to item ordering, processes these segment-level features. Once the relational features
are computed, they undergo summation and are then input to a classification layer
for the final prediction. This approach enhances the network’s ability to capture
inter-segment temporal dependencies and offers flexibility through the multi-scale
variant. Drawing inspiration from the relational reasoning module employed
in visual question answering, the pairwise temporal relation is introduced as a
composite function denoted by T2(V ):

T2(V ) = hϕ

Ø
i<j

gθ(fi, fj)


Here, the input comprises the video V with n selected ordered frames, represented
as V = {f1, f2, ..., fn}, where fi is the representation of the i-th frame, for instance,
the output activation from a standard CNN. The functions hϕ and gθ are employed
to fuse features from different ordered frames, implemented through multilayer
perceptrons (MLP) with parameters ϕ and θ respectively. Expanding on the concept
of 2-frame temporal relations, higher frame relations are defined, including the
3-frame relation function denoted by T3(V ):

T3(V ) = h′
ϕ

 Ø
i<j<k

g′
θ(fi, fj, fk)



Figure 3.10: TRN: Frames are sampled and fed into different relation modules
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3.4.5 SlowFast
The SlowFast [19] network architecture is designed as a unified framework operating
at dual framerates. This architecture incorporates distinct pathways, namely the
Slow pathway and the Fast pathway, fused through lateral connections to form the
comprehensive SlowFast network.

In the Slow pathway, a convolutional model processes a spatiotemporal volume
representing a video clip. Notably, the key feature of the Slow pathway is a
substantial temporal stride (τ) on input frames, meaning it processes only one
out of τ frames. This temporal downsampling results in a slower refreshing speed,
and a typical value studied is τ = 16, corresponding to roughly 2 frames sampled
per second for 30-fps videos. The Slow pathway thus samples a subset of frames
denoted as T × τ , where T represents the number of frames sampled.

Simultaneously, the Fast pathway operates in parallel, acting as another con-
volutional model with distinct characteristics. The Fast pathway aims for a high
frame rate, working with a smaller temporal stride (τ/α), where α > 1 signifies the
frame rate ratio between the Fast and Slow pathways. This pathway samples αT
frames, α times denser than the Slow pathway, providing a fine representation along
the temporal dimension. Importantly, the Fast pathway maintains high temporal
resolution features throughout the network hierarchy, avoiding temporal downsam-
pling layers until the global pooling layer before classification. It also operates
with significantly lower channel capacity (β) compared to the Slow pathway, where
β < 1 (typical value β = 1/8).

Figure 3.11: SlowFast: Slow pathway and the Fast pathway

In summary, the SlowFast architecture synergizes the temporal fidelity of the Slow
pathway with the fine temporal resolution of the Fast pathway. The Fast pathway,
although lightweight, effectively captures high-temporal-resolution features while
making a desired tradeoff by weakening its spatial modeling ability. This innovative
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approach enhances computational efficiency, making the SlowFast model a powerful
solution for video analysis.

3.4.6 Temporal Shift Module (TSM)
The Temporal Shift Module (TSM) [49] represents a sophisticated mechanism
for achieving efficient temporal modeling within the context of video recognition
architectures. Its primary functionality revolves around the adept manipulation of
feature maps along the temporal dimension, facilitating robust temporal modeling
without incurring significant computational overhead. TSM seamlessly integrates
with 2D convolutional operations, introducing an additional layer of temporal
adaptability to enhance the model’s understanding of dynamic video sequences.
One of the notable advantages of TSM lies in its versatility, offering support for

Figure 3.12: Temporal Shift Module (TSM): A tensor comprises C channels and
T frames. Features at distinct time stamps are represented by varying colors in
each row. Within the temporal dimension, a subset of channels shifts by -1, another
by +1, while the remainder remains unaltered (refer to Figure 1b). An online
version of TSM is also presented for online video recognition (refer to Figure 1c).
In this setting, access to future frames is restricted, limiting shifts only from past
frames to future frames in a uni-directional manner.

both offline and online video recognition scenarios. In offline video recognition,
where high throughput is a priority, TSM incorporates a bi-directional approach.
This method intelligently amalgamates information from both past and future
frames with the current frame, harnessing a comprehensive temporal context to
bolster recognition accuracy. Conversely, in scenarios demanding low-latency online
video recognition, TSM employs a uni-directional strategy. Here, it selectively
incorporates information solely from the past frame, ensuring that the temporal
modeling process is streamlined to meet the demands of real-time video analysis.
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3.5 Missing Modality
We can refer to the missing modality as a problem where, at test time, there is
the possibility that one or more modalities may be absent for a model that has
been trained with all modalities. This issue may stem from extraction errors,
low computational cost requirements, or limited hardware resources that prevent
the extraction or processing of computationally demanding modalities. In this
highly realistic multimodal context, the challenge lies in designing a model that
can maximize synergy between modalities and manage the potential absence of a
subset of them. Following the taxonomy proposed by [50], we can summarize the
possible methodologies as follows:

• Synthesis models: A viable solution to address this challenge involves the
use of synthesis models, which aim to create or estimate missing modalities to
maintain a complete and coherent data flow during model testing.
For instance, a synthesis model may leverage techniques such as neural net-
works or restricted Boltzmann machines [51] to generate missing data based
on information available in other modalities. This synthesis process aims to
enhance the model’s ability to cope with data absence during testing, enabling
more accurate and consistent predictions even in the case of missing modalities.

• Shared latent space: Common Latent Space allows for the creation of a
unified or shared representation for the involved modalities. This is crucial
because it enables the model to learn common features among different modal-
ities, facilitating a cohesive interpretation of the data even in the absence of
specific modalities. Hetero-Modal Image Segmentation (HeMIS) [52] is an
example that utilizes shared latent space (Fig. 3.13). The HeMIS architec-
ture applies a series of three connected blocks: a Back-end block to encode
each modality into a latent space, an Abstraction block to extract statistical
features (first and second-order moments) and finally a Front-end block to
generate the prediction.

Figure 3.13: Hetero-Modal Image Segmentation (HeMIS) [52]
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• Knowledge distillation networks: The methodology of knowledge distilla-
tion [53] in the context of missing modality involves training a larger, more
complex model, known as the teacher network, with access to all available
modalities. The knowledge gained from this comprehensive model is then
transferred to a smaller model, known as student, with the objective of obtain-
ing a network that can effectively operate with a subset of modalities. This
approach aims to distill the valuable information and insights obtained by the
teacher network into a more compact student network.

Figure 3.14: The technique for style matching, as introduced in [54], employs
a knowledge distillation strategy to align the style and content representations
between the complete modality and the absent modality pathways.

One notable implementation of knowledge distillation is [54], a style matching
U-Net provides a solution for missing modalities by decomposing the feature
representation into style and content 3.14. This approach conducts style and
content matching at different levels, effectively distilling informative features
from the full-modality path into a dedicated network designed for handling
missing modalities.

• Mutual information maximization: the mutual information maximization
[55] strategy involves optimizing similarity metrics between available modalities
during training, aiming to minimize information loss. By maximizing mutual
information, the model aims to enhance the relationships and dependencies
between modalities, ensuring that the information shared among them is
effectively captured and utilized. This strategy contributes to a more robust
and comprehensive representation of the data, even when specific modalities
are absent, thereby improving the model’s ability to handle missing modalities
during testing.
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• Generative Adversarial Networks In the context of addressing missing
modalities, Generative Adversarial Networks (GANs), first presented by [56],
constitute a machine learning paradigm comprising a generator (G) focused
on generating the missing modality and a discriminator (D) assigned to
differentiate between generated samples and the original training data. Si-
multaneous training of both networks improves the generator’s capability
to reconstruct samples that include the absent information. An exemplary

Figure 3.15: The Multi-Modal Generative Adversarial Network (MM-GAN) [57]

method employing this technique is the multi-modal generative adversar-
ial network (MM-GAN)[57]. This approach adeptly synthesizes the missing
modality in a single forward pass, benefiting from the enhancement provided
by implicit conditioning (IC). The process involves the generator (U-Net)
imputing the missing modality, computing the L1 loss for the generated scans,
and employing a discriminator (PatchGAN) [58] with modality-selective L2
loss computation.
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Data

4.1 Epic Kitchens Dataset

This section introduces EPIC-KITCHENS-100 [59], an extensive dataset in the do-
main of egocentric vision. Building upon the foundation of EPIC-KITCHENS, this
enhanced dataset, comprising 100 hours of footage across 700 variable-length videos,
captures unscripted activities in 45 distinct environments. The videos are recorded
using head-mounted cameras, offering a unique perspective for understanding
long-term, daily-life actions.

EPIC-KITCHENS-100 boasts notable improvements over its predecessor, EPIC-
KITCHENS [60], in terms of annotation density and completeness. Employing
a novel annotation pipeline, it achieves 54% more actions per minute and a
substantial increase (+128%) in fine-grained action segment annotations. The
dataset introduces new challenges, including action detection and assessing model
generalization over time. Specifically, it examines whether models trained on data
collected in 2018 can adapt to new footage acquired two years later.

Aligned with six challenges, EPIC-KITCHENS-100 supports action recognition
(full and weak supervision), action detection, action anticipation, cross-modal re-
trieval (from captions), and unsupervised domain adaptation for action recognition.
Each challenge is accompanied by defined tasks, baseline models, and evaluation
metrics. The dataset encompasses 89,977 segments of finely annotated actions
extracted from 700 videos, totaling 100 hours in length. Table 1 presents com-
prehensive statistics, distinguishing between videos collected previously and those
newly acquired.

Comparing to the previous dataset, EPIC-KITCHENS-100 exhibits a significant
expansion, nearly doubling in duration with 1.8 times more hours and featuring
2.3 times more action segments. In Fig. 4.1, the frequency distribution of verb (97)
and noun (300) classes reveals a clear long-tail distribution grouped into 13 verb
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and 21 noun categories. The dataset splits into Train/Val/Test, with 75/10/15
ratios, with the Test split exclusively comprising newly-collected videos.

Additionally, the Val/Test splits include subsets such as Unseen Participants,
featuring individuals not present in the training set, and Tail Classes, representing
smaller classes accounting for 20% of total instances in training. These subsets
enhance evaluations of model generalizability and performance on challenging
classes, respectively.

Figure 4.1: Epic-Kitchens-100 verbs and nouns distributions

Figure 4.2: Sample of Epic-Kitchens-100
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Chapter 5

Methodology

5.1 Problem Statement

The ultimate goal of the model is to identify an action within a time window. In
the context of the EPIC-KITCHENS-100 dataset [59], an action is defined by a
verb and an object, as specified in the previous section. In order to accurately
classify these two constituent elements of an action, we opted to use two distinct
modalities: Optical Flow and RGB. Optical flow is a modality with information
inherent to the relative motion of the elements in a video, for this reason it
appears to be a good choice for verb classification. At the same time, RGB
provides the information needed to identify the active object in the scene. The
multimodal choice offers advantages associated with the distinctive information
that each modality provides, but poses challenges related to their heterogeneity
due to their different nature and the dissimilar preprocessing of each. Some
modalities may have a high computational cost of predelaboration. In settings
where limited hardware resources are available or processing time is prioritized,
modalities such as optical flow may be unaffordable or unusable. In order to address
this realistic issue, we adapted the model to the missing modality setting with
several different implementations, including the introduction of a reconstruction
module that reconstructs the absent modality from the one available. In addition,
following the footsteps of previous studies such as SlowFast [19] and TRN [48]
that have shown how multi-level temporal aggregation leads to the extraction of
distinct and complementary information, we decided to raise the aggregation plan
to a level that works on sequences of actions. To do this we implemented a module
that takes as input an entire scene and allows the visual information related to
each action to communicate with each other resulting in clip-level aggregation.
Detailed explanations of the implemented solutions are provided in the subsequent
paragraphs.
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5.2 Model Architecture
Leveraging a strategic fusion of innovative components, our core model architecture
5.1 is designed to excel in video action recognition task. At its foundation, we
employ pre-trained Convolutional Neural Networks (CNNs) as feature extraction
modules, setting the stage for the subsequent integration of a Temporal Reasoning
Graph Module and a Cross-Modal Interaction Module.

Figure 5.1: MARE-Graph architecture: Utilizing pre-trained CNNs for feature
extraction, SAGEConv layer for temporal aggregation, and a Cross-Modal Interac-
tion Module for nuanced cross-modal reasoning

The primary motivation behind utilizing pre-trained CNNs lies in their proven
efficacy as robust feature extractors across diverse visual datasets. These mod-
ules act as the bedrock for our model, providing a rich representation of visual
information.

The temporal reasoning graph module is introduced to address the inherent
inefficiencies of pre-trained CNNs in capturing high-level temporal context.

The video is modeled as a regular graph, wherein each video clip serves as a node,
and connections exist between each clip and its preceding and subsequent clips,
forming an observation window. This graph representation is then input into a
SAGEConv convolutional layer. In this context, the SAGEConv convolutional layer
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proves advantageous due to its ability to aggregate information from neighboring
nodes within the defined observation window. This aggregation mechanism allows
the model to capture temporal dependencies and relationships effectively.

The regular graph structure, with clips as nodes and connections delineating
temporal associations, aligns with the sequential nature of video data.This adap-
tive aggregation enables the model to discern nuanced temporal patterns and
dependencies, contributing to robust temporal modeling.

Complementing the temporal reasoning graph module, our architecture incorpo-
rates the Cross-Modal Interaction Module. This component is motivated by the
necessity to enhance the model’s cross-modal reasoning capabilities. Through a
flexible cross-attention mechanism, the module enables individual modalities to
dynamically exchange information, fostering a holistic understanding of the input
data. This dynamic exchange not only enhances the interpretability of the model
but also ensures robust performance across diverse scenarios.

The strategic combination of these components results in a versatile and powerful
model architecture, adept at addressing the intricacies of video analysis tasks. The
pre-trained CNNs provide a strong foundation for feature extraction, the temporal
reasoning graph module efficiently captures temporal dependencies, and the cross-
modal interaction module facilitates nuanced cross-modal reasoning. Together,
these components synergize to empower our model leading to superior performance.

5.2.1 Modalities and Backbones
Large-scale datasets like Epic-Kitchens [59] and Ego4d [61] offer multiple modalities,
fostering the exploration of novel techniques that leverage the unique characteristics
of each modality.

Audio data, for instance, serves as a valuable complement to the visual stream,
transcending the constraints of the camera’s field of view. Typically, fixed-size
audio segments undergo conversion to spectrograms, followed by processing through
a CNN backbone, treating them akin to 2D images. Consequently, audio-based
learning presents a computationally lightweight task compared to other data sources
incurring higher computational costs.

Optical flow, in contrast, identifies the direction of motion between consecutive
frames, providing valuable insights into the areas involved in an action. By
focusing solely on motion information, optical flow reduces the influence of visual
characteristics such as color or text, which can sometimes hinder generalization.

The decision to incorporate both RGB and optical flow modalities is grounded
in their distinct functional attributes, each addressing specific aspects of the video
analysis task. RGB, chosen for its effectiveness in capturing visual information, is
well-suited for tasks involving object classification. The inherent characteristics
of RGB, encompassing color and spatial features, align with the requirements for
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Figure 5.2: A frame derived from the Sintel dataset showcasing optical flow and
the associated color coding scheme for optical flow representation

recognizing and categorizing objects within video frames.
Conversely, optical flow emerges as the optimal selection for verb classification,

capitalizing on its efficacy in delineating temporal dynamics across consecutive
frames.

The amalgamation of RGB and optical flow modalities, tailored to their re-
spective strengths, synergistically enhances the holistic video analysis pipeline,
providing a nuanced understanding of both object and verb components.

To showcase the versatility of our implementation, we systematically assessed
the efficacy of diverse backbone architectures through comprehensive experiments.
We specifically examined the extracted features from Temporal Segment Networks
(TSN) [20], Temporal Shift Modules (TSM) [49], SlowFast [19], and combinations
of these. This rigorous evaluation aimed to elucidate the contributions of each
backbone configuration and their collective impact on the overall performance of
the model.
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5.2.2 Temporal Graph Modeling
The features originating from the initial frame-level representations provided by
the backbones are systematically aggregated to form clip-level representations for
both optical flow and RGB streams performed through two distinct projection
heads. These representations serve as nodes within our constructed graph. Our
architectural selection encompasses the establishment of a regular graph, wherein
each node systematically observes ’n’ preceding and ’n’ succeeding nodes. The
parameter ’n’ intricately defines a temporal window, delimiting the scope within
which each node assimilates contextual information from its temporal neighbours.

Formally, Let GRGB = (VRGB, ERGB) and GOF = (VOF, EOF) denote the con-
structed graphs for the RGB and Optical Flow modalities, respectively, where
VRGB and VOF represent the set of nodes and ERGB and EOF represent the set
of edges. Each node vi in the graph corresponds to a clip-level representation
obtained from the initial frame-level representations provided by the backbones.
Let BRGB = {f

(1)
RGB, f

(2)
RGB, ..., f

(n)
RGB} denote the features obtained from the RGB

backbone, and BOF = {f
(1)
OF, f

(2)
OF, ..., f

(m)
OF } denote the features obtained from the

optical flow backbone. These features are concatenated to form the input to two
distinct multi-layer perceptrons (MLPs), denoted as MLPRGB and MLPOF. The
resulting clip-level representations CRGB and COF are obtained as follows:

CRGB = MLPRGB(BRGB)

COF = MLPOF(BOF)

These clip-level representations CRGB and COF serve as the nodes within the
respective graphs. The set of edges E can be defined as:

E = {(vi, vj) | vi, vj ∈ V, and |i − j| ≤ n}

Here, |i − j| represents the temporal distance between nodes vi and vj, and n
defines the size of the temporal window.

This decision is motivated by the intention to capture contextual information
from a localized temporal window, enhancing the model’s ability to discern temporal
dependencies and patterns within the video data.
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Figure 5.3: Temporal Graph Modeling: Features from frame-level representations
aggregate into clip-level nodes within a regular graph. Nodes observe ’n’ preceding
and ’n’ succeeding nodes, defining a temporal window.
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5.2.3 Temporal Reasoning Module
The Temporal Reasoning Module, illustrated in the accompanying figure 5.4, is
integral to our architecture. In order to bolster the model’s capacity for generaliza-
tion and extract intricate interactions, we have incorporated both a Dropout layer
and a RELU activation function.

Figure 5.4: Temporal Reasoning Module

The primary submodule dedicated to the actualization of temporal processing
within this module is the SAGEConv. As elucidated by the equation 5.1, this sub-
module adeptly aggregates information from neighboring nodes, thereby enriching
and updating the original information associated with the observing node through
the assimilation of contextual information.

x′
i = W1xi + W2 · maxj∈N(i)xj (5.1)

Furthermore, a crucial objective of employing this submodule is to facilitate the
subsequent communication between modalities. This is achieved through the
intricacies of intra-modal aggregation, overseen by the Cross-Modal Interaction
Module. The Cross-Modal Interaction Module is specifically designed to manage
and optimize the exchange of information across diverse modalities, ensuring a
synergistic collaboration that enhances the overall efficacy and comprehensiveness
of our model.
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5.2.4 Cross-Modal Interaction Module
The Cross-Modal Interaction Module incorporates a cross-attention transformer
encoder, serving the dual purpose of preserving distinctive intra-modal aggregations
and establishing effective inter-modal observations.

Each vector representation undergoes an additive process involving relative
positional encoding. This encoding serves a dual purpose: first, it facilitates
temporal synchronization across modalities, ensuring cohesive temporal alignment;
second, it enables the module to extract temporal patterns that necessitate sequence
order information. This approach of introducing relative positional encoding
contributes significantly to the module’s capacity to discern intricate temporal
patterns effectively while maintaining temporal alignment across modalities.

To optimize the module’s temporal reasoning capabilities, a sliding attention
window is incorporated into its design. This design choice allows the module to
focus selectively on a limited contextual window, prioritizing the relevance of closer
temporal relationships. The rationale behind this lies in the understanding that
temporal dependence tends to diminish as one progresses temporally away from
the query action

Figure 5.5: The Cross-Modal Interaction Module integrates a cross-attention
transformer encoder, ensuring intra-modal aggregations are preserved while estab-
lishing effective inter-modal observations. The sliding attention window optimizes
the module’s temporal reasoning by selectively focusing on a limited contextual
window, prioritizing closer temporal relationships
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Let Q(1)
t represent the query vector from modality m1 at time t, and K(2)

t′ and
V(2)

t′ denote the key-value pairs from modality m2 within an attention window
[t − n, t + n]. Relative position embeddings are learned to capture the pairwise
distances between query and key positions within this window. These embeddings,
indexed by distance, interact with queries to produce a logits matrix Srel, which
modulates attention probabilities. Formally, Relative Attention is defined as:

RelativeAttention = Softmax
Q

(1)
t K

T (2)
t′ + Srel√

Dh

V
(2)

t′ ,

where Srel = QR⊤ represents the calculation of the logits matrix. Here, R is a
matrix of relative position embeddings, where each entry Rij corresponds to the
relative distance between the i-th query and the j-th key within the attention
window.

Since the calculation of R is a memory bottleneck, as the matrix requires
O(L2d) extra space, the skewing mechanism introduced in [62] was implemented by
calculating Srel without explicitly calculating R (Fig. 5.6). The algorithm originally
designed for causal attention was adapted for the entire sliding window.

Figure 5.6: The bottom row illustrates the memory-efficient "skewing" algorithm,
which eliminates the need for instantiating R (top row, which has a complexity
of O(L2d). Gray shading indicates masked or padded positions, while each color
represents a distinct relative distance.

In summary, the Cross-Modal Interaction Module is designed with these elements
to strike a delicate balance between capturing essential temporal dependencies
and mitigating computational complexity. This holistic approach ensures that the
module stands as a pivotal component in the extraction and processing of temporal
patterns, elevating the system’s performance in multimodal action recognition.
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5.3 Missing modality setting
In order to assess the effectiveness of the model in capitalizing on synergies among
modalities, a thorough exploration is undertaken, focusing on scenarios where a
particular modality might be unavailable during testing. This examination extends
beyond conventional testing scenarios, allowing for a more nuanced understanding
of the model’s behavior and its potential applications in real-world, resource-
constrained environments. Within this context, two distinct implementations have
been developed: DropGraph and the Reconstruction module.

Figure 5.7: Missing modality: a particular modality might be unavailable during
testing

• DropGraph: In the DropGraph implementation, the training process involves
setting with a probability p1 , the vector representations related to a video clip
to zero, and with a probability p2 , the entire graph is dropped. This approach
is grounded in the belief that introducing stochasticity during training enables
the model to adapt to scenarios where certain modalities might be missing
during the testing phase. The advantages of this method lie in its simplicity
and the ability to mimic real-world scenarios where data might be incomplete.

• Reconstruction module: On the other hand, the Reconstruction module
tackles the missing modality challenge by incorporating a reconstruction
mechanism. In this setup, one of the modalities is taken as input, and the
module seeks to reconstruct the missing one. The reconstruction process
employs a Multilayer Perceptron (MLP), and the Mean Squared Error (MSE)
loss is computed between the reconstructed modality and the original one.
This approach leverages the power of reconstruction models to predict missing
modalities, fostering adaptability and robustness in scenarios where certain
modalities may be absent.
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5.3.1 DropGraph

The DropGraph implementation (Fig. 5.8) introduces a training strategy that
incorporates a form of dropout, specifically applied to both vector representations
of video clips and the entire graph. This dropout mechanism is governed by
probabilities p1 and p2 , determining the likelihood of zeroing out vector represen-
tations and dropping the entire graph, respectively. During the training process,
with a probability p1 , the vector representations associated with a video clip are
stochastically set to zero. Simultaneously, with a probability p2 , the entire graph
is dropped, introducing a level of randomness to the model’s learning process.
This stochasticity serves as a form of regularization, preventing the model from
becoming overly reliant on specific modalities or structures.

Figure 5.8: DropGraph: introduces dropout during training, stochastically zeroing
out video clip vector representations (with a probability p1) and dropping the entire
graph (with a probability p2). This adds regularization, preventing over-reliance on
specific modalities and ensuring alignment between training and test conditions.

Advantages of the DropGraph method include its simplicity in implementation
and the capacity to emulate real-world scenarios where data may be incomplete
or certain modalities might be missing. The stochastic dropout nature helps
the model generalize better to unforeseen situations and promotes adaptability.
Furthermore, the simplicity of the approach facilitates seamless integration into
various architectures. In this context, cross attention plays a crucial role by enabling
the potential reconstruction of the missing modality through the observation of
the available one. However, it is essential to note potential drawbacks. Excessive
dropout rates (p1 and p2) might lead to loss of valuable information and hinder
the model’s learning capacity.
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5.3.2 Reconstruction module
The Reconstruction module (Fig. 5.9) addresses the issue of missing modalities
by introducing a reconstruction mechanism into the system. In this configuration,
one of the modalities serves as the input, and the module endeavors to reconstruct
the missing modality. The reconstruction is carried out through the utilization
of a Multilayer Perceptron (MLP), and the Mean Squared Error (MSE) loss is
calculated by comparing the reconstructed modality with the original one. This
methodology harnesses the capabilities of reconstruction models to predict absent
modalities, thereby enhancing adaptability and robustness in situations where
specific modalities might be lacking.

Figure 5.9: The Reconstruction module predicts missing modalities through
an MLP-driven reconstruction mechanism. This approach fosters adaptability in
scenarios with incomplete data promoting robustness. The rest of the network
remains unaltered

Advantages of the Reconstruction module include its ability to predict missing
modalities, which contributes to a more comprehensive and complete representation
of the data. The use of an MLP allows for non-linear mappings and complex
relationships to be captured during the reconstruction process. This approach
promotes adaptability in scenarios with incomplete data, as the module learns to
fill in the gaps based on the information available from the observed modality.
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Experiments and Results

6.1 Implementation

6.1.1 Backbones implementation
Publicly available PyTorch [63] model definitions for TSN [20], TSM [49], and
SlowFast [19] are utilized in this study. The ResNet-50 [6] backbone is employed
across all models, with ImageNet [64] weights for TSN and Kinetics weights for
TSM and SlowFast. Two instances of each model undergo training: one with 8
RGB frames and the other with 8 stacks of 5 (u, v) flow fields computed using
TV-L1 [65].

• TSN and TSM models:
A two-way output in the last layer predicts verbs and nouns with an average
verb/noun loss. Training spans 80 epochs with SGD, momentum 0.9, and a
learning rate of 0.01, decayed at epochs 20 and 40 by a factor of 10. TSN and
TSM models train on 8 GPUs with a batch size of 128, while SlowFast uses a
batch size of 32 on 8 GPUs. Weight decay of 0.0005, dropout with p = 0.7,
and gradient clipping above 20 are applied. Center-crop evaluation is used,
and RGB and optical flow models are trained individually, with predictions
averaged pre-softmax during inference.

• SlowFast model:
For SlowFast, the publicly available PyTorch model [19] is employed. The
model is adjusted to feature a two-way output for verbs and nouns, trained
with the average verb-noun loss. SlowFast 8x8 with ResNet-50 backbone,
initialized from Kinetics pretrained weights, is utilized. Training encompasses
30 epochs with SGD, momentum 0.9, and a learning rate of 0.01, decayed at
epochs 20 and 25 by a factor of 10. The model is trained on 8 GPUs with a
batch size of 32, incorporating a weight decay of 0.0001 and dropout with p =
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0.5. Batch-normalization layers’ parameters and statistics are frozen during
training. During testing, predictions are obtained by uniformly sampling 10
clips (1s each) from each video, and averaging the results from a single center
crop per clip.

Pretrained models on Epic-Kitchens were employed, utilizing weights provided by
[59].

6.1.2 MARE-Graph implementation
The entire architecture was trained for 100 epochs, freezing the backbone weights,
using Adam optimizer with a weight decay of 5e-4. The learning rate was initially
set to 1e-4 and decayed at epochs 50 and 75 by a factor of 10. The model was
trained on a single GPU with a batch size of 4 graphs. Backbone features are
aggregated through concatenation and projected into a 1024-dimensional space.

The final configurations include a radius graph with a distance of 4. Edges
are created based on node positions to all points within a specified distance. The
Temporal Reasoning Graph Module consists of a dropout set at 0.5, a SAGEconv,
and a layer norm. The SAGEconv is configured with the max function as the
aggregation method, linear projection, and subsequent RELU activation function
before aggregation. The final output is L2 normalized.

The sliding attention window width of the cross-module is set to 10. A relative
positional encoding is adopted, initializing learnable vectors for each possible
relative distance during training. The positional encoding is added to the vector
representation of the clip before each cross-module.

For regularization, DropPath [66] of 0.1 and a dropout of 0.5 for the feed-
forward of the Transformer encoder are applied. The two final prediction heads
are two MLPs with a dropout of 0.5, receiving the information from the final
cross-attention and predicting verb and object, respectively. The training loss is
the average cross-entropy for both verb and object predictions.

Computational resources were provided by VANDAL - VISUAL AND MULTI-
MODAL APPLIED LEARNING LABORATORY and HPC@POLITO.
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6.1.3 Missing modality implementation
• DrophGraph implementation:

In the context of the DrophGraph implementation, the original architecture
remains unchanged. However, two dropout mechanisms were introduced.
Firstly, a node dropout with a probability of 0.5 was added and a graph dropout
with a probability of 0.1. The graph dropout randomly sets to zero either
the entire graph of one modality or the other, with equal probability. Other
settings and configurations remain consistent with the original implementation.

• Reconstruction module implementation:
In the context of missing modality with a reconstruction module, we imple-
mented an MLP with a dropout rate of 0.5. This MLP takes the available
modality as input and aims to reconstruct the missing modality. The recon-
struction mechanism is activated during training with a probability of 0.1.
We employed a Mean Squared Error (MSE) loss between the original and
reconstructed information to guide the reconstruction module. The overall
architecture remains unchanged, along with other configurations and settings.

Normal settings
Epochs 100
Optimizer Adam
Classification loss Cross-Entropy
Initial Learning rate 1e-4
Scheduler MultiStepLR
Milestones [50,75]
Weight decay 5e-4
Graph window 4
Cross attention window 10
hidden dimension 1024
CL Head Dropout 0.5
Transformer Feed-Forward Dropout 0.5
DropPath 0.1

Missing modality settings
Reconstruction loss MSE
Node Dropout 0.5
Graph Dropout 0.1

Table 6.1: Normal technical settings and settings relating to the missing modality
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6.2 Sequence-based action recognition
In 6.2, the comparative baseline results on the Epic-Kitchens validation set are
presented, revealing the Vision Transformer as the top-performing model. Notably,
the SlowFast model with a single modality (RGB) achieves comparable performance
to TSM with two modalities.

Top-1 accuracy (%) Baselines
Verb Noun Action

TSN 60.18 46.03 33.19
TRN 65.88 45.43 35.34
TBN 66.00 47.23 36.72
TSM 67.86 49.01 37.39
SlowFast 65.56 50.02 36.81
ViVit-L 66.4 56.8 44.0

Table 6.2: Baselines Action recognition in EPIC-KITCHENS-100 validation set.
The results are those reported by the corresponding papers

Top-1 accuracy (%)
RGB Verb Noun Action
w=0 49.58 44.05 27.10
w=2 58.13 46.10 33.60
w=4 58.26 46.21 33.70
w=8 57.57 46.04 33.29
Flow Verb Noun Action
w=0 55.97 31.52 23.14
w=2 60.80 36.05 28.24
w=4 61.25 36.68 28.26
w=8 60.59 36.07 27.70

Table 6.3: Impact of window size with respect to single modalities using TSN as
backbone

Turning attention to 6.3, an ablation study on the graph window size dimension
is detailed. The investigation seeks to discern the impact of varying window sizes
on performance. Notably, if the window size exceeds a threshold, performance
diminishes. This phenomenon can be attributed to the diminishing relevance
of context information from more distant clips, introducing disturbances to the
central action and undermining the fidelity of the original action representation.
Empirically, a window size of 4 emerges as the optimal choice.
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Figure 6.1: Plot of the absolute improvement in accuracy (%) with respect to
the window size
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6.3 Multi-modal action recognition
The presented results in 6.4 showcase an in-depth analysis of multi-modal action
recognition using TSN as the backbone for both modalities. Notably, the addition of
the temporal reasoning module and the cross module contributes significantly to the
overall performance. Experimental exploration involved introducing a self-attention
module before classification heads, aiming to enhance intra-modal aggregation. Self
attention gives a minimal contribution when using TSN as a backbone, in the final
implementation we opted not to use self attention since we noticed no contribution
with other backbones, indicating that the SAGEconv module adeptly fulfills its
role in intra-modal information aggregation.

Top-1 accuracy (%)
TR Cross Self Verb Noun Action
× × × 60.18 46.03 33.19
✓ × × 65.24 48.80 37.93
× ✓ × 64.14 47.23 36.30
× × ✓ 64.27 47.24 36.62
✓ ✓ × 65.78 49.68 39.27
✓ × ✓ 65.78 49.15 38.53
✓ ✓ ✓ 66.27 50.32 39.97

Table 6.4: Impact of Temporal Reasoning (TR), Cross Attention, and Self
Attention on Top-1 accuracy (%) for Verb, Noun, and Action classes. The table
showcases the performance variations with different combinations of these modules

The observed improvement resulting from the cross-attention module highlights
its pivotal role in facilitating multi-level inter-modal communication within the
network, thereby enhancing the final classification accuracy. This enhancement
is particularly noteworthy as it suggests that the cross-attention module enables
effective information exchange at various levels, contributing to improved under-
standing and representation of complex multi-modal data. Moving on to 6.5,
where the backbones employed include SlowFast for RGB features and TSM for
Optical Flow features, various configurations were meticulously tested, with a
specific focus on feature projection. The experimentation involved evaluating the
impact of employing a single projection head versus two distinct projection heads.
Notably, the configuration with two separate projection heads exhibited superior
performance, underscoring the significance of this design choice in potentially miti-
gating challenges associated with heterogeneous data representations. Furthermore,
the optimal configuration incorporated temporal reasoning modules with shared
weights, providing additional insight into the architectural decisions affecting model
performance.
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Top-1 accuracy (%)
Verb Noun Action

TSM 67.86 49.01 37.39
SlowFast 65.56 50.02 36.81

Head Cross TR Verb Noun Action
2 Different Different 69.91 55.03 44.12
1 Different Different 69.83 54.74 44.00
2 Same Different 69.89 55.01 44.21
2 Same Different 69.99∗ 55.02∗ 44.31∗

2 Different Same 69.96 55.26 44.44

Table 6.5: Evaluation of different configurations with SlowFast for RGB features
and TSM for Optical Flow features. The table presents the results with various
combinations of cross attention and temporal reasoning modules (TR). Results
with an asterisk are obtained by modality embedding before cross attention.

Top-1 accuracy (%)
Verb Noun Action

TRN 65.88 45.43 35.34
TBN 66.00 47.23 36.72
SlowFast 65.56 50.02 36.81
ViVit-L 66.4 56.8 44.0
TSN 60.18 46.03 33.19
TSN+TR 65.24 48.80 37.93
MARE-Graph(TSN) 65.78 49.68 39.27
TSM 67.86 49.01 37.39
TSM+TR 68.30 52.1 41.65
MARE-Graph(TSM) 68.96 52.93 42.72
MARE-Graph(TSM-SlowFast) 69.96 55.26 44.44

Table 6.6: Comparative performance of different backbone architectures. The table
shows the improvment of the temporal reasoning module (TR) and the utilisation
of the entire MARE-Graph architecture with respect to different baselines and
backbones.
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Maintaining a nuanced perspective on 6.5, the distinct weights assigned to the
cross-attention modules proved to be crucial. This design choice was observed
to enable the extraction of unique and meaningful inter-modal communications
based on the viewpoint, emphasizing the importance of preserving modality-specific
information during the multi-modal fusion process. In the final 6.6, the adaptability
of MARE-graph to various backbones is explored. The architecture consistently
delivers substantial contributions, effectively handling features from diverse combi-
nations. Specifically, the use of SlowFast for RGB-related features and TSM for
flow-related features exemplifies the architecture’s capability to manage and inte-
grate information from disparate sources, showcasing its robustness and versatility
in handling complex multi-modal features.

Below are presented the plots of the attention matrices for the first and second
cross-module of the network, with respect to a sample from the dataset.

Figure 6.2: RGB Query in First Cross Attention: Attention matrix visualization
representing the interaction between RGB features as the query and Optical Flow
features as keys/values in the first cross-attention module.
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Figure 6.3: Optical Flow Query in First Cross Attention: Visualization of the
attention matrix with Optical Flow features as the query in the first cross-attention
module.
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Figure 6.4: RGB Query in Second Cross Attention: Attention matrix representa-
tion depicting the interaction between RGB features as the query and Optical Flow
features as keys/values in the second cross-attention module. The plot provides
insights into the interplay between modalities.
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Figure 6.5: Optical Flow Query in Second Cross Attention: Visualization of
the attention matrix with Optical Flow features as the query in the second cross-
attention module.
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6.4 Missing modality
In the context of missing modality, Table 6.7 provides a comprehensive view of
the outcomes obtained by dropping RGB and Optical Flow during test time. The
results notably showcase a substantial decline in performance, particularly when
the information related to RGB is absent.

Test Modalities Top-1 Accuracy
RGB Optical Flow Verb Noun Action

MARE-Graph(TSM-Slowfast) ✓ ✓ 69.96 55.26 44.44
MARE-Graph(TSM-Slowfast) ✓ × 66.96 52.72 41.02
MARE-Graph(TSM-Slowfast) × ✓ 61.30 29.99 23.61

Table 6.7: Consequences of missing modalities on model performance. The
underlying architecture remains consistent with the previously described setup,
utilizing TSM as the backbone for optical flow and SlowFast for RGB.

To ensure a consistent training and testing conditions, strategic implementations
such as DropGraph and the reconstruction module, as explained in the preceding
paragraph, were incorporated. The results in Table 6.8 highlights the efficacy of
these adjustments in mitigating the adverse effects of missing modalities.

Further insights are gleaned through ablation studies, incorporating two addi-
tional experiments aimed at unraveling the intricacies of the model’s response to
missing modalities. In one experiment, the missing information is replaced with a
learnable miss token, introduced during training to assist the cross-module in the
reconstruction process. The results of this experiment provide valuable insights
into the model’s ability to adapt and leverage learned tokens to compensate for
absent information.

In a parallel ablation experiment within the DropGraph setting, the cross-module
is intentionally removed to assess its impact on performance. The results of this
experiment underscore the pivotal role played by the cross-attention mechanism in
the missing modality scenario.

Among the various implementations, the reconstruction module emerges as the
most effective, showcasing its pivotal role in compensating for missing modalities.
The model, with these refined adjustments, demonstrates robustness in handling
the absence of modalities during test time.

Table 6.9 provides a nuanced examination of the model’s behavior under different
percentages of modality dropout, offering a comprehensive understanding of its
adaptability in varying conditions.
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Test Modalities Top-1 Accuracy
RGB Optical Flow Verb Noun Action

Upper bound ✓ ✓ 69.96 55.26 44.44
No Implementation ✓ × 66.96 52.72 41.02
MissingToken ✓ × 67.21 53.05 41.62
DropGraph ✓ × 67.27 53.43 41.89
wo. Cross ✓ × 66.51 52.20 40.77
Rec. Module ✓ × 67.70 54.06 42.60
No Implementation × ✓ 61.30 29.99 23.61
MissingToken × ✓ 64.04 38.47 30.51
DropGraph × ✓ 63.81 39.65 31.19
wo. Cross × ✓ 63.57 38.48 30.19
Rec. Module × ✓ 64.21 39.77 31.77

Table 6.8: The table illustrates the Top-1 accuracy for different configurations
addressing missing modalities. The upper bound corresponds to the scenario
where both modalities (RGB and Optical Flow) are present during testing, thus
representing the maximum achievable performance limit using TSM-Slowfast as the
backbone. The "No Implementation" scenario refers to the absence of any strategic
adjustments to handle missing modalities during testing. "Wo. Cross" stands for
"without Cross-Attention".

Test Modalities Test Modalities Top-1 Accuracy
Missing rate % RGB Optical Flow Verb Noun Action

0% ✓ ✓ 69.96 55.26 44.44
10% ✓ × 69.70 54.90 43.87
50% ✓ × 68.98 54.72 43.63
70% ✓ × 68.49 54.25 43.16
90% ✓ × 68.03 54.11 42.95
100% ✓ × 67.70 54.06 42.60
10% × ✓ 69.15 54.02 43.07
50% × ✓ 67.64 50.05 39.75
70% × ✓ 66.47 46.71 37.21
90% × ✓ 65.18 43.19 34.46
100% × ✓ 64.21 39.77 31.77

Table 6.9: The table presents the performance analysis under various missing
rates for RGB and Optical Flow modalities. As the missing rate increases, there
is a noticeable decrease in the Top-1 accuracy for both modalities, highlighting
the model’s sensitivity to missing information, utilizing TSM as the backbone for
optical flow and SlowFast for RGB.
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Chapter 7

Conclusion

In this thesis, we investigated the advantages of using Graph Neural Networks
(GNNs) for high-level temporal aggregation among video clips in order to extract
complex patterns within sequences, thus extending temporal aggregation to the
frame level offered by the backbones used. By using cross-attention mechanisms,
the modes are able to communicate more deeply within the network. Our results
demonstrate the flexibility of the implementation, which adapts to different back-
bones and effectively handles highly heterogeneous features. The use of observation
windows for both the temporal reasoning module and cross-attention proves to
be a strategic choice to filter out irrelevant information and maximise contextual
insights. From our analysis of the results, it is evident that the implementation
of MARE-Graph with TSM-SlowFast as backbones has led to a significant im-
provement in performance compared to the considered baselines for the verb, noun,
and action classes. Compared to other architectures, our model demonstrated an
average increase of 4.65% for the verb class, 6.17% for the noun class, and 7.20%
for the action class. This underscores the effectiveness of our approach in capturing
the complexities of human activities in egocentric video sequences, enabling a more
thorough and accurate analysis of user actions.

Finally, to further underscore the effectiveness of our approach in leveraging
multimodal synergies, we conducted experiments to assess the model’s performance
under scenarios where specific modalities were unavailable during testing due to
computational constraints or efficiency requirements. Our cross-modal interaction
mechanism augmented by strategic implementations such as DropGraph and the
reconstruction module, demonstrated robustness in learning representations, show-
casing resilience in the face of potential modality loss. This step aims to drive
attention towards realistic settings that challenge the effectiveness and robustness
of a solution, moving beyond settings that often diverge from real-world scenarios.
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