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Summary

The thesis delves into the methodology for calibrating optical fine-dust sensors
using advanced techniques such as Deep Learning and Quantum Machine Learning
(QML). The project’s goal is to compare four advanced algorithms from the classical
and quantum worlds in order to understand their differences and explore possible
alternative methods to improve the accuracy and reliability of particulate matter
readings in urban air quality monitoring.

By leveraging state-of-the-art technology, including feed-forward neural net-
works (FFNN), Long Short-Term Memory (LSTM) models, Variational Quantum
Regressor (VQR), and Quantum LSTM (QLSTM), the research aims to address
the limitations of current sensor calibration methods. These methods show promise
in improving the calibration accuracy, thus enhancing the reliability of data used
for environmental policy-making and public health campaigns.
A detailed comparison between classical and quantum machine learning models
forms the core of the research. Through rigorous testing, including hyperparameter
tuning and cross-validation, the thesis evaluates the performance of traditional
neural networks against quantum models in sensor calibration, exploring whether
for such problems a quantum advantage is foreseeable. Despite the nascent stage
of quantum hardware and the current superiority of classical models in terms
of accuracy, the findings highlight the promising future of quantum models in
computational efficiency and potential scalability.

The thesis describes the practical implementation of the proposed calibration
models, detailing the process of data preprocessing, model selection, and calibration.
The methodology involves removing data anomalies, aggregating the data by mak-
ing the median of all fine dust sensors in all installed boards, and comparing with
reference measurements provided by ARPA, the regional environmental protection
agency, in order to adjust sensor output.
A hyperparameter tuning and cross-validation pipeline is applied to individual
models to better understand learning performance and possibly increase it.
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The implementation of such models was done by building an open source frame-
work in Python that allows integration with famous libraries such as Pytorch and
Pennylane for building neural networks and quantum circuits respectively.
Such a framework facilitates the training and visualization phase of the results
of any model, using the TensorBoard product as a graphical dashboard. At the
end, the results obtained from the implementation of the classical and quantum
models are illustrated and compared with each other, focusing on the advantages
and disadvantages in using QML to solve the sensor calibration problem.

The comparative analysis between classical and quantum models in sensor
calibration showcases a promising future for quantum models in environmental
monitoring and other applications. The calibration results of the best models

Figure 1: The calibration performance obtained from all models developed in this
project in comparison with the reference station values, observing a limited time
range from February 10 to 15, 2023.

Hyperparameters tuning result FFNN VQR LSTM QLSTM
Test-set size 25% 25% 30% 30%
L1 on test-set 2.9202 2.8577 2.7684 2.6978

Table 1: The minimum loss function calculated with the mean absolute error (L1)
for each of the four models during the hyperparameters tuning phase.

found during hyperparameters tuning are shown in Table 1. These results were
calculated on the same test-set portion and with the same loss function in order to
be compared with each other.
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Finally, through cross-validaton and the study of the weights used in the archi-
tecture, it was possible to demonstrate how quantum models are able to produce
generalized learning on the dataset under consideration and use fewer weights to
solve the problem than classical models.
It is shown that the LSTM model, which uses a total of 482 weights and no dropout
techniques, tends to overfit on the dataset compared to the QLSTM model, which,
in contrast, uses only 66 weights and achieves similar performance on each fold of
the validation.
The Variational Quantum Regressor (VQR) surpasses classical feed-forward (FFNN)
models by leveraging quantum phenomena like entanglement and superposition,
enabling more efficient exploration of data’s parameter space and the discovery of
complex patterns missed by classical neural networks.
The public repository where the framework’s source code resides at its most up-to-
date version is available on the official GitHub repository.

In summary, the research makes a significant contribution to the comparison of
Deep Learning and Quantum Machine Learning algorithms in the field of sensor
calibration. By building an open source framework, it is possible to quickly and
easily visualize model training results and discover how the innovative implementa-
tion of Quantum LSTM achieved a higher level of accuracy with less architectural
complexity.
This suggests the potential of this research to make environmental monitoring
techniques and urban management using Artificial Intelligence algorithms faster and
more accessible. Future research directions include refining quantum algorithms,
exploring new machine learning techniques, and expanding applications to diverse
sensors and systems. The promising future of Quantum Machine Learning (QML)
in environmental science and beyond, fueled by quantum computing advancements,
is emphasized, along with the critical need for interdisciplinary collaboration to
tackle real-world challenges.
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Chapter 1

Introduction

This first chapter introduces the topic behind this thesis, namely an explanation of
what this project is about in detail, how air quality monitoring works, and what
techniques are currently used to carry out this activity.

1.1 Overview of the project
This master’s thesis delves into the emerging field of sensor calibration for fine dust
detection in the air, a critical area of study for public health and environmental
sustainability. In an era increasingly focused on smart, connected cities, this work
fits into an ambitious project led by the Politecnico di Torino. The goal is to develop
a distributed network of particulate matter sensors that are reliable, connected,
and economically viable.

In the urban context of Turin, the management and monitoring of air quality
have traditionally been entrusted to ARPA, the regional environmental protection
agency. However, the main challenge lies in the high cost of the currently used
monitoring stations, which reach thousands of euros. This thesis aims to address
this issue by exploring the feasibility of low-cost monitoring stations that maintain
high standards of precision and reliability.

The focus of this study is the use of advanced artificial intelligence techniques for
the calibration of more economically accessible sensors. Particular attention is given
to the use of neural networks and their potential in combination with quantum
circuits, especially "Variational Quantum Circuits" (VQC). These represent an
innovative frontier in the simulation of artificial neural networks, offering promising
prospects in improving the accuracy of low-cost sensors.
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Introduction

Through this approach, the thesis aims not only to contribute to the field of en-
vironmental engineering and quantum computing but also to provide practical and
sustainable solutions for the cities of the future, starting with the urban context of
Turin. Ultimately, the work presented here aims to demonstrate how technological
innovation and advanced research can converge to address environmental challenges
of global significance.

The following work was conducted within the laboratory of DAUIN ("Department
of Automation and Computer Science") of the Polytechnic University of Turin.
Previous studies carried out by the same laboratory can be found at the following
paper: [1].

1.2 Air pollution monitoring

The use of sensors for fine-dust detection is a quickly developing topic that touches
on public health, technology, and environmental research. Because of the growing
worries about air pollution and its effects on the environment and human health,
this field has become extremely important.

Particulate matter (PM), also known as fine dust, is made up of microscopic
particles that are suspended in the atmosphere. PM10 and PM2.5, which stand for
particles with dimensions smaller than 10 and 2.5 micrometres, respectively, are
the sizes that are most often examined. These particles are particularly dangerous
since they have the ability to infiltrate the circulation and delve far into the lungs,
leading to a host of health issues.

Sensor technology is the foundation of fine-dust detection. These sensors are
intended to identify and gauge the amount of airborne particulate matter present.
A variety of sensors are available, such as optical sensors that measure the size and
concentration of dust particles using light scattering techniques and electrochemical
sensors that determine the chemical makeup of the particles.

Because optical sensors are effective at detecting a broad range of particle sizes,
they are utilised extensively. Usually a laser or LED, they operate by generating a
light source and then detecting the light that is dispersed by dust particles. The
concentration and size of the particles in the air are ascertained by analysing this
scattering.

These days, fine-dust sensors are frequently linked with other technological

2
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Figure 1.1: GP2Y1010AU0F Optical Fine-Dust Sensor

systems. For example, a large number of sensors are currently connected to Inter-
net of Things (IoT) networks, enabling data gathering and real-time monitoring.
Constant monitoring is made possible by this integration, which also makes it easier
to gather huge datasets for analysis and forecasting.

The applications for fine-dust sensors are numerous. They work in environmental
monitoring stations to provide the government and the public with up-to-date
information on air quality. The issue of health advisories and the formulation of
policies pertaining to air pollution depend on this information.
To maintain a safe working environment and to adhere to environmental require-
ments, fine-dust sensors are employed in industrial settings to monitor and manage
the air quality. These sensors may also be used in smart home systems, where they
can monitor and enhance indoor air quality.

3
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Fine-dust sensors are important, but they have problems, particularly with
precision and dependability. Sensor readings can be impacted by variables such as
temperature, humidity, and the presence of other substances in the air. Addition-
ally, efforts are being made to lower the cost of these sensors and increase their
accessibility for the general population.

The development of increasingly complex and precise sensors as well as the use
of artificial intelligence to more accurately assess and forecast trends in air quality
are potential future developments in this subject. The development of portable
and personal monitoring tools that people may use to evaluate the air quality in
their immediate surroundings is also gaining popularity.
In summary, the field of sensor-based fine-dust detection is essential to the effort to
reduce air pollution. Sensor technology has the potential to significantly improve
our knowledge of and ability to regulate air quality, which will eventually lead to
improved health and a cleaner environment as it develops.

1.3 State of the art in air pollution monitoring
methods

In order to produce more precise, timely, and thorough data, the state of the
art in air pollution monitoring has greatly evolved in recent years by utilising
new technology and approaches. Here is a summary of the approaches used to-
day to monitor air pollution, along with a discussion of their benefits and drawbacks:

Satellite Monitoring

• Pros

– Satellites can monitor large areas, including remote and inaccessible
regions

– They provide consistent data over time, allowing for long-term trend
analysis

– Advanced satellites offer near real-time data on air quality

• Cons

– Satellites might not detect small-scale pollution sources or variations
– Cloud cover and weather conditions can interfere with data collection
– Satellite technology is expensive to develop, launch, and maintain

Ground-Based Monitoring Stations

4
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• Pros

– These stations offer precise measurements of various pollutants
– They provide specific data for targeted locations, useful for local policy-

making
– Capable of measuring a wide range of pollutants

• Cons

– Each station only covers a small area, requiring many stations for com-
prehensive coverage

– Regular maintenance and calibration are needed, which can be costly
– Stations can be subject to vandalism or theft, especially in remote areas

Mobile Monitoring (Vehicles and Drones)

• Pros

– Can be moved around to gather data from different locations
– Useful for studying specific sources of pollution or hotspots
– Fill gaps in data where fixed stations are not present

• Cons

– Mobile units might carry fewer sensors due to size and weight constraints.
– Especially for drones, limited battery life can restrict monitoring time
– Use of drones can be limited by local regulations

Personal Monitoring Devices

• Pros

– Provide data on personal exposure levels, useful for health studies
– Increase public awareness and engagement in air quality issues
– Small and easy to carry around

• Cons

– These devices may be less accurate than professional equipment
– Often measure only a few common pollutants
– Data from various devices might not be directly comparable

5
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IoT and Sensor Networks

• Pros

– Continuous monitoring provides real-time data
– Networks can be easily expanded by adding more sensors
– Can be integrated into smart city infrastructures for holistic monitoring

• Cons

– Sensors require regular calibration and maintenance
– Managing and analyzing the large volumes of data can be challenging
– Sensors can be sensitive to environmental factors, affecting accuracy

Artificial Intelligence and Machine Learning

• Pros

– Can predict pollution trends and patterns
– AI can efficiently process large datasets from various sources
– Useful in understanding complex environmental interactions

• Cons

– The accuracy of AI predictions is dependent on the quality of input data
– Developing and implementing AI systems can be complex and costly
– AI decision-making processes can be opaque, making it difficult to under-

stand how conclusions are reached

Every approach has its own advantages and disadvantages. The best strategy
frequently combines various techniques, capitalising on their advantages to produce
a thorough and precise picture of air pollution. We may anticipate more advance-
ments in coverage, precision, and the capacity to assess and forecast changes in air
quality as technology develops.

Using ARPA "Ground-Based monitoring stations" as a reference, the study of
"AI and Machine Learning" techniques is the main goal of this thesis in order to
enhance sensor calibration. Artificial intelligence techniques will be compared with
their quantum counterparts.

6



Chapter 2

Technologies

For each of these technologies, theory and examples will be explained.In this
second chapter we explore the technological underpinnings of our experimental
work, providing an in-depth analysis of the tools, frameworks, and approaches
that are essential to our work. This analysis aims to offer a thorough grasp of
the theoretical and mathematical foundations guiding these technologies rather
than just a descriptive one. We start by outlining the historical evolution and
contemporary status of each technology, emphasising its applicability and room for
innovation in the computer science engineering sector.

2.1 Machine Learning
Within artificial intelligence, machine learning is a sophisticated discipline that
focuses on creating algorithms that can learn from data and make judgements.
This discipline has significantly changed how problem-solving is approached across
a range of fields, shifting the focus from explicit programming to data-driven
approaches.

The idea of learning from experience is at the heart of machine learning. When
algorithms are exposed to big data sets, they can find patterns and connections.
Following then, choices or predictions regarding fresh, unobserved data are based
on these discoveries. This process is comparable to human learning, in which
information is acquired via experience and used to decision-making.
While there are many different approaches to machine learning, they all entail
utilising a dataset to train a model. The model begins as a simple hypothesis and
develops over time as it processes data, increasing its accuracy and dependability.
The quality and quantity of the data supplied are critical to the success of machine
learning; more complete datasets typically provide more accurate models.
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Figure 2.1: A generic Machine Learning workflow

In Fig. 2.1 a generic workflow used to build a Machine Learning model (without
validation) can be observed: a portion of the dataset, called the "traning-set," is
used to train the model that will perform the predictions on another portion of the
dataset that has never been seen before.
Ensuring that models generalise adequately to new data—a notion known as gener-
alization—is one of the major issues in machine learning. This implies that the
model should function well on both fresh, untrained data and the data it was
trained on. Overfitting is a typical mistake when a model performs poorly on fresh
data because it is overly adapted to the training set.
Applications for machine learning are numerous and range from simple ones like
email filtering to sophisticated ones like autonomous driving or medical diagnostics.
It is a vital tool in today’s technology environment because of its versatility and
effectiveness in managing large, complicated datasets.

All things considered, machine learning signifies a fundamental change in com-
putational methodologies, placing an emphasis on data-driven, adaptive, predictive
models as opposed to the static, rule-based systems of classical computing. This
change has created new opportunities for technology, enabling robots to become
more than just tools for carrying out instructions—rather, they are now sentient
beings with the ability to learn, adapt, and make judgements.

2.1.1 Supervised learning
As learned from the literature [2], we can distinguish between three different main
types of machine learning problems: Supervised learning, Unsupervised learning
and Reinforcement learning.

8



Technologies

A key component of machine learning is supervised learning, which is the process
of training algorithms on a labelled dataset in which each data point is associated
with an accurate response or result. The’supervised’ part describes the direction
these labels provide to the algorithm during its training phase, which is similar to
a teacher monitoring a student’s progress in class.
In supervised learning, the dataset serves as an instructor by giving the algorithm
instances to work with. Input data (pictures, text, or numerical characteristics)
and a matching label or target (such as a category for classification tasks or a
continuous value for regression tasks) make up each sample in the dataset. The
algorithm’s goal is to identify correlations or patterns between the inputs and the
labels that correspond to them.
The algorithm is trained iteratively by first generating predictions from the input
data and then modifying its internal parameters in response to how accurate these
predictions turn out to be. The programme measures the discrepancy between
the actual labels and its predictions using a mathematical calculation called the
loss function. As training goes on, the algorithm’s predictions get more accurate
because the goal is to minimise this loss.
Unseen data is used to assess the algorithm’s performance following training. This
assessment is essential because it determines how well the algorithm can apply the
patterns it has learnt to fresh, untested samples. A good supervised learning model
is one that keeps a high degree of accuracy when faced with fresh data, in addition
to doing well on its training set.

Here are some examples of famous machine learning algorithms of the "supervised
learning" type:

• Linear Regression: Used for predicting a dependent variable value (y) based
on a given independent variable (x). It is best suited for regression problems.

• Logistic Regression: Despite its name, logistic regression is used for classifi-
cation problems, not regression. It predicts the probability of occurrence of
an event by fitting data to a logistic curve.

• Support Vector Machines (SVMs): These are powerful algorithms used
for both classification and regression tasks. They work by finding the best
hyperplane that separates data points of different classes.

• Decision Trees: This algorithm models decisions and their possible conse-
quences as a tree, which is particularly useful for classification and regression.

• Random Forests: An ensemble method that operates by constructing
multiple decision trees during training and outputting the class that is the
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mode of the classes (classification) or mean prediction (regression) of the
individual trees.

• K-Nearest Neighbors (K-NN): It’s a simple algorithm that stores all
available cases and classifies new cases based on a similarity measure (e.g.,
distance functions).

• Neural Networks: Although they are often associated with deep learning,
simple neural networks can also be used for a variety of supervised learning
tasks.

2.1.2 Unsupervised learning
The process of training an algorithm on data without predetermined labels or
responses is referred to as "unsupervised learning," as the publication [3] demon-
strates. Unsupervised learning algorithms have to make sense of the data without
explicit instructions on what to search for, in contrast to supervised learning, where
the training data contains both input and output labels. This type of learning
is similar to giving raw data to a machine and expecting it to find correlations,
patterns, or structures on its own.

The algorithm searches the data in unsupervised learning to look for innate
structures. The two basic methods employed in this field for this kind of investiga-
tion are clustering and association. A collection of things is clustered when they
are arranged so that the objects in the same group, or cluster, resemble one another
more than the ones in other groups. Conversely, association involves identifying
patterns that characterise significant parts of the data, including recurring events
or correlations between various variables.

Unsupervised learning is powerful because it can reveal hidden patterns in data
that are not immediately obvious. This capacity is especially helpful in exploratory
data analysis, where the objective is to comprehend and identify the data’s underly-
ing structure. It’s also very effective in more sophisticated tasks like dimensionality
reduction, where the algorithm can identify the most relevant characteristics in
a dataset, or in anomaly detection, where the aim is to uncover data points that
differ considerably from the rest of the dataset.

Some of the most renowned unsupervised learning algorithms include:
• K-Means Clustering: This is a popular clustering algorithm that partitions

data into K distinct, non-overlapping subsets or clusters. It assigns each data
point to the nearest cluster center and iteratively refines the positions of these
centers.
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• Hierarchical Clustering: Unlike K-means, hierarchical clustering does not
require the number of clusters to be specified beforehand. It builds a hierarchy
of clusters either by merging smaller clusters into larger ones (agglomerative)
or by breaking down a large cluster into smaller ones (divisive).

• DBSCAN (Density-Based Spatial Clustering of Applications with
Noise): DBSCAN is a clustering algorithm that groups together points that
are closely packed together while marking points that lie alone in low-density
regions as outliers.

• Principal Component Analysis (PCA): PCA is a technique used for
dimensionality reduction. It transforms the data into fewer dimensions while
retaining most of the variability in the data, making it easier to analyze and
visualize.

2.1.3 Reinforcement learning
Compared to supervised and unsupervised learning, reinforcement learning (RL)
is a unique and dynamic subfield in machine learning. Through behaviour in
an environment to accomplish a goal, an agent learns to make decisions through
reinforcement learning. Rather than giving clear instructions on what to do, rein-
forcement learning (RL) focuses on learning how to behave depending on input
from the environment, such as rewards or punishments.
The idea of the agent-environment interaction is at the core of reinforcement learn-
ing. Everything an agent interacts with is considered part of the environment,
and the agent itself is the learner or decision-maker. In the environment, the
agent makes decisions (actions), and the environment reacts to these decisions by
presenting the agent with new scenarios. The environment also offers incentives,
which are numerical values that show how well the agent is doing in relation to its
objective. The agent’s long-term goal is to maximise the cumulative payoff.

There are many different fields in which reinforcement learning is applied, such
as robotics, gaming, autonomous cars, and personalised recommendation systems.
Nevertheless, RL has special difficulties, such the necessity for a great deal of trial
and error to discover efficient policies and the difficulty of deciphering environ-
mental conditions and incentives. In general, reinforcement learning emphasises
experience-based learning and the modification of tactics to accomplish certain
objectives, providing a dynamic and participatory approach to machine learning.

Among the most well-known algorithms for reinforcement learning ([4]) are:
• Q-Learning: This is a value-based algorithm that learns the value of an

action in a particular state. It uses a Q-table to store Q-values, which are
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estimates of the total reward an agent can expect to receive after taking a
given action in a given state.

• Deep Q Networks (DQN): Building upon Q-learning, DQN integrates deep
learning by using neural networks to approximate Q-values. It’s famous for
its success in playing Atari games at a level comparable to human players.

• Policy Gradients: This approach learns a policy function directly with-
out having to maintain a value table or model. The algorithm adjusts the
parameters of the policy in a direction that increases expected rewards.

2.2 Artificial neural network
A subfield of computer science called artificial intelligence (AI) is concerned with
building machines that are able to carry out activities that would typically need
human intellect. Learning, thinking, problem-solving, perception, language com-
prehension, and creativity are all included in these activities. Artificial Intelligence
(AI) integrates concepts from several fields, such as computer science, mathematics,
psychology, linguistics, and neuroscience.

AI has a rich and complicated history. Although the idea of manufactured
creatures has long been present in mythology and storytelling, the foundation for
this idea was set by the formal laws of logic developed by philosophers such as
Aristotle. Calculators and mechanical reasoning were first conceptualised in the
17th century by philosophers such as Leibniz and Descartes.
The development of electronic computers in the 1940s marked a pivotal point,
leading to the modern era of AI. A landmark moment was Alan Turing’s 1950
paper proposing the Turing Test as a measure of machine intelligence.

John McCarthy first used the phrase "Artificial Intelligence" in 1956 at the
Dartmouth Conference, which officially launched the subject. Expert systems and
symbolic issues were the main subjects of early study.
But there have been difficulties with AI as well. Due to unfulfilled expectations,
the discipline has gone through many "AI winters," or times when funding and
enthusiasm have decreased. These caused changes in emphasis, particularly in the
areas of machine learning and neural networks.
There have been major improvements in AI thanks to its comeback, particularly
with deep learning and neural networks. With notable advancements in natural
language processing, picture recognition, and autonomous systems, artificial intelli-
gence (AI) is already influencing a wide range of industries, including healthcare,
banking, transportation, and entertainment. AI applications have grown even more
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Figure 2.2: The Alan Turing’s test used as a measure of machine intelligence

through interaction with other technologies like big data and the Internet of Things.

Artificial Intelligence consists of several essential components, such as machine
learning, which is the foundation of AI and focuses on algorithms for prediction
and decision-making; neural networks and deep learning, which are effective at
recognising patterns and inspired by the human brain; natural language processing,
which allows computers to comprehend and produce human language; robotics,
which combines AI with mechanical engineering for autonomous tasks; and expert
systems, which are made for solving complex problems using rule-based systems.
Lastly, the area of AI is becoming more and more concerned with safety and ethical
problems related to AI, addressing things like algorithmic bias, the effect on the
workforce, and making sure AI development is both safe and helpful. The goals of
AI in the future are to increase general intelligence, improve human-AI cooperation,
and address ethical issues.

Modern artificial intelligence is based on Artificial Neural Networks (ANNs),
which are modelled after the biological neural networks seen in animal brains. A
neural network (ANN) is a computing system composed of several basic, highly
linked processing components that process data based on how each element changes
its dynamic state in response to outside inputs.
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The McCulloch-Pitts neuron model, developed in 1943 by logician Walter Pitts
and neurologist Warren McCulloch, lay the groundwork for neural networks. This
model represented biological neurons in a mathematically simplified manner. In
1958, Frank Rosenblatt developed the Perceptron, a primitive neural network with
basic pattern recognition capabilities. This was a big advance since it brought in a
network that could learn from information.

Figure 2.3: The Perceptron by Frank Rosenblatt (1958)

Here’s a brief explanation of how the Perceptron works:

1. Input Values: The perceptron receives multiple input values. Each of these
inputs corresponds to a feature in the dataset. For instance, in a dataset for
image recognition, each input might be the intensity of a pixel.

2. Weights and Bias: Each input value is assigned a weight, which the percep-
tron will learn during training. There’s also a bias, which can be thought of
as a weight for an input that’s always 1. The weights and bias are initially set
to random values and are adjusted during the learning process.

3. Summation and Activation: The perceptron multiplies each input by its
weight, sums all these products, and then adds the bias. This sum is then
passed through an activation function. A common activation function used
in perceptrons is the step function, which outputs either 0 or 1. This step
function thresholds the sum: if the sum is above a certain threshold, the
perceptron outputs 1; otherwise, it outputs 0.
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4. Output: The output is a simple binary decision (e.g., yes/no, 1/0) that
categorizes the input data into one of two classes.

5. Learning Process: During training, the perceptron adjusts its weights and
bias based on the errors in its predictions. If the perceptron’s prediction is
wrong, the weights are adjusted in the direction that reduces the error. This
process is repeated many times over the dataset, allowing the perceptron to
learn from its mistakes.

2.2.1 Feed-Forward neural network (FFNN)
An artificial neural network in which there is no cycle formed by the connections
between the units is called a feed-forward neural network.
This type of architecture serves as the basis for several deep learning models and is
employed in a wide range of machine learning applications. An input layer, one
or more hidden layers, and an output layer make up the layers that make up the
network’s structure. Neurons, or nodes, comprise each layer, and all of the neurons
in one layer are connected to all of the neurons in the layer above it.

Here’s a closer look at its workings, along with the mathematical foundation.
The input layer receives the input features of the data: each neuron in this layer
represents a feature in your dataset.
Then, the hidden layers perform computations and transformations on the inputs.
The number of hidden layers and the number of neurons in each hidden layer are
design choices that depend on the complexity of the task.
At the end, the output layer produces the final output of the network, which could
be a class label in classification problems or a continuous value in regression.
The operation of this type of neural network is divided into two steps: forward
propagation and backpropagation.

Forward propagation. In each neuron, the first step is a linear transformation
of the inputs.
Given an input vector X = [x1, x2, ..., xn], the linear transformation in a neuron is
calculated as Z = XW + b where W is the weight matrix, b is the bias vector, and
Z is the output vector of the linear transformation.
The linear transformation’s result Z is then passed through an activation function
σ, producing the output A = σ(Z).
The activation function introduces non-linearity, allowing the network to learn
complex patterns. Common activation functions include Sigmoid, Tanh, ReLU
(Rectified Linear Unit), etc.
This process (linear transformation followed by activation) is repeated for each
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layer. The output of one layer A becomes the input to the next layer.

Mathematical Example for a Single Layer.
Consider a layer with two inputs x1, x2 connected to two neurons.
The equations for the neurons’ outputs could be represented as follows:

• For neuron 1: Z1 = w11x1 + w12 + x2 + b1, then A1 = σ(Z1)

• For neuron 2: Z2 = w21x1 + w22 + x2 + b2, then A2 = σ(Z2)

Where:

• wij represents the weight from input j to neuron i

• bi is the bias for neuron i

• Zi is the linear transformation’s output for neuron i

• σ is the activation function

• Ai is the activation function’s output for neuron i, which will be used as input
for the next layer.

Backpropagation. Following forward propagation, a loss function (such as
mean squared error for regression or cross-entropy for classification) is used to
quantify the difference between the network’s predicted and actual output.
Reducing this loss is the aim of training. Backpropagation is used to update the
weights and biases in the network. It involves:

1. Computing the Gradient: The loss function’s partial derivatives with respect
to each network weight and bias, showing how adjustments to these variables
may impact the loss.

2. Updating Parameters: The weights and biases are then updated in the direction
that minimally reduces the loss, typically using gradient descent or variations
thereof. The amount of adjustment is controlled by the learning rate.

To conclude, in order to generate predictions, a feed-forward neural network
goes through several stages of processing. It learns by employing a technique known
as backpropagation to modify its weights and biases in response to the prediction
error.
Activation functions and the depth of the network introduce non-linearity, which
allows the architecture to learn intricate patterns.
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2.2.2 Gradient Descent

Gradient Descent is a fundamental optimisation method that is extensively used
in machine learning and other fields where function reduction or maximisation is
required [5]. This method is widely used in artificial neural networks due to its
efficiency in optimizing complex models with vast numbers of parameters.
Fundamentally, the goal of gradient descent is to minimise the loss function, which
is a mathematical depiction of the discrepancy between the model’s predictions
and the actual data.
The fundamental idea behind this approach is to utilise the gradient, or slope, of
the loss function in relation to the model parameters. By using this information,
the parameters are iteratively adjusted in order to minimise the loss.
This optimisation technique makes use of a simple yet effective idea: one may travel
in the other direction to decrease the loss by knowing the direction in which the
loss function grows. The gradient indicates the direction of the sharpest climb. It
is a vector made up of the partial derivatives of the loss function with respect to
each parameter. The local minimum of the function, or the set of parameters that
produce the least error, may be found by travelling in the other direction.
Mathematically, Gradient Descent is formulated as follows: given a loss function
J(θ), where θ represents the parameters of the model, the goal is to find the set
of parameters θ∗ that minimizes J(θ). The gradient of J at θ, denoted as ∇J(θ),
gives the direction of the steepest ascent. To minimize J , one updates θ by moving
a small step in the opposite direction of ∇J(θ):

θnew = θold − α∇J(θold) (2.1)

In this case, the scalar α stands for learning rate, which establishes the magnitude
of the step made in the opposite direction of the gradient. Selecting the right
number for α is essential, as a too small value will result in extremely sluggish
convergence, while a very large value could cause the algorithm to overshoot the
minimum and perhaps diverge.
Gradient Descent is a procedure that gradually approaches the minimum of J by
iteratively adjusting the parameters θ through the use of this update algorithm.
This iterative process goes on until convergence, which is usually understood to be
the completion of a predefined number of iterations or the moment at which the
change in the loss function between iterations is less than a predefined threshold.
In order to quantitatively illustrate this, let’s have a look at a basic linear regression
model, in which the objective is to fit a line to a set of points in such a way that
the total of the squared differences between the actual and predicted values is as
little as possible. In this instance, the loss function may be shown as follows:
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J(θ0, θ1) = 1
2m

mØ
i=1

1
hθ(x(i))− y(i)

22
(2.2)

where m is the number of training examples, hθ(x(i)) = θ0 + θ1x
(i) is the

hypothesis function predicting the output given input x(i), and y(i) is the actual
output.
The partial derivatives of J(θ0, θ1) with respect to θ0 and θ1 are:

∂J

∂θ0
= 1
m

mØ
i=1

1
hθ(x(i))− y(i)

2
(2.3)

∂J

∂θ1
= 1
m

mØ
i=1

1
(hθ(x(i))− y(i)) · x(i)

2
(2.4)

These gradients are then used to update θ0 and θ1 respectively, as per the
Gradient Descent update rule.

Gradient Descent minimises the loss function by performing these updates again
and again until the linear regression model’s optimum parameters are reached.
This is a fundamental approach in statistical and machine learning optimisation, as
demonstrated by this procedure, which also shows how effective it is at optimising
model parameters.

2.2.3 Gradient Descent Algorithm
We show the operation of the Gradient Descent method from the algorithmic point of
view use the Python programming language. To better understand how it works, we
will simplify the algorithm use a quadratic function as the function to be minimized.

The only library needed for the purpose of implementation is numpy: a library
that allows us to manipulate complex data structures for mathematical purposes.

1 import numpy as np

First, we define our objective function to be minimized.

1 # Def ine the func t i on to be minimized
2 de f f (x , y ) :
3 re turn x∗∗2 + y∗∗2

Given the simplicity of the chosen objective function, we can define the derivative
of that function with respect to its parameters (x and y).
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1 # Def ine the p a r t i a l d e r i v a t i v e s o f the func t i on with r e s p e c t to
x and y

2 de f df_dx (x , y ) :
3 re turn 2 ∗ x
4 de f df_dy (x , y ) :
5 re turn 2 ∗ y

Below is the algorithm describing the operation of Gradient Descent.

1 # Def ine the g rad i en t descent a lgor i thm
2 de f grad ient_descent ( start_x , start_y , l earn ing_rate ,

num_iterations ) :
3 # I n i t i a l i z e the parameters
4 x = start_x
5 y = start_y
6

7 # Perform the grad i en t descent i t e r a t i o n s
8 f o r i in range ( num_iterat ions ) :
9 # Calcu la te the g rad i en t s

10 grad_x = df_dx (x , y )
11 grad_y = df_dy (x , y )
12

13 # Update the parameters
14 x = x − l e a rn ing_rate ∗ grad_x
15 y = y − l e a rn ing_rate ∗ grad_y
16

17 re turn x , y , f (x , y )

Finally, you can run the algorithm by calling the function above. The constants
in the problem were chosen for demonstration purposes of this execution.

1 start_x , start_y = 8 , 8
2 l e a rn ing_rate = 0 .1
3 num_iterat ions = 20
4 x_opt , y_opt , f_opt = gradient_descent ( start_x , start_y ,

l earn ing_rate , num_iterations )

A 3-d graph of the execution of the algorithm on the same data is shown.

2.2.4 Recurrent neural network (RNN)
A kind of artificial neural networks known as recurrent neural networks (RNNs)
have nodes connected in a directed graph along a temporal sequence. It may now
display temporal dynamic behaviour for a time series as a result. RNNs have the
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Figure 2.4: Gradient descent algorithm results

ability to process input sequences using their internal state, or memory, in contrast
to feed-forward neural networks (FFNNs). They can therefore be used for tasks
like speech recognition or unsegmented, linked handwriting recognition.

An in-depth look at this type of technology is desired because some of the
laboratory work in this thesis was carried out using this type of architecture in
order to create a model capable of learning how to calibrate fine dust sensors based
on their performance over time.
In more detail, a specific recurrent neural network model called "Long short-term
memory" (LSTM) was used.
The origins of RNNs may be discovered in the 1980s, when David Rumelhart
and John Hopfield conducted seminal research [6]. A method to comprehend how
networks may function as associative memory was provided by John Hopfield’s
1982 introduction of Hopfield Networks, which can be seen as a forerunner to RNNs.
Backpropagation over time is a technique for training RNNs that was presented
by David Rumelhart, Geoffrey Hinton, and Ronald Williams in 1986. During this
time, it became clearer how neural networks might represent temporal dynamics, a
property that is essential for processing data sequences like time series, text, or voice.

The main factor that makes RNNs so successful with sequential data is their
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looping nature, which makes information persistent. Every node in a layer of an
RNN carries out the same function, but with various inputs—current input as well
as information that has already been received. In essence, it possesses a "memory"
that records data on computations made thus far. RNNs have the capacity to store
information in their internal state for extended periods of time. The vanishing
gradient problem, which causes gradients to trend to zero or explode throughout
the backpropagation process, makes learning long-term relationships difficult to
capture in reality.

Figure 2.5: Recurrent Neural Network architecture explained [7].

RNNs offer a number of benefits. They are perfect for applications in language
modelling, machine translation, speech recognition, and time-series prediction
because they are naturally adapted to processing data sequences. They are able to
comprehend context and provide predictions depending on the order of data inputs
because of their capacity to model temporal dynamics and recall prior inputs.
RNNs are not without limitations, though. Because of the disappearing and
ballooning gradient issues, they are renowned for being challenging to train. Fur-
thermore, compared to models like Convolutional Neural Networks (CNNs) that
can process inputs in parallel, their sequential structure makes them less effective
for parallel processing. When working with lengthy sequences, this constraint
becomes substantial and results in lengthier training durations.

2.2.5 Long short-term memory (LSTM)
Recurrent neural networks (RNNs) have limits. Long Short-Term Memory (LSTM)
networks are a kind of RNN that was created to overcome these constraints,
especially with regard to learning long-term dependencies. LSTMs were first
presented by Hochreiter and Schmidhuber in 1997, and they have since grown to
be a mainstay in the deep learning space for applications that call for modelling
sequential data over extended periods of time [6].
The intricate cell structure of LSTM networks, which consists of many gates—the
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input, forget, and output gates—is its primary innovation. By deciding whether
information should be retained or lost as data progresses through the sequence, these
gates enable LSTMs to keep a more constant gradient throughout training. Due
to the vanishing gradient problem, standard RNNs frequently struggle to capture
long-term dependencies in sequential data; this design helps LSTMs overcome this
obstacle.

Figure 2.6: Long short-term memory architecture explained.

Based on Fig.2.6, an LSTM cell consists of the following components:

• Cell state (Ct): This acts as the "memory" of the LSTM, carrying relevant
information throughout the processing of the sequence.

• Hidden state (ht): This is the output of the LSTM cell at step t, which can
be used for predictions or passed to other layers in the network.

• Input gate (it): Determines how much of the new information should be
added to the cell state.

• Forget gate (ft): Decides how much of the existing information in the cell
state should be retained or discarded.

• Output gate (ot): Controls how much of the cell state is passed to the hidden
state.

From [6] it is possibile to understan the operation of an LSTM cell, in fact: given
an input sequence x1, x2, ..., xt, the LSTM updates its cell state Ct and hidden
state ht at each time step t using the following equations.

1. Forget Gate:
ft = σ(Wf · [ht−1, xt] + bf ) (2.5)
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Here σ is the sigmoid function, Wf is the weight matrix for the forget gate, bf

is the bias term, and [ht−1, xt] represents the concatenation of the previous
hidden state and the current input.

2. Input Gate:
it = σ(Wi · [ht−1, xt] + bi) (2.6)

Where Wi is the weight matrix for the input gate, and bi is the bias term.

3. Candidate Cell State:

Ĉt = tanh(WC · [ht−1, xt] + bC) (2.7)

It is a candidate value for updating the cell state, where WC is the weight
matrix, and bC is the bias term.

4. Cell State Update:
Ct = ft · Ct−1 + it · Ĉt (2.8)

The old cell state Ct−1 is updated to the new cell state Ct by forgetting certain
information (as determined by ft) and adding new candidate information (as
determined by it and Ĉt).

5. Output Gate:
ot = σ(Wo · [ht−1, xt] + bo) (2.9)

As always, Wo is the weight matrix for the output gate, and bo is the bias
term.

6. Hidden State Update:

ht = ot · tanh(Ct) (2.10)

The hidden state ht is updated based on the output gate and the current cell
state, allowing the LSTM to output information based on the cell’s memory.

Through its gating mechanisms, LSTM is able to maintain a balance between
remembering important information and discarding irrelevant material, which is
fundamental to its success. Processing and predicting sequences with long-term
relationships require this equilibrium.
An important development in neural networks’ processing of sequential input is
represented by LSTMs. LSTMs have expanded the usefulness and efficacy of neural
networks in a range of difficult tasks using sequential data by overcoming the
shortcomings of classic RNNs, notably in learning long-term dependencies.
They can selectively recall and forget information thanks to their special design,
which is made up of several gating mechanisms. This makes them an effective tool
for modelling temporal dynamics.
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2.3 The linear regression problem
As mentioned in the first chapters, the objective of this thesis is to study the
calibration of optical sensors for fine dust in order to increase their accuracy by
bringing them to simulate the same behavior as those installed by ARPA.
To do this, the linear regression problem must be addressed because the value of
particulate matter in the air (PM2.5) is a unit in µg/m3 that varies over time.

Modelling the connection between a dependent variable and one or more inde-
pendent variables is done using the core statistical and machine learning technique
of linear regression. Finding the linear equation that most accurately predicts the
dependent variable from the independent variables is the aim. One of the most
basic and traditional types of regression analysis, it dates back to the 19th century
and was made famous by Francis Galton’s work on regression towards mediocrity
in hereditary height [8].
In the late 18th and early 19th centuries, astronomy and geodesy provided the
framework for the development of the notion of regression and the least squares
approach, which is the foundation of linear regression. The least squares approach
was separately invented in the early 19th century by Carl Friedrich Gauss and
Adrien-Marie Legendre. The ideas of correlation and regression were first estab-
lished by Francis Galton’s work in the late 19th century on the link between parents’
and children’s heights. Galton also developed the term "regression" and showed a
regression towards the mean.

From a mathematical perspective, by fitting a linear equation to observed data,
linear regression describes the connection between the dependent variable Y and one
or more independent variables Xi. Simple linear regression is the most basic type
of linear regression. It involves two variables and is represented by the following
equation:

Y = β0 + β1X + ϵ (2.11)

where Y is the dependent variable, X is the independent variable, β0 is the y-
intercept of the regression line, β1 is the slope of the regression line and ϵ represents
the error term, accounting for the difference between observed and predicted values.
In multiple linear regression, where there are two or more independent variables:

Y = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ (2.12)

Solving this type of problem requires working on the coefficients (β) in the
equation. The goal is to identify the line—or hyperplane, in multiple regression
terms—that minimises the total squared differences between the values that the
linear model predicts and the values that are observed. This is called the criteria
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of least squares.
Mathematically, this involves minimizing the sum of squares of residuals (SSR):

SSR =
nØ

i=1
(Yi − Ŷi)2 (2.13)

where Yi is the observed value (coming from your dataset) and Ŷi is the predicted
value based on the regression model.
The Ordinary Least Squares (OLS) estimations are obtained by minimising the
SSR with respect to the coefficients. The following formula may be used to get the
OLS estimates of β0 and β1 for simple linear regression based on sample data:

β1 =
qn

i=1(Xi −X)(Yi − Y )qn
i=1(Xi −X)2 (2.14)

β0 = Y − β1X (2.15)

where X and Y are the sample means of X and Y , respectively.

Under specific circumstances (known as the Gauss-Markov theorem), the OLS
estimator possesses favourable statistical properties: it is unbiased, consistent, and
has the lowest variance among linear estimators.
Along with these other presumptions, linear regression additionally requires that
the data be linear, independent, homoscedastic (i.e., have constant variance of error
terms), and normal for certain statistical tests. If these presumptions are broken,
the model may need to be adjusted or alternative estimating methods may need to
be used.

2.4 Optimization and accuracy
The use of artificial neural networks as a tool to deal with linear regression to
study the behavior of fine dust sensors during a predetermined time frame was
mentioned. Despite its considerable power and precision, this type of architecture
also turns out to be "black boxed" today, meaning that it is not easy to explain all
the process that went into arriving at the result.
For this reason, it is necessary to study and test different types of optimizers and
accuracy metrics, evaluating which one best fits the dataset and the type of problem.

Optimizers in deep learning are algorithms or techniques that modify the neural
network’s parameters, including weights and learning rate, in order to lower losses.
Optimizers assist in minimising (or maximising) an objective function with respect
to its parameters, known as the loss function.
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An example of an optimizer is the Gradient Descent method mentioned earlier. We
now show the behavior of other optimizers that were actually used in the laboratory
work done in this thesis.

2.4.1 Stochastic Gradient Descent (SGD)
A key optimisation technique for deep learning model training is stochastic gradient
descent (SGD). It is a variant on the gradient descent technique (saw before), which
is used to determine a function’s minimum.
The term "stochastic" in SGD refers to the fact that, unlike in conventional gradient
descent, only randomly chosen subsets of the dataset (mini-batches) are used to
carry out the optimisation. This method can improve the models’ generalisation
features while also accelerating computation.

The core idea behind this method is still the same as gradient descent: adjusting
the model’s parameters (weights) iteratively to minimize a loss function. The loss
function measures the difference between the model’s predictions and the actual
target values for the training data.
The main innovations introduced by this method relate to optimizations in the
amount of computation performed as individual steps of the parent algorithm.

Let’s say we have 10 characteristics and 10,000 data points.
As many terms as there are data points in the sum of squared residuals—10,000
terms in our example—are included. It will really take 10000 · 10 = 100,000
calculations to compute the derivative of this function for each feature, as we must
do for each iteration. It typically takes 1000 iterations to finish the process, which
means that 100,000 · 1000 = 100000000 calculations are involved. Gradient descent
is sluggish on large datasets since it is essentially an overhead.

SGD randomly select a small subset of the data (a mini-batch) instead of the
entire dataset and then it calculates the gradient of the loss function with respect to
the parameters, but only for the selected mini-batch. This gives an approximation
of the gradient over the whole dataset.
Once the gradient is obtained, the parameters are updated in the same way that
you already know.

w = w − η · ∇wL (2.16)

where w is the parameter to update, ∇ is the learning rate (which decide the size
of the step) and ∇wL is the gradient of the loss function with respect to w.
Then, this entire process is repeated for a number of iterations or until the loss
function converges to a minimum.
Another advantage over Gradient Descent is related to the convergence properties:
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for certain types of non-convex loss functions common in deep learning, SGD can
help escape local minima and find better generalizing solutions.

Figure 2.7: Stochastic gradient descent compared with gradient descent [9].

Several advances in deep learning have been built upon the foundation of stochas-
tic gradient descent because of its efficiency and ease of use. In complicated deep
learning environments, however, variations of SGD with momentum or adjustable
learning rates (like Adam) are frequently chosen due to their enhanced convergence
qualities.

2.4.2 Adaptive Moment Estimation (ADAM)
Adaptive Moment Estimation, commonly known as Adam, is an optimization
algorithm designed to adjust the learning rates of parameters by estimating the
first and second moments of gradients.
It’s designed to replace the traditional stochastic gradient descent (SGD) procedure
by computing adaptive learning rates for each parameter. Adam combines the
best properties of two other extensions of stochastic gradient descent: Adaptive
Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp).

Here’s a thorough explanation of Adam’s workflow from the standpoint of deep
learning.
Two vectors, m and v, are initialised to zeros by Adam. The gradient square
and running averages of the gradients will be stored in these vectors, respectively.
Additionally, two hyperparameters that regulate the exponential decay rates of
these moving averages are β1 and β2, which are usually near to 1.
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Adam calculates the gradient of the loss function with respect to the parameters
(∇θ) for the current batch for every parameter change. Next, it applies the following
formulae to update the running averages of the gradients (m) and their squares (v):

mt = β1 ·mt−1 + (1− β1) · ∇θ (2.17)

vt = β2 · vt−1 + (1− β2) · (∇θ)2 (2.18)

where t indicates the current time step.
Because of their initialization, m and v are biassed towards zero in the first time
steps. In order to account for this, Adam applies bias correction:

m̂t = mt

1− βt
1

(2.19)

v̂t = vt

1− βt
2

(2.20)

This correction helps in stabilizing the updates in the initial training phase.
At the end, Adam updates the parameters using the bias-corrected estimates:

θt+1 = θt −
η√
v̂t + ϵ

m̂t (2.21)

where η is the learning rate, and ϵ is a small scalar (e.g., 10−8) added to prevent
division by zero.

This is the algorithm expressed in pseudo code of how Adam works.

2.4.3 Loss functions
Since the main problem of this study is a regression, there are several alternative
methods to evaluate the accuracy of the developed model.

They are referred to as "alternative" methods because accuracy is a concept that
is most frequently coupled with classification problems. In classification, accuracy
metrics perform a spot check on what the model predicted and the expected output;
if these two coincide, then the correct prediction counter is increased by 1. Building
on this basic concept, several metrics have been developed to help evaluate the
accuracy of a classifier, such as: confusion matrix, accuracy score, precision, recall,
F1-score, etc.

With a regression problem, these metrics can no longer be used since the pre-
dicted value is not a membership class but a continuous numerical value.
This is why they are referred to as "Loss functions".
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Algorithm 1 Adam optimizer algorithm. All operations are element-wise, even
powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8.
ϵ is needed to guarantee numerical stability.

1: procedure Adam(α, β1, β2, f, θ0)
2: ▷ α is the stepsize
3: ▷ β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ▷ f (θ) is the objective function to optimize
5: ▷ θ0 is the initial vector of parameters which will be optimized
6: ▷ Initialization
7: m0 ← 0 ▷ First moment estimate vector set to 0
8: v0 ← 0 ▷ Second moment estimate vector set to 0
9: t← 0 ▷ Timestep set to 0

10: ▷ Execution
11: while θt not converged do
12: t← t+ 1 ▷ Update timestep
13: ▷ Gradients are computed w.r.t the parameters to optimize
14: ▷ using the value of the objective function
15: ▷ at the previous timestep
16: gt ← ∇θf (θt−1)
17: ▷ Update of first-moment and second-moment estimates using
18: ▷ previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt

20: vt ← β2 · vt−1 + (1− β2) · g2
t

21: ▷ Bias-correction of estimates
22: m̂t ←

mt

1− βt
1

23: v̂t ←
vt

1− βt
2

24: θt ← θt−1 − α ·
m̂t√
v̂t + ϵ

▷ Update parameters
25: end while
26: return θt ▷ Optimized parameters are returned
27: end procedure
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These are functions that make it possible to calculate how "close" or "similar" the
prediction is to the expected value: the closer the prediction, the less the loss.
In order to obtain a good predictive model, the goal is to minimize the loss function.

The following loss functions were used in the laboratory work of this thesis:

Loss function Formula

Mean Square Error (MSE) 1
n

qn
i=1

1
Yi − Ŷi

22

Root MSE (RMSE)
ò

1
n

qn
i=1

1
Yi − Ŷi

22

Mean Absolute Error (MAE) / L1 loss 1
n

qn
i=1

---Yi − Ŷi

---
Table 2.1: Loss functions used in carrying out the work of this thesis

We can assume there is a dataset of size n and, after using the model to generate
n-predictions, the cost function is calculated where Yi is the i-th real value and Ŷi

is the i-th predicted value.
All three types of loss functions have one feature in common: the lower their values,
the better the model (unlike other famous metrics used in regression such as R2

and Adjusted-R2).

The Mean Squared Error (MSE) is a quadratic scoring rule and it calculates
the average squared difference between the estimated and actual values. The
mean square of all the errors is used to compute it. The discrepancy between the
expected and actual numbers is referred to as the error in this context. Squaring is
required to eliminate any unfavourable indicators. Additionally, it has the effect of
emphasising the greater discrepancies more. MSE’s sensitivity to outliers is one
of its main features. Outliers have a disproportionately significant impact on the
MSE since the errors are squared. This implies that the presence of outliers in the
data may cause the MSE to be very high and distort the model’s interpretation of
the data.

Next, we have the Root Mean Squared Error (RMSE), which is the square root
of the MSE. Although they may appear unnecessary, square roots and squaring
have a function. We can simplify understanding by returning the units to the
original units of the output variable by calculating the square root of the mean
square error (MSE). The square root helps to slightly offset the impact of outliers,
but RMSE retains all of the characteristics of MSE, including its vulnerability
to them. When a Gaussian distribution of error terms is anticipated, RMSE is
frequently chosen because it can give a more understandable sense of the average
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error size.

Mean Absolute Error (MAE) is the last loss function. It calculates the average
size of mistakes in a series of predictions without taking direction into account.
It is computed as the mean of the absolute deviations between the observed and
anticipated values. The MAE is not affected by outliers like the MSE and RMSE
are. Because large deviations are linearly weighted, MAE offers a more reliable
metric when outliers are present. Because of this, MAE is especially helpful in
situations where you wish to prevent outliers from having a disproportionately
negative impact on the model’s performance.

Depending on the particulars of the given regression situation, each of these loss
functions has distinct qualities and applicability. MSE and RMSE are appropriate
for models where higher mistakes are undesirable and should be minimised since
they are more harsh when it comes to them. However, MAE is better suited for
scenarios in which outliers are predicted or uncontrollable since it offers a more
comprehensible estimate of average error and is more tolerant of them.

2.5 Quantum computing
Using the ideas of quantum physics, information may be processed in ways that
are essentially distinct from those of conventional computing, marking a significant
breakthrough in the science of computation. Quantum computing is centred on the
goal of solving complicated problems faster than conventional computers, which
might transform whole industries by solving issues that were previously unsolvable.

[10] The advancement of quantum mechanics itself in the early 20th century laid
the conceptual foundation for quantum computing. But serious progress towards
the realisation of quantum computers did not occur until the 1980s. David Deutsch
in 1985 and Richard Feynman in 1982 were influential individuals who explained
the possibilities of quantum computing. While Deutsch outlined the quantum
Turing machine and established the theoretical framework for quantum computing,
Feynman suggested that a quantum system may be effectively emulated using
another quantum system.
Significant progress has been made in quantum theory, algorithms, and technology
throughout the years. Significant turning points include the factoring of huge
numbers technique developed by Peter Shor in 1994 [11], which would have taken
classical computers an unreasonably long time to complete, and the database search-
ing algorithm developed by Lov Grover in 1996 [12], which showed a quantum
speedup over classical algorithms.
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In terms of information representation, quantum computing differs from classical
computing from the very beginning. Quantum computers employ quantum bits,
or qubits, as the lowest unit of information, whereas classical computers use bits.
Because of the quantum mechanical concept of superposition, a qubit, unlike a
bit, which can only be either 0 or 1, can exist in a state that is a simultaneous
superposition of both 0 and 1.
This superposition allows quantum computers to process a vast amount of possibil-
ities concurrently. Another key principle is entanglement, a phenomenon where
qubits become interconnected and the state of one (no matter how far apart they
are) can instantaneously affect the state of another. This capability is crucial for
quantum computing’s potential speedup.

The mathematical description of a qubit state is typically represented using
Dirac notation, or "bra-ket" notation, where a qubit |ψ⟩ can be written as a linear
combination of the basis states |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ (2.22)

In this equation, α and β are complex numbers that describe the probability
amplitudes of the qubit being in state |0⟩ or |1⟩. The probabilities of measuring
the qubit in either state are given by |α|2 and |β|2 respectively, with the condition
that: |α|2 + |β|2 = 1.

Beyond the capabilities of traditional computers, quantum computing holds
great promise for addressing difficult issues in material science, medication de-
velopment, and optimisation. Examples of these applications include quantum
cryptography and quantum communication. Because they can solve issues that are
now intractable owing to computing limits, quantum computers have the potential
to completely transform a variety of disciplines.
Still, there are a number of important issues to be resolved, such as error rates,
qubit coherence durations, and quantum system scalability. Realising the full
potential of quantum computing requires developments in fault-tolerant quantum
computing, quantum error correction, and innovative quantum algorithms.

The next several decades should see the release of useful quantum computing
applications, which makes this a fascinating area for experimentation and study as
research and development picks up speed. The direction of quantum computing
in the future will surely be shaped by the junction of theoretical understandings,
technical developments, and real-world applications.
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2.5.1 Quantum gates
Similar to logic gates in conventional circuits, quantum gates modify qubit states
and serve as the fundamental components of quantum circuits. They are the basic
building blocks for quantum circuits.
Quantum gates use the concepts of superposition and entanglement to manage
the quantum states of qubits, as opposed to conventional logic gates, which apply
binary operations to bits (0 or 1). This allows for a wider range of operations that
support the potential capability of quantum computing.

Quantum gates operate on qubits using unitary transformations, which are
mathematical operations characterized by certain properties that ensure the total
probability of all possible outcomes remains 1. A unitary transformation U applied
to a quantum state |ψ⟩ results in a new quantum state |ψ′⟩, which can be represented
mathematically as:

|ψ′⟩ = U |ψ⟩ (2.23)

A 2x2 unitary matrix may be used to represent a quantum gate for a single
qubit, and a 2-dimensional vector can be used to represent the qubit’s quantum
state. The qubit’s vector and the gate’s matrix are then multiplied to get the gate’s
action on the qubit. For example, the quantum state |ψ⟩ = α |0⟩ + β |1⟩ can be
represented as a vector

1
α
β

2
, and a quantum gate U acting on |ψ⟩ transforms it

according to the matrix multiplication U ·
1

α
β

2
.

Quantum computing relies on many quantum gates, which are comparable to
the conventional AND, OR, and NOT gates. Among the most well-known are:

• Pauli Gates (X, Y, Z): Pauli gates perform phase-shifting and quantum
bit-flipping. The Z gate modifies a qubit’s phase, the Y gate performs a bit
and phase flip, and the X gate (which is comparable to a classical NOT gate)
flips a qubit’s state.

• Hadamard Gate (H): By generating superpositions, the Hadamard gate
transforms a defined state—either |0⟩ or |1⟩—into a collection of states. It is
essential for generating superpositions of states to initialise quantum algorithms.

• Controlled NOT Gate (CNOT): The CNOT gate is a two-qubit gate that
flips the second qubit (target) if the first qubit (control) is in state |1⟩. It’s
essential for creating entangled states (Fig.2.10).

• Toffoli Gate (CCNOT): If the first two qubits are in the |1⟩ state, the Toffoli
gate acts on three qubits, flipping the third qubit. Since it can implement any

33



Technologies

Figure 2.8: Pauli gates (X, Y, Z)

Figure 2.9: Hadamard gate (H)

quantum computation, it is a universal gate for quantum computing (Fig.2.11).

In summary, quantum gates bring up computational possibilities that are not
possible with traditional technology by enabling the manipulation of information
in fundamentally new ways. In order to fully utilise quantum gates despite their
present limitations, quantum algorithms and error correction strategies are still
being developed.

2.6 Quantum Machine Learning
With the goal of using the concepts of quantum physics to improve or speed up
machine learning algorithms, quantum machine learning, or QML, is a promising
fusion of quantum computing with machine learning. The area arose from the
realisation that quantum computing has novel computational capabilities that may
be able to tackle some problems—including machine learning problems—more
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Figure 2.10: Controlled NOT Gate (CNOT)

Figure 2.11: Toffoli gate (CCNOT)

quickly than traditional computers.

Since academics started looking into the possibilities of quantum algorithms in
the late 20th century, QML has its roots in the early advances in quantum comput-
ing itself [13]. But the phrase "quantum machine learning" didn’t catch on until the
2010s, when theoretical developments and advances in quantum hardware made the
real-world applications of quantum computing more plausible. Because quantum
algorithms are essential to many machine learning techniques, early research con-
centrated on finding ways to speed up linear algebra work using them. During this
time, quantum versions of support vector machines, principal component analysis,
and other techniques were developed.
The need to address the rising computing needs and complexity of some machine
learning tasks—tasks that are difficult for traditional computers to complete in a
reasonable amount of time—led to the development of QML. These include, but
are not limited to, simulating complicated systems, large data analysis, and diffi-
cult optimisation challenges. These kinds of problems are frequently encountered
in domains such as artificial intelligence research, financial modelling, and drug
development.

When quantum computing’s built-in benefits, such parallelism and entanglement,
can be used to handle data in ways that classical computing cannot, quantum
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machine learning can be very useful. In particular, QML has potential in:

• Increasing the speed of linear algebra computations: A lot of machine
learning techniques rely on calculations that, on classical computers, scale
poorly with data size, but may run exponentially faster on quantum computers.

• Managing high-dimensional data: High-dimensional vectors and matrices
may be compactly represented and manipulated by quantum systems, which
may provide more effective methods of handling complicated, high-dimensional
information.

• Optimisation issues: In certain optimisation tasks, which are essential for
training machine learning models, quantum algorithms may be able to identify
optimum solutions more quickly than conventional algorithms.

Fundamentally, QML uses quantum algorithms to outperform classical algo-
rithms in tasks like classification, pattern recognition, and optimisation. One
popular method is to use quantum embedding, which is the act of encoding data
into quantum states so that the quantum system may process and analyse data in
its high-dimensional quantum space.
The quantum rendition of traditional machine learning methods is a fundamental
component of QML. To identify the ideal parameters for a particular model, for
instance, the Quantum Approximate Optimisation Algorithm (QAOA) is made to
address optimisation issues, a common task in machine learning. Similar to this,
quantum algorithms for linear systems of equations seek to solve for x in Ax = b
under specific conditions exponentially quicker than conventional methods; this
has immediate implications in the resolution of linear regression issues.

In terms of mathematics, a quantum machine learning algorithm could construct
a quantum state that reflects the data (|ψdata⟩) by executing a sequence of quantum
gates, or unitary operations. Further quantum operations are then applied to this
state in order to accomplish the appropriate machine learning objective. When
the result is measured, the quantum state collapses to classical data that may be
understood as the computation’s consequence.

In conclusion, Quantum Machine Learning offers a look into a future where
processing power and the laws of quantum mechanics might open new capabilities
in data analysis, pattern recognition, and beyond. It sits at the nexus of quantum
computing and artificial intelligence. Even though it is still in its infancy, QML
research and development are poised to address some of the most difficult and
urgent problems in computational science and machine learning.
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2.6.1 Linear Regression with QML
To illustrate the power of Quantum Machine Learning (QML) through a simple
example, let’s consider the problem of linear regression.
The goal is to find the line (in two dimensions) that best fits the data. The classical
equation for a line is y = mx+ b, where m is the slope and b is the y-intercept.

As it is possible to observe in Section 2.3, given a dataset of n points
{(x1, y1), (x2, y2), ..., (xn, yn)}, we aim to minimize the cost function which is often
the sum of squared residuals (i.e: the differences between observed and predicted
values).
By encoding the linear regression issue into a quantum system and applying quan-
tum methods to determine the ideal parameters that minimise the cost function,
we may solve the problem in a quantum context. Since linear regression may be
thought of as the solution to a system of linear equations, the quantum algorithm
for linear systems of equations, or HHL (Harrow, Hassidim, and Lloyd) algorithm,
can be modified for this use.

Encoding Data into Quantum States.
The first step involves encoding the data {(xi, yi)} into a quantum state. This is
achieved through quantum embedding, which maps classical data into the ampli-
tudes of a quantum state. For simplicity, let’s consider each xi and yi as components
of vectors x and y respectively. The goal is to encode these vectors into quantum
states |x⟩ and |y⟩.

Formulating the Problem.
Finding a vector θ (containing m and b) that minimises the norm ||Aθ − y||2 may
be used to express the linear regression issue. Here, A is a matrix with x values
and an extra column of ones for the intercept term b. We seek to solve the system
of linear equations Aθ = y that result from this formulation.

Quantum Linear System Algorithm (HHL).
The HHL algorithm is used to solve the linear system Aθ = y quantumly. The
algorithm proceeds in several steps:

• Prepare the quantum state |y⟩ corresponding to the vector y.

• Apply quantum phase estimation to estimate the eigenvalues of A.

• Use the eigenvalues to perform controlled rotations on an ancilla qubit, encod-
ing the solution into the amplitudes of a quantum state.

• Apply the inverse of the quantum phase estimation step to retrieve the state
encoding the solution.
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• Measure the ancilla qubit. If it is in the desired state, the system collapses to
a state proportional to the solution vector |θ⟩, from which we can extract the
regression coefficients.

The sparsity and condition number of A have a big impact on how well these
stages can be completed, which is necessary for the HHL algorithm to work.
The main conclusion is that the HHL algorithm may be able to solve the linear
system more quickly than conventional approaches, particularly for large and sparse
systems, even if a thorough mathematical analysis of each step would need a
thorough study of quantum algorithms and linear algebra.

2.6.2 Variational Quantum Circuit
Parameterized quantum circuits, or variational quantum circuits, or VQCs, are
at the forefront of quantum computing research at the moment, particularly in
the field of quantum machine learning (QML). These circuits belong to a class of
quantum algorithms that use the adaptability of quantum systems to optimise a
given objective function in order to solve issues that are difficult for conventional
computers to solve. The use of VQCs in near-term quantum devices—also known
as Noisy Intermediate-Scale Quantum (NISQ) technology—makes them especially
noteworthy.

A Variational Quantum Circuit is a hybrid quantum-classical algorithm frame-
work that uses a quantum circuit with tunable parameters, optimized through a
classical feedback loop [14]. The fundamental feature of a VQC is its capacity to
modify quantum gate settings in order to minimise (or maximise) a given objective
function. For this reason, it is an ideal tool for machine learning applications,
quantum chemistry simulations, and optimisation challenges.

A new era in the practical applications of quantum computing is being heralded
by VQCs, which provide a flexible architecture that has demonstrated tremendous
promise in a range of computational fields. Because of their special combination of
quantum and conventional processing techniques, they are highly adaptive and can
solve issues that classical algorithms cannot now solve. Quantum optimisation is
one of the key areas where VQCs have had a significant influence as they provide
innovative methods for more quickly identifying the best solutions for particular
problem classes. This capacity is especially important for operations research,
logistics, and complex systems analysis, where optimisation is a key component.
Furthermore, the creation of VQCs is extremely beneficial to the field of quantum
machine learning as it lays the groundwork for improving traditional machine learn-
ing models as well as creating brand-new quantum-native models. By taking use of
the inherent parallelism and entanglement of quantum mechanics, VQCs provide
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routes to possibly better performance in tasks like classification, grouping, and
regression. This benefit might result in quicker training durations or more accurate
models, both of which are essential for data-intensive applications including natural
language processing, healthcare, and finance.
Apart from these domains, another domain that is very amenable to modification
by VQCs is quantum chemistry. These circuits’ capacity to mimic chemical and
molecular processes presents previously unheard-of possibilities for materials re-
search and medicine development. VQCs have the potential of providing more
accurate simulations of complicated quantum events within molecules, something
that traditional computer approaches frequently struggle to do. By offering previ-
ously unreachable insights into molecular interactions and reactions at the quantum
level, this capacity might expedite the creation of novel medications and materials.

Figure 2.12: Applications of variational quantum algorithms - source: [14]

The Variational Principle in quantum mechanics serves as the basis for quantum
variational algorithms. These algorithms compute approximations of solutions to
a given issue, are independent of the problem description, and comprise modular
circuit components. The flexibility of Variational quantum algorithms (VQAs)
results in a range of algorithmic structures with differing degrees of complexity;
yet, all variational algorithms share a fundamental foundation (Fig.2.13):

• Problem initialization: The quantum computer is started in the default
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Figure 2.13: Core framework by VQAs - source: [14]

state |00..0⟩. It is then changed into the reference state |R⟩ by use of a
non-parameterized unitary reference operator Ur.

• Circuit Ansatz: (the circuit’s design), which might be user-dependent or
fixed for an algorithm. assists us in reaching the intended state |Y (x)⟩ from
the default state |00..0⟩. A variational operator of the type Uv(x), which is a
group of explorable parameterized states, aids in the transformation. Ansatz
operators can be seen as a group of:

UA(x) = UV (x)UR (2.24)

• Cost function: To systematise the specific aim that we ultimately want to
maximise or minimise, an objective function unique to the situation is needed.
We represent it as a linear combination of Pauli operators operating on a
quantum system, or C(t).

• Training process: This subroutine effectively computes a function from the
quantum circuit’s output measurements and iteratively adjusts the circuit
parameters until it finds the best answer. In the event that a less-than-
ideal solution is already identified, the data may be utilised by starting the
optimisation process from this point on.

Within the limitations of existing technology, Variational Quantum Circuits
provide a potential way to harness the power of quantum computing. Even
before completely fault-tolerant quantum computers are accessible, VQCs provide
a method to investigate the advantages of quantum computing in a variety of
applications, from machine learning to quantum chemistry, by fusing the best
aspects of quantum and conventional computing. They are an important topic
of study and experimentation in the effort to realise useful quantum computing
applications because of their versatility and effectiveness in using NISQ devices.
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Solution and Methodology

This chapter outlines the technique and suggested solution for the calibration of
optical fine-dust sensors, which addresses the issues that have been found. The
technique offers a new solution by utilising state-of-the-art technology and processes,
all based on a thorough examination of the issue space. We start by describing the
theoretical foundations of our methodology, including the fundamental ideas and
structures that guide our resolution. Subsequently, we provide our suggested system
design, including its constituent parts, their interplay, and their combined roles
in accomplishing the intended results. Special attention is given to the innovative
techniques and tools employed, as well as the rationale behind their selection.

3.1 Proposed solution
The main objective of this thesis is to study how Deep Learning and Quantum
Machine Learning (QML)-based approaches can impact the calibration of sensors
for fine dust detection.
Enhancing the precision and dependability of particle matter (PM) readings in
urban air quality monitoring requires better calibration of the sensors. Although
inexpensive and small enough for extensive monitoring networks, low-cost light-
scattering PM sensors have drawbacks in terms of precision and accuracy because of
things like miniaturisation, environmental variables (such as relative humidity), and
the intrinsic unpredictability in particle composition. By modifying sensor output
to match reference measurements, calibration helps to mitigate these problems and
enhances data quality by lowering errors. Producing accurate data on air quality
is essential for environmental policy-making, public health campaigns, and the
creation of more advanced, self-governing monitoring systems. By calibrating the
data, one may be sure that it is reliable and significant information for evaluating
air quality and making judgements.
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As already mentioned, this project is a follow-up to a series of projects conducted
by the Department of Control and Computer Engineering at the Polytechnic
University of Turin that began in 2015.
The first study [1] recounts the design, development and installation phase of
low-cost area quality monitoring boards compared to those provided by ARPA.
The architecture designed for the implementation of these stations is expressed in
the figure 3.1a.

(a) Architecture of the proposed system from
[1].

(b) Air monitoring station hardware from
[15].

Figure 3.1: Air monitoring station architecture and hardware, deployed over
ARPA reference station.

The primary computer in these stations is a Raspberry Pi Zero Wireless, which
runs the ARM-based Arch Linux operating system. Data is gathered by the system
from six distinct sensors. Using light scattering, four Honeywell HPMA115S0-XXX
sensors determine the levels of PM2.5 and PM10 particles. In this work, we only
take into account PM2.5 because the sensor calculates PM10 from PM2.5 rather
than measuring it directly.
The BME280 sensor records air pressure, while the DHT22 sensor detects tempera-
ture and relative humidity (Fig.3.1b).
Every two seconds, temperature and relative humidity are measured at the air
monitoring stations, and every five seconds, atmospheric pressure is measured.
PM2.5 is measured at these intervals.
We set up fourteen monitoring stations on the roof of the Rubino ARPA station in
order to carry out the investigation. They were placed on the property 1.5 ∼ 2m
from the reference grade devices’ air inlets.

In subsequent studies by the same laboratory, the focus has been on developing
a new framework that can make these stations more reliable and automatic (i.e.,
without manual analysis done by an operator).
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Starting with the raw data, collected from all 6 sensors installed at each station,
we address a pipeline that has been shown to statistically improve the accuracy
with which the sensors do their work and also their resistance to failure.
Such a pipeline is depicted in Figure 3.2.

Figure 3.2: Actual framework overview.

Failure detection stage: it focuses on examining raw sensor data to find
instances of sensor failure, paying special attention to the difficulty provided by
embedded photosensor defects. These mistakes are troublesome because they
result in continuous data production without any signs of failure, which makes
it challenging to identify defects, particularly when the errors exhibit random or
non-deterministic patterns.
Data Filtering stage: it is responsible for locating and removing point abnor-
malities that compromise particulate matter (PM) measurement accuracy. These
abnormalities are frequently caused by noise or outside influences, resulting in
abrupt, high-frequency shifts that raise errors and produce outliers. with order to
improve data quality with respect to ground truth values, a variety of filters were
tested in an effort to lessen noise and outliers.
This procedure improves the quality of the data for subsequent analysis and cali-
bration processes by precisely eliminating outliers while maintaining the integrity
of the data set.
Calibration Model stage: it focuses on improving sensor accuracy through a
"push-button" calibration phase that doesn’t need human participation. This is
especially crucial for large-scale installations, because the volume of data generated
makes human data analysis impossible. By taking this step, low-cost light-scattering
PM sensors’ total data quality is greatly improved, guaranteeing accurate and
dependable data for environmental monitoring and analysis.

The purpose of this thesis focuses on the design and implementation of future
work left undone in the "Calibration" phase of the framework in Figure 3.2.
More in detail, the use of Deep Learning and quantum approaches to Machine
Learning in place of the basic methods used in the work done so far is studied. The
comparison of the results obtained is the real value brought by this thesis.

Thus, calibration serves to increase the precision and accuracy with which these
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(low-cost) sensors can make measurements. To evaluate the goodness of sensor
calibration, the measured value from a reference station belonging to ARPA was
taken in order to understand how "distant" the sensors’ value is from that station.
The aim, therefore, is to get as close as possible to the same level of accuracy as
the sensors at ARPA stations but with low-cost sensors.

The proposed solution involves:

• Dataset exploration: Study the available dataset and extract some statistical
highlights.

• Dataset building: Build a dataset suitable for the type of experiments that
will be performed in order to produce results comparable with the current
models used for calibration.

• Model selection and hyperparameters tuning: Build the artificial models
and quantum circuits to perform the calibration; hyperparameters tuning will
be performed to explore the space of possible configurations of each model
and find out which are the best.

• Cross-validation: Perform cross-validation with the configured models to
see if overfitting occurs on the dataset.

• Get the results: Produce a table with the final results obtained from each
model in its best configuration (using different metrics).

The entire project was carried out by relying on a server owned by the Polytechnic
University of Turin. The server has an Linux (Ubuntu 20.04.2 LTS) operating
system with 245 gigabytes of RAM (Random Access Memory), an Intel Xeon
Processor (Skylake, IBRS) with an x86 architecture and 28 cores available.

3.2 Data analysis and preparation
There are two main types of datasets involved in this project: the one containing
data from our installed boards and the one containing data measured by ARPA.
Both datasets contain the star feature of our work, which is the level of particulate
matter in the air (PM2.5 and PM10). The other data collected from both our and
ARPA’s sensors are relative humidity level, temperature, and atmospheric pressure.

Some boards installed in Rubino (TO) did not always stay on: this was because
several tests were in progress or because some sensors had broken. This generates
a nonlinearity of data acquisition by the same sensors along time: we will see later
how to make up for this lack of data.
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In addition, it is important to note that not all of the installed boards were used
for the purpose of this thesis. Some boards date back to the experiments conducted
in paper [1] of which it was realized that one of the reasons why some poor quality
output was being produced was due to the hardware (i.e., the type of sensors used).
Therefore, in 2022, another data collection session was conducted (again at the
same geographic location) but this time with updated boards: the hardware inside
consists of the sensors discussed in section 3.1 (using light-scattering sensors for
dust detection).

For this reason, all the data from the boards installed during the period from
November 3, 2022 to June 6, 2023 was used as dataset in this thesis. The boards
considered are those with the following identifiers (for internal use by the Depart-
ment): 20, 21, 22, 25, 29 and 31.
In the following sections, a univariate and multivariate analysis of the data from
our sensors was done in order to better understand their nature, correlations, and
to identify what will be the best dataset to provide to the predictive models that
will be explained later.

3.2.1 Univariate analysis
The purpose of this type of analysis is to understand the statistical nature of the
features measured by our sensors. Distribution, outliers, missing or duplicate values
are all that we will bring out of this analysis.
The board with identifier 20 was used to conduct the analysis. The reason for
this choice is because this board remained operational throughout the time of the
experiment (November 2022 to June 2023).
As we already know, all boards have six sensors inside: four sensors for fine dust
detection (Honeywel), one sensor for temperature and humidity, and one last sensor
for atmospheric pressure. Every 2 to 4 seconds, the sensors take the measurement
and save it to the dataset, so the number of records we are dealing with travels in
the millions (about 9.7 million of data collected from board 20).
We therefore show a univariate analysis by considering one feature at a time.

Particle matter feature:
As can be seen from Figure 3.3, the distribution of particulate matter observations

collected by the sensor follows a Gauss bell, that is, a distribution according to
the random variable "Normal". This type of distribution is optimal because it has
been shown that leading machine learning algorithms learn better if a feature is
distributed in the dataset in this way, i.e., they are able to produce higher quality
predictions due to the naturalness of the reality represented in the observed data.
The box plot (Fig.3.3), on the other hand, is useful for understanding whether
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Figure 3.3: The histogram (on top) and the box-plot (on bottom) of the PM2.5
sensor.

there are and where the outliers of a feature are. In this case, there are outliers on
the right side of the blue box (where most of the data points are concentrated):
this means that some points in the dataset have a value greater than the maximum
statistically relevant value in this distribution.
Confirming this, also in the histogram we find an "empty" value space on the right
of the Gauss bell.

Figure 3.4: The histogram (on top) and the box-plot (on bottom) of the logarithm
function of PM2.5 sensor.

Although not entirely necessary, the logarithm function was applied to PM2.5
features, and the results are shown in the Figure 3.4. Such a transformation, in
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the world of statistical analysis, serves mainly to reduce the range of values the
variable can take, reduce the number of outliers and allow the variable to distribute
itself according to a Normal distribution. We say that this transformation was not
necessary because, looking at the original feature in Figure X, one can see by eye
how it already distributes according to a Normal distribution and the outliers do
not seem to be too many.
We can see that the range of feature values varies between 0 and 4 (in the logarith-
mic case), whereas previously it varied between 0 and about 70. The average has
moved around the numerical value 3, and the Gauss bell is even more visible.
Some outliers have accumulated below the minimum statistical threshold of the new
distribution with the logarithm: however, since the range of values is so small, these
outliers are less significant than those in the original distribution of the variable.

Let us now look at the scatter plot showing the distribution of PM2.5 points
along the time axis (Fig.3.5). On the right side you can find the feature’s data
without any kind of aggregation (i.e., near every second), while on the left side an
aggregation by minutes was performed.

Figure 3.5: The scatter-plot of the PM2.5 feature along the time and divided by
different types of aggregation.

The concentration of blue color at certain points on the graph shows the density
of the feature: the more colorful the area, the denser it is.
It is possible to see that the detailed distribution per second is more faithful to
reality but consequently shows more outliers and there are many areas of dense
(and therefore insignificant) points. Aggregating the dataset points to the minute,
on the other hand, results in a point cloud that does not reflect the shape of the
original dataset (due to the loss of information caused by aggregation) but on the
other hand, the aggregated data are more concentrated in specific areas and some
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outliers are gone.
The surge seen in both spike clouds indicates New Year’s Eve: during this night in
Turin it is customary to make use of fireworks and firecrackers, which release an
incredible amount of particulate matter into the air.

Temperature feature:

Figure 3.6: The histogram (on top) and the box-plot (on bottom) of the temper-
ature sensor.

Figure 3.6 shows the distribution of the variable representing the temperature
(in degrees celsius) measured by the appropriate sensor in board 20.
The histogram again shows a distribution similar to the Normal distribution. The
only outliers encountered are above 30°C and represent the first days of June 2023.
The seasonal nature of atmospheric temperatures explains the presence of some
outliers in any dataset that collects this information. In fact, depending on the
length of the observation period and where on Earth we are, there may be more
observations with high degrees Celsius than with low degrees.
Recall that, in the case of this thesis, the data collection period is from November
2022 to June 2023. This implies a presence of cold rather than warm temperatures
because the fall, winter, and spring months are present in that period.

The distribution along the time axis (Fig.3.7) shows alternating high and low
values: this behavior can be explained by the alternation of night and day when
temperatures are colder or warmer, respectively.
In aggregating the data by minutes, it is easier to see the temperature trend during
the months of observation: from November 2022 to January 2023, there is a drop
in average temperature, which then tends to rise as the warmer months of the year
2023 arrive.
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Figure 3.7: The scatter-plot of the temperature feature along the time and divided
by different types of aggregation.

Humidity feature:

Figure 3.8: The histogram (on top) and the box-plot (on bottom) of the humidity
sensor.

The moisture values collected by the sensor in board 20 (expressed in percentage
of humidity in the air) do not follow a Normal distribution and have a non-uniform
frequency. Outliers are present on the left side of the box-plot, that is, below the
statistically relevant minimum threshold.
By applying a logarithmic transformation of the values, we are able to distribute
the values slightly better but generate many outliers.
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Figure 3.9: The scatter-plot of the humidity feature along the time and divided
by different types of aggregation.

As evidence for the presence of outliers and a distribution of values with non-
uniform frequencies, it can be seen that the scatter plot in Figure 3.9 shows a
scattered cloud of points (without following a specific pattern) and some points are
independent of the main mass of that cloud.
To use a feature such as this, it is highly recommended that data preprocessing
techniques be used in order to improve the quality of the predictions produced by
any statistical model (which will not be done and will be explained in later sections).

Pressure feature:

Figure 3.10: The histogram (on top) and the box-plot (on bottom) of the pressure
sensor.
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Our sensor pressure is measured on the order of Hectopascal, a unit of pressure
equal to a millibar (1hPa = 1mb).
The Figure 3.10 shows a distribution similar to the Normal distribution, with
several outliers outside the box-plot at both extremes. The average value recorded
throughout the observation period is 990hPa.
The recording of outliers with values that are too high can only be explained by a
failure on the part of the sensor to perform the measurement. Such measurement
failures can also be observed in the scatter plot at Figure 3.11.

Figure 3.11: The scatter-plot of the pressure feature along the time and divided
by different types of aggregation.

It is important to note how the aggregation of these values on the order of
minutes (Fig.3.11) brings with it various benefits such as: the reduction of outliers
and therefore the concentration of the data in a shorter range and the greater
acquisition of importance and expressiveness that the data hire.

3.2.2 Multivariate analysis
Unlike univariate analysis, the one we propose in this section involves analyzing the
behavior of multiple variables simultaneously. The study of natural correlations
between variables is what is posed to address this type of analysis.
The variables in question are the same four seen in section 3.2.1: air particulate
matter, temperature, humidity and atmospheric pressure.

As a matter of simplicity in handling a less heavy dataset (with reduced obser-
vations) and greater expressiveness and significance of the data, it was decided to
approach this analysis by aggregating all variables with granularity to the minute
instead of every second.
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The data observation period is from November 2022 to early April 2023. The choice
not to use the entire time range (November 2022-June 2023) is due to the fact
that the sensors in board 20 correctly recorded measurements until early April 2024.

As a first analysis, we show the correlation among the four features by Pearson’s
correlation coefficient compared with Spearman’s correlation coefficient [16]. Both
of them are indicators of the direction and intensity of the link between two
variables, but their methods of calculation and what they measure are different:

• Pearson’s Correlation Coefficient (r):

– Measures the linear relationship between two continuous variables.
– Assumes a linear connection and a normally distributed set of data.
– It is sensitive to outliers.
– Computed by dividing the variables’ covariance by the sum of their

standard deviations.

• Spearman’s Correlation Coefficient (ρ):

– Measures the monotonic relationship between two variables, whether linear
or not.

– Does not need a normal distribution of the data; it may be used to
non-linear relationships or ordinal variables.

– Computed using the data’s rankings as opposed to the data’s raw form.

The only thing these coefficients have in common is the range of values they can
take, in fact the value varies between -1 and 1, where 1 indicates a perfect posi-
tive linear relationship in Pearson’s coefficient (or a perfect monotonic increasing
relationship in Spearman’s coefficient); the -1 value indicates a perfect negative
linear/monotonic relationship, and 0 indicates no relationship.
Below are the two correlation matrices calculated with both coefficients mentioned
(Fig.3.12). As is easily noticed, on the main diagonal of this matrix is the constant
value 1: the values of a feature with itself are always highly correlated.
We also note how the correlation coefficient calculated with Pearson’s formula
produces results of greater significance for the purposes of analysis (i.e., negatively
or positively distant from zero). For this reason, we will only consider Pearson’s
correlation.
Certainly, the first correlation that stands out is the one present at +59% (positive)
between humidity rh and temperature (temp). The relationship between these two
dimensions is explained by their natural behavior: when atmospheric temperature
rises, moisture is likely to form in the air, especially in cities like Turin.
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Figure 3.12: The correlation analysis: on the left the Pearson’s correlation, on
the right the Spearman’s one.

If we look at the horizontal row of the PM2.5 variable, we will observe the
correlation it has with the other variables in the dataset (Fig.3.13). Aside from

Figure 3.13: The Pearson’s correlation analysis focused on the PM2.5 feature
against all the other features.

the timestamp (i.e., the day and month we are in), humidity rh proves to be the
variable most correlated (positively, 33%) with particulate matter in the air.
Right after we find temperature, with a negative correlation of -21%: when the
temperature rises, particulate matter values tend to decrease. This phenomenon
is scientifically explainable and often happens in large crowded cities, including
Turin. During arid summer days, when the temperature reaches high peaks, the
fine particles in the air do not have time to condense at a specific point in space.
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To conclude the correlation study with the main variable of this thesis, air par-
ticulate matter correlates +16% with atmospheric pressure press and -0.033%
with timestamp. The dimension representing the timestamp may be negligible
at this point in the study since we are studying the correlations present between
measurements taken directly from the sensors on the boards.

Given the evidence of some interesting correlations (some due to natural phe-
nomena), we draw the scatter plot showing two variables in comparison.
The point cloud that forms represents the correlation between the 2 variables: if
this is scattered it means that there is a low correlation (the correlation coefficient
is close to zero), otherwise there is a visible correlation that can be positive (follows
the direction of the diagonal) or negative (follows the direction of the anti-diagonal).
In the Figure 3.14 we show the correlation between the most correlated variables.

Figure 3.14: The scatter-plot between two variables with data aggregated by
minutes

All variables show in Figure 3.14 are correlated with each other with a high
Pearson’s coefficient value compared to the matrix in Figure 3.12 (we are talking
about ±30% of correlation). It can be seen in the upper right graph that there is a
negative correlation between humidity and temperature; the correlation between
particulate matter and pressure (lower left) or temperature (upper left) show a
slight direction on the diagonal and anti-diagonal respectively.
Finally, atmospheric temperature is also correlated with the date in the most
natural way there can be, which is through seasonality.
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Interesting is to observe what happens if we aggregate the data at the hourly
level. In this way we are definitely losing information, but we are able to better
highlight the correlation between the same variables shown in Figure 3.14 but
aggregated to the minute.

Figure 3.15: The scatter-plot between two variables with data aggregated by
hours.

The low expressiveness of the data in Figure 3.15 allows us to image the diagonal
on which the point cloud represented between the particulate and pressure variables
is distributed; or again, the anti-diagonal on which particulate and temperature
coexist together.

3.2.3 Comparison with ARPA dataset
The ARPA dataset is the one used as a reference to perform the calibration of our
sensors. In this section we would like to find out how the sensors calibrated up to
before the study conducted in this thesis perform compared to the data measured
by ARPA.
We use the one with identifier 20 and 21 as the reference board: it is preferred to
add the sensors from different boards to compare the results against the reference
station.
The only preprocessing steps we perform are inherent in removing duplicates within
the measurements committed by our sensors and grouping them into hours since
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the data from ARPA are hourly.

The ARPA data used for this analysis were downloaded from their official web
portal and consisted of: temperature data from the Royal Gardens station in Turin
in 2022 and 2023, air particulate data for all of 2022 and 2023 from the reference
station installed in Turin (in Via Rubino).
We show the trend of particulate air levels measured by ARPA and the sensors
installed in board 20 and 21, during a specific observation period.

Figure 3.16: The PM2.5 values collected by ARPA and one sensor in board 20
(on the top) and board 21 (on the bottom).

The measurements produced by the sensors in the respective boards are similar
to those measured by the ARPA station. Their correlation (Pearson) is around
79% for board 20 and 84% for board 21.
One of the reasons why this high level of correlation might be even higher is
certainly the lack of some sensor values in board 20 during the period in question.
Indeed, some "holes" can be seen in the timeseries above (Fig.3.16). In the case
of the sensor in board 21, there are some missing values at the beginning of the
observation period.
These missing data from our boards are due to a momentary shutdown of these
boards for testing issues or component changes. Nevertheless, the calibration work
done so far [1] shows promise given the high correlation between the measurements.

Temperature, of which no calibration has ever been done, also shows a 92 percent
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Pearson correlation with that measured by ARPA in the same observation period
(Fig.3.17).

Figure 3.17: The temperature values collected by ARPA and the sensor in board
20.

Having thus looked at the types of graphs created and analyzed in this phase of
the project, the highlights that emerged from doing this work on all the sensors
on boards 20, 21, 22, 25, 29 and 31 are listed. Recall that there are four fine dust
detection sensors for each board.

• Board 20:

– The dataset is incomplete since data points are only gathered through the
end of March; the dataset expires at the beginning of April.

– The sensor with ID 258 performed terribly; it appears that there was a
hardware malfunction (i.e., incorrect power levels).

– The trend compared to ARPA data is quite similar (mean of 74% Pearson
correlation); the sensor 258 is not considered in this comparison (indeed
it has a -0.09% of correlation); the mid-high correlation level can be
explained by the scarcity of the data points in this board.

• Board 21:

– A complete dataset (until the beginning of June) is available on this board.
– The sensor with ID 267 contains an anomaly at the end of the period: at

the mid of May it seems to be switched off, indeed the values collected
by this sensor are always equal to 0 from 14/05/2023 to 25/05/2023.
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Furthermore, it experienced completely incorrect PM25 levels around the
end of May.

– The trend compared to ARPA data is quite similar (mean of 80% Pearson
correlation) except for the sensor 267 in which it is 62%.

• Board 22:

– The board appears to have been powered off for the bulk of the experiment,
hence the dataset is incomplete.

– It’s not possible to use this board for further analysis.

• Board 25:

– The board has a complete dataset (until the begging of June).

– Throughout the trial, no abnormalities are detected by any of the sensors
when collecting data.

– The trend compared to ARPA data is very similar (mean of 82% Pearson
correlation).

• Board 29:

– It has a complete dataset (until the begging of June).

– During the mid of November 2022, the entire board seems to have been
switched off (there are no data points in that period).

– In the beginning of May, Sensor 367 encountered completely incorrect
readings (an excessively high data point).

– The trend compared to ARPA data is very similar (mean of 81% Pearson
correlation).

• Board 31:

– It has a complete dataset (until the begging of June).

– The entire board appeared to have been turned off in the middle of
November 2022 (much as the board with identification number 29); same
phenomenon also happened at the start of January 2023.

– The trend compared to ARPA data is very similar (mean of 81% Pearson
correlation).
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3.2.4 Building the final dataset
After the previous analyses, we came to be able to draw conclusions and construct
what will be the final dataset to be used in the remaining work.
Given the goodness of the distributions and data collected from the sensors in
the time range from November 2022 to June, we chose not to totally disrupt the
dataset by applying data preprocessing and features engineering techniques; this
also leads us to observe, in the next chapter, the results obtained from complex
artificial intelligence models such as Feed-Forward Neural Network, LSTM and
QML models.
This choice may lead to a loss of accuracy in the final calibration which is justified
by giving emphasis to the real essence of this thesis that is the comparative study
between the current ML models used and the more powerful and complex ones we
will present later.

We therefore show the only data preprocessing steps that were applied to the
dataset:

1. Removal of duplicate values: some sensors within the boards have duplicate
values due to delays in transmitting them to the station’s own on-board
computer. Considering that the sensors measure and transmit data almost
every second, some duplicates are permissible and therefore we remove them,
also going to streamline the dataset.

2. Filter data for a specific time range: we want to work on the exact
period of time that the sensors were on (almost all of them), so we cut out all
observations that were measured outside this time frame.

3. Grouping by minutes/hours: since the dataset of measurements collected
and distributed by ARPA has hourly granularity, we prefer to increase granu-
larity to our sensor data as well. We therefore change from a measurement
every second to a measurement every minute/hour, applying an arithmetic
mean to reduce the dataset.

4. Removal of null values: since, for the entire time range used, some boards
were not always on, aggregating the data by minutes or hours may have
empty (or null) values. We therefore decide to remove them since they do not
represent additional information for the purpose of our analysis.

These four preliminary operations listed above were reproduced serially for each
sensor on each of the six boards used.

We therefore end up with several pre-processed datasets, one for each sensor on
each board. What we are looking for, however, is a single dataset actualized to
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best accomplish the purpose of this thesis.
To do this therefore, we have chosen to take the median of all the sensors from
all the boards (divided by sensor type) and create a single dataset with minute
granularity. The same thing was done to produce a single dataset but with hourly
granularity. This creates a single time series that has no null values because, thanks
to the median, the missed measurements of some of the off sensors were covered by
those made by the active sensors.
With the models selected and discussed in Section 3.3, this thesis focuses on opti-
mizing them within this single dataset with the purpose of calibrating the sensors.
The calibration will be generic i.e., it is based on the median of all sensor measure-
ments. In a future study, the quality of the calibration can be investigated through
the same models discussed in this thesis but applied to each individual sensor in
order to have an ad-hoc calibration on it.

For illustration purposes, the snipped of Python code used to create the final
dataset is shown.

1 import pandas as pd
2 import numpy as np

There are two main libraries for performing this task: numpy (for applying the
median on matrices) and pandas (for reading and manipulating data from external
sources such as csv files).

The prepare_generic_dataframe function is used to apply the preprocessing
steps to each sensor on each board (regardless of sensor type).

1 de f prepare_generic_dataframe ( f i le_name : s t r ) −> pd . DataFrame :
2 df = pd . read_csv ( f i le_name )
3 df . timestamp = pd . to_datetime ( df . timestamp )
4 df . drop_dupl icates ( i n p l a c e=True )
5 df . sor t_va lues ( by=’ timestamp ’ , i n p l a c e=True )
6 df = df . l o c [ ( df [ ’ timestamp ’ ] >= START_DATE_BOARD) & ( df [ ’

timestamp ’ ] <= END_DATE_BOARD) ]
7 df = df . groupby (pd . Grouper ( key=’ timestamp ’ , f r e q=’ min ’ ) ) . mean

( ) . reset_index ( )
8 df . dropna ( i n p l a c e=True )
9 re turn df

The sensor’s observations are aggregated by minutes and all the null values are
removed.
The following code’s snippet shows the uploading and preprocessing phase of all
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the sensors, divided by typology (i.e.: particulate matter, temperature, humidity
and pressure).

1 dataframes_pm25 = [ ]
2 dataframes_temp = [ ]
3 dataframes_pres = [ ]
4 dataframes_rh = [ ]
5 f o r folder_name in tqdm( os . l i s t d i r (PM25_DIRECTORY) , desc=’ Analyzing

f o l d e r s ’ ) :
6 f o l d e r = os . path . j o i n (PM25_DIRECTORY, folder_name )
7 i f os . path . i s d i r ( f o l d e r ) and l en ( f o l d e r . s p l i t ( ’ / ’ ) ) > 3 and

f o l d e r . s p l i t ( ’ / ’ ) [ 3 ] in PM2_MAP:
8 f i l e s = PM2_MAP[ f o l d e r . s p l i t ( ’ / ’ ) [ 3 ] ]
9 f o r f i le_name in f i l e s :

10 f i l e = os . path . j o i n ( f o l d e r , f i le_name )
11 i f os . path . i s f i l e ( f i l e ) and f i l e . endswith ( " . csv " ) :
12 df = prepare_generic_dataframe ( f i l e )
13 i f folder_name . endswith ( "_temp" ) :
14 dataframes_temp . append ( df )
15 e l i f folder_name . endswith ( " _pres " ) :
16 dataframes_pres . append ( df )
17 e l i f folder_name . endswith ( "_rh " ) :
18 dataframes_rh . append ( df )
19 e l s e :
20 dataframes_pm25 . append ( df )

After that, we are ready to build the final dataset by merging all the cleaned
sensor’s data through median. The structure that this dataset is to have is declared,
and the variables that will serve as unique datasets for each sensor type are
instantiated.

1 d f _ f i n a l = pd . DataFrame ( columns=[ ’ timestamp ’ , ’pm25 ’ ,
’ temp ’ , ’ pres ’ , ’ rh ’ ] )

2 d f _ f i n a l [ ’ timestamp ’ ] = pd . date_range ( s t a r t=START_DATE_BOARD, end=
END_DATE_BOARD, f r e q=’ min ’ )

3 pm25_series = [ ]
4 temp_series = [ ]
5 p r e s _ s e r i e s = [ ]
6 rh_se r i e s = [ ]

Now we go on to fill these series with the median of all sensors (divided by type).
This is done by running the entire time series minute by minute and collecting data
from each sensor (if any).
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1 f o r p i t in tqdm( d f _ f i n a l [ ’ timestamp ’ ] , desc=’ Bui ld ing unique datase t ’
) :

2 # PM2. 5
3 pm25_values = [ ]
4 f o r df in dataframes_pm25 :
5 value = df [ df . timestamp == p i t ] [ ’ data ’ ] . va lue s
6 i f l en ( va lue ) > 0 :
7 pm25_values . append ( value [ 0 ] )
8 pm25_series . append (np . median ( pm25_values ) i f l en ( pm25_values ) > 0

e l s e None )
9 # Temperature

10 temp_values = [ ]
11 f o r df in dataframes_temp :
12 value = df [ df . timestamp == p i t ] [ ’ data ’ ] . va lue s
13 i f l en ( va lue ) > 0 :
14 temp_values . append ( value [ 0 ] )
15 temp_series . append (np . median ( temp_values ) i f l en ( temp_values ) > 0

e l s e None )
16 # Pressure
17 pres_values = [ ]
18 f o r df in dataframes_pres :
19 value = df [ df . timestamp == p i t ] [ ’ data ’ ] . va lue s
20 i f l en ( va lue ) > 0 :
21 pres_values . append ( value [ 0 ] )
22 p r e s _ s e r i e s . append (np . median ( pres_values ) i f l en ( pres_values ) > 0

e l s e None )
23 # Humidity
24 rh_values = [ ]
25 f o r df in dataframes_rh :
26 value = df [ df . timestamp == p i t ] [ ’ data ’ ] . va lue s
27 i f l en ( va lue ) > 0 :
28 rh_values . append ( value [ 0 ] )
29 rh_se r i e s . append (np . median ( rh_values ) i f l en ( rh_values ) > 0 e l s e

None )

The time complexity of this algorithm is O(n · d) where n are all measurements
present in the specified date range and d are the number of all sensors used to
conduct this study (about 36 sensors involved). It is aware to admit that this
complexity is high and that it is possible to reduce it, but for the purpose of this
thesis it is not necessary.

3.3 The selected models
After explaining in detail the purpose of this project and the steps in constructing
the dataset that will be used, this section explains the selected artificial intelligence
models. All the reasoning behind this choice is well explained in the following
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paragraphs in order to provide a complete picture of the work carried out.

The purpose of this experimental work is to use complex models for fine dust
sensor calibration. The term "complex" is meant in relation to the work done in
previous studies completed by the same research laboratory ([1] [17] [15]). In fact,
in these previous works, the statistical models used are a Random Regressor Forest
and a Multivariate Linear Regressor. Both models that, given their architecture,
we can fall within the set of Machine Learning models.
Moreover, in addition to the use of more complex models, we want to make a
comparison with the equivalent of the quantum world to observe how a decisive
paradigm shift (related to quantum computing) can impact in a real-word problem.

Given the above considerations, the models that were chosen for this thesis are
as follows:

1. Feed-Forward Neural Network (FFNN): We discussed about this kind of
model in depth in sec.2.2.1.

2. Long short-term memory (LSTM): We discussed about this kind of model
in depth in sec.2.2.5.

3. Variational Quantum Regressor (VQR): This model is based on the same
principle as the variational quantum circuits discussed in sec.2.6.2 but with
the major difference that the variational params are used to learn a regression
and not a classification.

4. Quantum LSTM (QLSTM): This model is based on the study conducted in
this research [18] and involves creating a variational circuit that simulates the
behavior of an LSTM cell but using qubits.

For each of the models mentioned, it is explained in detail why it was chosen
and how it was designed in order to perform a calibration.

3.3.1 FFNN model
The mathematical operation of this type of model has been extensively explained
in section 2.2.1.
The reason this type of model was chosen is because it represents the classical
concept of an "Artificial Neural Network" found in Deep Learning. The research
lab’s interest in using this type of network was the main reason for this thesis to
study its adoption. In addition to the possibility of being able to choose from
different formulas for calculating the loss function, the type of optimizer to be
applied on the weights of individual neurons at the end of backpropagation, and
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other configuration parameters, the advantage of using this model is the freedom
in the choice of architecture.
It is possible to compose different neural network architectures by changing the
numbers of neurons and hidden layers involved. Figure 3.18 shows the standard

Figure 3.18: The standard architecture of a FFNN.

architecture of an FFNN. The number of input and output neurons are predeter-
mined a priori according to the nature of the problem to be addressed.
Example: in output we will always have only one neuron since our problem involves
predicting the value of particulate matter in the air as close as possible to that of
ARPA, using also the values produced by the other sensors, all at a specific date in
time.
As for the input layer, we will see next the strategies chosen in order to model the
data in the dataset at hand.
In the central part of this architecture reside the hidden layers: they can be from one
to as many as desired, and each of them can hold an arbitrary number of neurons.
There is a need to keep in mind that, depending on the nature of the problem
being addressed, a corpus architecture could lead to well-known problems such as
gradient vanishing or overfitting. The study of the impact caused by architecture
variation on the final calibration will be addressed through hyperparameter tuning,
which will be discussed in Chapter 4.1.

We show the implementation of the Python class representing an FFNN used in
the thesis project.
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1 import torch . nn as nn
2 c l a s s MyNeuralNetwork (nn . Module ) :
3 de f __init__( s e l f , input_s ize : int , output_size : int , h idden_size

: int , hidden_size_2 : i n t = 90 , hidden_size_3 : i n t = 30) :
4 super ( ) . __init__ ( )
5 s e l f . net = nn . Sequent i a l (
6 nn . Linear ( input_size , h idden_size ) ,
7 nn .ReLU( ) ,
8 nn . Linear ( hidden_size , output_size ) ,
9 )

10 i f hidden_size_2 i s not None and hidden_size_3 i s not None :
11 s e l f . net = nn . Sequent i a l (
12 nn . Linear ( input_size , h idden_size ) ,
13 nn .ReLU( ) ,
14 nn . Linear ( hidden_size , hidden_size_2 ) ,
15 nn .ReLU( ) ,
16 nn . Linear ( hidden_size_2 , hidden_size_3 ) ,
17 nn .ReLU( ) ,
18 nn . Linear ( hidden_size_3 , output_size ) ,
19 )
20 e l i f hidden_size_2 i s not None :
21 s e l f . net = nn . Sequent i a l (
22 nn . Linear ( input_size , h idden_size ) ,
23 nn .ReLU( ) ,
24 nn . Linear ( hidden_size , hidden_size_2 ) ,
25 nn .ReLU( ) ,
26 nn . Linear ( hidden_size_2 , output_size ) ,
27 )
28 de f forward ( s e l f , x ) :
29 out = s e l f . net ( x )
30 re turn out

As can be seen from the code snippet above, the neural network requires the size
of the input, output and at least one hidden layer as mandatory parameters. It
remains optional to declare the presence of a second and third hidden layer.
Through this implementation, it is possible to easily manipulate the final architec-
ture that the neural network will have, simply by choosing which parameters in
the class constructor to pass and which not. Forward propagation is implemented
in the forward method of the snippet.
This method is responsible for taking the input tensor and passing it through the
network that is implemented by the torch.nnn.Sequential class. This class takes
care of executing, in a sequential manner, the sequence of operations to which the
input tensor must undergo to get to the output layer.

Within each neuron there is a function that transforms the linear summation
between weights, input and bias: this function is called the "activation" function.
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Neural networks rely heavily on the activation function of individual neurons, which
adds non-linearity to the model. The network needs this non-linearity in order
to learn and simulate intricate correlations and patterns in the data that linear
models are unable to capture.
The chosen activation function is one of the most popular for manipulating nonlinear
problems of all types: the Rectified Linear Unit (ReLU).

f(x) = max(0, x) (3.1)

Positive inputs are sent through directly by the ReLU function, whereas negative
inputs are clipped to zero. This indicates that the output is equal to the input
for any positive input and equal to zero for any negative input. The model gains
non-linearity from this straightforward process without changing the magnitude of
positive input values.
ReLU’s first benefit is its computational efficiency, which comes from its straight-
forward thresholding at zero. Because of its efficiency, it may be computed more
quickly than other activation functions like sigmoid or tanh, particularly when
deep networks are being trained.
The second is that ReLU does not saturate positively, in contrast to sigmoid
or tanh functions. This property mitigates the vanishing gradient issue, which
occurs when gradients are too tiny for the network to process information efficiently.

To conclude the design choices made on this model, it is important to specify
that two types of feed-forward neural networks were created:

• ANN#1: This type of neural network works with the aggregated dataset to
the minute.

• ANN#2: This type of neural network works with the aggregated dataset per
hour. Its structure is identical to that in Figure 2 net of successive hidden
layers that may vary.

ANN#2 network was chosen in order to make a direct comparison with the quantum
equivalent (Variational Quantum Regressor) that we will see in the next sub-sections.

The dataset that presents sensor data aggregated per minute can bring the
benefit of finer granularity and therefore more detailed learning by the ANN#1
network. But how can sensors be calibrated with this dataset if ARPA data is only
available at an hourly granularity? We need a strategy to take advantage of the
aggregated data per minute and compare it with that of ARPA.
Figure 3.19 schematizes the operation of this type of network.

From Figure 3.19 it can immediately be seen that the output layer contains a
single neuron, and therefore the value produced by the network will be a single
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Figure 3.19: The strategy used to use data aggregated per minute to calibrate
sensors based on ARPA hourly data through ANN#1 network.

number. This number represents the value of particulate matter in the air present
at a given moment in time, also taking into account other variables such as tem-
perature, pressure and humidity.
This value will then be compared with the value measured by ARPA, and the whole
backpropagation part is based on the error made by the network in predicting
this value. As we already know, the ARPA dataset contains only measurements
made with an hourly frequency, so the prediction of the ANN#1 network, to be
compared, must also refer in hourly terms.

The chosen strategy, therefore, involves using 60 variable neurons: one for each
minute that makes up 1 hour.
To simplify the explanation, taking only the PM2.5 variable as an example. The
sixty measurements taken in one hour are sent as input to the network, which will
then process them in order to produce a single numerical value. The output of the
network is then compared, through a specific loss function, with the output of the
reference hour measured by ARPA.
The next chapters of this paper will show the calibration result obtained with this
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strategy and diversified into two variants: the first takes as input only the PM2.5
variable (so the architecture has only sixty neurons in the input layer), while the
second uses the other variables in this problem as well.

3.3.2 LSTM model
Again, the technical explanation on how this type of model works is given in Section
2.2.5.
Given the strong presence of the temporal dimension within this specific problem,
we chose to use a model that can be a state-of-the-art in learning along a time axis.
From this point of reflection, it is impossible not to think of a model such as Long
short-term memory (LSTM).
Due to its recurrent nature (it belongs to the category of neural networks referred
to as RNN - "Recurrent neural network"), this model is capable of maintaining rela-
tionships between data and extracting patterns by paying attention to everything
that happened in the "previous steps."
LSTM is thus able to, by taking into account the history of a variable’s trend over
time, predict what value it may take on in the near future.

The first step to be implemented to bring a model like this to calibration concerns
the dataset. To solve a generic calibration problem, our model should not predict
what will happen in the next hour, but what happens in the present hour, in order
to then be able to compare it with a reference measurement (called ground truth).
So the dataset on which this model was trained involves making a merge between
data from the reference station (ARPA) and our board (the median of all sensors
from all boards, as explained in Section 3.2.4). Then, only the dimension repre-
senting the air particulate measured by ARPA was slid forward by 1 hour.
This choice allows LSTM to take into account a certain number of values from
previous hours in order to predict the next one: but, having shifted the ARPA
values forward by 1 hour, the model’s prediction will be compared with the current
reference hour and not the next one.
In summary: you are predicting the present and not the future. This is why we no
longer speak of prediction but of calibration.

Another important aspect when working with this type of model is the order
of the data within the final dataset. To use LSTM, one must present the data in
ascending order according to a time axis-this way the model can continue to learn
by referring to what it has "seen" previously.
This brings with it a limitation, namely that of not being able to shuffle the data
during the training phase, and thus increasing the likelihood of creating a model
that possesses a bias on the historical period on which it was trained. To overcome
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this, one would need to train such a model on a time-series long enough to include
all the types of samples present within our observed problem.

In addition to the number of features that will make up the hidden state of
LSTM, another parameter that can be chosen a priori (called hyperparameter) is
the one identified with the letter T.
The parameter T represents the number of previous time instances to be taken into
account to carry out the prediction in the next time instance. Therefore, if I want
to predict the value of PM2.5 at time t, the network will use as input the values of
PM2.5 ranging from time (t− 1− T ) to (t− 1).
Let’s show an example. Let us consider the value of the variable t equal to
’01-01-2023 12:00:00’ and the parameter T equal to 5 (means I take the previous
5 time units as input). The time range that LSTM will use to make its prediction
is:

from = (t− 1− T ) = ’01-01-2023 06:00:00’ (3.2)

to = (t− 1) = ’01-01-2023 11:00:00’ (3.3)

Now that the reason for choosing LSTM and how it was used within the project
has been explained, let us move on to see its implementation in Python code.

1 import torch . nn as nn
2 c l a s s MyLSTM(nn . Module ) :
3 de f __init__( s e l f , input_dim , hidden_dim , layer_dim , output_dim ) :
4 super (MyLSTM, s e l f ) . __init__ ( )
5 s e l f . _device=torch . dev i c e ( " cuda " i f torch . cuda . i s _ a v a i l a b l e ( )

e l s e " cpu " )
6 s e l f .M = hidden_dim
7 s e l f . L = layer_dim
8 s e l f . rnn = nn .LSTM(
9 input_s ize=input_dim ,

10 hidden_size=hidden_dim ,
11 num_layers=layer_dim ,
12 ba t ch_f i r s t=True )
13 # batch_f i r s t to have ( batch_dim , seq_dim , feature_dim )
14 s e l f . f c = nn . Linear ( hidden_dim , output_dim )
15

16 de f forward ( s e l f , X) :
17 # i n i t i a l hidden s t a t e and c e l l s t a t e
18 h0 = torch . z e r o s ( s e l f . L , X. s i z e (0 ) , s e l f .M) . to ( s e l f . _device )
19 c0 = torch . z e r o s ( s e l f . L , X. s i z e (0 ) , s e l f .M) . to ( s e l f . _device )
20 # compute the forward propagat ion
21 out , (hn , cn ) = s e l f . rnn (X, ( h0 . detach ( ) , c0 . detach ( ) ) )
22 # h(T) at the f i n a l time step
23 out = s e l f . f c ( out [ : , −1, : ] )
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24 re turn out

As input parameters, the class representing the LSTM model receives the size
of the input, the number of features in the hidden state, and the number of lay-
ers. The actual implementation of the LSTM cell operation is provided by the
torch.nn.LSTM class provided by Pytorch.
Pytorch allows the implementation of a multilayer LSTM: in this type of model,
the input x(l)

t of the l-th layer (l ≥ 2) is the hidden state h(l−1)
t of the previous

layer muliplied by dropout δ(l−1)
t where each δ

(l−1)
t is a Bernoulli random variable

which is 0 with probability equals to a specified parameter which is called dropout.
By default, this probability is zero, which means that no dropout is done in any of
the layers that make up the multilayer LSTM.
The num_layers parameter is the one that decides whether to constitute a multi-
layer LSTM or not: by default it is set to one, but in our project we left it fixed at
two. In this way, we are stacking two LSTMs together to form a stacked LSTM,
with the second LSTM taking in outputs of the first LSTM and computing the
final results.

LSTM layers generate outputs with a specific hidden size, determined by the
number of hidden units in the LSTM. However, the desired output size for our task
(e.g., the value of PM2.5) often does not match the LSTM’s hidden size. A fully
connected layer is used to transform the dimensionality of the LSTM output to
match the desired output size.
The fully connected layer, which offers dimensionality matching, learning capability,
feature integration, and customisation flexibility, is an essential part that enables
the LSTM model to interface its intricate, high-dimensional hidden representations
with the particular requirements of different tasks in an efficient manner.

To conclude, forward propagation within the network involves initializing two
tensors that will represent the hidden state and the cell state at time t = 0.
Then these two tensors are passed together with the input into the network and,
at the end of the computation, they will be extracted: the output features from
the last LSTM layer for each t (out variable), the last hidden state and cell state
calculated (hn, cn variables).

3.3.3 VQR model
The variational quantum regression (VQR) model is a VQC-based model with the
purpose of learning to predict a number and not a class of membership (its detailed
explanation can be found in Section 2.6.2).
This model can be compared to a simple neural network, in fact it is also referred to
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as a Quantum Neural Network. This model was chosen to propose the first compar-
ison between the classical and quantum worlds; the model defined as "ANN#1" in
Section 3.3.1 and this model were designed to achieve the same result, the difference
being that one is based on the bits of classical computing while the other harnesses
the power of qubits through special circuits.

We are talking about the first artificial neural network model created simply to
fit the type of dataset used: in "ANN#1" the dataset has an hourly granularity,
and the entire network (or circuit in this case) assumes an architecture suitable for
working with this data.
The picture of the architecture is similar to the one in Figure 3.19: the major
difference is that there are no neurons but embedding and ansatz layers, repeated
in different ways and at will.

Before further detailing the configuration used for this model, it is important to
explain how such quantum circuits were simulated in order to produce the results
of this thesis. Not having a high need for qubits to be used and to stay with a focus
on software rather than hardware, no emulation of that model was done. This
implies that a classical computer (manipulating bits) has been used to simulate
the behavior of a quantum machine, with all the disadvantages that it brings with
it (i.e. the slowness or failure to submit to computational errors that can occur on
an authentic machine).

Taking awareness of this, the model consists of two main parts: the data em-
bedding layer and the quantum circuit layer (called ansatz). The former is used to
transform the data from the dataset into a corresponding quantum state (this is
called data embedding). The second, on the other hand, is the circuit that will
perform operations on the data represented by qubits.
The quantum operations that are performed depend on the type of circuit that
makes up the ansatz. Two main ansatz were used in this work: the Strongly
Entangling Layer and the Basic Entangler Layer.
The Strongly Entangling Layers have the potential to provide better expressivity
and problem-solving skills due to their complicated, parameterized quantum gates
that may produce highly entangled states. Because of this, they are very helpful in
solving challenging quantum puzzles where substantial entanglement is essential.
However, because of their complexity and wider parameter space, multiple layers
may make optimisation more difficult and result in longer training times and a
higher vulnerability to local minima.
Conversely, Basic Entangler Layers provide a more direct method with less compli-
cated entanglement processes. When variational quantum circuits are trained, their
simplicity can lead to simpler optimisation and quicker convergence, increasing
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their applicability and using less processing power. Nevertheless, as they might
not produce highly entangled states as quickly as Strongly Entangling Layers,
their expressivity and capacity to handle more challenging quantum issues may be
limited by their lesser complexity.
For the constructed VQR model, it was chosen to use the Strongly Entangling
Layers as ansatz. As you can see from Fig. 3.20, the repeated units or "layers"

Figure 3.20: The Strongly Entangling Layers with 2 layers, from Pennylane
website.

that are applied to the qubits one after the other form the basis of the Strongly
Entangling Layers ansatz. The purpose of each layer is to encourage significant
entanglement between qubits.
Applying parameterized single-qubit rotation gates (such as RX, RY , and RZ)
to each qubit is the initial step in each layer. Angles that will be optimised to
minimise a selected cost function throughout the variational algorithm’s execution
parameterize these rotations. A sequence of entangling gates (like CNOT or CZ
gates) are applied across the qubits after the single-qubit rotations. Strong en-
tanglement is ensured by the pattern of these entangling processes, which usually
covers all pairs of qubits. While the exact pattern may differ, it often combines
long-range interactions with nearest-neighbor entanglements to create a dense
network of entanglements across the circuit.
To conclude, a traditional optimisation procedure is used to optimise the parame-
ters—that is, the angles in the rotation gates—in order to minimise a cost function.
This function’s purpose is to gauge how well the quantum circuit performs in
resolving the particular issue at hand.

Concerning the emedding layer, one of the most famous was used, namely Angle
Embedding. Angle Embedding is a technique that prepares a quantum state that
reflects the classical data by encoding it into the parameters (angles) of quantum
gates in variational quantum circuits. The fundamental concept is directly mapping
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the angles of rotation gates applied to the qubits in a quantum circuit to the classical
data points. For quantum machine learning and other quantum algorithms, this
method offers a simple and effective way to integrate classical information into a
quantum state.
The rotation performed by this type of embedding works like this: the rotation
angle θ represents the classical information that is to be transformed, while the
rotation is performed by one of the Pauli matrices (X, Y , Z) on one of the three
possible spatial axes. The starting quantum state that is used is |0⟩. In doing so,
the classical information will be transformed into one of three possible rotations
with degree θ, creating a new starting quantum state on which the ansatz will
operate.
For instance, applying a rotation RY (θ) gate to a qubit initially in the state |0⟩
transforms it into a superposition state:

RY (θ) |0⟩ = cos(θ2) |0⟩+ sin(θ2) |1⟩ (3.4)

This transformation encodes the classical information (represented by θ) into the
amplitude and phase of the quantum state, enabling the quantum circuit to process
classical data in a quantum framework.

Two types of circuits representing a VQR model were proposed in this thesis
work:

• Linear: This architecture is as seen in the preceding paragraphs that is, a
single AngleEmbedding layer followed by several Strongly Entangling layers
representing the ansatz.

• Non linear: From [19] it is possible to experiment with different strategies by
which data are encoded within the circuit and how these different embeddings
may impact in the expressive power of the data within the final model. The
nonlinearity is given by alternating different simple embedding gates with the
corresponding ansatz.

From Figures 3.21 and 3.22 each vertical blue block representing an ansatz,
enclosed within it is the Strongly Entangling Layer circuit shown in Figure 3.20.
In the case of the nonlinear circuit, there is only one layer within the ansatz, while
in the case of the linear circuit, the number of layers used becomes a parameter on
which to fine tune to find the one suitable for the problem to be solved.
In Figure 3.22, something similar to the Angle Embedding seen earlier is used as
the data encoding layer. It is referred to as a rotation on the spatial X-axis in
which, however, the angle of rotation is the arcotangent function of the input data,
multiplied by two (RX(θ) with θ = 2 arctan(x), where x is the input data).
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Figure 3.21: The Linear VQR circuit with 4 qubits

Figure 3.22: The Non Linear VQR circuit with 4 qubits, based on [19]

To conclude, in order to use this type of circuit (especially the nonlinear one), it
is necessary to apply preprocessing on the input data. In fact, using the arcotangent
function, it is mandatory to have the data in a range between [−1,+1] otherwise
the function belongs to a nonexistent domain.
Furthermore, we can explain the fact that, using a dataset with only four features
(PM2.5, temperature, humidity and pressure), it was decided to use 4 qubits within
the model to represent the input data; in this way it is possible to make a fair
comparison with the equivalent classical neural network which also uses four input
features.

We show the Python class which, together with the open source Pennylane
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framework, creates the class that represents our linear Variational Quantum Re-
gressor:

1 import torch
2 import pennylane as qml
3 from pennylane import numpy as np
4 from torch import nn
5

6 c l a s s VQRLinearModel (nn . Module ) :
7 de f __init__( s e l f , n_qubit : int , l a y e r s : i n t = 1 ,

dup l i ca te_qub i t s : bool = Fal se ) −> None :
8 super ( ) . __init__ ( )
9 s e l f . n_qubit = n_qubit ∗ 2 i f dup l i ca te_qub i t s e l s e n_qubit

10 # i n i t i a l i z e the ta s ( or weights ) o f NN
11 shape = qml . Strong lyEntang l ingLayers . shape ( n_layers=laye r s ,

n_wires=s e l f . n_qubit )
12 i n i t i a l _ w e i g h t s = np . p i ∗ np . random . random ( shape ,

requ i res_grad=True )
13 s e l f . we ights = nn . Parameter ( torch . from_numpy( i n i t i a l _ w e i g h t s )

, requ i res_grad=True )
14 # i n i t i a l i z e b i a s o f NN
15 s e l f . b i a s = nn . Parameter ( torch . from_numpy(np . z e r o s (1 ) ) ,

requ i res_grad=True )
16 de f encoder ( s e l f , x ) :
17 qml . AngleEmbedding (x , w i r e s=range ( s e l f . n_qubit ) )
18 de f l a y e r ( s e l f , we ights ) :
19 qml . Strong lyEntang l ingLayers ( weights , w i r e s=range ( s e l f .

n_qubit ) )
20 de f c i r c u i t ( s e l f , x ) :
21 s e l f . encoder ( x )
22 qml . Bar r i e r ( w i r e s=range ( s e l f . n_qubit ) , on ly_visua l=True )
23 s e l f . l a y e r ( s e l f . we ights )
24 qml . Bar r i e r ( w i r e s=range ( s e l f . n_qubit ) , on ly_visua l=True )
25 re turn qml . expval ( qml . PauliZ ( wi re s =0) )
26 de f forward ( s e l f , X) :
27 # d e f i n e the c h a r a c t e r i s t i c s o f the dev i c e
28 dev = qml . dev i c e ( " d e f a u l t . qubit " , w i r e s=s e l f . n_qubit )
29 vqc = qml . QNode( s e l f . c i r c u i t , dev , i n t e r f a c e=" torch " )
30 r e s = [ ]
31 f o r x in X:
32 r e s . append ( vqc ( x ) + s e l f . b i a s )
33 r e s = torch . s tack ( r e s )
34 re turn r e s

This class shows the classic methods also seen for previous models: there is a
constructor method that takes care of initializing the model by taking as input the
number of qubits needed and how many layers to use (by default only one); then
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there is a forward method that tells the forward propagation inside the quantum
circuit. Finally we have the encode and circuit methods which respectively tell
how the embedding layer and the ansatz are made.
As previously explained, the quantum architecture used with Pennylane is defined
as default.qubit: this backend represents the use of a classical computer to
simulate the quantum behavior of the circuit.

3.3.4 QLSTM model
This last type of model was implemented with the aim of having a comparison with
the equivalent model in the classical world (i.e. LSTM). Let’s start by stating that,
in order to make the comparison fair, the type of model training and the dataset
used are the same for both models.
In this way we can compare, in the next chapter, the results obtained from both
models and have the opportunity to discuss them.

An inventive method for implementing an LSTM cell (sec. 2.2.5) inside a quan-
tum framework is the Quantum Long Short-Term Memory (QLSTM).
QLSTMs mimic the internal architecture and computational mechanisms of an
LSTM cell by means of quantum circuits, in contrast to conventional LSTMs, which
function within classical computing paradigms. This quantum-based approach is
intended to take advantage of the potential speed and efficiency benefits that come
with quantum computing, especially when working on large-scale data processing
tasks.

A QLSTM cell is made up of a few essential parts that are modified for quantum
computing while still reflecting the architecture of a traditional LSTM cell:

• Quantum Gates: These are used to perform operations analogous to those
in classical LSTM cells, including the handling of input, forget, and output
gates.

• Quantum Circuits: Specifically created to carry out an LSTM cell’s activities
within a quantum computing framework, quantum circuits are used to recreate
the whole LSTM cell.

• Quantum Encoding: A suitable quantum encoding scheme is proposed for
input data, ensuring that the data can be effectively processed within the
quantum circuit.

• Activation Functions: The QLSTM incorporates a quantized version of the
sigmoid and hyperbolic tangent activation functions, which are crucial to the
functioning of standard LSTM cells.
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Figure 3.23: Circuit of a QLSTM cell [18]. The QMUL and QADD transforma-
tions correspond to quantum multiplication and quantum addition, respectively.

The crucial information encoding stage, in which data is converted into qubits
using certain encoding strategies like basis encoding, is where a QLSTM operates.
For the quantum circuit to process data effectively, this preparation is essential.
The QLSTM cell then uses specialised quantum circuits to carry out quantum
arithmetic operations, such as quantum versions of addition and multiplication.
These cleverly constructed procedures are intended to mimic their classical equiva-
lents, yet they may be more efficient due to the special characteristics of quantum
physics. Quantum circuits in the QLSTM perform arithmetic operations as well as
quantized versions of activation functions like the sigmoid and hyperbolic tangent
functions. Deterministic mapping techniques, such as the Product-Of-Sum (POS)
approach, are used to do this. These techniques guarantee an exact input-output
relationship that is essential to the cell’s functioning.

The Quantum Addition (QADD) gate is the bitwise direct addition of one
integer onto another; it is the quantum counterpart of conventional addition. The
matching qubits of the two integers involved are a prerequisite for this operation
to occur. In essence, quantum addition uses the entanglement and superposition
concepts from quantum physics to carry out addition operations in a naturally
parallel fashion, possibly providing considerable processing gains over traditional
addition techniques.
Because managing the multiplication of binary integers in a quantum setting
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is necessary, quantum multiplication is a more sophisticated operation than its
addition equivalent, and this is what the Quantum Multiplication (QMUL) gate
does. To calculate the product of two integers, this gate combines controlled logic
gates with quantum arithmetic processes. The procedure ensures that the right sign
is applied to the outcome by accounting for the possibility of negative integers and
using an ancilla qubit to store the sign of the product. A sequence of Toffoli gates
may be used in the multiplication process to simulate the binary multiplication
process by building up partial products. Furthermore, auxiliary qubits engaged in
the process are disentangled and returned to their starting states via uncomputing
procedures.

(a) Quantum addition between two numbers
a and b. The highest qubit is the least sig-
nificant [18].

(b) The design of a quantum multiplication
circuit [18].

Figure 3.24: The design of QMUL and QADD circuits, needed inside the QLSTM
cell.

The encoding of the data in a starting quantum state is done via a simple Angle
Embedding seen previously in Section 3.3.3.
The quantum layers representing the input, forgot, update and output states,
typical of an LSTM cell, were implemented through an ansatz circuit whose free
parameters are those that the model learns during training. In particular, two
types of ansatz were used for each of these four states mentioned: the Strongly
Entangler Layers and the Basic Entangler Layers (sec. 3.3.3).
The circuit of a Basic Entangler Layers ansatz is done as follows: The layers in this
circuit consisting of one-parameter single-qubit rotations on each qubit, followed
by a closed chain or ring of CNOT gates. Every qubit is connected to its neighbour
by a ring of CNOT gates, with the last qubit being regarded as a neighbour of the
first qubit.

The number of qubits used in this model is equivalent to the number of input
features in the dataset. Furthermore, as in the LSTM model, here too there is
the concept of hidden layers, used to determine the cell’s ability to represent and
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Figure 3.25: The Basic Entangler Layers with 2 layers, from Pennylane website.

maintain information through its hidden states.

The Python class representing this model was implemented using the Pytorch
framework and Pennylane. Given the length of the written code, we prefer to refer
the reader to the official GitHub repository in order to observe the implementation
of the QLSTM class.

3.4 The framework
Having seen what this thesis project consists of, the study of the dataset at hand,
the artificial and quantum models involved, it is important to make a final point
about the working methodology adopted, dwelling on the framework created to
fulfill the objective of this thesis.

The entire code is written in the Python programming language at version 3.9.
In fact, the entire project was also tested with Python version 3.8, making the
latter also compatible for the purpose of reproducibility of results.
The most important libraries used are the following:

• Pandas: To manipulate data structures and perform analysis on the dataset.

• Pytorch: To work with tensors, build neural networks and train them.

• Pennylane: To build the quantum circuits and carry out the simulations.

• Tensorboard: It is the front-end that allows all the results obtained from
each training of a model to be displayed via a web page and compared through
a simple user interface.
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The framework built for carrying out this concept allows for building, training and
comparing different models in a simple and standard way. It can be reused for
generic problems including training of neural networks and visualization of the
results obtained.
The public repository where the source code resides at its most up-to-date ver-
sion is available on GitHub at the following web address: https://github.com/
lolloberga/quantum_weather_station.

3.4.1 How it works
To better understand how the built framework works, we show the diagram of the
Python classes that compose it. The legend for interpreting this UML diagram is

Figure 3.26: The UML diagram of the main part of the framework.

the standard one net of: names beginning with an asterisk "*" means that they
are optional, names in italics represent an abstract method or parameter, and the
solid arrow represents an extension of a class while the dashed arrow means that
an instance of the target class was used as a parameter.
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As can be seen from Figure 3.26, there is an abstract class called "Trainer" that
is responsible for representing a generic trainer of models built with Pytorch.
It requires as input the model it is to train and a symbolic name representing it.
The remaining variables such as the optimizer, the criterion by which to compute
the loss function, and hyperparameters are left abstract so that the concrete class
that will extend this will be given the opportunity to provide an implementation
suitable for the type of trainer being created.
Therefore, to implement a trainer of a generic model, it is mandatory to extend
the main abstract class. Consequently, one is obliged to provide the implementa-
tion of all the abstract methods present namely: get_name(), get_optimizer(),
get_criterion(), train(), train_loader() and predict().
Let us individually discuss the operation of these methods that serve as the back-
bone of the framework with regard to training and analyzing the results of a generic
model:

• get_name(): It is mandatory to provide a symbolic name for each model you
wish to train; this name will be used as an identifier for the folders that enclose
the graphs and model weights produced at the end of training.

• get_optimizer(): Since each model may have its own weight optimization
algorithm, it is important to specify which one you want to use to perform
the training.

• get_criterion(): For the same reason as the optimizer, the loss function
must also be defined before each workout in order to calculate the distance
between the predicted value and the ground truth.

• train(): This is the main method that deals with training the model: the
logic of how to carry out such training is defined within it. As input it receives
a dataset divided into its train and test parts: this division is also repeated in
order to work on the features to be used for training (named with the symbol
X) and the one to be used for doing prediction (named y).

• train_loader(): This method is identical to train() where the major dif-
ference lies in the input received; in fact, you can use Pytorch’s class called
Dataloader to define the train and test set. This class allows for a number
of advantages in managing the dataset before training the model, such as
handling shuffle, partitioning, and data sampling.

• predict(): How a prediction is made, while most of the time it does not
change, must also be made explicit in this method.

An observation to be made concerns the two methods for carrying out the
training: although the structure of the classes forces both to be implemented, it is
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possible to develop the logic of only one, i.e., the one you consider most appropriate.
From the abstract structure of the "Trainer" class, specific classes were developed
for each model used in this project. The choice of dividing each model into a specific
Python class was made to take several advantages such as: remaining compliant
with the developed framework, ensuring greater readability of the code, and being
able to make changes effectively without having to impact other aspects of the
code. The trainers of each model have no parameters of their own, but simply
implement the constructor and all inherited abstract methods.

On the right side of Figure 3.26 we notice the computer representation of hyper-
parameters. The "Hyperparameters" class relies on the native Python dictionary
structure and is responsible for recording, updating, and providing hyperparameters
at all times.
This is not an abstract class in that it implements the logic of read and write
access (via the magic method __getitem__) to the dictionary; it also provides a
default version of hyperparameters with the class "Default_Hyperparameters". The
choice of this type of code structure was made because each model has its own
hyperparameters that it must use to train: thus, one understands the reason for
creating its own specific class for each model.

The Python classes representing the individual artificial models are represented
in this way: All models extend Pytorch’s torch.nn.Module class: this class represents
a generic neural network and boasts all the methods needed to manage it, such
as the forward method that implements forward propagation logic. Although
two of these models represent quantum circuits, it was chosen to use Pytorch as
the executive engine; this operational methodology is natively realizable by the
Pennylane library that supports Pytorch. By acting in this way, another important
advantage was achieved: the entire framework used is able to work regardless of
the type of model, classical or quantum.
Each model declares its own parameters that are used to define it and realize the
structure of the network or circuit.
Other Python classes were made to take advantage of some common utilities such as:
project configuration via an external file (in yaml format), event notification system
via email and SMS, batch mode reading of results published on Tensorboard,
and methods to draw the trend of the loss function during epochs and model
performance during its training.

3.4.2 Visualize the experiments
To conclude this chapter, we discuss the use of the Tensorboard library. All of the
libraries described so far are used at the operational level to run the project and
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Figure 3.27: The UML diagram of the classes representing the individual artificial
models.

to take advantage of essential features such as creating the structure of a neural
network or circuit.
Tensorboard, on the other hand, was selected as the results visualization tool. This
library is a product of TensorFlow: Pytorch’s competitor library for working in
the world of deep learning. It was created to provide the visualization and tooling
needed for machine and deep learning experimentation such as:

• Tracking and visualizing metrics such as loss and accuracy

• Visualizing the model graph

• Observing the time-varying histograms of weights, biases, or other tensors

• Projecting embeddings to a lower dimensional space
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• And much more

The Tensorboard graphical representations used by our framework are different,
such as: the performance of the loss function during training, the prediction
performance achieved by the model, the internal structure of a model and the
hyperparameters used to produce certain results.
The framework was built to save all the data previously listed on Tensorboard
and partially also locally, without incurring saturation of the computer’s memory.
Tensorboard uses a folder on the file system to store data and therefore work: this
folder is managed entirely by the framework, making this entire part invisible to
the programmer’s eyes. When you then want to access the visualization tool, just
open a terminal on your computer in the main project folder and type the following
command:

1 tensorboard −− l o g d i r=runs

where --logdir=runs indicates that the folder named "runs" is the one to use
to view the results (and is also the default folder where Tensorboard saves the
data). At the end of executing this command, the terminal will remain opera-
tional as a web server is running on your computer. By connecting to the address
http://localhost:6006 via any browser, you will find the Tensorboard home
page where you can start viewing results.

We show some representations extracted from Tensorboard during the interme-
diate phase of the thesis development:

Figure 3.28: The performance visualizations of a an LSTM model in Tensorboard.
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Figure 3.29: The loss function evolution of a an LSTM model in Tensorboard
divided by train-set and test-set.
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Chapter 4

Results

In this penultimate chapter the results obtained will be shown in order to compare
classical models with quantum ones in solving the calibration problem of low-cost
fine dust sensors. The chapter will explain the individual steps to train and validate
artificial models, showing some intermediate results. In conclusion, the comparison
of each model in its best hyperparameter configuration is shown, followed by a
personal comment.

4.1 Hyperparameter tuning
The first step of a Deep Learning pipeline is to configure a model suitable for the
dataset on which you will have to train and try to do some training, noting the
results obtained. Once you understand which hyperparameters can most influence
the functioning of the model, it is time to use hyperparameter tuning.

Hyperparameter tuning is a technique that involves training a new model for
every possible combination of hyperparameters. It aims to adjusting the configura-
tion settings of the algorithms that govern the model’s learning process by using
the brute force, i.e. the repetition of a set of operations until the search space
is exhausted. Unlike model parameters, which are learned from the data during
training, hyperparameters must be set by the practitioner.
Typically, the procedure is assessing the model’s performance for every combination
and choosing the set that produces the best outcomes based on a predetermined
criterion, such accuracy, precision, recall, or a metric unique to a certain domain.

When a model performs less than optimally with its default parameters or
when the practitioner wants to extract every ounce of performance from the model,
hyperparameter tweaking may be quite helpful. It becomes crucial in situations
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where there is competition, like machine learning contests, or in applications where
variations in performance measurements lead to notable qualitative variations in
results, such high-stakes trading, financial forecasting, or medical diagnosis.
Hyperparameter tuning is not without its difficulties and disadvantages, though. In
particular, for models with a high number of hyperparameters or when the search
space is extensive, it can be computationally expensive and time-consuming. If
the tuning is overly precise, there’s also a chance of overfitting the model to the
validation set. Furthermore, locating the ideal hyperparameters can occasionally be
likened to trying to find a needle in a haystack, necessitating a calculated technique
to thoroughly scan the search space. Among the methods employed to conduct
this search are grid search, random search, Bayesian optimisation, and evolutionary
algorithms. Every one of these approaches provides a unique compromise between
searching the whole field and taking advantage of well-established optimal arrange-
ments.

Table 4.1 shows the data in which we show, for each model, the size of the search
space used in order to perform complete hyperparameter tuning and find the best
configurations. The presence of substantial differences in search space size on some

Model Search space dimension
ANN 5832 combinations
LSTM 648 combinations
VQR 162 combinations
QLSTM 8748 combinations

Table 4.1: The search space of the hyperparameters tuning divided by each model

models is justified by its complexity and freedom of choice in the architecture of
the underlying network or circuit.
The "ANN" model achieves a size of 5832 combinations as the network architecture
involves using one to three hidden layers with the number of neurons per layer rang-
ing from a maximum of 128 to a minimum of 10. While for the "QLSTM" quantum
model, the same space as its classical equivalent LSTM was explored but with the
addition of the number of qubit and quantum layers with which to repeat the ansatz.

It is important to note that at this point in the thesis, the artificial neural net-
work model called "ANN" has not yet been divided into its two variants mentioned
in Chapter 3.3.1 (i.e., "ANN#1" and "ANN#2).
The model used for this tuning phase is similar to the one defined as "ANN#1"
in which there are 60 neurons, one for each minute that makes up an hour, that
will go to predict the value coming from the reference station; the only difference
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is that only the value of particulate matter in the air (PM2.5) was used as input
features.

The table with the best configurations obtained at the end of tuning for each
model is now shown. When a cell in this table is empty, it means that that hyperpa-
rameter was not used within the selected model. Table 4.2 shows at the bottom the

Hyperparameter ANN LSTM VQR QLSTM
N° epochs 200 450 200 400
Learning rate 0.0001 0.001 0.01 0.01
Optimizer SGD Adam Adam Adam
Criterion L1 L1 MSE L1
Batch size 2 - 10 -
Hidden size l1 60 600 - 15
Hidden size l2 40 - - -
Hidden size l3 10 - - -
T (hours used t
o calibrate) - 3 - 5

N° layers - 2 - -
N° qubits - - 4 7
N° quantum layers - - 4 5
Ansatz - - linear strongly
Loss on train-set 10.465 4.2697 0.0098668 5.2021
Loss on test-set 5.3008 2.7362 0.0026194 2.6978

Table 4.2: The results of the hyperparameters tuning divided by each model

lowest values of the loss function calculated on the training-set and test-set: these
indicate the goodness of learning achieved by the model during training. Looking
at these values, the small difference present between the training-set and test-set
leads to the assumption that overfitting is not occurring, i.e., that the models have
memorized the dataset and therefore the generalized learning of sensor calibration
is not true.

The loss function value that immediately catches the eye due to its lowness
compared to the others is produced by the VQR model. The reason for this different
scale of values compared to the other models is because the input features passed
as input to the variational circuit are scaled by [−1,+1] as explained in Chapter
3.3.3. By clearly reducing the range of possible values that the characteristics
of particulate matter in the air can take on, the precision of the calibration also
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increases and consequently the values produced by the model will be much "closer"
to those produced by the ARPA reference station.
The presence of this feature scaling operation does not allow a fair comparison
with the other models in Table 4.2. Despite this, a comparison can be made via
the performance graph that we will show later.
With Tensorboard’s parallel coordinate visualization, it is possible to understand
the trend of hyperparameters that lead to a lower loss value, and thus generate a
better model.
In Figure 4.1, this visualization specific to the LSTM model is shown.

Figure 4.1: The parallel coordinates view related to LSTM model. It shows the
trend of hyperparameters leading to different levels of loss.

For each type of model and hyperparameter, this type of graph supports in
understanding which combination leads to a may low loss. In fact, in Figure 4.1,
we can see how the L1 loss function leads the model to perform at a lower loss
than the RMSE function. As for the optimization algorithms, the best loss result
in the test-set was achieved with Adam, although the others available (SGD and
RMSprop) produce models that maintain excellent performance for calibration
purposes.
To conclude, it is easy to show that values of the hyperparameter T , which rep-
resents the number of previous hours used to make the next prediction, tend to
produce better models when it is low (T ≤ 5).

A final aspect to take into consideration to conclude the hyperparameters tuning
phase is learning saturation. Initially, the number of epochs to be used in the
tuning search space is given randomly. Then looking at the plot of the trend of the
loss function in the training-set, it can be seen that at some point, starting from a
certain epoch, all the models stop having notable improvements in learning.
The training of the QLSTM quantum network is shown as an example, in which
it is evident that starting from the 270th epoch, the model shows no signs of
improvement in learning, i.e. the loss function stops decreasing. Its saturation
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point is found to be around epoch 270.

Figure 4.2: The performance of the loss function in the training set of the QLSTM
model.

4.2 Improvements of the models
The value that guides the construction of an appropriate model for solving the
basic problem is the loss function applied in the test-set. Indeed, recall that the
test-set is that portion of the dataset that remains hidden during training and is
then shown to the trained model to make predictions (or calibrations) on data it
has never seen. Certainly, the fact that the loss value in the test-set is lower than
that realized in the training-set is shown by the fact that the former is significantly
smaller in size than the latter (we are talking about 30 percent versus 70 percent).
This leads the model to make fewer errors due to the scarcity of data in the test-set
than in the training-set.

It is easy to see that the "ANN" model has a higher loss value in the test-set than
the others. Despite the huge size of the search space, the adopted configurations
did not lead to adequate performance. This pointed out that the structure of
the neural network or the data on which it trained are not adequate and can be
changed radically.
To confirm this, we show in Figure 4.3 the calibration performance obtained with
this model using the best configuration that emerged from tuning.

For this reason, it was chosen to create the ANN#1 and ANN#2 variants
shown in Chapter 3.3.1. The former model keeps the same network architecture
and changes the input features used, while the latter makes a change to both the
architecture and the data.
We show the tuning results obtained from these two variants of the classic "ANN"
model. The hyperparameters found at the end of tuning in Table 4.3 are very

90



Results

Figure 4.3: The calibration performance obtained with "ANN" model.

Hyperparameter ANN#1 ANN#2
N° epochs 200 200
Learning rate 0.0001 0.0001
Optimizer SGD SGD
Criterion L1 L1
Batch size 10 10
Hidden size l1 90 30
Hidden size l2 20 15
Hidden size l3 - 5
Loss on train-set 10.435 6.7904
Loss on test-set 4.4004 2.9202

Table 4.3: The results of the hyperparameters tuning for the ANN#1 and ANN#2
models.

similar, net of one less hidden layer present in the "ANN#1" model. The values of
the loss function in the test-set of the two variants declare the ANN#2 model as
the "winner": the use of a shallower (and therefore simpler) architecture combined
with a dataset with hourly granularity and with all the input features available,
prove to be the best compromise for creating a model suitable for the problem.
We show below the calibration performance obtained by model "ANN#2" after
discovering its best configuration of hyperparameters. Compared with the perfor-
mance obtained with the previous model (Fig.4.3), significant improvements in
sensor calibration can be observed.
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Figure 4.4: The calibration performance obtained with "ANN#2" model.

The recurrent LSTM model is the second to produce a very good result among
all the comparable models in Table 4.2.The dataset it trained on is divided into
70% training-set and the remaining 30% test-set. This means that, a large sequence
of data in ascending order according to time was used to teach LSTM how to
calibrate the sensor.
Recall in fact, that with LSTM it is not possible to perform a shuffle of data
because the data must be given in chronological order in order to exploit the true
potential of this model: learning by remembering what it "has seen" before. So,
using the 70 percent train-set means having a portion of the data that encompasses
approximately at least 3 to 4 months of history.
It is fair to ask, for the purpose of making the project more sustainable, what
would happen if I used the LSTM model to calibrate the fine dust sensors, having
only 30 days of data collection? In other words, the size of the training-set would
become only 15% while the remaining 85% becomes the new test-set.
We show the performance of the LSTM model with the same hyperparameters but
trained on 15% of the dataset (i.e., about 30 days). As can be seen in Figure 4.5,
the model did not have a chance to learn the specific characteristics of the dataset
because it trained on a small portion. For example: the spike in fine particulate
matter present every year on New Year’s Eve (Dec. 31) due to fireworks, using
only thirty days of data collected for training, this event did not come under its
notice and therefore the model had no way to learn.

In addition, it can be observed that the calibration performed by this model
remains balanced with respect to the high and low peaks present in the ARPA
measurements; this leads one to think (and observe) that the newly created LSTM
model tends to generalize the calibration results along the entire time axis.
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Figure 4.5: The performance of the LSTM model trained with only 15% of the
dataset.

The advantages that this variant of the LSTM model brings are certainly greater
generalization, that is, the possibility of having a fairly even calibration throughout
the period of sensor operation, using only 30 days of data collection in order to
train the model. The disadvantage is that, having a generalist model, the average
accuracy calculated as the value of the loss function on the test-set will definitely
be lower than in the original model.

To conclude with this type of model, one last variation was created. The purpose,
this time, is to understand what is the impact on accuracy if we introduced the
other input features (temperature, pressure, and humidity) during model training.
In fact, the first version of LSTM presented in the previous chapter used only the
feature of PM2.5 detected by our sensors (remember: a median of our sensors).
Again, the portion of the dataset on which the model trains has been kept on
the 30 days: in this way, the real goal is to understand whether using the other
dimensions of the dataset can make the model less generalist and more specific in
performing calibration.
The test ended in failure: this latest variant of LSTM produces a model that has
lower calibration accuracy than the original model (as expected) and also lower
than the model that uses the same number of days to train but takes into account
only one input feature.
It is thus shown that the use of the other variables collected from the sensors do
not bring added value in improving the calibration, at least as far as recurrent
neural models are concerned.
We show on Table 4.4 the results obtained from all variants of the LSTM model.

On the VQR and QLSTM quantum circuits, no type of enhancement was
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Hyperparameter LSTM LSTM-30days LSTM-all-features
Training-size 70% 15% 15%
N° epochs 450 450 450
Learning rate 0.001 0.001 0.001
Optimizer Adam Adam Adam
Criterion L1 L1 L1
T (hours used to calibrate) 3 3 3
Hidden size l1 600 600 600
N° layers 2 2 2
Loss on train-set 4.2697 3.4401 3.8126
Loss on test-set 2.7362 4.3276 4.4333

Table 4.4: The comparison of the results obtained among all variants of LSTM.

experimented with: the high results obtained after hyperparameter tuning and the
lack of time are the two factors that contributed most to arriving at this work.

4.3 The benchmark
After understanding the ideal combination of hyperparameters through the tuning
session explained in section 4.1 and after further testing and optimization of some
models in section 4.2, it is time to ask whether the work done up to this point is
bringing improvements or not.
The proof of the presence of these improvements must be irrefutable and grounded.
For this reason, the benchmark is nothing more than a baseline measure based
on scientific or statistical evidence from which it is possible to tell, based on the
distance from it, whether we are in a scenario of improvement or deterioration.

In the thesis project, the value of possible loss functions applied to the original
dataset was chosen as the benchmark. To be then compared with the accuracy
obtained by each model, the portion of the dataset on which the loss function was
calculated is only the test-set, i.e., that part of the data that is not shown to the
models during their training. In this way, the volume of data used to calculate a
model’s goodness-of-fit will be identical to that used to calculate its benchmark.
The calculation involves using the test-set in several of its dimensions: 30%, 25%
and 85% (only in the case of LSTM model); the data used are represented by the
value of particulate matter in the air given by the ARPA reference station and
the same value measured by our sensors. The loss functions will calculate the loss
present within the dataset without any preprocessing steps and without a trained
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model that can learn how to minimize these functions.

So to summarize, the benchmark varies according to the loss function and the
portion of the test-set on which each model is trained. The last row of Table 4.5
represents the benchmark calculated on the same dataset with which the VQR
model was trained; the major difference is to have all values scaled on a scale of
[−1,+1]. If the results obtained in the previous chapters turn out to be better than
the relevant benchmark, then this becomes clear evidence of the effectiveness of
the artificial model in learning how to solve the problem, that is, how to calibrate
the sensors in question.
The following table shows the benchmark results calculated as stated.

Benchmarks L1 MSE RMSE
Test-set 30% 5.0296 42.5333 6.5218
Test-set 25% 4.7014 33.9137 5.8235
Test-set 85% 6.6392 84.9754 9.2182
Test-set 25%
rescaled 0.1013 0.0195 0.1395

Table 4.5: The benchmark results calculated for each type of loss function and
portion of the test-set.

We illustrate a brief comment on the benchmark results shown in Table 4.5
compared with those obtained by the models after tuning and improvements.
The LSTM model is significantly lower than its benchmark: its best result, shown
in Table 4.4, is 2.7362 with 30% of the test-set and L1 as the loss function, or it is
4.3276 with 85% of the test-set and the same loss function. We are talking about
results that are equivalent to about half of the benchmark or 40% less.

The model defined as "ANN," on the other hand, is superior to the benchmark
and therefore is not bringing added value in solving the problem compared to what
was already there to begin with. In fact, the best result was obtained using L1 as
the loss function and is 5.3008. This is further evidence that the architecture of
this model is not the best for the purpose of solving the problem.
The ANN#1 model, which uses 25% test-set, on the other hand, shows marked
improvements: the highest result obtained using L1 as the loss function is 4.4004
compared with its benchmark of 4.7014; this means that by also introducing the
other 3 features (temperature, pressure, humidity) the model is able to better
generalize the value of PM2.5 in the air.
Despite this, ANN#2 is shown to be by far the best network among others of its
type: its result using 25 percent of the test-set and L1 as the loss function and is
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2.9202 compared with 4.7014 in benchmark.

As for the QLSTM model, the same reasoning for comparison with the bench-
mark used for the LSTM model can be applied. The current situation predicts a
marked improvement over the imposed benchmark.

The VQR quantum model, comparable with the classical ANN model, has results
below the benchmark, showing that it is making improvements on calibration. The
VQR quantum model, comparable with the classical ANN model, has lower results
than the benchmark, showing that it is making improvements on calibration. The
value of the best model, trained with MSE loss function and with 25% of the
test-set, is 0.0026 which compared to the benchmark of 0.0195 we are talking about
86.67% less.
By rescaling the values after training this specific model, the value of the MSE
loss function on the measurements made by ARPA and the model predictions can
be calculated again. The value that is obtained represents the distance between
the two types of information, that is, the accuracy that the model obtained after
training. This value turns out to be 33.6627 which, compared to its benchmark
which is equivalent to 33.9137, (visible in Table 4.5), successfully shows that a
slight improvement has been achieved (0.74% less than the benchmark).

To conclude, we show the distribution of the random variable governing the
operation of the benchmarks shown, that is, the calculation of the individual loss
functions on the different portions of the data.
To do this, in much the same way as the Monte Carlo method for simulating
results [20], a specific percentage of the dataset (equivalent to the desired test-set)
is randomly taken on which all loss functions are calculated and the result is
stored. These procedures are repeated for a large number N of times: in our case
N = 10.000.
We show the approximate probability mass functions (PMFs) for each benchmark.
Figure 4.6 and 4.7 show the PMF of the benchmark calculated on the original

test-set, while Figure 4.8 uses the test-set scaled in the range in which the VQR
model operates.

4.4 Cross-validation results
Through hyperparameters tuning addressed in the previous section, we were able
to identify the best set of hyperparameters that produce the best pattern for the
purposes of solving the basic problem. Subsequently, an improved version of some
models has been tested in order to achieve better results and explore other variants.
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Figure 4.6: The distribution of the benchmark using the 30% of the test-set.

Figure 4.7: The distribution of the benchmark using the 25% of the test-set.

Now, however, it is important to ask whether different portions of the dataset may
have an influence on the identified model.
To evaluate how well the findings of a statistical study will transfer to a different
part of the dataset, cross-validation is a reliable machine learning approach. It is
especially helpful in situations when the objective is to forecast how a model will
perform with fresh, untested data. The key to cross-validation is its capacity to
reuse data by partitioning the dataset into portions that are utilised for model
testing and training, respectively.

K-fold cross-validation is a popular kind of cross-validation. The data is sepa-
rated into ’k’ subgroups using this procedure. After that, the model is evaluated
on the remaining subset after being trained on ’k-1’ of these subsets. Every one of
the ’k’ subsets is utilized as the test set precisely once during the ’k’ repetitions of
this operation. Then, an estimation is generated by averaging the outcomes of all
’k’ trials. This method is particularly effective since it guarantees that each data
point is used for testing as well as training, resulting in a thorough use of the data.
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Figure 4.8: The distribution of the benchmark using the 25% of the scaled values
test-set.

Other techniques are available to do cross-validation, each of them specific to each
type of validation that is to be addressed; nevertheless, for this project K-fold was
chosen.
Cross-validation should be used when seeking an unbiased estimate of the model’s
performance, as it mitigates the risk of overfitting by repeatedly evaluating the
model on different subsets of data.

Nevertheless, there are several drawbacks to cross-validation. Its computational
expense is among the main disadvantages. This can be a laborious procedure,
especially for big datasets or sophisticated models, as the model needs to be trained
and assessed ’k’ times. Additionally, the validation’s performance and dependability
may be greatly impacted by the selection of ’k’.
Overly large ’k’ values can result in models that are computationally expensive to
train and may still have high test error variance because of the greater similarity
between the training and test sets. Conversely, excessively small ’k’ values could
result in larger variation in the training data.
To use K-fold, it is necessary to understand what percentage to divide the dataset
between train and test set in order to understand the value that the K-number
should have. This calculation must be done for each model you want to validate.

With the LSTM model, it is necessary to take about 15 percent of the dataset
as test-set (i.e., 30 days) and the remainder as train-set. To do this, the reasoning
applied in order to understand the value corresponding to the K number of folds
is as follows: the entire dataset contains 3683 samples, or 3683 hours which is
equivalent to 153.46 days. Dividing the dataset into 5 folds would result in test sets
of 3683

5 = 736.6 hours which equals 30.69 days. Therefore, we conclude by saying
that K = 5 for the LSTM and QLSTM model.
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For the ANN model, implementation "ANN#2" will be used as it shows a better
result in the loss (Table 4.3). To take 25% of the test-set just use K-fold with
K = 4, i.e. 1

4 of the dataset will be used for testing and the remaining 3
4 for training

the network. The VQR model also uses the exact same dataset as ANN#2, except
that the values within it have been scaled. So the number of folds used for this
model are the same (K = 4).
In order to best highlight the results of cross-validation and improvement in model
structure, we chose to draw the benchmark distribution in the same graph. In this
way it will be easy to notice by how much the models are better or worse than their
relative benchmark. The result of training and testing a model in each specific fold
will be drawn with a dot throughout the graphs that follow.
Starting from the neural network models, we show the difference between ANN#1
and ANN#2 in the cross-validation process, compared to their benchmark. From

Figure 4.9: The cross-validation result of the ANN#1 (on the left) and ANN#2
(on the right) models compared to their benchmark.

Figure 4.9, it is easy to see that the improvement in this network type made in
sec.4.2 brought clear improvements over the benchmark and thus over the average
expected outcome.
The result of cross-validation of ANN#1 and ANN#2 models is shown in numerical
terms through the following table.

Cross-validation Fold-1 Fold-2 Fold-3 Fold-4
ANN#1 10.556 9.7848 9.8453 9.5108
ANN#2 5.8584 5.7268 5.4658 10.888

Table 4.6: The cross-validation result of the ANN#1 and ANN#2 models.
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As for the quantum equivalent, validation on the VQR model was carried out
according to the type of anastz used: linear or nonlinear (details can be found in
Chapter 3.3.3). We can show how both models achieve excellent performance in
terms of comparison with the benchmark, although the model that uses a linear
ansatz, that is, a single embedding layer followed by several successive computation
layers, turns out to be more accurate. We show the same results as in Figure 4.10

Figure 4.10: The cross-validation result of the VQR linear (on the left) and VQR
non-linear (on the right) models compared to their benchmark.

but in tabular form.

Cross-validation Fold-1 Fold-2 Fold-3 Fold-4
VQR Linear 0.0082112 0.0077559 0.0065363 0.0080037
VQR Non-linear 0.010147 0.0095828 0.0094464 0.011666

Table 4.7: The cross-validation result of the VQR model.

It can be seen that even the VQR model, trained and evaluated on different folds,
i.e., random portions of the dataset, produces results far removed from the distribu-
tion of its benchmark. This implies a marked improvement over the benchmark as
an attempt is made to minimize the loss function. Training on a dataset with such
a narrow range of values, it is normal to observe a low error distinction for each fold.

The LSTM model, together with its quantum equivalent, turns out to be the
model with the best results in order to solve the calibration problem. Indeed, we
can see how, during its cross-validation, the colored dots obtained are distributed
at heterogeneous distances and lower than the benchmark. This phenomenon
demonstrates the lack of overfitting within the models and at the same time shows
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signs of improvement over the benchmark.
We show in Figure 4.11 the results of cross-validation against the benchmark
inherent in the LSMT and QLSTM models; next, we show the table with the
numbers demonstrating the validation performed.

Figure 4.11: The cross-validation result of the LSTM and QLSTM models
compared to their benchmark.

Cross-validation Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
LSTM 3.9884 5.5502 4.6265 3.3922 2.4122
QLSTM 4.3070 7.7299 5.4600 3.7013 2.3611

Table 4.8: The cross-validation result of the LSTM and QLSTM models.

The cross-validation performance of the QLSTM model seems to be worse than
that of its classical equivalent, although, by averaging the loss values obtained for
each fold, it can be seen that there is not that much difference, in fact a value of
4.7 is obtained for QLSTM compared to 4.0 for LSTM.

In conclusion, cross-validation is an effective method for assessing and choosing
models that have the ability to function effectively with unknown data. It provides
a fair method of evaluating models and sheds light on how well the model generalises
outside of the particular set of training data.
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4.5 Comparison between models
In this section of the chapter, performance results on the calibration of the sensors
covered in this thesis for each of the four considered models will be shown.
Having explored the space of hyperparameter configurations, as well as further
optimizations of some models, and validated the learning through cross-validation,
it is now possible to compare these models in order to understand which one is the
most promising for addressing the specific problem at hand.

Before showing the true comparison, it is important to look at the performance
of each individual model in the best possible configuration for the dataset.
When we talk about performance on calibration, we mean using the best found
configuration of hyperparameters of a model to make inference on the entire original
dataset. In this way it will be possible to compare, throughout the time duration of
data collection, the air particulate matter (PM2.5) values measured by the ARPA
reference station against those learned from the model.

For the ANN model, in its second variant "ANN#2," the performance on cali-
bration was shown previously in Figure 4.4. We are talking about an improvement,
compared with its benchmark, of 37.89% (calculated on the L1 loss with 25% of
the dataset used to test the model).
While for the equivalent quantum circuit provided by the VQR model, the improve-
ment of the MSE type loss over the benchmark, using 25% of the dataset as the
test-set, is 86.67% with the scaled dataset, or 0.74% with the original dataset.
The performance of the best trained VQR model is shown graphically.

Figure 4.12: The calibration performance obtained with VQR Linear model.
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As for the LSTM model, the value of the L1 loss function calculated using 30
percent of the dataset as the test-set turns out to be 45.60% lower than the value
of its benchmark. We are already aware that this type of neural network, together
with its equivalent quantum model, manages to produce a better result in order to
solve the underlying problem. The result of the performance of this model can be
seen in the follow Figure. The LSTM model shows that it generalizes very well to

Figure 4.13: The calibration performance obtained with LSTM model.

the calibration aspects of these sensors along the time axis. In Figure 4.13, it can
be seen that the trend of ARPA measurements and that learned from the model
overlap throughout the timeseries, net of some outliers such as New Year’s Day.

The QLSTM model, on the other hand, with the same loss function and portion
of the dataset in which it tested its performance, achieves a 46.36% improvement
over its benchmark. This model, compared with its equivalent in the world of
classical computing, brings a slight improvement.
We show in Figure 4.14 the performance of the QLSTM model in calibrating the
median of fine dust sensors against what ARPA measured.

After showing the calibration performance of each model in its best configuration
and optimization, we go on to analyze the differences and behaviors present among
these models compared. All four models were used to make inference on the original
dataset by loading the weights and parameters found during the training phase.
Of course, it would not be correct for comparison purposes to make inference on
the entire original dataset since only two parts of the dataset were used to train the
models: the training-set and the test-set. This design choice implies that all models,
having been trained on the training-set that corresponds to most of the original
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Figure 4.14: The calibration performance obtained with QLSTM model.

dataset, learned well the calibration on this part, especially all those models that
tend to overfitting.

As a matter of visualizing the performance of the models compared with each
other, the following graph shows their comparison behavior, taking into considera-
tion the PM2.5 values measured by the ARPA station sensors.

Figure 4.15: The calibration performance obtained from all models developed in
this project in comparison with values from ARPA.

To better visually understand the difference between these patterns, a variant

104



Results

of Figure 4.15 is shown in which a shorter time frame of fifteen days is observed:
from February 1 to February 15, 2023.

Figure 4.16: The calibration performance obtained from all models developed
in this project in comparison with ARPA values, observing a time range from
February 1 to 15, 2023.

It can be seen from Figure 4.16 how well the models, as a whole, understood
the method of calibrating fine dust sensor values to resemble those measured by
ARPA as closely as possible.
In order to represent in numbers the comparison between these models and under-
stand which one of them succeeds in performing better, it was decided to calculate
the RMSE loss function between the measurement values predicted by the model
in the same unknown portion of the dataset (the test-set) and those measured by
the reference station. The result is similar to that shown in the various model
hyperparameter tuning tables but with the difference that a single loss function
was set for all models; we report the results in the following table.

Performance metric ANN#2 VQR Linear LSTM QLSTM
Test-set size 30% 30% 30% 30%
RMSE 8.0800 7.5364 6.1409 6.6605

Table 4.9: The RMSE loss function calculated for all model predictions compared
with ARPA measurements.

It can easily be seen from Table 4.9 that although the portion of the test-set
used is not exactly what each model trained with, the behavior maintained by
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the models in performing the calibration remains constant to what was noted in
the previous sections. In other words: the quantum circuit manages to perform
better than its equivalent in the classical world ANN#2, while between LSTM and
QLSTM the winner still remains the classical model.

Comparing the first two models, i.e., the artificial feed-forward neural network
and its equivalent made with variational quantum circuits, the model that produces
better results is the second one. Although it does not differ much, the RMSE value
of the VQR model turns out to be lower than that of ANN#2. This result implies
that the lower architectural complexity of the quantum circuit tends to generalize
better on the input data and thus produce a model that, over the entire dataset,
manages to come closer to the ARPA measurements.
In more detail, the reasons for this quantum advantage in achieving a higher level
of accuracy than its classical equivalent may be different. Quantum variational
circuitry exploits phenomena such as entanglement and superposition, which can
offer new ways to explore parameter space and to find nonlinear correlations and
complex patterns in data that might be difficult to model with classical neural
networks.
In addition, VQCs, due to their quantum nature, are capable of manipulating
information exponentially more densely than classical systems. This means that
they can theoretically represent much larger solution spaces with fewer resources,
thus being able to better capture the complexity of given datasets.

We move on to analyze the two recurrent networks: LSTM and QLSTM. The
lowest loss value, and thus the best result in terms of accuracy, is still achieved
by the LSTM model. This behavior introduced curiosity and therefore we went
deeper to find out the reasons.
It was realized that the comparison between the two models, despite the fact that
the portions of the dataset on which the training was conducted were identical, was
not entirely fair. In fact, the value of some hyperparameters in common of LSTM
are completely different from those of QLSTM. This leads to noncomparability
between them, as some hyperparameters of LSTM require a great computational
effort because the recurrent network that is created is large and can afford excellent
performance results. On the other hand, the fact that quantum hardware technol-
ogy is still in the experimental stage and the simulation of these algorithms can take
place on machines that do not support an arbitrary number of hyperparameters
(e.g., an arbitrary number of qubits), does not allow the creation of quantum
circuits that can be "as complex as desired."

It was therefore decided to train a new LSTM model again, this time with
the same hyperparameters as its quantum equivalent. We will call this model
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"depowered LSTM" (LSTM-d) for the purpose of recognizing it in the following
paragraphs.
A new session of hyperparameters tuning was carried out for the purpose of
comparing again the two models in question.

Hyperparameter LSTM-d QLSTM
Training-size 70% 70%
N° epochs 300 400
Learning rate 0.001 0.01
Optimizer RMSprop Adam
Criterion L1 L1
T (hours used to calibrate) 3 5
Hidden size l1 15 15
N° layers 2 7
N° qubits - 5
Ansatz - strongly
Loss on train-set 5.0287 5.2021
Loss on test-set 2.7684 2.6978

Table 4.10: The comparison of the results obtained between the depowered LSTM
model in terms of hyperparameters values (LSTM-d) and the QLSTM model.

The benchmark of the L1 loss function using 30% of the dataset as test-set is
5.0295. Both models in Table 4.10, looking at their loss value in the test-set, turn
out to be almost half of the benchmark.
It is observed that, for the first time, the accuracy of the QLSTM model, in terms
of loss function minimization, is higher than its classical equivalent. This means
that for the first time, using two models with the same configuration space of
hyperparameters and with the only difference in the type of network architecture,
on a portion of the dataset hidden during training, the QLSTM quantum model
performed better than LSTM-d.

We conclude this analysis by visualizing the performance results between the
LSTM-d and QLSTM models, recalculating the final accuracy of both.

As a matter of simplicity in visualization, the same time range used in Figure
4.17 was chosen as the one used in Figure 4.16. This shows that the two models
maintain almost the same behavior toward the values measured by the reference
station. We show the accuracy values numerically, calculating the RMSE loss on
the calibration output of the two models compared with ARPA.
In order to show the accuracy levels numerically, it was chosen to carry out an
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Figure 4.17: The calibration performance obtained from the LSTM-d and QLSTM
models compared with ARPA values, observing a time interval between February 1
and 15, 2023.

additional cross-validation between QLSTM and LSTM-d and to extract the average
of the loss function values on the different test-sets used in each fold. The number
of folds used for each model remains constant at K = 5.

Cross-validation Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
LSTM-d 4.4372 7.2593 5.5691 3.5955 2.5004
QLSTM 4.3070 7.7299 5.4600 3.7013 2.3611

Table 4.11: The cross-validation result of the LSTM-d and QLSTM models.

We draw the cross-validation results between LSTM-d and QLSTM in order to
understand which model turns out to be the best for calibration purposes.

The results obtained on the accuracy of the LSTM-d and QLSTM models,
declare the latter as the best. Despite this, it is easy to see that the difference in
accuracy between the two models is very low.
Let us therefore perform a further analysis of these models, no longer from a
point of view of accuracy levels, but from a point of view of generalization on the
available dataset. Understanding whether a model has learned to generalize over
the dataset rather than learned by rote can be an additional discriminator that
helps to understand which of the two can be considered the "best" in terms of
solving the regression problem that this thesis aims to address.
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Figure 4.18: The cross-validation result of the LSTM-d and QLSTM models
compared to their benchmark.

Let us start with the weights used within the LSTM architecture. The weights
of a neural network are the parameters that the network learns during its training
in order to minimize the loss function and therefore increase the accuracy of the
model. The LSTM-d model uses a total of 482 weights, while the QLSTM model
uses only 66: we are talking about a number of weights approximately seven times
greater. The parts of the LSTM cell that contribute to the total calculation of the
weights involved are: the bias and weights of the fully connected layer, the bias
and weights of the input gate, the bias and weights of the hidden state and the
number of recurrent layers.

Having models that achieve similar levels of accuracy but with a clear difference
in the number of weights used leads to drawing some conclusions, such as:

• Problem Complexity and Overfitting: It’s possible that the intricacy
offered by the 482 weight model is not necessary for the problem we are seeking
to solve. This might mean that overfitting will not occur and the smaller
model (QLSTM) can adequately capture the problem’s structure. Because
of its propensity to overfit the training set, the bigger model may not yield
appreciable improvements in accuracy even with a high number of weights.

• Weight Efficiency: Given the low number of weights but similar accuracy,
the QLSTM model is able to assign each weight a more significant "role" in
determining the calibration output, while in the LSTM-d model, there may
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be redundant or less influential weights.

• Generalization ability: It’s possible that the model with the fewest weights
can generalise to fresh data more effectively. It’s possible that less complex
models with fewer parameters have a better generalisation ability than more
complicated ones.

This relationship between accuracy and weights used by the model highlights
the importance of considering not only the performance of a model but also its
efficiency and ability to generalize.

For this reason we conclude this analysis by stating that, with the same loss
function, the QLSTM model achieves lower results, therefore greater calibration
precision on the test-set data. The fact that this model achieves the aforementioned
results using fewer weights than LSTM-d means that it has a more adequate
capacity for the specific problem, indicating that the additional complexity of the
LSTM-d model, which uses more weights within it, does not lead to improvements
in learning the underlying structure of data.
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Chapter 5

Conclusions and future
works

5.1 Conclusions
The innovative journey of this thesis through the realms of Quantum Machine
Learning (QML) and Deep Learning (DL) algorithms for the calibration of low-cost
optical fine-dust sensors has illuminated the intricate tapestry of computational
and environmental science. Through rigorous theoretical examination and em-
pirical evaluation, this work has not only benchmarked the capabilities of these
cutting-edge technologies but also spotlighted their potential and limitations in
environmental monitoring, particularly in the calibration of fine-dust sensors.

The comparative analysis revealed that QML, despite its nascent stage and
hardware limitations, demonstrates a promising efficiency and potential for future
scalability. It suggests a paradigm shift in computational approaches to environ-
mental challenges, particularly in sensor calibration, where QML models could
offer novel insights and methodologies. Conversely, the robustness and current
technological support for DL algorithms underscore their immediate applicability
and effectiveness in addressing the calibration problem, showcasing a practical path
towards improving air quality monitoring.

This thesis underscores the significance of embracing both traditional and
quantum computational paradigms to advance our capabilities in environmental
monitoring. It highlights the importance of interdisciplinary research and collabora-
tion in tackling complex global challenges, paving the way for innovative solutions
that leverage the strengths of both quantum and classical computing.
Looking forward, the convergence of QML and DL in environmental science promises
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not only enhanced accuracy and efficiency in sensor calibration but also a broader
implication for smart city initiatives and sustainable urban management. This
work lays a foundational stone for future research avenues, inviting exploration into
more complex models, larger datasets, and integration into real-world applications.

In essence, the journey from quantum quirks to clear skies is mapped out
through the lens of this thesis, charting a course towards a future where technology
and environmental stewardship converge for the greater good. As we stand at
the crossroads of computational innovation and environmental sustainability, the
insights garnered from this comparative study of QML and DL algorithms offer
a beacon of hope and a guide for future endeavors in making our world a better
place.

5.2 Further improvements
The exploration of quantum machine learning (QML) and deep learning (DL)
algorithms in the calibration of low-cost optical fine-dust sensors presents a fertile
ground for future research. The promising results obtained so far encourage the
pursuit of several potential avenues to further enhance model performance, extend
applicability, and refine calibration processes. This chapter outlines proposed
directions for future work, emphasizing both the exploration of novel models and
the application of advanced techniques to address the calibration challenge more
effectively.

Application of the Long Short-Term Attention (LSTA) Model.
A significant limitation of many current models, including Long Short-Term Mem-
ory (LSTM) networks, is their dependence on the chronological order of data
samples within the dataset. This requirement restricts the usability of datasets
that contain samples fragmented over various points in time without maintaining
linearity. To overcome this limitation, the adoption of the Long Short-Term Atten-
tion (LSTA) model [21] is proposed. Leveraging an attention matrix, the LSTA
model is designed to achieve comparable results to LSTM with non-contiguous
data. This approach allows for the flexible use of datasets that encompass samples
collected in a non-linear fashion, potentially enhancing the model’s ability to learn
from a wider array of data points and improving calibration accuracy.

Model Optimization for Individual Sensors.
The proposed methodologies focus on calibrating sensors based on aggregate met-
rics or the median performance across all sensors. A more tailored approach is
recommended for future research, wherein the best configurations of the studied

112



Conclusions and future works

models are applied to each sensor individually. By optimizing models for the
specific characteristics of each sensor, it is possible to achieve more accurate and
customized calibrations. This sensor-specific strategy could significantly improve
the precision and reliability of calibrations, ensuring that each sensor operates
optimally within its unique environmental conditions.

Use of Neural Architecture Search (NAS) Algorithms.
Finally, the exploration of Neural Architecture Search (NAS) algorithms [22]
presents a promising direction for future work. NAS algorithms automate the
process of identifying the most effective neural network architecture for a given
problem. Applying NAS in the context of calibrating low-cost optical fine-dust
sensors could uncover novel and more efficient network architectures that are better
suited to the task. This approach not only has the potential to enhance model per-
formance but also to significantly accelerate the development cycle by automating
the trial-and-error process traditionally associated with model architecture selection.

These prospective research approaches provide a path forward for using deep
learning and quantum machine learning to sensor calibration. Through the explo-
ration of these domains, scholars might expand upon the framework established
by this dissertation to enhance calibration techniques, elevate model efficacy, and
augment the durability and precision of inexpensive optical fine-dust sensors.
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