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In the first age,
In the first battle,
When the shadows first lengthened,
One stood...
He chose the path of perpetual torment.
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Abstract

In this thesis, our main goal is to create an effective machine-learning model to predict flutter
speed. At first, we made preliminary investigations about aeroelasticity, starting from a single
wing modeled as a beam to a whole aircraft configuration. We analyzed and tried to find the
optimum parameters to use in the flutter analysis. After that, we selected a base aircraft model
to create different aircraft configurations to use as input to create training, validation, and test
datasets. We designated intervals for the aircraft such as dimensions, engine locations, and ma-
terials. Then we created an automation tool in Python to create aeroelastic outputs (frequency
and damping values for different modes of the aircraft, in a speed interval designated before-
hand) using MUL2 and NASTRAN. With this tool, we created data for 7000 input instances
and stored it for the machine learning model creation. Then we preprocessed the raw data for
the deep neural network that we will be utilizing, we created a deep neural network architecture
and tuned the hyperparameters accordingly. And then we created a final model. We tried dif-
ferent loss functions, but the mean absolute error with Adam optimizer was the most accurate
one. We managed to predict flutter speeds in the test data accurately. We showed that especially
for design optimization, machine learning is a valuable tool since it can capture the relation for
flutter, and it has the potential to do much more such as to create large deep learning models to
accelerate every part of the design and analyzing processes.
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Chapter 1

Introduction

1.1 Aeroelasticity
Aeroelasticity is a field of study that examines the interplay between the deformation of an
elastic structure in airflow and the aerodynamic forces that result from this interaction. This
interdisciplinary field’s complexity is best illustrated by Collar’s triangle (refer to Figure 1.1),
a concept introduced by Professor A. R. Collar in the 1940s. This triangle represents the in-
terconnections among the three primary disciplines of aerodynamics, dynamics, and elasticity.
Aerodynamics is concerned with predicting the forces exerted on a body of a specific shape.
Elasticity deals with forecasting the shape of an elastic body under stress. Dynamics focuses on
the impact of inertial forces. The integration of these disciplines leads to various interaction ar-
eas, including structural dynamics (a combination of elasticity and dynamics), flight mechanics
(a combination of dynamics and aerodynamics), static aeroelasticity (a combination of aerody-
namics and elasticity), and dynamic aeroelasticity (a combination of elasticity, dynamics, and
aerodynamics). [14].

Figure 1.1: Collar’s Triangle

It is usual to classify aeroelastic phenomena as being either static or dynamic. Static aeroe-
lasticity considers the non-oscillatory effects of aerodynamic forces acting on the flexible air-
craft structure. There is also the potentially disastrous phenomenon of divergence to consider,
where the wing twist can increase without limit when the aerodynamic pitching moment on the
wing due to twist exceeds the structural restoring moment. Dynamic aeroelasticity is concerned
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with the oscillatory effects of the aeroelastic interactions, and the main area of interest is the
potentially catastrophic phenomenon of flutter. This instability involves two or more modes of
vibration and arises from the coupling of aerodynamic, inertial, and elastic forces; it means that
the structure can effectively extract energy from the air stream. The presence of flexible modes
influences the dynamic stability modes of the rigid aircraft and so affects the flight dynamics
[29].

1.1.1 Historical Background
Aeroelastic phenomena have significantly influenced the history of powered flight. In 1903, the
Wright brothers achieved lateral control on their Wright Flyer by employing controlled warp-
ing of the wings. In the same year, Samuel Langley’s attempts at powered flight resulted in
catastrophic wing failure due to excessive flexibility and overloading. These aeroelastic phe-
nomena, including torsional divergence, contributed to the dominance of biplane designs until
the 1930s. At that time, “stressed-skin” metallic structures were introduced to provide tor-
sional rigidity for monoplanes. The first documented instance of aircraft flutter occurred in
1916 when the Handley Page O/400 bomber experienced severe tail oscillations due to the ab-
sence of a torsion-rod connection between the port and starboard elevators. Another significant
aeroelastic concern emerged in 1927 with the Bristol Bagshot, a twin-engine, high-aspect-ratio
aircraft. As the aircraft’s speed increased, the effectiveness of the ailerons decreased to zero
and then became negative, a phenomenon is now known as “aileron reversal”. Catastrophic
failures due to aircraft flutter became a major design concern during World War I and continue
to be so today. R.A. Frazer and W.J. Duncan of the National Physical Laboratory in England
compiled a seminal document on this topic, “The Flutter of Aeroplane Wings,” as R&M 1155
in August 1928. Following the successful analysis of the 1927 Bristol Bagshot aileron reversal
and the development of design criteria to prevent it by Roxbee Cox and Pugsley at the Royal
Aircraft Establishment in the early 1930s, the term “aeroelasticity” was proposed to describe
these phenomena. [14].

1.2 Machine Learning
Machine Learning (ML), a branch of artificial intelligence, utilizes algorithms and statistical
models to empower computers to carry out tasks without the need for explicit programming.
These ML algorithms construct a mathematical model from sample data, often referred to as
"training data", enabling them to make predictions or decisions without being specifically pro-
grammed for the task [19, 6].
According to UC Berkeley, the machine learning algorithm can be divided into three main parts:

1. Decision Process: Machine learning algorithms are used to make categorizations or pre-
dictions. Based on labeled or unlabeled input data, the algorithm produces an estimate
about a pattern in the data.

2. Evaluation Metric: An error function evaluates the model’s predictions. If there are now
examples available, an error function can make comparisons to assess the accuracy of the
model.

3. Optimization: If the model can better align with the data points in the training set, then
the weights tweaked to reduce the minimize the difference between the known examples
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and the model’s approximation. The algorithm will repeat this iterative “evaluate and
optimize” process until it reaches a certain accuracy threshold.

1.2.1 Machine Learning, Deep Learning and Neural Networks
While the terms of machine learning and deep learning are often used interchangeably, there are
nuances between them. Both machine learning and deep learning, along with neural networks,
are subsets of artificial intelligence. However, neural networks fall under machine learning, and
deep learning is a sub-field of neural networks.
The distinction between deep learning and machine learning lies in their learning methods.
“Deep” machine learning can utilize labeled datasets, also known as supervised learning, to
guide its algorithm, but it does not strictly need a labeled dataset. Deep learning can process
unstructured data in its raw form (like text or images), and it can autonomously identify the
features that differentiate various data categories. This reduces the need for human intervention
and facilitates the use of large data volumes. Deep learning can be thought of as “scalable
machine learning”, as Lex Fridman mentions in his MIT lecture.
In contrast, classical or “non-deep” machine learning relies more on human intervention for
learning. Human experts identify the features to distinguish between data inputs, typically
requiring more structured data for learning.
Neural networks, or artificial neural networks (ANNs), consist of node layers, including an input
layer, one or more hidden layers, and an output layer. Each node, or artificial neuron connects
to another and has an associated weight and threshold. If the output of any individual node
exceeds the specified threshold value, that node is activated, transmitting data to the network’s
next layer. If not, no data is passed to the network’s next layer by that node. The “deep” in deep
learning refers to a number of layers in a neural network. A neural network with more than
three layers, including the input and output, can be considered as a deep learning algorithm or
deep neural network. A neural network with only three layers is simply a basic neural network.
Deep learning and neural networks have been instrumental in advancing fields such as computer
vision, natural language processing, and speech recognition.

Figure 1.2: A Simple Neural Network
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1.2.2 Machine Learning Methods

• Supervised Machine Learning: This type of machine learning uses labeled datasets to
train algorithms to accurately classify data or predict outcomes. As the model receives
input data, it adjusts its weights until it fits the data appropriately. This adjustment hap-
pens during the cross-validation process to prevent the model from overfitting or under-
fitting. Supervised learning is used to solve various real-world problems at scale, such
as segregating spam e-mails into a separate folder. Techniques used in supervised learn-
ing include neural networks, naïve bayes, linear regression, logistic regression, random
forest, and support vector machine (SVM).

• Unsupervised machine learning employs algorithms to analyze and cluster unlabeled
datasets (known as clusters). These algorithms can identify hidden patterns or data group-
ings without human intervention. Its ability to find similarities and differences in data
makes it suitable for exploratory data analysis, cross-selling strategies, customer seg-
mentation, and image and pattern recognition. It is also used to decrease the number of
features in a model through a process called dimensionality reduction. Common methods
for this include Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD). Other algorithms used in unsupervised learning include neural networks, k-means
clustering, and probabilistic clustering methods.

• Semi-supervised Machine Learning: Semi-supervised learning strikes a balance between
supervised and unsupervised learning. During training, it uses a smaller labeled dataset
to guide the classification and feature extraction from a larger, unlabeled dataset. Semi-
supervised learning can address the issue of insufficient labeled data for a supervised
learning algorithm. It is also beneficial when labeling data is too expensive.

• Reinforcement Learning: Reinforcement machine learning is a type of machine learning
that, while bearing similarities to supervised learning, does not rely on sample data for
training. Instead, this model learns on the fly through a process of trial and error. A series
of successful results are reinforced to formulate the optimal recommendation or policy
for a specific problem.

1.2.3 Common Machine Learning Algorithms

• Neural Networks: These algorithms mimic the functioning of the human brain by using
a vast network of interconnected processing nodes. They excel at pattern recognition
and are crucial in applications such as natural language processing, image and speech
recognition, and image generation.

• Linear Regression: This algorithm predicts numerical values based on a linear relation-
ship between various values. For instance, it could be used to forecast house prices using
historical data from a specific area.

• Logistic Regression: This supervised learning algorithm predicts categorical response
variables, like ‘yes/no’ responses to questions. It finds use in applications like spam
classification and quality control in a production line.
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• Clustering: Clustering algorithms, which employ unsupervised learning, can detect pat-
terns in data for grouping purposes. These algorithms assist data scientists by identifying
differences in data items that might have been missed by humans.

• Decision Trees: Decision trees can predict numerical values (regression) and classify data
into categories. They use a series of interconnected decisions that can be represented with
a tree diagram. One advantage of decision trees is their ease of validation and auditing,
unlike the opaque nature of neural networks.

• Random Forests: In a random forest, the machine learning algorithm predicts a value or
category by amalgamating the results from multiple decision trees.

1.2.4 Machine Learning in Aeroelastic Research
Traditional approaches to aeroelastic analysis have leaned heavily on physical modeling and
computational fluid dynamics (CFD), which are effective but can be computationally demand-
ing and slow [3]. The rise of machine learning technologies expedites a new era for aeroelastic
research, offering innovative ways to model complex interactions, predict aeroelastic phenom-
ena, and optimize structures with unprecedented efficiency [13].
Particularly, deep learning, a subset of machine learning, has shown promise in addressing
aeroelastic problems. This is exemplified in the work by Yi-Ren Wang et al., where deep learn-
ing techniques were applied to predict flutter speed with a level of accuracy and computational
efficiency that surpasses traditional methods [28]. This study not only underscores the poten-
tial of ML in enhancing predictive capabilities in aeroelasticity but also paves the way for its
broader application in aerospace engineering challenges.
Additionally, neural networks have been utilized for flutter prediction, demonstrating significant
reductions in computational costs and improvements in prediction accuracy over conventional
methods [17]. Reinforcement learning, a branch of ML that focuses on teaching computers to
learn from interaction with the environment, has been explored for developing adaptive control
strategies in aeroelastic systems, showing potential in managing wing flutter across different
flight conditions [26].
The synergy between machine learning and computational fluid dynamics (CFD) has also been
fruitful, leading to the development of surrogate models based on CFD-generated data. These
models can predict aerodynamic loads and structural responses with reduced computational
requirements, facilitating faster aerospace structure design and testing [32]. Such advancements
illustrate ML’s role in expanding the scope for design exploration and optimization in aeroelastic
research.
In optimizing aerospace structures, machine learning, particularly genetic algorithms combined
with ML models, has been instrumental in refining wing geometries for improved aeroelastic
performance. This optimization balances structural weight, strength, and aerodynamic effi-
ciency, showcasing ML’s capability in enhancing aerospace design [5].
Despite these advancements, integrating machine learning into aeroelastic research presents
challenges, including data quality, model interpretability, and the need for extensive training
datasets. The opaque nature of some ML models also raises questions about their reliability
and safety in critical aerospace applications [15].
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Machine learning offers transformative potential for aeroelastic research, enabling more so-
phisticated modeling, accurate predictions, and efficient optimization. As machine learning
technologies continue to evolve, they are set to play a pivotal role in the future of aeroelasticity,
with ongoing research needed to address the current challenges fully.
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Chapter 2

Aeroelastic Phenomena

2.1 Divergence
Static aeroelasticity studies the interplay between the constant aerodynamic forces exerted on
an aircraft and the subsequent elastic bending of its wings. This field primarily deals with two
types of design challenges. The first, which is applicable to all aircraft, pertains to the effects
of elastic deformation on aerodynamic forces and vice versa during regular flight conditions.
These effects can have a significant impact on various factors such as performance, handling
properties, flight stability, distribution of structural loads, and control effectiveness. The second
challenge is associated with the possibility of static instability in the wing structure, which
could result in a severe failure, often termed as “divergence”. Divergence occurs when a wing
bends under aerodynamic forces in a manner that amplifies the applied load, leading to further
distortion of the structure, and potentially causing a failure. This failure is not simply due to an
overload for the designed structure; instead, it’s the interaction of the aerodynamic forces with
the structure that results in a reduction of effective stiffness [14].

2.1.1 Wind Tunnel Wall-Mounted Model
Imagine a rigid, uniformly spanned wing model that is attached to the sidewalls of a wind
tunnel. This setup allows the wing to pitch around the support axis, as depicted in Figure 2.1.
The support is torsionally flexible, limiting the wing’s pitch rotation in the same way a rotational
spring would.

The rotational stiffness of the support is denoted by 𝑘, as shown in Figure 2.2. If we consider
the body to be pivoted about its support 𝑂, which is located at a distance 𝑥𝑂 from the leading
edge, the principle of moment equilibrium necessitates that the sum of all moments about 𝑂
must be zero. Thus the moment equilibrium equation around the elastic axis 𝑂 is:

𝑀ac + 𝐿
(

𝑥𝑂 − 𝑥ac
)

−𝑊
(

𝑥𝑂 − 𝑥cg
)

− 𝑘𝜃 = 0 (2.1)
If support were rigid, the angle of attack of the wing would be 𝛼𝑟, positive nose-up. However,

it is not rigid and the elastic part of the pitch angle is denoted by 𝜃, which is also a positive
nose-up. The angle of attack of the wing can be written as 𝛼 = 𝛼𝑟 + 𝜃. Considering, that
linear aerodynamics is in use, the angle of attack can be assumed to be a small angle, such that
𝑠𝑖𝑛(𝛼) ≈ 𝛼 and 𝑐𝑜𝑠(𝛼) ≈ 1. In this case, the airfoil is assumed to be thin (small thickness to
chord and small camber) and the flow is incompressible.
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Figure 2.1: Platform view of a wind-tunnel model on torsionally elastic support

Figure 2.2: Airfoil for wind-tunnel model
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For linear aerodynamics, the lift for an elastic support can be written as:
𝐿 = 𝑞𝑆𝐶𝐿𝛼

(

𝛼𝑅 + 𝜃
) (2.2)

where 𝑞 = 1
2
𝜌∞𝑈 2 is the freestream dynamic pressure,𝑈 is the freestream dynamic pressure,

𝜌∞ is the freestream air density, 𝑆 is surface area of the wing and 𝐶𝐿𝛼 is the wing lift-curve
slope. It is also possible to express the moment of aerodynamic forces about the aerodynamic
center as:

𝑀𝑎𝑐 = 𝑞𝑆𝑐𝐶𝑀𝑎𝑐 (2.3)
If the angle of attack is small, 𝐶𝑀𝑎𝑐 can be considered constant. Using Equation 2.2 and

Equation 2.3, Equation 2.1 can be rewritten as:
𝑞𝑆𝑐𝐶𝑀𝑎𝑐 + 𝑞𝑆𝐶𝐿𝛼

(

𝛼𝑅 + 𝜃
) (

𝑥𝑂 − 𝑥𝑎𝑐
)

−𝑊
(

𝑥𝑂 − 𝑥𝑐𝑔
)

− 𝑘𝜃 = 0 (2.4)

where it is possible to obtain elastic deflection:

𝜃 =
𝑞𝑆𝑐𝐶𝑀𝑎𝑐 + 𝑞𝑆𝐶𝐿𝛼𝛼𝑅

(

𝑥𝑂 − 𝑥𝑎𝑐
)

−𝑊
(

𝑥𝑂 − 𝑥𝑐𝑔
)

𝑘 − 𝑞𝑆𝐶𝐿𝛼
(

𝑥𝑂 − 𝑥𝑎𝑐
) (2.5)

When there is an upstream lift with respect to point O, 𝛼 will get increased due to lift, and
the latter creates more lift. So, lift is destabilizing, counteracting the action of the spring when
𝑥𝑂 > 𝑥𝑎𝑐. When the moment of the lift about point O exceeds the restoring moment from
the spring, results in static aeroelastic instability called ’divergence’. From Equation 2.5, when
𝑥𝑎𝑐 < 𝑥𝑂 it is possible for the denominator to vanish or for 𝜃 to blow up with sufficient 𝑞 values.
The divergence dynamic pressure, or in other words, dynamic pressure at which the divergence
occurs can be written as:

𝑞 = 𝑞𝐷 = 𝑘
𝑆𝐶𝐿𝛼

(

𝑥𝑂 − 𝑥𝑎𝑐
) (2.6)

Using this equation, the divergence speed can be found:

𝑈𝐷 =
√

2𝑘
𝜌𝑆𝐶𝐿𝛼

(

𝑥𝑂 − 𝑥𝑎𝑐
) (2.7)

If the aerodynamic center is coincident with the pivot, so 𝑥𝑎𝑐 = 𝑥𝑂, the divergence dynamic
pressure becomes infinite. Or when the aerodynamic center is coming later than the pivot 𝑥𝑎𝑐 >
𝑥𝑂, the divergence dynamic pressure becomes negative. Since the dynamic pressure must be
positive and finite for physical reasons, it is clear that in either case divergence is impossible.

To understand the character of this instability, consider a symmetric airfoil (𝐶𝑀𝑎𝑐 = 0),
and 𝑥𝑐𝑔 = 𝑥𝑂 so that the weight term drops out of the equation for 𝜃. Using Equation 2.6,let
𝑘 = 𝑞𝐷𝑆𝐶𝐿𝛼(𝑥𝑂 − 𝑥𝑎𝑐), so 𝜃 can be written as:

𝜃 =
𝛼𝑟

𝑞𝐷
𝑞
− 1

(2.8)

Previously, it was discovered that the lift is proportional to 𝛼𝑟+𝜃. So, the lift change divided
by the rigid lift can be written as:
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Δ𝐿
𝐿rigid

= 𝜃
𝛼𝑟

=
𝑞
𝑞𝐷

1 − 𝑞
𝑞𝐷

(2.9)

Both 𝜃 and Δ𝐿
𝐿rigid

approaches to infinity as 𝑞 approaches to 𝑞𝐷.

Figure 2.3: Relative change in lift due to aeroelastic effect

2.2 Flutter Analysis of a Typical Section
In this section, a demonstration of the flutter analysis of a linear aeroelastic system will be
conducted. To do this, a simple model is needed, therefore simple, spring-restrained, rigid-
wing models, just like Figure 2.4 are used. These models are called ’typical-section models’.
This configuration can represent a typical airfoil section along a finite wing. The discrete springs
can reflect the wing structural bending and torsional stiffness, and the reference point, therefore
the elastic axis.

The points take place on the zero-lift line, 𝑃 , 𝐶,𝑄, 𝑇 which refer respectively to the refer-
ence point (where the displacement h is measured), the center of mass, the aerodynamic cen-
ter, and the three-quarter-chord. The dimensionless parameters 𝑒 and 𝑎 (−1 ≤ 𝑒 ≤ 1) and
(−1 ≤ 𝑎 ≤ 1) determine the locations of the points 𝐶 and 𝑃 . The chordwise offset of the cen-
ter of mass is usually made dimensionless by airfoil semi-chord 𝑏 and denoted as 𝑥𝜃 = 𝑒 − 𝑎.
The rigid plunging and pitching of the model are restrained by light, linear springs with spring
constraints 𝑘ℎ and 𝑘𝜃. The equations of motion are formulated using Lagrange’s equations. To
achieve this, kinetic and potential energies and generalized forces resulting from aerodynamic
loading are needed. The potential energy can be written as:

𝑃 = 1
2
𝑘ℎℎ

2 + 1
2
𝑘𝜃𝜃

2 (2.10)
The kinetic energy can be expressed as:

𝐾 = 1
2
𝑚𝐕𝐶 ⋅ 𝐕𝐶 + 1

2
𝐼𝐶 �̇�

2 (2.11)

Where 𝑽 𝐶 can be found with the following equations:
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𝑽 𝐶 = −ℎ̇𝒊2 + 𝑏�̇�(𝑎 − 𝑒)�̂�2 (2.12)
Therefore the kinetic energy equation can be written as:

𝐾 = 1
2
𝑚
(

ℎ̇2 + 𝑏2𝑥2
𝜃�̇�

2 + 2𝑏𝑥𝜃ℎ̇�̇�
)

+ 1
2
𝐼𝑐 �̇�

2

𝐾 = 1
2
𝑚
(

ℎ̇2 + 2𝑏𝑥𝜃ℎ̇�̇�
)

+ 1
2
𝐼𝑝�̇�

2 (2.13)

𝐼𝐶 is the moment of inertia about 𝐶 . And 𝐼𝑃 is the moment of inertia around the 𝑃 . 𝐼𝑃 can
be calculated using the parallel axis theorem: 𝐼𝑃 = 𝐼𝐶 + 𝑚𝑏2𝑥2

𝜃

Figure 2.4: Schematic showing geometry of the wing section with pitch and plunge spring
restraints

The virtual displacement of the point P can be obtained with the following equation:

𝛿𝒑𝑄 = −𝛿ℎ𝒊2 + 𝑏𝛿𝜃
(1
2
+ 𝑎

)

�̂�2 (2.14)
The virtual work of the aerodynamic forces can be expressed as:

𝛿𝑊 = 𝐿
[

−𝛿ℎ + 𝑏
(1
2
+ 𝑎

)

𝛿𝜃
]

+𝑀 1
4
𝛿𝜃 (2.15)

and the generalized forces become:
𝑄ℎ = −𝐿
𝑄𝜃 = 𝑀 1

4
+ 𝑏

(

1
2
+ 𝑎

)

𝐿 (2.16)

Lagrange’s equations are specialized here, and the kinetic energy𝐾 depends on only �̇�1, �̇�2, ...;so,
𝑑
𝑑𝑡

(

𝜕𝐾
𝜕�̇�𝑖

)

+ 𝜕𝑃
𝜕𝑞𝑖

= 𝑄𝑖 (𝑖 = 1, 2, ..., 𝑛) (2.17)
Here 𝑛 = 2 and 𝑞2 = 𝜃 and the equations of motion become:
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{

𝑚ℎ̈ + 𝑚𝑥𝜃𝑏�̈� + 𝑘ℎℎ = −𝐿
𝑚𝑥𝜃𝑏ℎ̈ + 𝐼𝑃 �̈� + 𝑘𝜃𝜃 = 𝑏

(

1
2
+ 𝑎

)

𝐿 +𝑀 1
4

(2.18)

For aerodynamics, when the steady-flow theory considered:

𝐿 = 2𝜋𝜌∞𝑏𝑈 2𝜃
𝑀 1

4
= 0 (2.19)

where, per the thin-airfoil theory coming from the ’typical section’ model used, the lift-
curve slope is taken as 2𝜋.

To simplify the notation, the uncoupled natural frequencies at zero airspeed can be intro-
duced:

𝜔𝑛 =
√

𝑘ℎ

𝑚
, 𝜔𝑏 =

√

𝑘𝜃

𝐼𝑝
(2.20)

Rearranging the equations of motions in the matrix form:

[

𝑚𝑏2 𝑚𝑏2𝑥𝜃
𝑚𝑏2𝑥𝜃 𝐼𝑝

]{ ℎ̈
𝑏
�̈�

}

+
[

𝑚𝑏2𝜔2
ℎ 2𝜋𝜌∞𝑏2𝑈 2

0 𝐼𝑝𝜔2
𝜃 − 2( 1

2
+ 𝑎)𝜋𝜌∞𝑏2𝑈 2

]{ℎ
𝑏
𝜃

}

=
{

0
0

}

. (2.21)

Several methods are developed to solve this system of equations, but the most efficient one
for numerical solving is the PKNL method, which is a ’no-looping’ variant of the PK method.
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Chapter 3

Aeroelastic Model

In the execution of an aeroelastic analysis, the initial task is to determine the appropriate models
to utilize. Given the interdisciplinary characteristics of aeroelasticity, it’s crucial to strategically
select both the structural and aerodynamic models. Moreover, the methodology employed to
model the interaction between these two components is a significant aspect of the process. This
approach ensures a robust and precise depiction of the aeroelastic phenomena under study.

3.1 Carrera Unified Formulation

Classical 1D models like (Timoshenko, Euler-Bernoulli, etc.) can deal properly with the bend-
ing of a compact cross-section beam, however, refined models are needed to describe the me-
chanical response of more complex boundaries (e.g. torsion) or geometrical (e.g. thin-walls)
conditions. With CUF, displacement fields are obtained through a single form of expression in
a unified manner regardless of the order of the theory (𝑁), which is considered as an input of
the analysis. The unified formulation of the cross-section displacement field is described by an
expansion of a generic function (𝐹𝜏):

𝒖 = 𝐹𝜏𝒖𝜏 , 𝜏 = 1, 2, ...,𝑀 (3.1)

where𝐹𝜏 are functions of the cross section coordinates 𝑥 and 𝑧, 𝒖𝜏 is the displacement vector
and 𝑀 stands for the number of terms in the expansion [4].

In this thesis, aeroelastic analysis, therefore structural analyses of wings modeled as elon-
gated and thin cross-sections conducted. So, considering those as 1D beam models is justified.
The two types of polynomial expansions considered are the Taylor Expansion (TE) and La-
grange Expansion (LE).

3.1.1 Taylor Expansion for 1D Model

A possible choice for the type of expansion could be the Taylor polynomial expansion on the
variables 𝑥 and 𝑧. Considering a generic order 𝑁 of expansion and indicating with 𝑀 the
number of the term of the expansion considered, the displacement field has the following form:
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢𝑥 =
𝑁
∑

𝑁𝑖=0

( 𝑁𝑖
∑

𝑀=0
𝑥𝑁𝑖−𝑀𝑧𝑀𝑢𝑥𝑁𝑖(𝑁𝑖+1)

2 +𝑀+1

)

𝑢𝑦 =
𝑁
∑

𝑁𝑖=0

( 𝑁𝑖
∑

𝑀=0
𝑥𝑁𝑖−𝑀𝑧𝑀𝑢𝑁𝑖(𝑁𝑖+1)

2 +𝑀+1

)

𝑢𝑥 =
𝑁
∑

𝑁𝑖=0

( 𝑁𝑖
∑

𝑀=0
𝑥𝑁𝑖−𝑀𝑧𝑀𝑢𝑁𝑖(𝑁𝑖+1)

2 +𝑀+1

)

(3.2)

3.1.2 Lagrange Expansion for a 1D Model
Lagrange polynomials are usually given in terms of normalized coordinates. This is not a com-
pulsory choice, since LE polynomials can also be implemented in terms of actual coordinates.
However, the normalized formulation was preferred to take advantage of the isoparametric for-
mulation [4]. In Figure 3.1, the 4-node cross-section element can be seen with normalized
geometry. The Lagrange polynomials of the same element are:

𝐹𝜏 =
1
4
(

1 + 𝛼𝛼𝜏
) (

1 + 𝛽𝛽𝜏
)

𝜏 = 1, 2, 3, 4 (3.3)

where 𝛼 and 𝛽 are the normalized coordinates and 𝛼𝜏 and 𝛽𝜏 are the coordinates of the four
nodes given in Table 3.1.

Figure 3.1: 4-node Lagrange element in actual coordinates and normalized coordinates

Node 𝛼𝜏 𝛽𝜏
1 -1 -1
2 1 -1
3 1 1
4 -1 1

Table 3.1: Normalized coordinates of the 4 nodes of the Lagrange element LE4

The displacement field for a model incorporating a 4-node element is defined as follows:
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⎧

⎪

⎨

⎪

⎩

𝑢𝑥 = 𝐹1𝑢𝑥1 + 𝐹2𝑢𝑥2 + 𝐹3𝑢𝑥3 + 𝐹4𝑢𝑥4
𝑢𝑦 = 𝐹1𝑢𝑦1 + 𝐹2𝑢𝑦2 + 𝐹3𝑢𝑦3 + 𝐹4𝑢𝑦4
𝑢𝑧 = 𝐹1𝑢𝑧1 + 𝐹2𝑢𝑧2 + 𝐹3𝑢𝑧3 + 𝐹4𝑢𝑧4

(3.4)

In a LE4 element, the unknown variables are the displacement components of each node.
This means that the problem unknowns are only physical translational displacements. Also, the
problem unknowns can be placed on the physical surfaces of the body. These two fundamental
characteristics are valid for each Lagrange element, regardless of the number of nodes [4].

3.1.3 Finite Element Formulation and CUF
The nodal displacement vector can be written as:

𝑢𝜏𝑖 =
{

𝑢𝑥𝜏𝑖, 𝑢𝑦𝜏𝑖, 𝑢𝑧𝜏𝑖
}𝑇 , 𝜏 = 1, 2,… ,𝑀, 𝑖 = 1, 2,… , 𝑁𝐸𝑁 (3.5)

where the index 𝑖 indicates the element node and 𝑁𝐸𝑁 stands for the number of nodes per
element. If a linear model is considered (𝑁 = 1,𝑀 = 3), and a two-node element is adopted,
the element unknowns will be:

𝑢tri =
{

𝑢𝑥11 𝑢𝑦11 𝑢𝑧11 𝑢𝑥21 𝑢𝑦21 𝑢𝑧21 𝑢𝑥31 𝑢𝑦31 𝑢𝑧31
𝑢𝑥12 𝑢𝑦12 𝑢𝑧12 𝑢𝑥22 𝑢𝑦22 𝑢𝑧22 𝑢𝑥32 𝑢𝑦32 𝑢𝑧32

}𝑇

(3.6)
The displacement variables are interpolated along the axis of the beam utilizing the shape

functions (𝑁𝑖),

𝒖 = 𝑁𝑖𝐹𝜏𝒖𝜏𝑖 (3.7)

𝑁𝑖 form functions depend on the element under consideration. When beam elements with
2 (B2), 3 (B3), and 4 nodes (B4) are considered whose shape functions are:

𝑁1 =
1
2
(1 − 𝑟), 𝑁2 =

1
2
(1 + 𝑟)

(

𝑟1 = −1, 𝑟2 = 1
)

𝑁1 =
1
2
𝑟(𝑟 − 1), 𝑁2 =

1
2
𝑟(𝑟 + 1), 𝑁3 = −(1 + 𝑟)(1 − 𝑟)

(

𝑟1 = −1, 𝑟2 = 1, 𝑟3 = 0
)

𝑁1 = − 9
16

(

𝑟 + 1
3

)(

𝑟 − 1
3

)

(𝑟 − 1), 𝑁2 =
9
16

(

𝑟 + 1
3

)(

𝑟 − 1
3

)

(𝑟 + 1),

𝑁3 =
27
16
(𝑟 + 1)

(

𝑟 − 1
3

)

(𝑟 − 1), 𝑁4 = −27
16
(𝑟 + 1)

(

𝑟 + 1
3

)

(𝑟 − 1)

(

𝑟1 = −1, 𝑟2 = 1, 𝑟3 = −1
3
, 𝑟4 =

1
3

)

(3.8)

24



The natural coordinate (𝑟) ranges from −1 to 1. 𝑟𝑖 indicates the position of the node within
the natural beam boundaries [4].

Stiffness Matrix, Mass Matrix, and Loading Vector

In the CUF, Finite Element matrices are formulated in terms of FN (Fundamental Nucleus).
The FN is one of the main features of the CUF. FN is a compact formulation of the stiffness
matrix and its mathematical statements are independent from the theory of structures used.

A compact form of the stiffness matrix can be obtained using the internal virtual work equa-
tion:

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝒖𝑇𝑠𝑗𝒌
𝜏𝑠𝑖𝑗𝒖𝜏𝑖 (3.9)

where 𝒌𝜏𝑠𝑖𝑗 is the stiffness matrix in the form of the FN.
Using the FN assembly technique, every Finite Element matrix or vector can be obtained.

From the following inertial virtual work equation derived, the mass matrix in the form of FN
can be found:

𝛿𝐿𝑖𝑛𝑒 = 𝛿𝒖𝑇𝑠𝑗𝒎
𝜏𝑠𝑖𝑗𝒖𝜏𝑖 (3.10)

where 𝒎𝜏𝑠𝑖𝑗 is the mass matrix in the form of FN.
The undamped dynamic problem can be written as follows:

𝑴�̈� +𝑲𝑨 = 𝑷 (3.11)
where 𝑨 is the vector of the nodal unknowns and 𝑷 is the loading vector. Introducing har-

monic solutions, it is possible to compute the natural frequencies (𝜔𝑖) by solving an eigenvalue
problem:

(−𝜔2
𝑖𝑴 +𝑲)𝑨𝑖 = 0 (3.12)

where 𝐴𝑖 is the 𝑖𝑡ℎ eigenvector.
Using the following external virtual work equation derived, the loading vector 𝑃 can be

obtained:

𝛿𝐿𝑒𝑥𝑡 = 𝐹𝑠
(

𝑥𝑃 , 𝑧𝑃
)

𝑁𝑗
(

𝑦𝑃
)

𝑷 𝛿𝒖𝑇𝑠𝑗 (3.13)

3.2 Aerodynamic Model
In this section, the implementation of the Doublet-Lattice Method (DLM) will be presented.
Both VLM and DLM are widely known and used methods since they provide an effective low-
order numerical solver for studying aerodynamics and aeroelasticity. They have considerable
potential to be used in many areas of aerospace design [16].
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The DLM is an aerodynamic finite element method for modeling oscillating interfering
lifting surfaces in subsonic flows. It reduces to the Vortex-Lattice Method (VLM) at zero-
reduced frequency. The number of finite elements required for accurate results depends on the
aspect ratio and reduced frequency among other parameters [24].

3.2.1 Doublet Lattice Method (DLM)
In this thesis, for analyses MSC Nastran solver is used. MSC Nastran involves the Doublet-
Lattice Method for the subsonic aerodynamic calculation. The theory is presented by Albano
and Rodden (1969) [1], Giesing, Kalman, Rodden (1971) [7] and Giesing, Kalman, Rodden
(1971) [8] and is not reproduced here, since it is not in the scope of this thesis. The following
information is taken from MSC Nastran 2022.3 Aeroelastic Analysis User Guide [12].

The theoretical basis of the DLM is linearized aerodynamic potential theory. The undis-
turbed flow is uniform and is either steady or varying (gusting) harmonically. All lifting sur-
faces are assumed to lie nearly parallel to the flow.

Each of the interfering surfaces (panels) is divided into small trapezoidal lifting elements
("boxes") such that the boxes are arranged in strips parallel to the free stream with surface
edges. The unknown lifting pressures are assumed to be concentrated uniformly across the
one-quarter chord line of the box, and the surface normalwash boundary condition is satisfied
at each of these points.

The representation of aerodynamic elements can be seen in the figure below.

Figure 3.2: Aerodynamic Elements, location of doublets and collocation points for DLM (x and
s are orthogonal coordinates on the surface S) [18]

3.3 Interconnection of Structure with Aerodynamics
The interconnection between structural and aerodynamic grids is made by interpolation. This
allows independent selection of grid points of the structural and aerodynamic elements. The
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interpolation method utilized is called ’splining’. The interpolation method used for the in-
terconnection of the structural model with the aerodynamic model is the Infinite Plate Spline
(IPS).

3.3.1 Infinite Plane Spline (IPS)
The following theory of Infinite Plane Splines is obtained from Hexagon’s MSC Nastran 2022.3
Aeroelastic User Guide [12].

A surface spline is a mathematical tool used to find a surface function, 𝑤(𝑥, 𝑦), for all points
(𝑥, 𝑦) when 𝑤 is known for a discrete set of points, 𝑤𝑖 = 𝑤(𝑥𝑖, 𝑦𝑖). The Infinite Plate Spline is
a special surface spline that is tailored to legacy flat plate aerodynamics. The theory introduces
an infinite plate and solves for its deflections, given its deflections at a discrete set of points; that
is, it is the problem of a plate with multiple deflecting supports. The surface spline is a smooth
continuous function that will become nearly linear in 𝑥 and 𝑦 at large distances from the points
(𝑥𝑖, 𝑦𝑖). This problem can be solved in closed form.

The deflection of the plate is synthesized as the sum of deflections due to a set of point
loads on the infinite plate. The deflection due to a single concentrated load is the fundamental
solution and has polar symmetry. If the load is taken at 𝑥𝑖 = 𝑦𝑖 = 0, and polar coordinates are
used (𝑥 = 𝑟𝑐𝑜𝑠(𝜃), 𝑦 = 𝑟𝑠𝑖𝑛(𝜃), the governing differential equation is

𝐷∇4𝑤 = 𝐷1
𝑟
𝑑
𝑑𝑟

{

𝑟 𝑑
𝑑𝑟

[

1
𝑟
𝑑
𝑑𝑟

(

𝑟𝑑𝑤
𝑑𝑟

)]}

= 𝑞 (3.14)

The distributed load vanishes except near = 0. The general solution to the homogeneous
form of equation 3.14 is

𝑤 = 𝐶0 + 𝐶1𝑟
2 + 𝐶2𝑙𝑛𝑟 + 𝐶3𝑟

2𝑙𝑛𝑟 (3.15)

Set 𝐶2 = 0 to keep the solution finite as 𝑟 → 0. Then multiply equation 3.15 by 2𝜋𝑟 and
integrate from 𝑟 = 0 to (a small number) to obtain the concentrated force P,

𝑃 = lim
𝑟→0 ∫

𝜀

0
2𝜋𝑟𝑞𝑑𝑟 = lim

𝑟→0
2𝜋𝑟𝐷 𝑑

𝑑𝑟

[

1
𝑟
𝑑
𝑑𝑟

(

𝑟𝑑𝑤
𝑑𝑟

)]

(3.16)

Combining equation 3.15 and equation 3.16 leads to 𝐶3 =
𝑃

8𝜋𝐷
. The fundamental solution

may therefore be written
𝑤 = 𝐴 + 𝐵𝑟2 + (𝑃∕16𝜋𝐷)𝑟2 ln 𝑟2 (3.17)

since 𝑙𝑛𝑟 = 1
2
𝑙𝑛𝑟2 the fundamental solutions are superimposed to solve the entire plate

problem with a solution of the form
𝑤(𝑥, 𝑦) =

∑

[𝐴𝑖 + 𝐵𝑖𝑟
2
𝑖 + (𝑝∕16𝜋𝐷)𝑟2𝑖 𝑙𝑛𝑟

2
𝑖 ] (3.18)
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where 𝑟2𝑖 = (𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2.
The remaining requirement is the satisfaction of the boundary condition at infinity: Radial

lines emanating from loaded points (which all may be regarded as at the origin relative to in-
finity) appear to be straight lines. To do this, equation 3.18 is expanded in a series, assuming a
large argument (𝑥2+𝑦2), and delete all terms of order (𝑥2+𝑦2) ln(𝑥2+𝑦2),(𝑥2+𝑦2),𝑥 ln(𝑥2+𝑦2),
and 𝑦𝑙𝑛(𝑥2+𝑦2), leaving terms of order 𝑥, 𝑦, 𝑙𝑛(𝑥2+𝑦2), and 1. The details of the series expan-
sion are given by Harder, MacNeal, and Rodden (1971) [11]. The deletion of the higher-order
terms is accomplished by requiring

∑

𝐵𝑖 = 0 (3.19)
∑

𝑃𝑖 = 0 (3.20)
∑

𝑥𝑖𝑃𝑖 = 0 (3.21)
∑

𝑦𝑖𝑃𝑖 = 0 (3.22)

From equation 3.19 through equation 3.22 result in linear deflections at infinity; from equa-
tion 3.20 through equation 3.22 are also recognized as the equations of equilibrium. From 3.19
it is seen that

∑

(𝐴𝑖 + 𝐵𝑖𝑟
2
𝑖 ) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 (3.23)

A solution to the general spline problem, formed by superimposing solutions of equation
3.14, is given by

𝑤(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 +
𝑁
∑

𝑖=1
𝐾𝑖(𝑥, 𝑦)𝑃𝑖 (3.24)

where 𝐾𝑖(𝑥, 𝑦) =
1

16𝜋𝐷
𝑟2𝑖 ln 𝑟

2
𝑖 , 𝑟2𝑖 = (𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2, 𝑃𝑖 = concentrated load at (𝑥𝑖, 𝑦𝑖).

The 𝑁 + 3 unknowns (𝑎0, 𝑎1, 𝑎2, 𝑃𝑖; 𝑖 = 1, 𝑁) are determined from the 𝑁 + 3 equations
∑

𝑃𝑖 =
∑

𝑥𝑖𝑃𝑖 =
∑

𝑦𝑖𝑃𝑖 = 0 (3.25)
and

𝑤𝑗 = 𝑎0 + 𝑎1𝑥𝑗 + 𝑎2𝑦2 +
𝑁
∑

𝑖=1
𝐾𝑖𝑗𝑃𝑖 (𝑗 = 1, 𝑁) (3.26)

where 𝐾𝑖𝑗 = 𝐾𝑖(𝑥𝑗 , 𝑦𝑗). Note that 𝐾𝑖𝑗 = 𝐾𝑗𝑖, and 𝐾𝑖𝑗 = 0 when 𝑖 = 𝑗 . The above derivation
is also summarized by Harder and Desmarais (1972a) [10] and an application is shown. It is
discussed further by Rodden, McGrew, and Kalman (1972) [23] and by Harder and Desmarais
(1972b) [9]. Equation 3.24 can be written in matrix form:

28



𝑤(𝑥, 𝑦) = 1, 𝑥, 𝑦, 𝐾1(𝑥, 𝑦), 𝐾2(𝑥, 𝑦),… , 𝐾𝑁 (𝑥, 𝑦)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑎0
𝑎1
𝑎2
𝑃1
𝑃1
𝑃2
⋮
𝑃𝑁

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(3.27)

Combining equation 3.24 and equation 3.25 into the matrix form:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
𝑤1
⋮
𝑤𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 ... 1
0 0 0 𝑥1 ... 𝑥𝑁
0 0 0 𝑦1 ... 𝑦𝑁
1 𝑥1 𝑦1 0 ... 𝐾1𝑁
1 𝑥2 𝑦2 𝐾21 ... 𝐾2𝑁
⋮ ⋮ ⋮ ⋮ ... ⋮
1 𝑥𝑁 𝑦𝑁 𝐾𝑁1 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎0
𝑎1
𝑎2
𝑎2
𝑃1
𝑃2
⋮
𝑃𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= [𝐶][𝑃 ] (3.28)

permits solution for the vector of 𝑎𝑖 and 𝑃𝑖. The interpolation to any point in the (𝑥, 𝑦) plane
is then achieved by evaluating 𝑤(𝑥, 𝑦) from equation 3.27 at the desired points. This gives an
overall equation of the form

{𝑤}𝑎 =

⎡

⎢

⎢

⎢

⎣

1 𝑥1𝑎 𝑦1𝑎 𝐾1𝑎,1 𝐾1𝑎,2 ⋯ 𝐾1𝑎,𝑛
1 𝑥2𝑎 𝑦2𝑎 𝐾2𝑎,1 𝐾2𝑎,2 ⋯ 𝐾2𝑎,𝑛
⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
1 𝑥𝑛𝑎 𝑥𝑛𝑎 𝐾𝑛𝑎,1 𝐾𝑛𝑎,2 ⋯ 𝐾𝑛𝑎,𝑛

⎤

⎥

⎥

⎥

⎦

[𝐶]−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
𝑤1
𝑤2
⋮
𝑤𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.29)

Slopes of the aerodynamic panels, which are the negative of the slopes of the displacements,
are also required. These are found by analytically differentiating equation 3.29 with respect to
𝑥:

{𝛼}𝑎 = −
[𝜕𝑤
𝜕𝑥

]

𝑎
= −

⎡

⎢

⎢

⎣

0 1 0 𝐷𝐾1𝑎,1 ⋯ 𝐷𝐾1𝑎,𝑛
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 1 0 𝐷𝐾𝑛𝑎,1 ⋯ 𝐷𝐾𝑛𝑎,𝑛

⎤

⎥

⎥

⎦

[𝐶]−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
𝑤1
⋮
𝑤𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.30)

where:

𝐷𝐾𝑖𝑗 =
𝜕𝐾𝑖(𝑥𝑗 , 𝑦𝑗)

𝜕𝑥
=
(𝑥 − 𝑥𝑖

8𝜋𝐷

)

(1 + 𝑙𝑛𝑟2𝑖 ) (3.31)
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3.3.2 PK Method for Flutter Analysis
In this section, the following theory and equation are obtained from the NASTRAN User
Guide’s Theory section [12] and supplemented with Yuan and Zhang’s Numerical Stabiliza-
tion for Flutter Analysis Procedure [30].
There are numerous strategies for conducting flutter analysis to address the issue of frequency
matching. The K-method and the PK-method are two of the most frequently utilized techniques.
Both of these methods rely on the assumptions of simple harmonic motion, which are applica-
ble at the flutter boundary but not above or below it. As a result, while these methods might
predict identical flutter speeds and frequencies, their predictions for subcritical behavior might
be inaccurate. It’s been observed that the K-method’s damping predictions are not dependable,
as noted in Section 5.4.2 of Hodges and Pierce’s book [14]. Hence, due to its proven reliability,
the PK-method is often the preferred choice [30].
Following Rodden and Johnson [25], the equation for aeroelastic modal analysis using the PK-
method can be written as:

[𝑀ℎℎ𝑝
2 + (𝐵ℎℎ −

1
4
𝜌𝑐𝑉 𝑄𝐼

ℎℎ∕𝑘)𝑝 + (𝐾ℎℎ −
1
2
𝜌𝑉 2𝑄𝑅

ℎℎ)]{𝑢ℎ} = 0 (3.32)

where 𝑀ℎℎ is the generalized modal mass matrix, 𝐵ℎℎ is the damping matrix and 𝐾ℎℎ is the
stiffness matrix. All matrix terms in the equation 3.32 are real. 𝑄𝑅

ℎℎ and 𝑄𝐼
ℎℎ are the real

and imaginary parts of 𝑄ℎℎ(𝑘,𝑀𝑎𝑐ℎ), where the inputs are reduced frequency 𝑘 and Mach
number. It should be noted that the circular frequency (𝜔) and the reduced frequency 𝑘 are not
independent of each other, 𝑘 = 𝜔𝑐

2𝑉
.

The solution process for the PK Method was described thoroughly by Bellinger [2]. When
the solution process of Bellinger is followed, equation 3.32 is rewritten in canonical form after
multiplying it with 2:

[𝐴 − 𝑝𝐼]{�̃�} = 0 (3.33)

where [𝐴] is the doubled-size real matrix

[𝐴] =
[

0 𝐼
−𝑀−1

ℎℎ (𝐾ℎℎ −
1
2
𝜌𝑉 2𝑄𝑅

ℎℎ) −𝑀−1
ℎℎ (𝐵ℎℎ −

1
4
𝜌𝑐𝑉 𝑄𝐼

ℎℎ∕𝑘)

]

(3.34)

{�̃�ℎ} now incorporates both modal displacements, denoted as {𝑢ℎ}, and their corresponding
velocities, denoted as {�̇�ℎ}. During the solution procedure, the matrix from Equation (2) in
its canonical form is initially transformed to the upper Hessenberg form via an elimination
technique. Subsequently, complex conjugate eigenvalues are derived using the Double QR-
Transformation method. It’s noteworthy that most of the eigenvalues from Equation 3.33 exist
as complex conjugate pairs
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𝑝 = Re(𝑝) ± 𝑖Im(𝑝) = 𝛾𝜔 ± 𝑖𝜔
√

1 − 𝛾2 ≈ 𝛾𝜔 ± 𝑖𝜔 (3.35)

Where 𝜔 stands for the modal frequency and 𝛾 is the corresponding amplification rate coef-
ficient. Since 𝛾 is quite small when near equilibrium or close to flutter points, the imaginary
part of the eigenvalue 𝑝 is simplified to the circular frequency in engineering applications. The
reduced frequency 𝑘 is calculated from the eigenvalue 𝑝 as

𝑘 = 𝜔𝑐
2𝑉

=
|Im(𝑝)|𝑐

2𝑉
. (3.36)

To solve Equation 3.33 and ensure that Equation 3.36 is fulfilled, iterations are necessary. The
process starts with a minimal non-zero value of the reduced frequency, denoted as 𝑘, which
allows for the computation of 𝑄𝐼

ℎℎ

𝑘
. The complex eigenvalue pairs can then be expressed as

𝑝(𝑗)𝑟𝑠 = 𝜔(𝑗)
𝑟𝑠 (𝛾

(𝑗)
𝑟𝑠 ± 𝑖) (3.37)

where 𝑟 is a subscript representing the rank of the oscillatory mode, arranged in ascending
order of frequency (for instance, 1s is less than 2s, and so on). The term 𝑠 refers to the specific
oscillatory mode being examined. The symbol 𝑗 is used to indicate the iteration count for the
solutions of the eigenvalues, which will be used to calculate the subsequent approximation of
the nonzero reduced frequency.

𝑘(𝑗)
𝑠 = 𝜔(𝑗)

𝑠,𝑠𝑐∕2𝑉 (3.38)

The iteration is converged when
|

|

|

𝑘(𝑗)
𝑠 − 𝑘(𝑗−1)

𝑠
|

|

|

< 𝜀 (3.39)

where 𝜀 stands for the convergence criterion. The converged complex eigenvalues are
𝑝(𝑐)𝑟𝑠 = 𝜔(𝑐)

𝑟𝑠 (𝛾
(𝑐)
𝑟𝑠 ± 𝑖) (3.40)

where only 𝑝(𝑐)𝑠𝑠 complies with both Equations 3.33 and 3.36 as referenced in Bellinger [2], the
procedure to identify the subsequent oscillatory mode started by incrementing 𝑠 by one unit.
As per the methodology of Rodden and Johnson [25], the initial prediction of the upcoming
reduced frequency can be

𝑘(0)
𝑠 = 𝜔(𝑐)

𝑠,𝑠−1𝑐∕2𝑉 (3.41)

and the iteration process is continued until Equation 3.39 is satisfied.
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Chapter 4

Deep Neural Networks

In this study, in order to predict flutter speeds for different configurations of an aircraft, deep
neural networks are utilized. Before covering the details of deep neural networks, it is important
to cover the basics of neural networks. The following sections are created with the Dive into
Deep Learning, Release 0.17.2 [31].

4.1 Linear Regression
Regression refers to a set of methods for modeling the relationship between one or more in-
dependent variables and a dependent variable. In the natural sciences and social sciences, the
purpose of regression is most often to characterize the relationship between the inputs and out-
puts. Machine learning, however, is often concerned with prediction.
Regression problems usually become visible when there is a need to predict a numerical value.
Common examples can be listed as prediction prices, predicting the length of stay for patients
at the hospitals, and many more. It is important to note that, not every prediction problem is a
classical regression problem. There is a problem category called categorization, which aims to
predict membership among a set of categories.

4.1.1 Basic Elements of Linear Regression
Linear regression utilizes a few simple assumptions. First, assuming that the relationship be-
tween the independent variable 𝒙 and the dependent variable 𝑦 is linear. which means 𝑦 can be
expressed as a weighted sum of the elements in 𝒙, given some noise on the observations. The
second one is to assume that any noise is well-behaved (following a Gaussian distribution)
In the terminology of machine learning, the dataset that contains past information is called a
training dataset or training set. The outcome the learning algorithm trying to predict is called
a label or a target. The independent variables upon which the predictions are based are called
features or covariates.

Linear Model

Typically, 𝑛 is used to denote the number of examples in a dataset. The indexing of the data
examples are made with 𝑖, denoting each input as 𝐱(𝑖) = [𝑥(𝑖)

1 , 𝑥
(𝑖)
2 ]

⊤ and the corresponding label
as 𝑦(𝑖).
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Given a dataset, the goal is to choose weights 𝐰 and bias 𝑏 such that on average, the predictions
made according to the model at hand best fit the true targets observed in the data. Models whose
output prediction is determined by the affine transformation of input features are linear models,
where the affine transformation is specified by the chosen weights and bias.
Collecting all features into vector 𝐱 and all weights into a vector 𝐰, it is possible to express the
model compactly using a dot product:

�̂� = 𝐰⊤𝐱 + 𝑏 (4.1)

In the equation above, the vector 𝐱 corresponds to features of a single dataset row. It is often
convenient to refer to features of the entire dataset of 𝑛 rows, via the design matrix 𝐗. Here, 𝐗
contains one row for every example and one column for every feature.
For a collection of features 𝐗, the predictions �̂� can be expressed via the matrix-vector product:

�̂� = 𝐗𝐰 + 𝑏 (4.2)

where broadcasting is applied during the summation. Given features of a training set 𝐗 and
corresponding (known) labels 𝐲, the goal of linear regression is to find the weight vector 𝐰 and
the bias term 𝑏 that given features of a new data example sampled from the same distribution
as 𝐗, the new example’s label will (in expectation) be predicted with the lowest error.

Loss Function

Before thinking about how to fit data with the model at hand, it is necessary to determine a
measure of fitness. The loss function quantifies the distance between the real and predicted
value of the target. The loss will usually be a non-negative number where the smaller values
are better and perfect predictions incur a loss of 0. The most popular loss function in regression
problems is the squared error. When the prediction for an example 𝑖 is �̂�(𝑖) and the corresponding
true label is 𝑦(𝑖), the squared error can be found as following:

𝑙(𝑖)(𝐰, 𝑏) = 1
2
(

�̂�(𝑖) − 𝑦(𝑖)
)2 (4.3)

The constant 1
2

makes no real difference but will prove notationally convenient, canceling out
when the derivative of the loss is taken. Since the training dataset is given to us, and obviously
out of our control, the empirical error is only a function of model parameters. To make things
more concrete, the example below where a regression problem is plotted for a one-dimensional
case can be observed.
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Figure 4.1: Fitted data with a linear model

To measure the quality of a model on the entire dataset of 𝑛 examples, the losses on the
training set are averaged. The equation used can be found below:

𝐿(𝐰, 𝑏) = 1
𝑛

𝑛
∑

𝑖=1
𝑙(𝑖)(𝐰, 𝑏) = 1

𝑛

𝑛
∑

𝑖=1

1
2
(

𝐰⊤𝐱(𝑖) + 𝑏 − 𝑦(𝑖)
)2 (4.4)

When training the model, the desire is to find the parameters (𝐰∗, 𝑏∗) that minimize the total
loss across all training examples:

𝐰∗, 𝑏∗ = argmin
𝐰,𝑏

𝐿(𝐰, 𝑏). (4.5)

Analytical Solution

Linear regression is a simple optimization problem. Therefore can be solved analytically by
applying a simple formula. To start, the bias 𝑏 can be taken into the parameter 𝐰 by appending
a column to the design matrix consisting of all ones. Then the prediction problem is to minimize
‖𝐲−𝐗𝐰‖2. There is just one critical point on the loss surface and it corresponds to the minimum
of the loss over the entire domain. Taking the derivative of the loss with respect to 𝐰 and setting
it equal to zero yields the analytic (closed form) solution:

𝐰∗ = (𝐗⊤𝐗)−1𝐗⊤𝐲 (4.6)
While simple problems like linear regression may admit analytic solutions, this is not usually

the case.

Minibatch Stochastic Gradient Descent

Even in cases where the models cannot be solved analytically, the models can still be trained ef-
fectively in practice. The key technique for optimizing nearly any deep learning model consists
of iteratively reducing the error by updating the parameters in a direction that incrementally
lowers the loss function. This algorithm is called gradient descent.
The most naive application of gradient descent consists of taking the derivative of the loss
function, which is the average of the losses computed on every single example in the dataset.
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In practice, this can be extremely slow: the requirement is to pass over the entire dataset before
making a single update. Thus, often, sampling a random minibatch of examples every time we
need to compute the update, a variant called minibatch stochastic gradient descent.
In each iteration, first, a minibatch  is randomly sampled, which consists of a fixed number
of training examples. Then the derivative (gradient) of the average loss on the minibatch with
regard to model parameters gets computed. Finally, the gradient gets multiplied by a predeter-
mined positive value 𝜂 and subtracts the resulting term from the current parameter values.
We can express the update mathematically as follows:

(𝐰, 𝑏) ← (𝐰, 𝑏) − 𝜂
||

∑

𝑖∈
𝜕(𝐰,𝑏)𝑙

(𝑖)(𝐰, 𝑏). (4.7)

To summarize, the steps of the algorithm are the following: (i) initialize the values of the
model parameters, typically at random; (ii) iteratively sample random minibatches from the
data, updating the parameters in the direction of the negative gradient. For quadratic losses and
affine transformations, this can be written as follows:

𝐰 ← 𝐰 −
𝜂
||

∑

𝑖∈
𝜕𝐰𝑙

(𝑖)(𝐰, 𝑏) = 𝐰 −
𝜂
||

∑

𝑖∈
𝐱(𝑖)

(

𝐰⊤𝐱(𝑖) + 𝑏 − 𝑦(𝑖)
)

,

𝑏 ← 𝑏 −
𝜂
||

∑

𝑖∈
𝜕𝑏𝑙

(𝑖)(𝐰, 𝑏) = 𝑏 −
𝜂
||

∑

𝑖∈

(

𝐰⊤𝐱(𝑖) + 𝑏 − 𝑦(𝑖)
)

.
(4.8)

Note that 𝐰 and 𝐱 are vectors in the equation above. 𝜂 denotes the learning rate. It should
be emphasized that the values of the batch size and learning rate are manually pre-specified
and not typically learned through model training. These parameters that are tunable but not
updated in the training loop are called hyperparameters. Hyperparameter tunning is the process
by which hyperparameters are chosen, and typically requires adjustment based on the results of
the training loop as assessed on a separate validation dataset.
After training for some predetermined number of iterations (or until some other stopping cri-
teria are met), estimated model parameters are recorded, denoted �̂�, �̂�. Note that even if our
function is truly linear and noiseless, these parameters will not be the exact minimizers of the
loss because, although the algorithm converges slowly towards the minimizers it cannot achieve
it exactly in a finite number of steps.
Linear regression happens to be a learning problem where there is only one minimum over the
entire domain. However, for more complicated models, like deep networks, the loss surfaces
contain many minima.

Making Predictions with the Learned Model

Given the learned linear regression model �̂�⊤𝐱 + �̂�, now the target can be estimated (not con-
tained in the training data). Estimating the targets given features is commonly called prediction.

The Normal Distribution and Squared Loss

Linear regression was invented by Gauss in 1795, who also discovered the normal distribution
(also called Gaussian). It turns out that the connection between normal distribution and linear
regression runs deeper than common parentage. The probability density of a normal distribution
with a mean 𝜇 and variance 𝜎2 (standard deviation 𝜎) is given as:
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Figure 4.2: Change in normal distribution with mean and standard deviation

𝑝(𝑥) = 1
√

2𝜋𝜎2
exp

(

− 1
2𝜎2

(𝑥 − 𝜇)2
)

. (4.9)

As can be seen in the figure above, changing the mean corresponds to a shift along the
𝑥 − 𝑎𝑥𝑖𝑠, and increasing the variance spreads the distributions outwards, lowering its peak.
One way to motivate linear regression, with the mean squared error loss function, is to for-
mally assure that the observations arise from noisy observations, where the noise is normally
distributed as follows:

𝑦 = 𝐰⊤𝐱 + 𝑏 + 𝜖where𝜖 ∼  (0, 𝜎2). (4.10)
Thus, the likelihood of seeing a particular 𝑦 for a given 𝐱 via

𝑃 (𝑦 ∣ 𝐱) = 1
√

2𝜋𝜎2
exp

(

− 1
2𝜎2

(𝑦 − 𝐰⊤𝐱 − 𝑏)2
)

(4.11)

According to the principle of maximum likelihood, the best values of parameters 𝐰 and 𝑏
are those that maximize the likelihood of the entire dataset:

𝑃 (𝐲 ∣ 𝐗) =
𝑛

∏

𝑖=1
𝑝(𝑦(𝑖)|𝐱(𝑖)). (4.12)

Estimators chosen according to the principle of maximum likelihood are called maximum
likelihood estimators. While maximizing the product of many exponential functions might look
difficult, significant simplifications can be made, without changing the objective by maximizing
the log of the likelihood instead:

− log𝑃 (𝐲 ∣ 𝐗) =
𝑛
∑

𝑖=1

1
2
log(2𝜋𝜎2) + 1

2𝜎2

(

𝑦(𝑖) − 𝐰⊤𝐱(𝑖) − 𝑏
)2 (4.13)

Now, one more assumption needs to be made that 𝜎 is some fixed constant. Thus it is
possible to ignore the first term because it does not depend on 𝐰 or 𝑏. As a result, the second
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Figure 4.3: Linear regression is a single-layer neural network

term is now identical to the squared error loss introduced, except for the multiplicative constant
1
𝜎2

. Fortunately, the solution does not depend on the 𝜎. It follows that minimizing the mean
squared error is equivalent to the maximum likelihood estimation of a linear model under the
assumption of additive Gaussian noise.

4.1.2 From Linear Regression to Deep Networks
In the figure below, the linear regression model can be seen as a neural network. It should be
noted that these diagrams highlight the connectivity pattern such as how each input is connected
to the output, but not the values taken by weights or biases.

For the neural network shown above, the inputs are 𝑥1, ..., 𝑥𝑑 so the number of inputs (or
feature dimensionality) in the input layer is 𝑑. The output of the network in the figure above is
𝑜1, so the number of outputs in the output layer is 1. Note that the input values are all given and
there is just a single computed neuron. Focusing on where the computation takes place, con-
ventionally the input layer is not considered as a layer when counting them. Linear regression
models can be thought of as neural networks consisting of just a single artificial neuron, or as
single-layer neural networks.
Since for linear regression, every input is connected to every output (in this case there is only
one output), we can regard this transformation as a fully connected layer or dense layer.

4.2 Multilayer Perceptrons
The simplest deep networks are called multilayer perceptions, and they consist of multiple layers
of neurons each connected to those in the layer below (from which they receive input and those
above (which they, in turn, influence).

4.2.1 Hidden Layers
Linearity implies the weaker assumption of monotonicity: that any increase in a feature at
hand must either always cause a decrease in the model’s output (if the corresponding weight
is positive), or always cause a decrease in our model’s output (if the corresponding weight is
negative). However linear models are not always the right tool for the job. It is easy to create
examples that violate monotonicity. So it is safe to say it has limitations, but it is possible to
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Figure 4.4: An MLP with a hidden layer of 5 hidden units

overcome these limitations of linear models and handle a more general class of functions by
incorporating one or more hidden layers. The easiest way to do this is to stack many fully
connected layers on top of each other. Each layer feeds into the layer above it until outputs are
generated. The first 𝐿− 1 layers can be thought of as a representation and the final layer as our
linear predictor. This architecture is commonly called a multilayer perception, MLP.

Above, an MLP has 4 inputs, 3 outputs, and its hidden layer contains 5 hidden units. Since
the input layer does not involve any calculations, producing outputs with this network requires
implementing the computations for both the hidden and output layers; thus, the number of layers
in this MLP is 2. Note that these layers are both fully connected. Every input influences every
neuron in the hidden layer, and each of these in turn influences every neuron in the output layer.
However, the parameterization of MLPs with fully connected layers can be prohibitively high,
which may motivate trade-off between parameter saving and model effectiveness even without
changing the input or output size.

From Linear to Nonlinear

For a one-hidden-layer MLP whose hidden layer has ℎ hidden units, denoted 𝐇, the outputs
of the hidden layer, which are hidden representations. Since the hidden and output layers are
both fully connected, we have a hidden-layer weights 𝐖(1) and biases 𝐛(1) and output-layer
weights 𝐖(2) and biases 𝐛(2). Formally, outputs 𝐎 of the one-hidden-layer MLP are calculated
as follows:

𝐇 = 𝐗𝐖(1) + 𝐛(1),
𝟎 = 𝐇𝐖(2) + 𝐛(2).

(4.14)

In order to realize the potential of multilayer architectures, on more key ingredient is needed:
a nonlinear activation function 𝜎 to be applied to each hidden unit following the affine transfor-
mation. The outputs of activation functions are called activations. In general, with activation
functions in place, it is no longer possible to collapse an MLP into a linear model.

𝐇 = 𝜎(𝐗𝐖(1) + 𝐛(1)),
𝟎 = 𝐇𝐖(2) + 𝐛(2).

(4.15)
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Figure 4.5: Representation of the ReLU funciton

Universal Approximators

MLPs can capture complex interactions among inputs via their hidden neurons, which depend
on the values of each of the inputs. It is quite possible to design hidden nodes to perform arbi-
trary computation, for instance, basic logic operations on a pair of inputs. Moreover, for certain
choices of the activation function, it is widely known that MLPs are universal approximators.
Even with a single-hidden-layer network, given enough nodes and the right set of weights, it is
possible to model any function, though learning that function is the hard part.
Just because a single-hidden-layer network can learn any function, it does not mean that one
should try to solve all problems with single-hidden-layer networks. As a matter of fact, it is
much more sensible to use deeper (wider) networks for approximation of the many functions in
a more compact way.

4.2.2 Activation Functions
Activation functions decide whether a neuron should be activated or not by calculating the
weighted sum and further adding bias to it. They are differentiable operators to transform input
signals into outputs, while most of them add non-linearity.

ReLU Function

The most popular choice, due to both simplicity of implementation and its good performance on
a variety of predictive tasks, is the rectified linear unit, (ReLU). ReLU provides a quite simple
nonlinear transformation. Given an element 𝑥, the function is defined as the maximum of that
element and 0.

ReLU(𝑥) = max(𝑥, 0). (4.16)
Informally, the ReLU function retains only positive elements and discards all negative el-

ements by setting the corresponding activations to 0. As you can see in the figure below, the
activation function is piecewise linear.
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Figure 4.6: Sigmoid function on a 2D plot

When the input is negative, the derivative of the ReLU function is 0, and when the input is
positive, the derivative of the ReLU function is 1.

Sigmoid Function

The sigmoid function transforms its inputs, for which values lie in the domain ℝ, to outputs that
line on the interval (0, 1). For that reason, the sigmoid is often called a squashing function.

sigmoid(𝑥) = 1
1 + exp(−𝑥)

. (4.17)

In the earliest neural networks, scientists were interested in modeling biological neurons
that either fire or not fire. Thus the pioneers of this field, going all the way back to McCulloch
and Pitts, the inventors of the artificial neuron, focused on thresholding units. A thresholding
activation takes value 0 when its input is below some threshold and value 1 when the input
exceeds the threshold. Later on, when attention shifted to gradient based learning, the sigmoid
function was a natural choice because it is a smooth, differentiable approximation to a thresh-
olding unit. Sigmoids are still widely used especially for binary classification problems, when
the need to interpret the outputs as probabilities for binary classification problems. However,
sigmoid has mostly been replaced by the simpler and more easily trainable ReLU for most use
in hidden layers.
In the figure below, one can see the representation of a sigmoid function on a 2D plot.
The derivative of the sigmoid function is given by the following equation:

𝑑
𝑑𝑥

sigmoid(𝑥) = exp(−𝑥)
(1 + exp(−𝑥))2

= sigmoid(𝑥) (1 − sigmoid(𝑥)) (4.18)

The derivative of the sigmoid function is plotted below. Note that when the input is zero, the
derivative of the sigmoid function reaches a maximum of 0.25. As the input diverges from 0 in
either direction, the derivative approaches 0.
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Figure 4.7: The derivative of sigmoid function plotted

Figure 4.8: Plot of the tanh function

Tanh Function

Like the sigmoid function, the tanh (hyperbolic tangent) function also squashes its inputs, trans-
forming them into elements on the interval between -1 and 1:

tanh(𝑥) =
1 − exp(−2𝑥)
1 + exp(−2𝑥)

. (4.19)
The plot of the tanh function can be found below. Note that as the input nears 0, the tanh
function approaches a linear transformation. Although the shape of the function is similar to
that of the sigmoid function, the tanh function exhibits point symmetry about the origin of the
coordinate system.
The derivative of the tanh function is:

𝑑
𝑑𝑥

tanh(𝑥) = 1 − tanh2(𝑥) (4.20)
The derivative of the tanh function is plotted below. As the input nears 0, the derivative of the
tanh function approaches a maximum of 1. As the input moves away from 0 in either direction,
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Figure 4.9: Plot of the derivative of the tanh function

the derivative of the tanh function approaches 0.

4.3 Backpropagation
Backpropagation refers to the method of calculating the gradient of neural network parameters.
In short, the method traverses the network in reverse order, from the output to the input layer
according to the chain rule of the calculus. The algorithm stores any intermediate variables
(partial derivatives) required while calculating the gradient with respect to some parameters.
Assume that functions 𝑌 = 𝑓 (𝑋) and 𝑍 = 𝑔(𝑌 ), in which the input and the output of X,Y,Z
are tensors of arbitrary shapes. By using the chain rule, it is possible to compute the derivative
of Z with respect to 𝑋 via

𝜕𝑍
𝜕𝑋

= prod
(𝜕𝑍
𝜕𝑌

, 𝜕𝑌
𝜕𝑋

)

(4.21)
Here, prod operator has been used to multiply its arguments after the necessary operations,
such as transposition and swapping input positions, have been carried out. For vectors, this is
straightforward: it is simply matrix-matrix multiplication. For higher dimensional tensors, the
appropriate counterpart is used. The operator prod hides all the notation overhead.
Assume in a simple network with hidden one layer are 𝐖(1) and 𝐖(2). The objective of back-
propagation is to calculate the gradients 𝜕𝐽∕𝜕𝐖(1) and 𝜕𝐽∕𝜕𝐖(2). To accomplish this, the
chain rule should be applied and in turn, the gradient of each intermediate variable and param-
eter should be calculated. The order of calculations are reversed as the name suggests, relative
to those performed in forward propagation, since now the movement is from outputs to inputs.
The first step is to calculate the gradients of the objective function 𝐽 = 𝐿 + 𝑠 with respect to
the loss term 𝐿 and the regularization term 𝑠.

𝜕𝐽
𝜕𝐿

= 1 and 𝜕𝐽
𝜕𝑠

= 1 (4.22)
Next, the computation of the gradient of the objective function with respect to the variable of
the output layer 𝐨 according to the chain rule.
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𝜕𝐽
𝜕𝐨

= prod
(𝜕𝐽
𝜕𝐿

, 𝜕𝐿
𝜕𝐨

)

= 𝜕𝐿
𝜕𝐨

(4.23)
Next, the calculation of the gradients of the regularization term with respect to both parameters:

𝜕𝑠
𝜕𝐖(1)

= 𝜆𝐖(1) and 𝜕𝑠
𝜕𝐖(2)

= 𝜆𝐖(2) (4.24)
Now, it is possible to calculate the gradient 𝜕𝐽∕𝜕𝐖(2) of the model parameters closest to the
output layer. Using the chain rule yields:

𝜕𝐽
𝜕𝐖(2)

= prod
(𝜕𝐽
𝜕𝐨

, 𝜕𝐨
𝜕𝐖(2)

)

+ prod
(𝜕𝐽
𝜕𝑠

, 𝜕𝑠
𝜕𝐖(2)

)

= 𝜕𝐽
𝜕𝐨

𝐡⊤ + 𝜆𝐖(2) (4.25)
To obtain the gradient with respect to 𝐖(1), it is necessary to continue with the backpropagation
along the output layer to the hidden layer. The gradient with respect to the hidden layer’s outputs
𝜕𝐽∕𝜕𝐡 is given by

𝜕𝐽
𝜕𝐡

=
(𝜕𝐽
𝜕𝐨

, 𝜕𝐨
𝜕𝐡

)

= 𝐖(2)⊤ 𝜕𝐽
𝜕𝐨

(4.26)
Since the activation function 𝜙 applies elementwise, calculating gradient 𝜕𝐽∕𝜕𝐳 of the inter-
mediate variable 𝐳 requires to use the elementwise multiplication operator denoted by ⊙:

𝜕𝐽
𝜕𝐳

= prod
(𝜕𝐽
𝜕𝐡

, 𝜕𝐡
𝜕𝐳

)

= 𝜕𝐽
𝜕𝐡

⊙ 𝜙′ (𝐳) (4.27)
Finally, it is possible to obtain the gradient 𝜕𝐽∕𝜕𝐖(1) of the model parameters closest to the
input layer. According to the chain rule:

𝜕𝐽
𝜕𝐖(1)

= prod
(𝜕𝐽
𝜕𝐳

, 𝜕𝐳
𝜕𝐖(1)

)

+ prod
(𝜕𝐽
𝜕𝑠

, 𝜕𝑠
𝜕𝐖(1)

)

= 𝜕𝐽
𝜕𝐳

𝐱⊤ + 𝜆𝐖(1). (4.28)

4.4 Optimizer for the Optimization Problem: Adam
Adam, Adaptive Moment Estimation, is usually the choice of optimizer for the problems, thanks
to its nature that combines the advantages of the prior optimizers like Stochastic Gradient De-
scent with its inherent resilience to redundant data, Minibatch Stochastic Gradient Descent
with its efficiency arising from vectorization, Momentum with its mechanism for aggregating
a history of past gradients to accelerate convergence, Adagrad with its per-coordinate scaling
to allow for a computationally efficient precondition, and RMSprop with its decoupling per-
coordinate scaling from a learning rate adjustment. Adam combines all these techniques into
one efficient learning algorithm. As expected, this is an algorithm that has become rather pop-
ular as one of the more robust and effective optimization algorithms to use in deep learning.
However, it is not without issues. In particular, there are situations where Adam can diverge
due to poor variance control.

4.4.1 Adam Algorithm
One of the key components of Adam is that it uses exponential weighted moving averages (also
known as leaky averaging) to obtain an estimate of both the momentum and the second moment
of the gradient. That is, it uses state variables:
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𝐯𝑡 ← 𝛽1𝐯𝑡−1 + (1 − 𝛽1)𝐠𝑡,
𝐬𝑡 ← 𝛽2𝐬𝑡−1 + (1 − 𝛽2)𝐠2𝑡 .

(4.29)
Here 𝛽1 and 𝛽2 are nonnegative weighting parameters. Common choices for them are 𝛽1 =

0.9 and 𝛽2 = 0.999. That is, the variance estimate moves much more slowly than the momentum
term. Note that with the initialization of 𝐯0 = 𝐬0 = 0, there is a significant amount of bias
initially towards smaller values. This can be addressed by using the fact that ∑𝑡

𝑖=0 𝛽
𝑖 = 1−𝛽𝑡

1−𝛽
to

re-normalize terms. Correspondingly the normalized state variables are given by

�̂�𝑡 =
𝐯𝑡

1 − 𝛽 𝑡
1

and �̂�𝑡 =
𝐬𝑡

1 − 𝛽 𝑡
2

(4.30)
Armed with the proper estimates, it is now possible to write out the update equations. First,

rescaling of the gradient in a manner akin to that of RMSprop to obtain:

𝐠′𝑡 =
𝜂�̂�𝑡

√

�̂�𝑡 + 𝜖
. (4.31)

Unlike RMSprop, the update for this case uses the momentum �̂�𝑡 rather than the gradient
itself.
Now that there are all the pieces in place to compute updates. There is a simple update of the
form:

𝐱𝑡 ← 𝐱𝑡−1 − 𝐠′𝑡 (4.32)
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Chapter 5

Preliminary Investigations

Machine learning models need large training, validation, and test data to create efficient algo-
rithms. Since there are no available data sources, the need for the creation of reliable data for
the algorithm to train on is crucial. To achieve this, with cost and time also in mind, optimum
parameters for aeroelastic analysis are needed to be found. In this section, utilizing MUL2 Soft-
ware and MSC Nastran; static, dynamic, static aeroelastic, and flutter analyses will be conducted
and compared with Femap Software to validate.

5.1 Static and Dynamic Analysis of An Isotropic Beam
In the following segment, a case involving an isotropic beam is taken into consideration. The
first aspect to be studied is the static response of the structure when it is under load. This leads
to an exploration of its dynamic characteristics, with a focus on the beam’s frequencies and
modes. The investigations are primarily conducted using the MUL2 software, while the Femap
software is utilized later to confirm the findings.

5.1.1 Static Analysis
A beam composed of an isotropic material is examined. This beam, which is fixed at one end
and subjected to a load at the free end, was previously studied in [20]. The properties of the
material used are detailed in Table 5.1.

E [MPa] 𝜈 G [MPa] 𝜌 [𝑘𝑔∕𝑚3]
73000 0.3 28076.92 2700
Table 5.1: Material characteristics

The beam, as depicted in Figure 5.1, is characterized by a length (𝐿) of 1 m, a width (𝑏) of
0.2 m, and a thickness (ℎ) of 0.01 m. The reference system, originating from the center of the
interlocking section, is illustrated in the same figure. The load, with an intensity (𝑃 ) of −100𝑁 ,
is applied downwards at the coordinate point (𝑥 = 0 m, 𝑦 = 1 m, 𝑧 = 0.005 m). This point
corresponds to the middle of the free-end section.
The MUL2 software is utilized for the static analysis. The FEM model is also defined (as shown
in Figure 7.2), where the beam is discretized into 10 B4 elements. Each of these beam elements
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comprises two internal nodes (denoted by the symbol ⬛) and two external nodes (denoted by
the symbol ∙).

Figure 5.1: Beam Diagram

Considering the common nodes shared by two adjacent elements, a total of 31 nodes are utilized.
The coordinates of these 31 nodes within the 𝑥𝑦𝑧 reference system are defined in one of the input
files. Notably, these nodes are equally distributed along the 𝑦-axis, with 𝑥 and 𝑧 values set to 0.

Figure 5.2: Nodes in the beam element

A rectangular cross-section with height of 𝒉 and width of 𝒃 is defined for each node. Figure 5.3
shows the cross-section with 4-node and 9-node 𝑄𝑈𝐴𝐷 elements.
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Figure 5.3: Nodes in beam cross-section

Note that, the type of structural models adopted are Taylor Expansion (TE) and Lagrange Ex-
pansion (LE).
The maximum value of 𝑧 displacement 𝑢𝑧 and maximum principal stress in 𝑦 direction 𝜎𝑦𝑦 values
are obtained using different TE and LE models. The number of DOF (degree of freedom) is
also given with the results obtained, which indicates the computational costs.

Model DOF 𝑢𝑧 [m] 𝜎𝑦𝑦 [MPa]
EBBT A. 155 -2.739E-02 29.999
TBT A. 155 -2.740E-02 29.999
EBBT 155 -2.740E-02 29.994
TBT 155 -2.740E-02 29.994
TE1 279 -2.739E-02 29.997
TE2 558 -2.582E-02 34.213
TE3 930 -2.668E-02 40.381
TE4 1395 -2.675E-02 40.026

2LE4 558 -2.047E-02 31.286
1LE9 837 -2.669E-02 40.450
2LE9 1395 -2.670E-02 40.078
Table 5.2: Static analysis with MUL2

Stress and displacement values can also be obtained analytically with most used beam models,
assuming that the beam is homogeneous and isotropic. The beam is clamped from one end and
loaded from another with a concentrated force of -100 N.

Euler-Bernoulli

Since the cross-section is symmetrical (moment of inertia 𝐼𝑥𝑦 = 0 and the load is applied to 𝑥𝑧
plane, the bending moment can be written as:

𝑀𝑥 = −𝐸𝐼𝑥
𝑑2𝑢𝑧
𝑑𝑦2

(5.1)
The bending moment is related to the curvature of the beam by the flexural stiffness 𝐸𝐼𝑥 and
the moment of inertia can be calculated with the following: 𝐼𝑥 = 𝑏ℎ3

12
. The derivation of the

moment is equal to the shear:
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𝑑𝑀𝑥

𝑑𝑦
= 𝑇𝑧 (5.2)

which can be used to obtain the following equation:

−𝐸𝐼𝑥
𝑑3𝑢𝑧
𝑑𝑦3

= 𝑇𝑧 (5.3)
where the shear is equal to the P load imposed on the beam. Applying the necessary bound-

ary conditions (clamped end, zero moment at the free end), the expression for the elastic line
can be obtained:

𝑢𝑧(𝑦) =
𝑃𝑦2

6𝐸𝐼𝑥
(3𝐿 − 𝑦) (5.4)

Thus the maximum displacement can be found:

𝑢𝑧(𝐿) = 2.739 × 10−2𝑚 (5.5)
The 𝜎𝑦𝑦 can also be obtained to compare with the MUL2 results:

𝜎𝑦𝑦 = 𝐸𝜖𝑦𝑦 = 𝐸𝑧
𝑑2𝑢𝑧(0)
𝑑𝑦2

= 29.99𝑀𝑃𝑎 (5.6)

Timoshenko

In this case, angular deflections are not zero, as a result, the beam cross-section is no longer
perpendicular to the principal axis. Therefore the equation for Timoshenko can be written as
follows:

⎧

⎪

⎨

⎪

⎩

𝑇𝑧 = 𝐺𝐴∗
𝑦𝑧

(

𝑑𝑢𝑧
𝑑𝑦

+ 𝜃
)

𝑀𝑥 = 𝐸𝐼𝑥
𝑑𝜃
𝑑𝑦

(5.7)

𝜃 is the rotation about 𝑥-axis while 𝐺𝐴∗
𝑦𝑧 is the shear stiffness of the beam section. Since the

shear is equal to the 𝑃 and the moment is equal to the 𝑃 (𝑦−𝐿) and after the boundary conditions
applied(no rotation and displacement in the clamped end) the following elastic line equation can
be written:

𝑢𝑧 =
𝑃

𝐺𝐴∗𝑦 −
𝑃𝑦2

6𝐸𝐼𝑥
(𝑦 − 3𝐿) (5.8)

Using this equation, maximum displacement can be found:

𝑢𝑧(𝐿) = 2.740 ⋅ 10−2𝑚 (5.9)
The principal stress can be found as follows:

𝜎𝑦𝑦 = 𝐸𝜖𝑦𝑦 = −𝐸𝑧
𝑑𝜃(0)
𝑑𝑦

= 29.99𝑀𝑃𝑎 (5.10)
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The analytically obtained values verify the results obtained with the same models using the
software. EBBT is short for Euler-Bernoulli Beam Theory and TBT stands for Timeshenko
Beam Theory. EBBT A. and TBT A. indicate the analytical solution versions for these theories.
When results obtained in Table 5.2 are analyzed, with the increasing degrees of freedom, the
accuracy of the model is also increased. Especially TE4 and 2LE9 configurations provide the
closest results to the real one, however, they are computationally more intensive. It can also
be seen that changes in the model configurations significantly affect the stress results, however,
displacement results seem to be affected much less. Also, the largest errors are observed for the
Lagrange Expansion with 4 nodes in cross-section.
MUL2’s output provides us with a ParaView file that visualizes the stress and displacement
distributions. In the following Figures 5.4a and 5.4b said visualizations can be seen.

(a) TE4 model stress distribution for 𝜎𝑦𝑦

(b) TE4 model displacement distribution
Figure 5.4: TE4 model stress and displacement distributions

To verify the results obtained with the MUL2, an additional static analysis on Femap was
also conducted. A structural mesh with 8-node brick elements was selected for the solid model.
QUAD type 2D mesh selected for the plate model. In Table 5.3 below, the comparison of the
results can be seen.

Model 𝑢𝑧 [m] 𝜎𝑦𝑦 [MPa]
Femap (Solid) -2.688E-02 34.657
Femap (Plate) -2.689E-02 33.584

TE4 -2.675E-02 40.026
2LE9 -2.670E-02 40.078

Table 5.3: Static analysis with Femap
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5.1.2 Dynamic Analysis

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10
Figure 5.5: Vibration Modes for TE4 Model
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The beam used in the static analysis is also considered here for the dynamic analysis. A free-
vibration analysis was conducted to capture the proper modes and frequencies of the structure.
As it was done for the static analysis, different model configurations are considered for free-
vibration analysis and the obtained results can be found below Table 5.4

Mode TBT TE1 TE2 TE3 TE4 1LE4 1LE9 2LE9
1 8.399 8.399 8.697 8.544 8.531 9.737 8.543 8.541
2 52.615 52.615 54.266 53.448 53.378 60.992 53.448 53.435
3 147.250 147.250 85.245 84.819 84.574 85.245 84.830 84.660
4 163.532 163.532 153.067 149.891 149.674 170.662 149.906 149.865
5 288.425 288.425 164.373 163.825 163.784 171.548 164.371 163.850
6 476.759 476.761 261.973 259.534 258.799 261.973 259.649 259.040
7 712.676 712.679 301.094 294.691 294.119 334.188 294.743 294.642
8 894.913 806.182 456.544 448.944 447.656 456.544 449.339 448.010
9 997.108 894.913 498.703 489.002 487.731 552.185 489.137 488.918

10 1299.929 997.114 678.617 733.348 659.328 678.617 662.205 659.773
DOF 155 279 558 930 1395 372 837 1395

Table 5.4: Dynamic analysis with MUL2 frequency (Hz) results

Model configurations with a higher degree of freedom resulted in greater accuracy. In the figure
below (figure 5.5), the mode shapes for the TE4 model can be observed.
As was done before for the static analysis, to further verify the results obtained from MUL2, a
free-vibration analysis was performed with Femap for the same geometry. TE1 model config-
uration, TE4 model, and Femap model compared in the table below (Table 5.5)

Mode TE1 Mode Type TE4 Mode Type Femap Mode Type
1 8.399 I flexural x 8.531 I flexural x 8.505 I flexural x
2 52.615 II flexural x 53.378 II flexural x 53.217 II flexural x
3 147.250 III flexural x 84.574 I torsional 83.626 I torsional
4 163.532 I flexural z 149.674 III flexural x 149.189 III flexural x
5 288.425 IV flexural x 163.784 I flexural z 163.425 I flexural z
6 476.761 V flexural x 258.799 II torsional 255.778 II torsional
7 712.679 VI flexural x 294.119 IV flexural x 292.975 IV flexural x
8 806.182 II torsional 447.656 III torsional 442.049 III torsional
9 894.913 II flexural z 487.731 V flexural 485.178 V flexural

10 997.114 VII flexural x 659.328 IV torsional 650.327 IV torsional
Table 5.5: Comparison of frequencies (Hz) and modes between MUL2 models and Femap

The results from Femap verify that models with multiple degrees of freedom are far more ac-
curate in both eigenfrequencies and vibration modes of the structure.
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5.2 Aeroelastic Analysis of an Isotropic Plate

In this section, aeroelastic analyses on a simple isotropic plate will be conducted. The geometry
used comes from an article by Petrolo [22]. A free-vibration analysis was conducted first to
properly capture the first torsional and flexural modes of the structure. This analysis also helps
to figure out whether the model at hand is suitable for aeroelastic analyses.

5.2.1 Dynamic Analysis

An isotropic plate with a thickness of 𝑡 = 0.001𝑚, length of 𝐿 = 0.305𝑚, and a chord length of
𝑐 = 0.076𝑚 is depicted in Figure 5.6 below. The structural model was discretized with 20 B4
elements (beams with 4 nodes). The total number of nodes turns out to be 61.

Figure 5.6: Geometry of the isotropic plate

The specifications of the material used in the isotropic plate are given in Table 5.6 below.

E [GPa] G [GPa] 𝜌 [𝑘𝑔∕𝑚3]
73.8 27.6 2768

Table 5.6: Material specifications

In Table 5.7, eigenfrequencies of the different model configurations and Femap can be observed.
From the obtained results, it is clear that for the Taylor Expansion case, at least a third-order
model configuration is needed to get accurate results for frequencies and proper modes.
In Table 5.8 below, a comparison of the different mode types for each model configuration
can be seen. Also, Femap mode types are also included. For the Femap model, 4-node QUAD
elements are used with a 40x10 structure. Clearly, the more refined meshes, the more convergent
to accurate models obtained.
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Modes TE1 TE2 TE3 TE4 1LE9 2LE9 4LE9 Femap
1 8.966 9.395 9.137 9.131 9.135 9.135 9.123 9.138
2 56.190 58.792 57.136 57.110 57.131 57.129 57.068 57.104
3 157.324 74.389 73.865 73.847 73.869 73.850 73.823 71.896
4 308.272 164.928 160.430 160.350 160.416 160.411 160.225 160.311
5 509.575 231.312 228.360 228.189 228.395 228.167 228.029 222.048
6 654.085 323.363 315.794 315.578 315.746 315.734 315.239 315.421
7 761.230 411.150 402.065 401.399 402.173 401.281 400.892 390.265
8 1063.325 534.655 524.140 523.682 524.012 523.987 522.879 523.029
9 1416.029 656.957 605.017 603.434 605.244 603.181 602.353 586.135

10 1819.623 625.507 653.782 653.439 656.954 653.873 653.388 652.550
DOF 549 1098 1830 2745 1647 2745 4941 2706

Table 5.7: Frequency (Hz) values for first 10 modes of different models and Femap

Modes TE4 Mode Type Femap Mode Type
1 9.131 I flexural x 9.138 I flexural x
2 57.110 II flexural x 57.104 II flexural x
3 73.847 I torsional 71.896 I torsional
4 160.350 III flexural x 160.311 III flexural x
5 228.189 II torsional 222.048 II torsional
6 315.578 IV flexural x 315.421 IV flexural x
7 401.399 III torsional 390.265 III torsional
8 523.682 V flexural 523.029 V flexural
9 603.434 IV torsional 586.135 IV torsional

10 653.439 I flexural z 652.550 I flexural z
Table 5.8: Frequencies and mode types for the TE4 model and Femap model

5.2.2 Flutter Analysis

After the dynamic analysis is conducted, flutter analysis can done. It is now necessary to
highlight the reference air density 𝜌𝑎𝑖𝑟 = 1.225𝑘𝑔∕𝑚3 and the chord of the aero-surface is
𝑐 = 0.076𝑚, same as the width of the plate. 𝑃1 and 𝑃2 points are positioned at the extremities
of the leading edge. Aerodynamic paneling can be seen in Figure 5.7 below.
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Figure 5.7: Aerodynamic Panel

A symmetry of the plane with respect to the 𝑥𝑧 plane is also considered. The number of aero-
dynamic panels to be used in the chord side and span side is also defined.
Figure 5.7 shows the representation of a 6x3 aerodynamic mesh. For this case; no effects of
compressibility are considered, so the Mach number is kept equal to 0, and appropriately density
is also kept constant and equal to the reference value. However, velocity varied in an interval
of 2 m/s to 120 m/s with 40 velocity steps. The frequencies and damping values of the first 10
modes in this interval are evaluated.

Figure 5.8: A TE4 model that uses a 30x8 aerodynamic mesh, and damping frequencies of the
first three modes at different speeds

The frequencies and damping shown in the graphs above (5.8) correspond to the first 3 proper
modes. The flutter condition is obtained when the negative damping values become positive,
also with corresponding positive frequency values. It is evident from the graph above that the
second mode is to first to go unstable. Once the range of velocities within the zero damping
is identified, the flutter velocities can be obtained by interpolation. Table 5.9 below shows the
flutter conditions for different models considering a 30x8 aerodynamic paneling. Lower-order
models are not considered because they are not precise enough to detect the flutter phenomenon.
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Model Speed [m/s] Flutter Frequency [Hz] DOF
TE3 67.917 39.447 1830
TE4 67.908 39.434 2745

2LE9 67.914 39.443 2745
4LE9 67.888 39.415 4941

Table 5.9: Flutter conditions for different models with 30x8 aerodynamic mesh

It is also possible to evaluate the influence of different aerodynamic meshes. Table 5.10 below
shows the velocity and flutter frequency for different aerodynamic mesh configurations for the
4LE9 structural model configuration. With finer meshes, more accurate results are obtained,
converging values.

Aerodynamic Mesh Speed [m/s] Flutter Frequency [Hz]
6x3 63.012 43.979
10x4 65.427 41.673
15x4 66.436 40.930
30x8 67.888 39.415

Table 5.10: Flutter conditions for different aerodynamic meshes related to the 4LE9 model

To verify the results, flutter analysis with Femap is also needed. The same conditions apply
for the Femap model as explained before and also for the solution method PKNL method is
selected. This method is a more efficient version of the PK method. The structural mesh used
is 40x10 once again. The frequency and damping plots extracted from Femap can be seen in
Figure 5.9 below and the comparison of the flutter conditions found can be seen in Table 5.11
below.

Figure 5.9: The frequencies and damping for the initial three modes on Femap with a 30x8
aerodynamic mesh at different speeds
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Model Speed [m/s] Flutter Frequency [Hz]
TE4 67.908 39.434

Femap 67.419 39.142
Table 5.11: Comparison between the flutter conditions obtained with Femap and with the TE4
model considering a 30x8 aerodynamic mesh

Also, while keeping the structural mesh constant (40x10), different aerodynamic meshes were
tested with Femap and the results can be seen in Table 5.12 below. The results obtained with
the TE4 model and this case match satisfyingly.

Aerodynamic Mesh Speed [m/s] Flutter Frequency [Hz]
6x3 62.850 43.562
10x4 65.086 41.321
15x4 66.047 40.589
30x8 67.419 39.142

Table 5.12: Flutter conditions for different aerodynamic meshes relative to the Femap model
considering a 40x10 structural mesh

Finally, to evaluate the effect the structural mesh has on flutter conditions, the aerodynamic
mesh (30x8) was kept constant. With the meshes getting finer, results converged to the Taylor
and Lagrange models shown previously.

Aerodynamic Mesh Speed [m/s] Flutter Frequency [Hz]
20x5 66.623 38.757

40x10 67.419 39.142
60x15 67.596 39.199
80x20 67.694 39.194

Table 5.13: Flutter conditions for different structural meshes related to the Femap model con-
sidering a 30x8 aerodynamic paneling

From the flutter analysis results, it is possible to obtain information about divergence. The
divergence phenomenon occurs when the damping becomes positive and the corresponding
frequency is zero. Table 5.14 below shows the divergence condition obtained from different
model configurations and the model obtained from Femap. The divergence condition was found
to be on the first mode, with larger values of velocity found for the flutter condition. ın this case,
since the flutter speed is less than the divergence speed, the flutter speed dictates the limit.
Table 5.15 below shows the effect of different aerodynamic meshes on the divergence velocity
values for different models: 4LE9 and Femap.

5.2.3 Static Aeroelastic Analysis
In this section, the goal is, by fixing the velocity, to find the vertical displacements of two
points; one is on the leading edge, other is on the trailing edge. With these findings wing
rotations at the tip can be found. The points are shown in Figure 5.10 below. The geometry is
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Model Speed [m/s]
TE3 79.223
TE4 79.195

2LE9 79.213
4LE9 79.188
Femap 79.219

Table 5.14: Divergence for different models and with Femap with 30x8 aerodynamic mesh
Aerodynamic Mesh (4LE9) Speed [m/s] Speed (Femap) [m/s]

6x3 78.211 77.641
10x4 78.943 78.529
15x4 79.524 79.220
30x8 79.188 79.219

Table 5.15: Divergence velocity for different aerodynamic meshes obtained from the 4LE9
model and the Femap model

the same as the previously used one in the flutter analysis and the coordinates for point A are
𝑥 = 0, 𝑦 = 0.305, 𝑧 = 0 and for point B is 𝑥 = 0.076, 𝑦 = 0.076, 𝑧 = 0.

Figure 5.10: Points A and B where z-direction displacements are evaluated

Tables 5.16 and 5.17 show the displacements and rotations at these two points for different
velocities for the TE4 and 1LE9 model configurations. It can be observed that with increasing
speeds, the displacements and rotations are also increasing. When the velocity that causes the
divergence is reached, beyond that velocity value displacement results, and therefore rotation
results become negative and stop making sense in physical manner. From the results obtained
from the two models, the divergence velocity can be found between 78 m/s and 80 m/s.
In the case of static aeroelasticity for the Femap model, the same model which used in the flutter
analysis is used. 40x10 structural mesh applied with 30x8 aerodynamic paneling. 1 degree of
angle of attack was applied as it was done with the other models. Table 5.18 below shows the
displacements and calculated rotation values obtained from the Femap model.

In Figure 5.11 below, the speed vs. rotation of the wing tip is plotted. After the diver-
gence point is reached, with increasing speeds rotation values become negative, as mentioned,
physically not logical.
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Model 𝑢𝑧𝐴 [m] 𝑢𝑧𝐵 [m] Rotation [°]
10 7.349E-04 7.046E-04 0.023
30 7.808E-03 7.492E-03 0.239
50 3.246E-02 3.119E-02 0.957
70 1.896E-01 1.826E-01 5.263
78 1.818E+00 1.753E+00 40.591
80 -2.706E+00 -2.610E+00 -51.674
90 -2.631E-01 -2.542E-01 -6.698

Table 5.16: TE4 model displacements and rotations at points A and B at different speeds for
𝐴𝑜𝐴 = 1°

Model 𝑢𝑧𝐴 [m] 𝑢𝑧𝐵 [m] Rotation [°]
10 7.340E-04 7.037E-04 0.023
30 7.799E-03 7.483E-03 0.239
50 3.242E-02 3.115E-02 0.956
70 1.889E-01 1.820E-01 5.245
78 1.765E+00 1.702E+00 39.762
80 -2.831E+00 -2.730E+00 -52.915
90 -2.643E-01 -2.553E-01 -6.725

Table 5.17: 1LE9 model displacements and rotations at points A and B at different speeds for
𝐴𝑜𝐴 = 1°

Model 𝑢𝑧𝐴 [m] 𝑢𝑧𝐵 [m] Rotation [°]
10 7.441E-04 7.134E-04 0.023
30 7.910E-03 7.590E-03 0.242
50 3.318E-02 3.189E-02 0.971
70 1.978E-01 1.907E-01 5.385
78 2.067E+00 1.994E+00 43.512
80 -2.529E+00 -2.442E+00 -48.996
90 -2.749E-01 -2.659E-01 -6.744

Table 5.18: Femap model displacements and rotations at points A and B at different speeds for
𝐴𝑜𝐴 = 1°
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Figure 5.11: Speed vs tip rotations in Femap model

5.3 Aeroelastic Analysis of An Aircraft
In this section, aeroelastic analyses are performed on more complex configurations. A simple
whole-aircraft model is considered which was also considered in a paper by Patil [21]. The
dimensions of the aircraft are given in Table 5.19 below.

Parameter Value [m]
Wingspan 32

Wing cord length 1
Tail-boom length 10

Tail span 5
Tail cord length 0.5

Table 5.19: Dimensions of the aircraft

Figure 5.12 shows the diagram of the aircraft.
The properties of the material used in the aircraft is given in the table below.

E [GPa] 𝜈 𝜌 [𝑘𝑔∕𝑚3]
180 0.3 1800

Table 5.20: Material specifications for the aircraft

Firstly, the wing of the aircraft alone was studied. After dynamic and flutter analyses on the
wing are done, the whole aircraft configuration will be studied.

5.3.1 Dynamic Analysis of the Wing
A dynamic analysis was conducted for the wing of the aircraft. The Wing and the tail of the
aircraft are modeled as plates. And the cross-section of the wing with its structural discretization
is given in the figure below.
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Figure 5.12: Representation of the aircraft

Figure 5.13: Cross-section of the wing
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The dimensions of the wing cross-section are given in the table below.
Parameter Value [m]
chord (c) 1

thickness (t) 0.025
Table 5.21: Dimensions of the wing cross-section

The first dynamic analysis was conducted with a clamped half-wing. The structural model
consists of 7 B3 elements (3-node beam). Lagrange polynomial expansion is used in the beam
cross-section 5.13. 4 Q9 elements are used to define the cross-section. The dynamic analysis
resulted in the first 5 eigenfrequencies given in the table below.

Mode Frequency [Hz] Mode Type
1 0.159 I flexural around x
2 1.045 II flexural around x
3 3.116 III flexural around x
4 4.948 I torsional
5 6.314 I flexural around z
6 6.654 IV flexural around x

Table 5.22: First 6 modes of the half wing dynamic analysis and their mode types.

Another dynamic analysis was made with the whole unrestrained wing. The two half wings are
symmetrical and are modeled as in the previous case. The first 6 eigenfrequencies are too small
and correspond to the rigid body modes.

Mode Frequency [Hz] Mode Type
7 0.274 I flexural around x
8 0.708 II flexural around x
9 1.451 III flexural around x

10 2.412 IV flexural around x
11 3.580 V flexural around x
12 4.842 I torsional
13 5.385 VI flexural around x
14 6.789 VII flexural around x
15 9.705 II torsional
16 9.942 VIII flexural around x
17 10.197 I flexural around z

Table 5.23: Frequencies related to first 7-17 modes and their mode types of the whole wing,
unconstrained

5.3.2 Flutter Analysis of the Wing
In the case of flutter analysis of the clamped wing, the same structural model from the dy-
namic analysis is used. The reference density, 𝜌 = 1.225𝑘𝑔∕𝑚3. The symmetry in the 𝑥𝑧 plane
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was activated, and 30x8 aerodynamic mesh panels were applied. To enable coupling between
structural and aerodynamic models, the 50-node grid coordinates on the surface for which dis-
placement is evaluated are also introduced.
Figure 5.14 shows the frequency and damping value changes for the first five modes in a velocity
interval of [1 m/s, 300 m/s].

Figure 5.14: Model created on MUL2

The 7th mode is the first to go unstable, and the frequency and speed values are given in the
table below.

Method Flutter Frequency [Hz] Flutter Speed [m/s]
MUL2 3.051 56.063

Table 5.24: Flutter frequencies and speeds found with MUL2 and Femap

5.3.3 Dynamic Analysis of the Whole Aircraft

In this section, the whole aircraft is considered. The tail section which is also a plate, has a
thickness of 0.01 m and a chord of 0.5 m. The fuselage is a 10 m beam connecting the wing
and tail, has a thickness of 0.025 m and a width of 0.1 m. The structure of the tail consists of 7
B3 elements while the fuselage consists of 11 B3 elements. A Lagrange polynomial expansion
is used for all three aircraft components, and the elements on the cross-section of each of them
are Q9. To provide an effective connection between the different parts, it is a necessity to match
all the common nodes on the sections coincident between wing and fuselage, and, between tail
and fuselage.
A first dynamic analysis of the aircraft is carried out, introducing the constraint conditions. The
𝑦 = 0 plane passing along the center of the wing, tail, and fuselage is constrained by the aircraft
from all directions. The rest of the model is kept the same as before. The resulting first 18
frequencies are shown in Table 5.25 below.
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Mode Number Frequency [Hz]
1 0.176
2 0.176
3 1.040
4 1.040
5 2.702
6 2.744
7 2.892
8 2.892
9 4.943

10 4.943
11 5.956
12 5.956
13 6.439
14 6.439
15 10.743
16 10.743
17 14.895
18 14.895

Table 5.25: The frequency values of the first 18 modes of the whole aircraft, 𝑦 = 0 plane is
constrained

The figures below show the mode shapes of the wing.

(a) Mode 1 (b) Mode 2
Figure 5.15: Vibration modes 1 and 2 for the whole aircraft, 𝑦 = 0 plane constrained

(a) Mode 3 (b) Mode 4
Vibration modes 3 and 4 for the whole aircraft, 𝑦 = 0 plane constrained
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(a) Mode 5 (b) Mode 6
Vibration modes 5 and 6 for the whole aircraft, 𝑦 = 0 plane constrained

(a) Mode 7 (b) Mode 8
Vibration modes 7 and 8 for the whole aircraft, 𝑦 = 0 plane constrained

(a) Mode 9 (b) Mode 10
Vibration modes 9 and 10 for the whole aircraft, 𝑦 = 0 plane constrained

(a) Mode 11 (b) Mode 12
Vibration modes 11 and 12 for the whole aircraft, 𝑦 = 0 plane constrained
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(a) Mode 13 (b) Mode 14
Vibration modes 13 and 14 for the whole aircraft, 𝑦 = 0 plane constrained

(a) Mode 15 (b) Mode 16
Vibration modes 15 and 16 for the whole aircraft, 𝑦 = 0 plane constrained

(a) Mode 17 (b) Mode 18
Vibration modes 17 and 18 for the whole aircraft, 𝑦 = 0 plane constrained

Table 5.26 compares the frequencies obtained from the dynamic analysis of the 𝑦 = 0 plane
constrained wing alone and those for the whole aircraft, 𝑦 = 0 plane is constrained.

Mode Type Wing Frequency [Hz] Aircraft Frequency [Hz]
I flexural around x 0.159 0.176
II flexural around x 1.045 1.040
III flexural around x 3.116 2.702

I torsional 4.948 4.943
I flexural around z 6.314 6.439

Table 5.26: Frequency comparison of the same modes belonging to 𝑦 = 0 constrained wing
configuration and 𝑦 = 0 constrained aircraft

A second dynamic analysis on the aircraft is carried out by imposing no constraints on the
structure. The resulting eigenfrequencies can be found in the table below.
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Mode Number Frequency [Hz]
13 0.272
14 0.708
15 1.358
16 1.503
17 2.412
18 3.555
19 3.884
20 4.842
21 5.179
22 5.220
23 5.385
24 6.782
25 9.592
26 9.780
27 9.942
28 11.070
29 11.626
30 11.903

Table 5.27: The frequency values of the modes from 13 to 30 of the whole aircraft, uncon-
strained

The first 12 frequencies were too small and they are related to rigid body modes. While the
other modes are shown in the figure below.

(a) Mode 13 (b) Mode 14
Figure 5.24: Vibration modes 13 and 14 for the whole aircraft, unconstrained

(a) Mode 15 (b) Mode 16
Vibration modes 15 and 16 for the whole aircraft, unconstrained
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(a) Mode 17 (b) Mode 18
Vibration modes 17 and 18 for the whole aircraft, unconstrained

(a) Mode 19 (b) Mode 20
Vibration modes 19 and 20 for the whole aircraft, unconstrained

(a) Mode 21 (b) Mode 22
Vibration modes 21 and 22 for the whole aircraft, unconstrained

(a) Mode 23 (b) Mode 24
Vibration modes 23 and 24 for the whole aircraft, unconstrained
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(a) Mode 25 (b) Mode 26
Vibration modes 25 and 26 for the whole aircraft, unconstrained

(a) Mode 27 (b) Mode 28
Vibration modes 27 and 28 for the whole aircraft, unconstrained

(a) Mode 29 (b) Mode 30
Vibration modes 29 and 30 for the whole aircraft, unconstrained

Table 5.28 compares the frequencies obtained from the dynamic analysis of the unrestrained
wing alone and whole unrestrained aircraft below.

Mode Type Wing Frequency [Hz] Aircraft Frequency [Hz]
I flexural around x 0.274 0.272
II flexural around x 0.708 0.708
III flexural around x 1.451 1.358
IV flexural around x 2.412 2.412
V flexural around x 3.580 3.555

I torsional 4.842 4.842
Table 5.28: Frequency comparison of the same modes belonging to unconstrained wing con-
figuration and unconstrained aircraft configuration

68



Finally, a dynamic analysis is performed on the same aircraft considered previously but chang-
ing the boundary conditions: the 𝑧-direction is free in 𝑦 = 0 plane. In Table 5.29 below eigen-
frequencies of the modes are given.

Mode Number Frequency [Hz]
2 0.176
3 0.265
4 1.040
5 1.371
6 2.727
7 2.744
8 2.892
9 3.526

10 4.933
11 4.943
12 5.956
13 6.567
14 6.439
15 6.439
16 10.743
17 11.291
18 14.896

Table 5.29: The frequency values of the modes from 2 to 18 of the whole aircraft, 𝑦 = 0
constrained, expect z-direction is free.

The mode shapes of the 𝑦 = 0 constrained expect 𝑧-direction free condition are given in the
figure below.

Figure 5.33: Vibration mode 2 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction
is free

Vibration mode 3 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free
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Vibration mode 4 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 5 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 6 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 7 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 8 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free
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Vibration mode 9 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 10 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 11 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 12 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 13 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free
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Vibration mode 14 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Vibration mode 15 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

Figure 5.34: Vibration mode 16 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction
is free

Vibration mode 17 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free
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Vibration mode 18 for whole aircraft, 𝑦 = 0 plane constrained, except z-direction is free

5.3.4 Aircraft Flutter Analysis
The first flutter analysis is carried out for the whole aircraft with 𝑦 = 0 plane constrained.
For this two aerodynamic surfaces are created by entering the coordinates of the two extreme
leading edge points of the wing and tail with their chord. The panels that discretize the two
surfaces are 60x8 aerodynamic mesh for the wing and 30x4 aerodynamic mesh for the tail.
Two sets of points are used for the spline, for the wing 100 grid points are designated for the
wing spline, and for the tail 50 grid points are designated for the tail spline.
In the figure below, the whole aircraft flutter result with 𝑦 = 0 plane is constrained is given.

Figure 5.35: Frequency and damping change with respect to the velocity of the aircraft model
created on MUL2, 𝑦 = 0 constrained

In the table below, flutter conditions are given both for the model created in MUL2 and the
model created on Femap.

Platform Flutter Frequency [Hz] Flutter Velocity [m/s]
MUL2 2.578 53.250
Femap 3.084 55.185

Table 5.30: Flutter frequency and velocity obtained from models created on MUL2 and Femap

A further flutter analysis is carried out on the same aircraft with no restrictions on any plane.
In the figure below, frequency and damping plots are given.
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Figure 5.36: Frequency and damping change with respect to the velocity of the aircraft model
created on MUL2, unconstrained

In the table below flutter conditions found for the unconstrained aircraft flutter analysis are
given.

Platform Flutter Frequency [Hz] Flutter Velocity [m/s]
MUL2 2.693 57.723

Table 5.31: Flutter frequency and velocity obtained from the unconstrained model created on
MUL2

In the figure below the mode shape for the unconstrained aircraft is shown.

Figure 5.37: Flutter mode shape for the unconstrained aircraft

Finally, in the figure below, the result of the boundary condition of 𝑦 = 0 plane is constrained in
all directions except the z-direction configuration for the whole aircraft is given with frequency
and damping plots.
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Figure 5.38: Frequency and damping change with respect to the velocity of the aircraft model
created on MUL2, 𝑦 = 0 constrained except z is free

In the table below, detected flutter conditions for the final case are given.
Platform Flutter Frequency [Hz] Flutter Velocity [m/s]
MUL2 2.925 57.308

Table 5.32: Flutter frequency and velocity obtained from the 𝑦 = 0 constrained except z model
created on MUL2
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Chapter 6

Data Generation

In the previous sections, we established a base to study flutter analysis with whole aircraft before
generating data for the machine learning process. In this section, we are going to proceed with
the data generation. To achieve that, automation of MUL2 with NASTRAN was needed because
we are planning to generate 7000 different aircraft configurations with varying wing spans, wing
wall thicknesses, materials, and engine locations.

6.1 Base Aircraft

Since we are working with slender beams, the base aircraft model was selected Britten Norman
BN-2 Islander. This aircraft’s wings are rectangular and have straight leading and trailing edges,
and its aspect ratio makes the wing slender, similar to the aircraft model we used in the previous
section. The image of the base aircraft can be seen in the figure below.

Figure 6.1: Britten-Norman BN2, Jane’s All the World Aircraft 1966/02

BN-2’s dimensions can be found in the table below.

76



Wing Tail
Span 15 𝑚 Span 4.70 𝑚
Chord 2 𝑚 Chord 1.4 𝑚
Area 30 𝑚2 Area 6.61 𝑚2

Table 6.1: BN-2A Islander’s dimensions

BN-2 Islander’s fuselage length is 8 𝑚. It has two Lycoming O-540-A3D5 piston engines with
a diameter of 0.84 𝑚.

6.2 Modelling the Base Aircraft

The base model we created for the base aircraft, has 40 B3 elements throughout the wing span,
11 B3 elements for the fuselage, and 7 B3 elements for the tail. All of these elements Lagrange
Expansion have been used with 2LE9 configuration with Q9 elements. All the dimensions in
the table 6.1 are used. However, the fuselage width is set to 0.5 𝑚 and the fuselage height is set
to 0.1 𝑚.
In the figure below, the cross-section shape of the wing and tail can be seen.

Figure 6.2: Hollow cross-section used for wing and tail

The base model of the wing has a wall thickness of 0.001 𝑚 and the tail has a wall thickness of
0.003 𝑚. Also, starting from the wing roots, for every second element, a filled element is used
instead of a hollow structure to increase the stiffness of the structure.
Engines are placed on the wings via engine mounts to achieve compatibility. Each engine’s
mass is equal to 0.1 mass of the half-wing of the aircraft as Libo Wang et al. did in their 2012
study [27].
In the figure below, the 3-D model of the aircraft is illustrated on ParaView.
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Figure 6.3: 3D model created on MUL2

6.3 Creation of Different Configurations

We can continue with the creation of different configurations. We designated 7 different mate-
rials, the interval for the wing spans, the interval for the wall thicknesses, and interval for the
engine locations.
The selected materials for the different configurations with their specifications can be found
below.

Material E [𝐺𝑃𝑎] 𝜈 𝜌[𝑘𝑔∕𝑚3]
2024-T3 73.1 0.33 2780
7075-T6 71.7 0.33 2810

Ti-6Al-4V 113.8 0.34 4430
T-300 140 0.3 1800

6061-T6 68.9 0.33 2700
5052-H32 70.3 0.33 2680
3003-H14 68.9 0.33 2730

Table 6.2: Material used for different aircraft configurations

The minimum wing span selected was 15 𝑚, while the maximum span is 24 𝑚, with 1 𝑚 of
steps. For the wing wall thicknesses, the minimum thickness was selected as 0.001 m while the
maximum thickness can be used in the wing is 0.003 𝑚. For this interval, 0.0005 𝑚 of steps
were used.
For the case of engine locations, since 40 B3 elements were used for the modeling of the wing,
therefore each half-wing has 20 elements. The engine can be placed in the middle node of each
of these elements. Therefore the number of engine placement options is 20.
In the figure below a different engine placement can be seen as opposed to Figure 6.3.
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Figure 6.4: The base aircraft model with different engine location

Note that changing wing spans with constant element numbers creates an incompatibility if
node locations are not adjusted for the new configuration.

6.4 Generation Step
With all the parameters decided, the automation of the generation process is prepared in a
Python environment using various different libraries, such as Numpy for a healthy and error-free
automation process.
With 7 different materials, 10 different wing spans, 5 different wall thicknesses, and 20 different
engine locations, in total, we generated 7000 different aircraft configurations with MUL2 and
made 7000 NASTRAN flutter analyses (one just after another). The flutter results consist of 151
rows for the 151 different different speed values and 20 columns for 20 different modes. Both
frequency and damping cases are recorded in this way for each configuration of the aircraft.
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Chapter 7

Machine Learning Model

In this section, we are going to create a machine-learning model that predicts an aircraft’s flutter
velocity. In the previous section we generated raw data for 7000 different aircraft configurations
and we used them to make 7000 different flutter analyses. In this section, we are going to
preprocess the data and will try to find a suitable model for our purposes using Tensorflow and
Keras. For the data preprocessing we are going to utilize Pandas library.

7.1 Data Preprocessing

Since we generated raw data in the previous section, we need to do some preprocessing on it.
The raw data consists of 4x7000 input values: material, wing span, wall thickness, and engine
location. The output data consists of 1057000x21 for frequency and damping outputs.

As a first thing, we extracted the different speed values from the frequency values that give
us the speed range for the flutter. After this step, we dropped the speed columns from both
frequency and damping dataframes.

After examining the different mode frequencies and mode shapes, we found out that the first 9
modes are the rigid body modes. As a result, we dropped the first 9 modes from the frequency
and damping dataframes.

We divided the main large frequency and damping dataframes to into smaller ones and put them
into a list. Each element in these lists corresponds to an output of a single input.

A random configuration’s damping-speed and frequency-speed plots can be seen in the figures
below.
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Figure 7.1: Damping-Speed plot for a random aircraft configuration

Figure 7.2: Frequency-Speed plot for a random aircraft configuration

To detect the flutter in each case and find the flutter speed we need more preprocessing. So
in each input’s output damping results, we searched for a negative to positive transition, and
when this transition happens the frequency value must be different than zero. Otherwise, we
would be detecting the divergence. Then we extract the smallest velocity value that satisfies our
condition to label it as flutter speed. So now, for each input, we found a flutter speed, so we can
train our model to detect the flutter speed according to the inputs we provide.

In the figure below, we can see a scatter plot that shows the flutter speed distribution for our
7000 different configurations.
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Figure 7.3: Scatter plot for flutter speed distribution for the non-mixed order aircraft configu-
rations

The maximum flutter speed found is 280.1 𝑚∕𝑠 and the minimum one is 1 𝑚∕𝑠 which indicates
no flutter detected. The total number of no-flutter cases is 102, and we are dropping them for
both inputs and outputs, to help increase the model’s accuracy. A classification model can be
generated with a much more broad input space to detect flutter, and non-flutter conditions first.
But for our case, we have limited data, so we are proceeding without it.
Before proceeding with the construction of the neural network, there are a few other prepro-
cessing steps we need to follow. First of all, we need to encode our materials, so we can feed
them into the network. However, if we use integer encoding, the model may think some of the
materials are dominant than others. Therefore we are going to use one-hot encoding.
One-hot encoding is a process used to convert categorical data into a numerical format that
can be fed into machine learning algorithms. Since many algorithms cannot directly handle
categorical data, one-hot encoding transforms each categorical value into a new binary column
and assigns a 1 or 0 (one-hot) to indicate the presence or absence of the feature.
In the table below we can see the first five rows of the material inputs encoded with one-hot
encoding. The rows shows 2024-T3, 3003-H14, 5052-H32, 6061-T6, 7075-T6 in this order.

2024-T3 3003-H14 5052-H32 6061-T6 7075-T6 T-300 Ti-6Al-4V
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

Table 7.1: One-hot encoded material types
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Engine location data shows the distance from the middle axis of the airplane. To feed them into
the neural network, we divided each location into its corresponding wing span.
As last, we applied maximum-minimum normalization to our input data, and output data (flutter
speeds). The formula used for the maximum-minimum normalization can be found below.

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
(7.1)

Also, we randomize the order of the inputs and then the outputs according to the inputs, since
we create the data and it has a structured order.

7.2 Model Development and Training Process
We divided our data into a training set, a test set, and a validation set. We used a sequential
model with Dense layers. We did not need to adopt any kind of regularization.
In the figure below, the model architecture data can be seen.

Figure 7.4: Model summary

In the model, we utilized an Adam optimizer with a learning rate of 0.005. As a loss function,
since we are doing a regression task, at first we tried a mean squared error and mean absolute
error. However, with mean absolute error as a loss function, we get similar but more accurate
results. We used 150 epochs with a batch size of 8.

7.3 Performance Metrics Explained
Before delving into the results, first, it is important to explain the metrics that are used.
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Mean Squared Error

Mean Squared Error (MSE) is a widely used metric for evaluating the performance of a re-
gression model. It measures the average of the squares of the errors, which are the differences
between predicted values and actual values. MSE provides a way to quantify the difference
between the values a model predicts and the values observed in the real world.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (7.2)

Where:
• 𝑛 is the number of data points.
• 𝑦𝑖 is the actual value of the data point.
• �̂�𝑖 is the model’s predicted value.
• The term (𝑦𝑖− �̂�𝑖)2 is the squared difference between the actual and predicted values, also

known as the squared error.

The MSE is always non-negative, and a value of 0 indicates that the model predicts the data
perfectly. In practice, a lower MSE is preferable, indicating that the model’s predictions are
closer to the actual values.

Mean Absolute Error

Mean Absolute Error (MAE) is another common metric for assessing the performance of a
regression model. Unlike the Mean Squared Error, MAE measures the average of the absolute
errors, which are the absolute differences between the predicted and the actual values. It gives
a linear score, which means all individual differences are weighted equally in the average.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (7.3)

Where:
• 𝑛 is the total number of observations in the dataset.
• 𝑦𝑖 is the actual value for the 𝑖-th observation.
• �̂�𝑖 is the predicted value for the 𝑖-th observation.
• The term |𝑦𝑖−�̂�𝑖| represents the absolute error between the actual and the predicted values

for each observation.

The MAE is always non-negative, and an MAE of 0 indicates perfect predictions with no error.
Because the MAE uses the absolute value of the residuals, it does not penalize large errors as
heavily as the MSE does.
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R2 Score

The R-squared score, or 𝑅2, is a statistical measure used in the context of statistical models
whose main purpose is either the prediction of future outcomes or the testing of hypotheses, on
the basis of other related information. It provides a measure of how well-observed outcomes
are replicated by the model, based on the proportion of total variation of outcomes explained
by the model.
The formula to calculate 𝑅2 is given by:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
(7.4)

Where:
• 𝑛 is the number of observations.
• 𝑦𝑖 is the actual observed outcome.
• �̂�𝑖 is the predicted value, obtained from the model.
• �̄� is the mean of the actual observed outcomes.
• The numerator, ∑𝑛

𝑖=1(𝑦𝑖− �̂�𝑖)2, is the sum of the squared differences between the predicted
values and the actual values, which is known as the "sum of squared residuals".

• The denominator, ∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2, is the "total sum of squares", which is proportional to

the variance of the data.

A higher 𝑅2 value indicates a higher proportion of variance accounted for by the model, with a
value of 1 representing a perfect fit. It is important to note that a high 𝑅2 does not necessarily
indicate that the model has a good fit. It might just mean that the model is complex enough to
fit the training data. Therefore, 𝑅2 should not be used as the sole measure to evaluate a model’s
performance.
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7.4 Results
In Figure 7.5 below, we can see the scatter plot with actual values in the x-axis, and predicted
values in the y-axis for the model with mean absolute error has used as loss function. An ideal
line is also drawn.

Figure 7.5: Actual vs predicted plot for MAE loss used model

In the table below we can see the performance metrics for the MAE loss model.
MSE MAE 𝑅2 Score

248.109 8.718 0.782
Table 7.2: Performance metrics for the model with MAE as a loss function
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In the figure below, we can see the actual versus predicted values scatter plot for the model
trained with mean square error loss.

Figure 7.6: Actual vs predicted plot for MSE loss used model

In the table below we can see the performance metrics for the MSE loss model.
MSE MAE 𝑅2 Score

267.592 9.414 0.764
Table 7.3: Performance metrics for the model with MSE as a loss function

From the performance metrics and actual vs. predicted values plots, the model trained with
mean absolute error as the loss function performs better in terms of all the performance metrics
used. It has lower absolute errors, with less mean squared error obtained, we can say that while
the model is optimized to minimize absolute errors directly, it also minimizes the squared errors
effectively, although it has a lesser degree. The lower MSE indicates fewer large errors. The
higher 𝑅2 score indicates a better fit of the model to the data, within the context of variance of
data. According to this, the model trained with MAE seems to generalize better.
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Chapter 8

Conclusion

The purpose of this thesis is to demonstrate the ability of machine learning with flutter anal-
ysis: prediction of the flutter speeds. The aeroelastic analyses are costly and computationally
expensive, especially when there is a design or optimization problem at hand. Because a large
amount of data has to be produced but not to be used again. The implementation of machine
learning to these problems can help to reduce the number of runs that will be made and also for
the data generation, now we have more efficient tools like MUL2, data-wise, creation of large
databases and creating machine learning models with them for different purposes is getting
more convenient.
Machine learning models, especially deep neural networks can learn and predict aeroelastic con-
ditions, in our case, flutter speed. Since flutter prediction with simulations is time-consuming,
costly, and computationally intense. With the created machine learning model, the prediction
of the flutter speed is accurate and easy, and since training is already done, it is ready to use.
The model we created is limited to 7000 instances, while also 0.2 of them are used for testing
and validation. Therefore model’s accuracy and generalization capabilities are rather small.
The paper by Wang [28], utilized nearly 350 thousand different inputs, therefore their model
will be naturally more accurate and better at generalizing. However, since they used real-world
data, their model may be too general, since we selected a base aircraft first, and then created
different configurations for that aircraft, our model is more purpose-built and might be more
useful for design optimization cases.
We created a machine-learning model for flutter speed prediction, this can also be extended
into also detection of the divergence since divergence can be detected from the same data. Also,
since the design configurations for aircraft are usually commercial secrets, these companies can
create large models, similar to large language models, that sub-models are combined together
to create a large deep learning model. I highly believe that we are close to this milestone and
the aerospace industry will be revolutionized.
In this thesis, we utilized a lot of different disciplines for instance from computer science to
mechanical engineering to statistics. With a small budget and limited resources, we created
a rather large database that contains thousands of raw data about aeroelastic analyses. This
created database can also be utilized to do some data mining since while the data was generated
there was no specific output in mind. So it would be interesting to see a comprehensive data
analysis on the database we created.
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During this thesis journey, I learned some topics about statistics, machine learning, and aeroe-
lasticity. I stumbled upon a lot of obstacles, but I learned a lot to make me a better engineer
than I was before.
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