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Summary 

 

Genetic code is one of the greatest mysteries of biology: it is shared by basically every living 

organism on this planet, with little to none differences between species that can be very far 

away from each other from an evolutionary point of view. Not only organisms share similar 

DNA structures and protein synthesis methods: the translation from a base triplet to the 

respective amino acid, i.e. the genetic code, is found to be surprisingly consistent among all 

living creatures. The genetic code is not only stable between different species, but also through 

millions of years of evolution: it has been almost identical to itself for a very long time. 

Researchers strongly believe that there must be a reason behind this: “survival of the fittest” 

is a widely known expression that states that during evolution only the most suit survives and 

keeps on proliferating, which hints that there must have been some force pushing all 

organisms to adopt this code. This concept is also known as “evolutionary pressure”: it can be 

given by external factors like the environment, but also by some intrinsic quality of the genetic 

code itself. Unfortunately, despite all the resources spent on this topic and the researchers that 

were and are spending time to solve this mystery, genetic code does not seem to be willing to 

cooperate and no one has been able to really give an explanation to its almost omnipresence 

in our world. This work aims to analyse the genetic code from two different points of view: on 

the first hand, entropy is checked as a primary indicator of the genetic code characteristics, 

then its stability is evaluated and compared to other possible codes. 36 different genomes 

from GenBank have been studied using Matlab to understand whether its characteristics can 

be better understood. This study is hence approaching the problem from a mathematical and 

statistical point of view, partially ignoring the biochemical pathways that take place inside 

living organisms. In the first part, entropy of mutated genetic sequences is studied to 

determine whether genetic code is also a way living organisms use to decrease this quantity. 

Then, a fitness function will be used to investigate robustness of the code to mutations and 

mistranslations.   

Main results of this work can be summarized as follows: 

• Genomes show higher entropy value if translated with the standard genetic code. 

• Standard genetic code shows better performances when tested with a fitness function. 

Similar results are obtained using genetic code 4, where part of the structure of the 

genetic code is denied. 

• Standard genetic code has a good ratio between start/stop mutations and body 

mutations, disfavouring start/stop mutations which are considered more important in 

terms of energy saving. 

• An empirical method to quantify relative distances between redundant amino acids is 

proposed. 
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1 INTRODUCTION 
 

To reproduce and to synthetize all kinds of compounds that living organisms need in order to 

survive and complete all the tasks a living creature has to perform, information need to be 

extracted from the DNA and translated into something our organism can actually use. 

Ribosomes, who are the main characters of protein synthesis, do exactly that: they read 

information structured as a sequence of four different bases in groups of three elements and 

convert each group into one of the 20 possible standard amino acids. These molecules are 

subsequently used to build proteins, molecules able to interact with the biological 

environment and to regulate all kinds of processes that happen in living organisms. We know 

that DNA structure is shared by basically every living organism on this planet, but what is way 

more interesting is that even the genetic code, which is the conversion from a bases triplet 

into a specific amino acid, is largely the same across different species, geographic areas, even 

ages and biological domains. Thinking about different animals and, more generically, different 

species, it is easy to notice that many different adaptations were adopted to survive and 

proliferate, to be the most suit specie and to win the evolutionary race: there are wings, fins, 

species that breathe underwater and other that can live inside a volcano or in extremely acid 

environments. Some species run fast, some other have a powerful brain. Every specie evolves 

along its own path, developing different tools to adapt and overcome the environmental issues 

that it faces through time. A spider and a whale have very different approaches to life and 

survival, but they both made it up to the present days despite being very different. Some 

features only belong to specific species, like the bolas spider’s hunting technique, other are 

more common, like having strong claws and fangs. Certain features are more common than 

others, and there are two main reasons for this: the first one is a common ancestor that passed 

its valuable features to its progeny; second one, a specific tool may be particularly suitable for 

survival and hence be developed independently by different species. This leads to the idea 

that if something is widely shared along different species it should have some strong 

advantages. 

This is what makes the genetic code so interesting, because it is not just very common, it is 

basically everywhere. Scientists strongly believe that there must be a reason for this, so let’s 

take into consideration the two reasons why one feature can be common. First, a common 

ancestor: it is possible that a particularly fit ancestor used the genetic code and, for some 

reason, that code spread through all other species. This idea has been widely explored, with 

focus on the environment it lived in (Weiss 2016). The second possibility is that the genetic 

code is so good that every specie on the planet eventually got to the point where it started 

using it.  
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1.1 EXISTING THEORIES 

 

Several theories exist to try and explain the mystery of the genetic code. Different approaches 

(i.e. chemical, algebraic, evolutionary) but none of them, up to current knowledge, is 

complete. Different theories can be compatible or collide with others, but there is no 

experimental evidence strong enough to pose one of them surely above the others. 

Biochemistry is in fact a very complex world, with thousands of different aspects to take into 

consideration. Here, we hover the main existing theories. 

 

1.1.1 Stereochemical Theory 

 

Stereochemical hypothesis states that codons or anticodons have both geometric and 

chemical affinity with the corresponding amino acid. It is supported by many different research 

(Johnson 2010) and it is fascinating because it immediately answers the question about 

universality of the code: chemistry is universal and so are stereochemical interactions. There 

has been evidence that some amino acids are strongly related to their corresponding codon, 

as for arginine (M Yarus 1989). However, it is hard to believe that stereochemical bonding 

alone built the whole genetic code. 

 

1.1.2 Ambiguity Reduction Theory 

 

This theory is one of the most famous and explored theories of all. It states that one of genetic 

code’s main goals is to reduce the amount of mistranslation that can occur during the 

translation of the DNA. Since four different bases exist and they code in groups of three, 64 

different codons are generated. They only code for 20 amino acids plus the stop codons, so 

there is plenty of redundancy in the assignment. Most amino acids have multiple codons 

associated with them, and it is very easy to see that similar codons code for the same amino 

acid. This is helpful if the goal is to reduce the possibility of making a mistake during 

translation: as an example, if there is an error while coding the triplet “CUU” and, for some 

reason, there is a mistake on the third letter. Whatever codon is translated, as long as the first 

two letters are “C” and “U”, it will code for Leucine. Genetic code itself cannot do anything 

about occurring errors, but it can be made in such a way that errors tend to be silent, or at 

least less relevant, than it would be with another code. It is not just about grouping up codons 

that correspond to the same amino acid, the whole genetic code has some interesting features 

such as a codon “NUN” with “N” being any of the letters will tend to code for a hydrophobic 

amino acid. 
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UUU UCU UAU UGU U

UUC UCC UAC UGC C

UUA UCA UAA UGA STOP A

UUG UCG UAG UGG W G

CUU CCU CAU CGU U

CUC CCC CAC CGC C

CUA CCA CAA CGA A

CUG CCG CAG CGG G

AUU ACU AAU AGU U

AUC ACC AAC AGC C

AUA ACA AAA AGA A

AUG M ACG AAG AGG G

GUU GCU GAU GGU U

GUC GCC GAC GGC C

GUA GCA GAA GGA A

GUG GCG GAG GGG G

Th
ir

d
 b

as
e

 p
o

si
ti

o
n

U C A G

I

V

S

P

Second base position

A

G

T

A

YF

L

L

U

C

Fi
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t 
b
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e 

p
o

si
ti
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n

D

E

C

R

S

R

G

STOP

H

Q

N

K

 

Table 1: standard genetic code 

 

1.1.3 Coevolution Theory 

 

This theory postulates that “The structure of the codon system is primarily an imprint of the 

prebiotic pathways of amino-acid formation, which remain recognizable in the enzymic 

pathways of amino-acid biosynthesis. Consequently, the evolution of the genetic code can be 

elucidated based on the precursor-product relationships between amino acids in their 

biosynthesis. The codon domains of most pairs of precursor-product amino acids should be 

contiguous, i.e., separated by only the minimum separation of a single base change.” (Wong 

1975) 

The idea behind the coevolution theory is that prebiotic synthesis was not able to provide all 

twenty amino acids in an adequate manner, and so some of them had to be somehow derived 

from the biosynthesis pathways of amino acids. The most important implication is that genetic 

code became the code we now know because of what was available in the environment before 

and during the appearance of the last common ancestor. So not all codons were used initially, 

but because of needed efficiency different pathways occurred and led to the present genetic 

code. This theory is supported by several evidence (Wong 1975 and references): many pairs of 

precursor-derived amino acids occupy near positions in the genetic code table, meaning they 

only differ for one base, such as: Glu – Gln, Glu – Arg, Asp – Asn, Asp – Thr, Asp – Lys, Gln – His, 

Thr – Ile etcetera. While giving rise to derived amino acids, precursors let them part of their 

codon domain, explaining why genetic code is so well-organized in terms of similarity of nearby 

triplets and amino acids. 

 



 

4 
 

1.1.4 Frozen Accident Theory 

 

This theory (Crick 1967) differentiates slightly from the other theories, because it does not give 

an answer to how the genetic code was initially formed, but to how the code has been the 

same through ages. The question is: if the genetic code was made up by circumstances, why 

did it not change when circumstances changed? One of the answers is the frozen accident 

theory: genetic code alterations obviously imply many different metabolic and biochemical 

pathway alterations, which were not possible to perform because of how complex living 

organisms had become. Genetic code formed because of some specific conditions and became 

more and more complex, involving several different aspects of life, up to the point where any 

change in the code would be too hard to carry on throughout all the different functions of 

organisms. This meant that no organism with altered genetic code could be better suited than 

the “regular” organism of the same species, because no selective pressure could be strong 

enough to favour them in a strong way. 

 

1.1.5 Physicochemical Theory 

 

This theory can be seen as a generalization of the ambiguity reduction theory. It is also the one 

theory explored in this work, and it states that genetic code is arranged in such a way that it 

minimizes the impact of mutations during protein synthesis. Amino acids have many different 

features, such as charge, polarity, hydrophilicity and so on, so it is possible to cluster them and 

assign some degree of similarity between different amino acids. We now give a fictional 

example to explain the main concept: proteins usually have an active site, i.e a small sequence 

of amino acids that are in charge to perform the protein task, and many other residues that 

do not participate actively to the purpose but give the protein its structure. If one of the non-

active residues is mistranslated so that were there should be a Leucine a Valine is found. These 

two amino acids have: similar volume, comparable hydrophilicity, similar area and polarity, 

same charge and very similar shape. This means that the protein could still work because its 

structure would stay almost the same even if a mutation occurred. What happens if, instead 

of a Valine a residue of Arginine is added to the chain? Main features like hydrophilicity, shape 

factor, polarity and hydrophilicity are way different from the ones that characterize Leucine 

and this would lead to huge conformational changes that would make the whole protein 

useless ad inadequate to perform its tasks. Genetic code could be stable and favourable with 

respect to other possible codes because of its ability to minimize adverse consequences of 

mutations. 
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1.1.6 Coexistance of Different Theories 

 

Some of the previously shown theories can easily coexist with each other, like the ambiguity 

reduction and physicochemical hypothesis. In this case, genetic code is a way to minimize 

errors and to allow a safer translation of vital information during cellular activities. 

Physicochemical theory also easily links with the stereochemical one: similar amino acids are, 

in fact, also similar from a chemical point of view in terms of interactions with the surrounding 

environment and hence with similar triplets of bases. Despite that, these three theories have 

a limit: they do not consider evolution and first appearance of the genetic code completely, 

they are only based upon chemistry and efficiency of the code; in biology, organisms evolve 

because selective pressure forces them to change giving a reward, i.e. an increased ability to 

survive in their environment. This does not mean that every organism will change according 

to what is convenient, because there may be barriers that do not allow a specific system to 

evolve towards a certain direction. As an explicative comparison, one can think about selective 

pressure as an exergonic chemical reaction: despite being favourable from an energetic point 

of view, the reaction may not happen in case of an excessive energy barrier. This means that 

taking into consideration only some aspects of the genetic code may not give an acceptable 

answer to the question because some other key aspects are excluded.  

Co-evolution theory, instead, gives a reasonable answer to the genesis of the code. Although 

it is not straight forward, it is possible to match this theory with the physicochemical one: 

because of the precursor-derived mechanism, derived amino acids probably conserved part of 

the chemical characteristics of their precursors and took part of their domains, generating a 

genetic code where similar features belong to contiguous codons or, at least, to codons not far 

away from each other in the code. 

Frozen accident theory, instead, does not enter a more general theory comprehensive of 

different theories; accidentality is clearly not compatible with stereochemical or co-evolutional 

ideas, which is also the main reason why more complex and rational theories were developed 

and explored to answer questions on the genetic code.  

 

1.2 ENTROPY AND GENETIC CODE 

 

Entropy is known to be a powerful tool to analyse complex systems and to try and extrapolate 

information. It has been used successfully several times and it has some strong implications 

concerning genetic code and, more generally, life itself. It is known that entropy cannot 

Figure 1: From left to right: Valine, Leucine, Arginine. Official Protein Data Bank website. 
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decrease, but it tends to always increase. It is although possible to have a local decrement of 

entropy in a system, at the cost of a bigger increase on the external of the system. Since the 

principle of entropy states that everything tends, over time, to become completely uniform, it 

is clear that life works against entropy in every form. Entropy increasing means that the system 

becomes more disordered, less organized and structured: this is why it is possible to say that 

life fights against entropy as much as it can, because one of the goals a living creature must 

achieve is to keep itself ordered and hierarchically organized. 

Entropy as a concept can be applied to sequences containing information (Shannon’s entropy), 

such as DNA: if somehow genetic information was just a sequence of random letters without 

any meaning it would have maximum entropy, i.e. maximum disorder, but this is not the case. 

In order to study the genetic code intended as the translation from codons to amino acids, 

entropy must be evaluated onto amino acid sequences translated via different genetic codes 

starting from the same A C T G sequences.  
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2 METHODS 
 

2.1 INITIAL CONSIDERATIONS 

 

This study includes genomes 36 different species. Selected species are: 

• Aaosphaeria Arxii (fungi, dothideomycetes) 

• Amanita Muscaria (fungi, agaricomycetes) 

• Arctogadus Glacialis (animalia, actinopterygii) 

• Balenoptera Musculus (animalia, mammalia) 

• Betta Splendens (animalia, actinopterygii) 

• Blastocatellia Bacterium(bacteria, blastocatellaceae) 

• Cutaneotrichosporon Dermatis (fungi, tremellomycetes) 

• Cyprinus Carpio (animalia, actinopterygii) 

• Daldinia Concentrica (fungi, sordariomycetes) 

• Danio Rerio (animalia, actinopterygii) 

• Erithacus Rubecola (animalia, aves) 

• Felis Catus (animalia, mammalia) 

• Ginkgo Biloba (plantae, ginkgophyta) 

• Granulicella (bacteria, acidobacteria) 

• Hapalochlaena Maculosa (animalia, mollusca) 

• Hepatitis B Virus (virus) 

• Homo Sapiens (animalia, mammalia) 

• Leishmania Mexicana (protista, kinetoplastea) 

• Luteitalea Pratensis (bacteria, clostridia) 

• Megasphera Hexanoica (bacteria, negativicutes)202020 

• Monoraphidium (plantae, chlorophyta) 

• Mus Musculus (animalia, mammalia) 

• Octopus Bimaculoides (animalia, mollusca) 

• Otolemur Garnettii (animalia, mammalia) 

• Pan Troglodytes (animalia, mammalia) 

• Pao Palembangensis (fungi, dothideomycetes) 

• Patellaria Atrata (fungi, sordariomycetes) 

• Pseudis Tocantis (animalia, amphibia) 

• Pyrococcus Furiosus (archaea, thermococci) 

• Salmo Salar (animalia, actinopterygii)303030 

• Salvator Merianae (animalia, reptilia) 

• Trypanosoma Melophagium (protista, kinetoplastea) 

• Varanus Komodensis (animalia, reptilia) 

• Vitis Cinerea (plantae, magnoliopsida) 

• Xenopus Laevis (animalia, amphibia) 

• Zalophus Californianus (animalia, mammalia) 
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These species were randomly selected in order to cover different domains and have 

information about living organisms that are as complete as possible. Ancient organisms like 

Archaea are more relevant in this study because they are closer in time to when genetic code 

appeared, hence giving more solid information about the code. All genomes were downloaded 

from the National Library of Medicine official website (https://www.ncbi.nlm.nih.gov/) in 

FASTA format (.fna) and analysed with the use of the Bioinformatics Toolbox from Matlab 

software. 

FASTA format contains genome sequences in terms of nucleotide bases, in order to perform 

calculations they were converted into numeric sequences made by 0, 1, 2 and 3. All the original 

sequences were stored into Matlab workspaces. Nucleotide sequences were then forced to 

mutate randomly five thousand times and one every one hundred sequences was stored into 

a matrix of five hundred rows, each row containing a mutated genome. Probability of mutation 

was set as 0.0012 per nucleotide, considering three different subcases of equal probability of 

mutating towards one of the three other nucleotides. All following calculations were 

performed on all mutated sequences. 

 

2.2 EVALUATED GENETIC CODES 

 

Five genetic codes were evaluated to compare performances under an entropic and functional 

point of view. This is meant to explore the possibilities that the standard genetic code has some 

special feature that helped him win the evolutionary competition. 

 

UUU UCU UAU UGU U

UUC UCC UAC UGC C

UUA UCA UAA UGA STOP A

UUG UCG UAG UGG W G

CUU CCU CAU CGU U

CUC CCC CAC CGC C

CUA CCA CAA CGA A

CUG CCG CAG CGG G

AUU ACU AAU AGU U

AUC ACC AAC AGC C

AUA ACA AAA AGA A

AUG M ACG AAG AGG G

GUU GCU GAU GGU U

GUC GCC GAC GGC C

GUA GCA GAA GGA A

GUG GCG GAG GGG G

Th
ir

d
 b

as
e

 p
o

si
ti

o
n

U C A G

I

V

S

P

Second base position

A

G

T

A

YF

L

L

U

C

Fi
rs

t 
b

as
e 

p
o

si
ti

o
n

D

E

C

R

S

R

G

STOP

H

Q

N

K

 

Table 2: genetic code 1 (standard). 

https://www.ncbi.nlm.nih.gov/
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Standard genetic code, here called genetic code 1. It is shared by almost every specie on this 

planet and has yet to be understood completely. Its performances have been compared to 

those of the other codes in order to extrapolate information about it. 

 

 

UUU UCU P UAU UGU U

UUC UCC UAC UGC C

UUA L UCA UAA L UGA P A

UUG STOP UCG G UAG G UGG W G

CUU CCU S CAU CGU U

CUC CCC CAC CGC C

CUA CCA CAA CGA A A

CUG T CCG STOP CAG CGG R G

AUU ACU T AAU AGU U

AUC ACC L AAC AGC C

AUA ACA AAA K AGA A

AUG M ACG AAG V AGG G

GUU GCU GAU GGU STOP U

GUC GCC GAC GGC G C

GUA GCA R GAA GGA S A

GUG K GCG A GAG GGG G G
E

C

R

S

R

Y

H

Q

N

D

Second base position

Th
ir

d
 b

as
e

 p
o

si
ti

o
n

U C A G

F

L

I

V

S

P

T

A

U

C

A

G

Fi
rs

t 
b

as
e 

p
o

si
ti

o
n

 

Table 3: genetic code 2. 

 

Second genetic code is made by swapping 8 pairs of amino acids, including the stop codons. 

This aims to make the code a bit more disordered, enhancing the probabilities of a mutation 

in a codon to lead to a “further” amino acid in terms of similarity. Modified amino acids are 

highlighted in red. 
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UUU UCU S UAU UGU U

UUC UCC P UAC UGC C

UUA L UCA S UAA N UGA L A

UUG STOP UCG I UAG G UGG W G

CUU T CCU P CAU CGU V U

CUC D CCC S CAC CGC C

CUA CCA STOP CAA CGA A

CUG CCG P CAG CGG A G

AUU I ACU T AAU STOP AGU S U

AUC S ACC L AAC N AGC E C

AUA ACA AAA V AGA A

AUG ACG AAG K AGG G

GUU R GCU R GAU L GGU STOP U

GUC GCC GAC D GGC C

GUA GCA GAA E GGA A

GUG K GCG G GAG S GGG A G

G

Q

C

R

R

Second base position

Th
ir

d
 b

as
e

 p
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si
ti

o
n

U C A G

F

L

I

V

T

A

Y

H

U

C

A

G

Fi
rs

t 
b

as
e 

p
o

si
ti

o
n

 

Table 4: genetic code 3. 

 

The third genetic code was obtained by performing 12 swaps between amino acids and by 

adding an extra stop codon by removing one Proline amino acid. Since proline is coded by 4 

codons and the stop signal is transmitted by 3 codons, this action did not alter the overall effect 

of redundancy. The code is even more disordered than code 2. 

 

UUU UCU UAU UGU U

UUC UCC UAC UGC C

UUA UCA UAA UGA A

UUG UCG UAG M UGG G

CUU CCU CAU CGU U

CUC CCC CAC CGC C

CUA CCA CAA CGA A

CUG CCG CAG CGG G

AUU ACU AAU AGU U

AUC ACC AAC AGC C

AUA ACA STOP AAA AGA A

AUG ACG W AAG AGG G

GUU GCU GAU GGU U

GUC GCC GAC GGC C

GUA GCA GAA GGA A

GUG GCG GAG GGG G

LP

F

LQ

H

E

A
I

VR

T

N

K

Second base position

Th
ir

d
 b

as
e

 p
o

si
ti

o
n

U C A G

G

STOP

Y

S

S

R

CD

U

C

A

G

Fi
rs

t 
b

as
e 

p
o

si
ti

o
n

 

Table 5: genetic code 4. 
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The fourth genetic code is obtained by swapping squares of the original genetic code. Squares 

are identified as the blocks of 4 amino acids with the same first and second letter. The idea is 

to voluntarily disorganize the code so that it maintains a certain degree of order, but different 

to the order of the standard genetic code. Amino acids still have close redundant codons that 

code for them, but they are not organized following the first and second letter. Arginine as an 

example (letter R) is coded by four codons with the same first and second letter, but the other 

two redundant codons are two point mutations away because they do not share first or second 

letter. This code can be thought as a way to explore the importance of neighbours amino acids 

and not only of neighbours redundant codons, and in particular how relevant the organization 

over the first two letters of codons is. 

 

UUU V UCU Q UAU K UGU S U

UUC A UCC S UAC I UGC STOP C

UUA T UCA L UAA R UGA D A

UUG S UCG V UAG I UGG S G

CUU W CCU P CAU F CGU H U

CUC K CCC A CAC E CGC T C

CUA P CCA T CAA R CGA C A

CUG S CCG R CAG A CGG P G

AUU Y ACU D AAU G AGU L U

AUC L ACC W AAC M AGC Y C

AUA S ACA F AAA N AGA G A

AUG Q ACG STOP AAG L AGG L G

GUU L GCU STOP GAU H GGU E U

GUC N GCC I GAC R GGC A C

GUA R GCA R GAA G GGA STOP A

GUG C GCG G GAG V GGG T G

Second base position

Th
ir

d
 b

as
e

 p
o

si
ti

o
n

U C A G

U

C

A

G

Fi
rs

t 
b

as
e 

p
o

si
ti

o
n

 

Table 6: genetic code 5. 

The last examined code was obtained by a completely random association of codons and 

amino acids. Redundancy was conserved for every amino acid, but assignment is completely 

random. A Python shuffling function was used to obtain the random matches. This code is 

thought to be a “control” for the performances of the other codes because it is assumed to 

have zero organization, so it can be used to determine which part of the performances of the 

genetic codes is due to their structure. 
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2.3 ENTROPY 

 

The first analyses were performed over mutated sequences in order to obtain entropy 

information about genomes. Entropy follows the formula: 

𝑆 =  − ∑ 𝑝𝑖
𝑖

∗ 𝑙𝑜𝑔(𝑝𝑖) 

known as Shannon’s Entropy. This quantity measures order and information of a sequence, the 

lower the value is, the best the code is behaving. Reducing entropy is, in fact, what living 

organisms must do to survive. Shannon’s entropy is always evaluated on the amino acid 

sequences. 

Although entropy is an extensive property, i.e. depending on the size of the system, Shannon’s 

entropy is dependent on the number of different symbols and on their probability. In this 

particular case, considering specific entropy may lead to mistakes because probability of 

appearance of amino acids is not dependent on the length of the sequence. Entropy of the 

sequence “11234” and “1123411234”, being the same sequence but doubled, is exactly the 

same.  

In order to evaluate the goodness of different genetic codes every specie is taken into 

consideration at once: each one of the five hundred values in the following plots is the average 

of entropy for every organism at that step in the mutation process: first value is the average of 

entropy of the 36 genomes after one hundred cycles of mutation, the second is the average of 

the entropy values after two hundred cycles of mutations and so on.  

One important thing to mention is that Shannon’s entropy does not give information about 

how ordered a sequence is, but for how it is defined it only gives information about amino acid 

distribution. The highest value corresponds to an equal distribution of all amino acids, i.e. 

every amino acid occurs with the same probability. This measure serves to give an idea of how 

“unbalanced” amino acids are in terms of rate of appearance, although without giving any 

information about which amino acid appears with higher frequency. To solve this problem, it 

is possible to set up a fitness function, aiming to obtain further information about solidity of 

the code. 

Lastly, entropy was studied for different branches of living organisms, grouping them into 

kingdoms to better understand if and how evolution and genome entropy are related. 
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Figure 2: the tree of life. 

To do this, genomes were clustered into the following classes: 

• Amphibia; 

• Archaea; 

• Aves; 

• Bacteria; 

• Fishes; 

• Fungi; 

• Mammals; 

• Mollusca; 

• Plants; 

• Protista. 

The idea is that more ancient organisms can give more relevant information about the raising 

of the genetic code because they are closer, in an evolutionary way, to those organisms who 

first developed the code. Checking if there are differences on genomes from species 

subsequent to each other in time may help to understand the genetic code. For this purpose, 

entropy of every class is obtained as the average of the entropies of the elements of the class 

and observations are made upon differences between different classes and different genetic 

codes.  

 

 

2.4 FITNESS FUNCTION 

 

2.4.1 Amino acids clustering 

 

As stated while introducing the physiochemical hypothesis, it is possible to assign a certain 

degree of similarity between amino acids. A fitness function is constructed in order to evaluate 
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how solid a certain code is towards mistranslations and errors. The following steps are 

repeated for each genetic code. 

First of all, the original nucleotide sequence is converted into an amino acid sequence 

following the chosen genetic code (real genetic code for case one, then artificial genetic 

codes). This first amino acid sequence is what is taken as a reference to evaluate stability of 

the code. Mutated nucleotide sequences are then translated into amino acid sequences as 

well, and the fitness function evaluates how different mutated amino acid sequences are from 

the original one.  

To do this, it is necessary to define a way to cluster amino acids. The issue with clustering is 

that it is subjective: inter- and intra-distances can be chosen and hence different methods may 

lead to different clusters. In 1996, Stanfel proposed a way to cluster amino acids basing on 

their main features (Stanfel 1996). This method is not an actual clustering, but a way to 

measure distances between amino acids based on their properties. This method solves the 

issue because if clustering is a discrete way to associate different elements of a set, distance is 

a continuous quantity and is only dependent on the way distances are measured, gaining 

independence from subjective thresholds. 

Several different features, considered to be the most relevant from a biochemical point of view, 

of amino acids are taken into consideration (see Stanfel, 1996 and references for further 

information): 

• Volume: important for steric encumbrance and hence for the shape of the molecule. 

There are some differences on these measures depending on different studies, but they 

are considered negligible because they vary up to maximum 10%.  

• Hydrophilicity: taken for hydration free energy. A special mention goes to neutral 

proline: since no value is defined, it got assigned the average value between maximum 

and minimum values (respectively those of glycine and arginine). This feature is 

essential because changing hydrophilicity of one reside strongly varies the shape of the 

final molecule. 

• Surface area: intended as accessible surface area of the molecule. It is known that this 

property is related with differences in free energy when a molecule is surrounded by 

solvent. 

• Polarity. 

• Charge: possible values are -1 (negatively charged), 0 (neutral) and 1 (positively 

charged). 

• Shape: this is the most controversial value. Shape index is based on similarity to 

aliphatic and aromatic structures, setting a value of 1 for glycine and a value of 12 to 

phenylalanine. Scores were then subject to differences in the number of atoms. 

All these values come with different unit of measure, but it is not a problem because they will 

be normalized before performing calculations. The last thing to be done is to hierarchically 

order these features to understand which one is more relevant: this goal is achieved by 

assigning a weight to these properties. In this study weights are the squared inverses of the 

average distances of corresponding features of amino acids. 
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In Stanfel’s study, two more features are considered: number of donate and accepted 

hydrogen bonds. Unfortunately, these data are not present for every amino acid and they can 

also vary depending on what is surrounding the amino acid itself, so they were not taken into 

consideration for the fitness function. All values are represented in the following table. 

 

2.4.2 Fitness function 

 

The fitness function is a cumulative function were all the amino acids in the reference 

sequence (i.e. the one obtained before forcing mutation on the nucleotide sequence) are 

confronted with the respective amino acids in the same position of mutated amino acid 

sequences. Euclidean distance is calculated on each property of the two amino acids and 

multiplied by the property weight. Sum of the weighted distances is the resulting value of the 

fitness function for that position in the sequence: 

 

𝐷𝑖 = ∑(𝑝𝑗,𝑜 − 𝑝𝑗,𝑚)
2

∗ 𝑤𝑗

𝑗

 

 

Where “D” is the distance between original and mutated amino acid, meaning the value of the 

fitness function contribution for that specific amino acid, “p” indicates the property of the 

amino acids (original and mutated) and the indexes “I” and “j” refer, respectively, to position 

of the amino acid in the sequence and to the properties. The total fitness function score is 

then obtained by summing all contributions, finding the square root of the total and dividing 

it for the number of amino acids in the sequence: 

 

Table 7: amino acid and their core properties. 
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𝐹𝐹 =
√∑ 𝐷𝑖𝑖

𝑖
 

 

All contributions are summed up to give a total value of the fitness function for that specific 

sequence, resulting in fifty values per genetic code. Since the more distant the amino acids 

are, the higher the value of the function, lower values indicate stronger stability of the code 

towards nucleotide mutations.  

It is necessary to consider that the biggest damage that an amino acid sequence can suffer 

after a point mutation is an alteration on start and stop codons. There are four possible cases: 

a start codon or a stop codon mutate into some other amino acid, or a different amino acid 

becomes a start or a stop codon. This would completely alter protein synthesis during 

ribosomal translation of genetic sequences, so these particular cases are handled differently 

and an arbitrary value of 30 is assigned to the sum of contributions. This value is much greater 

than the average values obtained from amino acid that do not include start or stop mutations, 

hence giving strong relevance to these alterations. 

 

2.4.3 Number of mutations 

 

Another evaluated feature of the genetic codes is the number of mutations they cause to the 

original genomes. This part of the work does not consider distance between different amino 

acids but how the redundancy of the code opposes to an effective mutation. Two different 

types of mutation are considered: start/stop mutations and body mutations. The first refer to 

mutations occurring on start or stop codons and is considered to be the worst case, because 

it either shuts down the protein production or starts the production of a meaningless or 

useless protein, causing a waste of resources. Any other mutation will instead be considered 

as a body mutation. These quantities are calculated over every genome per every code and 

averaged along codes, so 5 curves mutations/cycles of mutations are obtained, one per genetic 

code. 

The most interesting information that may be extrapolated from this analysis is to check if 

genetic code has some way of “disfavouring” the most dangerous mutations. In order to 

evaluate this, probability of mutations occurring on start/stop codons with respect to those 

occurring elsewhere must be calculated. 

Possible body mutations are obtained by multiplying the number of body amino acids by the 

number of different body amino acids, hence: 

𝐵𝑀 = 𝑁𝑏 ∗ (𝑁𝑏 − 1) 

Where Nb is the number of amino acids not coding for start or stop, 19. The result obtained is:

  

  𝐵𝑀 = 19 ∗ 18 = 342 
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Total mutation multiplicity is instead obtained from the analogue formula: 

𝑇𝑀 =  𝑁 ∗ (𝑁 − 1) 

Where N is 21, number of possible amino acids plus the stop signal, because an amino acid or 

a start/stop sequence can mutate into every other amino acid. The result is: 

𝑇𝑀 = 21 ∗ 20 = 420 

At this point, the number of possible start/stop mutations can be written as: 

𝑆𝑀 = 𝑇𝑀 − 𝐵𝑀 = 78 

This analysis serves to understand if redundancy of amino acids is set in a way that allows less 

start/stop mutations than other mutations. Results are obtained by multiplying the number of 

start/stop mutations by the following coefficient: 

𝐾𝑠𝑏 =
𝐵𝑀

𝑆𝑀
= 4.384 

 

At this point, two curves are plotted and compared: body mutations and start/stop mutations 

multiplied by Ksb. 
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3 RESULTS 
 

3.1 ENTROPY 

 

Results are plotted for every of the fifty saved mutated sequences, one every one hundred 

cycles of mutations. The first part of the results is about Shannon’s entropy.  

 

3.1.1 Entropy of different codes 

 

 

 

Figure 3: Mean of total entropy of different genetic codes. 

 

For all five codes, entropy of the amino acid sequences for every specie is averaged throughout 

the fifty steps of mutations to obtain a single plot per genetic code. A higher value indicates a 

more uniform distribution of amino acids. Code 5, the random code, has the highest entropy 

value of all codes. This was quite predictable, because the lack of organization in the code 

brings to more random mutations and suggest a higher entropy value may be reached. It is 

important to note that the plateau reached by four of the codes is corresponding to the 
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Shannon’s entropy if all codons are equiprobable, calculated considering the redundancy of 

triplets of bases corresponding to the same amino acid: 

𝑆𝐷𝑁𝐴 = − ∑ 𝑝(𝑖) ∗ log 𝑝(𝑖)

𝑖

= 2.9238 

Where p(i) corresponds to the probability of occurrence of all amino acids if all codons are 

supposed to be equiprobable.  

Random genetic code shows an offset of 0.018 at the plateau, placing at a higher value than 

the expected DNA entropy given a certain redundancy. It is also interesting to note that code 

4 (swapped squares code) starts from a way lower amount of entropy. This may be caused by 

the fact that genomes have a similar distribution of amino acids, determined by the ACTG 

sequences, and by mistranslating those sequences we obtain a wrong distribution of amino 

acids. The same observation could, however, be made for the random code (code 5), but this 

one does not show the same behaviour. 

Moreover, codes 1, 2 and 3 start from a value of entropy which is pretty close to the value 

reached at the plateau. The first cycles of mutations make entropy increase (flatter distribution 

of amino acids) but then the value goes back to where it started. This may be caused by the 

large number of mutations occurring, because the process of mutation is not biased and hence 

mutations may start to “compensate” each other after many cycles. 
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Figure 4: standard deviation of entropy mediated over all genomes of every code. 

Standard deviation values do not differ much from each other. Code 5 has the lowest initial 

standard deviation, as expected from the results shown in figure 2 because of the more 

uniform distribution of amino acids due to the randomness of the code. All standard deviations 

oscillate while cycles of mutation continue, but within a small range of values. This shows that 

mutating a DNA sequence several times leads to a very similar distribution of the amino acids 

across different species. 
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Figure 5: entropy of all genomes translated with the original genetic code. 

 

All genomes reach a certain value after a high number of steps in the mutation process, close 

the expected value of 2.9238. Few organisms have initial values (before mutations) lower than 

this plateau: these organisms are (from lower initial value): 

• Daldinia concentrica; 

• Luteitalea pratensis; 

• Leishmania Mexicana; 

• Pan troglodytes. 

Two of these are fungi, one belongs to protista and one is a bacterium, all relatively simple and 

ancient organisms. 

Most species, instead, start from values higher than the completely uniform distribution of 

codons: this means that codons distribution is not strictly following the redundancy of the 

genetic code, but it is more “spread”, i.e. an amino acid with redundancy of 6 will not happen 

6 times more often than one with no redundancy, but less: this leads to a more uniform 

distribution of amino acids. 

There is one genome that shows heavy oscillatory behaviour during the cycles of mutations, 

this belongs to Hepatitis B virus. The reason for this behaviour is that the genome length is 
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1082 amino acids compared to an average length of the order of 106 amino acids per genome. 

A single mutation can hence strongly affect the calculated quantity. 

 

 

Figure 6: entropy of all genomes translated with genetic code 2. 
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Figure 7: entropy of all genomes translated with genetic code 3. 

Considerations on figures 6 and 7 are similar to those referring to the original genetic code. 

Genomes starting from lower values are the same as the original code. Reached plateau has 

the same value, as expected since redundancy of amino acids was conserved. Case 3 shows 

slightly bigger oscillations with respect to the plateau, as it is more disordered than the first 2 

cases. Oscillations and values are still very much comparable. Organisms with low starting 

entropy are the same as case 1, suggesting that this effect is due to the specific genomes, more 

than to the code itself. 
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Figure 8: entropy of all genomes translated with genetic code 4. 

 

Figure 7 shows that the swapped squares code has relevant effects on the entropy of amino 

acids. Unlike other codes, in fact, all entropy values start from a lower value than the plateau. 

Also, the lowest starting entropy is way lower than in other cases. This shows the importance 

of having a structured genetic code, not only in the sense that redundant codons must be close 

to each other. 

However, the plateau is the same and after 2000 cycles of mutations the behaviour of code 4 

is the same of codes 1, 2 and 3. 
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Figure 9: entropy of all genomes translated with genetic code 5. 

Using the random genetic code, all entropies start from below the final plateau value, with 

only one genome (Daldinia concentrica) having a much lower value with respect to the others. 

It is important to notice that that value is still higher than in the other cases, where the lowest 

value ranges from 2.57 (code 4) to 2.74 (code 1). Moreover, all other genomes start from values 

above 2.9. Also, it shows some more evident irregularity of a few genomes after the plateau is 

reached. As expected from the results in figure 2, the reached plateau has a higher value than 

for other codes. 

These results show that in the first 1000 cycles of mutations using the standard genetic code 

most genomes have higher entropy value, i.e. a flatter distribution of amino acids. This amount 

is higher than the plateau reached by all genetic codes. Moreover, every genome reached the 

same entropy value after 2000 cycles of mutations, but almost none of them started at that 

value. 

These two considerations suggest that living organisms have some strategy to keep an uneven 

distribution of amino acids, because if that was not the case then random mutations occurring 

over around 40.000 of years (2000 cycles with a supposed breeding age of 20 years) would 

else have led to well distributed codons for every specie with same redundancy in the genetic 

code. 

 



 

26 
 

3.1.2 Entropy in different kingdoms 

 

In this section entropy will be analysed dividing genomes into different branches of the tree of 

life. 

 

Figure 10: tree of life. 

The tree of life represents evolution of different families of living organisms, highlighting the 

evolutionary connection between kingdoms and when differentiation occurred. 
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Figure 11: entropy of different kingdoms using the standard genetic code. 

Note that in this section, plots will have a legend with different kingdoms in order from the 

higher initial value to the lowest initial value. As an example, in this figure Mollusca will be 

represented by the function with the highest initial value and Protista by the one with the 

lowest.  

Figure 11 shows how higher initial entropies (which are relevant because they are close to the 

entropy of the genomes acquired from GenBank) belong to the right side of the tree of life 

including it all, except for mammals which still start from an entropy close to the higher classes. 

Lower starting entropy organisms, instead, cover the left part of the tree. The trend is clear, 

even if not all classes strictly follow this sorting.  
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Figure 12: entropy of different kingdoms using genetic code 2. 

Entropy of organisms obtained with genetic code 2 is very similar to the one coming from the 

standard code. Some values are slightly lower, but the trend of having ancient branches of the 

tree of life starting from lower entropies while most recent kingdoms have higher entropy is 

still evident. 
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Figure 13: entropy of different kingdoms using genetic code 3. 

Considerations are very similar to those for genetic code 2. Values lowered slightly more, but 

the trend is still confirmed for code 3. 
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Figure 14: entropy of different kingdoms using genetic code 4. 

If the code is heavily changed, as for code 4, entropy behaves in a very different manner. All 

initial values are below the plateau and the previously observed trend is not conserved. 
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Figure 15: entropy of different kingdoms using genetic code 5. 

The plots obtained using the random genetic code has features that are more similar to those 

of genetic code 4 than to those of the others, again suggesting that swapping squares removes 

the characteristics of the genetic code and leading to results that are more similar to the 

random codon assignment. 

From an evolutionary point of view, only the first 3 codes are relevant because they maintain 

the structure of the genetic code. The trend of more ancient kingdoms having a lower entropy 

value is evident in all 3 genetic codes and it is coherent with the idea that evolution brings 

higher DNA entropy, i.e. flatter distributions of amino acids. This also leads to the conclusion 

that genetic code has a specific structure that can maintain entropic properties if small changes 

are made, as long as the overall structure is kept the same. But if the structure itself is denied, 

genetic code starts behaving in a very different manner. This may introduce the idea that the 

important part about the genetic code is the overall arrangement of the blocks, i.e. the relative 

position on the table of the amino acids basing on the first two letters of the codons. 
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3.2 FITNESS FUNCTION 

 

Fitness function is evaluated to explore the physicochemical theory. Euclidean distances 

between amino acids are considered and the total score of the fitness function is a measure 

of how distant mutated amino acids are from their original state. The final score is divided by 

the length of the amino acid sequence, hence it is an average score per amino acid. The higher 

the score, the less performing the code is in terms of minimizing the meaning of mutations. As 

for the previous section, results are evaluated on every genome together and on genomes 

clustered by kingdom. 

 

3.2.1 Fitness function of different codes 

 

 

Figure 16: average fitness function scores of genetic codes. 

All codes have a fitness function with similar shape, with fast increase in the score in the first 

1000 cycles of mutations followed by a plateau. The plateau is the most interesting part: if the 

function reaches a plateau it means that most of the amino acids are mutated and, because of 

the high number of mutations, the scores are “at equilibrium”. Equilibrium is intended as a 

dynamic equilibrium, where amino acids keep mutating but the fitness function contributions 

compensate each other. As an example, if one mutated amino acid increases the score by 6, 

another mutation with the opposite effect can be found later in the sequence. If this 
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assumption is correct, the concept can be extended to all possible genetic codes. In this way, 

once a fitness function is created and applied to different genetic codes, scores at plateau can 

be used to determine relative organization of the different codes from a physicochemical point 

of view in a quantitative manner. The most interesting part of this approach is that it only 

requires a reasonable fitness function to evaluate relative properties of genetic codes, not 

depending on the processed genomes. 

The figure shows that standard the genetic code and the swapped squares code are the most 

resilient to mutation. This was easily anticipable for the standard genetic code, since it is the 

core of the physicochemical hypothesis. 

For what concerns code 4, instead, some reasoning must be done. Fitness function calculates 

the mean distance between amino acids that mutate and the original amino acids at the same 

position in the sequence. In other words, it calculates how important amino acids mutations 

were. When swapping squares of the genetic code table, only the distance between most of 

the third letters is conserved, but this should be just a small part of the fitness function 

contribution. This means that mean distance between mutated amino acids is conserved even 

if the squares are shuffled. Further analyses will be necessary to determine whether this was 

just a coincidence or if genetic code is immune to square swapping from a physicochemical 

point of view, but this result suggests that the third letter order is, by far, the most relevant. 

Code 2 is probably affected by a higher number of mutations on start/stop codons because 

stop codons are less prone to mutate into another stop codon. Since they give the greatest 

contribution to the fitness function, this could explain the higher score. Code 3 seems to 

confirm that because it has 4 stop codons, so even more probability to encounter a start/stop 

mutation. 

Code 5 can be seen as a sort of reference, because it has no built in symmetry of any other 

way to minimize the effects of mutations. It only has 3 stop codons, so its plateau is between 

code 2 and code 3. 
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Figure 17: standard deviation of fitness function. 

Standard deviation of fitness function is a measure of how stable a genetic code is in terms of 

physicochemical solidity while processing different genomes. Code 2 shows the highest 

variability, followed by the standard genetic code. Extracting conclusions from this plot is very 

difficult and may lead to wrong conclusions, because it is hard to give a biological meaning to 

standard deviations of physicochemical properties of genetic codes. It is still interesting how 

the 3 more disordered codes show the same values. 

 

3.2.2 Number of mutations 

 

Another evaluated parameter is the number of mutations occurred. This is meant to calculate 

how many mutations are not silent, i.e. different codons not coding for the same amino acid. 

Contrarily to the fitness function, distance between amino acids is not considered here and 

only the number of mutations matters. This is important because result will not be dependent 

on the chosen fitness function. 

Mutations have been divided in 2 classes: start/stop mutations, namely mutations occurring 

at start or stop codons, and body mutations, including every other mutation. Start/stop 

mutations are more relevant since they cause the greatest damage to the protein during 

protein synthesis.  
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Both quantities are divided by the total length of the genome, so the result is the number of 

mutations per amino acid. 

 

 

Figure 18: number of start/stop mutations of different genetic codes. 

As expected, the highest number of start/stop mutations is found in code 3 because of the 

extra stop codon inserted. To analyse the behaviour of other codes, the concept of “mutation 

distance” is introduced: one mutation step is a single point mutation altering a specific triplet. 

Distance between 2 codons is the number of mutation steps that are necessary to go from one 

triplet to the other. In code 1, as an example, the stop signal is brought by 3 triplets: UAA, UAG, 

UGA. These triplets are one mutation step away from each other, meaning that chances that 

a stop codon mutates into another stop codon are relevant: out of the 9 possible single point 

alterations a codon can encounter, 2 of them are stop codons themselves. The same distances 

are found in code 4, where stop codons are ACA, AGA and AGG. This justifies the lower number 

of start/stop mutations in these codes. 

In code 2 stop codons are: UUG, CCG and GGU, while for code 5 ACG, GCU and GGA are found. 

For each of these 2 codes we can define 3 different mutation distances between stop signals: 

in code 2 distances are 2, 3 and 3. In code 5 2, 2 and 3. Since total distance is higher for code 

2 than for code 5, expected results would place code 2 above code 5 in the previous plot 

because there are higher chances that a stop codon mutates into another stop codon in code 

5, but this is not the case. Because of the very high number of mutations occurred (remember 
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that this is an average on 36 genomes, each with more than 106 amino acids) it is hard to think 

that this is just a coincidence, but further research is necessary to clarify things out.  

 

 

Figure 19: standard deviation of start/stop mutations of different codes. 

All curves in this plot have the same shape of the fitness function standard deviation in figure 

17. This is probably due to the high fitness function score associated with start/stop mutations: 

these mutations, in fact, contribute to the most part of the fitness function score. Because of 

the high number of mutations considered and averaged, it makes sense that start/stop 

mutations are those who influence the score most. 
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Figure 20: number of body mutations of different genetic codes. 

Figure 20 shows the number of body mutations per amino acid in different codes. All codes 

reach a very similar score after a big number of cycles, but code 1 and 4 have the highest ratio 

of mutated body amino acids. Anyway, the number of body mutations in the first 1000 cycles 

sees code 1 and 4 to be the lowest, so a similar consideration to the one made for entropy can 

be made: if living organisms are able to keep their genome stable through thousands of years 

of mutations, then only the first part of this plot is relevant and the standard genetic code 

results in a lower number of mutations than most of the other codes. Interestingly, code 4 is 

showing the same property, hence suggesting that squares position in the genetic code may 

not be very relevant in terms of redundancy of amino acids, as expected. 
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Figure 21: standard deviation of body mutations of different genetic codes. 

 

Standard deviation is very low and stable for all the considered codes, except for the first 1000 

cycles of mutations of code 2. A possible explanation could be the relatively low number of 

genomes taken into consideration (36), so that casualties may cause a much higher amount of 

standard deviation before things get evened out by mutations, but even considering only the 

last portion of the plot code 2 shows significantly higher standard deviation, meaning that this 

code does not behave in the same way with different genomes. Also, the difference in the first 

steps is of more than one order of magnitude: it is hard to justify this just by casualties, but 

again more studies are required to solve this enigma. 

 



 

39 
 

 

Figure 22: body mutations compared to start/stop mutation multiplied by coefficient 𝐾𝑠𝑏 =
4.384. 

 

Figure 22 plots the averaged amount of body mutations for every code compared to the 

averaged start/stop mutations amount multiplied by a specific coefficient derived from 

probabilistic consideration on possible mutations of amino acids. Both measures are 

considered specific for the single amino acid, meaning they were divided by the length of the 

genome. Expectations were to find a lower number of start/stop mutations since they are 

hypothesised to be more damaging for the organism, and so happened. As expected, code 3 

has the worst ratio between body mutations and start/stop mutations, which is consistent with 

the previous considerations. 

However, it is not safe to make further assumptions. The main issue with this idea is that code 

5, which being random should not show this property, is actually keeping a significantly lower 

amount of start/stop mutations when compared to the body mutations. It would be necessary 

to use a function considering redundancy in the correct way and to make probabilistic 

assumptions with greater solidity, maybe considering all the possible different codons instead 

of the possible amino acids or considering only codons that are 1 mutation away from each 

other.  
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3.2.3 Fitness function in different kingdoms 

 

This section will check if the utilized fitness function shows different behaviours if applied to 

genomes of different kingdoms translated with different genetic codes, i.e. how fit different 

kingdoms are with respect to this fitness function and different codes. Legends are to be read 

like in section 3.1.2. 

 

 

Figure 23: fitness function for different kingdoms: standard genetic code. 
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Figure 24: fitness function for different kingdoms: code 2. 
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Figure 25: fitness function for different kingdoms: code 3. 
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Figure 26: fitness function for different kingdoms: code 4. 
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Figure 27: fitness function for different kingdoms: code 5. 

 

It is impossible to extrapolate a trend between different genetic codes from the previous plots, 

kingdoms behave in a very different manner if different codes are applied. This is, however, a 

meaningful result: it gives evidence that genetic code may favour or disfavour specific species, 

hence highlighting which groups of organisms are better suited from a physicochemical point 

of view.  

This being said, it is now necessary to take a closer look to the results obtained by using the 

standard genetic code to see if it may have favoured some specific species over others: with 

the sole exception of bacteria, all the kingdoms with low fitness function score (indicating a 

better fit) are in the left part of the tree of life and are considered to be more recent, like birds, 

mammals, reptiles and amphibia. It is also worth notice that there is a significant gap between 

amphibia and fungi, fishes and mollusca. This is relevant because all kingdoms with lower score 

(again, except for bacteria) differentiated after a mass extinction that happened 444 million of 

years ago. It is hence possible to hypothesize that conditions on earth changed and organisms 

became more fit against mutations, also because of the increasing complexity of living life. 

It would be very interesting to do the same confrontation but between organisms of which at 

least an approximated date of origin is known to see if this trend continues. In this case, it 

would mean that organisms were selected during evolution to have better and better 
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resilience against mutations. Unfortunately, it was not possible to perform such reasonings in 

this work because of the wide uncertainty of the age of most of the selected organisms.  
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4 CONCLUSIONS AND FURTHER RESEARCH 
 

4.1 Entropy 
 

Section 3.1 highlights how the overall structure of the genetic code influences entropy, with 

the first 3 genetic codes behaving very similarly while codes 4 and 5 are characterized by 

different plots. 

Also, initial entropy values for more than half of the species are higher than the flat codon 

distribution expectations, indicating a biased codon distribution. Another relevant aspect is 

that all entropy plots reach a stable value around 2000 cycles of mutations. Interestingly, all 

plateaus have the same value except for the random genetic code, suggesting that if genome 

keeps mutating it will reach a specific amount of entropy. Most initial entropy values, however, 

are different from the plateau: this suggests that organisms have some way to keep a certain 

distribution of amino acids, because f that was not the case then every species with more than 

100.00 years would have the same entropy in the genome. 

More meaningful results are found when comparing entropy of different kingdoms: by the use 

of standard genetic code, initial entropy is lower for more ancient organisms and higher for 

“newer” ones. This suggests that entropy is a relevant quantity from an evolutionary point of 

view and may be used to find hints about how ancient a specie is. This trend is kept as long as 

the overall structure of the code is maintained, but it disappears while using codes 4 or 5. Also, 

differences between entropy of organisms are denied if these two genetic codes are used: 

possible future research may try to understand why this is the case.  

 

4.2 Fitness function 
 

Fitness function was developed in order to explore the physicochemical hypothesis, which 

states that genetic code evolved in order to minimize meaningfulness of translational errors. 

As expected, standard genetic code has lower value, i.e. it is more fit to resist mutations. 

However, also genetic code 4 had some excellent results, being absolutely comparable to the 

standard code. This result suggests that fitness function scores are only dependant on the 

organization of third letters in the code, while relative positions of groups of codons formed 

by the same first and second letter does not affect resilience against mutations.  

Another aspect is that, independently on which genetic code is being used, start/stop 

mutations are disfavoured with respect to body mutations. This is particularly true for codes 1 

and 4, again highlighting the low relevance of the first 2 letters of the codons in preventing 

dangerous mutations. However, further research will be necessary to determine if these were 

just coincidences or if these statements are valid for every random genetic code. 

Fitness function showed another interesting behaviour: if standard genetic code is used, there 

is a trend where more recent groups of organisms have a lower fitness function score, 

suggesting that organisms may have evolved in order to have better physicochemical 
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behaviour. The trend is, interestingly, not maintained if any other of the presented genetic 

codes is used: this result gives good support to the physicochemical theory. 

Lastly, a method to quantify relative distances between redundant amino acids (in terms of 

mutations needed to  go from one amino acid to another) is proposed: all fitness functions, in 

fact, reach a plateau after many mutations. This is probably due to the high number of 

mutations, which stabilize differences in the fitness function score. It is reasonable to think 

that the plateau value is dependent on the average distance between  amino acids: the process 

can be used inversely to determine this mean distance in different statistically by the usage of 

a chosen fitness function. Further trials will be necessary to determine how accurate this 

process can be by confrontation with theorical, algebraic methods. 
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APPENDICES 
 

A1: MATLAB CODE 
 

The Matlab code was autonomously developed to satisfy the requirements of this work and is divided 

in 2 parts: The first part concerns extracting data from the .fna files, while the second part performs all 

the needed calculations. 

 

A1.1: data extraction 
 

 

%% obtaining charData, the sequence of ATCG for a specified genome 
clc 
close all 
clear all 
% https://it.mathworks.com/help/bioinfo/ug/working-with-whole-genome-data.html   
% page for the step-by-step tutorial 
 
 
foldercontents = dir; 
 
for i = 1:length(foldercontents) 
    file = foldercontents(i).name; 
    fidIn = fopen(file,'r'); 
    header = fgetl(fidIn); 
    mmfile = [file '.mm']; 
    fidOut = fopen(mmfile,'w'); 
    currentFilename = foldercontents(i).name; 
    currentFilename = string(currentFilename); 
    %reads the file in 1 MB large pieces and writes  
    newLine = newline; 
    blockSize = 2^20; 
    while ~feof(fidIn) 
 
         % Read in the data 
         charData = fread(fidIn,blockSize,'*char')'; 
     
         % Remove new lines 
         charData = strrep(charData,newline,''); 
 
         % Remove characters that make nt2int fail 
 
         numIdx=find(~isletter(charData)); 
         charData(numIdx)=''; 
    
         knowncharData = erase(charData,'N'); 
         charData = charData; 
         charData = upper(charData); 
          
   
 
         % Convert to integers (this is where the code fails because of arrays 
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         % indexing). intData codes with '1 2 3 4', while charData contains the same 
         % code with 'A T C G', but things can be worked out with letters as well 
         %intData = nt2int(charData); 
     
         % Write to the new file 
         fwrite(fidOut,charData,'uint8'); 
    end 
 
    vecname = sprintf(file); 
    vecname2 = ['00', vecname, '.mat']; 
    save(vecname2,'charData'); 
     
    %close the files 
    fclose(fidIn); 
    fclose(fidOut); 
    delete(mmfile); 
end 
 

 

 

A1.2: calculations 
 

clc 
close all 
clear all 
 
 
%% define the similarity table of amino acid 
% Amino acid; Symbol; Volume; Hydrophilicity; Area; Polarity; Charge; Shape. 
 
AMINOTABLE = {'AA', 'ALA', 'Symbol', 'A','Volume',  90, 'Hydrophilicity', 0.45, 
'Area', 115, 'Polarity', 1.6, 'Charge', 0, 'Shape', 1.1; 
'AA', 'CYS', 'Symbol', 'C', 'Volume', 113, 'Hydrophilicity', 3.63, 'Area', 135, 
'Polarity', 2.0, 'Charge', 0, 'Shape', 3.0; 
'AA', 'ASP', 'Symbol', 'D', 'Volume', 118, 'Hydrophilicity', 13.34, 'Area', 150, 
'Polarity', -9.2, 'Charge', -1, 'Shape', 5.0; 
'AA', 'GLU', 'Symbol', 'E', 'Volume', 142, 'Hydrophilicity', 12.59, 'Area', 190, 
'Polarity', -8.2, 'Charge', -1, 'Shape', 5.2; 
'AA', 'PHE', 'Symbol', 'F', 'Volume', 193, 'Hydrophilicity', 3.15, 'Area', 210, 
'Polarity', 3.7, 'Charge', 0, 'Shape', 12.0; 
'AA', 'GLY', 'Symbol', 'G', 'Volume', 64, 'Hydrophilicity', 0, 'Area', 75, 
'Polarity', 1.0, 'Charge', 0, 'Shape', 1.0; 
'AA', 'HIS', 'Symbol', 'H', 'Volume',  159, 'Hydrophilicity', 12.66, 'Area', 
195,'Polarity',  -3.0, 'Charge', 1, 'Shape', 7.0; 
'AA', 'ILE', 'Symbol', 'I', 'Volume', 164, 'Hydrophilicity', 0.24, 'Area', 175, 
'Polarity', 3.1, 'Charge', 0, 'Shape', 1.45; 
'AA', 'LYS', 'Symbol', 'K', 'Volume', 170, 'Hydrophilicity', 11.91, 'Area', 200, 
'Polarity', -8.8, 'Charge', 1, 'Shape', 8.5; 
'AA', 'LEU', 'Symbol', 'L', 'Volume', 164, 'Hydrophilicity', 0.11, 'Area', 170, 
'Polarity', 2.8, 'Charge', 0, 'Shape', 1.4; 
'AA', 'MET', 'Symbol', 'M', 'Volume', 167, 'Hydrophilicity', 3.87, 'Area', 185, 
'Polarity', 3.4, 'Charge', 0, 'Shape', 3.3; 
'AA', 'ASN', 'Symbol', 'N', 'Volume', 126, 'Hydrophilicity', 12.08, 'Area', 160, 
'Polarity', -4.8, 'Charge', 0, 'Shape', 5.1; 
'AA', 'PRO', 'Symbol', 'P', 'Volume', 124, 'Hydrophilicity', 11.15, 'Area', 145, 
'Polarity', -0.2, 'Charge', 0, 'Shape', 1.25; 
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'AA', 'GLN', 'Symbol', 'Q', 'Volume', 142, 'Hydrophilicity', 12.08, 'Area', 180, 
'Polarity', -4.1, 'Charge', 0, 'Shape', 5.3; 
'AA', 'ARG', 'Symbol', 'R', 'Volume', 195, 'Hydrophilicity', 22.31, 'Area', 225, 
'Polarity', -12.3, 'Charge', 1, 'Shape', 8.6; 
'AA', 'SER', 'Symbol', 'S', 'Volume', 95, 'Hydrophilicity', 7.45, 'Area', 115, 
'Polarity', 0.6, 'Charge', 0, 'Shape', 2.0; 
'AA', 'THR', 'Symbol', 'T', 'Volume', 121, 'Hydrophilicity', 7.27, 'Area', 140, 
'Polarity', 1.2, 'Charge', 0, 'Shape', 2.1; 
'AA', 'VAL', 'Symbol', 'V', 'Volume', 139, 'Hydrophilicity', 0.40, 'Area', 155, 
'Polarity', 2.6, 'Charge', 0, 'Shape', 1.3; 
'AA', 'TRP', 'Symbol', 'W', 'Volume', 231, 'Hydrophilicity', 8.27, 'Area', 255, 
'Polarity', 1.9, 'Charge', 0, 'Shape', 12.15; 
'AA', 'TYR', 'Symbol', 'Y', 'Volume', 197, 'Hydrophilicity', 8.50, 'Area', 230, 
'Polarity', -0.7, 'Charge', 0, 'Shape', 12.05; 
'AA', 'STOP', 'Symbol', '*','Volume', 197, 'Hydrophilicity', 8.50, 'Area', 230, 
'Polarity', -0.7, 'Charge', 0, 'Shape', 12.05;}; 
 
q = 1; 
for i = 6:2:16 
    x = AMINOTABLE(:,i); 
    x = cell2mat(x); 
    average(q) = mean(pdist(x)); 
    weight(q) = sqrt(1/average(q)); 
    q = q+1; 
    maxx = max(x); 
    minn = min(x); 
 
    for j = 1:length(x) 
        xx(j) = (x(j)-minn)/(maxx-minn); 
        AMINOTABLE(j,i) = num2cell(xx(j)); 
    end 
 
end 
 
%  
 lista = dir('00*'); 
 
 
%% GENERATING MUTATED SEQUENCES OF INTEGERS 
 for l = 1:36 
    name = lista1(l).name; 
    load(sprintf(name)); 
 
 
 
    intData = strrep(charData,'A','1'); 
    intData = strrep(intData,'T','2'); 
    intData = strrep(intData,'C','3'); 
    intData = strrep(intData,'G','0'); 
     
 
     
    % forcing mutations 
    q = 0; 
    w = 0; 
    y = 0; 
    repe = 0; 
    mutations = zeros(50,length(charData)); 
     
    for g = 1:5000 
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        for i = 1:length(intData) 
            pm = randi(100000,1); 
 
            if pm < 120 
              cont = fix(pm/40)+1; 
              data = mod((intData(i)+cont),4); 
              intData(i) = num2str(data); 
            end     
 
        end 
     
        if mod(g,100) == 0 
            repe = repe+1; 
            mutations(repe,:) = intData; 
        end 
    
    end 
     
    save(name); 
 
end 
 
 
%% fitness function 
% mynt2aa is a function obtained by modification of a pre-existent 
% Matlab function and was used to change the genetic code. 
orig_genome = mynt2aa(charData); 
orig_length = length(orig_genome); 
list = AMINOTABLE(:,4)'; 
list = cell2mat(list); 
 
for k = 1:50 
    mutt = 0; 
    stt = 0; 
 
    mutgen = mutations(k,:); 
 
    mutgen = strrep(mutgen,'1','A'); 
    mutgen = strrep(mutgen,'2','T'); 
    mutgen = strrep(mutgen,'3','C'); 
    mutgen = strrep(mutgen,'0','G'); 
    mutated_genome = mynt2aa(mutgen); 
 
    mutated_length = length(mutated_genome); 
    t = min(orig_length,mutated_length); 
    totalff = 0; 
    ff = 0; 
    for i = 1:t 
        if orig_genome(i) == 'M' && mutated_genome(i) ~= 'M' 
            totalff = totalff+30; 
            stt = stt+1; 
 
        elseif orig_genome(i) == '*' && mutated_genome(i) ~= '*' 
            totalff = totalff+30; 
            stt = stt+1; 
        elseif orig_genome(i) ~= 'M' && mutated_genome(i) == 'M' 
            totalff = totalff+30; 
            stt = stt+1; 
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        elseif orig_genome(i) ~= '*' && mutated_genome(i) == '*' 
            totalff = totalff+30; 
            stt = stt+1; 
 
        else 
            ind1 = find(orig_genome(i)==list); 
            ind2 = find(mutated_genome(i)==list); 
            mutt = mutt+1; 
            for j = 6:2:16 
                q = (j-4)/2; 
                tempff = ((cell2mat(AMINOTABLE(ind1,j))-           
cell2mat(AMINOTABLE(ind2,j)))^2*weight(q)); 
                ff = ff+tempff; 
            end 
            ff = sqrt(ff); 
            totalff = totalff+ff; 
        end 
 
 
    end 
    totalf(k) = totalff/t; 
    st(k) = stt/t; 
    mut(k) = mutt/t; 
 
 
    %% entropy calculations 
 
    origData = mutations(k,:); 
    origData = num2str(origData); 
    origData = strrep(origData,'49','1'); 
    origData = strrep(origData,'50','2'); 
    origData = strrep(origData,'51','3'); 
    origData = strrep(origData,'48','0'); 
 
    origDatalett = strrep(origData,'1','A'); 
    origDatalett = strrep(origDatalett,'2','T'); 
    origDatalett = strrep(origDatalett,'3','C'); 
    origDatalett = strrep(origDatalett,'0','G'); 
    origDatalett = strrep(origDatalett,' ','');  
    orig_gen = mynt2aa(origDatalett); 
 
    % A = 1, T = 2, C = 3, G = 0 
    % Counting bases and their probability 
    basecount_A = count(origData,'1'); 
    basecount_T = count(origData,'2'); 
    basecount_C = count(origData,'3'); 
    basecount_G = count(origData,'0'); 
 
    pA = basecount_A/length(origData); 
    pC = basecount_C/length(origData); 
    pG = basecount_G/length(origData); 
    pT = basecount_T/length(origData); 
 
    % Calculating entropy and specific entropy for the sequence of bases 
    total_entropy_bases(k) = -(pA*log(pA)+pC*log(pC)+pG*log(pG)+pT+log(pT)); 
    total_entropy_bases_spec(k) = total_entropy_bases(k)/length(origData); 
 
    % Defining the amino acids to calculate their entropy 
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    AAName = 
['A','R','N','D','C','Q','E','G','H','I','L','K','M','F','P','S','T','W','Y','V','
*']; 
    total_entropy_AA(k) = 0; 
 
 
 
 
 
 
 
 
 
    for i = 1:length(AAName) 
        %occurence of each aminoacid 
        AAOccurency(i) = count(orig_gen,AAName(i)); 
        %probability of each aminoacid 
        AAprob(i) = AAOccurency(i)/length(orig_gen); 
        %entropy calculated for every aminoacid 
        ent_singleAA(i) = -AAprob(i)*log(AAprob(i)); 
        %sum up all contributions to find total entropy 
        total_entropy_AA(k) = total_entropy_AA(k)+ent_singleAA(i); 
    end 
 
    total_entropy_AA_spec(k) = total_entropy_AA(k)/length(orig_gen); 
 
end 
 
 
%%  saving 
 
fas = sprintf(name); 
fas(1:2) = ''; 
%'G1' is modified into G2, G3, G4, and G5 for different genetic codes 
fas = ['G1',fas] 
save(fas); 
 
 

 

 

 

 

 

 


