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Abstract

Heart Rate Variability (HRV) is a measure of the variations in time intervals
between consecutive heartbeats, reflecting the dynamic interplay between the
sympathetic and parasympathetic branches of the autonomic nervous system.
Beginning with an overview of the physiological basis of cardiac system, this master’s
thesis explores the most widespread technique to assess the heart rate variability,
i.e., the ECG. Given that the patient data used to carry out the computational
analysis derive from cancer patients, the research was carried out on the cardiac
variability of people suffering from this disease and on new treatment option with
exposure to low-energy amplitude-modulated radiofrequency electromagnetic fields.
Moreover, this master’s thesis investigated innovative methods for analyzing HRV
data, including nonlinear dynamics, frequency-domain analysis, and time-domain
measures.

There are several models that assess the cardiac variability. In the present study,
the Van der Pol oscillator model has been selected to describe oscillations in a
system with nonlinear damping. The Van der Pol heart model serves as a valuable
tool for studying cardiac electrophysiology and understanding the mechanisms
underlying heart rhythm disorders. Its ability to capture nonlinear dynamics and
reproduce physiological phenomena makes it a useful framework for both theoretical
analysis and computational simulations in cardiovascular research. The analysis of
the parameter sensitivity of the solutions obtained from the Van der Pol model was
carried out. It included the examination of changes of amplitude, frequency and
shape through construction of time series graphs, phase maps and power spectrum
plots. Then the analysis was done on the data of patients, which hemodynamic
system was treated with external electromagnetic fields. The evaluation comprised
time series, phase plots and recursive maps.

On the other hand, the Windkessel mathematical model has been used to explain
how the cardiovascular system behaves, particularly the pulsatile blood flow in
arteries. Mathematically, the Windkessel model can be described using differential
equations that capture the relationships between pressure, flow, and volume within
the arterial system. These equations can be solved to simulate various aspects of
cardiovascular physiology, such as arterial pressure waveforms. The analysis of the
blood pressure waves obtained from patient data, using phase maps and Poincaré
maps was conducted.
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Chapter 1

Heart Rate Variability

1.1 Heart anatomy and cardiac cycle

The heart is a specialized pump that pumps blood throughout the body by contract-
ing repeatedly and regularly. The heart in humans, other mammals, and birds has
four compartments: two atria and two ventricles. An intricate web of self-excitatory
components can be used to understand how the electrical impulse conduction in
the heart system occurs. The natural pacemaker, the SA node, experiences the first
stimulation, which spreads like a wave and stimulates the atria. Made primarily
of cells known as pacemaker cells, the sinoatrial node is an oval-shaped area of
unique cardiac muscle at the upper back wall of the right atrium (Figure 1.1). To
coordinate the heart’s upper chamber beating, the atrioventricular node electrically
joins the ventricles and atria. When the stimulus gets to the AV node, it starts a
pulse that first activates the His bundle and then the Purkinje fibers. The bundle
of His is a group of heart muscle cells with electrical conduction functions. It is a
component of the heart’s electrical conduction system and carries electrical impulses
from the atrioventricular node to the bundle branches, which mark the apex of the
fascicular branches. The Purkinje fibers, which supply electrical conduction to the
ventricles and cause its heart muscle to contract at regular intervals, are the next
structure that the fascicular branches lead to.

The contracting and relaxing of the cardiac muscles produce the heartbeat. The
contraction phase of this cycle is known as systole, while the relaxation phase is
known as diastole. A person blood pressure drops when their heart relaxes and
fills with blood; on the other hand, when the heart contracts, blood is forced out
of the heart and into the big blood arteries that make up the circulatory system.
The blood then travels to all the body’s tissues and organs. The first phase of the
heart cycle is atrial diastole. It happens a few milliseconds before the atria get the
electrical signal from the SA node. Blood pools in the atria during the early stages
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Heart Rate Variability

Figure 1.1: Heart anatomy

of this phase when the atrioventricular valves are closed. There is a moment at
which the pressure in the atrium is higher than the pressure in the side ventricle.
Blood can enter the ventricle because of the pressure difference that opens the
atrioventricular valves. An action potential is started by the autonomous sinoatrial
node and spreads throughout the atrial myocardium. Any blood that remains in the
upper chambers of the heart is forced into the lower chambers by the concomitant
contraction of the atria brought on by the electrical depolarization. The semilunar
and atrioventricular valves are closed in the early phases of ventricular diastole.
The volume of blood in the ventricle does not vary throughout this phase, but the
intraventricular pressure drops sharply. This is known as isovolumetric relaxation.
The atrioventricular valves open when the ventricular pressure eventually drops
below the atrial pressure. This causes the ventricles to rapidly fill with blood. The
atria depolarize just before the electrical impulse reaches the atrioventricular node.
The ventricles are not depolarized until the atria have finished contracting due to
a little delay at the AV node. The action potential travels via the His bundle and
then the left and right bundle branches. Ventricular contraction is caused by the
electrical impulses that these fibers carry through the corresponding ventricular
regions. The semilunar valves open to let blood exit the ventricle when the pressure
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inside the ventricle rises above the pressure in the outflow tube. The cardiac cycle’s
ejection phase is currently underway.

1.2 ECG
The electrical current that cycles through the heart and propels its pumping action
is known as heart rate (HR) or heart pulse. The heart rate is determined by
counting the number of contractions in a given amount of time. According to
certain theories, heart rate variability (HRV) is a crucial technique for evaluating
cardiovascular autonomic characteristics that are largely regulated by innervations
from the sympathetic and parasympathetic nervous systems [1]. In general, HRV
is regarded as a measure of regulatory influences, primarily of the activity of the
ANS (Autonomic Nervous System) to control cardiovascular system function [2].
Previous research has shown that HRV may be used to distinguish between healthy
and diseased states because the vagal-mediated HRV indices showed an inverse
relationship with a number of risk variables for diabetes, insulin resistance, glucose
intolerance, central obesity, dyslipidemia, and hypertension [3].

Many sophisticated techniques can be used to assess HRV. With consideration
for the temporal variance between successive heartbeat sequences, the conventional
ECG method is the most often used approach. The heart’s electrical activity
is recorded by the electrocardiogram (ECG), which is helpful in analyzing the
heart’s behavior and determining the frequency and regularity of heartbeats. The
non-invasive nature of ECG has led to its extensive application. In essence, the
electrical pulses produced by heart activity are captured as waves that represent
the electrical current flowing through various heart regions. It is crucial to highlight
three key elements in the normal cardiac cycle: P wave, QRS complex and T wave
(Figure 1.2).

A steady R-R space is seen in the normal state, with the P wave forming before
each QRS complex, which in turn needs to occur before each T wave. The impulse
produced by the SA node is represented by the P wave. The P wave causes the
atria to compress and depolarize during normal electrical activity. Its amplitude is
smaller than 2 mm, and its period ranges from 0.08 to 0.1 s. The QRS complex is
responsible for the depolarization and contraction of the ventricles. The interval
ranges from 0.12 to 0.20 s between the P wave’s beginning and the QRS complex.
This duration, which is equivalent to the PR or PQ interval, shows how long it
takes an electrical impulse to move from the sinus node to the ventricles via the
atria. When there is a higher rhythm, the PR interval gets smaller. Ventricular
repolarization, which occurs when heart cells get back to being prepared to respond
to a different stimulus, is reflected in the T wave.

While a normal ECG appears to be periodic, heart rate variability, which is
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Figure 1.2: ECG response representing a normal cardiac cycle characterized by
three important components: P wave, QRS complex and T wave.

quantifiable based on R-R intervals, is typically present [4]. Depending on the
level of activity, disruptions may cause an increase or decrease in rhythm that
results in arrhythmias. Short-term (2–5 minutes) or long-term (24–48 hours) ECG
recordings can be used to calculate HRV. Although there are other ways to quantify
it, the traditional time domain (statistical and geometrical) and frequency domain
(power spectral density) measuring approaches are still widely used [5]. Numerous
physiological and pathological circumstances have an impact on HRV. There are
several pathophysiologic illnesses that have been linked to a loss or reduction in beat-
to-beat interval variability such as myocardial infarction, ventricular arrhythmias,
congestive heart failure and etc [6]. Not only are heart ailments associated with
significantly altered HRV present, but a wide range of pathophysiologic disorders
marked by neurohumoral activation also exhibit this feature [7].

1.3 Hypothesized prognostic role of HRV in can-
cer

HRV could be a helpful non-invasive method for assessing cancer patient prognosis
as well as being a predictor of unfavorable outcomes in congestive heart failure,
myocardial infarction, sudden cardiac death and also as an early indication for
diabetic neuropathy [8]. According to most studies, people with cancer frequently
have a lower heart rate, which is probably due to autonomic dysfunction brought
on by the illness [8],[9],[10]. The fundamental theory holds that there are three
pathways via which a decreased HRV is linked to tumor growth: oxidative stress,
inflammation, and sympathetic nerve activation. Oxidative stress causes unchecked
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cell proliferation as well as DNA damage, which is a major cause of tumorigenesis.
In the early phases of oncogenesis, localized hyperinflammatory responses encourage
tumorigenesis; in the later stages, they facilitate disease progression. Normally
enlisted to aid in the fight against and removal of malignancies, the inflammatory
milieu is inadvertently fueling the growth of the tumor and generating free radicals
to worsen oxidative stress. Ultimately, sympathetic neurotransmitters, such as
norepinephrine, regulate the metastatic process by enhancing cancer cells’ ability
to migrate and directing the growth and direction of metastases [11].

Heart rate variability, which is a biomarker of autonomic nervous system function,
quantifies the ANS by altering cardiac function in a sympathetic and parasym-
pathetic manner. The primary modulator of the parasympathetic innervation of
the heart and the principal constituent of the parasympathetic nervous system is
the vagal nerve. HRV is an important non-invasive index of vagal nerve activity.
Recent research has started looking into how vagal nerve activity is related to
cancer prognosis. Giese-Davis et al.(2015) discovered that among women diagnosed
with metastatic and recurrent breast cancer (MRBC), higher resting high-frequency
spectral component of heart rate variability (HF-HRV) substantially predicted
longer overall survival [12]. This discovery may be mediated by behavioral charac-
teristics that affect vagal activity and lengthen cancer survival, such as emotional
expressiveness, social support and involvement, adherence to therapy, and reduced
levels of depression. Reduced vagal activity, increased sympathetic activity, or a
combination of these largely independent autonomic circuits can all lead to increases
in heart rate. A study by Couck et al. (2012) found that all three main mechanisms
(oxidative stress, inflammation and sympathetic nerve activation), as well the
cancer themselve, are inversely correlated with efferent vagal activity, which may
be non-invasively assessed by HRV and suggested that vagal activity may mitigate
the impact of risk factors on the onset of cancer [8]. In the study of Couck et al.
(2013) the effect of cancer severity on vagal nerve activity, indexed by HRV, was
investigated combining data of five different cancers (colorectal, pancreas, prostate,
lung and ovarian) [9]. It was found that patients heart rates were considerably
greater in the early stages than in the later stages, while age and gender did not
significantly affect HRV. This could mean that disease severity influences HRV.
The explanation for this discovery could be the fact that during the metastatic
stage oxidative stress, inflammation and sympathetic nerve activation might have
a bigger impact on HRV or that treatments (e.g. chemotherapy) reduce vagal
nerve activity. The entire HRV, comprising the short- and long-term components
that cause fluctuations during the recording period, is reflected in the SDNN. The
study of Mouton et al. (2012) examined the connection between carcinoembryonic
antigen (CEA) levels, a vagal nerve measure, and baseline HRV (SDNN) [10]. The
acquired results corroborate the neuromodulatory involvement of the vagus nerve
in cancer prognosis and the postulated prognostic role of HRV in cancer.
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For cancer patients, accurate survival estimation is crucial, particularly in cases
where there is little chance of a cure. Improved time-to-death (TTD) prediction
can help with planning and decision-making for successful end-of-life care for
patients in hospice units. In some released works it has been hypothesized that in
cancer patients, autonomic dysfunction (AD) as assessed by HRV is linked to a poor
prognosis for survival [13],[14],[15],[16]. In the work published by Fadul et al. (2010)
a strong correlation between time domain measure of standard deviation of normal
to normal beat interval (SDNN) and survival in male patients with advanced cancer
was discovered [13]. Also the study conducted bu Guo et al. (2015) demonstrated
that a lower HRV is linked to a shorter survival time [14]. Kim et al. (2010)
investigated how well HRV measures could forecast the length of survival for
terminally ill cancer patients [15]. According to the investigation’s findings, most
terminal cancer patients have impaired HRV, and SDNN may be able to help
these patients anticipate how long their survival will be. In the study of Chiang
et al. (2010) the frequency-domain analysis of HRV was conducted [16]. It was
demonstrated that in individuals with terminal hepatocellular carcinoma, elevated
total spectrum power (TP) was substantially correlated with longer TTD. These
results confirm the hypothesis that prognostic models including HRV monitoring
may predict TTD more accurately and in this way help doctors make better
decisions when treating hospice patients.

It is unclear exactly whatever processes underlie the association between HRV
and the prognosis for cancer. Nonetheless, it’s believed that HRV could be a sign
of general health and physiological toughness. A drop in HRV could be a sign of a
decline in physiological resilience, which could make it harder for cancer patients
to withstand treatment and overcome their illness.

1.4 Exposure to low-energy amplitude-modulated
radiofrequency electromagnetic fields

Various studies deal with the detection of the effects of low frequency electromagnetic
fields on tumor proliferation and cell differentiation, quantification of the latency
times between irradiation and biological effects and indications on the cellular
mechanisms underlying the effects detected. In the work of Tuszynski et al. (2022)
the mechanism of action of the exposure to low-energy amplitude-modulated
radiofrequency electromagnetic fields (LEAM RF EMF) for patients with advanced
hepatocellular carcinoma (AHCC) was analysed [17]. In this study [17] a medical
device with a carrier wave frequency of 27.12 MHz is utilized, the device can
detect changes in a patient hemodynamic parameters related to a particular
health condition when the patient is exposed to low-energy, amplitude modulated
electromagnetic field frequencies. The customized or tumor-specific envelope wave
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frequencies utilized are in the range between 10 Hz and 150 kHz [18]. In vitro these
particular frequencies slowed the growth of human cancer cell types without having
thermal effects on tissue. The exposure to LEAM RF EMF in clinical studies is
provided via an intrabuccal antenna (Figure 1.3).

Figure 1.3: Patient undergoing the procedure showing the medical device and
intrabuccal spoon-shaped antenna [19].

One way to conceptualize carcinogenesis is as a phase shift whereby typically
homogeneous, synchronized, and differentiated cells in ordered tissues give way
to asynchronized, heterogeneous, dedifferentiated, and proliferative cancer cells in
disordered tumors [20]. Research suggests that compared to normal cells, cancer cells
may be more sensitive to EMF disruption. High electrical dipole moment molecules
and ions are vulnerable to frequency-dependent interactions with electromagnetic
fields [21]. Thus, EMFs apply strong dielectrophoretic pressures on microtubules,
potentially impairing cell division. Microtubles, actin filaments, collagen and DNA
are all elongated polymeric structures with high electric charges, allowing them to
carry electrical currents through the surrounding counterions. This characteristic
renders them possible candidates for resonant interactions with LEAM RF EMFs.
Microtubules are considered as the primary cellular bio-antenna for therapeutic
LEAM RF EMFs because of their notably high electric charge and dipole moment
values, which allow for direct coupling with EMFs [17].
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Chapter 2

Mathematical models of
HRV

2.1 HRV measures
As mentioned before, the main measures of HRV are time-domain and frequency-
domain. Time-domain measures quantify the variability of the HR over various
time intervals and are expressed in milliseconds. If the time-domain analysis is
performed directly on the normal-to-normal (NN) intervals, the measures like
standard deviation of all NN intervals (SDNN) and standard deviation of the
averages of NN intervals computed over 5-minute segments (SDANN) could be
obtained. If the time-domain analysis is carried out on the differences between
successive NN intervals, as a result the values of RMSSD (square root of the
mean of squared differences between successive NN intervals), NN50 (number of
successive intervals differing by more than 50 ms) or pNN50 (percentage of successive
intervals differing by more than 50 ms) could be calculated [22]. Frequency-domain
measurements, which are reported as power, correlate to oscillations of the HR
throughout a variety of particular frequencies, including low frequency (LF), high
frequency (HF), very low frequency (VLF), and ultra low frequency (ULF). Since
they need to convert a signal from the time domain to the frequency domain, they
demand more advanced conceptual and computational understanding. The LF is
linked to the regulation of blood pressure and is a sign of sympathetic activity.
Respiratory sinus arrhythmia, which is indicative of parasympathetic activity, is
connected with HF. Temperature control or vasomotor control are connected to the
VLF [23]. The power spectrum consists of a very low frequency peak below 0.05
Hz, a high frequency peak between 0.15 Hz and 0.4 Hz, and a low frequency peak
between 0.06 Hz and 0.15 Hz. Power spectral analysis (PSA), which enables the
RR interval series to be mathematically decomposed into components of various
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frequencies, is used to go from the time to the frequency-domain. The fast Fourier
transform (FFT) and autoregressive modeling are the two most widely used methods
for PSA.

Figure 2.1: Exponential increase in power as frequency decreases in normal sinus
rhythm.

In addition to measurements in the time and frequency domain, there are non-
linear measurements. Nonlinear HRV measurements aim to quantify the structure
or complexity of the RR interval time series, while time and frequency domain
measures of HRV quantify HRV on different time scales. The analysis of nonlinear
systems is best suited for nonlinear measurements. Only a small fraction of the
several nonlinear HRV measurements that have been researched, have demonstrated
a definite benefit in risk categorization. These consist of the SD12 measure, which
is derived from Poincare plots, the power law slope, and the exponent of both short-
and long-term fractal scaling. Spectral power shows a progressive, exponential
decrease in amplitude with increasing frequency in normal sinus rhythm (Figure
2.1). An alternative way to represent this relationship is as the log of power (Y
axis) against the log of frequency (X axis), which converts the exponential curve
into a line with an approximated slope (Figure 2.2). Derived from PSA, the power
law slope evaluates complexity in the longer term (minutes to hours). The beta
(β) index represents the negative slope of the log-power against log-frequency
line in the ULF-VLF region, which lies between 102 and 104 Hz. A steeper line
corresponds to a lower β and a larger loss of complexity. Reduced power law It has
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been demonstrated that slope is a predictor of an elevated mortality risk following
myocardial infarction (MI) [24]. Detrended fractal scaling exponent measures
complexity in the shorter period (3–20 beats). This measure is computed from
detrended fluctuation analysis (DFA). The positive slope is represented by the
alpha (α) index, which is further split into two indices, α1 and α2, that represent
the fractal characteristics of HRV over various time scales. The intermediate-term
scaling exponent (12-20 beats) is represented by α2, whereas the short-term scaling
exponent (3-11 beats) is denoted by α1 [25]. On a scale of three to eleven beats, α1
represents how random or coupled the R-R interval pattern is at one extreme. A
completely random RR interval pattern has an α1 value of 0.5, whereas a completely
correlated, or perfectly periodic, pattern of R-R intervals has a value of 1.5. Reduced
α1 readings are highly indicative of the outcome following a MI [26]. The α indices
typically have values near 1, and both larger and lower values signify a loss of
complexity. Every RR interval is plotted on the Poincaré graph as a function of
the subsequent RR interval. The recurrence plot is a commonly employed visual
aid for identifying oscillations in non-linear dynamic systems. Fitting an ellipse to
the Poincaré plot yields SD12. This ellipse has two axes: SD1 is its short axis and
SD2 is its long axis. SD12 is their ratio. The complexity of the figure increases
with the relative magnitude of SD1 over SD2, and SD12 grows larger. SD12 has
shown promise in identifying editing issues that have a substantial impact on the
HRV variable computation.

Figure 2.2: Log-power with β slope.

The most famous example of nonlinear behavior is chaos; technically, it is
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actually "deterministic chaos," but in mathematics, chaos refers to a behavior that
is only seemingly erratic because it can be predicted by complex mathematical
equations, despite the term being used colloquially to denote complete randomness.
Chaos is a term used to describe an apparently random kind of variability that
can occur when even the simplest non-linear system functions. The behavioral
analysis of dynamical systems that show sensitivity to initial conditions is the
foundation of chaos theory. According to this hypothesis, little variations, such as
those resulting from rounding errors in numerical calculations, produce divergent
results. Long-term, this causes dynamical systems to become unpredictable.

2.2 Van der Pol equations and mathematical
modeling

Originally, the theory of nonlinear dynamics (NLD), which emerged in the late
1970s and early 1980s, attracted the attention of numerous scientists who wanted
to investigate chaotic behavior in biological systems and use the results to advance
biology and medicine. Subsequently, the emphasis switched to the apparently
high dimensional cardiovascular system, with an explanation and accounting for
nonlinearity. Currently, identifying and characterizing the complexity and dynamics
of nonlinear systems is a popular strategy. When a system is nonlinear, its variables
contribute to the output response rather of producing it as in a linear system. Given
that the input stimulus and the initial conditions of all variables affect the output
response, even a slight modification can have a significant impact on a nonlinear
system. In order to model HRV using nonlinear differential equations, mathematical
models of the ANS’s dynamics and interactions with the cardiovascular system
must be used.

The modelling of HRV could be explored using a particular nonlinear differential
equation called “Van der Pol Equation”. The van der Pol (VdP) equation is
a second-order differential equation that describes the behaviour of a nonlinear
oscillator. The VdP system has been widely used in theoretical models of the
heart rhythm since it was first introduced to describe relaxation oscillators in
electrical circuit modeling. Relaxation oscillators generate a nonsinusoidal repeated
output signal through a nonlinear electronic oscillator circuit. Two alternating
processes operating on distinct time scales are distinguishing features of relaxation
oscillations: a long relaxation period that sees the system get closer to equilibrium,
interspersed by brief impulsive period that causes the equilibrium point to shift.
Their waveform is far from sinusoidal, and prominent amplitude higher harmonics
are present in large numbers as steep portions occur [27]. Here is the sort of
nonlinear oscillator model that represents the heart mathematically using the VdP
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system:
ẍ + α(x2 − 1)ẋ + ωx = 0 (2.1)

where α and ω are related to damping and Duffing parameters of the system.
An essential component of a cardiac pacemaker is the VdP equation’s ability to
adjust its inherent frequency to the external driving pacemaker frequency without
affecting amplitude. Grudzinski and Zebrowski introduced these traditional VdP
heart models [27]. To derive the equation (2.1) the electrical RLC circuit must be
considered that consists of an inductance L, a capacitor C, a resistor R and the
voltage source E(t) [28]. Kirchhoff’s Voltage Law states that a current I(t) starts
to flow in the circuit when the battery switch is closed:

Lİ + RI + 1
C

Q = E (2.2)

where Q is the charge of the capacitor and Q̇=I. When the equation (2.2) is
derived, we obtain a damped harmonic oscillator represented by a second-order
linear ordinary differential equation (ODE) with constant coefficients:

LÏ + Rİ + 1
C

I = 0 (2.3)

Nevertheless, Van der Pol’s circuit showed an active element—a semiconductor
array of vacuum tubes—instead of a passive resistor (Figure 2.3). In this manner,
when the current is low, the semiconductor functions as though it is pumping
energy into the system, and when the current is too large, it damps the energy
of the system. The function I2-α, where α is the current threshold, models the
semiconductor’s action. After this consideration, the equation becomes:

Lİ + (I2 − α)I + 1
C

Q = E (2.4)

If the equation (2.4) is derived, it becomes:

LÏ + 3İ(I2 − α

3 ) + 1
C

I = 0 (2.5)

The VdP equation can be represented in standard form (2.1) by rescaling the
constants of the equation (2.5).

Later on, the saddle and stable node fixed points at x = -d and x = -2d, respec-
tively, significantly altered the features of the original classical VdP heart model.
In light of this, the VdP system for the heart model with revised unsymmetrical
damping terms associated with voltage is as follows:

ẍ + α(x2 − µ)ẋ + x(x + d)(x + 2d)
d2 = 0 (2.6)
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Figure 2.3: Van der Pol oscillator with external voltage E(t), semiconductor,
inductor L, capacitor C and current I(t).

Then the system (2.6) is modified by the introduction of a new parameter e,
responsible for the change in depolarization period:

ẍ + α(x2 − µ)ẋ + x(x + d)(x + e)
ed

= 0 (2.7)

The damping term α(x2 -µ) was further updated in Equation (2.7) by substituting
it with (x-ν1)(x-ν2):

ẍ + α(x − ν1)(x − ν2)ẋ + x(x + d)(x + e)
ed

= 0 (2.8)

For the system to continue having its self-oscillatory properties, the condition
ν1ν2<0 must be met. Moreover, the novel model can replicate the fundamental
physiological characteristics of an average cardiac pacemaker. In the event that
system (2.8) is updated as follows in response to an external pacemaker or forcing
factor F(t):

ẍ + α(x − ν1)(x − ν2)ẋ + x(x + d)(x + e)
ed

= F (t) (2.9)

In order to investigate the characteristics of cardiac rhythm, the nonlinear Van der
Pol oscillator-based model of the heart is presented in equation (2.9). In the system
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(2.9) variables x and α represent the length of the heart fiber and the factor used
to modify the pulse shape of heartbeat, ν1 and ν2 represent the parameters that
make up the asymmetric term that changes the damping term in the classic VdP
equation, e denotes the ventricular contraction period, d is a factor that arises to
replace the harmonic forcing in the classic VdP equation by a cubic term, and F(t)
is the external forcing factor [29]. A well-posed problem with a singular solution is
formulated by two initial conditions:

x(0) = c1 (2.10)

ẋ(0) = c2 (2.11)
As was previously noted, the SA node—which is regarded as the normal pace-

maker—is principally responsible for producing the regular heart rhythm. Fur-
thermore, an additional pacemaker is the AV node. An essential component of
the mechanics of the heart is presented by each of these actuation potentials.
Because each activation—depolarization followed by repolarization—corresponds
to a distinct cardiac area, it produces currents that vary in strength. The ECG is
therefore the result of the combination of activation waves originating from each
area of the heart; certain signals, such as those originating from the atrium and
ventricle, may predominate in this composition. Based on these suppositions, the
general heartbeat dynamics may be represented by connected oscillators, each of
which represents a distinct heart area signal. Typically, the SA and AV nodes are
represented by two oscillators; however, it has been found that these oscillators
are insufficient to replicate the ECG signal. This is due to the fact that the first
oscillator’s signal is associated with the atrium and SA node activity, whereas the
second oscillator’s signal is solely associated with the ventricle depolarization. As
this time primarily corresponds to the ventricular repolarization, it is conceivable
to reconstruct the P-curve but not the QRS complex under this premise. This
finding led to the addition of a third oscillator to simulate the pulse propagation
via the ventricles. This oscillator physiologically replicates the His-Purkinje (HP)
complex, which is made up of the Purkinje fibers and the His bundle. All oscillators
are assumed to have bidirectional asymmetric couplings in order to construct a
broad model (Figure 2.4).

2.3 Lyapunov exponent and Poincaré plot
The dynamics perspective is an intriguing method for determining cardiac rhythms,
and the type of dynamic response is useful information in this context. The average
exponential rates at which neighboring orbits diverge or converge in phase space
are known as Lyapunov exponents [30]. Exponential orbital divergence indicates
that systems whose beginning differences we may not be able to resolve will soon
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Figure 2.4: General model with three coupled oscillators: sinoatrial node, atri-
oventricular node and His-Purkinje complex.

act substantially differently—predictive capacity is rapidly lost. This is because
neighboring orbits correspond to nearly identical states. When studying a dynamic
system, the maximal Lyapunov exponent is typically evaluated in order to obtain
the most information possible. It is crucial to determine Lyapunov exponents in
order to recognize the chaotic behavior of cardiac systems [31]. It is a curve that
displays a great deal of dynamic behaviors, many of which are unknown. Among
these data, a positive maximum Lyapunov exponent serves as an illustration of
the chaotic nature. The evolution of minor disturbances to the system during its
time evolution can be carried out by calculating a maximal Lyapunov exponent.
Therefore, at the distance between initially neighboring points, there is a stretch for
a positive maximal Lyapunov exponent, and this is chaos. A system is considered
chaotic if it has at least one positive Lyapunov exponent, and the exponent’s
magnitude indicates the time scale at which the dynamics of the system become
unpredictable [32]. Additionally, there is a contraction or approach for a negative
exponent that is characteristic of a particular oscillatory or static condition; this
is regularity. Lastly, for a zero exponent, we get a collection of quasiperiodic
waveforms, which include the torus in certain instances [33].

Considering two points in a space, x0 and x0+△x0, each of which will generate
an orbit in that space (Figure 2.5), the mean exponential rate of divergence of two
initially closed orbits becomes:

λ = lim
t→∞

1
t

ln(△x(x0, t)
|△x0|

) (2.12)

The distance between the two orbits will depend on time if one of them is utilized
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Figure 2.5: Two neighbouring trajectories.

as a reference orbit. Since sensitive dependency can only occur in specific areas of a
system, this separation takes the form of a location function of the initial value and
becomes △x(x0, t) [34]. The function △x(x0, t) will exhibit unpredictable behavior
during chaotic areas. Chaotic signal pathways in state-space exhibit conventional
patterns. Trajectories that are closely spaced from one another converge and
diverge exponentially. If the exponent is negative (λ <0) the orbit attracts a stable
fixed point or stable periodic orbit. Dissipative or non-conservative systems are
characterized by negative Lyapunov exponents. The stability increases with the
exponent’s negative value. The Lyapunov exponent of super stable periodic points
and fixed points is λ =-∞. In case if the exponent is equal to zero the orbit is a
neutral fixed point. When the system has a zero Lyapunov exponent, it is in a
steady state mode. This exponent indicates that the physical system is conservative.
In conclusion, the orbits are on a chaotic attractor if the exponent is positive. Any
arbitrary gap will cause nearby points to diverge, regardless of how close they are.
These points are unstable. The largest Lyapunov exponent provides a prediction
metric that quantifies the system’s sensitivity to initial conditions. Congenital heart
block (CHB) and ischemic/dilated cardiomyopathy are examples of slowly varying
signals where this value decreases; in the other situations, where RR variation is
greater, the value will be higher [34].

Poincaré map is a nonlinear tool with the function of rhythm identification and
diagnosis purposes. The pathological features are highlighted using the Poincaré
map. It makes it possible to comprehend the global system dynamics better
by condensing the time continuous dynamics into a discrete set of states, or a
map [31]. Return map is one of the approach to build the Poincaré map. It
constructs a Poincaré map by taking into account sequential trajectory junctions
with a subsapace hypersurface [31]. In a highly simple phase space, also known
as a cartesian plane, the values of each pair of subsequent components in a time
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series are visually represented. A Poincaré plot is a graphical representation that
displays the correlation RRn+1 as a function of RRn, where R represents the peak
of the QRS complex for each beat in the ECG signal and RRi is the beat-to-beat
interval [35]. A curve, or trajectory, that depicts the system’s evolution is formed
by a sequence of these points at different intervals, and is thus frequently used
to evaluate the dynamics of heart rate variability. Poincaré plot analysis is a
developing quantitative-visual technique that divides the plot’s form into functional
groups that represent the severity of a subject’s heart failure. The quantitative
analysis of HRV by transforming the Poincaré plot into an ellipse, has been already
discussed in chapter 2.1. Three indexes are obtained with this technique: the axis
ratio (SD1/SD2), the standard deviation of the continuous long-term RR interval
variability (major axis of the ellipse or SD2), and the standard deviation of the
instantaneous beat-to-beat RR interval variability (minor axis of the ellipse or SD1)
(Figure 2.6).

Figure 2.6: An ellipse fitted to the Poincaré plot with descriptors SD1 and SD2
[36].
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Chapter 3

Windkessel model

3.1 Windkessel effect

The study of cardiovascular hemodynamics examines blood flow within the car-
diovascular system. The interaction of blood pressure, resistance, and cardiac
output determines hemodynamics. An important phenomenon in cardiovascular
hemodynamics is the Windkessel effect. The phrase "Windkessel effect" is used
in medicine to describe how the interaction of the stroke volume, the resistance
of the smaller arteries and arterioles, and the compliance of the aorta and large
elastic arteries (Windkessel vessels) shapes the waveform of arterial blood pressure.
The term "windkessel" ("air chamber" in German) refers to a component of an
antique fire engine that functions somewhat like the elastic aorta, which influences
arterial pulses (Figure 3.1). German physiologist Otto Frank described an early
Windkessel model in a paper that was published in 1899 [37]. All of the circuit is
filled with water, with the exception of the chamber’s air pocket. Pumped water
into the chamber compresses the pocket’s air and forces water back toward the
pump as it exits the chamber. The air in the pocket is compressible, simulating the
major artery’s elasticity and extensibility when blood is pushed into it by the heart
ventricle. Arterial compliance is the term often used to describe this effect. The
resistance that water faces when it exits the Windkessel and returns to the pump
mimics the resistance that blood experiences as it passes through the arterial tree,
passing from main arteries to smaller arteries, arterioles, and capillaries, because of
the vessel diameter diminishing. Peripheral resistance is the term used to describe
this flow resistance. Given a constant ratio of air pressure to air volume in the
chamber and a fluid flow through the pipes connecting the air chamber to the pump
that is proportionate to fluid pressure according to Poiseuille’s law, the water flow
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Figure 3.1: The analogy of Windkessel effect.

and pressure can be found by solving the following differential equation:

I(t) = P (t)
R

+ C
dP (t)

dt
(3.1)

where C is the constant ratio of air pressure to air volume, R is the flow-pressure
proportionality constant, I(t) is the water flow out of the pump as a function
of time measured in volume per time units and P(t) is the water pressure as a
function of time measured in force per area units. The relationship between the
current, I(t), and the time-varying electrical potential, P(t), in the electrical circuit
in Figure 3.2 is described by the same equation. This model is most often called the
two-element Windkessel model since it only has two passive components: a resistor
and a capacitor. Within the physiological system, I(t) represents the blood flow
rate in cm3/s from the heart to the aorta (or pulmonary artery); P(t) represents
the blood pressure in mmHg within the aorta (or pulmonary artery); C represents
the arterial compliance within the aorta (or pulmonary artery) in cm3/mmHg and
R represents the peripheral resistance within the systemic (or pulmonary) arterial
system in mmHgs/cm3. I(t) = 0 during diastole, when there is no heartbeat, and
P(t) may be precisely calculated using the Windkessel equation:

P (t) = P (td)e−(t−td)/RC (3.2)
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Figure 3.2: Two-element Windkessel model.

where P(td) is the blood pressure in the aorta (or pulmonary artery) at the beginning
of diastole and td is the time at which diastole begins.

More intricate models with three or four factors have been suggested to better
fit the data from the studies [38]. The Broemser model is an additional circulatory
system model, also known as the three-element Windkessel model [39]. In order
to represent blood flow resistance caused by the aortic or pulmonary valve, the
Broemser model adds a resistive element between the pump and the air chamber to
the two-element Windkessel model (Figure 3.3). For the three-element Windkessel
model, the differential equation is as follows:

(1 + R1

R2
)I(t) + CR1

dI(t)
dt

= P (t)
R2

+ C
dP (t)

dt
(3.3)

where R2 is the peripheral resistance and R1 is the resistance caused by the
pulmonary or aortic valve. When I(t) and its derivatives with respect to time equal
zero during diastole, the three-element Windkessel equation is solved as follows:

P (t) = P (td)e−(t−td)/(R2C) (3.4)

If the inductor is added to the circuit with three elements, it becomes the four-
element Windkessel model (Figure 3.4). In the hydrodynamic model, an inductor
in the main branch of the circuit is stated to replicate the fluid’s inertia, which
was neglected in the two and three-element Windkessel model. The differential
equation for this four-element Windkessel model becomes:

(1 + R1

R2
)I(t) + (R1C + L

R2
)dI(t)

dt
+ LC

d2I(t)
dt2 = P (t)

R2
+ C

dP (t)
dt

(3.5)

The exponentially declining pressure function with decay time constant R2C that
we obtain by solving for P(t) during diastole, when I(t) and its derivatives vanish,
is identical to that of the three-element Windkessel model (3.4).
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Figure 3.3: Three-element Windkessel model.

Figure 3.4: Four-element Windkessel model.

The relationship between blood pressure and blood flow in the arterial system
is explained by the Windkessel model. The elastic portion of the Windkessel
expands during systole (Figure 3.5A), when the heart beats and pumps blood into
the arteries, storing energy and preserving a comparatively steady blood pressure.
The elastic part of the Windkessel contracts during diastole (Figure 3.5B), when
the heart slows down and blood still passes through the arteries, releasing energy
and keeping blood pressure largely steady. The Windkessel model is also used to
comprehend how the cardiovascular system is affected by aging and illness. The
vascular system’s elastic qualities may deteriorate with age, which can result in a
loss of compliance and a rise in blood pressure. Studies employing nuclear magnetic
resonance (NMR) methods on humans verified the age-related increase in elastic
resistance [40]. Reduced elastin content and a relative rise in collagen content are
the characteristics of age-related changes in arterial wall properties, which lead to
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an increase in arterial stiffness. Less blood can be stored in the Windkessel and
is therefore sent to the periphery when the core arteries are more rigid. Apart
from arterial stiffness, the performance of the Windkessel function can also be
influenced by arterial size and cardiac output. In average, women have smaller
vessels than men do, which permits the Windkessel to store less systolic blood for
later delivery during diastole [41]. Therefore, variations in these characteristics
based on gender may be a factor in women’s lower Windkessel function. Similar
to age and gender factors, diseases like hypertension and atherosclerosis can also
alter the arterial system’s elastic characteristics, changing blood flow and pressure.
Pathophysiologic problems can be attributed to the degeneration of the aorta’s
elastic qualities. These conditions include the accumulation of smooth muscle cells,
calcium, and connective tissue or the presence of abnormal elastin [42].

Figure 3.5: The concept of the Windkessel effect during ventricular systole (A)
and diastole (B).

3.2 Hypertension in cancer patients
According to studies, the most frequent comorbidity seen in individuals with cancer
is hypertension [43]. Research evaluating the correlation between high blood
pressure and various forms of cancer exhibit inconsistencies [44]. The only cancer
type that has been consistently linked to hypertension is renal cell carcinoma [45].
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The study of Seretis et al. (2019) identified potential positive connections between
hypertension and the risk of colorectal, breast, endometrial, liver, and oesophageal
cancers in addition to confirming the known link between hypertension and the
risk of kidney cancer [44]. Although the exact biological mechanisms causing this
relationship are unknown, some theories include chronic renal hypoxia [46], lipid
peroxidation [47] and deregulation of renin-angiotensin system [48].

The treatment of hypertension, rather than hypertension per se, may be associ-
ated with increased cancer risk. The increased prevalence of hypertension brought
on by the use of angiogenesis inhibitors in targeted cancer therapy has led to a recent
spike in interest in hypertension in patients with underlying malignancy [49]. From
a cardiovascular point of view, the patient with a tumor who is receiving potentially
toxic oncologic therapy has an increased risk of developing adverse cardiovascular
events. This risk increases in the presence of concurrent arteriosclerosis (cronic
or secondary to medication), especially if adequate compensation is not received.
Drugs that interact with the VEGF (vascular endothelial growth factors) pathways
are the most often implicated in the development of hypertension among the more
recent cancer medications [50]. Anti-VEGF-induced hypertension is influenced by a
number of variables, including the particular molecule employed, dosage, treatment
plan, patient age, and the existence of cardiovascular risk factors. The inibition
of VEGF receptors induces the suppression of nitric oxide synthesis which in turn
promotes the vasoconstriction and therefore also the increase in flow resistance and
blood pressure [51]. For this reason before starting VEGF inhibitor therapy, blood
pressure should be adequately controlled. As VEGF inhibitor therapy progresses,
antihypertensive medications should be titrated to achieve the appropriate blood
pressure values.

The association between hypertension and malignancy might be confounded
by other risk factors that are common in hypertensive patients, such as diabetes,
obesity [52] , smoking [53], and alcohol consumption. Patients with type 2 diabetes
or obesity are more likely to have an elevated risk of cancer progression due to the
acceleration of oxidative stress within tumor cells caused by increasing levels of
circulating or local reactive oxygen species (ROS) obtained from increased adipose
tissue in the tumor environment.
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Chapter 4

Computational models

4.1 Parameter sensitivity of solutions
One approach to analyze the HRV in cancer patients is through the use of nonlinear
differential equations. Modeling HRV in cancer patients with nonlinear differential
equations has the benefit of capturing the intricate, nonlinear dynamics of the
ANS and cardiovascular system. This may lead to a more precise comprehension
of the physiological mechanisms that underlie HRV in cancer patients. The effects
of various interventions, such as cancer therapies, on HRV can also be simulated
using nonlinear differential equations. This work explored the modelling of HRV
using a particular nonlinear differential equation called Van der Pol equation.

The first step was the analysis of parameter sensitivity of the solutions. In other
words, the goal was to determine how much the solutions change on the model
parameters. Without any external forcing, in the Van der Pol equation:

d2x

dt2 − µ(1 − x2)dx

dt
+ x = 0 (4.1)

x represents the displacement, t is time, and µ is a parameter controlling the
nonlinearity and damping.

The sensitivity of solutions of the Van der Pol oscillator to its parameters,
particularly µ, can be quite significant. The parameter µ determines the strength of
the damping in the system. Higher values of µ lead to stronger damping, while lower
values lead to weaker damping. As a result, changes in µ can significantly alter
the behavior of the oscillator. For instance, with low µ, the oscillator may exhibit
sustained oscillations or chaotic behavior, while with high µ , it may approach a
stable equilibrium quickly. The term µ(1 − x2)dx

dt
represents nonlinear damping.

This term is responsible for the transition between stable and oscillatory behavior.
Changes in µ can thus impact the strength of this nonlinear effect, leading to
changes in the amplitude and frequency of oscillations. When µ is large, the
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damping force dominates, causing the oscillations to decay rapidly. As a result,
the system approaches its equilibrium state quickly without exhibiting significant
oscillatory behavior. The solutions of the oscillator become more akin to simple
exponential decay towards the equilibrium point. In contrast, when µ is small,
the damping force is weak. The oscillator exhibits sustained oscillations, and the
amplitude of oscillations may remain relatively constant or slowly decrease over
time. The system’s behavior is characterized by a balance between the nonlinear
restoring force and the weak damping.

Furthermore, initial conditions are essential for obtaining a unique solution
to the differential equation. To solve the equation (4.1), you need to know the
values of x(t = t0) = x0 that determines the starting position of the oscillator and
of dx

dt
(t = t0) = v0 that specifies the initial velocity of the oscillator at time t0.

Depending on the specific values of x0 and v0 , the behavior of the Van der Pol
oscillator may exhibit various phenomena such as sustained oscillations, relaxation
oscillations, or chaotic behavior. Sustained oscillations refer to the persistent,
repetitive motion exhibited by a dynamic system without decay or growth in
amplitude over time. Relaxation oscillations occur when the system alternates
between fast, transient periods of rapid change and slower, more gradual relaxation
towards a stable equilibrium. Chaotic behavior refers to the unpredictable, aperiodic
motion exhibited by the system under certain conditions.
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Figure 4.1: Time series of the VdP oscillator, phase map and power spectral
density plot with parameter µ=0.

ODE45 function was used to solve ordinary differential equations numerically
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(Appendix A Listing A.1). To solve the VdP equation and use ODE45 function,
the second order ODE must be converted into two first order ODEs:x1 = x(t)

x2 = x′(t)
(4.2)

Differentiating the system of two equations (4.2) we obtain:x′
1 = x2

x′
2 = µ(1 − x2

1)x2 − x1
(4.3)
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Figure 4.2: Time series of the VdP oscillator, phase map and power spectral
density plot with parameter µ=0.1.

To analyze the parameters sensitivity of solution, the initial conditions of the
system (4.3) remained constant x1(0) = x(0) = 1 and x2(0) = x′(0) = 0. Different
numerical values have been applied to the parameter µ. Time series of the VdP
oscillator, phase maps and power spectral density plots were represented to inspect
the parameters sensitivity of solution. To generate a phase portrait (also known
as a phase plane or phase diagram) for the Van der Pol oscillator, the trajectory
of the system was plotted in the phase space defined by the displacement x and
its derivative dx

dt
. Phase map is a graphical representation of the behavior of a

dynamical system in a multi-dimensional state space. The Power Spectral Density
(PSD) of the Van der Pol oscillator describes how the power of the signal generated
by the oscillator is distributed across different frequencies. PWELCH function and
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the sampling frequency equal to 200 Hz were used to plot the PSD. The maximum
frequency of the components of interest in the ECG is generally less than 100 Hz.
To avoid aliasing, the sampling rate must be at least double the maximum. For
this reason the sampling frequency was chosen to be 200 Hz. The equation (4.1)
becomes the standard equation for a harmonic oscillator when µ = 0 (on the top
of Figure 4.1):

y′′ + y = 0 (4.4)
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Figure 4.3: Time series of the VdP oscillator, phase map and power spectral
density plot with parameter µ=1.

In this case the oscillator exhibits the circumference in phase map (in the middle
of Figure 4.1). Situations with values of the µ parameter equal to 0.1 (Figure 4.2),
1 (Figure 4.3) and 3 were examined (Figure 4.4).

In the time series plots when µ value increases, the frequency of oscillation
decreases. Also the shape of the oscillations in the phase space can vary widely
depending on the value of µ. In case of small nonlinearity (0<µ ≪ 1), the shape
may resemble nearly circular orbits. As µ increases, the shape can become more
complex and show variations in amplitude and the solutions tend to approach the
limit cycle in a shorter and shorter time interval.

A slightly modified version of VdP equation expressed by equation (2.8), gives
a better model of the cardiac activity. In this equation (2.8 α is the factor that
changes the pulse shape of a heartbeat in response to a stimulus, and x is the
length of a heart fiber. The parameters ν1 and ν2 combine to form an asymmetric
term that modifies the damping term included in the classic VdP equation; e stands
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Figure 4.4: Time series of the VdP oscillator, phase map and power spectral
density plot with parameter µ=3.

Figure 4.5: Representation of refraction time (RT) followed by time of spontaneous
depolarization (TSD).

for ventricular contraction period; and d is a factor that emerges when a cubic
term is substituted for the harmonic forcing in the classic VdP equation [29]. The
parameters v1 and v2 directly affect the diastolic period and the resting potential
of the pacemaker, the parameter α directly affects the amplitude of the output and
the value of e and d affect the depolarization time of the pacemaker [54].

A variation in parameter α causes changes in the diastolic and refractory periods
[54]. During the refractive phase the cell is immune to external excitation when
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the action potential is generated. After the refractory period, the spontaneous
depolarization (diastolic period) starts (Figure 4.5).
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Figure 4.6: Time series and phase maps of modified VdP oscillator with α=1,
ν1=0.83, ν2=-0.83, d=3 and e=6.

By incorporating system parameters α, ν1, ν2, d and e into the conventional VdP
oscillator, it becomes possible to alter the actuation potential’s firing frequency
without altering the duration of the refractory period [54]. In this case the two
first order ODEs are:x′

1 = x2

x′
2 = −αx2(x1 − ν1)(x1 − ν2) + x1(x1 + d)(x1 + e)

(4.5)

with constraints that ν1 and ν2 must have the opposite signs to preserve the
self-oscillatory character of the system and α, d and e must be positive [54].

The values of initial conditions were held constant: x(0)=1 and v(0)=0. The
values of system parameters were proposed by Grudzinski et al. (2004): α=1,
ν1=0.83, ν2=-0.83, d=3 and e=6 [54]. The solutions with these parameters were
plotted in Figure 4.6. It is possible to see that unlike the previous case with
conventional VdP oscillator, the time series and phase maps present the differences
with modified VdP equation, especially in phase maps. The phase maps became
asymmetric thanks to the introduction of parameters ν1 and ν2 which represent
an asymmetric damping term related to the voltage in the VdP equations. As the
value of α increases, keeping the values of other parameters constant (ν1=0.83,
ν2=-0.83, d=3 and e=6), it’s possible to note the changes in the pulse form and
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the transition from less frequent to more frequent oscillations (Figures 4.7-4.9).
Also the phase portrait presents some changes. When α value increases, the limit
cycle becomes narrower, it could indicate that the oscillations of the system are
occurring with a small amplitude.
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Figure 4.7: Time series and phase maps of modified VdP oscillator with α=0.1,
ν1=0.83, ν2=-0.83, d=3 and e=6.

The variations of ν1 and ν2 values, keepin other parameters constant (α=1, d=3
and e=6.), bring to drastic changes in the waveform and in phase portrait (Figure
4.10-4.12). It is noted that for low values of ν1 and ν2, the oscillations decrease in
amplitude and the phase map representation is far from the limit circle.

If we increase the value of d parameter, the oscillations frequency increases too
and the shape of limit cycle becomes more narrow (Figures 4.13-4.15).

If the values of e are changed, from the plots obtained one can note that as the
value increases, keeping other parameters constant (α=1, ν1=0.83, ν2=-0.83, d=3),
the frequency of the oscillation increases, meanwhile the phase map plot seems to
remain invariable (Figures 4.16-4.18).

In the work of Lopez-Chamorro et al. (2018) the optimal modified VdP parame-
ters for heartbeats samples were obtained through use of Genetic Algorithm (GA)
throughout the Dynamic Time Warping alignment method (DTW) [55] (Table 4.1).

All these values were considered for analyzing the sensitivity of solutions to
parameters (Appendix A Listing A.2). The graphs of time series, the phase maps
and the graphs of power spectral density were plotted. There were no differences
between the graphs using the optimal values perceptible to the human eye. So to
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Figure 4.8: Time series and phase maps of modified VdP oscillator with
α=1,ν1=0.83, ν2=-0.83, d=3 and e=6.
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Figure 4.9: Time series and phase maps of modified VdP oscillator with α=3,
ν1=0.83, ν2=-0.83, d=3 and e=6.

see the key points of plots, therefore it is enough to to analyze the graphs with
the optimal values of the first row of the Table 4.1 (Figure 4.19). From the Figure
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Figure 4.10: Time series and phase maps of modified VdP oscillator with ν1=0.1
and ν2=-0.1, α=1, d=3 and e=6.
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Figure 4.11: Time series and phase maps of modified VdP oscillator with ν1=0.5
and ν2=-0.5, α=1, d=3 and e=6.

4.19 it’s possible to see how the time series resembles action potentials captured
from a cardiac pacemaker’s real cells [54] (Figure 4.28) more than in the previous
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Figure 4.12: Time series and phase maps of modified VdP oscillator with ν1=1
and ν2=-1, α=1, d=3 and e=6.
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Figure 4.13: Time series and phase maps of modified VdP oscillator with d=2.5,
α=1, ν1=0.83, ν2=-0.83, e=6.

cases (Figures 4.1-4.4 and 4.6-4.18). The limit cycle appears narrow in the phase
portrait, this may be due to the increase of the nonlinearity term x(x+d)(x+e)

ed
. Also
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Figure 4.14: Time series and phase maps of modified VdP oscillator with d=4,
α=1, ν1=0.83, ν2=-0.83, e=6.
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Figure 4.15: Time series and phase maps of modified VdP oscillator with d=6,
α=1, ν1=0.83, ν2=-0.83, e=6.

in this case with new parameter values, it is important to analyze the solution
sensitivity. Subsequently the time series graphs and phase maps are represented
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Figure 4.16: Time series and phase maps of modified VdP oscillator with e=4,
α=1, ν1=0.83, ν2=-0.83, d=3.
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Figure 4.17: Time series and phase maps of modified VdP oscillator with e=6,
α=1, ν1=0.83, ν2=-0.83, d=3.

for different values of parameters α, ν1, ν2, d and e close to the values of Table 4.1
(Figures 4.20 - 4.27).
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Figure 4.18: Time series and phase maps of modified VdP oscillator with e=8,
α=1, ν1=0.83, ν2=-0.83, d=3.
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Figure 4.19: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=2.5151, ν2=-2.5151, d=10.6335 and e=10.0548.

Then the forcing factor Asin(ωt) was added in modified VdP equation (2.8).
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Table 4.1: Optimal modified VdP system parameters.

α ν1 ν2 d e
5.5982 2.5151 −2.5151 10.6335 10.0548
7.0488 2.1632 −2.1632 14.1948 7.87016
14.6852 2.8377 −2.8377 13.1039 8.27039
14.9178 2.8719 −2.8719 8.26114 13.6683
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Figure 4.20: Time series of the modified VdP oscillator and phase map with
parameters α=3, ν1=2.5151, ν2=-2.5151, d=10.6335 and e=10.0548.

The equation with modified VdP oscillator and forcing term becomes:

ẍ + α(x − ν1)(x − ν2)ẋ + x(x + d)(x + e)
ed

= Asin(ωt) (4.6)

where, A represents the amplitude of the sinusoidal forcing term, and ω represents
the pulsation of the forcing term. The values of these parameters were proposed by
Raja et al. 2017) using feedforward artificial neural networks (FF-ANNs) optimized
with genetic algorithms hybrid through interiorpoint algorithm (IPA) [29]: A=2.5
and ω=1.9 (Appendix A Listing A.3). The sinusoidal forcing term introduces an
external periodic influence into the system, which can model various phenomena
such as external stimuli in biological systems. Figure 4.29 shows the response of
the oscillator for α=1, ν1=0.83, ν2=-0.83, d=3, e=6 A=2.5 and ω=1.9.

If we change the value of ω,keeping the same values of other parameters, we
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Figure 4.21: Time series of the modified VdP oscillator and phase map with
parameters α=10, ν1=2.5151, ν2=-2.5151, d=10.6335 and e=10.0548.
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Figure 4.22: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=1, ν2=-1, d=10.6335 and e=10.0548.

can note that greater values of ω will smooth the wave shape, while smaller values
will distort the output (Figures 4.30 and 4.31). Greater values of ω increase the
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Figure 4.23: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=3, ν2=-3, d=10.6335 and e=10.0548.
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Figure 4.24: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=2.5151, ν2=-2.5151, d=7 and e=10.0548.

oscillation frequency making waves more regular from the point of view of shape.
If the value of amplitude of the sinusoidal forcing term changes drastically the
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Figure 4.25: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=2.5151, ν2=-2.5151, d=12 and e=10.0548.
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Figure 4.26: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=2.5151, ν2=-2.5151, d=10.6335 and e=8.

waves shape. Particularly, when A value increases, the waves become more irregular
in shape.
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Figure 4.27: Time series of the modified VdP oscillator and phase map with
parameters α=5.598, ν1=2.5151, ν2=-2.5151, d=10.6335 and e=12.

Figure 4.28: Action potentials recorded from the real cells of a cardiac pacemaker.

However, when the electromagnetic field is applied, the forcing term is simply
not the same as Asin(ωt) but it gets a little complicated. The original RLC circuit
is shown in Figure 4.34.

This circuit is described by the differential equation:

RI + L
dI

dt
+ Q

C
= Vext(t) (4.7)

wich can be differentiated respect to time to obtain a damped-driver harmonic
oscillator equation:

L
d2I

dt2 + R
dI

dt
+ 1

C
I = dVext

dt
(4.8)
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Figure 4.29: Time series of the modified VdP oscillator and phase map with
amplitude A=2.5, pulsation ω=1.9 and parameters α=5.598, ν1=2.5151, ν2=-
2.5151, d=10.6335 and e=10.0548.
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Figure 4.30: Time series of the modified VdP oscillator and phase map with
amplitude A=2.5, pulsation ω=0.9 and parameters α=5.598, ν1=2.5151, ν2=-
2.5151, d=10.6335 and e=10.0548.
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Figure 4.31: Time series of the modified VdP oscillator and phase map with
amplitude A=2.5, pulsation ω=3 and parameters α=5.598, ν1=2.5151, ν2=-2.5151,
d=10.6335 and e=10.0548.
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Figure 4.32: Time series of the modified VdP oscillator and phase map with
amplitude A=0.5, pulsation ω=1.9 and parameters α=5.598, ν1=2.5151, ν2=-
2.5151, d=10.6335 and e=10.0548.
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Figure 4.33: Time series of the modified VdP oscillator and phase map with
amplitude A=5, pulsation ω=1.9 and parameters α=5.598, ν1=2.5151, ν2=-2.5151,
d=10.6335 and e=10.0548.

Figure 4.34: LRC circuit.

Since I = dQ
dt

, the equation can be simplified:

d2I

dt2 + (R

L
)dI

dt
+ 1

LC
I = ( 1

L
)dVext

dt
(4.9)

What Van der Pol did was to assume that the effective resistance in the circuit
changes with the current according to R = 3I2 −α. In this mode, the VdP equation
was obtained:

I ′′ + 3I ′

L
(I2 − α

3 ) + I

LC
= f(t) (4.10)

where f(t) = ( 1
L

)dVext

dt
. The modified VdP equation was specifically developed for

hemodynamics and further assumed that the capacitive term of the equation was a
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cubic nonlinear function of the current:

I ′′ + α(I − ν1)(I − ν2)I ′ + I(I + d)(I + e)
de

= f(t) (4.11)

where α = 3
L

. In case of applied electromagnetic fields

Vext = V0sin(ωt)[1 + asin(ft)] (4.12)

,so

f(t) = f
1
L

dVext

dt
= (V0

L
)ωcos(ωt)[1 + asin(ft)] + afsin(ωt)cos(ft) (4.13)

However, the second term is much smaller than the first. Therefore, the forcing
term can be simplified: f(t) ≈ V0

L
ωcos(ωt)[1 + asin(ft)]. Also because ω ≫ f , it is

possible to replace the term cos(ωt) with sin(ωt):

f(t) ≈ (V0

L
ω)sin(ωt)[1 + sin(ft)] (4.14)

So the final equation becomes:

I ′′ + α(I − ν1)(I − ν2)I ′ + I(I + d)(I + e)
de

= Asin(ωt)[1 + sin(ft)] (4.15)

where A = V0ω
L

. The goal is to determine A value. We know that V0 = I0R,
I0 = j0A0 and j0 = σE0 where j0 is current density, A0 is a cross-sectional area of
the heart σ is heart conductivity and E0 is amplitude of the electromagnetic signal.
To determine the A value, it is necessary to know the R

L
value in the equation:

A = V0ω

L
= R

L
A0σE0ω (4.16)

where ω is a carrier wave frequency (ω = 27.12MHz ∗ 2π) and f is tumor specific
envelope frequency with values from 10 Hz to 150 kHz (f = 10Hz ∗ 2π). The
conductivity of myocardium is σ ≈ 0.16S/m. For commercial pacemaker the
resistance is on the order of R = 1000Ω, the current is typically I0 = 10µA, so
from Ohm’s law the voltage experienced by the heart is:

V0 = I0R = 10mV (4.17)

The average cross-sectional area of the human heart is approximately 12-20 square
centimeters. It is possible to estimate the value of current density from the formula
with S = 10cm2:

j0 = I0/S = σE0 (4.18)
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Knowing the values of j0 and σ, it is possible to obtain the E0 value:

E0 = I0

Sσ
= 6.25V/m (4.19)

The medical device AUTEM produces electric field more or less equal to 3.8 V/m,
this value is lower than of the pacemaker but of the same order of magnitude. It is
important to underline that the value of E0 obtained is much less than the value of
Emax = Imax

σA0
= 25V/m where Imax is the value of current (50 mA) that can lead

to cardiac arrest. The last term to determinate remains R
L

. It is known that R
L

= 1
τ

where τ is a time constant. Time constant can be approximated to diastolic phase
time, parameter used to characterize the rate at which the ventricular pressure
decreases during diastole. Typical values for the diastolic time constant in healthy
individuals range from about 0.2 to 0.4 seconds. For parameters α, ν1, ν2, d and
e the averages from Table 4.1 were taken as values: α=10.5625, ν1=2.596975,
ν2=-2.596975, d=11.548335 and e=9.9659125. The script with these values and
forcing term described previously was run on MATLAB (Appendix A Listing A.4)
and the plots of time series and phase map were obtained (Figure 4.35).
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Figure 4.35: Time series of the modified VdP oscillator and phase map with
carrier wave frequency ω= 27.12 MHz, tumor specific envelope frequency f=100
Hz and parameters α=5.598, ν1=2.5151, ν2=-2.5151, d=10.6335 and e=10.0548.
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4.2 Database analysis
The patient database was provided by the Hospital Sirio Libanes (São Paulo,
Brazil), especially by medical oncologist Frederico Perego Costa. The file Excel
with two worksheets (ECG1 and ECG2), each of which has 988 columns and 8001
lines, was given. The first column was the time period in seconds and all other
columns were the measure of voltage in millivolt and of pressure in mmHg due to
the application of external electromagnetic fields in hertz. Here is the database
scheme: ECG1 and ECG2 contained patient data subjected to electrical potential

Table 4.2: Patient data.

Time(s) 1(Hz) 1(Hz) 1(Hz) 2(Hz) ... 330(Hz)
0 0.4754 -0.0154 104.1749 0.3862 ... 24.995

0.007 0.4753 -0.2646 104.0901 0.3846 ... 24.995
... ... ... ... ... ... ...

55.993 -0.0419 -0.0119 101.2125 0.1586 ... 24.995

measurement through different placements of the electrodes. All ECG signals were
preprocessed. The waves were detrended to correct the baseline due to patient
movement. Every applied frequency of electromagnetic field had three columns.
The first one was ECG signal, the second column was the ECG gradient and last one
was blood pressure measurement. ECG gradient involves measuring how rapidly
the ECG signal changes over time. This might be useful for assessing the dynamics
of the cardiac cycle, such as heart rate variability or the rate of change of specific
features like the QRS complex. The measurement of systolic blood pressure (SBP)
involves assessing the pressure in the arteries when the heart beats or contracts,
pushing blood out into the body. The systolic blood pressure measurement is
essential for assessing cardiovascular health and is a key indicator of heart function
and vascular health. It’s influenced by factors such as cardiac output, peripheral
vascular resistance, and the elasticity of the arteries.

The goal was to obtain time series plots, phase maps and recursive maps from
these data. Phase plots indicate the system behavior. Closed trajectory could
suggest periodic behavior or a stable limit cycle. Recursive maps are represented
as the voltage at each time step as a function of the voltage at the previous time
step. In these plots the limit cycles characterize the system’s oscillatory dynamics
and could correspond to the sequence of electrical events in the heart cardiac cycle.
The system tends to return to the same set of values, forming a closed trajectory.

To plot the time series, the script on MATLAB was run (Appendix A Listing
A.5). The first thing to do when the script is run, is to insert two frequency value
from 1 Hz to 330 Hz. The values must be integer numbers. To align two ECG
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Figure 4.36: Time series obtained from data of patients subjected to electromag-
netic fields with f=1 Hz (blue) and 50 Hz (red).

signals so that they have the same baseline, the cross-correlation method was used.
This method finds the time shift between two signals that maximizes their similarity.
Following are some examples of the graphs obtained (Figures 4.36 - 4.38).

If we compare the effect of different applied frequency of electromagnetic field,
we can note that if the frequency is increased, the temporal shift occurs. Even if at
the beginning two signals almost coincided, the further you go in time, the more
the higher frequency signal delays. Furthermore, it is possible to observe that also
the R peaks undergo variations.

Then the phase maps were analyzed (Appendix A, Listing A.6). Phase maps
constructed as voltage in function of the derivative of voltage in an ECG signal
can provide insights into the dynamics and relationships between voltage changes
and their rate of change (slope) (Figures 4.39 - 4.41).

Then the recursive maps were obtained (Appendix A, Listing A.7). Creating
a recursive map of an ECG signal involves plotting the voltage at each time step
against the voltage at the previous time step (Figures 4.42 - 4.44). This can reveal
certain dynamics or patterns in the signal over time.

Finally, the plots with systolic blood pressure were constructed (Figures 4.45 -
4.49).

The shape and the amplitude of the plots seem to be similar for the frequencies
from 1 Hz to 245 Hz applied to patients. After 245 Hz the shape changes drastically
and become square wave (Figures 4.48 and 4.49).
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Figure 4.37: Time series obtained from data of patients subjected to electromag-
netic fields with f=100 Hz (blue) and 250 Hz (red).
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Figure 4.38: Time series obtained from data of patients subjected to electromag-
netic fields with f=1 Hz (blue) and 330 Hz (red).
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Figure 4.39: Phase map obtained from data of patients subjected to electromag-
netic fields with f=1 Hz.
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Figure 4.40: Phase map obtained from data of patients subjected to electromag-
netic fields with f=100 Hz.
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Figure 4.41: Phase map obtained from data of patients subjected to electromag-
netic fields with f=330 Hz.
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Figure 4.42: Recursive map obtained from data of patients subjected to electro-
magnetic fields with f=1 Hz.
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Figure 4.43: Recursive map obtained from data of patients subjected to electro-
magnetic fields with f=100 Hz.
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Figure 4.44: Recursive map obtained from data of patients subjected to electro-
magnetic fields with f=330 Hz.
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Figure 4.45: Plot of systolic blood pressure obtained from data of patients
subjected to electromagnetic fields with f=1 Hz.
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Figure 4.46: Plot of systolic blood pressure obtained from data of patients
subjected to electromagnetic fields with f=100 Hz.
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Figure 4.47: Plot of systolic blood pressure obtained from data of patients
subjected to electromagnetic fields with f=200 Hz.
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Figure 4.48: Plot of systolic blood pressure obtained from data of patients
subjected to electromagnetic fields with f=245 Hz.
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Figure 4.49: Plot of systolic blood pressure obtained from data of patients
subjected to electromagnetic fields with f=330 Hz.
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4.3 Blood pressure model
To construct the Windkessel model, utilized to explain how blood pressure and
blood flow interact throughout the vascular system, the parameters like resistance
and compliance are needed. It was decided to create the two-element model (3.1).
In this model, the blood flow from the ventricle into the aorta during the cardiac
cycle is denoted by I(t). I(t) is a sine wave that has amplitude I0 during systole
and 0 outside of it. Since the ventricles are relaxed during diastole, there is no
blood flow into the aorta, and I(t) = 0. Blood is expelled into the aorta during
ventricular contraction during systole, though, and this process can be represented
as a sinusoidal wave [56]:

I(t) = I0sin(π ∗ mod(t, Tc)
Ts

) (4.20)

where t is time in seconds, Tc is the period of cardiac cycle in seconds, Ts is the
systolic period in seconds and mod(t, Tc) is the amount left behind after dividing
t by T . Based on the cardiac cycle’s dynamics, Ts results to be 2

5Tc. In general,
the average adult heart pumps about 5 liters of blood per minute at rest, which
equates to about 70-80 milliliters of blood per beat. So in one cardiac cycle, if
the duration of a cardiac cycle is typically between 0.6 to 1 second, the volume of
blood flow is equal to ≈ 90cm3. To find the maximum value of amplitude during
systole I0, it’s necessary to solve the integral (Appendix A, Listing A.8):

90 =
Ú Tc

0
I0sin(π ∗ mod(t, Tc)

Ts

)dt (4.21)

The solution is 135 ∗ π mL equal to 424.1 mL [56]. The aortic blood flow of three
cardiac cycles with Tc = 60/72 s and Ts = 2/5Tc can be represented in Figure 4.50
(Appendix A, Listing A.9). Aortic blood flow can vary depending on factors such as
cardiac output, heart rate, and the condition of the cardiovascular system. However,
a flow rate of 423 ml/s suggests efficient circulation and adequate perfusion of the
body’s tissues and organs.

As mentioned before (3.1), the value of blood flow depends on parameters C
and R. So during the systolic phase:

dP (t)
dt

+ P (t)
CR

= I(t) (4.22)

If the integrating factor u(t) =
s 1

CR
dt = e

t
RC is used, the equation 4.22 becomes:

dP (t)
dt

e
t

RC + e
t

RC
P (t)
CR

= I0

C
sin(πt/Ts)e

t
RC = d

dt
(e t

RC P (t)) (4.23)
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Figure 4.50: Model of aortic blood flow for three cardiac cycles.

Integrating both sides of the equation 4.23:Ú
d(e t

RC P (t)) =
Ú I0

C
sin(πt/Ts)e

t
RC dt (4.24)

The solution of this equation is:

y(t) = c1e
−t
RC +

−e
t

CR TsI0R(CπRcos( πt
Ts

) − Tssin( πt
Ts

))
T 2

s + C2π2R2 (4.25)

Since systole is preceded by diastole, the initial condition of the systolic phase is
the diastolic pressure Pss (pressure of start of systolic cycle). So the solution of
constant c1 becomes:

c1 = Pss + I0TsR[CπR]
T 2

s + C2π2R2 (4.26)

Meanwhile during the diastole phase, as mentioned before, I(t) = 0 and

P (t) = ce
−t
RC (4.27)

The initial condition to find the c constant value is the pressure of the end of systolic
phase Psd (pressure of start of diastolic phase). To plot the systolic and diastolic
pressure trend, the values of parameters are needed (Appendix A, Listing A.10).
The main parameters for two-element model are systemic peripheral resistance
R = 0.95mmHg

cm3 sec and systemic arterial compliance C = 1.0666 cm3

mmHg
[57]. The

plot of systolic and diastolic pressure is represented in Figure 4.51.
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Figure 4.51: Model of blood pressure during three cardiac cycles.
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Chapter 5

Results and discussion

5.1 Influence of solutions by parameters

After the construction of HRV and blood pressure models, it is possible to analyze
the results obtained. As seen previously, Van der Pol model solutions are sensitive
to different parameter values. The solution of VdP equation shows oscillating
activity that reflects the contraction and relaxation cycle of the heart during the
heartbeat. In case when the forcing term is absent and when we use the original Van
der Pol equation, the parameter µ has a huge impact on the outcome. In particular,
when µ = 0, the harmonic oscillations are obtained (Figure 4.1). Increasing µ
values, the system tends to slow down the oscillations of the system. This effect is
due to the greater dissipative force introduced by the parameter, which reduces the
system’s ability to oscillate rapidly (Figures 4.2-4.4). Furthermore, at higher values
of µ , the system can become more stable around its equilibrium point. This may
mean that the system tends to return to its steady state more quickly after being
perturbed as shown in phase plots of Figures 4.2-4.4. As for the power spectral
density, if the µ value increases, the oscillations slow down. As a result, peak
frequencies in the power spectrum may decrease, since the system is not able to
oscillate as rapidly as at lower values of µ as seen in power spectral density graphs
of Figures 4.2-4.4.

Unfortunately, the original Van der Pol equation must be modified to better
represent cardiac variability by introducing additional terms that capture specific
phenomena of the cardiovascular system. In this way, also the parameters as α, ν1,
ν2, d and e influence the solution of modified Van der Pol equation. Parameter α
determines the strength of the nonlinear effect in the equation. Larger α values
indicate greater complexity and dynamism in the cardiovascular system, which
could be reflected in heart rate variability. From the Figure 4.7-4.9 it is possible
to note that when the α value increases, raises the strength of non-linear terms in
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the equation, which may lead to a more non-linear systemic behavior. This can
cause increased sensitivity to changes in system parameters and initial conditions.
Increasing α leads to a change in the frequency of the oscillations (the frequency
decreases) meanwhile the amplitude seems to remain the same. In the phase map,
the parameter increase affects the shape and arrangement of the transitory elements,
which graphically depicts the system’s evolution over time in terms of its state
variables. ν1 and ν2 are the parameters that influence the position of the equilibrium
points in the phase plane. These parameters could be interpreted as reference values
or threshold levels that influence the activation of control mechanisms in the cardiac
system. Their values could reflect adaptations in the cardiovascular system in
response to external stimuli or changes in physiological or pathological conditions.
Changes in ν1 and ν2 values can affect the frequency, amplitude, or shape of
oscillations. This can occur because increasing these parameters can alter the
strength of the nonlinear terms in the equation, thus affecting the dynamics of the
system. From Figures 4.10-4.12 it is feasible to observe that an increase of parameter
values leads to the amplitude growth and frequency decrease. Furthermore, the rise
of ν1 and ν2 affects the stability of the equilibrium points. As the value increases,
the equilibrium points become more stable. d and e parameters could be associated
with external factors that influence the dynamics of the cardiac system. When
the value of d parameter decreases, the oscillation frequency decreases drastically
(Figures 4.13-4.15). The limit cycle becomes more narrow, it suggests that the
system exhibits greater local stability around the equilibrium points. From the
figures 4.16-4.18 it is clear that also the parameter e influences che behavior of the
oscillations. In particular, when its value increases, the oscillation frequency grows,
meanwhile the limit cycle of the phase maps seems to remain invariable. This can
mean that oscillatory behavior of the system, represented by that limit circle, is
robust to variations in the parameter e.

The values of parameters discussed previously were taken from the work of
Grudzinski et al. (2004) [54]. The solutions with these parameters were compared
with solutions obtained with parameters extracted through use of Genetic Algorithm
by the group of Lopez-Chamorro et al. (2018) [55]. From Figures 4.6 and 4.19 it is
possible to observe the drastic changes. As mentioned before, the results obtained
with parameters from Table 4.1 represent better the shape of action potentials
captured from a cardiac pacemaker’s real cells (Figure 4.20). The amplitude in
this case is larger but oscillation frequency is lower compared to case of Figure 4.6.
Furthermore, the limit cycle of Figure 4.19 is very narrow and elongated. This can
indicate robust stability of the system with respect to perturbations because the
system is able to oscillate in a coherent and predictable way over time, maintaining
a certain distance from unstable equilibrium points. Also in this case the increase of
α parameter leads to the decrease of oscillation frequency, meanwhile the amplitude
and the shape remain the same (Figures 4.20 and 4.21). Furthermore, when α
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value increases, the limit cycle stretches. This could mean increasing stability as
the orbits stay closer to the equilibrium point for a longer period of time before
diverging. The oscillation frequency decreases also if the ν1 and ν2 values increase
(Figures 4.22 and 4.23). Moreover, the more elongated and wider shape of limit
cycle indicates that as the value of parameters increase, increases also the amplitude.
The oscillation frequency is influenced also by the parameter d. When it increases,
the oscillation frequency increases too, meanwhile the amplitude and the limit
cycle remain the same (Figures 4.24 and 4.25). Finally, the increase of oscillation
frequency is due to the increase of e value (Figures 4.26 and 4.27). Also in this
case, the amplitude and the cycle limit seem to remain unchanged.

The application of the external force leads to big changes of the solutions of
VdP equation. If the forcing term is represented by a sinusoid and if the amplitude
A of the force increases,the intensity of the external perturbation applied to the
system increases too. It leads to the increase of oscillation amplitude, the oscillation
regime of the system is disturbed, resulting in a variation in the period and shape
of the oscillations (Figures 4.32 and 4.33). The increase in the amplitude of the
external force also leads to non-linear phenomena such as the appearance of new
harmonics, the instability of the system and the presentation of chaotic behaviors.
Furthermore, the trajectories in the phase plane widen, the limit cycle, which
represents the periodic orbit in the phase plane, expands, the orbits are more
intricate. The increase in pulsation ω leads to a change in the frequency of the
external force applied to the system. It is possible to note from Figures 4.30 and
4.31 how the oscillation frequency decreases as the pulsation ω declines. Moreover,
when the ω value increases, the improvement of periodicity in the system occurs.
This phenomenon is particularly evident when the natural frequency of the system
is close to the frequency of the applied external force. Furthermore, the increase in
ω leads to a change in the shape and size of the trajectories in the phase plane,
causing distortions of existing trajectories.

As demonstrated previously, if the electromagnetic field is applied to the system,
the modified VdP equation becomes:

x′′ + α(x − ν1)(x − ν2)x′ + x(x + d)(x + e)
de

= Asin(ωt)[1 + sin(ft)] (5.1)

where ω is a carrier wave frequency and f is tumor specific envelope frequency.
To establish the possible value of the amplitude A, estimates of parameters as
conductivity of myocardium, voltage experienced by the heart, cross-sectional
heart area and time constant were taken into account. From the Figure 4.35 it
is possible to note that the time series results to be not periodic and chaotic.
Probably, the presence of a modulated sine wave can cause resonance and beat
frequency phenomena that contribute to the complexity of the system and the
generation of an aperiodic time series. Even if the system is sensitive to initial
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conditions, small variations in initial conditions can lead to divergent behavior
over time, contributing to the generation of an aperiodic time series. Another
reason could be the inaccurate approximation of parameters as the amplitude of
the electromagnetic signal or the time constant. Regarding the time constant, it
would be much better to know the value of R

L
, that is, the relationship between

the resistance and inductance of the heart in response to the application of the
magnetic field.

5.2 Data analysis
The application of a low-frequency electromagnetic field affects the ECG in several
ways, but it mainly depends on the strength of the electromagnetic field, the
duration of exposure and the sensitivity of the ECG measuring equipment. External
electromagnetic fields can introduce interference into the electrical signal measured
by the heart. This may cause artifacts or distortions in the ECG trace, making
it more difficult to interpret the signal correctly. If the electromagnetic field has
enough energy to directly affect the heart, it could cause changes in heartbeats.
This may be reflected in the ECG tracing, showing abnormalities or irregularities
in heart signals. From the patient data it is possible to observe how ECG signal,
phase map and recursive map change by the application of the electromagnetic
field. If the frequency of stimulation increases, the temporal shift occurs (Figures
4.36 - 4.38). This phenomenon is known as "conduction delay". When the pacing
rate is high, the heart may not have enough time to complete the refractory period
before the next pacing. As a result, the conduction of the electrical signal delays.
As regards the phase map, from the Figures 4.39 - 4.41 it is possible to see that
as the frequency value increases, the limit cycle shortens not very significantly. If
the electromagnetic field strength becomes high enough to significantly interfere
with the ECG signal, signal distortion occurs which makes it more difficult to
clearly identify the various phases of the cardiac cycle on the phase map. In other
words, the area in which the ECG signal can be correctly interpreted may become
smaller, leading to a shorter "limit cycle." The presence of a limit cycle in recursive
maps (Figures 4.42 - 4.44) may indicate that the system has reached a state of
stable equilibrium or periodic oscillation. From the plots of systolic blood pressure
(Figures 4.45 - 4.49) obtained from patient data it is possible to observe that when
the frequency of electromagnetic field exceeds 245 Hz, the square wave is obtained.
At higher frequencies, the cardiovascular system may reach a saturation point where
its ability to respond to changes in pressure is limited. This may affect the shape of
the systolic pressure wave, making it more "flat" or "square." Furthermore, at higher
frequencies, distortions in the systolic pressure signal may occur due to technical
factors or artifacts in data acquisition. It is important to make evident that the
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results obtained do not represent reality, as noise and unwanted interference may
be present in the signal. It is not possible to completely remove noise from an
ECG signal. External electromagnetic fields, such as those produced by electronic
devices, household appliances, or other medical equipment, can interfere with the
ECG signal. This interference may occur due to the physical proximity of the
device to the patient or to the ECG signal acquisition device.

5.3 Windkessel model analysis

Figure 5.1: Blood flow waveform measured by PC-MRI in one cardiac cycle.

The graph of the Figure 4.50 confirms that maximum amplitude value during
systole I0 obtained from the assumption that the volume of blood flow in one
cardiac cycle is about 90cm3, could be reasonable. Aortic blood flow can vary
depending on factors such as cardiac output, heart rate, and the condition of
the cardiovascular system. However, a flow rate of 423 ml/s suggests efficient
circulation and adequate perfusion of the body’s tissues and organs. This flow rate
is indicative of a healthy cardiovascular system with a normal cardiac output. It’s
within the range of typical blood flow rates observed in the aorta during rest and
moderate activity in healthy adults. Also the work of Alastruey et al. (2016) affirms
the correctness of results. In Figure 5.1 [58] the blood flow waveform measured
by phase contrast magnetic resonance imaging (PC-MRI) is represented. If this
figure is compared to Figure 4.50, it is possible to note the similarity both in the
shape and amplitude of the waves. The resulting model of blood pressure (Figure
4.51) also seems to have reasonable values of maximum and minimum amplitudes
because a healthy person’s systolic and diastolic blood pressure are approximately
120 and 80 mmHg, respectively. This value can vary slightly depending on factors
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such as age, gender, and overall health.
The two-element model proposed is incomplete. As mentioned before, three-

and four-element models could better describe cardiac hemodynamics and aim
to capture more complexities in arterial properties. The three-element model
represents the arterial system as a lumped model with compliant arteries that
store and release blood during the cardiac cycle, resistance to flow offered by the
arterioles, and inertial effects due to the pulsatile nature of blood flow. Meanwhile
in the four-element model, the addition of systemic vascular resistance represents
the combined resistance of the systemic vasculature beyond the arterioles, including
the resistance offered by the capillaries and veins.
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Conclusion

Heart’s intricate electrical conduction system plays a vital role in regulating its
rhythmic pumping action. From the initial stimulation of the sinoatrial (SA) node
to the coordinated contraction and relaxation of the atria and ventricles, each step
in the cardiac cycle ensures efficient blood circulation throughout the body. The
measurement of heart rate variability (HRV) has emerged as a valuable tool for
assessing autonomic nervous system function and predicting prognosis in various
medical conditions, including cancer. Studies have shown that decreased HRV is
associated with tumor growth and poorer outcomes in cancer patients, highlighting
its potential as a prognostic indicator. Additionally, research on the effects of
low-energy amplitude-modulated radiofrequency electromagnetic fields suggests a
potential therapeutic role in slowing cancer cell growth. Understanding the complex
interplay between cardiac function, HRV, and cancer biology holds promise for
improving patient care and treatment outcomes in oncology. Further investigation
into these areas is warranted to harness the full potential of cardiac physiology and
electromagnetic therapies in managing cancer and other related conditions.

The analysis of heart rate variability encompasses various measures and method-
ologies, each providing unique insights into the autonomic nervous system’s modu-
lation of cardiac activity. Time-domain measures, such as standard deviation of
NN intervals (SDNN) and root mean square of successive NN interval differences
(RMSSD), offer information about variability over different time intervals, while
frequency-domain measures, including low frequency and high frequency power, cor-
relate HR oscillations with sympathetic and parasympathetic activity, respectively.
Furthermore, nonlinear measures, such as Poincaré plot descriptors and Lyapunov
exponents, provide valuable insights into the complexity and dynamics of HRV,
offering potential for enhanced risk stratification and diagnostic capabilities. The
exploration of HRV through mathematical modeling, particularly using the Van der
Pol equation, offers a theoretical framework for understanding cardiac oscillatory
behavior, aiding in the interpretation of experimental findings and guiding future
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research directions. Overall, the integration of diverse measures and methodologies
in HRV analysis holds promise for advancing our understanding of autonomic
regulation of the heart, facilitating improved risk assessment, diagnostic accuracy,
and therapeutic interventions in various cardiovascular conditions.

Windkessel model provides a valuable framework for understanding cardiovascu-
lar hemodynamics, particularly the interaction between blood pressure, resistance,
and cardiac output. Originating from Otto Frank’s work in 1899, this model has
evolved from the simple two-element version to more complex iterations, such as
the three-element and four-element models, to better capture the dynamics of
arterial flow and pressure. The Windkessel effect, illustrated by the analogy of
a hydraulic pump with an air chamber, elucidates how arterial compliance and
peripheral resistance influence arterial blood pressure waveforms during cardiac
cycles. By incorporating factors like arterial compliance, peripheral resistance, and
the resistance caused by valves, the Windkessel model offers insights into physio-
logical phenomena like systole and diastole, arterial stiffness associated with aging,
gender differences, and the impact of diseases like hypertension and atheroscle-
rosis on arterial elasticity. Moreover, hypertension often coexists with cancer,
with renal cell carcinoma being the most consistently linked cancer type. Studies
suggest potential positive associations between hypertension and various other
cancers, though the exact biological mechanisms remain unclear. The treatment
of hypertension, particularly with angiogenesis inhibitors in cancer therapy, poses
additional cardiovascular risks, emphasizing the importance of managing blood
pressure effectively in patients undergoing oncologic treatment.

By employing the two-element model, which considers parameters such as
resistance and compliance, we can simulate the interaction between blood pressure
and flow during the cardiac cycle. The model represents blood flow from the
ventricle into the aorta during systole as a sinusoidal wave, with no flow during
diastole. By solving for the maximum amplitude of blood flow during systole, we
can estimate the volume of blood ejected into the aorta per beat. This estimation,
coupled with parameters such as cardiac cycle duration and systolic period, allows us
to construct a model of aortic blood flow over multiple cardiac cycles. Furthermore,
by considering the dynamics of pressure during systole and diastole, we can derive
differential equations that describe the changes in pressure over time. These
equations, along with appropriate initial conditions, enable us to plot the trends of
systolic and diastolic pressures throughout the cardiac cycle. Utilizing parameters
such as systemic peripheral resistance and systemic arterial compliance, we can
generate plots that illustrate the fluctuations in blood pressure during successive
cardiac cycles. These plots provide valuable insights into the dynamics of blood
pressure regulation and the efficiency of cardiovascular function.

The computational modeling of heart rate variability in cancer patients using
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nonlinear differential equations, particularly the Van der Pol oscillator, offers valu-
able insights into the complex dynamics of the autonomic nervous system and
cardiovascular system. Through sensitivity analysis of model parameters, such
as the damping parameter µ, it was observed that variations in these parameters
significantly affect the behavior of the oscillator, influencing oscillation frequency,
amplitude, and stability. The sensitivity of solutions to initial conditions further
underscores the importance of understanding the precise starting conditions for
accurately predicting system behavior. Additionally, the modification of the Van
der Pol equation to better model cardiac activity, as demonstrated by incorporating
parameters such as α, ν1, ν2, d, and e, provides a more nuanced representation
of heart dynamics. This modified model allows for the simulation of phenomena
like refractory periods and spontaneous depolarization, which are crucial in under-
standing cardiac function. Furthermore, the introduction of a sinusoidal forcing
term into the modified Van der Pol equation offers a means to model external
influences on cardiac activity, such as electromagnetic fields. The determination of
appropriate parameter values, considering factors like current density, conductivity,
and time constants, enables the accurate representation of real-world scenarios.
These simulations not only deepen our understanding of cardiac dynamics but also
provide insights into the effects of external stimuli on heart function.

The analysis of the patient database provided by Hospital Sirio Libanes offered
valuable insights into the effects of electromagnetic fields on physiological parame-
ters, particularly electrocardiogram signals and blood pressure. The preprocessing
of ECG signals involved detrending to correct baseline shifts caused by patient
movement, followed by the measurement of ECG gradients and systolic blood pres-
sure. The time series plots revealed distinct temporal shifts and variations in ECG
waveforms, particularly noticeable with increasing frequencies of electromagnetic
field application. The phase maps provided further insights into the dynamics of
voltage changes and their derivatives, suggesting different patterns of signal be-
havior across frequencies. Recursive maps demonstrated the relationships between
voltage values at consecutive time steps, offering a visualization of signal dynamics
over time. Notably, the plots of systolic blood pressure exhibited consistent shapes
and amplitudes for frequencies ranging from 1 Hz to 245 Hz, indicating a similar
physiological response within this frequency range. However, beyond 245 Hz, there
was a notable deviation in the shape of the blood pressure waveform, resembling
a square wave pattern. Overall, these analyses highlight the complex interplay
between electromagnetic field frequencies and physiological parameters, providing
a foundation for further investigation into the effects of electromagnetic fields on
cardiovascular health.

To make the models more complete, it is possible to think about the addition of
the new terms. For example, the HRV model can be represented by three oscillators
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(sinoatrial node, atrioventricular node and His-Purkinje complex) paired with time-
delayed terms that show the amount of time each oscillator spends transmitting.
This modification improves the model’s ability to explain diseases that are based
on observations of specific pathological behaviors, such as atrial fibrillation and
flutter. Furthermore, in addition to parameters like resistance and compliance, it is
possible to include the characteristic impedance and characteristic time τ to obtain
three- or four-element Windkessel model. Characteristic impedance represents
the impedance of the arterial system, meanwhile characteristic time represents
the time constant of the system. The three- and four-element model generally
provide a more accurate representation of arterial dynamics, especially in scenarios
involving wave propagation and reflections. Moreover, one of the future works can
be the fitting of Van der Pol and Windkessel models to patient data. The goal
of this future work will be the definition of objective function that quantifies the
mismatch between model predictions and observed data and then the research
of optimization techniques (such as gradient-based methods, genetic algorithms,
or Bayesian approaches) to find the set of model parameters that minimize the
objective function.
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MATLAB scripts

1 clc
2 close all
3 clear variables
4

5 % constant initial conditions , different values of mu
6

7 mu =0; % nonlinear term , indicates the strength of the damping
8 x0 =1;
9 v0 =0;

10 t =0:0.001:60; % time scale
11

12 figure (1)
13 [x_1 ]= my_vanderpol (mu ,t,x0 ,v0);
14

15 figure (2)
16 mu =0.1;
17 [x_2 ]= my_vanderpol (mu ,t,x0 ,v0);
18

19 figure (3)
20 mu =1;
21 [x_3 ]= my_vanderpol (mu ,t,x0 ,v0);
22

23 figure (4)
24 mu =3;
25 [x_4 ]= my_vanderpol (mu ,t,x0 ,v0);
26

27 function [x]= my_vanderpol (mu ,t,x0 ,v0)
28

29 k=1;
30 [t,x] = ode45(@rhs ,t,[x0 ,v0]);
31

32 subplot (3 ,1 ,1);
33 plot(t,x(: ,1));
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34 xlabel (’t’);
35 ylabel (’x(t)’);
36 title_mu = sprintf (’%3.2f’,mu);
37 plot1_title = strcat (’Position vs time with mu=’,title_mu );
38 title( plot1_title );
39

40 subplot (3 ,1 ,2);
41 plot(x(: ,1) ,x(: ,2));
42 xlabel (’x(t)’);
43 ylabel (’v(t)’);
44 hold on;
45 plot(x0 ,v0 ,’*r’,’MarkerSize ’ ,10);
46 title_x0 = sprintf (’%3.2f’,x0);
47 title_v0 = sprintf (’%3.2f’,v0);
48 plot2_title = strcat (’Phase map with x0=’,title_x0 , ’ and v0= ’,

title_v0 );
49 title( plot2_title );
50

51 % title(’Phase map with x(0) =%3.2f, v(0) =%3.2f’,x0 ,v0);
52 axis equal
53 hold on;
54

55 % PSD(Power Spectral Density ) describes how the power of the
signal is distributed across different frequency bands

56

57 fs =200;
58 N= length (t); % length of the signal
59 window = hanning (N);
60 [Pxx , f] = pwelch (x(: ,1) , window , [], [], fs);
61

62 subplot (3 ,1 ,3);
63 plot(f, 10* log10(Pxx)); % convert to dB for better visualization
64 xlabel (’Frequency (Hz)’);
65 ylabel (’Amplitude (dB)’);
66 plot_psd = strcat (’Power Spectral Density for mu=’,title_mu ,’ ,x0= ’

,title_x0 ,’ and v0= ’,title_v0 );
67 title( plot_psd );
68 hold off;
69

70 function dxdt=rhs(t,x)
71 dxdt_1 = x(2);
72 dxdt_2 = mu*(1-x(1) ^2)*x(2) -k*x(1);
73

74 dxdt = [ dxdt_1 ; dxdt_2 ];
75 end
76 end

Listing A.1: MATLAB script for the analyses of parameter sensitivity of solutions
of Van der Pol equation.
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1 clc
2 close all
3 clear variables
4

5 % Define the modified Van der Pol equation
6 %trial 1
7 alpha = 5.5982; % Set the value of the parameter alpha
8 nu1 = 2.5151; % Set the value of the parameter nu1
9 nu2 = -2.5151; % Set the value of the parameter nu2

10 d = 10.6335; % Set the value of the parameter d
11 e = 10.0548; % Set the value of the parameter e
12

13 %trial 2
14 % alpha = 5.5982;
15 % nu1 = 2.5151;
16 % nu2 = -2.5151;
17 % d = 10.6335;
18 % e = 10.0548;
19

20 %trial 3
21 % alpha = 5.5982;
22 % nu1 = 2.5151;
23 % nu2 = -2.5151;
24 % d = 10.6335;
25 % e = 10.0548;
26

27 %trial 4
28 % alpha = 5.5982;
29 % nu1 = 2.5151;
30 % nu2 = -2.5151;
31 % d = 10.6335;
32 % e = 10.0548;
33

34 % Define a time span
35 t =0:0.001:60;
36

37 % Define initial conditions
38 x0 = 1; % Initial displacement
39 v0= 0; % Initial velocity
40

41 % Solve the ODE
42 ode = @(t, x) [x(2); -alpha *(x(1) -nu1)*(x(1) -nu2)*x(2) - x(1) *(x

(1)+d)*(x(1)+e)/e];
43 [t, x] = ode45(ode , t, [x0 ,v0]);
44

45 % Plot the time series
46 subplot (3 ,1 ,1);
47 plot(t,x(: ,1));
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48 xlabel (’t’);
49 ylabel (’x(t)’);
50 title_alpha = sprintf (’%3.2f’,alpha);
51 title_nu1 = sprintf (’%3.2f’,nu1);
52 title_nu2 = sprintf (’%3.2f’,nu2);
53 title_d = sprintf (’%3.2f’,d);
54 title_e = sprintf (’%3.2f’,e);
55 plot1_title = strcat (’Position vs time with alpha= ’,title_alpha ,’,

v1= ’,title_nu1 ,’, v2= ’,title_nu2 ,’, d= ’,title_d ,’ and e= ’,
title_e );

56 title( plot1_title );
57

58 % Plot the phase portrait
59 subplot (3 ,1 ,2);
60 plot(x(:, 1), x(:, 2));
61 xlabel (’Displacement (x)’);
62 ylabel (’Velocity (dx/dt)’);
63 hold on;
64 title_x0 = sprintf (’%3.2f’,x0);
65 title_v0 = sprintf (’%3.2f’,v0);
66 plot(x0 ,v0 ,’*r’,’MarkerSize ’ ,10);
67 plot2_title = strcat (’Modified Van der Pol Oscillator Phase Portrait

with alpha= ’,title_alpha ,’, v1= ’,title_nu1 ,’, v2= ’,
title_nu2 ,’, d= ’,title_d ,’ and e= ’,title_e );

68 title( plot2_title );
69 axis equal
70 hold on;
71

72 %Plot power spectral density
73 fs =200;
74 N= length (t); % length of the signal
75 window = hanning (N);
76 [Pxx , f] = pwelch (x(: ,1) , window , [], [], fs);
77

78 subplot (3 ,1 ,3);
79 plot(f, 10* log10(Pxx)); % convert to dB for better visualization
80 xlabel (’Frequency (Hz)’);
81 ylabel (’Amplitude (dB)’);
82 plot_psd = strcat (’Power Spectral Density for alpha=’,title_alpha ,’,

v1=’,title_nu1 ,’, v2=’,title_nu2 ,’, d=’,title_d ,’ and e=’,
title_e );

83 title( plot_psd );
84 hold off;

Listing A.2: MATLAB script for the analyses of parameter sensitivity of solutions
of modified Van der Pol equation.
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1 clc
2 close all
3 clear variables
4

5 % Set the parameters
6 alpha = 1; % Set the value of the parameter alpha
7 nu1 = 0.83; % Set the value of the parameter nu1
8 nu2 = -0.83; % Set the value of the parameter nu2
9 d = 3; % Set the value of the parameter d

10 e = 6; % Set the value of the parameter e
11 A = 2.5; % Set the amplitude of the sinusoidal forcing term
12 omega = 1.9; % Set the pulsation of the sinusoidal forcing term
13

14 % Define a time span
15 tspan =0:0.001:60;
16

17 % Define initial conditions
18 x0 = [1;0]; % Initial displacement and velocity (v0 =0)
19

20 % Solve the ODE
21 [t, x] = ode45(@(t,x) modified_vdp (t, x, alpha , nu1 , nu2 , d, e, A,

omega), tspan , x0);
22

23 % Plot the time series
24 subplot (2 ,1 ,1);
25 plot(t,x(: ,1));
26 xlabel (’t’);
27 ylabel (’x(t)’);
28 title_alpha = sprintf (’%3.2f’,alpha);
29 title_nu1 = sprintf (’%3.2f’,nu1);
30 title_nu2 = sprintf (’%3.2f’,nu2);
31 title_d = sprintf (’%3.2f’,d);
32 title_e = sprintf (’%3.2f’,e);
33 title_A = sprintf (’%3.2f’,A);
34 title_omega = sprintf (’%3.2f’,omega);
35 plot1_title = strcat (’Position vs time with A= ’,title_A , ’, omega=

’,title_omega , ’ alpha= ’,title_alpha ,’, v1= ’,title_nu1 ,’, v2=
’,title_nu2 ,’, d= ’,title_d ,’ and e= ’,title_e );

36 title( plot1_title );
37

38 % Plot the phase portrait
39 subplot (2 ,1 ,2);
40 plot(x(:, 1), x(:, 2));
41 xlabel (’Displacement (x)’);
42 ylabel (’Velocity (dx/dt)’);
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43 plot2_title = strcat (’Modified Van der Pol Oscillator Phase Portrait
with Forcing Term with A= ’,title_A , ’, omega= ’,title_omega ,

’ alpha= ’,title_alpha ,’, v1= ’,title_nu1 ,’, v2= ’,title_nu2 ,’,
d= ’,title_d ,’ and e= ’,title_e );

44 title( plot2_title );
45 grid on;
46

47 % Define the modified Van der Pol equation with the forcing term
48 function dxdt = modified_vdp (t, x, alpha , nu1 , nu2 , d, e, A, omega

)
49 dxdt = zeros (2 ,1);
50 dxdt (1) = x(2);
51 dxdt (2) = -alpha *(x(1) -nu1)*(x(1) -nu2)*x(2) - x(1) *(x(1)+d)*(x

(1)+e)/e + A*sin(omega*t);
52 end

Listing A.3: MATLAB script for the analyses of parameter sensitivity of solutions
of modified Van der Pol equation with external force.
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1 clc
2 close all
3 clear variables
4

5 % Set the parameters
6 alpha = 10.5625;
7 nu1 = 2.596975;
8 nu2 = -2.596975;
9 d = 11.548335;

10 e = 9.9659125;
11 omega = 27.12*2* pi *10^6;
12 A_0 = 0.01;
13 sigma = 0.16;
14 E_0 = 6.25;
15 tau = 0.53;
16 A=A_0*sigma*E_0*omega/tau;
17 f=2* pi *100;
18

19 % Define a time span
20 tspan =0:0.001:60;
21

22 % Define initial conditions
23 x0 = [1;0]; % Initial displacement and velocity (v0 =0)
24

25 % Define the system of first -order ODEs
26 ode = @(t, x) [x(2); -alpha *(x(1) -nu1)*(x(1) -nu2)*x(2) - x(1) *(x

(1)+d)*(x(1)+e)/(e*d) + A*sin(omega*t)*(1 + sin(f*t))];
27

28 % Solve the ODE
29 [t, x] = ode45(ode , tspan , x0);
30

31 % Plot the displacement over time
32 subplot (2 ,1 ,1);
33 plot(t, x(:, 1));
34 xlabel (’Time ’);
35 ylabel (’Displacement (x)’);
36 title(’Time series of modified VdP oscillator with sinusoidal

forcing term and electromagnetic field ’);
37 grid on;
38

39 % Plot the phase portrait
40 subplot (2 ,1 ,2);
41 plot(x(:, 1), x(:, 2));
42 xlabel (’Displacement (x)’);
43 ylabel (’Velocity (dx/dt)’);
44 title(’Phase portrait of modified VdP oscillator with sinusoidal

forcing term and electromagnetic field ’)
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Listing A.4: MATLAB script for the analyses of parameter sensitivity of solutions
of modified Van der Pol equation with external electromagnetic field applied.
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1 close all
2 clear variables
3 clc
4

5 fileExcel = ’C:\ Users \1 a3fa385cdb842f4a25d25418e3e385f
-190846555775244817 -1572453016990(1) .xlsx ’;

6 sheet_work = ’EKG1 ’;
7 [data , headers , raw] = xlsread (fileExcel , sheet_work );
8 time=data (: ,1);
9 [row_number , column_number ]= size(data);

10

11 fs =143; % sampling frequency
12

13 % Maximum frequency
14 max_frequency = data (1, column_number );
15 max_frequency_str = string ( max_frequency );
16

17 % Display non -3 frequencies
18 cnt = 0;
19 check = zeros( max_frequency ,1);
20 for i=2: column_number -2
21 if( (data (1,i) == data (1,i+1)) && (data (1,i+1) == data (1,i+2))

)
22 cnt = cnt +1;
23 frequency_checked = data (1,i);
24 check( frequency_checked ) = 1;
25 end
26 end
27 fprintf (’Non -3 frequencies :\n’)
28 for i =1:335
29 if(check(i) == 0)
30 fprintf (’%d\n’, i)
31 end
32 end
33

34 prompt1 = ’Insert frequency value from 1Hz to 330 Hz to construct
time series and phase plots: ’;

35 prompt2 = ’Insert frequency value from 1Hz to 330 Hz to construct
time series and phase plots: ’;

36 my_frequency_value_1 = input( prompt1 );
37 my_frequency_value_2 = input( prompt2 );
38 fig_cont =1;
39 for j=2: column_number
40 for k=2: column_number
41 frequency_value1 =data (1,j);
42 frequency_value2 =data (1,k);
43 if( frequency_value1 == my_frequency_value_1 ) && (

frequency_value2 == my_frequency_value_2 )

77



MATLAB scripts

44 data_detrend1 (:,j)=data (:,j)-mean(data (:,j));
45 data_detrend2 (:,k)=data (:,k)-mean(data (:,k));
46 [~, lag] = xcorr(data (:,j), data (:,k));
47 [max_corr , max_index ] = max(abs(lag));
48 aligned (:,k) = circshift (data (:,k), [0, lag( max_index )]);
49

50 figure ( fig_cont );
51 plot(time , data_detrend1 (:,j),’b’);
52 hold on;
53 plot(time , aligned (:,k),’r’);
54 legend (’Time series with f=1 Hz’, ’Time series with f=330

Hz’ );
55

56 fig_cont = fig_cont +1;
57 end
58 end
59 end

Listing A.5: MATLAB script for the analyses of time series from patient data.
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1 close all
2 clear variables
3 clc
4

5 fileExcel = ’C:\ Users \1 a3fa385cdb842f4a25d25418e3e385f
-190846555775244817 -1572453016990(1) .xlsx ’;

6 sheet_work = ’EKG1 ’;
7 [data , headers , raw] = xlsread (fileExcel , sheet_work );
8 time=data (: ,1);
9 [row_number , column_number ]= size(data);

10

11 % Maximum frequency
12 max_frequency = data (1, column_number );
13 max_frequency_str = string ( max_frequency );
14

15 % Display non -3 frequencies
16 cnt = 0;
17 check = zeros( max_frequency ,1);
18 for i=2: column_number -2
19 if( (data (1,i) == data (1,i+1)) && (data (1,i+1) == data (1,i+2))

)
20 cnt = cnt +1;
21 frequency_checked = data (1,i);
22 check( frequency_checked ) = 1;
23 end
24 end
25 fprintf (’Non -3 frequencies :\n’)
26 for i =1:335
27 if(check(i) == 0)
28 fprintf (’%d\n’, i)
29 end
30 end
31

32 prompt1 = ’Insert frequency value from 1Hz to 330 Hz to construct
phase plots: ’;

33 my_frequency_value_1 = input( prompt1 );
34

35 fig_cont =1;
36 for j=2: column_number
37 frequency_value1 =data (1,j);
38

39 if( frequency_value1 == my_frequency_value_1 )
40 data_detrend1 (:,j)=data (:,j)-mean(data (:,j));
41

42 dv_dt1 (:,j) = diff( data_detrend1 (:,j))/diff(time (2:3));
43

44 figure ( fig_cont ),plot( data_detrend1 (1: end -1,j),dv_dt1 (:,j)
),xlabel (’Voltage (mV)’),ylabel (’Derivative of voltage ’);
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45

46 legend (’Phase map with f=1 Hz’);
47

48 fig_cont = fig_cont +1;
49 end
50 end

Listing A.6: MATLAB script for the analyses of phase maps from patient data.
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1 close all
2 clear variables
3 clc
4

5 fileExcel = ’C:\ Users \1 a3fa385cdb842f4a25d25418e3e385f
-190846555775244817 -1572453016990(1) .xlsx ’;

6 sheet_work = ’EKG1 ’;
7 [data , headers , raw] = xlsread (fileExcel , sheet_work );
8 time=data (: ,1);
9 [row_number , column_number ]= size(data);

10

11 % Maximum frequency
12 max_frequency = data (1, column_number );
13 max_frequency_str = string ( max_frequency );
14

15 % Display non -3 frequencies
16 cnt = 0;
17 check = zeros( max_frequency ,1);
18 for i=2: column_number -2
19 if( (data (1,i) == data (1,i+1)) && (data (1,i+1) == data (1,i+2))

)
20 cnt = cnt +1;
21 frequency_checked = data (1,i);
22 check( frequency_checked ) = 1;
23 end
24 end
25 fprintf (’Non -3 frequencies :\n’)
26 for i =1:335
27 if(check(i) == 0)
28 fprintf (’%d\n’, i)
29 end
30 end
31

32 prompt1 = ’Insert frequency value from 1Hz to 330 Hz to construct
phase plots: ’;

33 my_frequency_value_1 = input( prompt1 );
34

35 fig_cont =1;
36 for j=2: column_number
37 frequency_value1 =data (1,j);
38

39 if( frequency_value1 == my_frequency_value_1 )
40 data_detrend1 (:,j)=data (:,j)-mean(data (:,j));
41

42 voltage_t_minus_1 =data (2: end -1,j);
43 voltage =data (3: end ,j);
44
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45 plot(voltage , voltage_t_minus_1 ),xlabel (’Voltage (mV)’),
ylabel (’Voltage at the prev. time step(mV)’);

46

47 legend (’Recursive map with f=1 Hz’);
48

49 fig_cont = fig_cont +1;
50 end
51 end

Listing A.7: MATLAB script for the analyses of recursive maps from patient
data.
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1 clc
2 close all
3 clear variables
4

5 %% Asumpltions
6 Tc= 60/72 ;% 72 beats per second
7 Ts =(2/5) *Tc ; % systole period
8 syms ti q
9 I0= solve (90- int(q *( sin( pi *ti/Ts )),ti ,0,Ts),q) ;

10 I0=subs ( I0 , ’ 3.14 ’ , pi ) ;

Listing A.8: MATLAB script to find the amplitude value of systolic flow.
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1 clc
2 close all
3 clear variables
4

5 % Definition of parameters
6 Tc = 60/72; % 72 beats per second
7 Ts = (2/5)*Tc; % systole period
8 cycle = 3; % number o f cardiac cycles
9

10 % Modelling blood flow to the aorta
11 syms ti q
12 I0 = solve (90== int(q*( sin(pi*ti/Ts)),ti ,0,Ts),q);
13 I0 = subs(I0 ,’3.14 ’,pi);
14 sine = @(t)sin(pi*t/Ts) ;
15 I = @(t) I0*sine(t).*(t <= Ts) ; % for one cycle
16 figure (1)
17

18 for n=1: cycle
19 t=(n -1)*Tc :.01:n*Tc;
20 % Blood flow for each cardiac cycle
21 I = @(t) I0*sine(t-(n -1)*Tc).*(t <= ((n -1)*Tc+Ts));
22 plot(t, I(t));
23 hold on
24 title(’Aortic Blood Flow Model ’)
25 ylabel (’Blood Flow (ml/s)’)
26 xlabel (’time (s)’)
27 end

Listing A.9: MATLAB script to plot the aortic blood flow.
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1 clc
2 close all
3 clear variables
4

5 % Defining modeling parameters for Windkessel Model
6 % parameters for 2 element
7 R = 0.95000;
8 C = 1.0666;
9 Tc = 60/72; % 72 beats per second

10 Ts = (2/5)*Tc; % systole period
11 cycle = 3; % number of cardiac cycles
12

13 % Modelling blood flow t o the aorta
14 syms ti q
15 I0 = solve (90== int(q*( sin(pi*ti/Ts)),ti ,0,Ts),q);
16 I0 = subs(I0 ,’3.14 ’,pi);
17 figure (1)
18

19 for n=1: cycle
20 if n==1
21 Pss = 80; % initial condition
22 end
23 ts=(n -1)*Tc :0.01:(n -1)*Tc+Ts;
24 c1= Pss+I0*Ts*R*(C*pi*R)/(( Ts ^2+C^2* pi ^2*R^2));
25 Ps= @ (t) c1*exp (-((t-ts (1))/(R*C)))-I0*Ts*R*(C*pi*R*cos( pi*(

t-ts (1))/Ts)-Ts*sin(pi*(t-ts (1))/Ts))/(Ts ^2+C^2* pi ^2*R^2);
26 Psd=Ps(ts(end));
27

28 td=(n -1)*Tc+Ts :0.01: n*Tc;
29 Pd=@(t) Psd*exp (-(t-td (1))/(R*C));
30 Pss=Pd(td(end));
31

32 plot(ts , Ps(ts),’r’);
33 hold on;
34 plot(td , Pd(td),’b’);
35 xlim ([0 n*Tc ]);
36 ylim ([ 0 150]);
37 title(’Blood pressure for 2- element Windkessel model ’);
38 xlabel (’Time (s)’);
39 ylabel (’Pressure (mmHg)’);
40 legend (’Systolic pressure ’,’Diastolic pressure ’);
41

42 end

Listing A.10: MATLAB script to plot the systolic and diastolic pressures.
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