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ABSTRACT 

Microtubules (MT) are small cellular components that play a fundamental role in development, 

proliferation, spreading, and signaling of cells. The basic lattice of MTs is composed by the 

alternation of α and β protein subunits called tubulins. Over the decades, they have become the 

main target of drugs involved in the treatment against tumors. Chemotherapy drugs can be 

divided into two main categories: stabilizing and destabilizing agents, which, according to their 

properties, can stabilize or destabilize the lattice of MTs, leading to cell apoptosis. This is the 

case of Paclitaxel (PTX), a prominent chemotherapy drug used in breast cancer treatment. It 

aims to stabilize MTs through the firming of longitudinal and lateral contacts. Even though PTX 

is one of the most powerful and useful drugs used nowadays, often there are cases of resistance 

towards this compound. Several reasons have been suggested to understand how this 

mechanism developed. Surely, mutations in the amino acid sequences in β tubulin isotypes can 

affect the way PTX binds to its luminal site, leading to an incorrect stabilization of MTs. In the 

following study, different mutations of β tubulin isotypes will be analyzed and how the latter 

could affect the lateral contacts between adjacent α and β subunits. Through computational 

techniques, including molecular dynamics simulations and docking studies, it will be delineated 

how mutations in β tubulin isotypes can influence PTX's binding affinity to its target site, 

consequently affecting its ability to stabilize MTs. In conclusion, the aim of the project will be 

to better understand the mechanisms of ligand-receptor interaction, even in the presence of 

mutations, to make chemotherapy treatments increasingly precise and reliable. 
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1.BIOLOGICAL BACKGROUND 

 

Microtubules (MTs) are a dynamic component of cells, playing multiple roles within organisms, 

supporting critical structures such as centrosomes, axonemes, and cytoplasmic arrays. They are 

comprised of 13 protofilaments (PFs), constituted by α and β tubulin, which rearrange to shape 

cylindrical proteins with an outer diameter of 25 nm as depicted in figure 1.1. Among their main 

functions, we mention the cell shape maintenance, cellular transport, and the formation of the 

mitotic spindle [1][2]. Tubulin α and β are approximately 40% identical at the sequence level 

[3] and they are arranged in a specific head-to-tail sequence, where the α-subunit of one dimer 

interacts with the β-subunit of the next, forming the MT lattice. The β-subunit is designated as 

positive, while the one housing α-tubulin is termed negative [4]. There are two main types of 

MT lattices: a B-type, where the α subunit forms lateral contacts with another α subunit, while 

the β subunit contacts another β; and an A-type, where the PFs are 'shifted', resulting in lateral 

contact between α and β subunits. In mammalian cells, the B-type is prevalent. [5].  

 

                            

 

Figure 1.1 MT structure, protofilaments α and β. 
h ps://commons.wikimedia.org/w/index.php? tle=File:Microtubule_id.svg&oldid=796577661  

 

MT growth occurs through the formation of a reversible covalent bond between α and β tubulin 

dimers. The α subunit displays lower dynamicity in contrast to the β subunit, which experiences 

quicker growth and shrinkage [4]. Both α and β ends contain a site for guanosine triphosphate 

(GTP) however, unlike GTP in the α-subunit, which remains unaltered, the GTP in the β-subunit 

undergoes hydrolysis into guanosine diphosphate (GDP) [6]. The presence of GTP in the bond 

renders MTs more "stable," facilitating uninterrupted growth, whereas when the β-subunit is 

bound with GDP, they become more susceptible to depolymerization. MTs demonstrate two 
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forms of dynamism: treadmilling and dynamic instability. The latter entails a series of stochastic 

occurrences involving growth, degradation, and attenuation. This alternate mechanism involves 

the addition of tubulin dimers to the positive terminal ends and their release at the negative pole 

[7]  figure 2.1. These distinct growth and degradation phases can be leveraged to impede tumor 

growth. Certain chemotherapy drugs, like Paclitaxel (PTX), operate by altering the properties 

of MTs.  

 

                                                 

 
Figure 2.1: MTs dynamic process. [8] 
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1.1 Microtubules and cancer 

In recent years, cancer has emerged as one of the leading causes of death globally. There are 

various strategies for cancer treatment, among which are those targeting MTs, as they are 

indispensable for mitosis and structural maintenance [9]. Agents acting on MTs are known as 

microtubule targeting agents (MTAs) or tubulin binding agents (TBAs), which can induce two 

distinct responses: stabilization or destabilization of MTs. Primarily of natural origin, MTAs 

bind to specific sites on tubulin. They can be categorized into two main groups: Microtubule 

stabilizing agents (MSAs) which stabilize lateral interactions between heterodimers, promoting 

polarization and stabilization of MTs. Microtubule destabilizing agents (MDAs) which, instead, 

stabilize longitudinal interactions between heterodimers [10]. Subsequent sections will 

elucidate the role of MTAs, particularly MSAs like Paclitaxel (PTX), the primary drug in this 

category, and how it can be optimally utilized in cancer treatment. Additionally, the role of 

tubulin isotypes will be explained, as they play a crucial role in drug resistance. 

1.2 β-isotypes 

In mammals there are various β tubulin isotypes that have homologous amino acids sequence 

and all of them have a crucial role at the cellular level. Every isotype affects MTs dynamics by 

influencing dimer-dimer interaction. Varying the expression/level of specific isotypes can thus 

lead to altered MTs dynamics [3]. Different studies have shown that not all the isotypes are 

equally distributed in the human body, but there are a few predominant in specific organs, (like 

βI and βIVB), while others are specific for different tissue (like βII, βII, βIVA) [11]. Numerous 

details about β tubulins can be found on this website: 

https://www.proteinatlas.org/search/TUBB. It provides an overview of the different isoforms, 

the genes they are encoded by, and the tissues where they can be more easily found. 
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1.3 Tubulin binding sites 

Tubulin possesses six binding sites, four located on β-tubulin (taxane, laulimalide/peloruside, 

vinca, maytansine). The remaining two, colchicine and pyronetin, are situated near the surface 

between α and β dimers, and on the α surface respectively [10]. The taxane site, initially 

identified in 1966, resides near the lateral surface of MTs and tends to stabilize them. Key drugs 

targeting this site include PTX, Docetaxel, and the Epothilones family [2]. PTX typically 

polarizes MTs by stabilizing β-tubulin, leading to the formation of 12 PFs compared to the 

standard 13 [12]. Unfortunately, it’s not free from side effects such as high neurotoxicity, low 

water solubility, and frequent drug resistance. Docetaxel, a semi-synthetic agent akin to PTX, 

is employed in treating solid tumors such as breast and ovarian cancers. Multiple studies have 

underscored concerns with these agents; tubulin may undergo mutations induced by certain 

malignancies, potentially exacerbating drug resistance [13]. This study will solely concentrate 

on PTX since it is the principal drug binding to this site, predominantly employed across a wide 

array of cancer types. 

1.4 Paclitaxel binding site 

For many decades scientists have been trying to understand how PTX binds to his site, because 

is not so clear, without any doubt, how this happens. Obviously, there are different theories 

about this topic and now, in the following section, I’ll go to explain the most likely hypotheses 

that have been evaluated over the last years. PTX has a very fast kinetics of binding, so it’s 

complicated making hypothesis [14].  The first hypothesis describes how PTX reaches his site 

through the hollow space within the MT, with an opening and closing mechanism. In this 

scenario, the proximity of the drug to the MT induces a conformational change with the opening 

of an access point which allows the drug to access the luminal site. However, this hypothesis 

has been discarded by Diaz et al [15], who used a fluorescent marker to look at how two 

derivatives of PTX, Flutax-1 and Flutax-2, reach their destination. In their work, if this 

hypothesis were true, they would have to see, in fluorescence, points either completely white 

or completely black, however it did not happen. The second hypothesis, which is the most 

probable, shows the possibility that PTX reaches its destination in two steps, passing first 

through an intermediate site near the H6/H7 loop and the serine 275 residue. This residue, in 

βIII and βIV, is replaced by alanine. It is not perfectly clear how PTX binds to his site, but the 

substitution in this residue, in case of mutations, could somehow affect PTX kinetics and the 
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effect on MTs [14]. When PTX tries to stabilize MTs, it acts through the strengthening of the 

entire shape (longitudinally speaking) acting on the lateral interactions. When PTX bind to the 

luminal site the M-loop is forced the get outside of his normal position, resulting in its 

repositioning relative to the interprotofilament contact [14]. Probably, in presence of mutations, 

this mechanism is compromised and so the entire effect of the drug, resulting in a power 

reduction or the failure of the cure. Freedman et al [14] have shown that PTX may use the H6 

and H7 loop as a hinge to reach its final destination in the luminal site, so mutations near these 

structures can lead resistance to the drug. Another hypothesis suggests that in MTs, there are 

other structures called nanopores through which it is possible for PTX to pass and reach the 

binding site. There are two types of pores: an interdimer nanopore (type 1) and an intradimer 

nanopore (type 2). Both are located in the type B and type A lattice, but it appears that in type 

B lattice interdimer nanopores are larger than intradimer nanopores. Type 1, however, appear 

to be closest to the PTX binding site [14]. This hypothesis was also described and simulated by 

Magnani et al [16], who focused on the interactions between PTX and H6/H7 loops and studied 

what type of nanopores is used by PTX to go through the MT wall. The problem with this 

hypothesis is that to have this very fast kinetics the drug should go through larger pores, which 

are not found in MTs. The explanation could be the rearrangement in the position of the H6 and 

H7 loops, so, thanks to that there is the formation of a suitable binding pocket (and temporarily) 

for PTX.  

1.5 Drug resistance 

As already discussed, drug resistance is one of the main side effects which can manifest during 

the treatment. There are lots of possible causes for the rise of drug resistance, but nowadays the 

discussion is centered around the ones that involve the mutations, punctual and not, of the β 

isotypes [17]. In this work, only mutations for the β subunit will be treated, since the aim of the 

project is to look how these mutations could affect PTX behavior and, consequentially, the 

lateral interactions between dimers. The isotypes of tubulin have specific characteristics for 

each tissue and are distinguished by different sequences at the end of the carbossi-terminals. 

Tumors often display altered tubulin isotypes compared to healthy tissues. These mutated 

isotypes are often the cause of early rise for drug resistance with a related poorer chance of 

survival [18].  

There are residues, in the amino acid sequence, which are most critical since they are near 

particular structures on MTs, like H6,H7 and M-loops. Therefore, mutations affecting these 
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residues could have a crucial role in the PTX dynamics, affecting the way in which it binds to 

site, resulting in a non-complete stabilization of MT.  
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2.COMPUTATIONAL METHODS 

 

In this and the following section will be explained the computational methods used for the 

analysis and evaluation of PTX at its binding site. Through an explanation of the software used 

for the preparation of the various models, the choices made for the optimization of the results, 

we will ultimately arrive at the evaluation of the binding energy of the drug with the MT, as 

well as an overall evaluation of the RMSD, that will allow us to understand the stability of the 

entire structure and the ligands contained therein. 

Below I’ll present a short list of the steps followed during all the phases of the project: 

1)  Choice of reference template, evaluation of the different options in the Protein data bank. 

2)  Choice of β tubulin isotypes (download of '.fasta' amino acid sequences from the Uniprot 

database). 

3)  Selection of mutations, single and not, to compare, in the end, the difference between 

mutated models and not mutated. 

4)  Construction of the model by homology model, using MOE software. 

5)  Validation of previous models, including mutated models. 

6)  Molecular dynamics analysis, using Amber software. 

7)  Docking of the previous structures, with Autodock-Vina software. 

8)  Second molecular dynamics, always with Amber. 

9)  Data analysis and discussion. 

 

Figure 3.2 illustrates the project steps in a schematic manner. All configuration parameters 

will be thoroughly discussed in the following chapters. 
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Figure 3.2 Project steps. 
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2.1 Template and β isotypes choice 

For the choice of the template, I evaluated the various possibilities in the Protein Data Bank 

(https://www.rcsb.org/). The selection criteria, which led me to the choice of the final model, 

were different: 

 Since the project is based on lateral interactions, so how PTX can affect them, the first 

skimming was to find models with, possibly, at least two adjacent dimers. 

 The next criterion concerns the characteristics of MT. As mentioned above, the most 

common model of MT in mammals is type B, therefore with tubulin coupled in this 

way: β-β and α-α. 

A good resolution is around 2.5 Å or less. The resolution depends on the method by 

which the models were created, generally electron microscopy is quite accurate, but 

tends to have a worse resolution than X-rays or electron crystallography. 

 A final selection criterion was the model’s publication year. Obviously the more the 

model has a recent publication date the better it is, especially because in the last few 

years there have been many innovations in this field, so having the most up-to-date data 

possible allows us to have more accurate results. 

Considering the criteria listed above, the choice for the model fell on the 6WVL model.  The 

structure has two adjacent dimers of type B with 13 PTs with a slight curvature that tries to 

simulate the natural fold that MT has inside the cell [19]. The model has also docked four 

ligands that are respectively: TA1 (Taxol), GDP, GTP and Mg+2, has a good resolution of 3.20 

Å and a recent publication year, 2020. The origin of the dimers is from "BOS TAURUS" 

species. Since in the Protein Data Bank there are no tubulins of human origin, to have a good 

reliability of the results, it’s convenient to use organisms that share a good degree of similarity 

with human amino acid chains. Generally, bulls, pigs or mice have a good degree of similarity; 

the differences arise mainly in the terminal zones of the chains, often eliminated precisely 

because they do not add relevant information.  

Regarding β tubulin, for the creation of the models, the choice was based mainly on two factors. 

The first concerns the paper of Wang et al [20], where isotypes of β tubulin I, IIA, III, IVB are 

analyzed, with the related mutations. Only "these" isotypes have been taken as they are the most 

present in a large amount of tumor pathologies. Two drugs are used in the paper, PTX and 

docetaxel (DTX), which is a compound similar to the previous, newer, smaller in size and tends 

to have lower toxicity [21]. 
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The selection of these isotypes is partly influenced by a previous factor. Among them, βI and 

βIII stand out as particularly prevalent in various types of tumors. This aligns with the primary 

goal not only of this study but also of many others: to understand the mechanisms behind 

different cancers and develop effective treatments. Consequently, extensive research has 

focused on these isotypes due to their widespread presence, especially in cancers such as breast 

and ovarian cancer. βI, the most abundant isotype in the human body, experiences numerous 

mutations, many of which occur near the PTX binding site and crucial loops like H6, H7, and 

M, which play a pivotal role in microtubule stabilization. 

2.2 Mutations 

The selection of mutations was informed by a thorough review of pertinent literature and 

supplemented using the selector tool on MOE. This tool enabled an examination of residues 

located within or near the PTX binding site. As previously discussed, the primary criterion for 

selection revolved around identifying residues crucial for PTX binding, particularly those near 

loops H6, H7, and M. Mutations occurring in these regions have the potential to disrupt PTX 

binding, thereby compromising MT stabilization and diminishing the drug's efficacy, 

potentially leading to treatment failure. The focus was exclusively on β-tubulin since the PTX 

binding site resides within this isotype. Notably, certain isotypes exhibit a higher frequency of 

mutations compared to others; for instance, βI displays a propensity for numerous mutations, 

particularly at key binding site residues, consistent with its prevalence in various human tissues. 

Conversely, βIII presents a distinct profile characterized by specific mutations, including the 

notable arginine substitution at position 275 in the amino acid chain [14]. Additionally, βIII is 

associated with aggressive cancer phenotypes and recurrent drug resistance, attributed to 

mutations both within and external to the binding site. The mutations analyzed are shown in 

table 1.2. 
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 TUBB1 TUBB2A TUBB3 TUBB4B 

V60F2 N48S3 A231T1,2 A124C3 

A185T4  F270V1,2 S126N3 

L215R1,2  T274I1,2 I155V3 

L217R1,2  R282N1,2 V189I3 

L228F1,2  Q292E2 T218A3 

S234G1,2  S364A1,2 C239S3 

A248V4    

L273P1    

R306C4    

A364T1,2    

Table 1.2: β tubulin isotype with related mutations. 1) Information gathered from the Tubulin Mutation 
Database the oldest one and the new created by Abbaali et all [22]. The other mutations are all from 
different papers 2) [23] ,3) [20] , 4) [24]. 

 

2.3 Homology Model – MOE and Validation 

Once the starting model, isotypes, and mutations were selected, the next step was to create 

models through the Homology model process. As we have seen before, in the protein data bank 

it is not possible to find secondary structures of proteins of human origin, but only of animals. 

This method allows us to recreate the secondary structure of a human protein using the human 

amino acid sequence, that is the primary structure known to us, and an animal protein that will 

act as a template.  The only aspect to consider is the similarity between structures; a good 

similarity is around 40% and up, better values from 70% if you work with human proteins. In 

this way it will be possible to work with fairly accurate human models, despite the starting 

structure being of animal origin. The amino acid chain sequences, crucial for structural and 

functional protein analysis, were obtained by downloading data from the Uniprot database 

(https://www.uniprot.org/), which provides a wide range of biological and biochemical 

information on proteins. To build the various models the MOE software has been used. MOE 

(Molecular Operating Environment) is a molecular visualization software developed by 

Chemical Computing Group Inc (https://www.chemcomp.com/Products.htm), that can be used 

on a wide variety of platforms [25]. Thanks to a very intuitive interface, has allowed me to view 

the amino acid sequences of my structures, through the SEQ button, and to create my models 

using the homology model panel. The parameters set in the homology model panel are as 

follow: 
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 Gradient limit: 200, since a MD will be performed later, so it is not necessary to it set 

up now. 

 Temperature at 300 like an in vitro test. 

 Sidechain samples: 5. 

 Initial protonation to fix some charges. 

 Addition of the N and C terminal. They were considered because they might be relevant 

to see side interactions. 

Once the models were generated, validation became imperative to ensure the reliability of the 

structures. Validation can be conducted through various methods. One such method is the 

Ramachandran plot, which visualizes whether amino acid residues reside within "allowed" 

regions. Since each atom experiences specific steric hindrance, it can only adopt certain 

conformations with precise angles. Occasionally, following homology modeling, some residues 

may fall into disallowed regions. While this is not inherently problematic, provided the number 

of such residues remains low, a truly dependable model should ideally exhibit a minimal 

percentage of residues in disallowed areas. Additionally, there are online servers like Q-Means 

or SAVEsv.06, which offer comprehensive model evaluations based on multiple criteria. As a 

first analysis, the Ramachandran plot on MOE has been visualized in the geometry section, for 

a first evaluation. Subsequently, to have a more "effective" validation, the SAVE SV.06 server 

was used. Before loading the file as '.pdb', an initial energetic minimization was undertaken. 

This process aimed to identify atoms with potentially incorrect positions, as visualized 

beforehand. Consequently, there exists the possibility of overlap between atoms, which could 

prove problematic during MD simulations. Given that each atom possesses its own steric 

hindrance, such overlap may lead to errors or even simulation failure. Moving forward with 

geometric analysis, where various graphs are displayed, any atom clashes are highlighted. 

These clashes are then addressed by selecting the respective atoms and reversing their positions 

within the amino acid chain (using the SEQ button and the invert function). Subsequently, under 

the constraint tab in MOE, the fix option is selected. With the structure now stabilized, energy 

minimization can proceed by adjusting the gradient to 0.01 and ensuring atoms are checked. 

Following this optimization, the model can be validated using the server. 
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2.4 Molecular Dynamics – AMBER 

Once the validation is completed, we move to the study of MD. Before delving into the steps 

followed during the project, it is necessary to briefly introduce what MD means and the 

underlying physics. MD is a branch of molecular mechanics (MM), which can be used to study 

small molecules or large biological assemblies. MM, or the "forcefield method," is based on 

Newtonian mechanics, which, through mass-spring systems (almost never dampened), studies 

the kinematics and dynamics for modeling molecular systems [26]. 

The particles, components of these systems, are point masses described by the following 

parameters: 

• The geometry of the system. 

• Atomic type. 

• A set of atoms can be considered as a single particle. 

The particles within the considered space interact with each other through primarily bonding 

interactions but also non-bonding interactions. What we can calculate is the potential energy 

associated with the various interactions present in the system and can be defined as follows, as 

highlighted in formula 1.2: 

𝑉 = 𝑉 + 𝑉      (1.2)  

V is a function of 3N variables, considering the x, y, and z directions and both bonding and non-

bonding interactions [27]. 

Bonding interactions [27]: 

1. Bonds: Interactions between two atoms bonded by a covalent bond. In MM, it is a 

harmonic interaction, dependent on the bond length. 

2. Angles: These terms consider the relative motion between atoms describing an angle 

on a plane. 

3. Dihedrals: Identifies the rotation of one plane relative to another involving 4 bonded 

atoms. In the "AMBER" force field, dihedrals are represented by complex equations. 
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4. Improper Dihedrals: While proper dihedrals allow rotations up to 360°, improper 

dihedrals add a term for potential energy calculation. Specific to atoms bonded in a 

cycle. 

Non-bonding interactions [27]: 

1. Van der Waals: Forces that arise between different charges, even with particles 

without a net charge, are short-range forces that 'deplete' after 1nm or just beyond. They 

are further divided into very short-range and long-range interactions (up to 1.5 nm) or 

London dispersion forces. Van der Waals forces are well described by Lennard-Jones 

potential. 

2. Coulomb: Part of electrostatic interactions and computationally more complex to 

represent. 

3. Hydrogen Bonds: Described by the Lennard-Jones potential; for AMBER, they use 

a specific function. 

All the characteristics listed above are typical of force fields. Depending on the simulations to 

be performed, there will be force fields specific to the biological system under consideration. 

Examples include AMBER, GAFF (Generalized Amber Force Field), and GROMOS, where 

the main differences lie in the parameters that constitute the basic equations. 

2.4.1 Simulating the environment 

When discussing simulations, reference is always made to more complex systems of particle-

particle interactions, with the goal of representing more intricate biological systems such as 

proteins, lipids, carbohydrates, etc., present in aqueous environments. Water is crucial for 

simulating molecules, but at the same time, it poses certain challenges [27]. Certainly, an 

aqueous environment can cause screening phenomena but can also promote electrostatic 

interactions. Among the main problems associated with water molecules, there are certainly 

characteristics that make their description difficult through classical mechanics. Additionally, 

simulating certain environments requires many molecules, increasing computational costs. 

There are two modeling approaches: 

1. Explicit Solvent: Water molecules are explicitly represented. This is undoubtedly a more 

accurate method but computationally expensive. Among these models are TIP3P 

(Jorgensen) or SPC (Single Point Charge, Berendsen). It is an excellent representation 
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model but comes with some limitations such as the rigidity of molecules and high 

computational costs. 

2. Implicit Solvent: In these models, the solvent can be represented as a medium with a 

different dielectric constant. Some models consider the so-called solvation energy on the 

protein surface. Implicit solvent models are still widely discussed in the literature, as they 

are not as accurate. However, simulations are often based on models using explicit solvent. 

Among these models are those based on Solvent Accessible Surface Area (SASA) and those 

based on continuous-level electrostatic interactions. 

2.4.2 Energy minimization 

The goal of MM during a simulation is to map the Potential Energy Surface (PES). PES, or 

landscape, consists of various points representing local and global minima, which in the 

biological context identify points of metabolic activity. By calculating all local minima of the 

PES, access is gained to all microstates of the system, providing insight into the behavior of the 

biological system [28]. For the calculation of local minima, energy minimization algorithms are 

used, which can be: 

1. Derivative method: Algorithms based on Steepest Descent and Conjugate Gradient, 

first order derivative methods. Through successive minimizations, the algorithm tends 

towards progressively lower energies. Second-order derivative methods like Newton-

Raphson and L-BFGS involve the inversion of the Hessian function. 

2. Non derivative method: Among these, the SIMPLEX method is based on 

constructing a geometric figure with N + 1 vertices connected to each other, where N is 

the dimensionality of the considered potential energy function. The potential energy is 

specific to a particular set of coordinates. A disadvantage of this method is that it cannot 

provide information about the slope. 

For both algorithms, identifying the local minimum of the potential energy function is 

challenging, especially when using first order derivative and non-derivative methods. Typically, 

the output of simulations provides the value of the nearest local minimum to the starting point. 

Energy minimization does not study the macrostates composing a system but is a preliminary 

step to investigate its dynamic behavior [26].  

Since the primarily used method is explicit solvent, the choice of energy minimization 

algorithms tends to lean towards first-order methods, particularly the steepest descent. In any 
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case, what an energy minimization algorithm accomplishes is merely the search for a local 

minimum without delving into the characteristics of that minimum. Energy minimization 

algorithms, therefore, cannot macroscopically describe the system, a limitation that can be 

bypassed with the study of MD [26]. 

2.4.3 Molecular dynamics 

The dynamics of a particle system is a computational approach that calculates the average 

properties of a system by sampling its microstates over time in a specific statistical ensemble. 

It can be studied using different methods, such as the Lagrangian and Hamiltonian methods, 

which involve the use of coordinates (q1, q2, ..., qN) and generalized momenta (p1, p2, ..., pN). 

MD is a deterministic method, as the state of the system in a future configuration is entirely 

determined by its present state. As an output result, there will be a trajectory, which is very 

useful for system analysis. The number of possible trajectories is high, but with a sufficiently 

long simulation, all these trajectories will overlap [27]. The goal of MD is the resolution of 

Newton's equations of motion in a system of atoms interacting through a known potential 

energy function. 

Starting from the second Newton equation 

𝐹 =  𝑚 ∙ 𝑎      (2.2) 

The force can be expressed as the potential energy gradient 

𝐹 =  −∇ 𝑉     (3.2) 

Combining the previous equations 

− = 𝑚       (4.2) 

If the acceleration is constant, the equation will be developed, obtaining.  

 𝑟 = 𝑎𝑡 +  𝑣 + 𝑟     (5.2) 

 𝑎 = −       (6.2) 
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What can be obtained from this process are: 

 The potential energy, from which force and acceleration can be derived. 

 The position. 

2.4.4 Molecular dynamic steps 

MD steps can be listed as show in figure 4.2: 

         

Figure 4.2 Molecular Dynamic steps. 

 

Here are the steps [28] with a brief description: 

1. Initial Configuration: As mentioned in the previous paragraphs, when dealing with 

proteins, the files considered are PDB (Protein Data Bank) type, collected in a 

corresponding database. Initial parameters are extracted from X-ray experiments or 

crystallography. In these files, information about atom positions and spatial localization 

relative to an arbitrary reference point can be found. The file is in ASCII format, 

describing atoms and their positions. PDB format files have a header containing 

bibliographic information and list cartesian coordinates of atoms in angstroms (Å) along 

with connectivity data. Below is an excerpt from a ‘.pdb’ file. An example is reported 

in figure 5.2. 
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Figure 5.2 PDB file excerpt. 

 

The "HETATM" label signifies that these atoms do not belong to the protein (but, for 

example, to a ligand). The second column shows the atom numbering, the third column 

identifies the atoms (in this case, they are carbon atoms). The fourth column provides a 

numbering that indicates the atom's membership in a monomer, and the last three 

columns report the spatial coordinates. 

The "CONECT" label indicates which atoms are in contact. For example, the first line 

indicates that the atom is bonded to atoms 2, 6, and 13. This part of the PDB file 

describes the topology of the structure. 

2. Energy Minimization: Given the initial coordinates and the force field parameters 

(information not traceable in the PDB file), it is possible to proceed with the calculation 

of the potential energy function.  

3. Initial velocity: After completing the minimization step, a new PDB file will be 

obtained containing the updated, more homogeneous, and representative coordinates of 

the system. The next step will be to update the initial velocity values, which can be set 

to zero or assigned according to a Maxwell-Boltzmann distribution at the desired 

temperature. 

4. Heating: The next step will be the heating phase, only if the velocities are initially set 

to zero. For proper sampling of all microstates in the system, it is necessary to simulate 

the presence of a thermal bath: by combining Newton's equation with an equation for 

modifying velocities, the velocities will be rescaled based on the temperature of the 

external thermal bath. Since temperature is closely related to kinetics, it’s necessary to 

control velocity values to achieve a system based on a certain temperature, being 

cautious not to excessively impose certain values that could introduce biases. 
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These initial phases of minimization and heating are delicate because they involve 

working with atom velocities and positions. For example, a minimal displacement could 

cause instability and high forces among atoms, leading to simulation failure. To address 

this issue, restraints are introduced, potential energy constraints that anchor atoms as 

springs, adding a penalty to their movement. As the simulation progresses, the system 

tends to stabilize, allowing these constraints to be gradually removed. 

5. Balance conditions: The simulation will continue to progress until it is completely 

dissociated from the initial conditions. Once completed, various analyses of the obtained 

results can be performed. 

6. Production phase: In this phase, the thermodynamic properties of the system will be 

calculated. 

7. Data analysis: Once the simulation is completed, various properties of the system can 

be calculated. Below are listed some of the calculable parameters: 

1. Average energy  

〈𝐸〉 =  ∑ 𝐸     (7.2)  

 

2. RMS 

𝑅𝑀𝑆 = 〈 𝑟 − 𝑟 〉 =  ∑ 𝑟 − 𝑟  (8.2) 

 

The value of RMS, or more precisely RMSD (Root Mean Squared Deviation), 

calculates the fluctuations of atoms at the end of the simulation. Generally, the 

RMSD value rises rapidly in the initial nanoseconds of the simulation, then 

stabilizes, reaching a plateau indicative of convergence. A good RMSD value 

hovers around 4-5 Å, indicating small oscillations, while values in the order of 

nanometers indicate high oscillations. The equilibrium observed with this 

parameter is a structural equilibrium, meaning that at equilibrium, the structures 

will not be identical but will all hover around the same equilibrium 

conformation, with minimal fluctuations. 

3. RMS of fluctuation  

𝑅𝑀𝑆 =  ∑ 𝑟 − 𝑟    (9.2) 
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This type of RMS always calculates fluctua ons not on individual atoms but on frames, 

which represent the discretization of time in a simulation. It measures the 

deviations from a hypothetical average structure over the course of the 

simulation. 

4. Gyration radius 

𝑅𝑎𝑑𝑖𝑢𝑠𝐺𝑦𝑟𝑎𝑡𝑖𝑜𝑛 =  ∑ (𝑟 − 𝑟 )    (10.2)  

 

The gyration radius assesses, over time, the variation in the position of the atoms 

within the structure relative to its center of mass. 

In conclusion, MD simulations provide a good overall representation of the structure. 

However, it is important to acknowledge their limitations, including high computational 

costs and the shape of the energy landscape. There are methods that aim to overcome these 

limitations, based on Enhanced Sampling techniques, which allow to overcome energetic 

barriers. These models have not been covered in the present work. 
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2.5 Docking - VINA 

Once the MD part is completed and repeated twice, the next step will be the docking. In this 

case, it is necessary to briefly introduce what is meant by ‘docking’ and why it is necessary to 

perform it. Briefly recapping the steps of the project completed so far: an initial preparation of 

the models was carried out using MOE, followed by subsequent MD using AMBER. From the 

simulation output files will be obtained, which will be partially analyzed by assessing the 

RMSD (all results will be presented in Chapter 3) and subjected to a clustering process to obtain 

frames, which will be our new starting models. The PTX comes into play, which, through the 

docking process, will be docked to our various frames using the Autodock-Vina program on the 

Linux terminal. Before proceeding with the actual docking, it is necessary to investigate the 

PTX binding site, as Vina will use a box to explore the area where the drug binds. To proceed 

with this step, the analysis of the spatial coordinates of the binding site will be performed using 

the Pymol software, which, through loading the models and selecting the residues involved in 

the PTX binding site, will provide the coordinates of the site itself for the specific model 

considered. Once the coordinates are known, the necessary files will be created to perform 

docking on Vina. Below, a brief explanation of what docking will be provided, while the 

description of the selected parameters will be discussed in detail in the next chapter. 

2.5.1 How drugs work? 

When attempting to dock a drug to its target, certain aspects need to be considered: 

 Binding site location. 

 Binding mode. 

 Binding energy: indicating stronger or weaker binding energies. 

The process of how a drug binds to its target can be described as the lock-and-key mechanism, 

meaning there is a specific position and timing for the process to occur. Regarding ligand-

protein interactions, bonds can be either covalent or non-covalent [26]. Docking is a virtual 

screening approach used to predict and rank the ways in which a ligand binds to its receptor. 

Generally, the receptor is a protein, and docking is employed to classify the most probable 

binding mode of the ligand. Docking programs evaluate compound activity by analyzing 

ligand-receptor interactions and estimating binding affinity. The main challenge is determining 

the most probable binding configuration to form a stable protein-ligand complex. The docking 

process is divided into two phases: exploring the conformational space of the ligand and 
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selecting the optimal target-ligand alignment. Since docking is probabilistic, the probability of 

events occurring in nature is calculated, considering protein flexibility, multiple binding sites 

and factors, like pH [26]. 

Molecular docking is highly useful in the following areas: 

1. Prediction of intermolecular biological interactions: Molecular docking is 

valuable for predicting the formation and dissociation of specific interactions 

between various molecules, playing a crucial role in the functions of biological 

systems. 

2. Determination of molecular interactions: While methods like X-ray 

crystallography and nuclear magnetic resonance (NMR) are expensive and 

unsuitable for large-scale studies, molecular docking provides a rapid, cost-

effective computational method suitable for large-scale studies (virtual 

screening) to predict protein-molecule interactions. 

The docking process has two main goals: predicting the geometry of the interaction (binding 

poses) using a search algorithm and estimating binding energy. The definition of docking states 

that it seeks to find the energetically most feasible 3D arrangement of two molecules in close 

contact to predict their binding energy. 

What is required as input to initiate the docking process includes: 

 3D structure for the protein and ligand 

 Information about the binding site 

What will be obtained as output includes: 

 Ligand poses 

 Binding affinity 

Docking can be described as solving a 3D "puzzle," which involves generating all possible 

combinations of ligands and proteins. The characteristics involved in the final evaluation of 

docking algorithms include the quality of fit, such as shape complementarity, Coulomb potential 

for charge complementarity, and Van der Waals potential for hydrophobic surface 

complementarity. 
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2.5.2 Docking programs 

Different molecular docking programs vary based on the following parameters: 

1. Protein Representation: Programs differ in how they represent the protein, 

whether it's explicit (with 3D coordinates of all atoms) or based on a grid or 

molecular surface. 

2. Search Method: The methods for searching vary, including rotations, 

translations, and internal degrees of freedom. 

3. Scoring Function: Differences exist in the functions used to evaluate the quality 

of the alignment between the protein and ligand. 

4. Protein Flexibility: Considerations for protein flexibility, recognizing that 

proteins are not rigid. Different programs handle protein flexibility differently, 

using approaches like MD models, soft docking, and inducing conformational 

adaptations during docking. The mentioned programs, including AUTODOCK, 

GOLD, DOCK and FlexX, each have specific approaches to representing and 

managing the flexibility of the molecules involved in docking [26]. 

When using these programs, it's essential to pay attention to several aspects: 

1. Metal Ions: Metals like zinc or iron can form complexes with specific amino 

acids and water molecules. The coordination often involves amino acids like 

cysteine and histidine, forming structures known as "zinc fingers". 

2. Protein Flexibility: Protein flexibility is managed in a complex way, with 

flexible regions called "hinge regions" allowing relative movements between 

protein domains. Some docking programs incorporate modest flexibility in the 

target during docking simulations. 

3. Ligand Flexibility: While ligands are often treated as flexible in docking 

programs, there are sampling techniques falling into three main categories: 

systematic search routines, stochastic exploration, and simulation techniques. 

4. Protonation State: The pKa is used to estimate whether a group is protonated 

or deprotonated. The protein environment can significantly influence the 

protonation state of ionizable groups in the ligand. 

5. Molecular Interactions: Interactions such as hydrogen bonding, ionic 

interactions, hydrophobic interactions, and the importance of water in protein-

ligand interactions play a crucial role in representing the environment. 
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Hydrophobic interactions, for instance, result from the release of water 

molecules from the hydrophobic environment during complex formation. 

6. Enthalpic and Entropic Contribution: Enthalpic and entropic optimization 

aims to enhance the hydrophobic surface of a ligand buried during binding, 

considering the physical interactions (enthalpy) and changes in degrees of 

freedom (entropy). 

Understanding these aspects is crucial for effectively utilizing docking programs in predicting 

and analyzing protein-ligand interactions. 
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3. RESULTS 

In the following section, the results obtained at each step will be analyzed in more detail, also 

examining specifically the parameters used in the various files to obtain them. 

3.1 Homology Model & Validation 

The first step involved searching for the template to be used as a reference. To proceed with the 

homology modeling, some modifications were made to the template to optimize it, using the 

structures preparation tools on MOE, following the suggestion of Paola Vottero’s thesis. 

 Alternates: The positions of amino acids with alternative variations were adjusted, 

selecting the ones with the highest occupancy.  

 Termini: Missing atoms in the backbone of the protein chain at the C- or N-termini were 

removed, and the ends were capped. 

 Breaks: Gaps found within the protein chain were filled by constructing a loop segment. 

 Library: Discrepancies between the amino acid names and their structures, or missing 

atoms, were corrected using sequence information relative to the three-dimensional 

structure. 

Figure 6.3 shows the template used for this project, after all the corrections. 

 

  

Figure 6.3 Template created from 6WVL model. The model shows the α and β tubulin subunits. B type 
MT.  
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What is shown in figure above, the template is for the 2-dimers (2ds) model. To compare the 

final results more accurately, the project was also conducted with only one of the two dimers 

(1d). The model downloaded from the Protein Data Bank already contained two PTXs within 

the crystallography; the chosen dimer to be retained was the one with the internally docked 

PTX.   

Homology modeling is a powerful technique that allows us to predict the three-dimensional 

structure of a protein based on its similarity to structurally known proteins. Protein models were 

created using this technique, striving to capture the structure and function of the target proteins 

as accurately as possible. Once the models were obtained, it was crucial to assess their 

reliability. The results of homology modeling are presented in table 2.3 summarizing key 

metrics, such as the percentage of identity between the target protein and its closest homologs. 

It is possible to say that homology values above 90% are indicative of structures very similar 

to those found in crystallography. Values between 75% and 90% can be considered excellent 

models, while values below 75% can still be regarded as good models, but only with some 

refinement operations [28]. 
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Table 2 Homology model panel. 

ISOTYPE-MUTATIONS HOMOLOGY ALFA (%) HOMOLOGY BETA (%) 

TUBB1 96.90 76.30 

V60F 96.90 76.10 

A185T 96.90 76.10 

L215R 96.90 76.10 

L217R 96.90 76.10 

L273P 96.90 76.10 

L228F 96.90 76.10 

R306C 96.90 76.10 

S234G 96.90 76.10 

A248V 96.90 76.10 

A364T 96.90 76.30 

TUBB2A 96.90 95.70 

N48S 96.90 95.30 

TUBB3 96.90 88.40 

A231T 96.90 88.20 

F270V 96.90 88.20 

Q292E 96.90 88.20 

R282N 96.90 88.20 

S364A 96.90 88.20 

T274I 96.90 88.20 

TUBB4B 96.90 93.50 

A124C 96.90 93.50 

C239S 96.90 93.30 

I155V 96.90 93.30 

S126N 96.90 93.30 

T218A 96.90 93.30 

V189I 96.90 93.30 

 

To ensure the robustness and accuracy of the models, I subjected them to validation using the 

SAVESv6.0 server. SAVESv6.0 is a cutting-edge tool that meticulously examines the models, 

assessing their structural integrity and identifying any issues or discrepancies. The results of 
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this validation were compiled into table 3.3 reporting the percentage of ERRAT [29] and 

RAMACHANDRAN plot outcomes, crucial metrics for evaluating the quality of the models.  

Table 3 Errat e Ramachandran results. 

ISOTYPE-MUTATIONS ERRAT (%) RAMACHANDRAN (%) 

TUBB1 93.95 91.00 

V60F 93.07 90.70 

A185T 93.26 90.90 

L215R 94.23 90.09 

L217R 93.18 91.20 

L273P 93.38 91.20 

L228F 93.01 90.07 

R306C 93.45 91.20 

S234G 93.28 91.30 

A248V 93.47 90.60 

A364T 93.01 90.50 

TUBB2A 93.88 91.30 

N48S 93.26 91.90 

TUBB3 92.80 91.90 

A231T 91.67 91.20 

F270V 92.91 91.60 

Q292E 92.48 91.30 

R282N 91.88 91.00 

S364A 92.96 90.50 

T274I 92.96 91.80 

TUBB4B 94.00 91.00 

A124C 93.92 91.70 

C239S 93.73 91.70 

I155V 93.56 91.50 

S126N 93.02 92.60 

T218A 93.43 92.30 

V189I 93.51 91.70 
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As you can see from the table above, the values of both parameters are good, meaning the 

reliability of the models. Ramachandran plot displays all possible values of φ and ψ for each 

amino acid residue in a protein. The permitted areas in the plot are defined by constraints closely 

associated with the stability of the protein structure, such as steric hindrances and non-covalent 

interactions. Thus, having values above 90% allows for asserting a good reliability of the 

models. 

3.2 MD & clustering 

The next step will focus on the application of MD using Amber software for all models created 

with the homology model. During this phase, MD simulations will be conducted to explore the 

dynamic behavior of protein structures in a simulated environment. Understanding how 

proteins interact and move over time will be crucial, providing valuable insights into their 

dynamic properties and structural stability. During the presentation of the MD results, I will 

provide a detailed description of the files used to conduct the simulations. The results obtained 

will be useful to evaluate the RMSD (Root Mean Square Deviation) to assess whether the 

simulations reach equilibrium. This parameter permits us to evaluate how much the protein 

structures fluctuate over time and whether the simulations are reliable. 

3.2.1 MD files 

In the following subsection, some of the parameters contained in the files used for MD will be 

briefly described.  Firstly, the ‘.pdb’ files obtained with MOE had to be properly prepared for 

AMBER. These ‘.pdb’ files were loaded after removing the ligands from the models, as the 

creation of the ‘.lib’, ‘.mol2’, and ‘.frcmod’ parameters in the various steps was simplified. 

Subsequently, the “pdb4amber” command was executed with the addition of the "--nohyd" 

option, which removes the hydrogen atoms from the original ‘.pdb’ file. This conversion allows 

for a more manageable file for tLeap [30]. The conversion with the above command allows 

AMBER to properly rename some of the residues that would otherwise not be readable in the 

pdb format [31]. Among these are those listed in table 2.3 below. 
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Table 4 Residues accepted by Amber software. 

Residue PDB AMBER 
   

Histidine HIS HIE 

Cysteine CYS CYX 

Aspartate ASP ASH 

Glutamate GLU GLH 

Lysine LYS LYN 

 
 

  

 

After the conversion, the necessary files were created with tLeap to represent the ligands and, 

finally, the files for the topology and trajectory, ‘.prmtop’ and ‘.inpcrd’ . The procedure 

included placing the compounds in a cubic box of 10.0 Å and then solvating with water. This 

step is essential to establish simulation conditions in a realistic environment, where the presence 

of water more accurately reproduces the behavior of biomolecules in solution. The next step 

involved creating files for the dynamics, starting from energy minimization of the solute only, 

followed by another minimization of the entire structure. All parameters describing the system 

to be minimized were defined in these two files, paying particular attention to restraints, the 

number of cycles, and the type of minimization. Subsequently, the system was heated providing 

the starting temperature. Next, relaxation in the NPT ensemble was performed, followed by the 

actual production of the dynamics. The duration of the simulations was set to 100 ns, with a 

nstlim of 50000000, corresponding to the number of MD steps to be evaluated. The dt was set 

to 0.002 ps, which is the time interval between individual steps of the dynamics. Once the 

simulations were completed, the RMSD calculation was carried out using cpptraj [32] and a 

MATLAB code. This step is crucial as it allows us to assess whether the simulations reach a 

sort of equilibrium by the end of the 100 ns. The typical trend of RMSD involves high initial 

oscillations followed by stabilization from approximately halfway through the simulation 

onwards [33]. RMSD was calculated for both the binding site and the receptor to identify any 

significant differences. Two examples of RMSD are shown in figure 9.3. 
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Figure 7.3 TUBB1 and TUBB4B RMSD, 100ns simulation. 

 

Alongside the various MD simulations, dynamics were also performed on four randomly 

chosen models where PTX was not removed from the starting ‘.pdb’ files. This additional step 

was executed because there was uncertainty about the stability of the models after MD, as PTX 

could potentially introduce greater instability. Figure 10.3 shows only two of the four models 

chosen for this test, TUBB1 and TUBB4B. It is evident that the presence of PTX significantly 

increases receptor instability, and the binding site exhibits greater oscillations. Therefore, 

removing the drug before conducting the dynamics was the better solution. 

 

Figure 8.3 TUBB1 and TUBB4B RMSD with PTX 100ns simulation.  

 

The next steps will involve proceeding with a clustering process of the entire structure obtained 

from the MD simulations. The clustering process resulted in a number of frames, each 
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representing specific configurations, with the initial ones deemed the most representative of the 

models. 

3.3 Vina results 

3.3.1 Vina files 

Once the clustering process was completed, it was necessary to select the top 3 frames, 

representing the most frequent structures within the dataset. This selection is crucial as it allows 

us to focus on the most representative and significant conformations for further analysis.  

Initially, we proceeded with the conversion of the ‘.pdb’ files into ‘. pdbqt’ format, as this is the 

format accepted by the Vina software used for molecular docking [34]. To ensure proper file 

conversion, codes provided by the Autodock package were used: receptor.py and ligand.py. 

This operation was carried out to ensure that our models were compatible with the docking 

software and could be correctly evaluated. Subsequently, the definition of a docking box was 

required, within which the Vina software would examine the best binding positions between the 

ligand (PTX) and the protein receptor [34][35]. To obtain the specific coordinates of this box, 

the Pymol software was used. By visualizing the amino acid chain and selecting the residues 

constituting the PTX binding site, we were able to determine the exact coordinates for each 

model. The coordinates obtained were then integrated into the input file for the Vina software. 

Additionally, we selected appropriate parameters for docking, including exhaustiveness (which 

indicates the probability of finding the global maximum), the maximum number of binding 

modes to generate, and the maximum energy difference between the best and worst binding 

modes. All information previously described can be found at this link: 

https://vina.scripps.edu/manual/. The results produced by Vina provided a database of docking 

configurations, representing the best interactions between the drug and the receptor. These 

outputs were subsequently converted into ‘. mol2’ format using OpenBabel, enabling detailed 

visualization of molecular interactions within the MOE software. Finally, the first docking 

configuration was selected as the most significant and representative. These models will 

undergo further MD simulations to assess the stability of molecular interactions in a dynamic 

context. 
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3.3.2 Vina scores 

The docking results have been represented in two ways: 

1. The first one is an average of the most significant docking scores obtained for 

three different clusters (c0, c1, c2), compared to the reference value of the wild 

type (also averaged across the three clusters). I’ll call these models ‘averaged 

models’ (AM). 

2.  In the second case, the 3 clusters weren’t averaged between them but the most 

negative values, over the 3 clusters, have been chosen. I’ll call these models ‘not 

averaged model’ (NAM). 

Each isoform will be analyzed to identify any mutations of interest. The results were conducted 

for both single dimer (1d) models and for those with two dimers (2ds). The mutations discussed 

in this report are mutations of residues located in the PTX binding site or near it, therefore they 

should decrease the drug binding affinity. 

For example: 

 L215R, and S234G for TUBB1 

 R282N, F270V and T274I for TUBB3 

 T218A and C239S for TUBB4B 

Those mutations are very close to PTX binding site. Many of the treated mutations were sourced 

from various papers, as indicated in table 1.2, which claimed that these mutations lead to PTX 

resistance. Forthcoming lines will undergo analysis for isotype mutations, both for 1d and 2ds 

models. 

1 DIMER MODELS 

TUBB1: Not all mutations in TUBB1 show lower affinity towards PTX. The tendency between 

the models is similar, some mutations have the same behavior in the two cases, as A364T, 

L217R, L215R and A185T, that show lower values compared to the wild type, how should it 

be. Other mutations like L273P, A248V, S234G and V60F show significantly higher values 

compared to the TUBB1. The only differences are in mutations R306C and L228F, that have 

higher affinity for the drug, in the NAM. Results are shown in table 5.3. 
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Table 5.3 TUBB1 and related mutations, docking results.  

TUBB1 1d Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -7.47 -7.94 

A364T -6.89 -7.61 

R306C -7.44 -8.14 

L273P -7.78 -9.00 

A248V -7.97 -8.90 

S234G -8.63 -8.89 

L228F -7.47 -8.16 

L217R -7.28 -7.87 

L215R -7.23 -7.38 

V60F -8.79 -9.68 

A185T 
 
 

-7.16 -7.74 

   

 

 

TUBB2A: In this case, the only mutation discussed, N48S, shows higher affinity in both cases 

compared to the wild type, as if the mutation improves the binding affinity. Results are shown 

in table 6.3. 

 

Table 6.3 TUBB2A and related mutation, docking results.  

TUBB2A 1d Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -8.20 -8.34 

N48S -8.32 -9.05 
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TUBB3: Like TUBB1, mutations in TUBB3 do not always exhibit lower affinity towards PTX, 

as theoretically expected. However, this discrepancy occurs only in the NAM, where only 

mutation F270V shows an increase in binding affinity, while all other mutations have lower 

values compared to the wild type. Results are shown in table 7.3. 

 

Table 7.3 TUBB3 and related mutations, docking results. 

TUBB3 1d Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -8.53 -9.38 

S364A -7.26 -7.70 

Q292E -7.91 -9.32 

R282N -7.64 -9.07 

T274I -7.72 -7.89 

F270V -8.33 -10.00 

A231T -8.36 -9.05 

   

 

 

TUBB4B: In AM only mutations T218A and S126N have docking score values higher than the 

reference. Instead, in NAM, mutations with higher values than the wild type are: T218A, 

V189I, S126N. Only mutation V189I shows an increase of the docking score, for the NAM. 

Results are shown in table 8.3. 
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Table 8.3 TUBB4B and related mutations, docking results. 

TUBB4B 1d Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -8.01 -8.32 

C239S -7.54 -7.77 

T218A -8.27 -10.22 

V189I -7.93 -8.77 

I155V -7.83 -8.05 

S126N -8.27 -8.59 

A124C -7.52 -7.80 

   

 

 

2 DIMERS MODELS 

TUBB1: The tendency is similar for both models, the only differences are in few mutations: 

L273P, S234G which have higher docking scores in the NAM. All the other mutations have a 

similar behavior, mutations that show higher values in the AM have kept them in the NAM. 

The same thing happens for mutations with lower docking score values. Results are shown in 

table 9.3. 

 

 

 

 

 

 

 

 



41 
 

Table 9.3 TUBB1 and related mutations, docking results.  

TUBB1 2ds Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -7.81 -8.20 

A364T -7.95 -8.31 

R306C -6.69 -7.47 

L273P -7.50 -8.66 

A248V -7.75 -7.99 

S234G -7.53 -8.25 

L228F -6.70 -7.20 

L217R -7.25 -8.01 

L215R -8.19 -8.84 

V60F -7.03 -7.32 

A185T 
 
 

-8.64 -8.85 

   

 

 

TUBB2A: As for the 1d models, both mutated models show higher affinity for PTX. Results 

are shown in table 10.3. 

 

Table 10.3 TUBB2A and related mutation, docking results. 

TUBB2A 2ds Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -7.66 -8.35 

N48S -8.03 -8.48 
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TUBB3: The tendency is similar, the only difference is in a single mutation: Q292E which has 

higher affinity in the NAM, instead in the AM the behavior is opposite. All the other mutations 

have a similar trend, those that show higher values in the AM have kept them in the NAM.  

Results are shown in table 11.3. 

 

Table 11.3 TUBB3 and related mutations, docking results.  

TUBB3 2ds Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -7.76 -8.09 

S364A -8.16 -9.21 

Q292E -7.71 -8.41 

R282N -8.17 -8.32 

T274I -8.02 -8.49 

F270V -7.95 -8.82 

A231T -7.65 -7.98 

   

 

 

TUBB4B: The tendency is the same for both cases. All mutations show better affinity compared 

to the wild type, controversial results since these mutations are known to lead PTX resistance. 

Results are shown in table 10.3.  
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Table 12.3 TUBB4B and related mutations, docking results.  

TUBB4B 2ds Averaged (kcal/mol) Not averaged (kcal/mol) 
   

Wild type -7.81 -7.89 

C239S -8.79 -9.15 

T218A -8.50 -9.01 

V189I -7.86 -8.31 

I155V -8.76 -9.40 

S126N -7.94 -8.05 

A124C -8.27 -8.92 

   

 

The upcoming phase of the project involves initiating a new MD simulation, followed by 

evaluating the RMSD and computing MMGBSA energy. To advance, it was imperative to select 

the most negative docking scores among the three calculated for each model. 

3.4 Second MD & new RMSD 

After obtaining the models with Vina, we conducted a second series of MD simulations. This 

time, in addition to the previously included ligands, we also incorporated PTX, the main 

compound of interest. Consequently, we prepared the necessary files for PTX as well, ensuring 

a comprehensive representation of molecular interactions within the system. Unlike the first 

MD, the simulations were shortened to 20 ns each but were executed a total of 5 times for each 

model. This approach allowed us to gather a greater amount of useful data for subsequent 

analysis. The reduction of the total simulation duration to 20 ns led to a decrease in the MD 

steps, from 50 million to 10 million, while maintaining the same time interval between 

individual steps (dt). All other parameters remained unchanged to ensure consistency and 

comparability of results between the two simulation phases. Following the acquisition of the 

new MD results, we re-evaluated the RMSD, this time also including the behavior of the 

ligands: GDP, GTP, and PTX. Figure 11.3 shows two of many RMSD graphs (TUBB1 and 

TUBB4B, 2ds model) obtained after the second MD.  
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Figure 9.3 TUBB1 and TUBB4B first of 5 simulations performed, 20 ns simulation.  

 

Oscillations for the TUBB1 and TUBB4B 2ds models are relatively contained, even with 

shorter duration simulations. However, it's noteworthy to observe higher oscillations in the 

ligands. This phenomenon may suggest greater dynamics and flexibility of the ligands 

compared to the proteins themselves. It's important to emphasize that, despite the reduced 

duration of the simulations, there is an increase in ligand oscillations towards the midpoint of 

the simulation. This could be attributed to various factors, including the complexity of ligand-

receptor interactions and the surrounding environment, which could influence the dynamic 

behavior of the ligands over time. These results highlight the importance of considering not 

only the dynamics of the target proteins but also those of the ligands during MD simulations.  

3.5 Mmgsba 

Once MD simulations are performed to obtain the conformations of protein-ligand complexes, 

the MMGBSA (Molecular Mechanics Generalized Born Surface Area) method was applied to 

calculate the binding free energy. This estimated value provides an indication of the relative 

affinity of the ligand for the target protein. Overall, MMGBSA is a computational method that 

combines MM with an implicit solvent model to estimate the binding affinities between ligand 

molecules and target proteins. This approach is useful for drug design and understanding 

molecular interactions that play a critical role in biological processes [36]. To proceed with the 

energy calculation, the files generated from the second MD simulation, along with the 

associated trajectory, were used. In the input files used in this step, several key pieces of 

information were specified. Firstly, the salt concentration was set to zero to examine molecular 

interactions in the absence of salt ions. Additionally, the number of trajectory frames to be used 
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was defined based on the RMSD of each model, indicating the start and end points of the MD 

simulation to be considered. These parameters allowed focus on a specific portion of the 

simulation where molecular interactions are most relevant for the study. Following the energy 

calculation, an output file containing various important information was obtained. Specifically, 

binding affinities of the ligand, receptor, and entire molecular complex were analyzed. These 

data provide a detailed overview of molecular interactions and their strengths, enabling 

assessment of interaction effectiveness and better understanding of the nature of the studied 

molecular complex. The numerical values chosen to represent the results were taken from the 

‘.dat’ file, resulting from the calculation of Mmgbsa: Differences (Complex - Receptor - 

Ligand), Delta total. In conclusion, analysis of the output files obtained from this process 

provides valuable information on energy and molecular interactions within the studied system. 

These data are essential for deepening understanding of molecular structure and dynamics and 

can provide important insights for the development of new drugs and treatments. The 

MMGBSA calculation was performed on the 1d and 2ds models. The final results for each 

model are an average of the five different results obtained in the energy calculation, and they 

will be presented in the following subsection. 

 

3.5.1 MMGBSA results 

TUBB1: As shown in table 11.3, not all mutations exhibit lower MMGBSA energy compared 

to the wild-type model. Almost all mutations in the 1d models show significantly higher values, 

such as: V60F, S234G, R306C, L273P, L217R and A364T, as if they have a better binding 

affinity. In the 2ds models mutations with the same trend are: S234G, L273P, L215R, A364T, 

and A185T.  
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Table 13.3 TUBB1 and related mutations, MMGBSA results.  

TUBB1 MMgbsa 1d (kcal/mol) MMgbsa 2ds (kcal/mol) 
   

Wild type -36.7092 -29.7222 

A364T -39.8426 -41.9793 

R306C -48.3122 -21.4393 

L273P -38.9059 -36.5821 

A248V -32.1825 -21.7169 

S234G -42.6708 -41.9569 

L228F -36.3547 -20.0549 

L217R -38.3010 -23.9187 

L215R -21.5064 -31.6757 

V60F -56.1779 -28.2175 

A185T 
 
 

-30.1965 -54.1109 

   

 

 

TUBB2A: The only mutation considered shows a different behavior in the two cases, as shown 

in table 12.3. In the 1d model the mutation N48S has a higher value of binding energy, while 

the 2ds model shows a significantly lower energy compared to the wild type.   

 

Table 14.3 TUBB2A and related mutation, MMGBSA results.  

TUBB2A MMgbsa 1d (kcal/mol) MMgbsa 2ds (kcal/mol) 
   

Wild type -23.9073 -44.7004 

N48S -42.1740 -41.1737 
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TUBB3: Also in this case, as shown in table 13.3, the behavior between the two models presents 

few differences. While in the 1d models all mutations have lower binding energy compared to 

the not mutated model, a different scenario is shown in the 2ds models results in which 

mutations like: T274I, F270V, and A231T, have higher binding energy, almost as if they have 

a better binding affinity. 

 

Table 15.3 TUBB3 and related mutation, MMGBSA results. 

TUBB3 MMgbsa 1d (kcal/mol) MMgbsa 2ds (kcal/mol) 
   

Wild type -45.5240 -38.2490 

S364A -42.1645 -30.1397 

Q292E -30.0652 -28.5373 

R282N -36.6339 -24.4691 

T274I -23.2257 -38.6300 

F270V -44.2962 -42.2019 

A231T -36.0630 -44.7884 

   

 

 

TUBB4B: In the last isotype it’s possible to say that, for 1d models, only mutations T218A and 

S126N show higher values of MMGBSA energy. For the 2ds models the same behavior is 

presented by mutations S126N, C239S and A124C, almost as if they have a better binding 

affinity. 
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Table 16.3 TUBB4B and related mutation, MMGBSA results.  

TUBB4B MMgbsa 1d (kcal/mol) MMgbsa 2ds (kcal/mol) 
   

Wild type -42.4325 -28.7648 

C239S -31.0816 -31.4651 

T218A -48.7129 -26.1912 

V189I -34.1629 -22.4256 

I155V -29.4149 -25.8606 

S126N -41.8914 -31.6701 

A124C -25.9534 -41.5492 

   

 

 

In conclusion what can also be observed, as for the docking scores, is that not all mutations 

exhibit lower binding energies compared to their respective non-mutated models, almost as if 

the mutations improve the binding affinity. Moreover, the results vary for nearly all mutations 

between the 1d and 2ds models. 
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4.DISCUSSION 

The previous chapter provides all the results obtained during the project. In this chapter, each 

step will be revisited, offering an in-depth analysis and discussion of the outcomes. 

4.1 Homology Model & Validation 

The homology modeling process, essential for predicting the three-dimensional structure of 

proteins, involved meticulous adjustments to optimize the template structure. Modifications 

included addressing alternate amino acid positions, resolving missing backbone atoms, and 

filling gaps within the protein chain. These adjustments, validated through MOE tools and 

referencing to MOE manual, ensured the structural integrity of the models. Further validation 

through the SAVESv6.0 server provided critical insights into model reliability, evidenced by 

favorable ERRAT and RAMACHANDRAN plot outcomes. As discussed earlier, ERRAT and 

Ramachandran plots are two crucial metrics used to assess the quality of protein structures. For 

both metrics, values above 90% indicate good structural quality and a low presence of errors or 

distortions in the protein conformation [29], [30]. From the data presented in table 3.3 on pages 

33-34, it emerges that the models used in the research obtained ERRAT and Ramachandran 

values above 90%. This suggests that the generated protein structures are reliable and accurately 

representative of the three-dimensional conformation of the target proteins. Consequently, we 

can conclude that the analyzed models have good reliability and can be confidently used for 

research purposes. 

4.2 MD & Clustering 

Following homology modeling, MD simulations using Amber software provided dynamic 

insights into protein behavior. These simulations, essential for understanding protein 

interactions over time, utilize meticulously prepared MD files. Parameters such as system 

preparation, energy minimization, and dynamics initiation were carefully defined to ensure 

accurate representation and reliable results. RMSD analysis revealed equilibrium attainment 

and provided valuable information on structural fluctuations. All obtained RMSD plots 

exhibited consistent behavior, aligning well with theoretical expectations. Overall, the trend 

across all models adhered to the theoretical trajectory: there was an initial rapid increase 

followed by stabilization of fluctuations around the midway point or shortly thereafter in the 

simulations. The initial plots solely depict the RMSD of the entire receptor and the binding site, 

excluding the GDP and GTP ligands. This was done to initially assess receptor stability, to 
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ascertain whether, following an initial MD run, the models could attain sufficient stability to 

proceed with subsequent steps. 

4.3 Vina scores 

The subsequent application of Vina software for molecular docking facilitated the exploration 

of protein-ligand interactions. By converting and preparing input files, defining docking 

parameters, and analyzing docking configurations, Vina provided valuable insights into ligand 

binding affinities. The selection of top frames and conversion of output files enabled further 

analysis and visualization of molecular interactions, laying the groundwork for subsequent 

investigations. The results obtained from these analyses provide docking energy values, 

expressed in kcal/mol, which represent the energy associated with the interactions between the 

molecules involved. It is important to contextualize these docking energy values to fully 

understand their biological relevance. To do so, we can connect these values to the concept of 

thermal energy, which represents thermal agitation of molecules at room temperature. The 

thermal energy at room temperature is approximately 0.59 kcal/mol, 

https://gehrcke.de/2014/05/thermal-energy-in-

calories/#:~:text=First%20of%20all%2C%20the%20thermal,values%20on%20a%20regular%

20basis. This value provides us with a reference point to evaluate the importance of interactions 

predicted by docking. If the docking values are significantly higher than the thermal energy, 

this may indicate that the detected interactions are much stronger than the thermal agitation of 

molecules at room temperature. This is important because it suggests that such interactions 

could be biologically relevant and significantly influence the behavior of molecules in a 

biological context. If the docking values are similar to or higher than thermal energy, it may 

indicate that the predicted interactions are strong enough to overcome thermal agitation and 

therefore may be significant in a biological context. Therefore, by connecting the docking 

values obtained with Vina to the concept of molecular interaction energy and thermal energy, 

we can gain a better understanding of the importance and biological relevance of predicted 

molecular interactions. One last aspect to pay attention is to highlight that the docking 

calculations were conducted using only one docking program. There are several docking 

programs available, each associated with an accuracy percentage. For Vina, this percentage is 

very high, around 80%, as highlighted by Astalakshmi et al. [37] To conduct a more reliable 

analysis, it would have been advisable to resort to other docking programs, even just MOE or 

Autodock, in order to obtain more results to compare with each other. The discriminating factor 
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could have been the RMSD, by setting a threshold, many results could have been retained or 

discarded. 

4.4 Second MD & New RMSD 

The second phase of MD simulations, incorporating PTX and shortened durations, offered 

additional insights into protein dynamics and ligand interactions. By assessing RMSD and 

comparing results with the initial simulations, we observed consistent trends in protein stability 

and ligand dynamics. Notably, ligands exhibited higher oscillations, underscoring their dynamic 

nature and potential implications for biological activity. As with the first RMSD, it can be 

asserted that simulations tend toward stability after approximately halfway through, despite the 

total time being reduced from 100 ns to 20 ns. The only observable difference lies in the 

oscillations, which are slightly higher compared to before, likely due to the shortened duration 

of the simulations. Furthermore, RMSD was calculated for all ligands: GDP, GTP, and PTX, in 

order to observe the final state of the models in a comprehensive manner. 

4.5 MMGBSA 

MMGBSA analysis provided critical insights into protein-ligand binding energies, essential for 

understanding molecular interactions and potential drug design applications. By evaluating 

binding free energies and comparing them across mutated and non-mutated models, we gained 

valuable insights into the impact of mutations on protein-ligand interactions. The obtained 

results certainly deviate from what would have been expected theoretically. Anomalous 

behaviors are evident for many of the mutations, with some showing significantly higher 

binding affinities compared to their unmutated counterparts, almost as if the mutations were 

enhancing the drug-target binding. The MMGBSA energy values are averaged from five values 

calculated for each model, aiming to obtain a value that better approximates reality. Despite this 

adjustment, the results do not fully align with what is expected from theory and require further 

investigation and a deeper understanding of the models. There could be various interpretations 

of the results obtained at different steps. Generally, it is expected that docking and MMGBSA 

scores would be lower for mutated models compared to their wild type counterparts. Some 

mutations indeed follow this trend, while others exhibit opposite behavior. Moreover, mutations 

showing this peculiarity are not always the same, but vary between single dimer and double 

dimer models, indicating inconsistency in the results. Certainly, one reason for this behavior 

lies in the preparation of the models themselves. Mutations were selected by cross-referencing 
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data from articles cited in table 1.2 of mutations with those from the tubulin mutation database. 

Models have a single mutation in their amino acid sequence, except for the N48S mutation of 

TUBB2A, taken from the article by Wang et al. [20]. This could influence the final results; it is 

possible that in nature, when these mutations occur, there are other associated mutations that 

have not been added to the models. Another factor to consider is the template. The starting 

model includes two adjacent dimers, providing a basis for discussing lateral contacts and 

potential effects that PTX brings once bound to its binding site. The treated template is not fully 

representative but is still an approximation of the MT wall; therefore, having a larger model 

would certainly be more faithful to reality, albeit it would entail higher computational costs. 

The primary goal of this thesis was to evaluate whether β-tubulin mutations could influence 

PTX behavior, especially in lateral contacts, as the aim of this drug is to stabilize the entire 

length of MTs. Further analysis could assess hydrogen bonds within the binding site to see how 

formation and breaking of such bonds vary between mutated and non-mutated models, 

assessing if this contribution is significant. More analyses are needed to better understand how 

PTX regulates MT dynamics, and certainly a more accurate representation of the models can 

be a starting point.  

In conclusion, the comprehensive analysis presented in this chapter offers valuable insights into 

protein structure, dynamics, and interactions. Through homology modeling, MD simulations, 

molecular docking, and MMGBSA analysis, we gained a deeper understanding of protein-

ligand interactions and potential implications for biological activity. Further investigations 

based on these findings could contribute to drug design efforts and advance our understanding 

of molecular mechanisms underlying protein function. 
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5.CONCLUSIONS 

MTs are exceptional cellular components that, owing to their properties, enable cells to carry 

out various activities, including cell division. When tumor forms develop, cells undergo a 

process of ecosystem alteration leading to uncontrolled growth. For several years now, 

especially in recent decades, new therapies have targeted microtubules to slow the spread of 

these malignant cells. Through agents that modify the dynamics of these small cellular 

components, scientific research has made significant progress, improving expectations and the 

quality of life for countless individuals. Unfortunately, despite the significant strides made, 

there are still some aspects partly unknown or to be further investigated to make chemotherapy 

more effective. When a tumor disease develops, affecting the first cell, cellular mutations often 

lead to drug resistance. Tubulins, especially β-tubulin, are often subject to mutations that result 

in various side effects, including treatment failure. Research becomes crucial to understand how 

to overcome the challenges posed by this possibility and to create increasingly specific and 

accessible treatments for all. This was the goal of this project: to provide a deeper understanding 

of one of the most famous chemotherapeutic drugs, PTX. Through the creation of protein 

models, a validation process, and a study of MD, I was able to delve into aspects related to 

various β-tubulin mutations and how they interact in the presence of this potent drug. Although 

the data obtained did not provide exhaustive information and, in some cases, differed from 

theoretical expectations, they can still serve as a starting point for future analyses. By further 

exploring aspects related to mutations and utilizing more advanced computational equipment, 

it will be possible to obtain more significant data. 
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