
POLITECNICO DI TORINO
Master’s Degree in Engineering and Management

Master’s Degree Thesis

Development of a Mobile App to improve
the drivers’ behavior exploiting a
Gamification mechanism built on

Blockchain

Supervisors

Prof. Valentina GATTESCHI

Prof. Alberto BUTERA

Candidate

Noemi ROMANI

April 2024

i

Acknowledgements

I would like to dedicate this space to the people who, with their support, helped me
to reach this goal.

First of all, I would like to particularly thank my supervisor, Professor Valentina
Gatteschi, for the trust she placed in me from day one and for her indispensable
advice. I would like to also thank Alberto infinitely for his support, patience and
availability.

A special thank you to Professor Marco Barla, for giving me the opportunity to
calmly pursue my sporting career in parallel with my university career.

I infinitely thank my parents and my twin sisters, Michela and Chiara, who
have always supported me, from near and far, supporting my every decision and
allowing me to face my entire studies peacefully. I would like to thank Stefano for
always being a great supporter of mine, in sport and in life, and for allowing me
to chase my dreams. Thanks to Giorgia, for being by my side throughout much of
the journey. And thanks to my brother-in-law Davide, for always being beside me
in silence, never failing to give me his message and support on every important
occasion, in sports tournaments and university exams.

A special thank you to my grandmother, I always felt you by my side.

I dedicate a final thank you to myself, to my ambition and perseverance which
have never made me lose sight of my goals. To my perseverance, which has allowed
me to aim high in sport and study. I thank the bad moments, all the defeats in
sport and in life, because it is in those moments that I brought out the strength that
I didn’t think I had, that I tried with all of myself to look for the ray of sunshine in
the storms, and that I have learned to believe that in life, as in sport, you either
win or you learn.

Noemi

ii

Summary

It is well known that auto Insurance Companies (ICs) use driving-related data
collected by continuously tracking the drivers’ behaviors to determine and adjust
the auto premiums defining the Personalized Car Insurances. It is also well known
that the majority of traffic incidents is due to human factors, especially to aggressive
driving. However, the rules of Personalized Car Insurances, the evaluation model
according to which auto premiums are calculated as well as the process through
which the drivers’ behavior is detected by the ICs, are unknown. In this work,
recognizing the importance of monitoring the drivers’ behavior and considering
the necessity to overcome the limits of the actual Personalized Car insurances, a
system based on a developed Blockchain solution and a developed Mobile App
solution is proposed. Specifically the Mobile app is used to implement the process
of detecting the drivers’ behavior: at first, raw data acquisition and transformation
is executed; then, a developed algorithm is implemented for analysing data with the
aim to detect aggressive events; at the end, a score is computed by implementing an
Event-count based algorithm. The data considered to be relevant for classifying the
drivers’ behavior are then transferred and stored on the Blockchain platform. The
blockchain solution describes a Gamification mechanism, which logic is defined by a
developed Smart Contract: according to a final ranking, the drivers resulting to have
the safest driving style are awarded. The mutual contribution of these two system’s
components allows to monitor the drivers’ behavior by relying on transparent
processes and data, by preserving the privacy of sensitive and personal data, and by
stimulating the drivers toward a safe driving style through a Gamification context.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Thesis Structure . 4

2 State of Art 5
2.1 The Blockchain technology . 5

2.1.1 What are blocks, and how are they created? 6
2.1.2 The blockchain network and the different blockchain models 7
2.1.3 Cryptography . 8
2.1.4 Consensus protocols . 9

2.2 PEST Analysis . 11
2.2.1 Political . 11
2.2.2 Economic . 12
2.2.3 Social . 12
2.2.4 Technological . 13

2.3 Some Blockchain applications . 13
2.3.1 Financial Services . 13
2.3.2 Industry 4.0 . 14

2.4 Analysis of the Thesis’s Use Case 14
2.4.1 Technology’s Key Elements 15
2.4.2 Technological Paradigms . 16
2.4.3 Analysis of Paradigms through KPIs 17
2.4.4 Radical and disruptive innovation 20
2.4.5 Technology’s Development process 20
2.4.6 Diffusion of the innovation in the market 23

2.5 Gamification in the Insurance sector 25

iv

3 System Architecture 28
3.1 Technologies . 28
3.2 Architecture . 29
3.3 Process of detecting the drivers’ behavior 32

3.3.1 Sensors’ raw data acquisition and data transformation . . . 32
3.3.2 Data transformation . 35
3.3.3 Classification of driving events 37
3.3.4 Score’s Computation Process 44

3.4 Service for Location Update . 47
3.4.1 Location Service as Binding Service 47
3.4.2 Location Service as Foreground Service 49
3.4.3 Location Update Request 51
3.4.4 Geocoding Process . 53
3.4.5 Map’s Integration . 53
3.4.6 Device’s Orientation . 54

3.5 Blockchain . 56
3.5.1 Interaction with Blockchain 56
3.5.2 Smart Contract . 58
3.5.3 System Model . 58
3.5.4 Gamification Context . 61

4 User Experience 64
4.1 IDEF0 diagrams . 64
4.2 UI Level . 66

4.2.1 UML: Activity Diagrams . 68
4.2.2 Landing Page . 69
4.2.3 TripsActivity Page . 69

4.3 Data Layer . 78
4.3.1 UML: ER Diagram . 78

4.4 UML: Sequence Diagrams . 81

5 Results 88
5.1 Testing the Smart Contract . 90

6 Conclusions and future works 93

Bibliography 95

v

List of Tables

2.1 Comparison between PoW & PoS 10

3.1 Comparison about variables’ visibility between the Mobile App and
the Smart Contract . 61

3.2 Smart Contract’s Functions . 63

5.1 Cost analysis of the main functions on Ethereum and Polygon . . . 92

vi

List of Figures

2.1 Present Technological Paradigm: Traditional PCI 16
2.2 Emergent Technological Paradigm: PCI integrated with Smart Con-

tract . 16
2.3 Performance and Diffusion s-curves. 22
2.4 Ethereum: Daily Transactions’ Volumes 22
2.5 Cloud market size worldwide in 2021, with a forecast for 2030 . . . 23
2.6 Market segments along the technological life-cycle 24

3.1 System Architecture . 30
3.2 Java Classes . 31
3.3 Process of detecting the drivers’ behavior 33
3.4 Sensor’s coordinate system. About the device’s orientation, it is

important to remark that, even if the device’s orientation is changing,
the disposition of the axes remains the same. Then, the same readings
can be detected on the same axes, independently on whether the
smartphone is kept horizontally or vertically. 34

3.5 Orientation of sensor’s coordinate system in vehicles 38
3.6 Table with reference thresholds . 39
3.7 Harsh u-turn event . 45

4.1 IDEF0: GoSafety . 65
4.2 IDEF A-0: GoSafety functionalities 66
4.3 Activity Diagram: Landing Page . 70
4.4 Landing Page Layout . 71
4.5 Login Page layout . 72
4.6 Sign Up layout . 72
4.7 Activity Diagram: TripsActivity . 75
4.8 TripsActivity layout, with Fragments 76
4.9 Drawer menu layout . 76
4.10 Activity Diagram: Drawer Menu . 78
4.11 ER Diagram . 79

vii

4.12 ER Diagram: Smart Contract . 80
4.13 UML Diagram Solidity . 83
4.14 Sequence Diagram . 84
4.15 Sequence Diagram . 85
4.16 Sequence Diagram . 86
4.17 Smart Contract Sequence Diagram 87

5.1 Etherscan: successful transaction executed 91

viii

Chapter 1

Introduction

The objective of this Thesis was to incentivize drivers toward a safe driving style
while guaranteeing transparency and privacy-preservation in the analysis of driving-
related data and evaluation process. This Thesis work consisted of developing a
Mobile App to be used to collect and process driving-related data with the aim of
detecting eventual harsh-events occurring during drivers’ trips and of determining
a score for each trip, and to develop a Smart Contract defining a Gamification
mechanism built on a Blockchain platform, aimed at awarding the safest drivers at
the end of a game and at storing the relevant data.

It is well known that auto Insurance Companies (ICs) use driving-related data
collected by continuously tracking the drivers’ behaviors to determine and adjust
the auto premiums defining the Personalized Car Insurances. The adjustment of
auto premiums is based on the evaluation results. Anyway, one of the barriers
of this Insurance model is the lack of transparency: the rules of Personalized
Car Insurances are not clear and the evaluation model according to which auto
premiums are calculated and revisited, based on the drivers’ behavior, is unknown.
In addition, even if the objective of detecting the drivers’ behavior is known and
goes beyond the Insurance field, the process through which the drivers’ behavior is
detected by the ICs is unknown. According to existing research reports [1], the
majority of traffic incidents is due to human factors, especially to aggressive driving.
A reduction of aggressive events, induced by monitoring the driving style, could
lead to a lower number of road traffic incidents, and could also result in a lowering
of vehicle consumption and gas emissions, as aggressive driving has been estimated
to increase fuel consumption by around 40% [1]. Believing in the importance of
monitoring the drivers’ behavior and considering the necessity to overcome the
limits of the actual Personalized Car insurances in terms of data and processes
transparency, this work focused on the development of a Blockchain solution from
one side and of a Mobile App solution from the other side.

A considerable number of existing algorithms can be implemented in the process

1

Introduction

of detecting a driver’s behavior [2], which is usually structured in three phases.
First, sensors raw data are detected and transformed which implies cleaning
signals in order to extract noises. Then, the signal is used for classifying driving
events, knowing that the classification can be either binary (aggressive or non-
aggressive event) or multi-class (identifying the specific driving feature leading
to the aggressive event). At the end of the process, the detected and classified
events are integrated in the computation of a score. There are many aspects
making difficult to individuate the ‘best’ algorithm, due to the shortage of datasets
created in real driving conditions, and due to the fact that the detected data can
be affected by many factors, i.e. the driving environment, the device used for
data recording. Starting from these considerations [2], the developed Mobile App
proposes a process of detecting the drivers’ behavior based on the adoption of the
smartphone as device to collect driving-related data and on algorithms implemented
for the transformation of data through the application of filters, for the analysis
of data based on reference parameters derived from existing research works [1]
focused on the evaluation of the different available algorithms, for the computation
of scores according to the events detected.

The adoption of the smartphone for collecting driving-related data derived
from the growing market for smartphone applications as recorders and processors
of driving-related data: the advantages of smartphones and similar devices is
that, through the sensors they are already equipped with, could be used like
black-boxes (the traditional way to record drivers’ data) without additional costs
for the hardware equipment [1]. One of the other advantages related to the
smartphone’s use is the possibility to process data on-board and the access they
have to communication networks for data transfer [1].

To address the issue of data transparency, the proposed Mobile App also
implements algorithms for the storage of sensitive and relevant data, that have been
designed and programmatically developed so that users do not have the chance to
select, to choose or to cheat data to be transferred to the Blockchain. Furthermore,
the evaluation model is clearly explained to the users presented in a specific section
of the App’s drawer menu.

Moving to the Blockchain solution that has been designed for addressing the
issue of transparency related to the Personalized Car Insurances, it is well known
that a Blockchain platform is an online ledger. It implies that all the data written
on the Blockchain platform are transparent and immutable. The project’s proposed
solution was conceived to store on the Blockchain the data relevant to the evaluation
process of the driver’s behavior, in a way that they can be visible to everyone
and that cannot be modified or removed. Furthermore, the proposed Blockchain
solution is based on a Smart Contract which transparently defines the logic of
a Gamification Context. If in the real Insurance context, the drivers’ behaviors
can be stimulated to approach a safe style by applying lower insurance fees and

2

Introduction

through auto-premiums adjustments, in this thesis work a Gamification context
has been designed. The application’s users, by calling some methods of the Smart
Contract, become Players. When signing up for the game, a fund is transferred
from their wallet address to the Smart Contract. At the time of game closing, a
final ranking of the players is determined: the players ranked in the first three
places are awarded with a ‘prize money’, defined as percentage of the total amount
the players sent to the Smart Contract for that game.

It is well known that among the main challenges of the Blockchain technology,
there are the concepts of privacy-preservation and of data consistency. With the
aim of addressing those issues, the two proposed solutions have been developed to
give a mutual contribution. Data transferred to the Blockchain from the Mobile
App only relate to the scores achieved by the application’s users at the end of a
car travel. As the driving features determining that result are not specified on
the Blockchain platform, it could be possible to associate this lack of relevant and
sensitive data to a sort of data inconsistency. Behind this decision, there was the
concept of data privacy. At the same time, in order to fulfill the project’s goals of
data consistency and data transparency, all the sensitive data which are relevant
to the process of score’s determination are visible and accessible to the user via
Mobile App.

As briefly described, the main project’s design goals were:

• data and process transparency;

• data privacy-preservation;

• data consistency;

• incentive for drivers toward a safe driving style.

The main implementations carried out as the subject of the thesis were:

- design of the entire system model, and of the Gamification Context to achieve
the design goals of the project;

- development of the Mobile App’s backend, for detecting and processing driving-
related data, and for the interaction with the Smart Contract;

- development of the Mobile App’s frontend of the Mobile App, for a mobile
user and for making interesting the user experience;

- development of the Smart Contract for defining the Gamification’s logic and
managing transfer of funds.

3

Introduction

1.1 Thesis Structure
• Chapter 2 – State of Art: the first part is dedicated to the description of the

Blockchain technology, its basic elements, the governance, advantages and
disadvantages of existing systems. The second part starts with the PEST
Analysis, provides some examples of the blockchain technology’s application
in sectors different from the Insurance one, and then goes in detail about the
use-case analyzed in this work, comparing the present technological paradigm,
intended as traditional Personalized Car Insurance, with the emergent one,
intended as Personalized Car Insurance with the adoption of a Smart Contract.
The last part is dedicated to the use of Gamification in the Insurance sector,
with some examples given.

• Chapter 3 - System Architecture: this chapter provides a consistent description
of the entire system model, going in detail on the implemented algorithms,
thus defining the logic behind the project’ components, and the technical
aspect of the developed programming code.

• Chapter 4- User Experience: this chapter offers a different view of the work
performed, by describing it by means of direct interaction of the user with the
developed product. It moves from the User Interface to the Data Layer by
describing the main components defining the interaction of a general user with
the Mobile App through the support of IDEF0 diagrams and UML diagrams.
A ER Diagram and a Sequence Diagram describing the Smart Contract logic
are also given.

• Chapter 5 - Results: this chapters analyzes the achieved results.

• Chapter 6 - Conclusions: this final chapter draws conclusions regarding the
developed Thesis and traces the lines for possible future developments.

4

Chapter 2

State of Art

The Blockchain technology is very often defined as “The Internet of the future”, as
it represents a real infrastructural upheaval with possible repercussions in a lot of
different sectors. Its innovative component is linked to the possibility of developing
decentralized applications, carrying out immutable transactions and removing the
presence of intermediaries. Based on concepts of opens source and decentralization,
this technology is already considered today one of the most innovative technologies
available for companies. However, the spread and the adoption of Blockchain
are slowed down by prejudices and a general feeling of mistrust, due primarily to
disinformation and to all the risks of a new technology, still in phase of prototyping,
and of a decentralized world, which, inevitably seems destined to be more and more
real, possibly leading to a real world where is possible to keep track and control of
data, in which authority goes from being concentrated on a few central entities to
being equally distributed, in which the presence of guarantors and intermediaries
is replaced by an incorruptible system on which results easier to have confidence.

This chapter opens with a brief overview of the technology, describing its main
topics. Then, the core of the chapter is focused on the analysis of a specific use-case,
the one for which this thesis work tries to forge and provide a Blockchain solution.
Through this use-case a depth analysis of this new technology is carried out. At
the end of this chapter, a brief description about the use of Gamification in the
insurance sector, moving from the area of car insurance to the one of life insurance,
is given.

2.1 The Blockchain technology
It’s worth to start from an exhaustive definition [3], which includes most of the
aspect characterizing such technology, and then moving to the main topics to give
a brief overview of the blockchain system.

5

State of Art

“Blockchain is a digital ledger, decentralized and distributed on a network,
structured as a chain of registers (blocks) responsible for storing data (from value
transactions to entire digital applications). It is possible to add new blocks but is not
possible to modify or remove blocks previously add to the chain. In this ecosystem,
encryption and consensus protocols ensure security and immutability.”

2.1.1 What are blocks, and how are they created?
“Blockchain is a digital ledger structured as a chain of registers (blocks) responsible
for storing data (from value transactions to entire digital applications)” [3].

Blocks are data structures added to the blockchain sequentially, a block at a time.
Each of them contains a mathematical proof generated through the cryptography’s
use, which ensures its sequentiality from the previous block, resulting in a chain of
blocks. The connection between blocks is generated via the cryptographic hash
function, which creates an indissoluble mathematical link between them.

The Hash function

This function is used to map data of arbitrary dimensions into data of fixed
dimensions. So, if the input of a hash function can be almost anything (pdf file,
mp3 file, work sheet, entire blockchain), the output, called hash, will always contain
a fixed number of bits. The main aspects to be considered for a brief description of
the hash functions are:

• The same input always produces the same output; the function’s output is
the hash, which takes the form of a string of letters and numbers; the hash is
not saved in the block, but it is calculated whenever necessary.

• Even the slightest change in the input produces a dramatic change in the
function’s output.

• It is a one-way function: is computationally easy to generate the hash starting
from any input, but there is no way to calculate the function’s input starting
from the hash; the unique way is the brute-force method which consists in
trying all possible combinations.

Starting from these considerations, in case of attempts to add, modify or remove
some of the data or information stored in any block, the hash of that block will
be changed and also the hashes of all the subsequent blocks. This is due to the
fact that, when a new block is added to the chain, the hash of the previous block
is inserted into the input to generate the new block. In summary, every block
contains some data, some information, and the hash of the previous block. As
any change in one of the chain’s blocks leads to a change in the hashes of that

6

State of Art

blocks and the subsequent ones, in order to evaluate the status of a Blockchain, to
compare different versions of the same Blockchain, only the hash of the last block
of the chain is sufficient.

2.1.2 The blockchain network and the different blockchain
models

“Blockchain is a digital ledger, decentralized and distributed on a network.”
Every machine connected to the Blockchain network is a node, which can be

a full-node or a light-node. A full-node represents the hardest way to interact
with a Blockchain but the most secure: it works independently, by propagating
blocks and valid transactions, ignoring the invalid ones. Conversely a light-node
represents the easiest way, but it requires a full-node to work: it does not verify
data correctness, but simply works with the data received from a full-node. By
considering the network’s architecture, the network’s logic and the network’s
authority, it’s possible to describe the Blockchain’s models: public, centralized,
consortium. More specifically, the three models are characterized by the same
network’s architecture and logic:

• A Blockchain is architecturally decentralized, there is no single point of failure.

• A Blockchain is logically centralized; it is all the time characterized by a single
logic status; there are different protocols for all the nodes to reach the same
logic status, as defined in the section 2.1.4.

Conversely, in terms of authority, the three models can be distinguished:

• Public Blockchain: it is a permissionless system, where every node has equal
rights and responsibilities, every transaction is public and analyzable; generally
public Blockchains are also open-source, making public the code defining the
Blockchain’s regulation.

• Private Blockchain: this permissioned system sacrifices complete decentral-
ization in exchange for control over access permissions and usually better
performances. Not all the nodes can read/write data on the Blockchain, not
all the nodes can participate in the transactions’ verification process. This
Blockchain model is generally adopted in the industrial sector.

• Consortium Blockchain: this is a permissioned system, where, unlike private
Blockchain, control and authority are distributed over the network’s nodes;
it is a hybrid solution between the public model and the completely private
model.

7

State of Art

2.1.3 Cryptography
“In this ecosystem, encryption and consensus protocols ensure security and im-
mutability.”

Cryptography refers to the study of secure communication techniques in a hostile
environment, such as Internet. Blockchain is a system where cryptography, more
specifically public key cryptography, plays a particularly important role.

What are cryptographic keys?

The basic idea is to use a pair of keys, extremely large numbers usually represented
in hexadecimal (0-9 to represent numbers from zero to nine, a-f to represent numbers
from ten to fifteen), in mathematical relation to each other:

• a private key, randomly generated, which must remain secret;

• a public key, mathematically derived from the private key, which ca be shared
to anyone.

It is computationally very easy to generate a public key starting from a private
key; conversely, to derive the private key starting from the public one is almost
impossible.

Why the public key cryptography?

Public key cryptography can be used to ensure encryption of information or
data (encryption of messages through the use of the private key of the recipient,
decryption of data through the use of the recipient’s public key), authentication of
users, integrity of data or information, and non-repudiation of data by users.

The main application of public key cryptography in Blockchain consists in the
generation of wallet addresses and the authentication of transactions by mean of
digital signatures.

• Wallet addresses: from a technical perspective, a wallet address is the output
of a mathematical operation including public key cryptography and hashing.

1. A private key is generated starting from a random number, through the
hash function.

2. The corresponding public key is derived from the private key, through a
mathematical process.

3. The public key passes through a series of cryptographic algorithms in
order to obtain an address.

8

State of Art

• Digital signature: digital signatures are the output of a combination of hashing
and public key cryptography as well. Through a digital signature is possible
to obtain:

- Authentication: a private key is associated to a specific user; a digital
signature unequivocally proves that data/a message/information have
been sent by that user.

– Integrity: once a message has been digitally signed, any attempt to modify
the message makes the signature invalid.

– Non-repudiation: when someone signs a message, he cannot, at a later
time, deny having signed it.

Starting from this brief introduction of wallet addresses and digital signatures,
it is possible to understand their role in the creation of a transaction.

• Transactions: the sender digitally signs a transaction with the private key
associated to the address used. The digital signature ensures that:

– The address creating the transaction belongs to the user, i.e., when users
want to send 1 bitcoin they need to have the private keys of an address
with at least 1 bitcoin associated. The basic requirement for creating a
transaction is having the object of the transaction. The transaction is
signed with the private key of the user (authentication).

– The transaction has not been modified after the signature (integrity).
– The user, owner of the private key (used in the transaction) cannot deny

to have signed the transaction (non-repudiation).

It’s worth to specify that creating a transaction does not mean the transaction
is valid. A transaction is valid only if approved by the network consensus, as
explained in the next section.

2.1.4 Consensus protocols
In order for a transaction to be approved, the network nodes have to reach an
agreement on a single state. The process, through which the network reaches
a decision about what happened in the Blockchain, is called consensus. In a
Blockchain system the consensus is an agreement on what happened, and it is
the only possible truth about the current state of the Blockchain. However, the
achievement of the consensus in a distributed and decentralized system remain a
complex problem. Many algorithms were designed and tested to solve this problem:
the most used algorithms in the Blockchain context are the Proof of Work (PoW)
and the Proof of Stake (PoS). The nodes actively participating in the consensus

9

State of Art

process (by adding new blocks, by ensuring the transactions’ validity) are called
miner and the process is called mining. The mining process consists in validating,
aggregating into blocks and adding transactions to the Blockchain. When a new
block is added to the Blockchain, the miner is rewarded for the work done according
to the rules of the Blockchain: the reward usually consists in the transaction fees
of a block and, possibly, in the cryptocurrencies generated when a new block is
added.

In order to describe and highlight the differences between the two protocols
above mentioned, the following table is proposed [3]:

PoW PoS
Needs Computational Power Stake (cryptocurrencies and other parameters

Who is going to create a new block Miner, chosen randomly according to the computational power Validator, chosen in advance according to the own stake

Fairness of the system Yes Yes

Time required to generate a new block Variable, depending on the time required to find a valid PoW solution Fixed

Required Computational Power Very high Minimum

Reward to the miner Transaction fees + possibly cryptocurrencies generated with the new block Transaction fees + possibly cryptocurrencies generated with the new block

Table 2.1: Comparison between PoW & PoS

Focusing on the first line, it is possible to notify how the Proof of Work is a
protocol used to reach a distributed consensus in which the voting power is based on
the computational power. In the PoW-mining, the nodes of the network compete to
solve a complex mathematical problem (reverse harsh with some constraints): the
probability to solve this problem is very low and the only way to find a PoW valid
solution consists in trying all the possible combinations until the right solution
is found. In fact, in a system implementing the PoW, a block is valid only if
contains a valid solution to the PoW; a PoW solution must satisfy a constraint
called difficulty to be considered as valid. In the PoS-mining, even if the final
objective is the same of the PoW algorithm, the process to reach the the solution
in completely different. With respect to the Proof of Work, which rewards the
miners who succeed in solving mathematical problems, the Proof of Stake algorithm
uses and alternates validators, who are the equivalent of the miners. They are
chosen in advance according to the own stake amount: basically, users owning a
token amount can stake their own token in exchange for the right to confirm the
block transactions (becoming validators) and to receive a reward. Every token
corresponds to a vote.

Moving the focus to the second line of the table 2.1, it is interesting to notice that
in the PoS the user who is going to be the validator is defined in advance, whereas
in the PoW there is a real competition among nodes. With the aim to be the first,
every miner starts to find a valid PoW solution: to each invalid solution a miner
changes the value of a number, called nonce, which is used to vary step-by-step
the input of the hash function until the resulting hash satisfies the difficulty value.
By highlighting the importance of the computational power, which determines the

10

State of Art

miner’s hashrate (number of hashes calculated in a second [H/s]), the probability
for a miner to be the first in finding a PoW valid solution is:

ProbabilityF irstMiner = hashrateminer/hashratenetwork (2.1)

As already written, in the PoS protocol the validator is chosen in advance
according to the stake own. The probability for a user to be chosen as validator,
then the user’s voting power can be defined as:

V otingpower = Stakevalidator/Stakenetwork (2.2)

Regarding the third line of the table 2.1, it can be said that both the protocols
ensure fairness toward users: in the PoW protocol, a miner owning 5% of the
computational power an average wins the PoW and obtains the right to create
a new block 5% of the time. In the PoS protocol, a validator owning 5% of the
network stake an average obtains the right to create a new block (and to gain the
reward) 5% of the time.

Finally, regarding the last line of the table 2.1, it is worth to specify that, before
a block is added to the Blockchain and before a miner/validator gains a reward,
the block is propagated to the network, waiting for some confirms of the previous
blocks. The validating process is a backwards process where the previous blocks,
by passing their hash in input to the hash function, can prove the validation of
the new block’s hash. Once a certain number of confirms is received, the block is
added to the Blockchain and the miner/validator can be rewarded.

If comparing the two protocols, the PoS results to be more secure and less
expensive. Furthermore, through the PoS is possible to infer economic disincentives
to bad users, and to make users more stimulated in being loyal with the blockchain
system.

2.2 PEST Analysis
In this section, an analysis of the Political, Social, Economic and Technological
factors that could impact on the development process of the Blockchain technology
and on the diffusion of Blockchain applications is carried out.

2.2.1 Political
The world of Blockchain is witnessing the birth of a growing number of projects
in the most disparate sectors, but at the same time the world of cryptocurrencies
is going through a phase of regulation in various Countries. While with regards
to the adoption of the Blockchain technology there is no particular restriction to
its use, with regards to the use of cryptocurrencies, each Country is defining its

11

State of Art

position with respect to the regulations regarding the use of cryptocurrencies as
a means of payment, fundraising using token, exchange operation methods. By
way of example, it is possible to identify a category of Countries “predominantly
in favor” of cryptocurrencies, and in some cases with already defined regulations:
it is possible to mention Switzerland, Malta, Estonia, and Japan. Conversely, it
is possible to define a category of Countries “predominantly against” the use of
cryptocurrencies: China expressly prohibits ICOs and fiat-crypto transactions on
exchanges. As regards Italy, in September 2018 it joined the European Blockchain
Partnership together with 26 other EU member States [4]. One of the objectives is
to regulate cryptocurrencies and the investment methods based on them (ICO),
together with a push for the implementation of such technology by enterprises.

2.2.2 Economic
Considering the role of Blockchain in the “web revolution” (Web 3.0), the numerous
problems related to Web 2.0 (read-write) have led many people to believe that
a structural revolution of the web is necessary, in order to bring it to its initial
idea of a decentralized, open and universal platform. The merging need for
re-decentralization of web services can be satisfied by implementing this new
technology: it would grant decentralization and democratization of accesses, which
is the opposite with respect to the monopoly of data enjoyed by the current web’s
giants; users would regain possession of data: in Web 2.0 data are given away
for free in exchange for free services (furthermore, how data is used is often not
transparent); the persistence of data would be guaranteed, avoiding the risk that,
being saved on centralized databases, data would be censored, lost or deleted. A
concrete examples of Web 3.0 services are Ethereum for Cloud Computing, the
same service of Google Cloud or Amazon C2 provide in Web 2.0.

2.2.3 Social
Focusing on the social environment, limits related to the Web 2.0 led to rediscovered
needs for decentralization, transparency of data/processes, persistence of data.
These needs introduce the concept of data sustainability, perfectly integrated in
this era, which is the era of sustainability par excellence, with the main concept
extended to all the sectors. Focusing on the needs of data transparency, data
possession, data persistence and decentralization, they can be met by the model of
Blockchain Consortium, in which the consensus process is controlled by a-priori
defined nodes over which authority is distributed. It grants transparency of data
and processes, and, with respect to the public Blockchains, companies can decide
to have control over data. In the industrial sector and more generally in processes
that require collaboration between multiple institutions it is the most adopted

12

State of Art

Blockchain model: it can be implemented to improve the efficiency of the supply
chain process, in which a product requires the coordination of many different
entities to move from producer to consumer, or it can be implemented by the
European Union, which could use such technology as both a ledger and a system
of voting, allowing each Country to represent a node.

2.2.4 Technological
Investments in the exploration and exploitation of the Blockchain technology
are increasing everywhere, with particular focus on the cryptocurrencies and on
the application of the Blockchain technology together with Smart contracts to
the economic processes. By removing the presence of intermediaries and central
authorities, those investments have led to a completely new concept to arise: smart
economy. From the smart economy, the concepts of smart property, digital identity,
token model, have been defined. A concrete example of Blockchain’s application to
economic systems are the Decentralized Autonomous Organizations (DAO).

2.3 Some Blockchain applications
Great attention, so much so that there is talk of a “gold rush”, is paid to the
cryptocurrency market: many investors, for fear of missing out (FOMO), rush to
enter the market without full knowledge and awareness of the details and pitfalls.
In fact, it is a market characterized by extreme volatility (the danger increases
further when investing in coins recently introduced on the market or in the ICO
phase), and by regulations that are not yet well-defined. This has contributed
to the birth of scam projects. However, the cryptocurrency market is not the
only investment opportunity. Possible applications of Blockchain technology have
favored the development of many projects in different fields of the industrial world.

2.3.1 Financial Services
The application of Blockchain technology will certainly increase the efficiency of
financial services such as payments, even if from a technological point of view, these
are among the slowest services to adapt to new technologies. To transfer money,
for example, from Italy to South Africa, it is necessary to go through numerous
banks in a process that can take days or weeks, with costs that can reach more
than 10% of the value of the transaction. Blockchain technology, by removing
intermediaries, will be able to significantly streamline the process, reducing time
and costs: Accenture has estimated that the savings linked to the use of Blockchain
will be able to bring banks overall savings of over 3 billion dollars (out of a total
expenditure of 30 billions of dollars)[5].

13

State of Art

Of note is the partnership signed by companies such as Unicredit with Ripple.
One of Ripple’s products, RippleNet, is used to transform any asset (from fiat
currencies to financial products) into tradable tokens within a distributed ledger [6].
In the field of banking, Blockchain is also inserted into the management of digital
identity, establishing itself as a “single source of truth”, certifying the authenticity of
data and the immutability of information. By moving digital identity management
to Blockchain, users are guaranteed the ability to create and have full control of
their identity through which, once verified, they will be able to give access to their
information to third parties.

2.3.2 Industry 4.0

The Blockchain technology can directly intervene in streamlining the supply chain,
bringing transparency, product traceability and reducing the necessary trust be-
tween parties. A practical case is that of Carrefour which has begun to implement
the IBM Blockchain for the traceability of its products: in concrete terms, on the
label of each of Carrefour’s products, there will be a QR code that consumers will
be able to scan with their smartphone, and access information such as the name
of the breeder, place and method of breeding, food administered, treatments, and
other data.

Many other sectors are carrying out Blockchain-based projects: some examples
of applications are related to the government and public administration fields, to
the healthcare, to the automotive, and other different sectors, obviously together
with the insurance services, such as the Use Case proposed in this Thesis work.

2.4 Analysis of the Thesis’s Use Case

The Blockchain solution proposed in this Thesis work consists in a Smart Contract.
For the purposes of this work, it is developed to define a Gamification mechanism:
the data, sent to the Smart Contract by the Mobile App after the processes
of data-detection and data-analysis, are used to determine a final ranking of
the players. However, it can be considered as a starting point to exploit the
Blockchain technology’s potential. In a real context, considering this work as born
to be developed together with Insurance Companies, a solution overcoming the
limits of the traditional Personalized Car Insurances (PCIs) [2] could integrate a
Smart Contract into the PCIs’ design: it would allow to transparently define the
driving style evaluation protocol and the calculation algorithms (with associated
transparency and immutability of the processed data) that determine the auto-
premiums underlying the PCIs.

14

State of Art

2.4.1 Technology’s Key Elements

There are basically two main trends/needs which can lead ICs to the integration of
PCIs with Smart Contracts:

• the growing demand by drivers of data/process transparency and data-privacy
preservation;

• an increased focus and interest on the Blockchain technology;

Starting from those trends, a qualitative analysis of the impact that the integra-
tion of such technology with the PCI’s design could have on the drivers’ perception,
and on the ICs’ offer as well, is given. It is reasonable to highlight the main
elements of added value brought by the technology’s adoption:

- Higher level of data/process transparency: by deploying insurance contracts
on the Blockchain, ICs can support public verification of data collection/pro-
cessing.

- Greater trust in the system: Smart Contracts are written in a programming
language, so they are free of ambiguity and contain all the necessary logic
within them: they define the rules and automatically require the parties
involved to respect them, in a decentralized way, without the need to rely on
central authorities. Smart Contracts can be seen as applications IFTTT (If
This Then That): when the conditions of the contract are satisfied, the Smart
Contract autonomously carries out specific actions [7].

- Greater design flexibility: the adoption of Smart Contracts and more generally
the exploitation of the Blockchain technology makes real the possibility to
think to an autonomous car (smart car) which identity is associated to the
digital identity of a person, making easier some procedures, such as the
transfer of ownership or the car’s rental. It could also be possible, by relating
to the PCIs, for a smart car to pay the insurance independently, carrying
out microtransactions for every kilometer travelled. Or, as proposed with
this solution, to integrate insurances with Smart Contracts providing instant
transfers of funds whenever car accidentals happen, or harsh driving-events
are detected.

- Higher level of automation: as embedded in a Smart Contract’s properties,
the IFTTT remove the need for the presence of central authorities or third
parties.

15

State of Art

2.4.2 Technological Paradigms
Starting from the previous considerations, it is possible to deduce how today,
next to the traditional design process of the PCIs (shown in Figure 2.1), a new
technological paradigm based on the Blockchain technology is emerging (shown in
Figure 2.2).

Figure 2.1: Present Technological Paradigm: Traditional PCI

Figure 2.2: Emergent Technological Paradigm: PCI integrated with Smart
Contract

Concerning the Supply side,

16

State of Art

if the traditional paradigm considers a product based on the traditional de-
sign process for PCIs, the emergent paradigm is integrating PCIs with a Smart
Contract. Regarding the complementors, the traditional paradigm considers as
complementary to insurances, in a context where the aim is to monitor and evaluate
the drivers’ behavior, those products such as Mobile Apps and Web Services that
could be adopted to detect data while the users are driving (as in the Thesis
work). The emergent paradigm also takes into consideration the possibility to
adopt Decentralized applications, which logic implementation is totally defined on
a Blockchain platform.

Both paradigms mention as complementors those entities responsible for software
development and maintenance, hardware’s components development and production
(devices and black-boxes for data-detection); the emergent paradigm also involves
those entities interested in the development of the Blockchain technology’s appli-
cations. Regarding the suppliers, by focusing on the PCIs design, the consulting
companies working on the algorithms implemented in the entire detecting process
of the drivers’ behavior play a crucial role in both the technological paradigms. The
Research and Educational institutions, such as IC’s internal R&D and Universities,
give a huge contribution as well.

Concerning the Demand Side, the main objective of this work and of this use-case
is to design PCIs able to make drivers (clients of the ICs) more confident about
the system.

2.4.3 Analysis of Paradigms through KPIs
As the implementation of the Blockchain technology through the development of
Smart Contracts is presented as the emerging paradigm, a descriptive analysis
supported by the analysis of some performance indicators is provided to further
understand the reasons behind the progressive confirmation of this paradigm in
the future scenarios.

Focusing on the general advent of the Blockchain technology and on all the
possible applications of such technology, as illustrated in Section 2.3 , this open,
public (depending on the application context) and secure system is rapidly becoming
a strategic priority for many companies, with the premise of reducing costs and
inefficiencies, radically transforming the business models known today. Furthermore,
for the first time, thanks to the Blockchain, is possible to solve the problem of
“double-spending” (related to the possibility of duplicating and therefore spending
digital money) without the need of a central authority. However, the revolutionary
aspect of this technology is not limited to this. It allows, as mentioned, to address
one of the society’s key aspects in a different way: the problem of trust. It has
been solved by developing a technology in which trust is intrinsically within the
technology itself: it is guaranteed through a combination of cryptography, consensus

17

State of Art

protocols and an economic system that encourages actors to cooperate with the
rules defined by the Blockchain.

Moving the focus to the considered use-case, the following indicators have been
chosen to analyze the performance of the Smart Contract when specific conditions
are satisfied: direct transfer of funds in case of harsh events detected, direct transfer
of funds at the end of a car travel according to the trip’s evaluation score (as
proposed in the Thesis work), or direct transfer of funds per kilometer travelled
(insurance paid per kilometer travelled and not on monthly or annual basis).

1. TPS: [tx/s]
the TPS, “transactions per second” indicates the number of transactions that
a Blockchain network can handle in one second. It is an indicator of the speed
and performance of the network, illustrating the ability to handle numerous
transactions simultaneously.

2. Average Execution time of a transaction: [min]
it refers to the time required for a transaction to be executed, and for a block
to be added to the Blockchain. In this case, the time is referred to the transfer
of funds when the above described conditions are met.

3. Average Transaction fee: [wei, $]
the Average Transaction Fee measures the average fee when transaction is
processed by a miner and confirmed. Focusing on the Ethereum Blockchain
(the adopted Blockchain for this project), Ethereum Average Transaction Fee
measures the average fee in USD when an Ethereum transaction is processed
by a miner and confirmed.

4. Average Cost of a transaction: [wei, $]
focusing on the Ehereum Blockchain (the adopted Blockchain for this project),
the cost of a transaction is defined as follows.

CostT ransaction = GasLimit ∗ GasP rice (2.3)

The Gas Limit defines the maximum amount of gas that can be consumed
in one transaction: in case the transaction requires a higher amount of gas
to be executed, the transaction execution is interrupted when the gas limit
is reached; in case the gas amount required by the transaction is lower than
the defined gas limit, the exceeding gas is returned to the sender [3]. The Gas
Price is the number of wei to be paid per unit of gas: if a transaction uses 10
gas and the gas price is set to 100, the total cost of the transaction is 1000
(10*100) wei.

18

State of Art

Complex transactions require more gas, and therefore provide higher transaction
fees.
In this case, the cost is referred to the transfer of funds when the above
described conditions are satisfied.

By looking at some current data about the Ethereum Blockchain, some considera-
tions follow:

• The average block generation time to confirm an Ether transaction is approxi-
mately 12 seconds compared to 10 minutes for Bitcoin [8].

• Focusing on the Ethereum Blockchain, the average fee for transactions has
dropped on February 26, 2024, to 0.0015 ETH or $1.57, a figure previously seen
in December 2020. Between January 2021 and May 2022, for almost two years
the average commission requested by the network was around $40, recording
its all-time high of $196,638 on May 1, 2022, as shown by BitInfoCharts data
[9].

By considering the early stage of the Blockchain technology’s development, it is
important to specify that a lot of challenges have to be faced and are being faced:
the most important one is related to the system’s scalability. In a Blockchain,
the system’s scalability refers to the ability of handling an increasing number of
transactions without affecting the system’s performances. A limited scalability can
be the reason behind low TPS, high average execution time of a transaction, high
average transaction fee, and high average cost of a transaction.

Many solutions have been studied to improve the systems’ scalability with
consequent positive effects on the other indicators. The one proposed in this
analysis, which is considered the main factor supporting the thesis that this
emerging paradigm will definitely emerge, is theLightening Network.

The Lightening Network is a payment system that allows to instantly send and
receive payments, while reducing transaction costs. It is a second-level payment
protocol built on the basis of a Blockchain, consisting of a network of two-way
payment channels between users. The final result is to manage a series of trans-
actions on the second level off-chain and to record only the final balance on the
Blockchain later, through a single transaction when the channel is closed. It follows
that a Blockchain implementing the Lightening Network protocol is able to carry
out transactions instantly and at the same time drastically reduce the workload to
which the Blockchain is subjected. The improvement of the system’s scalability
leads to the improvement of all the other mentioned performance indicators, which
result to be very poor in case of system congestion.

In summary, by considering the crucial contribution of the Lightening Network
to improve the scalability of a Blockchain system, it is possible to support the

19

State of Art

thesis according to which in the future scenarios the paradigm based on Blockchain
applications will emerge. In this specific use case, this analysis highlights the
importance of integrating the PCIs with a Smart Contract in order to satisfy the
drivers’ needs.

2.4.4 Radical and disruptive innovation
Starting from this Use-case, but considering the Blockchain technology as a whole
and the specific properties of all the applications developed on it, it can be observed
that is not a normal technological transition, but rather a total paradigm shift
in the key characteristics of today’s businesses: centralization becomes decen-
tralization, closed systems become open, moving from being territorial to global
entities, guaranteed by a trust no more placed in individual entities but in the
very foundations of the technology. It is the case of a radical innovation with
disruptive impact on the whole systems: in fact, even if the technology is still in
the prototyping phase, with few players in every sector exploiting it, if one think
to the Blockchain applications in the industrial sector, it can be assumed that it
will soon become a determinant source of competitive advantage for companies,
and a strong constraint for those incumbent firms not investing on the technology.
If one think to the personal use as well, it cannot be ruled that it will become a
technology totally integrated into the infrastructure of the applications used on a
daily basis similar to how the Cloud is used today. In the next years there will not
be a total substitution of the old paradigm, due to the many factors (regulation,
risks associated with the adoption of a new technology, disinformation) but this
emergent innovation will surely change the relationships between the main forces
in the industry.

2.4.5 Technology’s Development process
Even in this case, the focus is on the Blockchain technology as a whole. However,
still supporting the potential of this technology, if is true that exists a technology
removing the role of intermediaries and allowing the value exchange without
central authorities, it is also true that, as common in the innovation pattern, the
infrastructure needed to make the Blockchain proliferating is missing. To describe
the current development phase of the Blockchain technology, at first an analogy
between the Blockchain development process and the software development process
is proposed; following this first part, an analysis of two s-curves is presented: the
first s-curve representing the evolution of a performance indicator (daily transactions
volumes) against the time; the second one representing the diffusion of the innovation
in the market. These two contributions will lead to understand the current phase
the Blockchain technology is living within its development process.

20

State of Art

Analogy between software and Blockchain development process

The software development process consists in four phases [3]:

1. Development phase: this is the phase dedicated to the technical development
of a software or platform.

2. Alpha phase: this is the phases dedicated to test the developed software or
platform in order to check it works properly. Regarding the Blockchain, in
this phase errors are checked and consolidated in order to guarantee safety.
Once this phase is completed, the Blockchain is made public and becomes
accessible to anyone.

3. Beta phase: some beta-testers are chosen to test the software solidity. Re-
garding a Blockchain, as it is made public, is not possible to select some
users for the beta-tests: the beta-testers will be the users who decide to use a
particular Blockchain, with the intent to also contribute to its development.
This category can be better identified as ‘early adopter’: as explained in the
next section 2.4.6, they usually already have some specific competencies and
decide to contribute because they believe in the technology potential.

4. Launch on the market: the more a technology implementation is intuitive and
easy, the more the technology will be successful.
Regarding the Blockchain technology, today is not yet the time in which the
average user does not need specific programming competences or knowledge
to exploit the technology.

Starting from these considerations, it is possible to assume that the Blockchain
technology is in the early stages of the Beta phase.

Analysis of Performance s-curve and Diffusion s-curve

Before going into the details of the specific s-curves proposed, it is worth to specify
how s-curves can be analyzed: when progressing along the s-curve, it is common
to define three main phases which are respectively termed incubation (during
which both performance and diffusion still have to “take off”), diffusion (when
performance and diffusion grow significantly) and maturity (when they approach
saturation) [10].

The first image (2.4) has been realized in Microsoft Excel, starting from data
retrieved online: it represents the progress in time of the daily transactions’ volumes
on the Ethereum platform, from 2018 to January 2024 [11]. By comparing that
curve with the traditional s-curve of a performance indicator (as shown in in Figure
“a” of 2.3), and focusing on the different phases, it can be confirmed that the

21

State of Art

Figure 2.3: Performance and Diffusion s-curves.

Figure 2.4: Ethereum: Daily Transactions’ Volumes

Blockchain technology is going through the incubation period. The performance of
the considered KPI has still to start to significantly grow. Conversely, it alternates
some positive peaks to some significant negative peaks. It means the technology
is still immature, even if the widespread awareness of the technology brings to
promises associated to it that may be expressed in exaggerated terms. During the
incubation period of a technological life-cycle, which is quite critical and interesting,

22

State of Art

Figure 2.5: Cloud market size worldwide in 2021, with a forecast for 2030

it is in fact common to see technologies suffering from hyper-inflated expectations,
or simply hype.

The incubation phase can be confirmed by the limited diffusion as well, as shown
in Figure 2.5 [12]. The diffusion (or penetration) can be defined as the fraction
of potential users that, at a given time, have decided to adopt the technology: in
absolute terms, the diffusion curve represents the cumulated adoption sales, these
being the sales to users who adopt the technology for the first time. Taking into
consideration the bell-shaped curve (shown in Figure “c” of 2.3), and the adoption
sales’ curve (mathematically defines as the derivative of the diffusion s-curve), and
imaging to build a s-curve over the histogram built on data related to Cloud market
size worldwide in 2021 with a forecast for 2030 [12], it is possible to confirm that
the Blockchain market size in this sector has still to take off.

From these two graphs, it can be confirmed the conclusion derived by the analogy
of the Blockchain technology development process with the one of software: the
current phase of Blockchain in the technology life-cycle is the incubation phase.

2.4.6 Diffusion of the innovation in the market
As above explained, due to the current state of the technology, to the lack of
clear regulations and to the technology’s intrinsic limits (scalability), the technol-
ogy’s adoption is far from the large-scale adoption. Referring to the most popular
segmentation [10], shown in the Figure 2.6, the Roger’s segmentation (based on
the approximation to a normal curve of the diffusion sales curve) is proposed to
determine the individual customers’ segments who have approached the Blockchain

23

State of Art

Figure 2.6: Market segments along the technological life-cycle

technology. Until today, according to the assumptions derived from the section
2.4.5, only the innovators and the early adopters have accessed this technology.
The early-adopters proudly identify themselves as “visionaries”, as they recognized
the potential of a project or a product before others. Unlike users who approach
with hesitation, they are not scared by any platform’s problems, on the contrary
they want to contribute to improve the platform’s performance. Together with
the early adopters, in the current phase of the technology’s development process,
also the contribution given by the hackers (they bring the platform toward higher
security levels) and by the speculators (they exploit the cryptocurrency market’s
predisposition to speculation) must be considered. For the purposes of the platform
development, speculators help to improve the functioning of the platforms them-
selves (i.e., to support high volumes of transactions), but together with hackers
they increase the public perception that the cryptocurrency market is uncertain
and full of pitfalls.

Anyway, the entry barriers to the cryptocurrency market and the entry barriers
related to some technical aspects of the technology represent a natural status in a
technology development and they are not stopping the spread of it or destroying its
value. Every day new projects are born in every sector with the aim of exploiting this
technology to develop innovative solutions and/or to reduce costs and inefficiencies:
from the financial sector (Ripple project in the field of transaction and payments),

24

State of Art

to the supply chain (Carrefour’s case); to the sector of anti-counterfeiting, smart
home, automotive sector (self-driving car), insurance sector, government sector
with projects related to digital identity and digital voting, and many others. For
examples of Blockchain applications, see Section 2.3.

2.5 Gamification in the Insurance sector
Considering the revolution that the insurance world is experiencing, enabled by new
business models and new technologies, it is interesting to consider, among the many
innovations that will influence this industry, the role and impact of Gamification
in the insurance sector.

In this regard, by focusing on the sector of car insurance policy, it is possible to
cite the example of Aviva insurance.

Aviva, an English insurance company, provides an app to its car insureds that
maps users’ driving style by placing them in a competitive context. In case of
download and use of the app for 200 miles, it gives the user a score out of 10 with
10 being the safest driver. This score then entitles the user to get money off his car
insurance: the discount is personalized and calculated based on the individuals’
driving behavior. The user will also receive feedback in the form of a star rating
for his driving technique around accelerating, cornering and braking.

The game mechanism implemented in this Thesis work turns out to be very
similar to those just proposed: in the developed Thesis product, the incentive does
not reside in a reduction of the insurance’s premium that the policyholder pays to
the insurance company. Instead, it lies in the possibility of going to a prize pool
in a Gamification mechanism in which the prizes are defined as percentages of a
common fund, created by adding the fees paid by users when registering for the
game, who, without registration, would not be able to access it. Wanting to bring
the Thesis work closer to the insurance reality, on the basis of a final ranking, the
drivers resulting as “the best three” could obtain a further percentage reduction
in the premium, which would therefore depend not only on whether or not the
insured caused accidents in the so-called “period of observation”. The proposed
Gamification mechanism could be integrated into the contractual formula of the
“Bonus-Malus” : at each deadline, the progression or relegation of class will depend
on whether or not claims have been caused, while as regard the progressive increases
or percentage reductions of the premiums, the game mechanism may provide for
the application of further discounts determined by a final ranking. In this way,
driving style will be constantly monitored, drivers will be more stimulated to adopt
a safe-driving style, and insurance companies will be able to benefit from it in
terms of data collection and fewer accidents.

Apart from the structure of the Gamification mechanism, the crucial difference

25

State of Art

between the product proposed by Aviva and the one which is subject of this Thesis
work lies in the decentralization concept: the Gamification mechanism proposed in
this work is completely built on a Blockchain platform.

It is interesting to note how the Gamification mechanism has been tested in the
insurance sector also in areas other than car policies.

• “PII Protectors” [13]: product created by AllState, used to train employees on
privacy security and compliance. The game begins with a video showing the
player being declined a mortgage because of identity theft. Thirsty for revenge,
the player joins an agency to fight an evil conglomerate trying to steal other
people’s data and chooses from four alter-egos: Captain Confidential, X-Ray
Bex, Firewall and Raisa Sharp. Once players choose an identity, they are faced
with dilemmas that they solve by answering questions on Allstate’s privacy
policy. The more problems they solve, the more data their character stops from
leaking outside of the company. This is a method to give Allstate employees a
chance to learn the policy and experience how it translates to their day-to-day
job while encouraging them to continue growing their understanding of its
importance.
Thus, in this case, the main objective of the Gamification mechanism consists
in increasing the level of loyalty of its employees, and to increase the privacy of
its data. Differently from the way the Gamification mechanism was exploited
in the Thesis work, behind the AllState game there is not the Blockchain
technology.

• “MyGame” [14]: is worth to mention the new features introduced in Assicu-
razioni Generali’s app, the well-known insurance group that operates mostly
in Europe, North America and the Far East. It is a modest and rudimentary
video game, little more than a quiz, the purpose of which, is purely didactic,
little more than an expedient with which to prove the level of knowledge of
the user on topics such as respect for the environment, health, knowledge
of the regulations that regulate the circulation of cars and motorbikes. The
cornerstone around which MyGame revolves are the 26 tests, divided into
different categories. Each of them offers five multiple choice questions to
choose from. Based on results, the user is rewarded both with an advance-
ment in the statistics that make up his personal profile, a profile naturally
included in a global ranking, and with a certain quantity of points that can
be spent to progressively enhance certain decorative objects, such as a house,
a backpack or a means of transport, an action that will certainly give user
small satisfactions, but absolutely an end in itself.
Even in the Assicurazioni Generali’s app, the Gamification mechanism is not
built on a Blockchain platform.

26

State of Art

• “Vitality Squares” [15]: launched in the life insurance sector by Vitality Group,
the game provides educational information and also allows users to select and
reveal what is behind a certain number of cards, which leads to a reward.
The number of cards that can be turned over depends on the person’s health
status. For instance, if they have been engaging in healthy behaviors and are
at platinum status, they can turn over six cards. And they can win a variety
of prizes, including Starbucks and iTunes gift cards, and even a $500 Amazon
gift card. So the members are motivated to take good care of their health so
they can win more.
From an ethical view point, this Gamification mechanism can be compared
to the one designed in this work: the objective of the Thesis work was to
incentivize users toward a safe driving-style as well as the Vitality Group’s
game incentivizes users toward a safe healthy behaviour. However, even in
this Case, the Gamification context is not built on a Blockchain platform.

27

Chapter 3

System Architecture

This work is based on the development of a Mobile Application that offers users
the opportunity to interact with the Blockchain. More specifically, the project’s
goal is to monitor the driving behaviors of the application’s users: with the aim of
encouraging users to give their consent to being monitored, the evaluation process
of the drivers’ behaviors is inserted into a Gamification contest. The Gamification
logic is defined by a Smart Contract, deployed on a Test-net.

3.1 Technologies
Before describing the system’s architecture, an overview of all the explored tech-
nologies, in terms of software’s libraries or development environments, is given:

• Android Studio: the Mobile app has been developed on Android Studio, which
is the official integrated development environment (IDE) for Google’s Android
operating system, built on JetBrains’ IntelliJ IDEA software and designed
specifically for building Android apps [16]. The developed code is based on
Java functions.

• Remix: it is an online editor allowing to develop Smart Contracts by using
the Solidity programming language [17]. Thanks to the plugins, is possible to
compile and test the code developed for the Smart Contract and, once the
compiling process ends with success, the bytecode and ABI or the contract
address can be used for distributing the Smart Contract.

• Truffle: it is a development environment, testing framework and resource
pipeline for Blockchains using Ethereum Virtual Machine (EVM) [18]. It
was used directly from command lines for generating the Solidity Javascript
wrapper file.

28

System Architecture

• Web3: it is the software library used to interact with Smart Contracts [19].
Through the Web3j API it was possible to create the wallet addresses for the
app’s users, to read and write data from the Smart Contract, to create an
instance of the deployed Smart Contract in order to call specific functions.

• Infura: it defines an end-point for accessing the Ethereum platform, and
provides an API key for accessing the end-point and interacting with Smart
Contracts [20].

• Etherscan: it is a block exploration and analysis platform on the one hand,
and a decentralized Smart Contract platform on the other [21]. In this work,
it was used for verifying the outcome of the transactions executed by calling
the Smart Contract’s functions.

• Ethereum: it is a Blockchain, open-source, decentralized, software platform
[22]. In this work, the Sepolia Test-net is used, but the developed system is
defined to work on Ethereum.

3.2 Architecture
The developed Mobile App puts itself in the middle between the End-Users and
the Blockchain system. Looking at the Figure 3.1, we can distinguish:

• End-User / Smartphone (at the left of the Mobile App): the smartphone is
the instrument used as specified in the following lines.

– To detect driving-related data: with respect to the traditional black-
boxes, the advantage of smartphones is that, thanks to the sensors they
are already equipped with, smartphones can be used for detecting and
collecting motion data without incurring in additional costs for hardware
equipment. Furthermore, they have access to communication networks
needed for data transfer and can process data onboard through the use of
processors generally more powerful than the ones of black-boxes.

– To allow the End-users, through the network connection, to access the
Mobile App, and to directly interact with the Blockchain, in order to
check the executed transactions, and to look at the data regarding the
game saved into the Blockchain.

• Blockchain (at the right of the Mobile App):
the Blockchain system is used to define the Gamification logic, to save and
store the relevant data of the players and of the games by preserving the
privacy and ensuring the transparency of data, and to manage funds directed

29

System Architecture

Figure 3.1: System Architecture

from the players to the Smart Contract, or from the Smart Contract to the
players. Even if the system is defined to work on Ethereum, in this project’s
phase, is tested on Sepolia, a Blockchain test-net.

Focusing on the internal Architecture of the Mobile App, we can individuate
different components:

• Activities and Fragments, defining the User interface (UI) and designed to
make the user experience (UX) as easy as interesting: this section regarding
the user experience will be further explored in Chapter ??.

• Services, allowing to process data in background: services will be considered
in the following Section 3.3, which describes the entire process of detecting
the drivers’ behaviors.

30

System Architecture

• Database, to store data related to the app’s logic, and to retrieve data to be
used for interacting with Blockchain: it will be defined in the section describing
the application’s data layer, which is part of Section 4.3.

• External APIs, for enabling the use of Google Services and the interaction with
Blockchain: the section regarding the use of Google services is introduced in
the following chapter in Section 3.4.5, whereas the interaction with Blockchain
and the developed/deployed Smart Contract is in detail explored in Section
3.5.

All these components are punctuated by Java functions and represented by
different java blocks or classes, as shown in Figure 3.2.

Figure 3.2: Java Classes

31

System Architecture

3.3 Process of detecting the drivers’ behavior
As shown in Figure 3.3, the process of detecting a driver’s behavior usually consists
in three main phases:

1. sensors’ raw data acquisition and data transformation;

2. classification of driving events;

3. computation of a score for the driver, according to the evaluated driving data.

In the next sections, the work performed is going to be explained.

3.3.1 Sensors’ raw data acquisition and data transformation
Data acquisition: Hardware component

Starting from existing literature [1], one of the assumptions derived recognizes and
supports the ability of smartphones in recording and processing driving-related
data. In this case, the data acquisition is performed by the sensors the smartphone
with which it is already equipped: it is worth to specify that accelerometer readings
are detected in the phase of data acquisition, then pre-processed trough the gravity
readings detected by the gravity sensor in the phase of data transformation, whereas
the rotation sensor’s readings are acquired and considered for determining the
device’s orientation, as explained in Section 3.4.6.

The accelerometer is a motion sensor: it measures the acceleration force in in
m/s2 that is applied to a device on all three physical axes (x, y, and z), including
the force of gravity. It uses the standard sensor coordinate system, knowing that
the coordinate system is defined relative to the device’s screen when the device
is held in its default orientation (see Figure 3.4). In practice, it means that the
following conditions apply when the device is held in its default orientation:

- the x axis is horizontal and points to the right;

- the y axis is vertical and points up;

- the z axis points toward the outside of the screen face; in this system, coordi-
nates behind the screen have negative z values.

It’s worth to specify that, even when the device moves and the device’s screen
changes orientation, the axes are not swapped, so the sensor’s coordinate system
never changes.

Going deeply into the raw data acquisition by the sensor, by considering the axes
orientation in the device [23], the following data are detected by the accelerometer:

32

System Architecture

Figure 3.3: Process of detecting the drivers’ behavior

- readings on the z axis, for frontal acceleration;

- readings on the x axis, for lateral acceleration.

33

System Architecture

As the vehicle is moving frontally and laterally and the device is kept in a stationary
position, with the screen in in its default orientation, readings on the y axis are
not considered: the stationary device will have an acceleration value detected on
the y axis of +9.81 m/s2, which corresponds to the acceleration of the device (0
m/s2 minus the force of gravity, which is - 9.81 m/s2).

Figure 3.4: Sensor’s coordinate system.
About the device’s orientation, it is im-
portant to remark that, even if the de-
vice’s orientation is changing, the disposi-
tion of the axes remains the same. Then,
the same readings can be detected on the
same axes, independently on whether the
smartphone is kept horizontally or verti-
cally.

Data acquisition: Service

Moving the focus away from the hardware component, in order to collect the driving
data of the user during each trip, a service called MyService has been implemented.

A Service is an application component that can perform long-running operations
in the background. It does not provide a user interface. Once started, a service
might continue running for some time, even after the user switches to another
application.

The connection with the service starts when the startTrip method in the Trips-
Activity component calls the startConnectionWithService method, which in turn
includes the startService(Intent intent) method. The intent specifies the class of the
Service to which the call is directed. The role of the Service is to get the available
sensors of the device, to register the listeners on the available sensors and to save
the data of each new event on the app’s database, in order for the TripsActivity
component to retrieve and use them.

The Service can access the device’s sensors and register the listeners on them
through the SensorManager class. By implementing the SensorEventListener
interface, after registering the listeners, the Service starts collecting sensors’ data in

34

System Architecture

the form of event, every time new events are available (values’ changes are detected
by sensors on the axes). This object of the SensorEvent Class holds information
such as the sensor’s type, the timestamp of the event, accuracy and the values
detected on the sensor’s axes. Each detected event in the OnsensorChanged method
is executed one-by-one by an AsyncTasks: in the doInBackground method the
event’s required parameters are collected, pre-processed to remove gravity influence
and the noise, and inserted in the database. In this case, the values derived from
the ones detected by the accelerometer on the z axis are saved into the Table
SensorData_zValues, together with the timestamp of the event. Whereas the
values derived from the absolute values detected by the accelerometer on the x
axis are inserted into the Table SensorData_xValues, together with the timestamp.
As shown below, in the code related to the doInBackground method, the values
registered on the y axis are not saved into the database.

The connection with the Service ends with the stopTrip method in the Trips-
Activity component, where the stopConnectionWithService method is called. This
method contains the stopService(Intent intent) command, which recalls the onDe-
stroy callback method in the Service: here, through the SensorManager class, the
Service unregisters the sensor’s listeners. Also in this case, the intent specifies the
Service class to which the call is directed.

3.3.2 Data transformation
In order to define the final dataset of values to be saved into the database and to
be analyzed with the aim of classifying driving events, the raw data (SensorEvent
data) will be pre-processed by using low-pass and high-pass filters to eliminate
gravitational forces and reduce noise [24]. The developed code uses a simple filter
constant (alpha) to create a low-pass filter. This filter constant is derived from a
time constant (t), which is a rough representation of the latency that the filter adds
to the sensor events, and the sensor’s event delivery rate (dt). As the purpose is to
get sensor’s data as fast as possible (dt=0), the alpha value adopted is equal to 1.

In the code below, the implementation of low-pass and high-pass filters, inserted
into the doInBackground method. As shown, the values detected by the gravity
sensor on the three axes are used to apply the low-pass filter first, and to apply
the high-pass filter later. The gravity sensor provides a three-dimensional vector
indicating the direction and magnitude of gravity. Typically, this sensor is used to
determine the device’s relative orientation in space. In this case, it used to optimize
the raw data derived from the accelerometer, affected by the gravity’s influence
and noises. At this time, data are ready to be organized in the app’s database, and
to be analyzed.

1 @Override
2 public void onSensorChanged (SensorEvent event) {

35

System Architecture

3 new SensorEventLoggerTask (). execute (event);
4 }
5 @SuppressLint (" StaticFieldLeak ")
6 private class SensorEventLoggerTask extends AsyncTask <

SensorEvent , Void , Void > {
7 @Override
8 protected Void doInBackground (SensorEvent ... sensorEvents)

{
9

10 // Collecting event values
11 SensorEvent event = sensorEvents [0];
12

13 switch (event. sensor . getType ())
14 {
15 // Gravity sensor
16 case (Sensor . TYPE_GRAVITY):
17 gravity_x = event. values [0];
18 gravity_y = event. values [1];
19 gravity_z = event. values [2];
20 break;
21

22 // Accelerometer sensor
23 case (Sensor . TYPE_ACCELEROMETER):
24 final SensorType st = SensorType . ACCELEROMETER

;
25 MotionDataCollectionEvent dataCollectionEvent

=
26 (MotionDataCollectionEvent) st.

createDataCollectionEvent (event ,
27 new Date(System . currentTimeMillis ()));
28 x_component_acc = event. values [0];
29 y_component_acc = event. values [1];
30 z_component_acc = event. values [2];
31 timestamp_event = dataCollectionEvent .

getTimestamp ();
32 event_timestamp = timestamp_event . getTime ();
33 break;
34

35 // Rotation vector
36 case (Sensor . TYPE_ROTATION_VECTOR):
37 rotation_matrix = new float [16];
38 SensorManager . getRotationMatrixFromVector (

rotation_matrix , event. values);
39 defineOrientation (rotation_matrix);
40 break;
41 }
42 //low -pass filter
43 final float alpha = 1;

36

System Architecture

44 gravity_x = alpha * gravity_x + (1 - alpha) *
x_component_acc ;

45 gravity_y = alpha * gravity_y + (1 - alpha) *
y_component_acc ;

46 gravity_z = alpha * gravity_z + (1 - alpha) *
z_component_acc ;

47 Log.i(TAG , "low -pass filter applied !");
48

49 //high -pass filter
50 double linear_acceleration_x = x_component_acc -

gravity_x ;
51 double linear_acceleration_y = y_component_acc -

gravity_y ;
52 double linear_acceleration_z = z_component_acc -

gravity_z ;
53 Log.i(TAG , "high -pass filter applied !");
54

55 // save data in DB
56 insertZvalues (db , linear_acceleration_z ,

event_timestamp , newSensorDataId_Z ());
57 insertXvalues (db , Math.abs(linear_acceleration_x),

event_timestamp , newSensorDataId_X ());
58 }

Listing 3.1: doInBackground() method

3.3.3 Classification of driving events
Before describing the developed code for determining an event as “harsh event”,
it is worth to introduce some considerations on the adopted algorithm. In the
literature, three main approaches have been explored to classify driving events:
anomaly detection, threshold, and machine learning classifier-based methods. As
described in the article [1], the different methods have been applied to the publicly
datasets available at the time the article was written (Ferreira’s Dataset and Carlo’s
Dataset), and on an additional dataset “ad hoc” created and based on driving
data recorded through multiple devices, one of which was an Android Smartphone
(AD2 Dataset). All the algorithms were performed by changing the reference values
(threshold and length of time window), in order to find those values optimizing the
performance.

The algorithms’ performance has been evaluated (by computing precision, recall
and F-score) according to two different set of experiments: the first experimental
setup focused on the classification of labeled events, then the classification perfor-
mance of each algorithm was evaluated on labeled aggressive vs. non-aggressive
events; the second setup included all available acceleration data, also those recorded
during normal driving situations, so the detection performance of each algorithm

37

System Architecture

was evaluated on the entire dataset.
By relying on the results achieved through the work performed for the article [1]

(as shown in Figure 3.6), and referring to results achieved by the different algorithms
when performed on the entire dataset, an this work, one of the threshold-based
methods has been adopted. The decision to focus on all the available acceleration
data detected during normal driving situations depends on the consideration of this
approach as more closely reflecting a realistic scenario, where the task performed is
more a detection task rather than a classification task. The threshold-based method
adopted for detection of events is, as defined in the article, the “simple-threshold”
method.

According to this algorithm, by referring to the individual sensor’s readings, as
shown by the green line and blue line in Figure 3.5:

- A sensor reading on the z axis (related to frontal acceleration) is labeled as
“aggressive” when the value is higher than a certain acceleration threshold, or
lower than a certain brake threshold.

- A sensor reading on the x axis (related to lateral acceleration) is labeled as
“aggressive” when the absolute value of the acceleration is higher than a certain
turn threshold.

Figure 3.5: Orientation of sensor’s coordinate system in vehicles

By referring to a driving event, the detection of the “harsh event” also depends
on the time window considered for the event. Different events may need different
time windows: i.e. u-turn event takes longer time than a frontal acceleration.

A driving event is defined as “aggressive” if at least 50% of the time points
belonging to the window is labeled as aggressive (if at least 50% of sensor’s readings
exceeds the considered threshold), otherwise as “non-aggressive”.

Moving to the work performed in this project, the values adopted for the
thresholds and the time window, as shown in the table in Figure 5, are the ones
corresponding to the “simple-threshold” method, applied on AD2 Dataset, with
focus on all the available acceleration data:

38

System Architecture

Figure 3.6: Table with reference thresholds

• acceleration threshold: 0.25g (0.25 * 9.81 m/s2 = 2.45 m/s2);

• brake threshold: 0.25g;

• turn threshold: 0.3g;

• ns = 4 seconds.

These thresholds define the exception rules: data exceeding these values define
exception values and when the number of exception values is higher than 50% of
the values considered within vectors of time window equal to 4 seconds, a harsh
event is detected. From here on, the work performed for the detection of harsh
events is in detail illustrated. According to the already mentioned article, the
classification of driving events can be either binary (aggressive or non-aggressive
event), or multi-class, i.e., to identify whether the event was related a (an aggressive)
specific driving maneuver. In this work, the SensorEvent data collected during each
trip will be organized and analyzed so that, starting from detection of eventual
aggressive driving events, also the related harsh event is individuated.

- Which harsh events?

• Harsh acceleration, by analyzing the recorded events containing positive values
detected by the accelerometer on the z axis.

39

System Architecture

• Harsh Brake, by analyzing the recorded events containing negative values
detected by the accelerometer on the z axis.

• Harsh Cornering, by analyzing the recorded events containing the absolute
values detected by the accelerometer on the x axis.

In order to get those values, a SELECT query with a WHERE clause is executed
on the two tables above mentioned (SensorData_xValues, SensorData_zValues).
It will return a cursor pointing only to those rows of the tables having the event’s
timestamp included between the start date and the end date of the trip. If the
cursors are not empty:

1. The first step of the data analysis leads to the creation of the following
arraylists of events.

• Hard_acceleration_events arraylist: it’s a list of events,
from the Hard_Acceleration_Event Class. Each item of the list is a hard
acceleration event, containing the positive value detected on the z axis
and the event’s timestamp.

• Harsh_braking_events arraylist: it’s a list of events,
from the Harsh_Braking_Event Class. Each item of the list is a harsh
braking event, containing the negative value detected on the z axis and
the event’s timestamp.

• Harsh_cornering_events arraylist: it’s a list of events,
from the Harsh_Cornering_Event Class. Each item of the list is a harsh
cornering event, containing the absolute value detected on the x axis and
the event’s timestamp.

The developed code is illustrated for the hard_acceleration_events arraylist
below.

1 private ArrayList < Hard_Acceleration_Event >
create_HardAcc_event (double _zcomponent , long _timestamp) {

2 Date timestamp_event = new Date(_timestamp);
3 Hard_Acceleration_Event new_event = new

Hard_Acceleration_Event (timestamp_event , _zcomponent);
4 hard_acceleration_events .add(new_evento_AccBrusca);
5 return hard_acceleration_events ; }
6

Listing 3.2: create hard acceleration events arraylist

If the size of the defined arraylists is different from zero:

40

System Architecture

2. The second step of the analysis consists in ordering the lists according to
an increasing value of the timestamp, and in deleting possible duplicates
of the events from the lists. The developed code is illustrated for the
hard_acceleration_events arraylist, in the following lines.

1 private void ordering_deletingDuplicates (ArrayList <
Hard_Acceleration_Event > hard_acceleration_events) {

2

3 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES .N) {
4 hard_acceleration_events .sort ((hard_acceleration_event

, t1) -> hard_acceleration_event . getTimestamp (). compareTo (
t1. getTimestamp ()));

5 }
6

7 for (int i = 0; i < hard_acceleration_events .size () - 1; i
++) {

8 if (hard_acceleration_events .get(i). equals (
hard_acceleration_events .get(i + 1))) {

9 hard_acceleration_events . remove (i);
10 i--;
11 }
12 }
13 }
14

Listing 3.3: Ordering arraylists and deleting events’ duplicates

3. The third step of the analysis consists in constructing sub-lists of the mentioned
lists, in order to analyze one-by-one vectors of events having a time window
equal to four seconds (ns=4). Referring to the code, these sub-lists of harsh
events are called:

• _container_vettori_hardAccEvent, which includes the sublists of equal
time window, derived from the initial hard_acceleration_events arraylist;

• _container_vettori_harshBrakingEvent, which includes the sublists of
equal time window, derived from the initial harsh_braking_events ar-
raylist;

• _container_vettori_harshCorneringEvent, which includes the sublists
of equal time window, derived from the initial harsh_cornering_events
arraylist.

The developed code is illustrated for the _container_vettori_hardAccEvent
in the following lines.

1 private ArrayList <ArrayList < Hard_Acceleration_Event >>
create_Vectors_SameWindow_Acc (ArrayList <
Hard_Acceleration_Event > _harsh_acc_events) {

41

System Architecture

2 int ns = 4;
3 int l = 1;
4 int i;
5

6 while (l < _harsh_acc_events .size ()) {
7 ArrayList < Hard_Acceleration_Event > list = new

ArrayList < Hard_Acceleration_Event >();
8

9 for (i = l; l < _harsh_acc_events .size ();) {
10 Hard_Acceleration_Event evento = _harsh_acc_events

.get(i);
11 long first_timestamp = _harsh_acc_events .get(i).

getTimestamp (). getTime ();
12 long second_timestamp = _harsh_acc_events .get(i -

1). getTimestamp (). getTime ();
13

14 if ((first_timestamp - second_timestamp) > ns *
1000) {

15 l = _harsh_acc_events . indexOf (
_harsh_acc_events .get(i));

16 l += 1;
17 break;
18 }
19 list.add(evento);
20 i++;
21 l++;
22 }
23 container_Vectors_HardAccelerationEvent .add(list);
24 }
25 return container_Vectors_HardAccelerationEvent ; }
26

Listing 3.4: Building up sub-lists of four seconds time window

4. At this point, the analysis process has come to the last step: the detection
of harsh events. By scrolling one-by-one the events of the created sub-lists
with time window of four seconds, if the number of exception values (val-
ues exceeding a given threshold in case of acceleration threshold and turn
threshold or lower than a given threshold in case of brake threshold) is
higher than half the size of the considered sub-list, a harsh event is gener-
ated. When moving to the other sub-lists containing the same type of harsh
events, every time it occurs, the number of such harsh events increases by
one. At the end of this step, the number of harsh events for the trip is de-
termined and recorded in the following variables: n_HardAccelerations_Trip,
n_HarshBrakes_Trip, n_HarshCornerings_Trip. Here, the developed code is
illustrated for n_HardAccelerations_Trip.

42

System Architecture

1 private int detecting_HarshManoveurs_Acc (ArrayList <
ArrayList < Hard_Acceleration_Event >>
_container_vectors_hardAccEvent) {

2 int n_HardAccelerations_Trip = 0;
3 int i;
4

5 for (int j = 0; j <= (_container_vectors_hardAccEvent .size
() - 1);) {

6 ArrayList < Hard_Acceleration_Event > array =
_container_vectors_hardAccEvent .get(j);

7 int n = array.size ();
8 int hard_acc_values_singleArray = 0;
9

10 for (i = 0; i < array.size () - 1;) {
11 double z_value = array.get(i). getValue ();
12

13 if (z_value < 2.45) {
14 continue ;
15 }
16 hard_acc_values_singleArray ++;
17 i++;
18 }
19

20 if (hard_acc_values_singleArray >= n / 2) {
21 n_HardAccelerations_Trip ++;
22 }
23

24 if (n_HardAccelerations_Trip > 0) {
25 Cursor crs = db. getID_LocationHarshEvent (array.get

(0). getTimestamp ());
26 long id_GpsData = 0;
27

28 if (crs != null && crs. moveToFirst () && !crs.
isNull (crs. getColumnIndex ("_id"))) {

29 do {
30 id_GpsData = crs. getLong (crs.

getColumnIndex ("_id"));
31 } while (crs. moveToNext ());
32 }
33 long id_SensorData = 0;
34 double value_eventZero = array.get (0). getValue ();
35 long timestamp_eventZero = array.get (0).

getTimestamp (). getTime ();
36 Cursor crs_eventZero = db. getID_EventZero_Z (

value_eventZero , timestamp_eventZero);
37

38 if (crs_eventZero != null && crs_eventZero .
moveToFirst () && ! crs_eventZero . isNull (crs_eventZero .
getColumnIndex ("_id"))) {

43

System Architecture

39 do {
40 id_SensorData = crs_eventZero . getLong (

crs_eventZero . getColumnIndex ("_id"));
41 } while (crs_eventZero . moveToNext ());
42 }
43 inserisciAccValues (db , id_SensorData , id_GpsData ,

currentUser . getUsername (), currentTrip .getId (),
newHardAccId ());

44 }
45 j++;
46 }
47 return n_HardAccelerations_Trip ;
48 }
49

Listing 3.5: Detection of harsh events

In Figure 3.7, there is a representation of a non-aggressive u-turn event (first
event) and an aggressive u-turn event (second event), taken from the article. The
red lines define the moments at which the driving event starts and finishes. In the
first case, the number of values detected on the x axes that exceed the threshold is
lower than 50% of the values defining the driving event. Conversely, in the second
case, the number of exceeding values is higher than 50% of the total values detected
for the driving event.

3.3.4 Score’s Computation Process
Computation of the driver’s score for the individual trip

The last phase of the process consists in computing the driver’s score for the
trip. As above said, the last step of the analysis process leads to the definition
of the number of harsh events per trip. Then, it comes out with a value as-
signed to the following variables: n_HardAccelerations_Trip, n_HarshBrakes_Trip,
n_HarshCornerings_Trip, which will passed in input to the getYourTripScore
method. The getYourTripScore method, that will be called every time the user
finishes a trip, implements the following algorithm:

1. Computation of a score for each driving feature (harsh acceleration, harsh
brake, harsh cornering): this score depends on the number of harsh events per
driving feature and on the number of trip’s kilometers actually traveled. In
case of trips with the same number of harsh events, the shorter the trip (the
lower the trip’s number of kilometers) the more severe is evaluated the impact
of the harsh events; i.e. two events of harsh acceleration detected on a trip
of 100 kilometers have a different impact on the trip’s score than two events
of harsh acceleration detected on a trip of 15 kilometers. In the former case

44

System Architecture

Figure 3.7: Harsh u-turn event

the score for the acceleration’s driving feature of the trip is higher than the
one computed in the second case. This is the formula used for computing the
score for each of the driving features (for each trip):

harh_event_score = Max[max_trip_score˘harsh_events_number · β

trip_km_number
, 0]

(3.1)

where max_trip_score is a parameter set to 100, by hypothesizing a maximum
number of user’s trips equal to 10, and a maximum score reachable in the
whole game by each user equal to 1000 (the max_trip_score is equal to the
max score reachable in the game divided by the max number of user’s trips);
harsh_events_number contains the number of harsh events detected per each
harsh event type (n_HardAccelerations_Trip, n_HarshBrakes_Trip,
n_HarshCornerings_Trip’); beta is the “conversion factor” introduced to
distribute the number of harsh events on the trip’s number of kilometers, with
the aim of differentiating the impact of the number of harsh events according
to the trip’s length. As the trip’s length is measured in kilometers, the beta
value is 1000. The Math.Max(,) method is used because in case of bad

45

System Architecture

driving behavior, the score for the individual driving feature could be equal to
a negative vale: in that case the value for the score is zero.

2. Definition of a weight for each of the driving features considered: by considering
that the sum of the weights should be equal to 100%, in this case the same
weight was assigned to each of the driving features, with a value equal to
33,3% each.

3. The final score for the trip is defined as a weighted sum of the scores assigned
to each of the driving features:

final_trip_score =
NØ

n=1
harsh_event_scoren · harsh_event_weightn (3.2)

with 1 < n < 3, as the current system considers three types of harsh events
(acceleration, braking, and cornering events). The harsh_event_weight is
used to increase or reduce the contribution of a specific harsh events type
(since we decided to assign the same weight to each harsh event type, we set
the weight equal to 33.3% for each n). It is worth remarking that the current
equations currently consider all the harsh driving events as equals, without
penalizing the score gained by the user based on “how harsh” the generated
events were. In the future, the equations could be modified in order to take
into account also how much the acceleration values recorded surpassed the
threshold.

In summary, as the formulas show, this scoring method is Event-count based,
according to the exception rules defined over the driving features. It’s worth to
notice that the scoring is calibrated to award a score of 0 if a driver incurs 10 events
or more, over 100 kilometers driven or fewer.

Computation of the driver’s score at the end of the Game

The final score of the driver is obtained by summing all the scores related to each
trip, at the end of the 10 trips.

As explained, the last step of the analysis comes out with the detection of
eventual harsh events.

For each harsh event determined, the location where the abrupt driving maneuver
is committed by the user is defined. It’s obtained by executing a SELECT query
with WHERE clause on the table collecting location data from GPS: it returns a
cursor pointing to those rows having the timestamp equal to the one of the “zero”
harsh event. The zero harsh event corresponds to the first item of each sub-list
that leads to the determination of a harsh event.

46

System Architecture

It allows the user to be aware of the relevant data characterizing each trip: num-
ber of harsh events, localization of harsh events. It also supports the transparency
of the algorithm used for determining the trip’s individual score. Concerning the
detection of the user’s location, and the update of the current location, the next
section is going to explain the implemented Location service as both foreground
Service and binding Service.

3.4 Service for Location Update
In order to request location updates when the app is visible and when the user
navigates away from the app’s activity, the component TripsActivity is bounded to
a Location service.

A bound service is an implementation of the Service class that lets other applica-
tions or other applications’ components bind to it, send requests, receive responses,
interact with it [25]. In this case, it will provide constant location updates to the
TripsActivity component [26].

This Location service subscribes and unsubscribes to location changes, and
promotes itself to a foreground service (with a notification) if the user stops
interacting with the app.

A foreground service performs operations that are noticeable to the user: when
the app is working in the background, through a status bar notification, the service
makes users aware that the app is performing a task in the foreground and is
consuming system resources [27]. In this case, even when users navigate away from
the app, they are notified about their current location.

3.4.1 Location Service as Binding Service
Going into the programming details, in order to provide binding for the service,
the onBind callback method is implemented in the service ForegroundOnlyLoca-
tionService. This method returns an IBinder object defining the programming
interface that clients can use to interact with the service. In this case, as only
the local application is using the service and it does not need to work across
processes, the programming interface has been defined by extending the Binder
Class. The instance of this Binder class is defined as LocalBinder : it provides the
getService method which returns the current instance of the service. This enables
the TripsActivity to have direct access to the public methods of the service: for
example, as shown below, the client calls the setDataUpdateListener method from
the service.

1 public void onServiceConnected (ComponentName name , IBinder service
) {

47

System Architecture

2 ForegroundOnlyLocationService . LocalBinder binder = (
ForegroundOnlyLocationService . LocalBinder) service ;

3 foregroundOnlyLocationService = binder . getService ();
4

5 foregroundOnlyLocationService . setDataUpdateListener (
TripsActivity .this);

6

7 foregroundOnlyLocationServiceBound = true;
8 }

Listing 3.6: Activity calling setDataUpdateListener() method of the service

From the client’s side, the TripsActivity component binds to the service by
calling bindService in the OnStart method. As mentioned above, when the app is
not visible to the user, the service starts running in the foreground and the client
stops to be bound to the service. This implies binding in the onStart callback
method, unbinding in the onStop callback method, and starting the service also by
calling the startService method, as shown in the following lines.

1 protected void onStart () {
2 super. onStart ();
3 Intent serviceIntent = new Intent (getApplicationContext (),

ForegroundOnlyLocationService .class);
4 serviceIntent . putExtra (

EXTRA_CANCEL_LOCATION_TRACKING_FROM_NOTIFICATION , false);
5 startService (serviceIntent);
6 bindService (serviceIntent , foregroundOnlyServiceConnection ,

Context . BIND_AUTO_CREATE);
7 }

Listing 3.7: Binding of the Service in OnStart() method

The bindService method monitors the connection with the service through
foregroundOnlyServiceConnection, an implementation of ServiceConnection. When
creating this connection between the client and the service, the onServiceConnected
method is called by the Android System: it includes the IBinder argument above
considered, the one the client can use to communicate with the bound service.

1 private final ServiceConnection foregroundOnlyServiceConnection =
new ServiceConnection () {

2 @Override
3 public void onServiceConnected (ComponentName name , IBinder

service) {
4 ForegroundOnlyLocationService . LocalBinder binder = (

ForegroundOnlyLocationService . LocalBinder) service ;
5 foregroundOnlyLocationService = binder . getService ();
6

7 foregroundOnlyLocationService . setDataUpdateListener (
TripsActivity .this);

48

System Architecture

8

9 foregroundOnlyLocationServiceBound = true;
10 }
11

12 @Override
13 public void onServiceDisconnected (ComponentName name) {
14 foregroundOnlyLocationService = null;
15 foregroundOnlyLocationServiceBound = false;
16 }
17 };

Listing 3.8: Service Connection

3.4.2 Location Service as Foreground Service
As mentioned above, and shown in the lines below, the service starts running in the
foreground, making users aware of their current position through the notification,
when the client unbinds.

- Boolean serviceRunningInForeground set to true.

1 @Override
2 public boolean onUnbind (Intent intent) {
3 Log.d(TAG , "Start foreground service ");
4 Notification notification = generateNotification (currentLocation

);
5 startForeground (NOTIFICATION_ID , notification);
6 serviceRunningInForeground = true;
7

8 return true;
9 }

Listing 3.9: Unbind() method

The foreground service is started by calling the startService method in the
client’s onStart callback method, and is stopped by itself in the service with the
stopSelf method.

In this case, the service will be stopped when the user decides to cancel the
Location tracking from notification:

- Boolean cancelLocationTrackingFromNotification (by default set to false) turns
to true, as shown in the following lines.

1 @Override
2 public int onStartCommand (Intent intent , int flags , int

startId) {
3 Log.d(TAG , " onStartCommand ()");

49

System Architecture

4

5 if (intent . getBooleanExtra (
EXTRA_CANCEL_LOCATION_TRACKING_FROM_NOTIFICATION , false))
{

6 boolean cancelLocationTrackingFromNotification =
7 intent . getBooleanExtra (

EXTRA_CANCEL_LOCATION_TRACKING_FROM_NOTIFICATION , false);
8

9 if (cancelLocationTrackingFromNotification) {
10 unsubscribeToLocationUpdates ();
11 stopSelf ();
12 }
13 }
14 Location_at_Start ();
15 return START_NOT_STICKY ;
16 }
17

Listing 3.10: onStartCommand() method

Every time the user goes back to the app and the client rebinds to the service, the
notification disappears:

- Boolean serviceRunningInForeground set to false, as shown in the code below;
(the true value returned by the Unbind callback method ensures the client
rebinds to the service when goes back to the foreground).

1 @Override
2 public void onRebind (Intent intent) {
3 Log.d(TAG , " onRebind ()");
4

5 stopForeground (true);
6 serviceRunningInForeground = false;
7 configurationChange = false;
8 super. onRebind (intent);
9 }

10

Listing 3.11: onRebind() callback method

Notification system

In order to post Foreground services notification, first of all, the required permission
has been added to the Manifest file.

The notification content and the notification channel have been set using a
NotificationCompat.Build object, through which the following parameters have
been defined [28]:

50

System Architecture

- a small icon, set by setSmallIcon method;

- a title, set by setContentTitle method;

- the body text, set by ContentText method;

- the dimensions of the notification area, set by setStyle method, which enables
the notification to be expandable;

- the notification priority set by setPriority method, defining the channel im-
portance (before posting any notification, a notification channel is created
by passing an instance of NotificationChannel to the createNotificationChan-
nel method and, then, the channel ID is provided to the NotificationCom-
pat.Builder constructor);

- the authorization for the notification to be automatically removed when the
user taps it, set by setAutoCancel(true) method;

- an action button, set by addAction method (in this case a pending intent has
been defined, so that, when the user taps the “stop receiving location updates”
button, the service will stop itself).

3.4.3 Location Update Request
In order to advance location updates’ requests, the subscribeToLocationUpdate
method has been defined in the service.

After declaring the required permissions in the Manifest file,
ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, the request

and removal of location updates passes through the FusedLocationProviderClient
initialization. When requesting location updates, the FusedLocationProviderClient
takes in input a LocationRequest parameter, a LocationCallback parameter, and
a Looper object which specifies the thread for the callback. The LocationRequest
is a data object containing quality-of-services parameters for requests (intervals
for updates, priorities, and accuracy). The LocationCallback is used to receive
notification when the device location has changed or can no longer be determined.
This is passed a LocationResult where the Location can be used to define the
current location to send to the TripsActivity component. In order for the current
location to be transmitted to the TripsActivity component, the sendDataToActivity
method is considered. The sendDataToActivity method calls the onDataUpdated
method in turn mentioned in the DataUpdateListener Interface. As shown in
the code related to the Service Connection, the TripsActivity component is the
DataUpdateListener element calling the onDataUpdated method: it means that,
every time a new location update is available, the TripsActivity component will be

51

System Architecture

notified by the service and will receive the updated current location. In order to
remove the request for location updates, the unsubscribeToLocationUpdate method
will be called.

Implementation of Location Update

By binding the app’s component TripsActivity to a foreground service, is possible to
request the update of the users’ current location in the following cases (as required
by the app’s logic):

• When the user starts interacting with the TripsActivity component, in order
to show the position on the Google Map before starting a trip.

There is a direct call to the subscribeToLocationUpdates method in the onStart-
Command method, in the service. In this case, once the location is notified to
the TripsActivity component, it will be shown to the user in the form of a real
address. It requires the implementation of a geocoding process, as in detail
explained in the Section 3.4.4 and the integration of a map, as explained in
Section 3.4.5.

• When the user presses the button for finishing the trip, in order to update the
position on the map, and to process the number of trip’s kilometers.

The Location_at_stop method is called in the TripsActivity component and
defined in the service: it simply takes the current value of the current position.
It is assigned to the last location update, according to the LocationRequest
parameters in the service.

• When a harsh event is detected.

A SELECT query with a WHERE clause on the event timestamp is executed
on the table collecting GPS data in order to retrieve the location corresponding
to the “zero” harsh event.

• When the user navigates away from the app’s activity, while the trip is active.

A notification displaying the current position’s coordinates will be shown, as
already explained.

• When users go back to the app.

The onRebind callback method will be called: it is ensured by the true return
value of the onUnbind method.

52

System Architecture

3.4.4 Geocoding Process
Once obtained the position through localization, is possible to convert the latitude
and longitude coordinates into a real address: the geocoder precisely plays this
role. It is initialized in the onCreate method, by executing the getFromLocation
method, which takes in input the coordinates of the position, saves into an empty
list of addresses all the possible addresses associated with those coordinates. From
this list, the country, the address, the postal code related to the detected position
are defined by considering the first item (first result) of the addresses’ list.

3.4.5 Map’s Integration
In order to integrate the map, before working on the Android project, a Google
project with specific settings was created into the Google Developers Console. More
specifically, once created the Google project, the Google Maps Android API have
been enabled and an API key (Android key) was created. When configuring the key
in the Credentials section of the Google Console, a name for the key, the package
used for the application, a SHA1 code obtained thanks to the keytool instrument,
available into the JDK distributions were asked and defined. The result of the
configuration was a long alphanumeric sequence to be used in the Android project.

At that point:

- the required permissions and the obtained key were introduced in the Manifest
file;

- the map was inserted into the Fragment_Map layout.

About the programming code:

- The Fragment_Map component started to implement the onMapReadyCallback
interface, in order to exploit the onMapReady callback method, in order to
further use the GoogleMap object.

- In the onCreate method, the map was obtained through the getMapAsync
method, which works in asyncrhronous mode: once the map is ready, a
reference to the map is passed the onMapReady method.

- The updateMap method was inserted in order to update the position inside
the map according to the location update requests.

As shown in the code below, in order to individuate the portion of the map to be
framed, the movecamera method is implemented; it takes in input a CameraUpdate
object which defines the new position where the map’s camera should move. The
position into the map is individuated by a marker, which is a placeholder for

53

System Architecture

a specific location inside the Google Map. The marker is added through the
addMarker method, specifying the position (the same where the camera moves into
the map), and the title of the marker: in case the updateMap method is invoked
when the user starts interacting with the activity, the title is set to “You are here!”;
in case the updateMap method is invoked when the user stops a trip, the title is set
to “You were here at the moment of the stop!”.

1 public void updateMap (){
2 LatLng ll = new LatLng (dataProvider . getPosition (). getLatitude (),

dataProvider . getPosition (). getLongitude ());
3

4 CameraPosition pos = new CameraPosition . Builder (). target (ll).zoom
(14).build ();

5 map. moveCamera (CameraUpdateFactory . newCameraPosition (pos));
6 Marker marker = map. addMarker (new MarkerOptions (). position (ll));
7

8 assert marker != null;
9 marker . setTitle ("You are here");

10 }

Listing 3.12: Update Map method

3.4.6 Device’s Orientation
Four methods can be taken into consideration in order to determine the orientation
of the device, each one using different combinations of different kind of sensors:

• gravity sensor;

• accelerometer + magnetic sensor;

• gravity sensor + magnetic sensor;

• rotation sensor.

In order to overcome the limits related to the first three methods, in terms of low
quality and reliability of data due to the noise related to the sensor’s hardware
aspect, in this work, the technique of the Rotation sensor is adopted. The rotation
sensor is a synthetic sensor obtained through Sensor Fusion algorithms, which
allow to easily determine the device’s orientation, without worrying about the
complexity and problems related to the hardware. By exploiting the Sensor Fusion
between accelerometer, magnetometer and gyroscope, it produces a Rotation Vector
which can be converted in a corresponding rotation matrix through the SensorMan-
ager.gerRotationMatrixFromVector method, as shown above, in the code related to

54

System Architecture

the doInBackground method. Starting from the obtained rotation matrix, the orien-
tation of the device will be determined through the SensorManager.getOrientation
method, inside the defineOrientation method.

The SensorManager.getOrientation method takes in input two parameters: a
rotation matrix and a float array consisting of three values measured in radians,
representing the azimuth, the pitch and roll (see code below).

The azimuth refers to rotation around a vertical axis: imagine turning left and
right like a compass needle.

The pitch refers to rotation around a longitudinal axis: imagine tipping forward
and backward like a seesaw.

The roll refers to rotation around a lateral axis: imagine something rolling
around the ground like a wheel.

From these three values, pitch and roll are then considered to determine the face
up/down. Even if the pitch should be equal to zero in case the device is positioned
perpendicularly with respect to the ground, eventual noises must be taken into
consideration: a threshold value equal to 10 is considered for the pitch in the
algorithm. Same reasoning should apply for the roll, but, as is not crucial to know
the sense of the device’s rotation, the threshold value is compared to the absolute
value:

- face Up, when the roll’s absolute value is equal or lower to 10 grades;

- face Down, when the roll’s absolute value is equal or higher than 170.

Once the device’s orientation is determined, the onFaceUp / onFaceDown methods
are defined to notify it, as shown in the following lines.

1 private void defineOrientation (float [] rotation_matrix) {
2 float [] orientation_Values = new float [3];
3 SensorManager . getOrientation (rotation_matrix , orientation_Values)

;
4

5 double azimuth = Math. toDegrees (orientation_Values [0]);
6 double pitch = Math. toDegrees (orientation_Values [1]);
7 double roll = Math. toDegrees (orientation_Values [2]);
8

9 if (pitch <= 10){
10 if (Math.abs(roll) >= 170){
11 onFaceDown ();
12 } else if (Math.abs(roll) <= 10) {
13 onFaceUp ();
14 }
15 }
16 }

Listing 3.13: Define Orientation method

55

System Architecture

1 private void onFaceUp () {
2 Log.i(TAG , "The screen of the device is facing Up!");}
3 private void onFaceDown () {
4 Log.i(TAG , "The screen of the device is facing Down!");}

Listing 3.14: Face Up/ Face Down

3.5 Blockchain
As already mentioned, one of the aims of this project is offering the app’s users
the opportunity to interact with Blockchain. The interaction with the Blockchain
platform is directly requested by the application’s users when performing tasks on
which the Gamification’s logic is built, by calling specific methods of the Smart
Contract. In order for users to write or read data from Blockchain, a connection
between the Mobile App and the Blockchain platform is defined, as explained in
the next section.

3.5.1 Interaction with Blockchain
The interaction between the Mobile App and Blockchain is based on the use of
Web3J, Infura and Sepolia Test-net.

Web3J is a java library that enables to create decentralized java applications
without having to write integration code for the Blockchain platform. In this
project, the web3J library is adopted to create Ethereum wallets, to get wallet
addresses, retrieve balance and to load the deployed Smart Contract, in order to
call its methods.

Before using the web3j library, a connection with the Ethereum network is opened
by creating an Infura API key [20]. Infura provides the opportunity to connect to
an Ethereum network and carry out transactions without having a local node. For
creating an Infura API, after going to the website, an account and a project were
created. Once a new project was created, a copy of the endpoint URL was saved.
This endpoint is used to send API requests from the decentralized application
and it represents the main connection point with the Ethereum Blockchain: when
creating an instance of the web3j class, this URL is needed.

Implementation of Web3j in the Android Project

To implement Web3J in the project, at first the third party web3j library dependency
was added in the build.gradle file, and the required Internet permissions were added
to the Manifest file.

56

System Architecture

To connect the application with the Ethereum network, the build method is
invoked into the init_web3 method, into the TripsActivity component. The build
method takes in input the httpservice and connects to the Ethereum network using
the Infura API key. In this case, the application is connected to the Sepolia testnet.

After creating an instance of the web3j class, the verify_connection method and
the setupBouncyCastle method are called in the OnCreate callback method. The
verify_connection method simply tests the connection to the Sepolia network, by
notifying whether or not the connection is successful. About the setupBouncyCastle
method, the Bouncycastle cryptopackage implements cryptographic algorithms
needed for the Blockchain security. The Security class centralizes security properties
and also manages providers. For web3j the ECDSA algorithm is implemented by
the security provider. To get the provider, the bouncycastleprovider is passed to
the getprovider method.

Creating an Ethereum Wallet

An Ethereum wallet requires a file path and a password. Through the WalletUtils
class, the methods used to work with Wallet files are:

- Loadcredentials method: it takes in input the password inserted into an
EdiText widget by the user, and the file path. It is used to get credentials of
the given wallet’s path and password.

- GenerateLightNewWalletFile method: by taking in the password inserted into
the EditText widget by the user and the file path, it generates the Ethereum
wallet and the json file. The file path is obtained by considering the name of
the wallet directory inserted by the user into an EditText widget.

It’s worth to specify that, when a new wallet is created, all the data (directory’s
name, password, wallet address and json file) are saved into the application’s
database. For this reason, before a new wallet is generated, starting from the data
related to the wallet’s password and the name of the wallet’s directory, inserted
by the user into the two EdiText widgets, two SELECT queries with a WHERE
clause are executed on the table Users. If the cursors returned by the queries are
not empty, it means that the data provided have been already inserted into the
database, so that the wallet corresponding to those values is already existing. If
the cursors are empty, the new Ethereum wallet is generated. Then, through the
getAddress method the wallet address will be retrieved and displayed in the UI.

Retrieving Balance

To get the wallet’s balance, the address and the last DefaultBlockParameterName
are passed to ethGetBalance method. Then, to get the balance, the getBalance

57

System Architecture

method of the EthGetBalance class is used.

3.5.2 Smart Contract
As above mentioned, the Smart Contract was developed to define the Gamification’s
logic. The aim of this project, based on the contributions given by the Mobile App
and this Smart Contract, is to design a raw system model able to safety evaluate
the driver’s behaviors and to stimulate drivers in being monitored from one side,
and in approaching a safe driving style from the other side. Knowing that this
project is meant to be developed together with Insurance Companies (ICs), the
system model defined in this work would like to overcome the barriers still faced by
ICs with respect to the model of the proposed Personalized Car Insurances (PCI),
one of which is the lack of transparency, i.e., the rules of PCI are not clear and
how drivers’ auto premiums are calculated based on their behavior is unknown. If
transparency of data and processes is a goal from one side, the privacy preservation
of the drivers is a goal from the other side. How to avoid data cheating? Which
data can be shared and stored on the Blockchain to achieve both transparency and
privacypreservation? How to stimulate drivers in approaching a safe driving style?

The answer to these questions is the base on which this system model has been
designed and the design goals have been defined.

3.5.3 System Model
The system model consists of:

- Drivers: they are the application’s users and the Players into the Smart
Contract.

- Gamification mechanism: the Gamification’s logic is defined into the Smart
Contract, whereas data related to the trips’ scores (to be processed into the
Smart Contract) are sent by the Mobile App.

As in this work data used and processed in the Smart Contract derive from the
Mobile App’s processes, is interesting to highlight how data are treated in the
two different contests in order to fulfill the design goals: transparency and driver
privacy-preservation. It is illustrated by answering to the mentioned relevant
questions.

How to avoid data cheating?
By considering the contribution given by the Mobile App, if considering the

implemented programming code, there is no opportunity for the app’s users to
cheat driving-data or to select the driving-data to be used in the computation of
the trip’s score. When the user presses “Finish Trip” button, all the data collected

58

System Architecture

in background start to be analyzed, the number of harsh events is detected, and
the getYourTripScore method is automatically called. This process of computing
the trip’s score is described in Section 3.3.4. Once the trip’s score is calculated,
the load_Trip method of the Smart Contract is called, so that the trip’s score will
be written and stored into the Smart Contract. With the aim of avoiding cases of
misleading trip’s data, in the score’s computation process the number of kilometers
actually traveled on the trip is calculated, and the impact of the harsh events is
distributed over the total driving distance. It implies that, for a rational driver,
there is no reason to think “the less I travel, the lower the probability to commit
harsh events, the higher the score”: there is a minimum distance for the trip to
be considered as valid, and, in case of same harsh events’ number, the shorter the
trip, the lower the score. Then, by making the transfer of “sensitive” data (the
ones relevant to the Gamification context) automatically invoked by the Mobile
App’s programming code, the probability of data cheating is significantly reduced.

Which data can be shared and stored on the Blockchain to achieve both trans-
parency and privacy-preservation?

From the perspective of the drivers, the concept of transparency can be intended
as related to the algorithm implemented in the score’s computation process of each
trip, to the algorithm implemented for defining the players’ ranking inside the
Gamification context, and to the data processed in such algorithms. Starting from
the last point, as considered above, by trusting the implemented programming
code, the data processed inside the score’s computation process, at the level of
the Mobile App, derive from the ones collected in background by the sensors,
then filtered in order to remove the noise and gravitational forces, then saved into
the application’s database, and finally processed in order to first count the harsh
events and then define the trip’s score. The values detected by the sensors and
destined to be processed are saved into the database. The harsh events defined by
processing the sensor’s data are saved into the database as object of the Classes
Hard_Acceleration_Event, Harsh_Braking_Event, Harsh_Cornering_Event. An
instance of these Classes is an object characterized by the timestamp of the harsh
event, the localization of the harsh event, and the value exceeding the threshold that
defined the event. The reason behind these three Classes is to make the application’s
users and the Smart Contract’s players trusting the evaluation process of their
driving behavior: this idea to associate the position where the abrupt maneuver
was committed to the harsh event detected is a way to ensure transparency, because
the sensitive data are verifiable and visible to the users. About the transparency of
data stored on the Blockchain platform, each player is allowed to look at the scores
achieved by the other players. Moving to the transparency of the implemented
algorithms:

- At the Mobile App level, in the computation process of the score, the algorithm
is literally explaining in one of the voices of the Drawer menu. The aim is to

59

System Architecture

make users aware of the way their driving-data will be processed.

- At the level of the Smart Contract, the Gamification logic is defined by the
methods included into the Smart Contract which is deployed on the Blockchain,
for this reason accessible and visible by everyone.

As regard the privacy-preservation, at the level of Mobile App, users are allowed
to access only those data related to their own trips while trips’ relevant data of
other users are not accessible. At the level of Blockchain, the privacy is preserved
by making public only the scores achieved, without publishing the driving features
leading to those results. Furthermore, whereas in the Mobile App’s database every
user is registered with personal data (first name, surname), in the Smart Contract
each player is only identified by a nick name.

In line with this revision of public/private data when passing from the Mobile
App to the Smart Contract in order to achieve the privacy-preservation goal, the
Table shown by the Table 3.1 has been drawn, where:

- for the Mobile app, the “Public” word means that every user can access those
data, and the “Saved in DB” expression means that only the user to whom
data are related can access those data;

- for the Smart Contract, the “Public” word means that those data are uploaded
and registered on the blockchain platform, whereas the “Not Uploaded (’-’)”
expression is associated to sensitive data not uploaded on the blockchain for
privacy preservation.

As shown by the table 3.1, the comparison is focused on those variables considered
to be relevant for the drivers (personal data) and for the algorithms defining the
Mobile App’s logic and the Gamification’s logic in the Smart Contract.

How to stimulate drivers in approaching a safe driving style?
As already mentioned, this project is meant to be developed together with

Insurance Companies. By focusing on the way drivers can be stimulated by ICs to
approaching a safe driving style, it can be reasonable to think about the implemen-
tation of further discounts on the auto premiums that will be adjusted according
to the evaluation results. Moving the focus to the thesis work, a Gamification
mechanism has been designed to lead drivers toward a safer driving style: at the
end of the game’s period, the drivers getting the first three places of the final
ranking will be rewarded with prizes based on the funds collected for that game. It
implies the transfer of funds from the drivers to the Smart Contract when signing
up for the game, and transfers of funds from the Smart Contract to the first three
players at the moment of game closing.

In the next section the Gamification’s logic will be described in detail.

60

System Architecture

Variables Mobile App Smart Contract

Driver’s Name Public -
Driver’s Surname Public -
Driver’s Nickname Public Public

Driver’s Wallet Address Public Public
Driver’s Wallet Password Saved in DB -

Trip’s Score Public Public

Trip’s Destination Public -

Trip’s Timestamp Public -

Trip’s number of Harsh Acceleration events Saved in DB -

Trip’s number of Harsh Braking events Saved in DB -

Trip’s number of Harsh Cornering events Saved in DB -

Localization of Harsh Acceleration events Saved in DB -
Localization of Harsh Braking events Saved in DB -

Localization of Harsh Cornering events Saved in DB -

Timestamp of Harsh Acceleration events Saved in DB -

Timestamp of Harsh Braking events Saved in DB -

Timestamp of Harsh Cornering events Saved in DB -

Weight of driving features Public -

Table 3.1: Comparison about variables’ visibility between the Mobile App and
the Smart Contract

3.5.4 Gamification Context
In this section, the logic of the Gamification context will be described.

There are two possibilities for the application’s users to sign up for a game, then
to become Players of the Smart Contract:

1. Start a new game: i.e., “even in case of already existing games, you want to
start a new game with your friends”. In this case the Init_Game method of
the Smart Contract is called by the Mobile App (through the wrapper file):
this method takes in the nickname of the player who is setting the game, who
is also required to give a name to the game, required to recognize it among

61

System Architecture

the others available games.

2. Join an existing game: in this case the addPlayer method of the Smart
Contract is called and takes in, as before, the player’s nickname and the
game’s name the player wants to join.

It’s worth to specify that initializing a game does not mean starting a game: every
initialized game will be set to started equal to true only when the number of players
of the game has reached a value at least equal to N_MIN_PLAYERS. Starting from
this consideration, until the number of players is lower than N_MAX_PLAYERS
there will be space available in the game. Once it reaches the maximum number
of players, the game’s spaceAvailable_completed will be set to true. Furthermore,
when a user plans to join a game, by passing the game’s name to the method, it
will be verified that in the Smart Contract there is a game corresponding to that
name. If successful, the user becomes a player of that game.

Then, all the funds sent to the game by the game’s players, are collected and
saved into the game’s total_amount. This amount is used to define the game’s
first prize, second prize and third price, as percentages of the whole amount. It’s
interesting to specify that funds are sent by users in ether value and are saved into
the Smart Contract in wei value.

Once the game is set to started equal to true (the minimum number of players
is reached), data about trips can be uploaded on the Blockchain. By preserving
driver’s privacy, only the trip’s score and the game’s name will be passed to
the load_Trip method when invoked by the stop_Trip method from the Mobile
Application. All the other data related to the journey, i.e., trip’s destination, trip’s
timestamp, are saved into the application’s database but not written into the
Blockchain.

With the aim to define a current ranking, that will become the definitive final
ranking at game closing, the Total_Score method is defined into the Smart Contract:
by scrolling the scores of the trips uploaded by each of the game’s player, the total
score, given by the sum of each of the uploaded trips’ scores, will be set for every
player of that game. At the moment of game closing, the players ranked in the
first three places of the final ranking will be rewarded with the game’s first prize,
second prize, and third prize: to transfer funds from the Smart Contract to the
players’ addresses, the sendPrize method is defined.

About the game’s time window, a game can remain open for a maximum of one
year: the expiration date is defined when the minimum number of players joining
the game reaches the required value. That moment sets the startAt date and the
expiresAt date for that game. In case, while the game is open, one of the players
wants to retire, the Retire_From_The_Game method is called; it takes in a string
defining the motivation behind the retirement and the game’s name from which
the player wants to retire. The retirement implies the transfer of the subscription

62

System Architecture

fee back to the user, and the review of the game’s total available amount with the
game’s prizes. In case, at the time of game closing, some funds corresponding to
that game are left, they will be transferred to the address corresponding to the
Smart Contract’s deployer.

In the table 3.2, a summary of the functions defined in the Smart Contract.

Functions Description

Init_Game Initialization of a new game.

addPlayer A new application’s user is joining an existing game.

load_Trip The trip’s score is uploaded into the blockchain.

First_Player The player positioned at the first place of the final ranking is determined.

SecondPlace The player positioned at the second place of the final ranking is determined.

ThirdPlace The player positioned at the third place of the final ranking is determined.

sendPrize The prizes are transferred in wei value from the Smart Contract to the Players ranked in the first three places at the moment of game closing.

Retire_From_The_Game One of the game’s players want to retire from the game. It implies transfer of refund, resetting of the game’s total amount and prizes.

Close_Game The expiration date has come. If some funds are still available for the game, they are transferred to the Smart Contract’s deployer.

Table 3.2: Smart Contract’s Functions

63

Chapter 4

User Experience

This chapter aims to describe the project’s products, Mobile App and Smart
Contract, taking the perspective of a new user who explores and then interacts with
the product. Starting from the View elements by which the user directly interacts,
he will be able to know and easily understand the main features that the app makes
available to its users. Starting from the User Interface (UI) level, the rules through
which the application creates, modifies and stores data will be identified. This
chapter will therefore describe the two main levels of an app’s architecture starting
from the user experience: from UI level to Data layer, which includes the business
logic of the application and the internal data structure, intended as Classes and
Local Databases [29] [30].

Taking the user’s perspective, at first, the IDEF0 Analysis is proposed with
the aim of bringing users to become familiar with the logical structure of the
application.

4.1 IDEF0 diagrams
The IDEF0 analysis is carried out by presenting two models (as shown in Figure
4.1 and Figure 4.2):

1. the A-0 diagram, also called Top-Level diagram through which users can easily
understand how the application works by looking at the main functionalities
they can get access;

2. the A0 diagram, where all the elements shown in the A-0 diagram are shown
again but the app’s whole logic is here split into seven main functions.

Focusing on the A0 Diagram, as shown in the Figure(4.2), the very first function
required is obviously dealing with the sign up. This allows users to subscribe to

64

User Experience

Figure 4.1: IDEF0: GoSafety

the application, and once logged in, to become current and “activE” users. Once
reached the TripsActivity Page, they can decide:

• to start a new trip;

• to finish a current trip;

• to create an Ethereum Wallet;

• to initialize a new game;

• to join an existing game.

65

User Experience

Figure 4.2: IDEF A-0: GoSafety functionalities

Furthermore, moving to the drawer menu and scrolling its voices, they can check
personal information saved into the database at the moment of the registration
phase, they can update their own personal profile page, they can look at all the
users involved in any games, at all the available games, and they can access the
harsh events committed during trips already done. The drawer menu, that will be
described in detail in the section 4.2.3, also includes the log out function, which
turns active users into “inactive” ones.

4.2 UI Level
Before going in the details of the activities composing the User Interface (UI), a
brief introduction about the UI’s role is proposed [29].

The term UI refers to elements such as Activities and Fragments displaying

66

User Experience

application data: as mentioned, its role is to display data on the screen and also
to serve as the main point of user interaction. However, the application data
obtained by the database is usually in a different format than the information to
be displayed. Because the data layer’s role is to hold, manage, and provide access
to the application data, the UI layer must perform and repeat the following steps,
as long as necessary:

1. consume app data and turns it into data that the UI can easily render;

2. consume UI-renderable data and turns it into UI elements to present to the
user;

3. consume user input events from those assembled UI elements and reflect their
effects in the UI data as needed.

Furthermore, whenever data changes, either due to user interaction (such as a
button press) or external input (such as a network response), the user interface
should update to reflect those changes in the UI status. In other words: if the UI is
what the user sees, the state of the UI is what the app says they should see. Like
two sides of the same coin, the user interface is the visual representation of the
state of the interface. Any changes to the UI state are immediately reflected in the
UI.

About the Activities and Fragments, they provide the window in which the
app draws its UI. This window typically fills the screen, but may be smaller than
the screen and float on top of other windows; generally, one Activity implements
one screen in an app, and an app contains multiple screens, meaning that it
comprises multiple Activities. The way Activities are launched and put together
is a fundamental part of the platform’s application model. Unlike programming
paradigms in which applications are launched with a main() method, the Android
system initiates code in an Activity instance by invoking specific callback methods
corresponding to specific stages of its life-cycle:

• OnCreate(Bundle) is where the Activity is initialized. Most importantly,
here the setContentView(int) method is usually called with a layout resource
defining the Activity UI, and using findViewById(int) to retrieve the widgets
needed to be used in the programming code.

• OnPause() is a callback method dealing with the user pausing active interaction
with the Activity. Any changes made by the user should at this point be
committed (usually to the ContentProvider holding the data). In this state
the Activity is still visible to the user on the screen.

To be of use with Context.startActivity() activity classes must have a corresponding
<activity>declaration in their package’s Androidmanifest.xml.

67

User Experience

Moving the focus back to the User Interface of the project’s Mobile App, users
have the possibility to access the above described app’s functionalities by interacting
with the following activities, which will be presented one-by-one in the next sections:

• landing Page (4.2.2);

• registration activity, included in the section 4.2.2;

• login activity, included in the section 4.2.2;

• tripsActivity component, which includes two Fragments (4.2.3);

• drawer menu (4.2.3).

Each of the activities is described starting from the Activity Diagram (UML
Diagram) and showing the layout of the page, which includes all the View elements
through which users can interact with the application and get access to all the
functionalities.

4.2.1 UML: Activity Diagrams
The UML, that is the acronymous for Unified Modeling Language, is a graphical
language used to write in a standardized way a software system’s blueprint (in the
field of OOAD, object oriented analysis and design). It is a useful tool to visualize,
specify, construct and document the artifacts of an object-oriented system, showing
the structures and the relationships within complex systems. In this analysis, the
following UML diagrams are proposed:

• Activity Diagram for each of the Activities building up the application: it
describes the sequence of actions in a process, showing in details how an
Activity is subdivided in simpler actions. However, it does not only show
actions that are subsequencial, but also mutual exclusive actions, or concurrent
actions that must be performed together.

• ERDs or ER Diagrams, to explain the application’s data structure of the
Local Database, also introducing some references to the project’s Classes of
objects (4.3.1).

• Sequence diagram, developed for explaining how the process of detecting the
users’ driving-behavior is implemented by the code and illustrated to the users
(4.4).

68

User Experience

4.2.2 Landing Page
As shown in the Figure 4.4, The Landing Page Activity gives the welcome to users.
By pressing the button element, the users will be directed to the Login Activity,
which layout is presented in the Figure 4.5 below.

Taking into consideration the Activity Diagram 4.3, the user can easily under-
stand that, once reached the Login Page, it is possible:

1. to directly insert data for Login, if the user has already created an account;

2. to press the button element to be directed to the Sign Up page, which layout
is presented in the Figure 4.6, if the user is going to be a new active user.

In both cases, once the data required have been inserted, they will be checked in
order to be verified (Login activity), or in order to be validated and verified (Sign
Up activity). The validation rules for the registration phase relate to the format of
data inserted, whereas the username and password checks ensure that data inserted
have not been already chosen by a different user. In the Login phase, the username
and password checks simply verify that data correspond to a real registered user.
These checks are implemented by means of queries to the application Database,
that will be deeply described in a specific section (4.3). In case of successful data
validation and checks, from the Sign Up activity the user will be redirected to the
Login activity. In case of successful data checks in the Login activity, the user
becomes an active user and will be directed to the TripsActivity activity, where
will initialize the currentUser instance of the User Class. Conversely, in case of
unsuccessful validation and checks of data, the user is notified to reinsert data.

In Figure 4.4, the layout of the Landing Page is shown.
In Figure 4.5 the layout of the Login Page is shown, while in Figure 4.6 the

layout of the Sign Up Page is given.

4.2.3 TripsActivity Page
Before moving the focus to the logic behind this activity, the activity’s User Interface
is described. As shown in Figure 4.8, this activity’s UI is divided into two fragments
[31].

• What is a Fragment?
A Fragment represents a reusable portion of the app’s UI, and introduces
the concepts of modularity and reusability as the Activity’s UI results to be
divided into discrete chunks. It defines and manages its own layout, has its
own life-cycle, and can handle its own input events. However, Fragments
can’t live on their own: their life-cycle unfolds hand-in-hand with that of the
containing Activity. Then, they must be hosted by an Activity or another

69

User Experience

Figure 4.3: Activity Diagram: Landing Page

Fragment and the Fragment’s view hierarchy becomes part of, or attaches to,
the host’s view hierarchy.
In the TripsActivity UI, there are two fragments:

1. a fragment with title “Ready” showing a map and managinge the whole
process of detection of the drivers’ behavior;

2. a fragment with title “Your Trips” showing the list of trips of the current
user.

Within the project, the first fragment is associated the Fragment_Map Class,
the second fragment is associated the Fragment_TripsList Class. Each Class
defines the methods required to manage the specific layout portion of the
Activity related to the Fragment.
Among the various configured methods, the following methods are relevant in
terms of Fragment’s life-cycle:

- Method onAttach: it is invoked when its reference Context is passed to
the Fragment for the first time. Typically this is the moment when the
Fragment knows its container Activity.

70

User Experience

Figure 4.4: Landing Page Layout

71

User Experience

Figure 4.5: Login Page layout

Figure 4.6: Sign Up layout

- Method onCreateView: it is used to create the layout of the Fragment.
This method returns a View that contains the appearance shown by the
Fragment.

- Method onActivityCreated: it notifies the completion of the creation of
the container Activity. It is a relevant method: the Activity and the
Fragment are created at the same time, therefore in the methods called
before onActivityCreated a complete Activity is not always available.

• ViewPager component

To create a multi-page layout, that users can scroll with a horizontal movement
of the finger on the display (swipe), a component called Viewpager is used
[32]. The pages composing it are the Fragments, which are managed by an
adapter. To start using a Viewpager, it must be inserted into the layout with
a specific XML node: <android.viewpager.widget.ViewPager>.

• Fragment Adapter

There are two types of Fragment adapters:

1. FragmentPagerAdapter : it manages all the Fragments representing the
pages of a ViewPager and keeps all of them in memory: for this reason,
this kind of adapter is preferably used in cases where there are not many
Fragments to manage [33].

72

User Experience

2. FragmentStatePagerAdapter : unlike the previous one, it destroys all the
Fragments relating to the pages no longer visible to the user; for this reason
it is adopted in cases where the number of Fragments to be managed is
high.

Since there are two Fragments to be managed within the developed appli-
cation, a FragmentPagerAdapter has been adopted, which is associated the
PagerAdapter Class.

• TabLayout
It is a component often used in conjunction with a ViewPager [34] [32]. This
component allows to organize Fragments in a sort of filing “cabinet”: each
Fragment is marked with a label, so that it is possible to scroll the pages
not only through the horizontal swipe. In this application, the TabLayout’s
usefulness is not only linked to the “physical” structuring of the User Interface,
but it also guarantees a hierarchical organization of the contents. Every time
users finish their trip by pressing the “Finish your Trip” button element in the
first Fragment, the trip will appear in the trips’ list in the second Fragment.
To insert the TabLayout component into the layout and to synchronize it with
the ViewPager, the following steps have been performed:

- physical insertion of the TabLayout in the layout file (trips.xml);
- association of the TabLayout with the ViewPager in the Activity’s java

file (in OnCreate);
- connection of the PagerAdapter to the Viewpager through the ovverride

of getPageTitle method, which provides the titles of the individual pages.

Focusing now on the Activity Diagram, once reached the TripsActivity Page, the
user can choose among scrolling the drawer menu, staying in the Fragment_Map
Fragment, or swiping to the Fragment_TripsList Fragment. As regard the Drawer
menu, the section 4.2.3 is provided. As regard the Fragment showing the trips’ list,
as above said, every time a user presses the “Finish Your Trip” button element in
the Map_Fragment Fragment, the list of the user’s trips will be updated and it will
appear in the trips’ list. As regard the Map_Fragment, which displays a Google
Map showing the current position of the user through a Marker, if the user wants
to start a new trip, the first requirement is the insertion of the trip’s destination.
At that time, by pressing the “Start your Trip” button element, a query on the
application’s database is executed in order to verify if the user already has his
own wallet. If the user does not have any Ethereum wallet, a first dialog window
will appear asking the user to insert the data required for the wallet’s generation.
However, before getting access to the wallet’s generation process, a validation of

73

User Experience

the connection with the Blockchain platform is requests: if the connection results
to be successful the user can get the Ethereum wallet, otherwise the process will
stop. Once got the wallet, it is possible to press again the button to start a trip.

If the user already has his own Ethereum wallet, after a first step checking
information about the Ethereum Wallet, a second query on the application’s
database is executed in order to verify if the user results to be already registered
for a game. In case he/she is not yet registered for any game, a dialog window will
open asking the user to choice between joining an existing game or initializing a new
game. In case the choice is to open a new game, a Game check will be performed
about the name the user defines for the game, and about the participation of the
user in any different game. In case the choice is to join an existing game, the Game
check will be executed about the presence of the user in any different game, and
about the space availability of the selected game. Anyway, the success of these
“transactions” also depend on the funds availability on the user’s wallet address:
when a new game opens, and when a user joins an existing game, the related data
will be written on the Blockchain. If users do not have enough funds for making
those transactions successful, the process will stop.

Once they get through those steps, they can start a new trip.
When the “Stop your Trip” is pressed by users, a final check over the trip is

executed. There is a minimum distance to be travelled for making the trip valid,
otherwise it will not be saved on the Database. If valid, the user’s trips’ list will be
updated, and the trip’s data will start to be analyzed to identify eventual harsh
events and to determine the trip’s score. At that time, after a successful check over
the connection with the Blockchain platform and a successful check about the funds
availability for loading the trip over the Blockchain Platform, the trip’s relevant
data for the Gamification mechanism will be written on the Smart Contract.

In Figure 4.8 the layout of this Activity is given, while in Figure 4.9 is represented
the Drawer menu layout.

Drawer menu

The drawer menu is one of the two portions building up the Navigation Drawer.
The Navigation Drawer is a scrolling panel intended to contain commands for

navigating the application. It is a menu that appears scrolling, typically from the
left side of the display, consisting of two parts: a header menu (at the top) which
acts as the NavigationDrawer header and a drawer menu which acts as an options
menu. The options menu integrates those contents that would not find space in
another component, the ActionBar, thus allowing the limitations of space and
flexibility of the ActionBar to be compensated with its dynamism.

To insert this component into the project, the following steps were performed:

• Creation of a layout file (activity_main_drawer.xml) with insertion of the

74

User Experience

Figure 4.7: Activity Diagram: TripsActivity

main root node

<androidx.drawerlayout.widget.DrawerLayout>.

The layout drawer will become the main layout file of the application: the

75

User Experience

Figure 4.8: TripsActivity layout, with
Fragments

Figure 4.9: Drawer menu layout

trips.xml layout file will become part of the layout drawer via the <include>
tag.
At the bottom of the file, there is the node
<com.google.android.material.navigation.NavigationView>, which defines the
actual layout of the Navigation Drawer component. Inside there are two items:
headerLayout, with the associated layout describing the header menu, and
menu with the associated drawer menu describing the options that can be
selected from the Navigation drawer.

• In the Activity’s java file (TripsActivity.Class), inside the onCreate method,
at first is possible to find the initializations regarding the ViewPager, the
TabLayout and the Toolbar. Immediately afterwards, it will be time to
manage the new elements: the DrawerLayout [35] and the NavigationView

76

User Experience

[36], introduced with the Design Support Library. Both components will, like
all widgets, be found using the findViewById method. The DrawerLayout
will be used to physically operate the panel, while the NavigationView will
allow to manage the commands inserted inside it. The NavigationView will
therefore be populated with a series of items, defined as if it were an Options
Menu.

Each item in the NavigationView internal menu has an id that identifies it.
The selection of each individual item will be processed by the onNavigation-
ItemSelected method, belonging to a listener of type OnNavigationItemSelect-
edListener. This will be connected, again in onCreate, with the NavigationView
and will thus become the official manager of the items contained therein.

In the app developed in this project, the selectable items in the Navigation
drawer menu are those shown in the Activity Diagram (4.2.3).

The selection of one of them will activate the opening of a dialog window,
and will physically close the “drawer”. This last operation will be requested
directly from the DrawerLayout via its closeDrawers method.

About the dialog window, these are small interfaces that can be customized as
desired, but also exist in standard versions, which open when necessary (when
the specific menu item is selected) and which the user closes at the end of
their use. In the developed app, standard dialog windows have been adopted,
ProgressDialog, which shows a progress bar and the AlertDialog, specialized
in showing a message with a maximum number of three buttons to allow the
user to respond, which have been implemented to customize the content of
Dialog Fragments. In fact, to manage the dialogue windows, DialogFragment
[37] elements were used: these are fragments that appear “floating” above the
Activity and which manage a Dialog object within them.

The opening of the menu drawer is enabled via an icon from the application
Toolbar, as indicated by the onOptionItemSelected method and the insertion
of the lines of code relating to getSupportActionBar.

The activity diagram is represented in Figure 4.10. As shown, from the Navigation
drawer menu, the user has the option to access his personal profile, to read
information describing the app’s logic and the Gamification mechanism, to get
information for entering in touch with the application’s managers, to check personal
relevant data such as the harsh events that have been detected during the trips
already done, to look at the the users participating to the available games, and to
look at the list of the games resulting to be open. The last item of the menu deals
with the Log out functionality.

Above, in Figure 4.9, the drawer menu is illustrated.

77

User Experience

Figure 4.10: Activity Diagram: Drawer Menu

4.3 Data Layer
As explained in the introduction, this chapter moves from the UI level to the
explication of the data structure. In order to describe the business logic of the
application by means of the internal data structure, intended as Local Databases,
the entity relationship diagram is given (4.11).

4.3.1 UML: ER Diagram
An entity relationship (ER) diagram is a type of flowchart that illustrates how
“entities”, such as people, objects, or concepts, relate to each other within a system.
Also known as ERD or ER models, they use a defined set of symbols, such as
rectangles, diamonds, ovals, and connecting lines, to represent the interconnection
between entities, relationships, and their attributes. They mirror grammatical
structure, with entities as nouns and relations as verbs. In this case, the ER
diagram has been used to model and design the application’s relational Database.
As illustrated in the diagram, the local database is composed of the following
tables: Games, Trips, Users, Hard Acceleration, Harsh Brake, Harsh Cornering,
SensorData_zValues, sensorData_xValues, GPSData. Each of the tables is char-
acterized by several columns, with one of them representing the Primary key; in
some tables, is also possible to find columns acting as Foreign key. Is finally worth
to notice the relationships between tables: in this diagram most of the connecting
lines between tables represent “zero-to-many” relationships, with some cases of
“one-to-one” relationships.

78

User Experience

Games

name_game : text

Users

_username : text

_nameGame : text
password : text

nome : text

cognome : text

ethWalletPath : text

walletName : text

psi_credentials : text

walletAddress : text

Trips

+_id : integer

dati_Trip : text

username : text

Hard Acceleration

+_id : integer

_username : text
id_GpsData : integer
id_Trip : integer
id_SensorData_Z : integer

Harsh Brake

+_id : integer

_username : text
id_GpsData : integer
id_Trip : integer
id_SensorData_Z : integer

Harsh Cornering

+_id : integer

_username : text
id_GpsData : integer
id_Trip : integer
id_SensorData_X : integer

SensorData_xValues

+_id : integer

x_value : integer

_timestamp : integer

SensorData_zValues

+_id : integer

z_value : integer

_timestamp : integer

GPSData

+_id : integer

_gpsDataCollectionEvent : text

timestamp : integer

Figure 4.11: ER Diagram

Moving the focus to the programming code, the logic for the database to
create tables and to insert, update, manage data is defined by the DbHelper and
DbManager Classes. The DbHelper Class is created to facilitate the creation
and configuration of a database within an Android application. It expands the
SQLiteOpenHelper framework class, so that all the inherited abstract methods
(OnCreate, OnUpgrade) are defined.

- Method onCreate(): this method is invoked every time the application realizes
that it needs a database that does not yet exist on disk within the Android
device. The database is automatically created by Android, and represented
by “db”, which is an object of the SQLiteDatabase Class. An object of
the SQLiteDatabase Class represents indeed a reference to the application’s
database.

79

User Experience

DbHelper comes into play every time it is invoked by the activity.

- Method onUpgrade(): in this work this method is not used, but is generally
utilized to invoke upgrade of a database that exists on the device disk but is
of an older version than the one requested by the software (in the application
update box). For this reason, databases are characterized by a version number,
passed to the constructor of the parent class (SqliteOpenHelper) which is
invoked within the constructor of the DbHelper Class.

The DbManager Class is created to contain all the methods through which the
application interacts with the database: it is the only class with database invocations
by the application, therefore it contains all the command and selection queries. A
DbHelper object is created within the class, which defines the point of creation
of the internal structure of the database (the database is created automatically
by Android), and it is instantiated within the constructor of the DbManager
class. The helper object of the DbHelper Class is used within the application
to obtain references to the database, mainly via the helper.getReadableDatabase,
helper.getWritableDatabase methods.

In order to highlight the difference between data stored into the Blockchain
platform with respect to those stored into the application’s database, the ERD
describing the data structure of the Smart Contract is presented in the Figure 4.12.

Game

_name : string

_players : Player

startAt : uint

expiresAt : uint

spaceAvailable_completed : bool

started : bool

total_amount : uint

first_prize : uint

second_prize : uint

third_prize : uint

Trip

player_walletAddress : address

score : uint

Player

nickname : string

walletAddress : address

total_score : uint

subscription_fee : uint

Figure 4.12: ER Diagram: Smart Contract

In this Figure 4.13, the whole structure of the Smart Contract is illustrated.
This diagram has been generated directly from the Solidity UML Generator within
the Remix IDE.

80

User Experience

4.4 UML: Sequence Diagrams
The last proposed UML diagram is an interaction diagram, used to show the
interactive behaviour of a system. While all the previous diagrams were static, here
is possible to understand how the actors interact within the system. A sequence
diagram simply depicts interaction between objects in a sequential order that is the
order in which these interactions take place. The main elements of the sequence
diagrams are:

• lifelines, vertical lines depicting an individual partecipant in a sequence diagram
over time;

• message, represented by an arrow, representing the communication between
objects;

• activation or execution,representing the time to complete the task.

The actors involved in the following diagrams are:

• the User, who is the mobile app “active” user;

• the Mobile App System, which allows the system to work on the functionalities
building up the logic of the application;

• services, which are considered to manage the work of sensors;

• the Blockchain System, which allows to write and store data onto the Blockchain
platform;

• the Mobile App Database, which allows the system to store and manage the
application’s data.

The first Sequence Diagram (4.14) describes the sequential actions starting
from the press of the “Start You Trip” Button, dealing with the Ethereum Wallet
generation, initialization or joining of a trip, among the functionalities defined in
the IDEF0 Diagram 4.2. The actors involved in this diagram are: User, Mobile App
System, Mobile App Database and the Blockchain System. By initializing a new
game or joining an existing game, some information (name of the game, nickname
of the user) are transferred to the Smart Contract leading to the creation of Game
entities and a Player entities.

The second Sequence Diagram (4.15) shows the actions to be performed in the
first phase of the process of detecting the drivers’ behavior: from the activation
of the sensors to the collection of raw data, application of filters and storage of
data into the application’s database. The actors involved in this diagram are: User,
Mobile App System, Mobile App Database.

81

User Experience

The third Sequence Diagram (4.16) illustrates the actions to be performed
starting from the press of the “Stop Your Trip” Button: it deals with the phases
of raw data analysis and computation of trip’s score involved in the process of
detecting the drivers’ behavior, with the storage of data into the database of the
application, and with the transfer of data to the Smart Contract. The actors
involved in this diagram are: User, Mobile App System, MyService and Foreground
Service, Mobile App Database.

The last Sequence Diagram (4.17) shows the mechanism of the game built on
the Smart Contract. All the functionalities of the game’s structure are given,
from the initialization of a new game or joining of an existing game by respecting
some defined constraints, to the upload of trip’s information which are relevant to
compute the actual and final ranking of the players, to the transfer of “prize money”.
The actors involved in this diagram are: User, Blockchain System, Blockchain
platform.

82

User Experience

Figure 4.13: UML Diagram Solidity

83

User Experience

alt [If: (if (cursor1 != null && cursor1.moveToFirst() && !cursor1.isNull(cursor1.getColumnIndex("walletAddress")))]

alt [if (cursor != null && cursor.moveToFirst() && !cursor.isNull(cursor.getColumnIndex("_nameGame"))]

[else]

alt [If: OPEN A NEW GAME]

alt [if (cursor != null && cursor.moveToFirst())]

[else]

alt [If: transaction SUCCESSFUL]

[else]

[If: JOIN]

alt [If count >= MAX_NUMBER_OF_PLAYERS_PER_GAME]

[else]

alt [If: transaction SUCCESSFUL]

[else]

Mobile App S
ystem

create_wallet()

dataProvider.create_Wallet()

 getJoinedPlayers()

 dataProvider.add_player()

dataProvider.start_Trip_fromActivity()

dataProvider.start_Trip_fromActivity()

dataProvider.init_game()

[else]

alt [if (crs.getCount() == 0) && (crs1.getCount() == 0)]

User

[else]

<< data entered >>

 Dialog window opens: Get Your Ethereum Wallet

 Dialog window opens: How do you want to proceed? OPEN A NEW GAME / JOIN

Toast: "It seems you have already joined this other game!" + name_ game

 Toast: "This name has been already chosen! Type a different name."

 Toast: "You cannot join this game, it's full! Please select a different game!"

Toast: "You are joining the game: " + name_game

 LogCat: You can't execute the transaction

 LogCat; You can't execute the transaction

<< name of the game entered >>

 Start Your Trip

<< game selected from the spinner's list >>

Toast: "You can obtain your NEW Ethereum wallet! Your Wallet Address is: " + walletAddress

Toast: "Your wallet has been already created!"

Blockchain S
ystem

 init_game()

Etherscan: Transcation denied

 add_player()

 Etherscan: Transaction denied

 Etherscan: Transaction successful

Etherscan: Transaction successful

Mobile App D
atabase

<< cursor >>

 db.setGame_toUser()

 db.GameExists()

<< cursor >>

 db.setGame_toUser()

 db.NumUsersInGame()

db.UserInAnyGame()

<< count >>

inserisciGame()

db.check_psw()

<< cursor >>

 db.check_walletPath()

<< cursor1 >>

db.newCredentials()

db.getWalletAddress()

<< cursor >>

create_wallet()

dataProvider.create_Wallet()

 getJoinedPlayers()

 dataProvider.add_player()

dataProvider.start_Trip_fromActivity()

dataProvider.start_Trip_fromActivity()

dataProvider.init_game()

<< data entered >>

 Dialog window opens: Get Your Ethereum Wallet

 Dialog window opens: How do you want to proceed? OPEN A NEW GAME / JOIN

Toast: "It seems you have already joined this other game!" + name_ game

 Toast: "This name has been already chosen! Type a different name."

 Toast: "You cannot join this game, it's full! Please select a different game!"

Toast: "You are joining the game: " + name_game

 LogCat: You can't execute the transaction

 LogCat; You can't execute the transaction

<< name of the game entered >>

 Start Your Trip

<< game selected from the spinner's list >>

Toast: "You can obtain your NEW Ethereum wallet! Your Wallet Address is: " + walletAddress

Toast: "Your wallet has been already created!"

 init_game()

Etherscan: Transcation denied

 add_player()

 Etherscan: Transaction denied

 Etherscan: Transaction successful

Etherscan: Transaction successful

<< cursor >>

 db.setGame_toUser()

 db.GameExists()

<< cursor >>

 db.setGame_toUser()

 db.NumUsersInGame()

db.UserInAnyGame()

<< count >>

inserisciGame()

db.check_psw()

<< cursor >>

 db.check_walletPath()

<< cursor1 >>

db.newCredentials()

db.getWalletAddress()

<< cursor >>

Figure 4.14: Sequence Diagram

84

User Experience

User

Mobile App S
ystem

MyService

Mobile App D
atabase

startTrip()

alt [if (isTripActive()]

[else]

alt [If (distance < 1000 meters)]

[else]

Toast: "There is an Active Trip! Stop the current Trip and start again!"

Set distance to be traveled through the Geocoder

Toast: "You cannot travel less than 1 km! Set a different destination!"

Toast: "Your trip's destination is: " + currentTrip.gestDestinazione_Trip()

startConnectionWithService()

getAvailableSensors()

registerSensorsListeners(availableSensors)

get event Values from Sensors

application of low-pass and high-pass filters

db.newZvalues()

db.newXvalues()

startTrip()

Toast: "There is an Active Trip! Stop the current Trip and start again!"

Set distance to be traveled through the Geocoder

Toast: "You cannot travel less than 1 km! Set a different destination!"

Toast: "Your trip's destination is: " + currentTrip.gestDestinazione_Trip()

startConnectionWithService()

getAvailableSensors()

registerSensorsListeners(availableSensors)

get event Values from Sensors

application of low-pass and high-pass filters

db.newZvalues()

db.newXvalues()

Figure 4.15: Sequence Diagram

85

User Experience

User

Mobile App S
ystem

Mobile App D
atabase

stopTrip()

ForegroundOnlyLocat
ion Service

foregroundOnlyLocationService.Location_at_Stop()

<< return Location at Stop >>

alt [If ((location_at_Stop.getLatitude() != latitudine_luogo_destinazione) && (location_at_Stop.getLongitude() != longitudine_luogo_destinazione)]

[else]

alt [If (distance traveled < 1)]

[else]

alt [if (crs != null && crs.moveToFirst())]

db.getXvalues(currentTrip.getStartDate(), currentTrip.getEndDate())

alt [If (crs1 != null && crs1.moveToFirst())]

[else]

alt [if (hard_acceleration_events.size() != 0)]

Toast: "The number of harsh acceleration events for this trip is: " + harsh_accelerations

[else]

alt [if (harsh_braking_events.size() != 0)]

Toast: "harsh_braking_events.size() = 0"

alt [if (harsh_cornering_events.size() != 0)]

computation of distance traveled

MyService

stopConnectionWithService()

Toast: "Your trip is NOT valid and will not be considered!"

db.getZvalues(currentTrip.getStartDate(), currentTrip.getEndDate())

<< cursor >>

createEventoBrusco_HardAcc(z_value, timestamp_event)

createEventoBrusco_HarshBraking(z_value, timestamp_event)

Toast: "z values not found! in that range!"

<< cursor >>

createEventoBrusco_HarshCornering(x_value, timestamp_event)

Toast: "x values not found in that range!"

ordering_deletingDuplicates(hard_acceleration_events)

crea_Vettori_SameWindow_Acc(hard_acceleration_events)

rileva_manovreBrusche(contenitore_Vettori_HardAccelerationEvent)

Toast: "hard_acceleration_events.size = 0 "

ordering_deletingDuplicates(harsh_braking_events)

crea_Vettori_SameWindow_Brake(harsh_braking_events)

rileva_manovreBrusche(contenitore_Vettori_HarshBrakingEvent)

Toast: "The number of harsh braking events for this trip is: " + harsh_brakes

ordering_deletingDuplicates(harsh_cornering_events)

crea_Vettori_SameWindow_Cornering(harsh_cornering_events)

rileva_manovreBrusche(contenitore_Vettori_HarshCorneringEvent)

Toast: "The number of harsh cornering events for this trip is: " + harsh_cornerings

Toast: "harsh_cornering_events.size() = 0"

getYourTripScore(harsh_accelerations, harsh_brakes, harsh_cornerings)

Toast: "Your score is: " + score_Trip

inserisciTrip(db, dati_Trip)

stopTrip()

foregroundOnlyLocationService.Location_at_Stop()

<< return Location at Stop >>

db.getXvalues(currentTrip.getStartDate(), currentTrip.getEndDate())

Toast: "The number of harsh acceleration events for this trip is: " + harsh_accelerations

Toast: "harsh_braking_events.size() = 0"

computation of distance traveled

stopConnectionWithService()

Toast: "Your trip is NOT valid and will not be considered!"

db.getZvalues(currentTrip.getStartDate(), currentTrip.getEndDate())

<< cursor >>

createEventoBrusco_HardAcc(z_value, timestamp_event)

createEventoBrusco_HarshBraking(z_value, timestamp_event)

Toast: "z values not found! in that range!"

<< cursor >>

createEventoBrusco_HarshCornering(x_value, timestamp_event)

Toast: "x values not found in that range!"

ordering_deletingDuplicates(hard_acceleration_events)

crea_Vettori_SameWindow_Acc(hard_acceleration_events)

rileva_manovreBrusche(contenitore_Vettori_HardAccelerationEvent)

Toast: "hard_acceleration_events.size = 0 "

ordering_deletingDuplicates(harsh_braking_events)

crea_Vettori_SameWindow_Brake(harsh_braking_events)

rileva_manovreBrusche(contenitore_Vettori_HarshBrakingEvent)

Toast: "The number of harsh braking events for this trip is: " + harsh_brakes

ordering_deletingDuplicates(harsh_cornering_events)

crea_Vettori_SameWindow_Cornering(harsh_cornering_events)

rileva_manovreBrusche(contenitore_Vettori_HarshCorneringEvent)

Toast: "The number of harsh cornering events for this trip is: " + harsh_cornerings

Toast: "harsh_cornering_events.size() = 0"

getYourTripScore(harsh_accelerations, harsh_brakes, harsh_cornerings)

Toast: "Your score is: " + score_Trip

inserisciTrip(db, dati_Trip)

Figure 4.16: Sequence Diagram

86

User Experience

Actor

Blockchain S
ystem

Init_Game (_nickcnameInitPlayer, _nameGame)

alt [if ((Game_Not_Exists(_nameGame) && payable(msg.sender) != address(0))]

[else]

<< new Game entity saved into the Blockchain>>

msg: ''error''

addPlayer (_nickName, _nameGame)

alt [if ((Space_available(_nameGame) && GameExists(_nameGame) && payable(msg.sender) != address(0) && !isPlayer[_nameGame][msg.sender])]

alt [if (game._players.length >= N_MIN_PLAYERS)]

[else]

<< game STARTED >>

msg: "error"

alt [if (GameExists(_nameGame) && (game.started == true))]

alt [if (UserTripsNumber(_nameGame) && Game_Not_expired(_nameGame))]

<< total score aggiornato per ogni player del game '_nameGame' >>

<< new Trip for the Player saved into the Game >>

[else]
msg: "error"

load_Trip (_score, _nameGame)

<< new Player entity saved into the Blockchain>>

<< new Player entity saved into the Blockchain>>

<< new Player added to the Game '_nameGame'>>

Blockchain P
latform

alt [if (GameExists(_nameGame) && (block.timestamp > game.expiresAt))]

alt [if (firstPrizeReceived[_nameGame] && secondPrizeReceived[_nameGame] && thirdPrizeReceived[_nameGame])]

close_Game (_nameGame)

[else] msg: "Prizes not received by Players!"

SendPrize (_nameGame)

FirstPlayers (_nameGame)

SecondPlace(_nameGame)

ThirdPlace(_nameGame)

Init_Game (_nickcnameInitPlayer, _nameGame)

<< new Game entity saved into the Blockchain>>

msg: ''error''

addPlayer (_nickName, _nameGame)

<< game STARTED >>

msg: "error"

<< total score aggiornato per ogni player del game '_nameGame' >>

<< new Trip for the Player saved into the Game >>

msg: "error"

load_Trip (_score, _nameGame)

<< new Player entity saved into the Blockchain>>

<< new Player entity saved into the Blockchain>>

<< new Player added to the Game '_nameGame'>>

close_Game (_nameGame)

msg: "Prizes not received by Players!"

SendPrize (_nameGame)

FirstPlayers (_nameGame)

SecondPlace(_nameGame)

ThirdPlace(_nameGame)

Figure 4.17: Smart Contract Sequence Diagram

87

Chapter 5

Results

As introduced in the section 1, with the aim to support the necessity to overcome
the limits associated to the actual PCIs and to recognize the importance of bringing
drivers toward a safer driving behavior, the design goals to be achieved through
the developed work were:

- data and process transparency;

- data privacy-preservation;

- data and process consistency;

- incentive for drivers toward a safe driving style.

Some of these objectives have been fully achieved, others will be certified soon
by tangible results. Taking into considerations the two system’s components, the
mobile App and the Smart Contract, it is reasonable to separately analyze their
contributions with respect to the objectives’ achievement.

The objectives achieved with this thesis work can be evaluated by distinguishing
the purely technical aspect, from the testing phase: if the testing phase for the
Smart Contract has been fully carried out, thus certifying the consistency of the
developed code and of the logic behind the Gamification mechanism, some attempts
to test the Mobile App have been done, but further analysis is scheduled to follow.
In the latter case, the app runs successfully on the Android Studio emulator,
meaning that from a purely technical view point the developed algorithms are
consistent, and run successfully in the first real driving cases, but other tests
to guarantee the correct functioning when running in real conditions have to be
performed.

By considering the Mobile App’s contribution to the objectives’ achievement,
by focusing on the technical aspect, the developed programming code is consistent
with:

88

Results

• Data and process transparency: the algorithm implemented for detecting
aggressive events as well as the Event-count based algorithm implemented for
computing the trip’s scores, are well explained to the application’s users into a
specific section of the drawer menu. The data considered to be relevant in the
process of detecting the drivers’ behavior are saved into the local database: as
already said, when a harsh event is detected, the specific driver can retrieve all
the sensitive data related to that event, also having the possibility to access the
localization of the abrupt maneuver. The scores determined when evaluating
the driving behavior of the individual trip are transferred by the Mobile App
and stored on the Blockchain platform.

• Data privacy-preservation: referring to the internal management of data, there
is a difference, as shown in Table 3.2, between data publicly accessed by all the
application’s users and sensitive data saved into the local database but visible
only to the interested user. Referring to the data transferred by the Mobile
App and written onto the Blockchain platform, only the users’ nickname
and the scores related to the trips will be transmitted, by preserving all the
personal data and the sensitive data of the detected aggressive events.

• Data and process consistency: as above specified, how the app runs in real
driving cases has to be further tested. It can be certified that the app runs
successfully if referring to the users’ registration and login, to the management
of data into the local database, if referring to the effective call to the Smart
Contract’s methods with successful result of the transactions, and if referring to
the data detection simulated by the emulator. The algorithms work successfully,
the events are detected and scores computed even if not tested in real driving
cases.

Moving the focus to the contribution given by the proposed Blockchain solution to
the objectives’ achievement, it results to be consistent with:

• Data and process transparency: it is an embedded characteristic of the
Blockchain technology. Data which are relevant to the Gamification mechanism
are public as well as the functions determining the Gamification internal logic.
To address the transparency issue, it can be reasonable for Insurance Compa-
nies to design PCIs based on Smart Contracts for clarifying the evaluation
protocols adopted when detecting drivers’ behaviors and when determining
the corresponding premiums.

• Data privacy-preservation: as above mentioned, the Smart Contract makes
public only those data which are useful for the Gamification mechanism, and
which can prove the mechanism transparency. The users’ personal data as
well as the driving features involved in the abrupt maneuvers are not stored
on the Blockchain platform.

89

Results

• Data and process consistency: this objective is fully achieved as the Smart
Contract has been deployed on the Blockchain platform, its methods have
been called by the Mobile App, and the results of the transactions are shown
on Etherscan, as illustrated in Figure 5.1.

• Incentive for drivers toward a safe driving style: even if the drivers’ incentive
proposed by ICs could consist in lower insurance fees, in this thesis work this
objective has been achieved by inserting drivers into a Gamification mechanism.
Depending on the final ranking, the first three players will be awarded with a
prize consisting in a percentage of the total amount collected by summing the
subscription’s fees sent to the Smart Contract by the game’s players.

As regard the transparency and privacy-preservation of data, different Blockchains
could be tested with the objective to individuate the solution resulting to be the
most consistent with these objectives achievement: as an example, a possible
solution could be a Consortium Blockchain, with the drivers being free to upload
data according to their will, and with the possibility to inspect data by involving in
the system model some Authorities. In case of data-cheating, some penalties could
be inflicted to drivers. About the incentive toward a safer driving style, which can
lead to reduced pollution levels, users may be incentivized to use their vehicles more
in order to climb the ranking and achieve the highest score, which could cancel
out the benefits of safe driving from an environmental perspective. To address
this issue, user registration could be limited to those with electric vehicles, thus
incentivizing a transition to electric vehicles, a key aspect of reducing pollutant
emissions.

Finally, while measures to protect users’ privacy have already been implemented
in both the two components (Mobile App and Smart Contract), additional analysis
and integration of security tools would provide users with an even more secure and
reliable solution that does not compromise their privacy.

5.1 Testing the Smart Contract
To test the code developed into the Smart Contract, the following tools have been
used:

- Remix : it is a Solidity IDE [38] for compilation/distribution using Metamask
[39] [17], which allows the manual testing of the various functions.

- Truffle: it is a complete tool in terms of Smart Contracts’ management,
allowing, as already said, the distribution, compilation, interaction and testing
in a dynamic way [18]. Testing is permitted thanks to the creation and
subsequent execution by Truffle of particular Javascript scripts that distribute
a contract with pre-estabilished parameters and call the various functions.

90

Results

The Smart Contract has been deployed on the Blockchain platform by mean of a
Metamask wallet address, considered to be the address of the deployer to which,
in case of remaining funds on the Smart Contract at the expiration date of the
specific game, funds are sent.

Here the Figure 5.1 represents the outcome of the transaction executed when
the application’s user called the method to initialize a new game.

Figure 5.1: Etherscan: successful transaction executed

Going deeply into the analysis of the achieved results, a cost analysis for deploying
the Smart Contract and executing its main functions is proposed.

As stated in Section 2.1.4, Blockchains leverage consensus algorithms to ensure
decentralization, reliability, and data security by allowing nodes in the network to
agree and validate transactions. There are different types of consensus algorithms
based on various strategies, but they all require computational effort, which must
be paid for. Storing information or running code on a Blockchain incurs a cost
that varies depending on the Blockchain, network congestion, and the value of the
cryptocurrency used for payment. Currently, these parameters are highly variable,
resulting in significant volatility in the cost of executing transactions over time.

Among the various public Blockchains available, the Ethereum one has been
chosen because it results to be the most commonly used Blockchain for developing
decentralized applications and programming smart contracts, despite not being

91

Results

the most cost-effective. Smart contracts on Ethereum are executed through the
Ethereum Virtual Machine (EVM), which is a virtual machine shared among all
nodes in the network. The cost of executing functions is measured in Gas Units, with
the price per Gas Unit being affected by network congestion and cryptocurrency
value. Additionally, users can add a higher or lower tip to prioritize function
execution. At the time of this work writing, a single unit of gas on Ethereum had
an average base cost of 21 gwei, equivalent to approximately $0,71.

Table 5.1 displays the gas units required to execute the primary functions of
the Smart Contract and the corresponding dollar value calculated by multiplying
the gas units by the base cost of each unit. The calculation reveals that the most
expensive function is SendPrize, with a cost of $24.28, which is relatively high.
The focus was on the feasibility and operation of the Smart Contract. Therefore,
significant emphasis on optimizing the code has not placed, which could potentially
reduce the number of gas units required for execution.

Table 5.1: Cost analysis of the main functions on Ethereum and Polygon

Function Gas units Ethereum (ETH) USD ($) Polygon (MATIC) USD ($)

Init_game 305160 0,00640 21,55 0,01037 0,01
Add_player 238358 0,00500 16,84 0,00810 0,00
Load_trip 136426 0,00286 9,63 0,00286 0,00
SendPrize 343420 0,00721 24,28 0,01167 0,01

Retire_From_The_Game 95906 0,00201 6,77 0,00326 0,00

Despite the optimizations, Ethereum remains an expensive solution. To reduce
costs, the cost of the Smart Contract has been checked on a cheaper public
Blockchain. Polygon was chosen, which is also based on EVM, allowing to use
the same Smart contract without any changes from Ethereum. The units of gas
required to execute the functions remain unchanged since they are always executed
on EVM. The cost per unit of gas has changed, and as of the time of writing this
paper, it is equivalent to 34 GWei, which corresponds to $2.10. Table 5.1 presents
the same calculation on both Ethereum and Polygon, and it shows that the most
expensive functions are SendPrize and Init_game, with a total cost of $0.01. Thus,
regardless of optimizations, the Blockchain solution proposed by this work would
not only be functional but also cheap and exploitable if the Smart Contract were
deployed on a Polygon-like Blockchain.

92

Chapter 6

Conclusions and future
works

Lack of transparency is one of the main concerns that drivers associate to the
Personalized Car Insurances currently proposed by the Insurance Companies, and
aggressive driving maneuvers are the leading cause of traffic incidents. Devising
system models based on transparent processes and algorithms for both detecting
and classifying the drivers’ behavior becomes crucial. With the aim to go beyond
the current lack of transparency of the PCIs proposed by the Insurance Companies,
where neither the evaluation protocol nor the system of detecting driving-related
data is clear, and with the aim to bring drivers toward a safer driving style, a
decentralized solution with a system model based on two main components was
designed. The objective of this work was to develop and test a prototype platform
(Mobile App, Smart Contract, and DB) to demonstrate the feasibility and its
benefits to users. More specifically, if considering the Mobile App, one of the
two system components, a clear process for detecting the drivers’ behavior was
designed and developed through the programming code. Starting from raw data
acquired through sensors installed on a smartphone, then cleaned up through the
application of filters for removing noises, the core of the process consisted in the
design and implementation of two robust algorithms: a first algorithm, implemented
for detecting harsh events, based on the “simple- threshold” algorithm described in
the section 3.1, and on reference values taken from the table shown in Figure 3.6
according to which threshold values of the driving features have been determined. A
second algorithm, that was instead developed for the score’s computation associated
to the driver’s behavior in each trip. This algorithm is Event-count based, meaning
that it hardly depends on the number of harsh events detected per each driving
feature. In this work, the basic driving features were considered: acceleration,
brake, turning, but future works could consider to expand them, i.e, u-turn event,

93

Conclusions and future works

overtaking maneuver; the programming code related to this driving features was
developed but not yet implemented in the programming code. About the process
of detecting the harsh events, a different and more robust algorithm is planned to
be inspected and adopted instead of the simple-threshold (RSS threshold-method,
jerk method). Furthermore, future works also plan to test the application in a
larger number of real driving cases in order to test the scalability of the solution
an to increase the scheme’s security. Referring to the contribution given by the
Blockchain solution proposed in this work, the incentive for drivers to follow a
safer driving style lied in a Gamification mechanism, which is an innovation in this
context: anyway, the Gamification mechanism has to be considered as a starting
point for future Insurance Companies’ solutions. Future works plan to consider
the exploitation of the the Blockchain technology to design transparent protocols
defining the PCIs’ rules, to make comparison between different Blockchain models
and different system’s models in order to individuate the Blockchain solution that
most fills with preservation and transparency of data. The Gamification mechanism,
instead, is planned to be exploited to implement further premiums’ percentage
reductions, or to reward the safest players with different gadgets. Additionally, the
limitations outlined in Section 5 must be addressed. In future works, it is planned
to prioritize the security of both the Smart Contract and the Mobile Application to
create a platform that is resilient to cyber-attacks and provides reliability to users.
In terms of cost reduction, it is planned to test and compare the implementation
on various public Blockchains to identify the ones that offer the necessary technical
features and cost-effectiveness.

94

Bibliography

[1] V. Gatteschi, A. Cannavò, F. Lamberti, L. Morra, and P. Montuschi. Com-
paring Algorithms for Aggressive Driving Event Detection Based on Vehicle
Motion Data. 2021 (cit. on pp. 1, 2, 32, 37, 38).

[2] C. Huang, W. Wang, D. Liu, R. Lu, and X. Shen. Blockchain-Assisted Per-
sonalized Car Insurance With Privacy Preservation and Fraud Resistance.
2023 (cit. on pp. 2, 14).

[3] R. Bianchi G. Chiap J. Ranalli. Blockchain: Tecnologia e applicazioni per
il business: Tutto ciò che serve per entrare nella nuova rivoluzione digitale,
Hoepli. 2019. isbn: 978-8820390075 (cit. on pp. 5, 6, 10, 18, 21).

[4] Italy joins European partnership on blockchain supporting the delivery of
cross-border digital public services. url: https://digital-strategy.ec.
europa.eu/en/news/italy-joins-european-partnership-blockchain-
supporting-delivery-cross-border-digital-public (cit. on p. 12).

[5] Banking on Blockchain. url: https://www.accenture.com/us-en/ser
vices/blockchain/blockchain- financial- services- infrastructure
(cit. on p. 13).

[6] Blockchains overview: Ripple. url: https://www.geeksacademy.it/artico
lo-212/blockchains-overview-ripple/ (cit. on p. 14).

[7] Szabo N. Smart Contracts. url: https://www.fon.hum.uva.nl/rob/Co
urses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/
szabo.best.vwh.net/smart.contracts.html/ (cit. on p. 15).

[8] A comparison of blockchain network latencies. url: https://medium.com/kl
aytn/a-comparison-of-blockchain-network-latencies-7508509b8460
(cit. on p. 19).

[9] Ethereum Avg. Transaction Fee historical chart. url: https://bitinfochar
ts.com/comparison/bitcoin-transactionfees.html#3y (cit. on p. 19).

[10] F. Montagna M. Cantamessa. Management of Innovation and Product Devel-
opment: Integrating Business and Technological Perspectives, Springer. 2016.
isbn: 978-1447167228 (cit. on pp. 21, 23).

95

https://digital-strategy.ec.europa.eu/en/news/italy-joins-european-partnership-blockchain-supporting-delivery-cross-border-digital-public
https://digital-strategy.ec.europa.eu/en/news/italy-joins-european-partnership-blockchain-supporting-delivery-cross-border-digital-public
https://digital-strategy.ec.europa.eu/en/news/italy-joins-european-partnership-blockchain-supporting-delivery-cross-border-digital-public
https://www.accenture.com/us-en/services/blockchain/blockchain-financial-services-infrastructure
https://www.accenture.com/us-en/services/blockchain/blockchain-financial-services-infrastructure
https://www.geeksacademy.it/articolo-212/blockchains-overview-ripple/
https://www.geeksacademy.it/articolo-212/blockchains-overview-ripple/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html/
https://medium.com/klaytn/a-comparison-of-blockchain-network-latencies-7508509b8460
https://medium.com/klaytn/a-comparison-of-blockchain-network-latencies-7508509b8460
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y

BIBLIOGRAPHY

[11] Ethereum Transactions Per Day. url: https://ycharts.com/indicators/
ethereum_transactions_per_day (cit. on p. 21).

[12] Blockchain technology cloud market size worldwide in 2021, with a forecast
for 2030. url: https://www.statista.com/statistics/1319369/global-
blockchain-technology-market-size/ (cit. on p. 23).

[13] Ecco perchè le assicurazioni devono investire nella Gamification. url: https:
//www.insurzine.com/2017/03/07/ecco-perche-le-compagnie-devono-
investire-nella-gamification/ (cit. on p. 26).

[14] Assicurazioni Generali sperimenta la gamification con MyGame. url: https:
//www.gameifications.com/assicurazioni-generali-sperimenta-la-
gamification-con-mygame/ (cit. on p. 26).

[15] The Vitality Group Motivates with Data. url: https://www.vitalitygroup.
com/insights/the- vitality- group- motivates- with- data/ (cit. on
p. 27).

[16] Android Studio. url: https://developer.android.com/studio (cit. on
p. 28).

[17] Remix. url: https://remix.ethereum.org/ (cit. on pp. 28, 90).
[18] Truffle. url: https://archive.trufflesuite.com (cit. on pp. 28, 90).
[19] Web3py documentation. url: https://web3py.readthedocs.io/en/stabl

e/ (cit. on p. 29).
[20] How to implement Ethereum blockchain in Android using Web3j. url: https:

//boemo1mmopelwa.medium.com/implementing- etherium- blockchain-
in-android-with-web3j-485ea0747088 (cit. on pp. 29, 56).

[21] Etherscan. url: https://etherscan.io (cit. on p. 29).
[22] Ethereum. url: https://it.wikipedia.org/wiki/Ethereum (cit. on p. 29).
[23] Sensors Overview: sensor coordinate system. url: https://developer.and

roid.com/develop/sensors-and-location/sensors/sensors_overview?
hl=it (cit. on p. 32).

[24] Motion sensors: Work with raw data: Use the accelerometer. url: https:
//developer.android.com/develop/sensors-and-location/sensors/
sensors_motion?hl=it (cit. on p. 35).

[25] Bound service overview. url: https://developer.android.com/develop/
background-work/services/bound-services#java (cit. on p. 47).

[26] Request Location Update. url: https://developer.android.com/develop/
sensors-and-location/location/request-updates?hl=it (cit. on p. 47).

96

https://ycharts.com/indicators/ethereum_transactions_per_day
https://ycharts.com/indicators/ethereum_transactions_per_day
https://www.statista.com/statistics/1319369/global-blockchain-technology-market-size/
https://www.statista.com/statistics/1319369/global-blockchain-technology-market-size/
https://www.insurzine.com/2017/03/07/ecco-perche-le-compagnie-devono-investire-nella-gamification/
https://www.insurzine.com/2017/03/07/ecco-perche-le-compagnie-devono-investire-nella-gamification/
https://www.insurzine.com/2017/03/07/ecco-perche-le-compagnie-devono-investire-nella-gamification/
https://www.gameifications.com/assicurazioni-generali-sperimenta-la-gamification-con-mygame/
https://www.gameifications.com/assicurazioni-generali-sperimenta-la-gamification-con-mygame/
https://www.gameifications.com/assicurazioni-generali-sperimenta-la-gamification-con-mygame/
https://www.vitalitygroup.com/insights/the-vitality-group-motivates-with-data/
https://www.vitalitygroup.com/insights/the-vitality-group-motivates-with-data/
https://developer.android.com/studio
https://remix.ethereum.org/
https://archive.trufflesuite.com
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://boemo1mmopelwa.medium.com/implementing-etherium-blockchain-in-android-with-web3j-485ea0747088
https://boemo1mmopelwa.medium.com/implementing-etherium-blockchain-in-android-with-web3j-485ea0747088
https://boemo1mmopelwa.medium.com/implementing-etherium-blockchain-in-android-with-web3j-485ea0747088
https://etherscan.io
https://it.wikipedia.org/wiki/Ethereum
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview?hl=it
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview?hl=it
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview?hl=it
https://developer.android.com/develop/sensors-and-location/sensors/sensors_motion?hl=it
https://developer.android.com/develop/sensors-and-location/sensors/sensors_motion?hl=it
https://developer.android.com/develop/sensors-and-location/sensors/sensors_motion?hl=it
https://developer.android.com/develop/background-work/services/bound-services#java
https://developer.android.com/develop/background-work/services/bound-services#java
https://developer.android.com/develop/sensors-and-location/location/request-updates?hl=it
https://developer.android.com/develop/sensors-and-location/location/request-updates?hl=it

BIBLIOGRAPHY

[27] Foreground services. url: https://developer.android.com/develop/
background-work/services/foreground-services (cit. on p. 47).

[28] Notifications overview. url: https://developer.android.com/develop/
ui/views/notifications (cit. on p. 50).

[29] Guide to app architecture: UI layer page. url: https://developer.android.
com/topic/architecture/ui-layer (cit. on pp. 64, 66).

[30] Guide to app architecture: data layer page. url: https://developer.andro
id.com/topic/architecture/data-layer (cit. on p. 64).

[31] Fragments: create a fragment. url: https://developer.android.com/
guide/fragments/create (cit. on p. 69).

[32] ViewPager. url: https://developer.android.com/reference/androidx/
viewpager/widget/ViewPager (cit. on pp. 72, 73).

[33] PagerAdapter. url: https://developer.android.com/reference/androi
dx/viewpager/widget/PagerAdapter (cit. on p. 72).

[34] TabLayout. url: https : / / developer . android . com / reference / com /
google/android/material/tabs/TabLayout (cit. on p. 73).

[35] DrawerLayout. url: https://developer.android.com/reference/androi
dx/drawerlayout/widget/DrawerLayout (cit. on p. 76).

[36] NavigationView. url: https://developer.android.com/reference/com/
google/android/material/navigation/NavigationView (cit. on p. 77).

[37] Display dialogs with DialogFragment. url: https://developer.android.
com/guide/fragments/dialogs (cit. on p. 77).

[38] Solidity Documentation. url: https://docs.soliditylang.org/en/v0.8.
3/ (cit. on p. 90).

[39] Metamask. url: https://metamask.io (cit. on p. 90).

97

https://developer.android.com/develop/background-work/services/foreground-services
https://developer.android.com/develop/background-work/services/foreground-services
https://developer.android.com/develop/ui/views/notifications
https://developer.android.com/develop/ui/views/notifications
https://developer.android.com/topic/architecture/ui-layer
https://developer.android.com/topic/architecture/ui-layer
https://developer.android.com/topic/architecture/data-layer
https://developer.android.com/topic/architecture/data-layer
https://developer.android.com/guide/fragments/create
https://developer.android.com/guide/fragments/create
https://developer.android.com/reference/androidx/viewpager/widget/ViewPager
https://developer.android.com/reference/androidx/viewpager/widget/ViewPager
https://developer.android.com/reference/androidx/viewpager/widget/PagerAdapter
https://developer.android.com/reference/androidx/viewpager/widget/PagerAdapter
https://developer.android.com/reference/com/google/android/material/tabs/TabLayout
https://developer.android.com/reference/com/google/android/material/tabs/TabLayout
https://developer.android.com/reference/androidx/drawerlayout/widget/DrawerLayout
https://developer.android.com/reference/androidx/drawerlayout/widget/DrawerLayout
https://developer.android.com/reference/com/google/android/material/navigation/NavigationView
https://developer.android.com/reference/com/google/android/material/navigation/NavigationView
https://developer.android.com/guide/fragments/dialogs
https://developer.android.com/guide/fragments/dialogs
https://docs.soliditylang.org/en/v0.8.3/
https://docs.soliditylang.org/en/v0.8.3/
https://metamask.io

	List of Tables
	List of Figures
	Introduction
	Thesis Structure

	State of Art
	The Blockchain technology
	What are blocks, and how are they created?
	The blockchain network and the different blockchain models
	Cryptography
	Consensus protocols

	PEST Analysis
	Political
	Economic
	Social
	Technological

	Some Blockchain applications
	Financial Services
	Industry 4.0

	Analysis of the Thesis's Use Case
	Technology’s Key Elements
	Technological Paradigms
	Analysis of Paradigms through KPIs
	Radical and disruptive innovation
	Technology's Development process
	Diffusion of the innovation in the market

	Gamification in the Insurance sector

	System Architecture
	Technologies
	Architecture
	Process of detecting the drivers' behavior
	Sensors' raw data acquisition and data transformation
	Data transformation
	Classification of driving events
	Score's Computation Process

	Service for Location Update
	Location Service as Binding Service
	Location Service as Foreground Service
	Location Update Request
	Geocoding Process
	Map's Integration
	Device's Orientation

	Blockchain
	Interaction with Blockchain
	Smart Contract
	System Model
	Gamification Context

	User Experience
	IDEF0 diagrams
	UI Level
	UML: Activity Diagrams
	Landing Page
	TripsActivity Page

	Data Layer
	UML: ER Diagram

	UML: Sequence Diagrams

	Results
	Testing the Smart Contract

	Conclusions and future works
	Bibliography

