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Abstract 

This thesis investigates the role of Digital Twins in enhancing manufacturing 

systems within the context of Industry 4.0. The study provides an overview of Industry 

4.0 highlighting the importance of digital transformation in modern industrial 

practices. The research delves into the concept of Digital Twins, their applications, and 

the benefits they offer in terms of optimizing operations, improving efficiency, and 

driving innovation in manufacturing industries. Through a literature review, the study 

examines the challenges and enablers of Digital Twin adoption. The thesis aims to 

contribute to the ongoing discourse on digital transformation in the manufacturing 

sector, providing insights for companies seeking to leverage Digital Twins to enhance 

their operations and competitiveness. 

 

 

Questa tesi indaga il ruolo dei Digital Twins nel miglioramento dei sistemi di 

produzione nel contesto dell'Industria 4.0. Lo studio fornisce una panoramica 

dell'Industria 4.0 evidenziando l'importanza della trasformazione digitale. La ricerca 

approfondisce il concetto dei Digital Twins, le sue applicazioni e i vantaggi che offre in 

termini di ottimizzazione delle operazioni, miglioramento dell'efficienza e spinta 

all'innovazione nelle aziende manifatturiere. Attraverso una revisione della letteratura, 

lo studio esamina le sfide e i fattori abilitanti dell'adozione del Digital Twin. La tesi si 

propone di contribuire al discorso in corso sulla trasformazione digitale nel settore 

manifatturiero, fornendo spunti per le aziende che cercano di sfruttare i Digital Twin 

per migliorare le loro operazioni e la loro competitivita . 

 

Keywords: Digital Twin, Industry 4.0, Manufacturing, IoT, Artificial Intelligence, 

Simulation, Optimization, Sustainability.  
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1 Introduction 

Industry 4.0 has brought a revolution in the manufacturing industry. The term 

refers to the fourth industrial revolution that integrates digital and physical 

technologies into manufacturing systems. The objective of Industry 4.0 is to create 

smart connected factories through the employment of technologies such as Internet of 

Things (IoT), Cyber Physical Systems (CPS) and Artificial Intelligence (AI), that enable 

real-time collection, analysis, and communications among machines, products, and 

people. 

The concept of Digital Twin (DT) has gained significant traction in recent years. It 

offers manufacturers the ability to create virtual representations of their physical 

assets, processes, and systems. DT technology leverages real-time data and advanced 

analytics to enable companies to gain valuable insights into the behavior and 

performance of their assets. This helps predict maintenance needs, optimize 

production processes, and even simulate different scenarios to improve decision-

making. To have a better understanding of what DTs are and how they apply in the 

manufacturing sector, a literature review on relevant academic publications has been 

conducted.  

The objective of this thesis is to investigate the adoption of DTs in manufacturing 

systems and the impacts that it may have on efficiency, productivity, and sustainability 

manufacturing processes. For this purpose, the thesis is structured as follows: first, the 

research methodology used for this thesis is presented, followed by an introduction to 

DT technology and its growing trend; then the focus shifts to the general functioning of 

DTs followed by their application in the manufacturing context based on the 

classification criteria used. The benefits and challenges of using Digital Twins are 

finally outlined and the conclusions are presented. 

 

 

 



11 
 

2 Research methodology 

A Scopus search was conducted to analyse the use of DTs and the benefits derived 

from their use in manufacturing industries. 

Four types of search were carried out, corresponding to different keywords (Figure 

1).  

As the aim of the thesis was to analyse the use of DTs in manufacturing companies, 

the keywords 'digital twin' and 'manufacturing' were used. Others were added 

depending on the objective.  

For a general overview, the words 'industry' and 'ecosystem' were added.  

In addition, the keywords 'barriers', 'concerns', 'challenges', 'requirements' and 

'enablers' were used to analyse the barriers that may be encountered in the 

implementation of a DT and the basic requirements that a company should have in 

order to successfully exploit this new technology.  

Finally, the keyword "sustainability" was introduced to assess whether DTs could 

bring benefits in terms of sustainability. 

 

 

Figure 1: research methodology 

 

Some papers were excluded immediately after reading the abstract, introduction 

and conclusion. Others were excluded after a more thorough reading. Finally, 94 

documents were selected.  

In order to give a general overview of the selected documents, Figure 2 illustrates 
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AND
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the number of articles published per year. Looking only at the documents used for this 

thesis, we can see that from 2017 onwards the number of publications per year 

increases. Although this does not represent the totality of documents related to DTs in 

the literature, we can assume from this graph that this year marks a turning point 

where the concept of the Digital Twin has matured enough to be discussed more 

concretely. 

 

Figure 2: distribution of the reviewed publications per year 

 

The type of articles selected are illustrated in Figure 3: the majority are journal 

articles, followed by web page, report and conference proceedings, and finally book 
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sections.  

 

Figure 3: distribution of the reviewed publication per type of document 

After introducing DT technology, section 5.1 presents how the documents dealing 

with the focus of this thesis (the use of DTs in the context of manufacturing industries) 

have been classified. 

3 Introduction to DT technology 

3.1  DTs and Industry 4.0 

The now familiar and established term “Industry 4.0” first appeared in Germany in 

2011, in a newspaper article about the German government's high-tech strategy [1]. 

The term refers to the 4th Industrial Revolution, which is seen as an extension of 

the first three industrial revolutions. While these are seen as the result of 

mechanisation and the introduction of electricity and information technology, the 4th 

Industrial Revolution has been ushered by Internet of Things (IoT) and Cyber Physical 

Systems (CPS) [2]. 

The first industrial revolution began in England in 1780, and then spread to the rest 

of Europe and the United States; the mechanised production was born with it, thanks 

to a new energy source, coal, and the introduction of the steam engine. Around 1870 

the Second Industrial revolution began; new inventions like the electric light, the 
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internal combustion engine, and the first cinema set, were accompanied by a new way 

of producing: the mass production. Then, in the second half of the 20th century, we start 

talking about the Third Industrial Revolution where traditional industrial technologies 

are being abandoned and replaced by digital and computer technologies which allowed 

manufacturing automation. 

In recent years, we have finally been able to take another step forward. With 

Industry 4.0, the digital and physical worlds are converging, thanks to the emergence 

of digital manufacturing, network communications, computer and automation 

technologies (Figure 4) [1]. 

 

 

Figure 4: the four Industrial Revolutions [1] 

 

The ongoing fourth industrial revolution is made possible by modern advanced 

technologies such as autonomous robots, IoT, Augmented Reality (AR), Artificial 

Intelligence (AI), and Digital Twins (DTs) [1]. 

DTs and Industry 4.0 are closely linked as DTs play a vital role in fulfilling various 

requirements of Industry 4.0. They are virtual representations of physical objects, 

processes, factories, supply networks, and manufacturing lines; they enable real-time 

monitoring, predictive maintenance, and data-driven decision-making, all of which are 

essential components of Industry 4.0. Furthermore, they provide intelligence to 

networked machines on the shop floor, allowing them to organize and execute 

production efficiently, which aligns with the goals of Industry 4.0 [3]. 

On the other hand, DTs make use of the fundamentals of Industry 4.0: technologies 
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such as Big Data, simulation, the Internet of Things and the cloud are just some of the 

components required for DTs to operate effectively and provide new functionality to 

the business organisation [4]. 

In summary, DTs and Industry 4.0 are connected through their shared focus on 

utilizing advanced technologies, data analytics, and virtual representations to enhance 

industrial processes, increase efficiency, and promote innovation in manufacturing and 

production. 

 

As will be discussed in more detail below, the integration of the Digital Twin 

emerges as a technologically complex process. However, the steady increase in 

investments in the context of digitisation attests to the willingness of companies to 

undergo a significant transformation. In a report published by Statista [5], we can 

observe not only the substantial investments being made in digital transformation but 

also how these are not limited to a single sector (Figure 5). 

 

3.2  The history of DT  

Using a general definition, we can say that DTs are a virtual replica of an object, a 

production line, a manufacturing process, or a supply chain, that utilises real-time data 

to predict the future performance of a machine, a process, etc. [5]. 

Although the concept of DTs has gained traction in recent years, its origins can be 

traced back several years [6]: 

Since 1970, the use of simulation and reflective objects has been discussed. NASA 

utilised a mirrored replica of inaccessible systems to carry out simulations and find 

Figure 5 : Annual investments in digital factory transformation 2022 in billion US$ (Statista, 2023) 
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solutions to problems. After an oxygen tank exploded in the Apollo 13 mission, 

various simulations were conducted on a replica of the original tank to find a solution 

to communicate to the astronauts in space. 

In 1991, David Gelernter introduced the concept of a DT in his book "Mirror 

Worlds": a software was capable of reproducing the physical world based on specific 

inputs [7]. 

In 2002, Michael Grieves introduced the first DT model, known as the "Mirrored 

Space Model". As can be seen from Figure 6, this model included [6]: 

• A physical space containing the physical object. 

• A virtual space containing the digital replica of the physical object. 

The convergence between the physical and digital worlds was ensured by a flow 

of data from the physical space to the virtual space and a flow of information in the 

opposite direction. 

 

Figure 6: the Mirrored Space Model of Micheal Grieves [6] 

 

In 2006, Grieves' model was renamed into "Information Mirroring Model"; this 

highlighted the possibility of representing a single physical reality in multiple virtual 

models to explore different alternatives. 

Although the concept of a DT already began to emerge, due to the inadequate 

technologies available, it was not possible to implement it until 2010 (Figure 7).  

In this year NASA published the technological roadmap where, for the first time 

ever, the term "Digital Twin" was coined. Here, it was described as: 

“An integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or 
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system that uses the best available physical models, sensor updates, fleet history, etc., to 

mirror the life of its flying twin” [7]. 

 

 

Figure 7: DT’s timeline [7]  

 

3.3  Digital Twin trends 

Although, as mentioned above, the concept of DT first appeared in 2010, it is only 

in recent years that it has begun to spread and become increasingly popular.  

In 2019, Gartner placed it fourth in its ranking of the 'Top 10 strategic technology 

trends for 2019”, ahead of autonomous things, augmented analytics, and AI-driven 

development, followed by empowered edge, immersive experiences, blockchain, and 

smart spaces [8]. 

The growing interest in this new technology is evident; indeed, Google Trends 

shows us how online searches for 'Digital Twins' increased almost linearly in the last 5 

years, peaking in November 2022 and September 2023 (Figure 8) [9]. 

 

Figure 8: Interest in the search term 'Digital Twins' in the last 5 years [9] 
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As we can see from Figure 9, the rise in popularity of DTs has been followed by an 

increase in their use on almost every continent. North America leads the way, followed 

by Europe, Asia, Latin America, the Middle East and Africa. The highest growth rate is 

seen in the top 3, while Latin America and MEA show significantly lower growth [10]. 

 

Figure 9: DT market size, by region (USD Million) [10] 

 

 Manufacturing industry accounted for over 22% of the global DT market share in 

2020, followed by the automotive industry with over 18%  (Figure 10) [11]. 

 

 

Figure 10: global DT market share in 2020 [11] 

 

Looking ahead to 2025, Statista [12] predicts that the market value will soar. It will 

be the manufacturing sector, which as mentioned above already holds the leadership in 
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terms of market share, that will have the highest growth rate (Figure 11). 

 

Figure 11: global DT market size in the year 2020 and 2025, by industry (in billion U.S dollars) [12] 

 

To summarize, the interest and utilization of DTs is expected to increase 

significantly. The manufacturing industry, which has already adopted DT on a wide 

scale, will lead the charge in specializing in this new technology more quickly than 

other industries. It's not surprising that the most developed countries will invest 

heavily in the development of DT. 

 

4  Digital Twin technology: definition 

and classification in literature 

4.1  Definitions of Digital Twin 

Nowadays, many definitions of a DT can be found in literature; Barricelli, Casiraghi, 

e Fogli (2019) has grouped them together, and essentially, they can be summarized in  

Table 1, where it has been also specified the sector in which the author has applied the 

definition. 
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Table 1 : Definitions of DT in literature 

Key points # Definition Sector 

Integrated 

system 

 

 

 

[13] Integrated multi-physics, multiscale, and 

probabilistic simulation composed of physical 

product, virtual product, data, services and 

connection between them  

Aerospace 

[14] An ultra-realistic integrated multi-physics, 

multiscale, probabilistic simulation of a system  

Aerospace 

[15] A systematic approach consisting of sensing, 

storage, synchronization, synthesis and service  

Manufacturing 

Clone, 

counterpart 

[16] Computerised clones of physical assets  Manufacturing 

[17] The virtual and computerised counterpart of a 

physical system  

Manufacturing 

Simulation, 

test, 

prediction 

[18] A safe environment in which you can test the 

impact of potential change on the performance 

of a system  

Healthcare 

[19] Virtual model of physical objects to simulate 

their behaviours  

Manufacturing 

Virtual, 

mirror, 

replica 

[20] A virtual representation of the system  Aerospace 

[21] Digital mirror of the physical world  Manufacturing 

[22] A cyber copy of a physical system  Manufacturing 

[23] A virtual model of physical object  Manufacturing 

 

 



21 
 

Both of the first two definitions, formulated by authors who have applied them to 

the aerospace sector, highlight several key aspects of its capabilities and characteristics 

[13], [14]: 

• Integration: DT technology integrates multiple aspects of a complex product, 

including its physical and virtual components, as well as the data linking them. 

• Simulation: DT technology uses advanced simulation techniques to create a 

virtual model of a complex product that accurately reflects its real-life 

behaviour. 

• Multi-physical and multi-scale: DT technology can simulate a wide range of 

physical phenomena and scales, allowing complex products to be modelled with 

high accuracy. 

• Probabilistic: DT technology incorporates probabilistic modelling techniques to 

account for uncertainties and variations in the behaviour of complex products. 

On the other hand, Lee, Lapira and Balgheri (2013) [15] extend the context of the 

DT. They emphasise the incorporation of data-driven analytical algorithms and physical 

knowledge to simulate and monitor the health of a manufacturing machine throughout 

its operating life. 

Both definitions [16] and [17] refer to DTs in the context of manufacturing, 

highlighting their virtual nature. However, while in the former the focus is on the fact 

that the DT constitutes an exact duplication, thanks to the use of the term 'clone', in the 

latter, with the use of the term 'counterpart', a parallel existence is implied, 

emphasising the DT as an entity corresponding to the physical system. 

Definitions [18] and [19] of DT focus on the purpose and usefulness of this 

technology in the areas of testing and simulation. The difference between the two 

definitions is subtle. In definition 8, the DT is viewed as a tool for simulating 

hypothetical situations or "what if" scenarios. On the other hand, Definition 9 defines 

it as a tool that anticipates the behavior of the corresponding physical object. 

In relation to the final section of the table, while all definitions agree on the virtual 

representation of physical systems or objects, each author introduces a distinct nuance. 

Definition [20] has a broad emphasis on the virtual representation of the system. 

Definition [21] highlights the reflection of the physical world through the concept of a 



22 
 

digital mirror. Definition [22] emphasises the cybernetic nature and duplication of the 

system. Finally, Definition [23] focuses on virtual models of physical objects. These 

differences highlight the conceptual richness and interpretative aspects of the DT. 

The diversity of definitions proposed to describe a DT reflects its versatility and the 

breadth of possible applications. It is clear that there is no single universally accepted 

definition, but rather a set of perspectives that fit specific contexts and objectives. 

4.2  DTs classification in literature 

After introducing the concept of DT and providing various definitions, it might be 

interesting to analyse how they have been classified in the literature before presenting 

the classification criteria for this thesis.   

Various documents present distinct classification criteria based on their respective 

objectives. To offer a comprehensive and diverse outlook on these criteria, we have 

collected a range of them. 

 Grieves M. and Vickers J. (2016) [24] categorized the different types of DTs on the 

base of its creation time in relation to its physical counterpart, identifying two types of 

DTs: Digital Twin Prototype (DTP) and Digital Twin Instance (DTI). The first one is 

created before the physical object, allowing for aesthetic and functional tweaks to be 

made before the production begins, while the latter is created after its physical twin 

has been produced and remains "attached" to it throughout its lifecycle.  

Kritzinger et al. (2018) [25] identified three types of DT based on the level of 

integration between the physical and digital object. The differences among these types 

are determined by the data exchange that takes place (or not) between the physical and 

digital world (Figure 12): 

1. Digital Model: in a digital model, there is no exchange of data between the 

physical product and its DT. Data from the physical product is used to 

construct the digital product, but if the physical product were to change, the 

DT would not automatically change. 

2. Digital Shadow: in this case there is a one-way exchange of data so that a 

change in the physical object would result in a corresponding change in the 

digital one. 
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3. Digital Twin: in this case a two-way flow of data takes place. Whereby any 

change, whether occurring in digital or physical space, would be reflected in 

the corresponding physical/digital object. 

 

 

Figure 12: integration level of DTs [25] 

 

Another type of classification that has been found in literature is relative to the 

intended use of a DT, so that the following types can be identified [26]: 

• Product Digital Twins: it is used to represent a physical product in virtual 

space. The DT of a product makes it possible to simulate different 

conditions, see how the product reacts and then make changes to the 

design until the ideal one is achieved.  

• Production Digital Twin: this type of twin makes it possible to assess the 

functioning of an entire production process. By simulating production, 

they can reveal possible inefficiencies in the production line (such as 

bottlenecks) before they manifest themselves in the physical world.   By 

combining the DT of machinery (DT of a product) with that of production, 

we can also predict when maintenance will be required. 

• Performance Digital Twin: these twins are able to harness the data 

produced by smart assets and products, then aggregate, analyse and 

enable informed decision making. 

According to Tao et al. (2019) from a hierarchical perspective – i.e the level of 

involvement within the company - DT can be divided into three different levels (Figure 

13) [27]: 
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• Unit level: this level refers to the smallest participant in the production 

process. It can be a material, a component or a piece of equipment. 

• System level: multiple DTs at the level of units exchanging data form a DT 

at the system level. At the system level we can have a production line, a 

department or an entire factory. 

• System of Systems (SoS) level: several DTs at the level of units 

exchanging data form a DT at the system level. This could be a production 

line, a department or an entire factory. Sometimes a complex product can 

be represented by such DTs, which can also evaluate and improve the 

interaction between multiple components. 

 

Figure 13: classification of DT at hierarchical leve [27] 

 

Madni et al. (2019) identifies four levels of virtual representation based on the 

sophistication level [28]: 

• Pre-Digital Twin: it is built before a product is prototyped to help guide 

design decisions and identify problems early on. 

• Digital Twin: it represents the DT as we have introduced it so far. 

• Adaptive Digital Twin: it can support real-time planning and decision-

making during operations, maintenance, and support by acquiring the 

preferences of the operator or user. 

• Intelligent Digital Twin: in addition to all the characteristics of the 

previous levels, this type of DT also has learning capabilities. 
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Other rwo classification criteria are the ones identified by Yu et al. (2022) and 

Enders et al. (2019). The first one classified the DTs on the base of their application 

scale: nano (molecular level), Micro (single operation or part), Meso (collection of 

operations) and Macro (community, local area) [29]. The second one instead divided 

the DTs depending on the purposes: simulation, monitoring and control [30]. 

5 DTs in manufacturing 

5.1  The proposed classification framework 

After having reviewed various DTs classification criteria in the literature, this thesis 

will adopt a specific criterion that will be used throughout the following sections. 

Looking at the documents related to the adoption of DTs in manufacturing 

companies, this being the focus area of the thesis, it is possible to make an initial 

distinction between three main categories of approaches (Figure 14). 

The first category includes documents that provide an overview of the general 

operation of DTs, focusing on explaining the basic principles and their overall 

functioning. 

The second identified category includes documents presenting specific DT 

frameworks designed for particular purposes within manufacturing companies. These 

documents focus on the structure and application of DT models. 

Finally, the third category includes documents that do not deal directly with the 

development or application of DTs, but rather provide guidelines regarding the 

enabling factors, challenges and opportunities of using a DT within manufacturing 

frameworks. 
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Figure 14: first classification of the literature 

 

For the documents presenting a general overview no further classification has been 

adopted. 

For the second type of documents, those presenting a DT model, a further 

categorisation criterion was introduced. In particular, the purpose for which the 

presented DT was developed was considered. More specifically, we have identified 6 

different functions: 

• Monitor and improve the production process: use the DT to monitor and 

optimise the production process, allowing more efficient management and early 

identification of potential improvements. 

• Design the layout in an optimised way: use the DT for optimised layout 

design of equipment and resources, improving spatial and operational 

efficiency. 

• Enhance sustainability: employ the DT to monitor and optimise resource 

utilisation, reducing environmental impact and promoting sustainable 

production practices. 

• Handle flexibility of the production system: Leverage the DT to quickly and 

efficiently adapt the production system to changes in demand or other changes, 

ensuring greater flexibility. 

• Collaboration with other DTs: use the DT as a platform for collaboration 

between different Digital Transformation systems, facilitating the exchange of 

data and information to optimise interconnected processes. 

• Cognitive DT: to offer enhanced predictive analysis, decision-making and 

optimisation capabilities thanks to its cognitive functionalities. 
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Moreover, for each function, it has been identified that DTs can offer different 

services: 

• DT Services: this refers to what the DT does to fulfil its purpose. On the base of 

the analysis of the documents found in literature we have identified that a DT 

can perform real-time monitoring, support decision-making, predict potential 

failures, and conduct optimization analysis.  

o Real time state monitoring: the DT allows real-time monitoring of a 

system or object, providing immediate data on its current status. This 

allows constant and up-to-date observation of the operating conditions. 

o Decision-making support: the DT provides detailed and contextual 

information to support decision-making. It helps to make informed 

decisions based on the data and simulations generated by the digital 

model. 

o Failure analysis and prediction: by analysing historical and real-time 

data, DT is able to identify potential faults and predict future problems. 

This functionality allows preventive intervention to avoid malfunctions. 

o Analysis for optimization: the DT allows in-depth analysis of processes 

and operations, facilitating the identification of areas where efficiency 

can be optimised, costs reduced, or overall performance improved. 

To summarize, the documents presenting a DT framework has been divided on the 

base of the DT purpose. And for each document has been identified the DT service and 

the scope (Figure 15). 

 

 

Figure 15: sub-classification of the literature for documents presenting a DT framework 
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The documents that fall under the third classification criterion (enablers, 

challenges and opportunities) were subclassified. The enabling factors were further 

divided based on their dependence on specific technologies, adherence to processes, 

essential employee skills, or a well-defined corporate culture. This approach helped in 

gaining a more detailed understanding of the factors that contribute to organizational 

success. The challenges are divided in 3 building blocks: engineering related 

challenges, organizational challenges and data related challenges. Instead, for the 

opportunities no further classification has been adopted. 

Table 2 summarizes all the classifications that have just been listed. On the left we 

can see the first classification (general overview, DT frameworks and enablers, 

opportunities , and challenges); the second column shows the subclassification (for 

example for the documents showing a DT framework this column illustrates every 

function DT can have, like monitor and improve production process); the third block 

of the table shows instead the transversal classification (for example, for a specific DT 

function, it is illustrated the service that DT offer).  
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5.2  General overview 

This section is dedicated to understanding how a DT works, i.e. how the interaction 

between the physical world and the real world takes place. 

As previously mentioned in subsection 3.2, Michael Grieves provided the initial 

representation of how a DT operates in 2014. He depicted it as a connection between 

physical and virtual space [31]. 

Stark et al. (2017) [32] characterises the DT as the combination of an asset's Digital 

Master model, its individual Digital Shadow and an intelligent linking of the two. It 

involves the digital shadow being created through operation and condition data, 

process data, etc., generated by the individual product or production system (Figure 

16). 

 

Figure 16: Stark’s DT characterization [32] 

 

Another proposition is made by Tao et al. (2018). Their five-dimension DT model 

includes the following components (Figure 17) [33]:  

• Physical entity (PE): the actual physical equipment being monitored.  

• Virtual entity (VE): the DT or virtual model of the equipment.  

• Sensor system (Ss): the system of sensors used to collect data from the 

equipment.  
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• DT data (DD): the data collected from both the physical and virtual aspects of 

the equipment, as well as their fusion.  

• Connection model (CN): the bidirectional connections between the PE, VE, Ss, 

and DD to facilitate data exchange and analysis.   

 

Figure 17: Five dimension DT model [33] 

 

Similarly, Redelinghuys et al. (2019) [34] propose a six layers DT to illustrate the 

data information flow (Figure 18). The first two layers contain the physical twin: the 

first one includes all the physical devices, while the second one the local controllers 

which provide some functionalities to the DT. Layer 3 contains the data which reflect 

the details of the physical twin. Layer 4 acts as gateway between layer 3 and 5, selecting 

only the data that need to be transmitted. Layer 5 contains the database servers that 

act as repositories of the information transmitted by the gateway in layer 4. Finally, 

Layer 6 represents the intelligence of DT: here is where emulation and simulation take 

place. 



32 
 

 

Figure 18 : Redelinghuys’ six layers DT architecture [34] 

 

Boje et al. (2020) [35] have defined DT architecture consisting of three distinct 

layers, comprised of a variety of components and technologies. The physical layer 

represents tangible entities and reflects the product life cycle stage. The network layer 

links the physical and virtual domains and enables the data and information exchange. 

The computing layer is comprised of the virtual entities that replicate their physical 

counterparts with data-driven and physics-based models, as well as services and users. 

Key DT components such as information structures, models, software technologies, 

hardware technologies, etc. play a paramount role across these layers [35]. 

If we compare the frameworks illustrated above, we can see that the application 

areas of Digital Twins are many. The frameworks illustrated by Stark [32] is used within 

cyber physical system for testing during ongoing operations to ensure error-

management real-time performance and analysis. The DT in [33] is employed to 

monitor work conditions of products difficult to accede, with lots of components that 

may fall (for example wind turbine). The focus of [34] is instead the exchange of data 

and information between a remote simulation and a manufacturing cell. Finally [35] 

illustrated a construction DT whose benefit, in the built environment, is the accrual of 

knowledge about the physical world delivering improved lifecycle costs and bult asset 

resilience. 

According to a report by Deloitte [36] , the process can be defined as sensors 
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gathering data about the machines, production line and environment, which is 

transmitted to the DT for analysis. Any deviation from the ideal are flagged, and the 

production process is changed. Communication interfaces are used, and a number of 

security measures including firewalls, encryption and device certificates are needed. 

The key components of this process are also explained (Figure 19): Sensors to gather 

data; Data that must be compared against company records to find the discrepancies; 

Data must be transmitted to the DT where the digital and physical worlds are overlaid; 

Data received by the DT, so that it can be modeled; Actuators that can then adjust the 

process as needed. 

 

 

Figure 19: DT of a manufacturing process [36] 

 

Shifting the focus on how the DT works, Colin J. Parris [37] identifies three phases: 

see, think, do (Figure 20). 

In the seeing phase, the DT collects data to give a warning when a certain threshold 

is reached and then predicts the nature of the problem. The model, like the one in 

question, can update itself to represent the exact conditions of the physical product, 

second by second. In the second phase (thinking phase), the DT provides options for 

the user to pursue. To do this, the DT runs simulations looking at historical data, real-

time data, cost and revenue forecasts. Each proposed option is accompanied by an 
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explanation of the risks involved and the confidence level. Finally, in the dew stage the 

option selected by the operator is executed. If the one proposed it is a manual operation 

that must be done by an operator, then the operator himself is informed of the 

conditions required for the operation [37]. 

 

Figure 20 : the lifecycle of a DT [37] 

 

5.3  DTs developed frameworks in literature 

The aim of this section is to present some DT frameworks - i.e. a conceptual and 

technical structure designed to create and manage a digital twin - in the context of 

manufacturing companies, focusing on specific DT functions. 

Before examining the different frameworks found in literature, it is important to 

understand how a company can implement DTs that enable a virtual representation of 

physical assets, systems, processes, products, services, or people. 

Qamsane et al. (2021) identifies the following steps [44]:  

• Planning: it involves determining if there is a need to enhance some aspect of 

the manufacturing ecosystem and if that need could be addressed through the 

application of a DT solution. 

• Requirements and Analysis: it involves studying and analysing the 

requirements for the DT design and development activities. 
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• Design: it defines a design of a DT solution based on the recommended 

alternative that will meet functional, data, and interaction requirements. 

• Development: it aims to transform the output design stage into a complete 

working DT solution that can address the manufacturing needs established in 

the planning stage. 

Similarly, Deloitte [36] identifies 6 steps (Figure 21). The first one is to imagine all 

the possibilities: create a list of all the potential scenarios where it can be applied.  

 

 

Figure 21 : the process to follow to get started with a DT [36] 

 

Once the list is prepared, it is crucial to identify the pilot product or process that 

can provide the most value and where the implementation of DT is likely to succeed. 

Through iterative and agile cycles, we can start with the pilot and improve step by step. 

The next step is industrialisation: establishing a standardised and structured 

approach to the development and implementation of DTs. To scale the twin, the next 

step is to identify additional processes or products that are related to the pilot project. 

As with any project, it is important to monitor if it is working properly once it has 

been completed. 

Now we can go deep into the pilot phase (using the terminology of Deloitte article) 

or the design phase (using the Qamsane’s terminology). We will show different DTs 
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frameworks accordingly to the classification criteria used in  5.1; so we have divided 

the different subsection on the base of our classification criteria, which is based on DT’s 

functions: monitoring and improving production processes, layout design, flexibility 

management, collaboration between DTs, and cognitive DTs.  

5.3.1  Monitor and improve production process 

As shown in section 5.1, DT could be used to monitor and improve production 

processes by providing decision support and optimisation analysis. 

Analysis for optimization  

In the context of implementing DTs to improve manufacturing processes, we will 

focus on two key aspects: (1) optimising the product development process and (2) 

using DTs for zero-defect manufacturing. DTs for product development process 

optimisation provide a virtual approach to design and validation, reducing the reliance 

on expensive physical prototypes and enabling faster and more efficient iterations[45]. 

At the same time, DTs for variation management play a key role in ensuring the 

consistency and accuracy of geometric specifications, helping to reduce unwanted 

variation in final products [46]. 

The product development cycle has three key phases: product design, product 

validation and product manufacturing (Figure 22).  

 

Figure 22: product development process [49] 

 

For product design Ma et al. (2019) [49] presented a framework for digital twin 

augmented human-machine interaction during conceptual design phase. In the virtual 
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world designers can interact with the virtual model via AR/VR technologies, which 

allow designers to “see”, “touch” or “interact” with the model.  

Xiang et al., (2019) [48] proposed a DT based technique to intelligently select green 

materials, to identify the most suitable material for a given design; their DT model can 

imitate and improve the qualities of materials that are potentially selected, in order to 

make a repetitive comparison between forecasted qualities of these materials and 

required properties. 

Regarding product validation phase, this is still a significant challenge in terms of 

cost and time. Traditionally, this phase involves the use of physical prototypes to assess 

the feasibility of the previously designed product [47]. 

Huang et al. (2022) [47] proposed a framework where a virtual replica of the 

manufacturing system is created, allowing for the development of a virtual prototype, 

which exactly reproduces the physical prototype by replicating the operations that 

would have been performed in the physical world; in the virtual space, the validation 

phase of the prototype can be detailed, and if the virtual prototype passes successfully 

this phase it is considered ready for production, otherwise an iterative process is begun 

in which the design is optimised, and re-tested in the virtual world. 

While each framework addresses different aspects of product development, they 

can be complementary. For instance, the virtual prototype created in the validation 

phase by Huang et al. (2022) [47] can benefit from the use of green materials selected 

in the design phase using the DT model proposed by Xiang et al. (2019) [48]. Even if 

each framework addresses specific aspects of product development, collectively 

providing a more holistic understanding and optimization opportunities there may be 

challenges in integrating DT frameworks seamlessly, particularly if they rely on 

different technologies, data formats, or modeling approaches. Contradictions may arise 

if the results or recommendations from one DT framework conflict with those from 

another. For example, the selection of certain materials in the design phase may lead to 

unforeseen issues during virtual validation, necessitating iterative refinement. 

While DTs have revolutionized the product development space and focused largely 

on the design, validation, and manufacturing phases, there is yet another area critical 

to consider — variation management or geometry assurance during the manufacturing 

phase. Now the information available through the DTs for product development from 
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design and validation can be integrated with DTs for variation management, by re-

purposing the simulation model used for the validation phase, to ‘see’ the geometric 

variations of the part in real-time as it proceeds through the assembly process.  [46]. 

With this aim Figure 23 represents a DT framework for geometry assurance. 

 

Figure 23: DT framework for geometry assurance [47] 

 

Two parts A and B are scanned, and the data collected is entered into the simulation 

model.  The data is sorted by class to achieve a pairwise match that minimizes assembly 

variation. In addition, the deviation from the standard can be reduced by careful 

analysis of how to adjust the weld points (locating schemes) and by defining the 

optimal welding sequence to follow [47]. 

Decision making support through real-time state monitoring  

In this section we will explore the potential of DTs in real-time monitoring to 

support operational decisions and improve the performance of production processes. 

In particular, we will look at how the integration of a DT into a production cell can 

enable improved autonomy, how real-time data acquisition can identify and mitigate 

bottlenecks within a manufacturing system, and how the use of real-time location 

information can optimise production logistics. We will explore how these aspects, 

supported by an effective implementation of the DT, can contribute significantly to the 

dynamics and efficiency of manufacturing operations. 

By integrating a DT into a manufacturing cell, we can examine how this virtual 

entity interacts with the production process in real time, capturing detailed data and 

providing a constant flow of information. To this end, we can define the DT 

Manufacturing Cell (DTMC) as “a minimum implementation unit for industrial 
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enterprises to put intelligent manufacturing into practice” [38].  

Thanks to its structure, which consists of five different types of spaces, the cell is 

capable of independent decision-making and proposing improvements [39]. More 

precisely, the layers that make up this entity are as follows (Figure 24) [40]: 

• Physical space: thanks to sensors the status of the physical process, such as 

WIP, can be monitored in real time.  

• Virtual space: here is where all the data collected in the physical space come 

together.  Thanks to them, and thanks to DTs of the physical elements involved 

in the production process, it is possible to carry out a simulation in virtual space, 

which makes it possible to predict and, if necessary, improve. 

• Data space: before entering the virtual space, data on WIP, machine status and 

other process elements are transported here to be pre-processed. 

• Knowledge space: a dynamic knowledge base in this area enables 

improvement decisions to be made. 

• Social space: it integrates various service systems like CRM and ERP, bridging 

the gap between DTMC supply and customer demand. 

 

 

Figure 24: DT Manufacturing Cell [40] 

 

Within an intelligent production cell, multiple improvements can be made without 

the need for human intervention. An example is the diagnosis and improvement of 

bottleneck throughput: Mahesh et al. (2023) [42] proposed a framework (Figure 25) in 
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which, in line with what has been said above, data relating to an Observable 

Manufacturing Element (OME) - such as a machine, a process or an entire physical 

system - is collected and pre-processed. Processing means [42]: 

• Cleaning: handling missing instances and standardisation. 

• Integration of different types of data from the physical space. 

• Transformation of data. 

After collecting event logs and timings, a dynamic map of resource dependencies 

and interactions is created. The resulting information is then used by the DT to replicate 

the OME. The utilisation rate is determined by monitoring individual resources using 

asset monitoring. Finally, prescriptive analytics identifies the busiest resources and 

targets them for DT improvement opportunities. 

 

Figure 25: DT framework for bottleneck identification and throughput improvement [42] 

 

Real-time data can be used not only in production processes, but also in logistics 

operations in order to reduce the high costs linked to them.  

Here, we will only discuss one logistic operation that can benefit from 

implementing a DT: Automated Guided Vehicles (AGV). 

An AGV is an autonomous vehicle designed to move in industrial or logistical 

environments, guided by technologies such as sensors, machine vision or magnetic 

guidance systems, without the need for human guidance. 
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The utilisation of a DT enables optimal route planning in a highly dynamic 

environment (Figure 26). The AGV can effectively scan the surrounding area and 

determine the most favourable path to a set destination via a simulator. Nonetheless, it 

is not competent enough to make dynamic decisions on its own. If an unexpected 

obstruction emerges on the route, the AGV must come to a halt, rescan the 

surroundings, and wait for the simulator to compute a new route. The integration of DT 

can significantly reduce the time spent, particularly in a dynamic setting. DTs can gather 

real-time data and update information pertaining to the surroundings at set intervals. 

Subsequently, a potential barrier can be detected beforehand, allowing the simulator to 

calculate the most effective route before the obstacle obstructs the automated guided 

vehicle [43]. 

 

Figure 26: The optimal route planning [43] 

 

5.3.2  DTs for layout design: analysis for optimization 

As to production system and assembly line design, element arrangement is critical 

for effectiveness. Layout design issues may be crucial, affecting operational efficiency, 

internal logistics and the overall workflow. DTs emerged for this matter as essential 

tools, offering the capability of simulating, analysing and optimising the layout in the 

pre-physical implementation phase. We will delve into how DTs can help make better 

decisions and improve the design of production systems and production lines. 

Guo et al. (2021) [53] developed a DT-based layout optimization approach by 
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proposing three sub-frameworks: (i) the workshop partitioning sub-framework, which 

optimizes the workshop layout by analyzing twin data and simulating different 

partitioning configurations; (ii) the equipment layout optimization sub-framework, 

which adjusts the layout of equipment and facilities by collecting real-time data and 

value-adding to twin data; and (iii) the distribution route optimization sub-framework, 

which optimizes the material distribution route in order to reduce WIP backlog and to 

improve tooling efficiency. In this way, by leveraging real-time feedback and data 

analytics, the DT-based approach can optimize the layout of the workshop, the 

placement of equipment, and the distribution route of materials in order to improve 

production efficiency, reduce WIP backlog, and increase tooling utilization. 

For the optimization of layout, a simpler model exists where instead of production 

line layout, the DT takes, as an input, the positioning of machines in a production line, 

layout of production lines, and scheduling of production processes, makes a simulation 

and presents outputs. The outputs can be turned into performance metrics such as 

productivity, throughput, efficiency, by use of metrics such as machine cycle time, 

material handling time, operator travel time. Therefore, the plant layout can be 

optimized by adjusting the positioning of machines, processes, and workstations on the 

factory floor. The optimized layout configuration is re-simulated to evaluate its 

performance and compared to previous configurations [54]. 

Based on dynamic and real-time changes in production processes, Lee et al. (2022) 

[51] suggest a DT framework, to optimally respond to these changes by suggesting 

improvements. The framework proposed consists of 2 layers: 

•  Information layer: this layer, which is integrated with the enterprise resource 

planning (ERP) and manufacturing execution systems (MES), contains 

information about the manufacturing design, the resources employed and the 

manufacturing bill-of-material. 

• Application layer: it includes (a) an interface module which links data 

collected from the information layer to the simulation and optimization 

modules, (b) a DT simulation module to visualize and verify production 

processes and (c) an optimization module that uses algorithms to refine the 

process configuration and production line layout. 

These frameworks can be compatible if integrated carefully. For instance, Guo et 
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al.'s (2021) approach could benefit from the dynamic adjustments suggested by Lee et 

al. (2022). Overlaps may occur since both of them involve real-time data collection. 

Also, turning the outputs of simulations into performance metrics could be integrated 

with the other two models. However, there could be contradictions if more models are 

used in the same time if they prioritize different optimization criteria. 

One way to transfer data from the interface module to the DT simulation model it 

could be used the framework proposed by Sommer et al. (2023) [52],  to automate the 

DT generation. By scanning the shop floor and comparing the scanned objects with the 

objects’ CAD existing in a reference database, a DT can quickly be created, using inputs 

like objects parameters (machine geometry and its positioning information), 

parameters that we can obtain via object recognition, all organization’s specific 

parameters which we can not obtain through scanning (i.e. machine ID) (Figure 27). 

 

Figure 27: Inputs for an automatic generation of a DT [52] 

 

5.3.3  DTs to handle flexibility 

Being able to respond quickly to changes in customer needs, market requirements, 

and operational situations has become a crucial element for achieving success. 

Adaptability is essential for dealing with challenges such as fluctuations in demand, 

customized products, and emerging technologies. This flexibility -i.e the production 

system’s capability of changing its internal characteristics- leads to better 

responsiveness, competitiveness, and long-term sustainability, enabling companies to 

navigate through dynamic scenarios with effectiveness. 
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Analysis for optimization through real-time state monitoring  

To handle flexibility the frameworks found in literature all uses real-time state 

monitoring in order to make optimization to the manufacturing process. 

To address manufacturing flexibility Zhuang et al. (2018) developed a DT 

framework for production management in the context of a product assembly shop floor. 

Here, real-time data from the physical shop floor flow to its DT which mirror the 

physical operation conditions and simulate the future’s production operations. 

Dynamic data like temporary assembly tasks added, product lead time changed, 

equipment shutdown or failure, product quality problems found, product design and 

process changed, and other kinds of production disturbances are taken into 

consideration [60].  

Similarly, Park et al. (2019) focused on the application of a DT in the context of 

personalized production, where production processes for different product groups 

struggle to respond to the dynamic situations arising from these processes, 

demonstrating that dynamic situations in the personalized production can be 

effectively handled through a combination of five applications: digital twin application, 

context-aware application, advanced planning application, advanced scheduling 

application, and device control application [61] .  

To manage flexibility Yan et al. (2022) developed a DT framework for dynamic 

scheduling, allowing for real-time responses to changing operational variables and 

needs. In operating systems, an important variable to consider is machine failures. 

Should these occur or be predicted with enough lead time, rescheduling becomes 

necessary. If an anomaly is detected in the physical system, the information is 

transferred to the DT. The DT can then use simulation to reschedule production, taking 

into account new parameters such as a machine being unavailable (Figure 28) [55].  
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Figure 28: DT architecture for dynamic scheduling [55] 

 

To achieve optimal re-scheduling Tliba et al. (2023) [56], presented a DT composed 

of two connected models within the physical system:  

1.  A scheduling model  

2. The shop floor model with which simulation is carried out. 

The initial scheduling is generated by the first model, based on data contained in 

the company's ERP concerning available resources, product details, and company 

constraints. The second model simulates the provided scheduling by triggering a 

simulation loop. If the result of the simulation is not optimal, the data is updated and 

reinserted into the scheduling module, which makes a new proposal to the shop floor 

model that generates a new simulation. This process continues until an optimal 

solution is found (Figure 29). 
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Figure 29: DT dynamic scheduling process [56] 

 

While the four frameworks illustrated above focus on how overcome internal 

disruptions and dealing with internal sources of flexibility, Neto et al. (2023) [58], 

focusing on how to deal with customers’ changing demand requirements, developed a 

DT framework with the aim of helping manufacturers to deal with mix flexibility -i.e 

the ability to change the short-term production mix in order to implement a desired 

sales strategy.  In their proposed architecture (Figure 30) the shop floor is replicated in 

the virtual world through sensors that collect real-time data from the production 

system. This data includes information about the machines, buffers, processing times, 

routes, production schedules, and the position of pieces within the machines and 

buffers. All of this data enables the DT to simulate, returning an estimation of the 

production system key performance indicators (throughput), the expected delivery 

date for all products, and the predicted time slots in which the machines are expected 

to be idle to perform maintenance [58]. 
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Figure 30: DT general architecture to handle flexibility [58] 

 

Dos Santos et al. (2021) [59] also focused on implementing a flexible production 

line to meet changing market demand and minimise operational waste caused by 

unused operators or excessive production that does not meet the real needs of the 

customer. In the framework developed (Figure 31) the first step is the analysis of sales 

history using AI to predict future demand. It then uses a Discrete Event Simulation 

(DES) model within a DT architecture to simulate the production process, testing 

different variables such as the number of operators. Finally, a dashboard shows the 

guidelines for operational planning (resulting from the DES model), including the 

optimal resource sizing, the expected production (which may be differ from the 

expected demand in the case of batch production) and the expected lead time.  
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Figure 31: DT architecture for resource planning [59] 

 

5.3.4  DTs collaboration 

We will now focus on analysing how using multiple DTs which are able to 

collaborate can add significant value.  It is in this context that the Digital Thread was 

introduced [62]: 

“A Digital Thread connects real things and their twin models, but also the 

communication networks, the decision algorithms, the visualisations needed to work in 

design, construction, and operation within a mature Industry 4.0 environment”  

Failure analysis and prediction  

It is possible for example to assemble several DTs of every production unit to 

recreate an entire production line in the virtual world. This can help in the prediction 

of possible failures, thus assuring a higher quality of the production process.  

Liu et al. (2023) proposes a framework with the goal to ensure the quality of a final 

assembly; it can be interpreted as the evolution of the process regarding assembly 

through geometry assurance that we have seen in 5.3.1. 

Before introducing an architecture for DTs collaboration we must firstly give some 

definitions that we will use later on (Figure 32) [63]:  
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• Digital Twin Manufacturing Unit (DTMU): it is “the unit-level manufacturing 

system with a manufacturing function in the workshop and has the essential 

characteristics of a DT system” . 

• Distributed Digital Twin Manufacturing System (DDTMS): it is “a workshop-

level intelligent manufacturing system. It has three manufacturing spaces, 

including the workshop, agent, and manufacturing unit layer” . 

 

 

Figure 32: DDTMS [63] 

 

• Unit twin layer: it is the set of all DTs of each production unit (assembly and 

machining units). 

• Mid-Agent layer: it receives the information provided by the Unit Twin layer 

to analyse the production process through simulations. It is also the 

communication medium of each manufacturing unit.  

• Workshop layer: it analyses industrial big data to define manufacturing tasks 

and optimizes combinations of manufacturing services. 

The Digital Thread runs through the entire life cycle of the manufacturing process 

(machining, inspection, assembly, final inspection) (Figure 33). To do that its structure 

it is split into two layers:  
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• The model analysis layer receives information about the quality of each part 

to reproduce a DT and simulate all the operations and estimate the quality of 

the final product. 

• The data network analysis layer analyses the production area at each stage 

and, based on the quality defect transfer, is able to adjust the next operation. 

 

Figure 33: Digital Thread-driven manufacturing process [63] 

 

Thanks to this structure, problems can be easily identified, and production adjusted 

accordingly. 

Since the functioning of the Digital Thread depends on the functioning of several 

DTs, Sahal et al. (2021) analyse how it is possible to identify erratic operational data 

that can occur from each DT. 
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Figure 34: Framework for automatic error detection of collaborative DTs [64] 

 

In Figure 34 a high-level framework for automatic error detection of collaborative 

DTs is presented. The analysis assesses whether the data from the DT indicates a failure 

or inconsistency, determining if the issue is localized or affecting all nearby DTs 

representing the same device. If a widespread problem is detected across all deployed 

DTs, the system can proactively notify decision-makers about the failure. On the other 

hand, if the issue is specific to one DT, the system disregards the inaccurate data, 

replacing it with the correct information to maintain consistency in the operational 

data across the production system [64]. 

The Liu’s Digital Thread [63] ensures a comprehensive understanding of the 

manufacturing process, while Sahal et al.'s framework [64] enhances data reliability 

within this thread. By combining these models, manufacturers can swiftly identify and 

rectify issues, ensuring smooth operations and high-quality output. 

5.3.5  Cognitive DTs 

Cognitive DT (CDT) is an advanced perspective of the traditional DT and signals a 

turning point in the evolution towards Industry 4.0. Such a novel approach of CDT 

transcends the simple digital translation of physical objects and, in fact, involves the 

employment of artificial intelligence capabilities together with advanced data analytics. 

Indeed, cognitive functions make it feasible to transfer knowledge that is gained in one 
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field to another field [65]. 

Skills which constitute the bedrock of cognition - attention, perception, memory, 

reasoning, learning, and problem solving. Herewith follow definitions of the terms that 

have been readapted to the DT context [68]: 

• Perception: that's the process of preparing meaningful representations of the 

data relating to the physical twin and its surrounding physical environment for 

further processing. 

• Memory: recall data of the twin's physical life and also data of the environment 

interacting with it. 

• Reasoning: drawing conclusions which are consistent with a starting point. 

• Learning: using a process to get to the conclusion and provide answers that can 

be applied to other domains. Problem solving, finding a solution to the proposed 

problem. 

• Problem solving. finding a solution to a given problem. 

Mortlock et al. (2021) [68] proposed a framework based on graph learning as a 

possible way of facilitation of cognition in DTs. This may be used to conduct different 

tasks (e.g., to generate new configurations that are necessary in the event of the product 

specification change). A graph can show critical relationships and provides a strong 

illustration, aiding in deduction or logical solution to problems through visual 

representation.   

In the first step (Figure 35), the graph formation, products and their properties 

are retrieved (e.g., via a query) and organized into a graph, which prepares them for 

analysis. The graph operation involves the modelling of intricate mathematical 

functions, the aggregation of data, and the creation of condensed representations. 

Finally, in the last step, learning objective, the query and the problem to be solved are 

defined, as are the metrics and specifications used to optimize and refine the model.  

 



53 
 

 

Figure 35: Graph learning framework [68] 

 

The mentioned cognitive abilities can be utilised proficiently in identifying and 

handling aberrations in production processes, thus aiding in reducing the adverse 

consequences attributed to these anomalies.  

Cognitive abilities such as those above can readily be employed to identify and deal 

with anomalies in production processes, which in turn can greatly reduce the 

deleterious consequences that can accompany such anomalies. To give a brief example, 

perception can be used to forecast and recognize anomalies, attention allocated to deal 

with them, memory to store relevant information that can be reused, reasoning to 

understand their origins and underlying causes, problem-solving to devise efficient 

solutions and learning to identify the information that is most important in such 

scenarios for use in new instances [66]. 

Obviously, these capabilities can be utilised with the assistance of supporting tools 

(Figure 36): 
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Figure 36 : Tools supporting cognition [66] 

 

• Memory can be bolstered through the use of a database, a DT capable of 

incorporating information from a range of sources, or a knowledge graph, as has 

been previously demonstrated. The latter can also foster learning capabilities. 

• Perception can be honed through meticulous analysis of data gathered from 

various sources. 

• Anomalies and control instruments can capture attention. 

• Analysis and simulation tools can stimulate reasoning and help evaluate the 

impact of anomalies, as well as identify potential solutions, among which lies 

the optimal one. 

Rozanec et al. (2020) [69] envisioned four components that make a DT actionable 

thus aiding in the manufacturing shop floor context: ontology captures information 

about entities in the physical world, while a Knowledge Graph enhances the cognitive 

capabilities of the DT; data includes detailed information on the elements and 

operations of the production process; algorithms, including artificial intelligence 

algorithms, enrich the DT with cognitive capabilities and specific behaviours; finally 

actions are suggested to users based on advanced analyses performed by the DT. 

After having examined the nature of a Cognitive DT and its abilities, we can now 
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explore the synergistic deployment of multiple CDTs in the supply chain context (Figure 

37). 

 

Figure 37: Interconnection of CDTs in the supply chain context [67] 

 

In order to establish a connection using Cognitive DTs (CDTs), it is imperative to 

create a representation of all assets, processes and operators working in the supply 

chain. Afterward, the CDTs must be connected at both intra-factory and inter-factory 

levels throughout the supply chain [67]. 

5.3.6  DTs and sustainability 

The sustainability emphasis is growing fast, prompting growing interest very 

publicly, along with ever more regulations (e.g., Corporate Sustainability Reporting 

Directory [84], requiring companies to report their sustainability progress) and 

voluntary certifications (EU Ecolabel, FSC, EPD, etc…). This not simply highlights the 

growing interest of companies to both comply with the legal requirements and 

demonstrate their sustainability commitment (but also their customers’ increasing 

demand for transparency and accountability in this domain, as you can see from Figure 

38, showing consumer preferences to buy more sustainable products over the last 5 

years worldwide in 2022 [94] . 
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Figure 38: Degree to which consumers' purchasing behaviour and choices shifted towards buying 

more sustainable products over the past five years worldwide in 2022 [94] 

 

For this reason, we will examine how DTs can assist businesses in overseeing 

and/or enhancing their level of sustainability. 

One of the main questions addressed in this section is:: "How can we apply the just 

reviewed capabilities of a DT in a sustainability context?" By conducting research, 

Popescu et al. (2022) have explored the impact of each DT attribute on sustainability-

related functions (Figure 39) [70]. 

 

Figure 39: DT contribution to sustainability related functions [70] 

 

It is observed that data analytics and visualisation capabilities contribute 

significantly to sustainability globally, while cloud processing storage and 
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cybersecurity contribute significantly less. Moreover, the three sustainability-related 

functions that are most positively impacted by DT are pollution and waste reduction, 

circular economy simulation, and climate change mitigation and control. 

Analysing the contribution that DTs can make to achieving the Sustainable 

Development Goals (SDGs), it can be seen that DTs can contribute in three ways [74]:  

•  Efficiency in resource allocation: for example, sensors to detect water leaks 

in water distribution systems can be used in a digital replica for predictive 

maintenance, thus helping to limit water wastage. 

• Safe innovation in green technologies: new clean technologies can be tested 

in the virtual world to see if they could cause unintended harm.  

•  Inclusive partnerships for sustainability: simulations of entire 

environments (factories, power grids, farms), accessible to different 

stakeholders regardless of their geographical location, facilitate scientific 

collaboration and knowledge sharing to address environmental problems. 

In addition, by collecting real-time data such as energy and carbon inputs/outputs, 

a DT can make Life Cycle Assessment (LCA) much more accurate and faster than current 

conventional methods [75]. 

The second question that arise in this context is, "how a DT could be used to boost 

sustainability contribution?" To answer this question, 3 steps were identified, each of 

which contributes increasingly to enhancing the sustainability impact of DTs [72]: 

• DTs can be employed as a tool to provide information to regulatory bodies 

through a sub-model that assesses the impact on the ecosystem. It is evident 

that the DT has the capacity to oversee production, hence, it can be integrated 

alongside diverse tools such as Life Cycle Assessment, to analyse the worldwide 

environmental impacts of production. 

• DTs can be utilised to manage assets and form decisions about their applications 

throughout their lifecycle, taking into account their impact on the system. 

• DTs can serve as a control unit for each particular asset, guaranteeing that the 

impact of not only the individual asset but also the entire production system 

aligns with sustainability within planetary boundaries. 

For these purposes it is essential to ensure interoperability between data, which 
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have to cover information on substances, energy, materials used, as well as emissions 

and waste generated throughout the entire life cycle [72]  . 

A DT which takes into account sustainable production could be used in eco-design, 

as well as in the planning and monitoring of manufacturing processes [73].  

In eco-design, it is crucial to design products in such a way that most of the 

materials used can be recycled. The DT offers a classification model that simplifies 

material selection based on their compatibility and degree of recyclability, eliminating 

the need for separation. Thus, the DT classifies materials in two ways: 

1. The main material and desired level of compatibility are inputted, and 

subsequently, the DT selects a range of suitable materials. 

2. In the instance where both main and additional materials are utilised, the DT 

provides the corresponding degree of compatibility directly. 

When planning manufacturing processes, the DT can make decisions about 

machine and machining tools, machining parameters and tooling, always considering 

the sustainability aspect. For instance, when selecting tooling, the design team can 

assess elements that impact the energy required to cut, like tool lifespan, cutting edge 

number, cutting time, etc. [73]. 

Digital twins play also a crucial role in enhancing the sustainability of supply 

chains. DTs can contribute to: (1) supply chain visibility by enabling better 

monitoring of processes, identifying inefficiencies, and optimizing logistics; (2) carbon 

foot print reduction through the optimization of production processes, logistics, and 

energy consumption; (3) transparency, allowing exchange of data among supply chain 

partners through a shared digital platform [76]. 

5.4  Enablers, challenges and opportunities 

The final section of this chapter has the goal to understand the enablers, challenges 

and opportunities that arise from DT implementation (the last phase saw in 5.3).  

This section is important because it could help companies to understand the 

requirements that can enable the development of the DT frameworks saw in the section 

above. We also highlight the fact that the implementation of a DT within a 

manufacturing company is not without challenges, but that once these are overcome, 
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several opportunities can arise for the company. 

So, here we will illustrate the enablers for DT implementation (5.4.1), the 

opportunities deriving from DT adoption (5.4.2) and finally the challenges that a 

company can encounter during the implementation phase (5.4.3) 

5.4.1  Enablers for DT implementation 

Multiple documents in the literature analyse the enabling factors for implementing 

a DT and generate an extensive list of requirements. Therefore, as said in 5.1, we 

classified them for better understanding: 

• The systems and technology category refers to the set of systems and 

technologies required to successfully implement a DT. 

• The process category pertains to the implementation processes of a DT. 

• The people and competences category refers to the requirements that 

employee have to meet. 

 

• The culture and strategy category refers to the requirements that the company 

as a whole have to meet. 

 

This subdivision is summarised in Table 3. 



60 
 

Table 3 : DT enablers 

 

 

 

Enablers 

Systems and 

Technologies 

Simulation [77], [78] 

IoT [77] [79] 

Cybersecurity [77] 

Big Data processing [77][79][80] 

Data storage [79] [80] 

Information model [80] 

Communication network [79][80] 

Data acquisition and cleansing [80] 

Time-sensitive data processing  [78][80] 

Data visualization [78] [81] 

VR [78] [79] 

Development technologies [79] 

Notification system [78] 

Process Well-defined implementation plan [77] 

 Accurate data fillings on enterprise software [77] 

 Use of physical resources [81] 

People and 

Competences 

Skills to manage the technologies [77] [81] 

Good communication skills [77] 

Culture and 

Strategy 

Management commitment to long-term projects [77] 

Top management support [77] 

 Capacity to make financial investments [77] 
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Systems and Technology  

This first category of enablers comprises of: 

- Simulation: testing various scenarios through simulation is essential to make 

informed decisions [77], [78] 

- IoT: the Internet of Things enables devices to communicate and collect data 

through sensors [77][79]. 

- Cybersecurity: to prevent cyber-attacks and ensure the integrity of data, 

cyber security is critical. Protecting sensitive data is always vital for an 

organisation [77]. 

- Big Data processing: big data processing enables the analysis of large 

amounts of data, sometimes from multiple sources. It is also a prerequisite for 

real-time decision making [77][79][80]. 

- Data storage: there are two types of data storage that can be used to store the 

data collected through the use of sensors and IoT. Relational data storage has 

a table structure and is used to handle complex data, while non-relational 

databases are used when dealing with less structured data [79][80]. 

- Information model: the physical object is abstracted using a predefined 

information model that represents its specifications of interest. The standard 

plays a crucial role in providing the information model to describe different 

physical objects in manufacturing [80]. 

- Communication network: communication between the DT and its physical 

counterpart is essential as it is a two-way exchange of information [79][80]. 

- Data acquisition and cleansing: making decisions based on poor quality data 

can lead to wrong conclusions. Since real-world data will never be 100% 

accurate, it is important to understand which data should be ignored [80]. 

- Time-sensitive data processing: it is important to minimize the time gap 

between data collection and analysis, especially if the DT is intended to 

monitor in real time. Strict latency is essential in such cases [78][80] 

- Data visualization: clear visualization of the data collected from the physical 

world via dashboards or graphs allows for quicker understanding and 

therefore faster decision-making [78][81]. 
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- Virtual Reality (VR): if remote assistance is required, the construction of a 

full-scale 3D model of the physical model to be twinned would be a great 

advantage [78][79] 

- Development technologies: this requirement refers to the technologies 

needed to implement a DT [79]. 

- Notification system: a notification system is required for any type of warning 

that the DT needs to send to the operator so that a problem does not go 

undetected [78]. 

 Process 

This category pertains to the implementation processes of a DT. The enabling 

factors within this category include: 

- Well defined implementation plan: defining a detailed action plan makes it 

possible to stay on schedule, and to analyse every possible scenario. As 

mentioned earlier, we must always consider whether or not the 

implementation will bring significant benefits [77]. 

- Accurate data fillings on enterprise software: data in business software 

serves as an analytical element for the DT. DTs can also prevent 'incidents' by 

analysing historical data. It is therefore important that this data is accurate 

[77]. 

- Use of physical resources: it involves the integration and efficient use of 

physical resources within the DT implementation process [81]. 

 People and competences  

This section is not about digital technology, but about the people who use it since 

they have to meet requirements too. More specifically: 

- Skills to manage the technologies: the success of a DT project requires a 

thorough understanding of the technologies involved. Operators must be able 

to use and manage the key technologies required to effectively develop, 

implement and maintain a DT. As this is a relatively new technology, the 

company must be open to recruiting new people if it does not already have 

people with these skills [77][81]. 
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- Good communication skills: as within any project, more people will be 

involved in the implementation. Knowing how to communicate is necessary 

for good teamwork [77]. 

 Culture and strategy  

In terms of corporate culture and strategy, these also have an impact on the 

implementation of a DT. The following requirements should be met: 

- Management commitment to long term projects: implementing a DT takes 

time and analysis, and the whole team needs to be aware of this when 

embarking on the project [77]. 

- Top management support: the road to implementation is usually long and is 

rarely without difficulties. The support of top management will show 

confidence in the team dealing with it [77]. 

- Capacity to make financial investments: few companies have all the 

resources needed to implement a DT. Nor is it a cost-free project. Knowing 

how to make the right investments will benefit the business significantly [77]. 

5.4.2  Opportunities deriving from DT utilization 

In the context of manufacturing companies, there are several highly significant 

benefits of implementing DTs. The strategic implementation of DTs opens up 

unconventional vistas in streamlining production processes, managing resources, and 

enhancing overall business effectiveness. Given this, in the context of their substantial 

role in enabling digital transformation and the progress of manufacturing practices, it 

is now important to dwell on the numerous advantages DTs afford. As a result, this 

section is devoted to shedding light on the advantages of integrating DTs into 

manufacturing firms, and to explain how these technological breakthroughs are 

revolutionizing the industrial landscape and creating new opportunities for growth 

and improvement. 

Firstly, DT accelerates prototyping and redesign processes using simulations 

that assay multiple scenarios, shortening design and analysis cycles. It continuously 

compares predicted to actual performance, throughout the product lifecycle, leveraging 

the DT and the physical twin. It customizes for user needs, using usage data[82]. 
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Secondly, DT DT is cost-effective, generating far less waste because most 

prototyping is with virtual resources; this, in turn, reduces aggregate costs. Unlike 

traditional prototyping, which uses expensive material and labour, DT also permits 

products to be virtually “torn up and tested” without incurring additional material 

costs, reducing overall product costs. Simulated testing, with some physical testing, 

means less material is “destroyed” [83]. 

Thirdly, DT's predictive capabilities enhance problem forecasting and system 

planning thanks to real-time data flowing between the physical asset and its DT [82]. 

Furthermore, DT optimizes solutions and improves maintenance, as it projects, 

and permits the visualization of defects and wear and tear in manufacturing machinery 

or systems, and simulates different scenarios to provide that best solutions (and 

maintenance strategies) exist. In this way, it may, for example, take the best possible 

decision of when to take a machine out of operation, and also optimize falls over in 

service, taking into account the state of the machinery [84]. 

The accessibility of DT allows remote control and monitoring of physical devices, 

overcoming geographical restrictions. This was particularly beneficial during 

situations like the COVID-19 pandemic [85]. 

In hazardous industries like oil and gas or mining, DT's remote access and 

predictive nature reduce the risk of accidents [86] . 

Lastly, DT contributes to waste reduction by simulating and testing prototypes in 

a virtual environment, minimizing material wastage. This virtual probing of prototype 

designs under various test scenarios enables the finalization of product designs before 

physical manufacturing, aligning with sustainability goals [87]. 

5.4.3  DT implementation challenges 

The available literature leads us to conclude that there are several challenges to 

face in the journey to a full implementation of DTs. To explore this strand, we looked at 

six papers from the literature that provided insight into the challenges involved in 

implementing DTs. 

Each of these papers addresses specific challenges related to the implementation 

of DTs. Although some of these challenges may overlap, the diversity of perspectives 
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offered allows us to gain a comprehensive overview of the critical issues that may arise 

during this technology integration process. 

After a careful analysis of the challenges described in the six reference documents, 

it was considered important to use a selection criterion that would allow all the 

challenges identified by the different authors to be organised more effectively and 

clearly. All the criteria analysed, which will be explained in more detail later, and the 

categories into which they were divided are summarised in Table 4. 

 

 

Table 4 : DT implementation challenges 

  

 

Implementation challenges 

Engineering 

related 

challenges 

System integration and interoperability [89], [90], [91] 

Necessity for standardization and simplification of processes [89], [90] 

Need of high-performance real-time communication systems [88], [89] 

High cost [89], [90], [92], [93] 

User interaction [90] 

Long-time implementation process [89], [90] 

 

Organizational 

challenges 

Multiple stakeholders [89] 
 

Cultural inertia [89], [92] 

 Must set realistic expectations, trust and value proposition [89], [93] 
 

Lack of necessary skills and knowledge [90], [93]  

Data related 

challenges 

Data ownerships [90], [93] 

Data variety [90], [91] 

 Data protection [89], [90], [93] 
 

Data sharing [90] 
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 Engineering related challenges  

 The lack of system integration and interoperability challenge represents the 

inability to integrate different systems or components in a synergistic way, leading to 

difficulties in communication and data exchange. Overcoming this challenge means 

overcoming differences in operating modes and data formats to ensure smooth 

collaboration between the different entities involved in the DT [90].  To overcome this 

problem, we could identify open technologies that can be easily integrated with the 

production production system [89]. 

The lack of common standards can hinder interoperability between systems, 

effective sharing of data and information, and collaboration between different DT 

platforms. Thus, the need for standardisation and simplification of processes 

represents a challenge in the implementation of DTs, as it requires the adaptation and 

harmonisation of standards and processes [89], [90]. 

The implementation of DTs requires high-performance real-time 

communication systems to enable the immediate exchange of data between the DT 

and its physical counterpart. This requires significant resources in terms of technical 

expertise and financial investment. In addition, ensuring the security and reliability of 

such systems is crucial, as they must handle sensitive data and help control critical 

processes in real time [89]. 

There are also significant costs associated with implementation. Often a 

company's resources are not sufficient, and it is often necessary to purchase expensive 

sensors, software modules, storage systems and hire new staff to acquire new skills 

that were not previously required  [89], [90], [92], [93] 

Human interactions with machines in the manufacturing environment can be 

prone to accidents, safety concerns in the workplace are a significant concern [90]. 

To avoid all the possible problems listed above, and to find a solution to the various 

challenges, long implementation times are often necessary [89], [90]. 

 Organizational challenges  

During the implementation of DTs, clear communication about responsibilities, 
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competences, and common objectives is necessary due to the presence of multiple 

stakeholders [89].  

Cultural inertia can also hinder the implementation of DTs. Workers may be 

hesitant to embrace the idea of a 100% reliable digital copy that can account for all 

physical world variables, leading to resistance [92]. Therefore, it is advisable to 

codesign the DT with operators to ensure complete transparency on the data collected 

[89]. A clear and achievable vision must be established, and workers must be trusted 

to achieve it [93]. 

Before deciding to adopt a DT, companies often lack workers with the necessary 

skills [92]. This includes Industry 4.0 specialists and digital expertise [91]. One 

possible solution is to interact with other companies that have successfully adopted a 

DT to fully understand the process, in addition to drawing new resources from outside 

[89].  

 Data related challenges  

Regarding data and information flow, data ownership is a significant issue, not 

only in relation to DT but also in the broader context of digital transformation [93]. 

Sharing data across the entire value chain and adding more information over time can 

increase intellectual capital. Thus, the issue of data ownership is not insignificant [90]. 

The data variety needed to fully utilise the capabilities of a DT is not a significant 

issue, as data is produced and collected on a daily basis. However, the challenge arises 

from the need to integrate, cleanse and fuse the diverse data types [90], [91]. 

In the digital economy, various types of data are at risk, including personal data, 

financial data, information on the development of new technologies, and an 

organization's corporate and strategic information. Cyber-attacks are becoming more 

frequent and complex, posing a significant threat to data security. The consequences of 

such attacks can have a detrimental impact on an organisation's reputation, finances, 

and physical assets. Therefore, it is essential to take measures to prevent this risk [90]. 

Effective information and data sharing is crucial for different actors along the 

value chain, both internally and externally. However, corporate policies, cultures, and 

people's mindsets regarding data ownership often hinder this process. This presents a 
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significant challenge for DTs, which goes beyond technological and engineering 

complexities. Failure to share information can result in the creation of data 'silos' [90]. 

6 Conclusions 

This thesis presented an overview of the role of DT technology in contemporary 

manufacturing systems. Classification criteria were used to appraise the broader 

literature, and the associated benefits and challenges in its implementation were 

examined. 

By classifying the documents according to the functions that they serve, the 

classification criteria enable to focus on those specific aspects of DTs most relevant to 

their area of interest, and in so-doing, provide insight into the various ways DTs can be 

exploited to streamline manufacturing activities. These include monitoring and 

optimizing production, layout design, sustainability, manage flexibility and their 

collaboration with other DTs. 

Nonetheless, this study has some limitations. First, the review of literature in this 

study is restricted to the Scopus source of articles. The Scopus source itself may not be 

enough to cover the entire spectrum of research literature on DTs in the manufacturing 

domain. Besides, classification criteria are not exhaustive, and might not cover all the 

potential application of DTs. Finally, the provided frameworks in this thesis are not 

wide enough to include all possible use cases of DTs in manufacturing. 

However, this thesis holds value in the sense that it has explored a variety of 

different features of the role of DT in manufacturing systems, and the findings 

underline the transformative potential of DTs, and their capacity to effect positive 

change in the manufacturing industry, leading to a new age of smart, connected and 

efficient production processes. 
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