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Summary

Quantum Computing (QC) could enable a faster resolution for certain classes
of problems compared to classical computers (or even supercomputers) while
consuming potentially less power. Quantum computers are particularly powerful in
situations where the simultaneous analysis of different combinations is required.

Specifically, in the case of Option Pricing, quantum computers could allow for
the replacement of traditional models like Monte Carlo Simulation, delivering a
theoretical quadratic speedup, by leveraging the Quantum Amplitude Estimation
(QAE) algorithm. This thesis aims to analyze the characteristics of different
proposed methods for implementing QAE and determine which one best suits the
analyzed problem.

The experiments described in this work were conducted on simple call options as
a proof of concept; however, the true improvement stemming from the use of QC for
option pricing lies primarily in cases involving multiple underlying assets or more
complex structures for payoff calculation. Employing this method, as opposed to
traditional ones, could potentially enable better risk management and investment
decision-making. Nevertheless, testing quantum algorithms on more complex option
pricing problems proves challenging, if not in some cases even impossible, with
current technology. This is largely due to the necessity of manipulating intricate
quantum states, demanding a high degree of qubit control and coherence. For
instance, sophisticated quantum algorithms like Grover’s, Shor’s, and quantum
simulation algorithms entail a significant number of qubits and quantum operations
beyond the capabilities of available quantum processing units.

The current state of the art of QC is predominantly experimental, with several
obstacles to actual useful applications. One major challenge to widespread quantum
computing adoption is the qubit’s fragile state. Existing technologies can only
maintain the information in a quantum state for short periods of time, limiting the
duration of calculations in practice. For this reason, errors and decoherence are
inherent phenomena in present-day quantum computers. Despite the development
of initial proposals for error correction techniques, error persistence still makes
executing complex algorithms on a sufficient number of qubits challenging, as errors
tend to dominate results.
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This is why existing quantum computers are not capable of performing complex
calculations at scale without producing errors and noise that can affect the quality of
the results obtained. This phenomenon reflects the evolution of quantum computers
and the era in which we find ourselves, defining such devices as "Noisy Intermediate-
Scale Quantum" (NISQ). This is one of the reasons why the experiments conducted
for this work, were executed on a simulator rather than on real quantum hardware,
as even though it involves a simple call option, the calculations involved require a
higher number of logical operations compared to those that quantum computers
available to the general public can perform successfully. Accessing a quantum
computer capable of performing complex operations is prohibitively expensive,
rendering it unattainable for individuals lacking the necessary resources.

Moreover, on real machines, noise would overshadow any tangible results, stem-
ming from errors rather than concrete outcomes. As algorithm complexity increases,
error correction and distinction from final results become increasingly difficult. In
general, achieving a scalable and reliable quantum computer is a formidable task,
necessitating a broad array of multidisciplinary expertise: physics, engineering,
computer science, and quantum theory. Consequently, resource limitations arise,
with publicly available quantum computing platforms having significant constraints
in terms of qubit count and available execution time, thus restricting the size of
problems that can be tackled and the complexity of algorithms that can be tested.

Despite these challenges, the aim of this work is to analyze how we could replace
Monte Carlo simulation with the QAE method, which is capable of performing the
same task but necessitating quadratically fewer samples and to accomplish this,
firstly we introduce the foundational concepts of quantum computing in Chapter
1. Then we describe those for option pricing in Chapter 2, followed by a brief
presentation of the current state of the art in the pricing of options using quantum
computers (Chapter 3), before delving into the experiments underlying this work
in Chapter 4.

For these experiments, we considered different implementation variants of QAE
and, for our analysis, three of the most promising have been chosen: iterative,
maximum likelihood, and faster amplitude estimation. These methods exhibit
different characteristics not only in the procedure by which they are implemented
and the results they provide but also in the parameters provided to them to
solve the problem. The objective is to estimate, through an analysis of various
parameters, which of the three methods is more suitable to solve the problem
related to option pricing. In doing so, various elements have been taken into
consideration, including the accuracy of the result compared to the one obtained
with the classical Monte Carlo simulation method. Additionally, computational
complexity has been assessed by analyzing the number of qubits and the depth of
the circuits used to solve the problem. Given these parameters, it becomes evident
why it is necessary for the number of qubits and circuit depth to be as minimal
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as possible: both due to the potential for errors and noise that can distort the
obtained results and in terms of scalability, to enable the future application of
these methods to more complex operations.

Taking into consideration these factors, Chapter 5 contains the final remarks.
The experiments conducted show that, for our use case, despite maximum likelihood
and faster methods resulting in higher accuracy in estimating the payoff and delta
of an option, they require more gates compared to the iterative method. The latter,
despite its lower accuracy, emerges as the method capable of resolving the posed
problems with shallower depth. This is particularly crucial in terms of scalability,
as in the event of using this method to address more complex issues such as path
dependency, the model would be better at maintaining its performance, reliability,
and functionality. As technological development progresses to a stage where the
utilization of resources becomes secondary to method efficiency, this analysis of the
problem will change, with maximum likelihood and faster methods seen as superior,
capable of yielding the same results as those obtained with MC simulation but at
significantly faster speeds.
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Chapter 1

Quantum Computing

Traditional computers operate in a binary manner, leveraging bits that can hold
values of 0 or 1. In contrast, quantum computing draws upon the principles
of quantum mechanics [1] and introduces qubits as the fundamental units for
manipulation.

Qubits can represent not only the classical states of 0 or 1 but also a combination
of these states, a phenomenon known as superposition. Additionally, entanglement,
a concept introduced by Erwin Schrödinger in 1935 within the framework of
quantum mechanics, describes a profound interconnectedness between particles.
This correlation, characterized by the mathematical construct of the wave function,
allows particles to influence each other instantaneously despite physical separation.
See Section 1.2 and 1.3 for more details on these phenomena.

Superposition and entanglement are key properties that enable quantum comput-
ers to process a higher volume of information than classical computers, potentially
leading to increased speed and reduced energy consumption, thus promising superior
performance.

Quantum computers excel particularly in scenarios requiring simultaneous anal-
ysis of multiple combinations. However, this characteristic does not inherently
establish their supremacy over classical computers, as classical computers may
outperform quantum ones in certain computations.

Qubits can occur naturally or be engineered, with common types including spin
qubits, trapped atoms and ions qubits, photons, and qubits based on superconduct-
ing circuits.

Another critical consideration is the extreme sensitivity of quantum computers
to noise. Factors such as electromagnetic fields, heat, and collisions with air
molecules can cause qubits to lose their quantum properties, a phenomenon known
as quantum decoherence. This effect amplifies with an increase in the number of
particles involved. Consequently, quantum computers must ensure physical isolation
of qubits from external interference, maintaining them at nearly absolute zero
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temperatures or subjecting them to carefully controlled energy pulses. Additionally,
error correction strategies, such as redundancy, may be necessary to address system
errors.

1.1 Qubits
The qubit is the basic unit of the quantum computation. When the measurement
has not already been executed, the qubit can be in a linear combination of the
states 0 and 1, thanks to the quantum mechanical phenomenon of superposition
(see Section 1.2). The geometric representation of the two possible states is defined
by a vector, called state vector, inside Hilbert’s space.
The state vector can be represented as follows:

|q⟩ = α |0⟩ + β |1⟩ (1.1)

or

|q⟩ =
C
α
β

D
(1.2)

with α, β ∈ C such that |α|2 + |β|2 = 1.
Once it has been measured however, it can be found only in one of the two

basis states |0⟩ or |1⟩. In fact, because they mutually exclude each other, there
is no more superposition. These two basis states are represented by vectors, to
distinguish them from the traditional bits.

|0⟩ =
C
1
0

D
, |1⟩ =

C
0
1

D
(1.3)

The computational basis, which describes the state of the qubit, is constituted
by these two vectors, which means that every quantum state can be expressed as
the sum of these state vectors. For example:

|q0⟩ = 1√
2

|0⟩ + i√
2

|1⟩ (1.4)

where

|q0⟩ =
C 1√

2
i√
2

D
(1.5)
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It results easy to verify that ----- 1√
2

-----
2

+
----- i√

2

-----
2

= 1 (1.6)

and trace it back to the first and more general representation.

1.1.1 The Bloch sphere representation
One single qubit can be geometrically represented using the Bloch sphere, named
after Felix Bloch [2], which is a sphere with a unitary radius. The poles represent
the extreme states 0 on the north, and 1 on the south. While classical bits can
exist only in these two states, qubits cover the entire sphere, allowing them to
assume combinations of these. Each point on the sphere represents a superposition
of |0⟩ and |1⟩. The quantum bits contain much more information than classical
ones, and the Bloch sphere geometrically depicts this property:

Figure 1.1: Representation of the Bloch Sphere

When the qubit is measured, it collapses to one of the two poles and this depends
on which direction the arrow in the Bloch representation points to if it is closer
to the north pole, there is a larger probability of collapsing to that pole (i.e. |0⟩)
and equally happens for the south pole (i.e. |1⟩). This introduces the definition
of probability in the Bloch sphere: the angle θ of the arrow with the vertical
axes corresponds to that probability. If the arrow happens to point exactly at
the equator, there is a 50% probability of collapse to any of the two poles upon
measurement. Rotating a vector referring to the z-axis results in a phase change,
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and does not affect which state the arrow will collapse to, when it is measured.
This rotation is achieved by changing the ϕ variable.

As seen before, the quantum state can be represented as:

|q⟩ = α |0⟩ + β |1⟩ α, β ∈ C (1.7)

But, using the polar representation of complex numbers:

eiϕ = cosϕ+ isinϕ (1.8)

we can obtain a new representation for quantum bits on the Bloch sphere:

|q⟩ = α |0⟩ + βeiϕ |1⟩ (1.9)

Because the vector state as norm equal to 1 and thanks to the geometric identity,
it is possible to describe the variables α and β in relationship with the angle θ:

ñ
|α|2 + |β|2 = 1 (1.10)

√
sin2θ + cos2θ = 1 (1.11)

α = cos
θ

2 β = sin
θ

2 (1.12)

Thanks to this, is possible to describe the state of a quantum bit using the two
variables ϕ and θ:

|q⟩ = cos
θ

2 |0⟩ + sin θ2e
iϕ |1⟩ (1.13)

1.1.2 Measuring a qubit
The values contained in a state vector include information about the probability of
finding the qubit in a specific state, but to know exactly in which state it is, one
necessarily needs to measure it.

After the measurement of a qubit in a superposition state, it switches to a pure
state. This means that the qubits lost their quantumness. A pure state is a state
in which if we measure again the qubit, the state obtained will be the same at
100% probability. The new resultant state must always preserve the normalization
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constraint mentioned before. It is possible to start with an example to better
understand how the process of measurement works.

We have a one-qubit state |ψ⟩, for which we have to calculate the probability p
to measure it in a state |x⟩.

p(|x⟩) = | ⟨x|ψ⟩ |2 (1.14)

In this formula the probability that the quantum bit is measured in a state |x⟩
is described, with |x⟩ that can be every possible state of the qubit. The probability
p is defined with the Bra-ket notation, also called Dirac notation after its creator,
Paul Dirac [3]. It is a notation for linear algebra and linear operators on complex
vector spaces together with their dual space, both in the finite-dimensional and
infinite-dimensional case. Its use in quantum mechanics is quite widespread.

In the Bra-ket notation each bra ⟨v|, which represents a vector, corresponds to
one ket |v⟩, which stands for a linear form. To find the probability we use the inner
product, which is a product of two quantum states ⟨ψ| and |x⟩, producing a scalar
value. An inner product is also called an overlap, the overlap between quantum
states.

Here we have an example:

|q0⟩ = 1√
2

|0⟩ + i√
2

|1⟩ (1.15)

⟨0|q0⟩ = 1√
2

⟨0|0⟩ − i√
2

⟨0|1⟩ = 1√
2

× 1 − 1√
2

× 0 = 1√
2

(1.16)

| ⟨0|q0⟩ |2 = 1
2 (1.17)

In this case, we are considering the state of |q0⟩ and calculating the probability
of measuring |0⟩, which results to be 0.5; which is the result also in the case of the
calculation of the probability of |1⟩.

We considered the most complex case in which the qubit is in a state of
superposition, where it can collapse to state |0⟩ or |1⟩ once measured. There is also
the case in which the quantum bit is already in the state |0⟩ or |1⟩, and if at the
beginning the qubit is in one of these states, it will be in the same state also after
the measurement. This characteristic of the measurement is important because
allows us to derive analogies with classical data and to manipulate such data in a
quantum computer in analogy to what happens in a classical one.
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1.2 Superposition

As mentioned above, the superposition is the main property that distinguishes a
qubit from a classical bit. Superposition is one of the fundamental principles of
quantum mechanics. A quantum state in superposition can be seen as a linear
combination of other distinct quantum states. This quantum state in superposition
forms a new valid quantum state.

Superposition is commonly defined as the ability of a quantum system to be in
multiple states at the same time until it is measured.

This concept is correctly illustrated by the double-slit experiment carried out in
1801 by Thomas Young, an English physicist [4]. The purpose of this experiment
was to prove that light consists of waves, nowadays this experiment is used to better
understand the way electrons can act like waves and create interference patterns.

The experiment itself is elegantly straightforward, entailing the passage of a
monochromatic light beam through a single aperture, followed by a passage through
a double slit, with the resultant light being ultimately cast upon a remote screen.
What Young beheld were a series of alternating luminous fringes juxtaposed with
shadowy bands, an observation that he aptly construed as regions of constructive
interference manifesting as the bright fringes and zones of destructive interference
representing the dark bands. It is self-evident that this phenomenon would not
transpire if light were to propagate linearly. To elucidate the phenomenon of
diffraction, namely the perturbation of the trajectory of wave propagation when
encountering an obstruction, one must invoke Huygens’ principle [5], which indeed
proclaims that each aperture acts as if it were an entirely fresh wellspring of
luminous waves, radiating outward in all directions. This phenomenon bears
resemblance to water waves that undergo diffraction as they navigate through a
narrow fissure.

Figure 1.2: Representation of the waves traversing the slits [6]
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Figure 1.3: Representation of the result of the experiment [6]

This outcome allows us to demonstrate that there is an interplay of interference
among the waves traversing the slits, even though it appears that these waves should
follow two separate, non-intersecting paths. Each photon, far from traversing only
one of the slits, concurrently explores every conceivable trajectory on its way to
the photographic plate.

To comprehend the potential occurrence of this phenomenon, alternative ex-
periments have delved into tracing the trajectories of individual photons. The
act of measurement somehow disrupts the trajectory of photons, resulting in an
outcome consistent with classical physics: two bright lines on the photographic
plate, perfectly aligned with the slits in the barrier. As a consequence, scientists
have inferred that superposition remains elusive in direct observation; only the
subsequent outcome, interference, can be witnessed.

Qubits, exhibiting the remarkable property of superposition, can simultaneously
occupy both of their foundational states (again, denoted as |0⟩ and |1⟩). When a
qubit undergoes measurement, it collapses into one of its states, and the outcome
reflects that particular state.

Quantum superposition stands in stark contrast to the superposition of classical
waves. In the realm of quantum computing, a system comprised of n qubits can
exist in a superposition of 2n states, ranging from |000...0⟩ to |111...1⟩. Conversely,
when it comes to classical waves, combining, for example, n musical tones of distinct
frequencies yields a superposition of n frequencies. Classical wave superposition
scales linearly, while the superposition of quantum states scales exponentially. In
the realm of computing, the concept of superposition carries profound implications
for the future of information processing and storage, giving the possibility to
increase them exponentially.

1.3 Entanglement
Entanglement was introduced by Erwin Schrödinger in 1935 within the framework of
quantum mechanics [1]. The concept denotes a profound linkage between particles.
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It is defined by a mathematical construct called the wave function of a system,
which characterizes particle properties as if they constituted a singular entity,
despite the considerable physical separation between the particles. This correlation
permits the first particle to exert an instantaneous influence on the second, and
vice versa.

Not all particles are "entangled", meaning intertwined. For this correlation to
occur, i.e., for two particles to have correlated quantum states, these two particles
must be simultaneously generated through a physical interaction. Even though the
two particles are separated by a considerable distance, a potential alteration to
the state of the first particle would instantaneously have a measurable impact on
the state of the second one, thus giving rise to the phenomenon known as "spooky
action at a distance" [7].

A typical example of a quantum state is the spin of a particle, which can take
on either a positive or negative value. When dealing with "entangled" particles,
those bound by this connection, the sum of the spins of the two particles adds up
to zero. Therefore, if the spin of one of them is measured, the spin of the other is
automatically and instantaneously known.

Niels Bohr believed that particles came into existence when observed and that
only the wave function of the system was real before observation.

Albert Einstein, Boris Podolsky, and Nathan Rosen, on the other hand, were
firmly convinced that particles possessed their inherent characteristics from the
outset, called local realism. This conviction stemmed from the implications of
relativity, which had demonstrated that no information could be transmitted
instantaneously, exceeding the speed of light. This instantaneous phenomenon,
entanglement, was therefore believed to be connected to hidden variables, unknown
to us, that define the spin of particles even before observation. These scientists
deemed quantum mechanics incomplete and voiced their criticisms in the renowned
EPR paradox [8]. As became evident many decades later, such a statement must
be exclusively interpreted in the context of the Theory of Relativity and cannot be
deemed of general validity.

In 1964, John Bell introduced a probabilistic method known as Bell’s theorem to
ascertain whether the quantum state of two entangled particles was predetermined
from the outset (in line with the concept proposed by Einstein, Podolsky, and
Rosen) or if it only manifested as a result of observation (as per Bohr’s hypothesis)
[9]. His work ultimately substantiated Bohr’s theory.

Due to technological constraints, it wasn’t until 1982 that Alain Aspect measured
the behavior of entangled photons and confirmed Bohr’s theory. Einstein was,
therefore, proven incorrect.

As long as the two particles remain unobserved, their spins remain undetermined,
implying that both particles possess both positive and negative spins simultaneously,
following the principle of superposition of states. It is only the presence of the
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observer that interferes with the system and collapses it into "reality".
Entanglement provides instant knowledge of the second particle’s behavior,

because the two particles are a unified system governed by a single wave function.
A local external disturbance, such as the arrival of a photon or an observer, not
only alters the behavior of the first particle but influences the entire system.
Consequently, it defines the quantum state of the second particle as well.

1.4 Quantum Gates
Quantum logic gates serve as instrumental tools for executing intricate computa-
tions, affording researchers the capability to manipulate the states of qubits, that
we already described as the fundamental units of information. Each quantum gate
is endowed with a specific role, such as altering the state of a qubit or creating
entanglement between multiple qubits. These gates serve as the quantum equivalent
of classical logic gates in traditional digital computers. What sets quantum logic
gates apart is their reversibility, in contrast to many classical logic gates. Some
universal classical gates, offer reversibility and can be directly adapted to quantum
logic gates. In mathematical terms, quantum logic gates are represented by unitary
matrices. Most frequently, quantum gates work with one or two qubits, and their
behavior can be described using 2 × 2 or 4 × 4 matrices with orthonormal rows.

Quantum logic gates encompass distinct functionalities:

• The first pertains to state manipulation, wherein quantum gates possess the
capability to modify the state, encompassing properties and configurations, of
a qubit.

• The second involves entanglement, whereby quantum gates can establish entan-
glement between qubits. As we explained in the previous section, entanglement
denotes a state wherein the properties of several qubits become interconnected,
even when they are spatially separated. Therefore, applying an operation to
one qubit instantaneously influences the state of the other qubit.

• The third function pertains to the Quantum Fourier Transform (QFT). The
QFT operates on multiple qubits, altering their quantum states in a manner
that encapsulates frequency-related information. It resembles a specialized
mathematical operation facilitating the analysis of patterns and frequencies
within quantum algorithms.

Quantum logic gates play a pivotal role in facilitating intricate computational
tasks within the realm of quantum computing. They constitute the essential
tools for executing operations on qubits, enabling the solution of specific problems
through the utilization of quantum computers. Moreover, quantum logic gates
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find application in quantum error correction methodologies, which hold utmost
significance in safeguarding quantum information against inaccuracies stemming
from external noise and disturbances.

As described in Section 1.1.1, every normalized pure state can be represented in
the following manner:

|q⟩ = cos
θ

2 |0⟩ + sin θ2e
iϕ |1⟩ (1.18)

In this context, ϕ represents the relative phase, taking values within the range [0,
2π]. Conversely, θ, within the interval [0, π], dictates the likelihood of measurement
yielding |0⟩ or |1⟩ outcomes. As previously observed, all normalized pure states
can be visually represented on the spherical surface of the Bloch sphere. The
coordinates of such a state on the Bloch sphere are denoted by the Bloch vector.

r⃗ =

 sinθcosθ
sinθcosϕ
cosθ

 (1.19)

According to this notation, the different states can be represented as following:

Figure 1.4: Representation of the differents states in the Bloch Sphere [10]

|0⟩ : θ = 0, ϕ = arb, r⃗ =

 0
0
1

 (1.20)
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|1⟩ : θ = π, ϕ = arb, r⃗ =

 0
0

−1

 (1.21)

|+⟩ : θ = π

2 , ϕ = 0, r⃗ =

 1
0
0

 (1.22)

|−⟩ : θ = π

2 , ϕ = π, r⃗ =

 −1
0
0

 (1.23)

|i⟩ : θ = π

2 , ϕ = π

2 , r⃗ =

 0
1
0

 (1.24)

|−i⟩ : θ = π

2 , ϕ = 3π
2 , r⃗ =

 0
−1
0

 (1.25)

The following representation of different gates will focus on single-qubit gates
and on the CNOT gate, the building blocks of quantum computing.

1.4.1 Pauli X-gate
The X-gate is a single-qubit rotation through π radians around the x-axis, it is the
quantum equivalent of the classical NOT gate. It is represented by the unitary
matrix:

H =
C
0 1
1 0

D
= |0⟩ ⟨1| + |1⟩ ⟨0| (1.26)

Internally, it induces a rotation of the quantum state by π radians around the
x-axis. Examining the representation of the Bloch sphere above, it is possible to
observe that |+⟩ and |−⟩ are situated along the x-axis, which leads to conclude
that |+⟩ and |−⟩ constitute the two eigenstates (which is a state of a quantized
dynamic system in which one of the variables defining the state has a determinate
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fixed value) of the X-gate. Consequently, these states remain unaltered by the
Pauli X operation.

The result of this operation, at a mathematical level, starting with a |0⟩ state,
is:

X |0⟩ =
C
0 1
1 0

D C
1
0

D
=

C
0
1

D
= |1⟩ (1.27)

The representation on the Bloch sphere and of the circuit are the following:

Figure 1.5: Representation of the transformation executed by the X-gate using
the Bloch Sphere [11]

Figure 1.6: Pauli X-gate circuit representation [11]

1.4.2 Pauli Z-gate and Pauli Y-gate
The Z-gate is a phase flip gate that causes rotation around the z-axis by π radians.

Z =
C
1 0
0 −1

D
= |0⟩ ⟨0| − |1⟩ ⟨1| (1.28)

Considering that |0⟩ and |1⟩ are situated on the z-axis, the Z-gate exerts no
influence on these states. In different terms, |0⟩ and |1⟩ represent the two eigenstates
of the Z-gate. Conversely, it inverts |+⟩ to |−⟩ and |−⟩ to |+⟩. Initiating the state
vector as |+⟩, this is the transformation effected by the Z gate on this vector:
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Figure 1.7: Representation of the transformation executed by the Z-gate using
the Bloch Sphere [11]

The Y-gate is a phase flip gate that causes rotation around the y-axis by π
radians.

Y =
C
0 −i
i 0

D
= −i |0⟩ ⟨1| + i |1⟩ ⟨0| (1.29)

In the figure below is illustrated the Y-Gate applied on a qubit in the state of
|0⟩ and the resulting state, which is |1⟩.

Figure 1.8: Representation of the transformation executed by the Y-gate using
the Bloch Sphere [11]

1.4.3 Hadamard gate
The Hadamard gate stands as one of the most commonly employed gates in the
domain of quantum computing. When the H-Gate is applied to a qubit initially in
the state |0⟩, it transforms the qubit into a superposition state, where the likelihood
of measuring 0 equals that of measuring 1.

The effect of the H-gate can be conceptualized as a rotation around the Bloch
vector [1,0,1], which represents the line connecting the x and z-axes on the Bloch
sphere.
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Figure 1.9: Representation of the rotation axis on the Bloch Sphere [11]

The Hadamard matrix is represented by:

H = 1√
2

C
1 1
1 −1

D
(1.30)

If the starting point is the |0⟩ state, the result applying the H-gate is the
following:

X |0⟩ = 1√
2

C
1 1
1 −1

D C
1
0

D
=

C 1√
2

1√
2

D
= |+⟩ (1.31)

Where |+⟩ is a superposition state.

Figure 1.10: Representation of the transformation executed by the H-Gate using
the Bloch sphere [11]

1.4.4 Rϕ-gate
The Rz-gate, or the Rϕ-gate, is one of the parametrized gates. The term "parametrized",
means that these gates accept a parameter and execute an operation dependent
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on this parameter. In this case, the accepted parameter is ϕ, and the operation
conducted is a rotation around the z-axis by an angle of ϕ radians. The matrix
representing this gate is provided as follows:

Rϕ =
C
1 0
0 eiϕ

D
(1.32)

Given that the states |0⟩ and |1⟩ are situated along the z-axis, they remain
unaffected by the Rz-gate. You can experiment with the Rz-gate by initializing
the state vector as |+⟩ and applying it as follows:

Figure 1.11: Representation of the transformation executed by the Rz-Gate using
the Bloch sphere [11]

1.4.5 I, S and T-gate
The I, S, and T-gates can be viewed as specific instances of the more general Rϕ
gate.

The I-gate, often known as the Identity gate, has no specific transformative
effect. Its matrix corresponds to the Identity matrix itself. It holds significance
due to its utility in various calculations and also for its role in specifying a "null"
operation when dealing with physical hardware constraints.

The S-gate, on the other hand, is a particular case of the Rϕ gate, with ϕ equal
to π/2. In other words, it induces a π/2 radians rotation around the z-axis. Unlike
some other gates, the S-gate is not its inverse, although it remains unitary. The
S-gate and its inverse, known as S-dagger or Sdg, are represented as follows:

S =
C
1 0
0 e

iπ
2

D
, S† =

C
1 0
0 e− iπ

2

D
(1.33)

The S-dagger gate orchestrates a clockwise rotation of the vector by π/2 radians
around the z-axis. The execution of two consecutive S-gate operations is tantamount
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to applying a Z-gate operation. Owing to this relationship, the S gate is also denoted
as the

√
Z-gate.

The T-gate represents a particular instance of the Rϕ gate with ϕ equal to π/4.
It exhibits analogous behavior to the S-gate. The T-gate and its inverse, referred
to as T-dagger or Tdg, can be expressed as follows:

T =
C
1 0
0 e

iπ
4

D
, T † =

C
1 0
0 e− iπ

4

D
(1.34)

Applying four T-gate is equivalent to performing a single Z-gate.

1.4.6 U-gate
The U-gates are parametrized gates. The firsts two U-gates are U1-gate and U2-gate:

U1 =
C
1 0
0 eiλ

D
, U2 = 1√

2

C
1 −eiλ
eiϕ eiλ+iϕ

D
(1.35)

The matrix for the U1-gate is equivalent to the one for the Rϕ-gate.
In fact, every gate introduced can be represented using the U3-gate, which is a

parametrized gate and has the following matrix:

U3(θ, ϕ, λ) =
C
cos θ2 −eiλsin θ2
eiϕsin θ2 eiλ+iϕcos θ2

D
(1.36)

From this, it is possible to observe that both U1-gate and U2-gate derive from
U3-gate, precisely: U1=U3(0,0, λ) and U1=U3(π/2, ϕ, λ)

1.4.7 C-NOT gate
The controlled Pauli-X gate, commonly referred to as the CNOT gate, is a ubiquitous
and indispensable component in quantum circuits. This gate operates on two qubits,
denoted as qubits A and B, within an n-qubit system. In this configuration, one
qubit (designated as qubit B) serves as the target qubit, while the other qubit acts
as the control qubit. When the control qubit A is in the state |1⟩, the CNOT gate
applies a Pauli-X gate (equivalent to a NOT gate) to the target qubit B, resulting
in its state being flipped. Conversely, if qubit A is in the state |0⟩, no operation is
performed on qubit B.

It is possible to implement any arbitrary unitary operation on an n-qubit system
using solely CNOT gates and single-qubit unitary gates. Numerous multi-qubit
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gates are currently implemented in experimental quantum systems using CNOT
gates in combination with other single-qubit gates. For instance, a controlled
Pauli-Z gate can be realized through the application of two Hadamard single-qubit
gates and one CNOT gate. [12]

To provide a more in-depth explanation, let’s start by saying that a quantum
system consisting of two qubits, denoted as A and B (also referred to as a two-qubit
register), exists within a 4-dimensional Hilbert space, denoted as HA ⊗ HB. The
computational basis of this space is:

(|00⟩ = |0⟩A ⊗ |0⟩B , |01⟩ = |0⟩A ⊗ |1⟩B , |01⟩ = |1⟩A ⊗ |0⟩B , |11⟩ = |1⟩A ⊗ |1⟩B)
(1.37)

Let’s now define U as a general unitary operator 1 acting on a single qubit, a
controlled-U operator operates on the Hilbert space HA ⊗ HB as follows: one qubit
(designated as qubit A) serves as the control qubit, while the other qubit acts as
the target qubit. When the control qubit A is in the state |1⟩, the operator U is
applied to the target qubit B. Conversely, if qubit A is in the state |0⟩, no operation
is performed on qubit B. If U represents the Pauli-X operator, then the CNOT
gate corresponds to the controlled-X operator (also denoted as c-X), with qubit A
acting as the control and qubit B as the target. Thus, the action of the CNOT
gate on the two-qubit register is described as follows:

CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ , CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩
(1.38)

The matrix representing the CNOT gate is:

CNOTAB =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.39)

The action of the CNOT gate can be described by:

∀x, y ∈ {0, 1},CNOT |xy⟩ = |x, x⊕ y⟩ (1.40)

1A unitary operator is a linear operator whose inverse equals its adjoint. It may be conceptu-
alized as a linear transformation which is bijective and length-preserving.
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where ⊕ is the XOR operator, which is the exclusive OR, this operator is a
logical operation that returns true (1) if and only if one of the two input values is
true, otherwise it returns false (0).

Figure 1.12: C-NOT gate representation in a circuit [13]

1.5 Quantum Circuits
The core of quantum computing is the quantum circuit, a foundational construct
that orchestrates coherent quantum operations on quantum bits of information,
notably qubits.

A quantum circuit is a meticulously orchestrated sequence, comprising quantum
gates, measurements, and resets, potentially contingent on concurrent real-time
classical computation. The universal quality of a set of quantum gates is exemplified
when it can proficiently approximate any unitary transformation of qubits to a
high degree of precision through a sequence of its constituent gates. Consequently,
any quantum program can be articulated through a series of quantum circuits,
complemented by classical computations operating in close temporal proximity.

1.5.1 Evolution of Quantum circuits
The history of quantum computing traces back to Richard Feynman’s lectures on the
potential advantages of utilizing quantum systems for computation in 1982, during
a class at the MIT Computer Science and Artificial Intelligence Laboratory where
he discussed the idea of "a universal quantum simulator". Feynman advocated
for leveraging quantum mechanical phenomena to execute computations that
would be unfeasible or unattainable using classical computers. Subsequently, this
concept evolved into the field of quantum computing. Feynman’s seminal ideas
and contributions persist in shaping the landscape of quantum computing, and he
is frequently regarded as one of its founding figures. In the same year, Feynman
also published a paper titled "Simulating Physics with Computers," in which he
underscored the necessity of quantum computers for simulating quantum systems.
Feynman emphasized that quantum simulations necessitate physical quantum
systems, a concept now recognized as one of the primary objectives of quantum
computers. The limitations of conventional classical simulations stem from the
insufficient accessibility of states, highlighting the unique capability of quantum
computers to address this challenge effectively.
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Feynman proposed utilizing controllable quantum environments for analog
quantum computations, particularly for simulating complex systems that involve
many-body interactions. While simulating a single electron is relatively straightfor-
ward, the complexity escalates exponentially with the number of electrons involved
due to the increasing number of possible configurations. For instance, simulating
the binding of a potential drug molecule to a receptor entails considering a vast
number of combinations, rendering conventional computational methods compu-
tationally expensive. In his keynote address, Feynman explores the simulation of
quantum physics using computers, considering various computing systems. He
emphasizes the importance of reversible computation and introduces a rule for
simulation, stating that the number of computer elements required should be
proportional to the space-time volume of the physical system. Feynman outlines
the concept of a new quantum mechanical computer capable of simulating any
quantum system, including the physical world, and poses questions regarding the
intersimulatability of quantum systems and the existence of universal quantum
simulators. He suggests that linear operators on a two-state quantum system could
serve as a basis for simulating any quantum system, although this remains open for
further exploration. Thus, Feynman’s approach highlights the potential of quantum
computing to address such computational challenges efficiently. [14]

Subsequently, in 1984, Albert introduced the concept of a "self-measuring
quantum automaton" capable of tasks beyond classical computing capabilities,
although the machine’s specifications remained largely unspecified. However, in
1985, Deutsch is credited with the development of the first clearly defined quantum
computing system, albeit its feasibility was questioned. Meanwhile, Bernstein
and Vazirani’s work in the early 1990s opened up the field of quantum computing
to the theoretical computer science community, establishing quantum complexity
theory and enabling the formal study of quantum algorithms and operations akin to
classical algorithms. Simon’s 1993 description of an oracle problem showcased the
exponential speedup of quantum computers over classical ones, while Shor’s 1994
quantum algorithm for efficient factorization of large numbers ignited widespread
interest in the field and concern among cryptography experts. Notably, in the early
1980s, Weisner and Bennett explored the concept of quantum key exchange, offering
a potential solution to security systems compromised by computationally feasible
factorization. Finally, in 1998, UC Berkeley demonstrated the first functional
two-qubit nuclear magnetic resonance computer, marking significant progress in
quantum computing technology. [15]

1.5.2 Properties of Quantum Circuits
In the process of constructing quantum circuits, various properties come into play,
aiding in the assessment of the circuit’s "magnitude" and its feasibility for execution
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on a quantum device susceptible to noise. Certain properties, such as the number
of qubits, offer a straightforward grasp, while others, like circuit depth and the
count of tensor components, demand a more detailed elucidation. Starting from
the number of qubits, it depends on the width of the circuit, however for more
articulated circuits with classical registers, and classically controlled gates, this
equivalence is no more satisfied.

A notably significant property of a quantum circuit is referred to as circuit
depth. The circuit’s depth serves as a metric for quantifying how many "layers"
of quantum gates are concurrently executed, encompassing the completion of
the circuit’s defined computation. This property holds particular relevance since
the execution of quantum gates consumes time, making the circuit’s depth an
approximate indicator of the time quantum computing resources will require to
carry out the circuit. Therefore, the circuit’s depth is a pivotal criterion employed
to assess the feasibility of running a quantum circuit on a given quantum device.
Mathematically, the depth of a quantum circuit can be defined as the longest path
within a directed acyclic graph (DAG).

1.5.3 Quantum Circuit representation

Quantum circuits serve as direct analogs to classical computers, employing wires
to connect gates that manipulate qubits. Notably, the transformations carried
out by these gates are inherently reversible, distinguishing them significantly from
classical computing paradigms. Circuit descriptions utilize simplified diagrams to
depict connections, with single wires representing the transmission of quantum
states between operations. The physical medium of transmission, whether a wire
or optical channel, is of no consequence. Gates and unitary operations on qubits
are represented by boxes, maintaining an equal number of input and output qubits
due to the reversibility of transformations. Measurement, denoted by a box with
a symbolic device, typically entails projective measurement in the computational
basis, unless specified otherwise, allowing for the introduction of ancilla systems 2.
[16]

2an ancillary system refers to an auxiliary or supporting system utilized alongside the primary
system to perform specific operations or measurements.
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Figure 1.13: Example of a graphical representation of a quantum circuit [11]
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Chapter 2

Classical methods for Option
Pricing

2.1 Option Pricing
Option pricing theory involves estimating the value of an options contract, which is
a derivative contract, by assigning a price, referred to as a premium. This premium
is determined based on the calculated probability that the contract will finish in
the money at expiration. In the money means that the exercising of the option
produces value. The option pricing theory offers an assessment of an option’s fair
value, which traders utilize in their strategic decision-making.

The models employed for pricing options take into consideration various factors,
including the current market price, strike price, volatility, interest rate, and time
to expiration. Some commonly utilized models in this context include the Black-
Scholes model, binomial option pricing model, and Monte Carlo simulation. These
models enable traders to make informed decisions by quantifying the potential
value of options based on market conditions and other relevant parameters.

2.2 Black-Scholes
The Black-Scholes model, or alternatively referred to as the Black-Scholes-Merton
(BSM) model [17], conceived in 1973, continues to be esteemed as one of the most
effective methods for valuing an options contract, it stands as a cornerstone in
contemporary financial theory. It relies on five key variables:

• volatility

• underlying stock price
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• time

• strike price

• risk-free rate

In the realm of stock market derivatives, where speculation is notably pronounced,
precise option pricing plays a pivotal role in eliminating arbitrage opportunities.
This model is specifically applied to determine the valuation of European options,
signifying that the option can solely be executed on its expiration date.

The Black-Scholes model posits that financial instruments, like stocks or futures
contracts, will exhibit a lognormal distribution of prices through a random walk
characterized by constant drift and volatility. Leveraging this assumption and
considering other crucial factors, the equation deduces the price of a European-style
call option. As has been already said, the BSM equation necessitates five key
variables: volatility, the underlying asset’s price, the option’s strike price, the time
remaining until the option expires, and the risk-free interest rate. Armed with
these variables, options sellers can theoretically establish rational prices for the
options they offer.

Moreover, the model anticipates that the pricing of heavily traded assets adheres
to a geometric Brownian motion marked by a consistent drift and volatility [18].
When applied to a stock option, the model integrates the stock’s persistent price
fluctuations, the time value of money, the option’s strike price, and the time
remaining until the option expires.

The Black-Scholes model is underpinned by specific assumptions:

• No Dividends: The option’s lifespan is characterized by the absence of
dividend payouts.

• Random Markets: Market movements are deemed unpredictable, following
a stochastic process.

• Zero Transaction Costs: No costs are associated with purchasing the option.

• Known and Constant Factors: The risk-free rate and the underlying asset’s
volatility remains constant and are known.

• Normal Distribution: Returns on the underlying asset conform to a normal
distribution.

• European Option: The option is of the European type, allowing exercise
only at its expiration.
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While the original Black-Scholes model initially overlooked the impact of divi-
dends during the option’s life, adaptations often incorporate dividend considerations
by calculating the ex-dividend date value of the underlying stock. Moreover, many
market makers are adjusting the model accounting for options that can be exercised
before reaching expiration.

2.2.1 The Black-Scholes formula
The price of a call option on a dividend-free stock at time t prior to the option’s
expiration date can be expressed as follows:

C = SN(d1) − PV (K)N(d2) (2.1)

Where:

d1 =
ln S

PV (K)

σ
√
T

+ σ
√
T

2 (2.2)

d2 = d1 − σs
√
T (2.3)

where:

• C is the call option price

• S is the current stock (or other underlying) price

• K is the strike price

• r is the Risk-free interest rate

• T is the number of years left to expiration

• N(d) denotes the cumulative normal distribution function, represented in
Figure 2.1, it represents the probability that a normally distributed random
variable will assume a value less than d

• σ is the volatility

• PV (K) represents the present value (or price) of a risk-free zero-coupon bond
that pays the strike price K upon the expiration date of the option
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Figure 2.1: Representation of the cumulative normal distribution function for a
given d [19].

The Black-Scholes Option Pricing Model requires only five input parameters
to price a call option: the stock price, the strike price, the exercise date, the
risk-free interest rate (for computing the present value of the strike price), and the
volatility of the stock. Notably, it does not require knowledge of the probabilities
as in the Binomial Option Pricing Model 2.3, nor does it necessitate knowledge
of the expected return on the stock. This is because the expected return of the
stock is already embedded in its current price, which is the discounted value of
its future payoffs. By relying primarily on the stock’s volatility, which is easier
to measure and forecast than its expected return, the Black-Scholes formula can
achieve high precision in option pricing. Additionally, the Black-Scholes formula
applies to European options, but can also be used to price American options on
non-dividend-paying stocks, as they generally have the same price as their European
counterparts [19].

2.2.2 Volatility skew
The Black-Scholes model posits that stock prices adhere to a lognormal distribution
and, primarily due to the inherent limitation of asset prices, they cannot be
negative and are bounded by zero. In reality, asset prices often exhibit substantial
right skewness and a measure of kurtosis (fat tails). This suggests that high-risk
downward movements occur more frequently in the market than predicted by a
normal distribution. While the assumption of lognormal underlying asset prices in
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the Black-Scholes model would entail similar implied volatilities for each strike price,
a shift occurred after the 1987 market crash. Implied volatilities for at-the-money
options have consistently been lower than those for options further out of the
money or deep in the money. This peculiar trend can be attributed to the market
factoring in a heightened likelihood of significant downward volatility moves.

This phenomenon has given rise to what is known as the volatility skew. Graphing
implied volatilities for options with the same expiration date reveals a distinctive
smile or skewed shape. Consequently, the Black-Scholes model proves less efficient
in accurately calculating implied volatility, prompting the use of adjustments or
alternative models to better capture the intricate dynamics of market volatility.

2.2.3 Benefits of the Black-Scholes method
The Black-Scholes model stands as a beacon of success in the financial realm, em-
braced by numerous professionals for its manifold advantages. Below are delineated
some of these merits:

• Theoretical Framework: The Black-Scholes model furnishes a robust theo-
retical foundation for option pricing. This affords investors and traders the
ability to ascertain the equitable value of an option, by employing a structured
and proven methodology.

• Risk Management Capability: Armed with the theoretical value of an
option, investors leverage the Black-Scholes model to adeptly navigate and
control their risk exposure across diverse assets. It proves invaluable not only
for evaluating potential returns but also for discerning weaknesses within
portfolios and areas of investment deficiency.

• Portfolio Optimization: The Black-Scholes model serves as a compass
for portfolio optimization, offering insights into the expected returns and
associated risks tied to different options. This empowers investors to make
judicious decisions aligned with their risk tolerance and pursuit of profit.

• Market Efficiency Boost: The widespread use of the Black-Scholes model
contributes to heightened market efficiency and transparency. Traders and
investors, are well-versed in its principles and find themselves better equipped
to price and trade options. This, in turn, simplifies the pricing process and
engenders a more innate understanding of price derivation.

• Pricing Consistency: The Black-Scholes model enjoys widespread accep-
tance and application within the financial industry, fostering a harmonious
and consistent approach to pricing across diverse markets and jurisdictions.
This shared standardization streamlines the pricing landscape, promoting
greater cohesion and efficiency.
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2.2.4 Limitations of the Black-Scholes method
While the Black-Scholes model enjoys widespread use, it is not without its limita-
tions. Some of these drawbacks are outlined below:

• Limited Applicability: The Black-Scholes model’s utility is confined to pric-
ing European options and fails to consider the possibility of early exercise for
U.S. options before the expiration date, thereby limiting its overall usefulness.

• Rigid Cashflow Handling: The model assumes constancy in dividends
and risk-free rates, a simplification that may not hold in the dynamic reality.
Consequently, the Black-Scholes model may lack the flexibility to accurately
depict the future cash flows of an investment due to its inherent rigidity.

• Assumption of Constant Volatility: The model relies on the assumption
that volatility remains constant throughout the option’s life. In practice, this
is often not the case, as volatility tends to fluctuate with changes in supply
and demand dynamics.

• Propagation of Misleading Assumptions: The Black-Scholes model
incorporates various assumptions, including the absence of transaction costs
or taxes, a constant risk-free interest rate across all maturities, permission for
short selling of securities with the use of proceeds, and the absence of riskless
arbitrage opportunities. Each of these assumptions has the potential to lead
to pricing outcomes that deviate from actual results, introducing a level of
uncertainty and potential misguidance.

2.3 Binomial Option Pricing Model
In a fiercely competitive market, ensuring the absence of arbitrage opportunities
mandates that assets with identical payoff structures command identical prices.
As mentioned before, the valuation of options poses a formidable challenge, and
divergences in pricing create openings for arbitrage. While the Black-Scholes model
persists as one of the most widely employed tools for option pricing, it is not
without its limitations, as seen in the previous Section.

The binomial option pricing model assesses option values through an iterative
process that incorporates multiple periods, particularly when evaluating American
options [20].

The model determines option prices by assuming that, at the end of the subse-
quent period, the stock price can only take on two distinct values. This simplifying
assumption allows us to illustrate the fundamental insight of Black and Scholes,
namely that option payoffs can be perfectly replicated by creating a portfolio
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consisting of a risk-free bond and the underlying stock. Additionally, we will
observe that the model can offer a high degree of realism when considering stock
price fluctuations over very short time horizons, the binomial model is favored in
practical applications for its intuitive nature and frequent usage.

2.3.1 Binomial Option Pricing Model calculations
The binomial option model consistently applies identical probabilities of success and
failure throughout each iteration until the option reaches its expiration. Assessing
the value of American options and embedded options, the binomial tree proves to
be an invaluable tool. While constructing the tree mechanically poses no challenge,
the difficulty lies in defining the range of values the underlying asset can attain
within a given timeframe. Unfortunately, the binomial tree model accommodates
only two possible values, a limitation that is unrealistic since assets can, in reality,
assume a multitude of values within a defined range.

Assumptions:

• The risk-free rate does not change

• There are no returns on the underlying stock

• At any given point in time, the price can only move one of two ways: either
up or down (the term "binomial" refers to this)

• As a result, there are no transaction fees or taxes in today’s market

• Investors are risk averse; they do not bother about taking risks

• Throughout the period, the discount factor (interest rate) remains constant

Let us consider a scenario where the present stock price is denoted as S, and in
the subsequent period, the stock price can either increase to Su or decrease to Sd.
Additionally, let the risk-free interest rate be represented as rf . We aim to calculate
the price of an option, valued at Cu, if the stock price increases and Cd if the stock
price decreases. To determine the value of the option today, it is necessary to find
∆ which represents the number of shares of stock in the portfolio, and B, which
represents the bonds, ensuring that the payoff of the replicating portfolio aligns
with the payoff of the option in both upward and downward movements of the
stock. To do this the following formulas are used:

Su∆ + (1 + rf )B = Cu (2.4)
Sd∆ + (1 + rf )B = Cd (2.5)
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Figure 2.2: Representation of the upward-downward scenario [19]

The Replicating Portfolio formula in the Binomial Option Pricing model is
represented by the following formulas:

∆ = Cu − Cd
Su − Sd

(2.6)

B = Cd − Sd∆
1 + rf

(2.7)

where:

• Cu is the value of the option in the upward situation

• Cd is the value of the option in the downward situation

• Su is the Stock value in the upward situation

• Sd is the Stock value in the downward situation

• ∆ formula can also represent the sensitivity of the option’s value to changes
in the stock price

After knowing the values of ∆ and B of the replicating portfolio, is possible to
calculate the value of the Call option today through the following formula:

C = S∆ +B (2.8)

Even if the model appears very simple, it is possible to apply it in different
situations, due to the fact that is quite powerful and could be used to evaluate any
security whose payoff depends on the stock price. [19]
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2.4 Monte Carlo
The Monte Carlo method is a stochastic approach involving the random sampling
of inputs to address statistical problems, while a simulation serves as a virtual
representation of a given problem. The Monte Carlo simulation seamlessly in-
tegrates these two concepts, creating a potent tool that enables the generation
of a distribution or array of results for statistical problems. This is achieved by
repeatedly sampling numerous inputs, providing a comprehensive and probabilistic
perspective on the potential outcomes of the problem at hand.

A Monte Carlo simulation is a versatile method that explores a broad spectrum
of possibilities, aiding in the reduction of uncertainty. Its flexibility is a key strength,
enabling the variation of risk assumptions across all parameters and facilitating
the modeling of a diverse range of potential outcomes. This approach allows for
the comparison of multiple future scenarios, offering the ability to customize the
model for different assets and portfolios under consideration. In essence, the Monte
Carlo simulation provides a dynamic and comprehensive tool for assessing and
managing risk by incorporating a wide array of potential outcomes and adjusting
key parameters as needed.

Monte Carlo simulations are used in option pricing by generating numerous
random paths for the underlying asset’s price, each path associated with a specific
payoff. These payoffs are subsequently discounted back to the present, and the
average is computed to determine the option price [21]. This methodology is also
employed in pricing fixed income securities and interest rate derivatives. Monte
Carlo simulation finds its most extensive applications in portfolio management and
personal financial planning. In these contexts, the simulation helps in assessing the
potential performance of a portfolio by considering various factors and uncertainties.
By simulating numerous possible market scenarios and their impacts on the portfolio,
investors can gain insights into the range of potential outcomes and make more
informed decisions. This makes the Monte Carlo simulation a valuable tool for
managing risk and optimizing financial strategies in the dynamic landscape of
investment and personal finance.

2.4.1 Monte Carlo simulation procedure
A broad category of pricing problems for European-style derivatives involves the
evaluation of the following expectation functional.

Et[f(Z(T ; t, z))] (2.9)

Where:
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• Z is the stochastic process. It characterizes the price dynamics of one or more
underlying financial variables, such as asset prices and interest rates, following
the corresponding risk-neutral probability distribution.

• z is the value of Z at time t

• f is the function that defines the value of the derivative at the expiration time
T

• t is the time

• T is the expiration time

The simulation procedure entails the generation of random variables with a
specified probability density. Utilizing the law of large numbers, the average of
these generated values is calculated, serving as an estimate for the expected value
of the random variable. This approach allows for the approximation of complex
mathematical expectations by leveraging the principles of probability and statistical
sampling.

Considering a Brownian motion with drift rate µ and volatility σ:

dxt = µdt+ σdBt (2.10)

Here Bt is a Standard Brownian motion with zero drift rate and unit variance rate.
The Euler discretized scheme is given by:

xt+∆t = xt + µ∆t+ σ(Bt+∆t −Bt) (2.11)

Where:

• σ is a constant

• O(∆t) is the approximation of the stochastic differential equation for xt
• Bt+∆t −Bt is a random increment. It has mean equal to 0, and variance equal

to ∆t. It can be simulated by random samples of
√

∆tϵ, where ϵ is a sample
from a standard normal distribution.

The Monte Carlo procedure for the European Call option involves more specific
steps. First of all, it is necessary to compute the expected payoff of the call option
at expiration, based on the information on hand at time t, which is equal to:

Et[max(ST −X, 0)] (2.12)

Then discount it to the present value at time t:

e−r(T−t)Et[max(ST −X, 0)] (2.13)
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Hypothesizing that the stock price St follows the geometric Brownian movement,
where the price dynamics, under the risk neutral measure is:

dSt
St

= (r − q)dt+ σBt (2.14)

or

d lnSt = (r − q − σ2

2 )dt+ σdBt (2.15)

Where:

• σ is the volatility

• r is the risk free rate

• q is the dividend yield

The Euler approximation gives the following result:

ln St + ∆t
St

= lnSt+∆t − lnSt = (r − q − σ2

2 )∆t+ σϵ
√

∆t (2.16)

The random asset price ratio is related to the standard normal random variable
ϵ through:

St + ∆t
St

= e(r−q− σ2
2 )∆t+σϵ

√
∆t (2.17)

The price ratio ST/St can be composed as the product of price ratios over
successive time steps, where T = N∆t. If N are the time steps between the actual
time t and the expiration time T , then the ∆t = (T−t)

N
. The numerical calculations

procedure are repeated iteratively N times to simulate the price route from St to
ST = St+∆t.

The ith result from the simulation of the call values ci, which coincides with
the terminal asset price S(i)

T is obtained with the discounted expectation approach
under the risk neutral measurement:

ci = e−r(T−t)max(S(i)
T −X,0) = (2.18)

= e−r(T−t)max(Ste(r−q− σ2
2 )(T−t)+σϵ

√
∆t

NØ
j=1

ϵ
(i)
j −X,0) (2.19)

After conducting the simulation multiple times, as described above, and with a
sufficiently large number of runs, the expected call value is determined by calculating
the sample average of the simulated call values obtained in the sample simulation.
[13]
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Chapter 3

Option Pricing using
Quantum Computers

Here, we delineate the fundamental elements required to price options on a gate-
based quantum computer. The essential components consist of:

1. Representing the probability distribution, denoted as P, which characterizes
the evolution of random variables (which represents the price of the option’s
underlying asset) X = {X1, X2, . . . , XN} within the quantum computer;

2. Creating the circuit for computing the payoff function, f(X);

3. Determining the expectation value of the payoff, EP[f(X)].

We use Quantum Amplitude Estimation [22] for computing the expectation value
of a function involving random variables. After introducing QAE, we elaborate
on the process of loading probability distributions into a quantum register. This
is followed by the construction of the circuit for computing the payoff and the
configuration of Amplitude Estimation to gauge the expected value of the payoff.
With these steps completed, we’ll have the necessary components to price options
on a quantum computer.

3.1 Quantum Amplitude Estimation
The advantage of the Quantum Amplitude Estimation in option pricing is related
to the fact that it offers an asymptotic quadratic speed-up in comparison to the
classical Monte Carlo simulation [23]. Monte Carlo methods in option pricing
typically demand substantial computational resources to yield accurate estimates,
especially for intricate options. Given the widespread use of options in the finance
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industry, enhancing the convergence of these methods can significantly influence
the operational efficiency of a financial institution.

3.1.1 Quantum Amplitude Amplification
In quantum computing, amplitude amplification is a technique akin to boosting
the probability of success in classical randomized algorithms. The probabilistic
approach enhances the likelihood of success by a consistent increment on each
iteration, whereas amplitude amplification boosts the amplitude of success by a
comparable margin with each iteration.

Suppose a unitary operator A acting on a register of (n+ 1) qubits as:

A |0⟩n+1 =
√

1 − a |ψ0⟩n |0⟩ +
√
a |ψ1⟩n |1⟩ (3.1)

Where a ∈ [0,1] is unknown and |ψ0⟩n and |ψ1⟩n are normalized states. The
amplitude estimation enables to estimate a, with high probability. Let consider
a Boolean function χ : X → 0,1, in which x is considered good if χ(x) = 1; a
represents the probability of producing a good element when measuring A |0⟩. If
we iterate the process of executing A, measuring the output, and validating the
result using ψ0, we can anticipate an average of 1/a repetitions before a solution is
discovered.

Amplitude amplification is a method facilitating the discovery of a favorable
solution x within an anticipated number of iterations of A and its inverse, which
scales proportionally to 1/

√
a. This expectation holds under the condition that

algorithm A does not involve any measurements.
This concept represents an extension of Grover’s search algorithm, where A

was constrained to generate an equal superposition of all elements in X, with the
guarantee that a single specific x existed satisfying χ(x) = 1.

Since amplitudes are related to the square roots of probabilities, it is adequate
to iterate the amplitude amplification process approximately 1/

√
a times to achieve

success with a high probability. Analogous to how repeating a classical algorithm
multiple times increases the likelihood of success, amplitude amplification aims to
enhance the probability of being in a desired subspace of a Hilbert space [22].

Let’s denote the Hilbert space representing the quantum system’s state space
as H. Each Boolean function χ : Z → {0, 1} partitions H into two subspaces: a
"good" subspace spanned by basis states |xi⟩ ∈ H where χ(x) = 1, and a "bad"
subspace which is the orthogonal complement of the good subspace.

Every pure state |Υi⟩ in H can be uniquely decomposed into a sum of two
projections: |Υ1i⟩ onto the good subspace and |Υ0i⟩ onto the bad subspace. The
probability of measuring a "good" state from |Υ1i⟩ is denoted as aΥ, and the
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probability of measuring a "bad" state is denoted as bΥ. The probabilities are
defined by the following formulas:

aΥ = ⟨Υ1|Υ1⟩ (3.2)
bΥ = ⟨Υ0|Υ0⟩ (3.3)

Due to the fact that |Υ1⟩ and |Υ0⟩ are orthogonal, we obtain that aΥ + bΥ = 1.
Now, consider a quantum algorithm A acting on H without any measurements,

transforming the initial zero state |0⟩ into |Ψi⟩ = A |0⟩. The process of amplification
involves repeatedly applying a unitary operator Q, defined as:

Q = Q(A, ψ0) = AS0A†Sψ0 (3.4)

Here, the operator Sψ0 selectively changes the sign of the amplitudes of "good"
states:

|xi⟩ →

− |xi⟩ if χ(x) = 1
|xi⟩ if χ(x) = 0

(3.5)

while S0 changes the sign of the amplitude only if the state is the zero state |0⟩.
Notably, Q is well-defined because it’s assumed that A has an inverse, since it
does not use any measurement. The effectiveness of the operator Q lies in its
straightforward impact on the subspace HΨ, spanned by the vectors |Ψ1i⟩ and |Ψ0i⟩.
In essence, Q operator serves as a mechanism to iteratively enhance the probability
amplitudes associated with the desired subspace, akin to how classical algorithms
repeat to boost success probabilities.

Q |Ψ1⟩ = (1 − 2a) |Ψ1⟩ − 2a |Ψ0⟩ (3.6)
Q |Ψ1⟩ = 2(1 − a) |Ψ1⟩ + (1 − 2a) |Ψ0⟩ (3.7)

Let’s now consider the orthogonal complement H⊥
Ψ of HΨ within H. Given

that the operator AS0A−1 acts as the identity on H⊥
Ψ, the operator Q behaves

as SΨ0 within H⊥
Ψ. Consequently, Q2 functions as the identity on H⊥

Ψ, and every
eigenvector of Q in H⊥

Ψ possesses eigenvalues of either +1 or −1. Consequently,
comprehending the impact of Q on an arbitrary initial vector |Υ⟩ within H merely
requires assessing its effect on the projection of |Υ⟩ onto HΨ.

Since the operator Q is unitary, it features an orthonormal basis comprising two
eigenvectors of Q:

35



Option Pricing using Quantum Computers

|Ψ±⟩ = 1
2( 1√

a
|Ψ1⟩ ± ı√

1 − a
|Ψ0⟩) (3.8)

given 0 < a < 1 and ı =
√

−1. The corresponding eigenvalues are as follows:

λ± = exp±ı2θa (3.9)

in this formula the θa angle is defined as follow:

sin2 (θa) = a = ⟨Ψ1|Ψ1⟩ (3.10)

where 0 ≤ θa ≤ π/2.
We can now express |Ψ⟩ = A |0⟩ in terms of the eigenvector basis, something

that will result significantly useful later.

A |0⟩ = |Ψ⟩ = −ı√
2

(exp−ıθa |Ψ+⟩ − exp−ıθa |Ψ−⟩) (3.11)

3.1.2 Adding Quantum Phase Estimation
The standard QAE uses Quantum Phase Estimation (QPE), which is a pivotal
algorithm in quantum computing, integral to estimating the phase of a unitary
operator acting on a quantum state. It leverages the unique ability of quantum
computers to manipulate superpositions of states. By utilizing quantum gates, QPE
estimates the phase, providing a quantum representation that can be translated into
a classical one. This algorithm finds significance in various quantum computational
tasks, including integer factorization and optimization problems. QPE’s essence lies
in its capability to extract phase information efficiently, underscoring its importance
in advancing quantum algorithms and applications.

To estimate a, we make good use of the properties of the operator Q =
Q(A, ψ0) = AS0A†Sψ0 . The amplitudes of |Ψ1⟩ and |Ψ0⟩ as functions of the
number of applications of Q (which are also called quantum samples or oracle
queries), are sinusoidal functions, both of period π/θa. Recall that a = sin2(θa),
and thus an estimate for θa also gives an estimate for a.

To estimate this period, we use Fourier analysis like Shor does for a classical
function in his factoring algorithm [24]. This approach can also be viewed as an
eigenvalue estimation and is best analyzed based on the eigenvectors of the operator
at hand. As explained above, the eigenvalues of Q on the subspace spanned by
|Ψ1⟩ and |Ψ0⟩ are λ+ = ei2θa and λ− = e−i2θa . Thus we can estimate a simply
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by estimating one of these two eigenvalues. Errors in the estimation of θ̃a for θa
translate into errors in the estimation of ã = sin2(θ̃a) for a.

In this case, m ancilla qubits are used, after being set in equal superposition
through Hadamard Gates (H), to represent the outcome, it establishes the number
of quantum samples as M = 2m and employs geometrically increasing powers
of Q controlled by the ancillas. After applying F †, an inverse Quantum Fourier
Transform (QFT), their state is measured, yielding an integer y ∈ {0, . . . ,M − 1}.
This integer is then mapped to an angle åθa = yπ/M that results in a evaluation of
a:

ã = sin2
1åθa22

∈ [0, 1]. (3.12)

The complete circuit for Amplitude Estimation is illustrated in Figure 3.1. The
estimator ã, with a probability of at least 8/π2, meets the condition:

|a− ã| ≤
2π

ñ
a(1 − a)
M

+ π2

M2 = O(M−1) (3.13)

Where O(M−1) is ϵ, which is the estimation error. The probability of success
can be significantly enhanced, nearing 100%, through iterative repetitions of the
process, and by employing the median estimate. This denotes a quadratic enhance-
ment compared to the convergence rate of classical Monte Carlo methods, which
typically follows O(

√
M). These estimates, denoted as åa, are constrained within

the grid
î
sin2

1
yπ
M

2
: y = 0, . . . , M2

ï
across the potential measurement outcomes of

y. Alternatively, it is feasible to employ Maximum Likelihood Estimation (MLE)
on the observations for y. For a given θa, the probability of observing |yi⟩ when
measuring the ancilla qubits is given by:

P[|y⟩] = sin2 (M∆π)
M2 sin2 (∆π) (3.14)

Here, ∆ represents the minimum distance on the unit circle between the angles θa
and πåy/M , where åy is defined as åy = y, and y ≤ M/2 and åy = M/2−y. By utilizing
a set of y-measurements, this can be leveraged within a MLE framework to derive an
estimate of θa that is not confined to discrete grid points. Moreover, it facilitates the
utilization of the likelihood ratio method to establish confidence intervals. In these
evaluations, likelihood ratio-based confidence intervals consistently demonstrated
superior reliability compared to alternative methods, such as the observed Fisher
information. Consequently, we refer to the canonical QAE incorporating MLE
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on y-measurements for enhanced estimate precision and likelihood ratio-based
confidence intervals. [25]

Figure 3.1: Quantum Circuit for Amplitude Estimation [22]

QAE without QPE

In recent years, a method to perform QAE without relying on quantum phase
estimation has been proposed, thereby reducing the required number of qubits
and circuit depth while maintaining a quadratic speed-up [26]. We can use the
expression:

QkA |0⟩n |0⟩ = cos((2k + 1)θa) |ψ0⟩n |0⟩ + sin((2k + 1)θa) |ψ1⟩n |1⟩ , (3.15)

where QkA |0⟩ denotes the state resulting from applying the operator QkA to
the initial state |0⟩ |0⟩. By measuring QkA |0⟩ for k = 20, . . . , 2m−1 for a given
value of m and employing maximum likelihood estimation, an approximation for
θa (and thus a) can be recovered. If we define M = 2m−1 as the total number of
Q-applications and consider N shots for each experiment, empirical evidence shows
that the resulting estimation error scales as O(1/(M

√
N)), achieving quadratic

speed-up in terms of M . This idea is the basis of the methods described in Section
4.1.

QAE for the pricing of options

In the context of the options contracts under consideration, the random variables
represent the potential values Si that the underlying asset can assume, along with
the corresponding probabilities pi of those values being realized. For an option
with payoff f , the A operator generates the state.

2n−1Ø
i=0

ñ
1 − f(Si)

√
pi |Si⟩ |0⟩ +

2n−1Ø
i=0

ñ
f(Si)

√
pi |Si⟩ |1⟩ (3.16)
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By comparing this with Equation 3.1, we observe that

a =
2n−1Ø
i=0

f(Si)pi = E[f(S)], (3.17)

This implies that Amplitude Estimation (AE) enables the computation of the
undiscounted price of an option, provided there exists a method to represent the
option’s payoff as a quantum circuit and generate the state described by Equation
3.16. We will delineate then the essential components required to accomplish this
task.

3.2 Distribution loading
The initial component of our option pricing model involves a circuit tasked with
taking a probability distribution implied for potential future asset prices and
transferring it into a quantum register. This process ensures that each basis state
within the register denotes a feasible asset price, while its amplitude signifies the
associated probability. In simpler terms, given an n-qubit register and sets of
asset prices {Si} for i in the range of {0, . . . , 2n − 1} alongside their respective
probabilities {pi}, the distribution loading module generates the following state:

|ψ⟩n =
2n−1Ø
i=0

√
pi |Si⟩n . (3.18)

The analytical formulas employed for pricing options in the Black-Scholes-Merton
(BSM) model rely on the assumption that the underlying stock prices at maturity
adhere to a log-normal distribution with constant volatility. Log-concave probability
distributions, such as the log-normal distribution utilized in the BSM model, can
be effectively loaded onto gate-based quantum computers [27]. The process of
loading the pertinent probability distributions onto quantum registers does not
necessitate excessively complex procedures.

However, the simplified assumptions made in the BSM model often fail to
encompass crucial market dynamics, thereby restricting the model’s relevance in
real-world scenarios. Consequently, accurately estimating the intrinsic value of
option contracts necessitates the proper capture of the market-implied probability
distribution of the underlying asset. To tackle these limitations, Artificial Neural
Networks (ANN) are gaining traction as a method to capture the authentic dynamics
of relevant market parameters without relying on simplified underlying models.
Thus, it becomes crucial to efficiently represent distributions of financial parameters
on a quantum computer, especially those lacking explicit analytical representations.
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The process of loading arbitrary states into quantum systems typically demands
an exponentially large number of gates, rendering it inefficient to model arbitrary
distributions as quantum gates. However, since the distributions of interest often
exhibit a special structure, this limitation can be mitigated by employing quantum
Generative Adversarial Networks (qGAN) [28]. These networks enable us to load a
distribution using a polynomial number of gates. A qGAN can effectively learn the
underlying random distribution X from the observed data samples {x0, . . . , xk−1}
and directly encode it into a quantum state. This generative model involves the
interaction of a discriminator, which is typically a neural network, and a quantum
generator represented by a parametrized quantum circuit. Specifically, the training
of a qGAN involves alternating optimization steps for the discriminator’s parameters
and the generator’s parameters θ. Following the training process, the output of
the generator produces a quantum state.

|ψ(θ)⟩n =
2n−1Ø
i=0

ñ
pi(θ) |i⟩n , (3.19)

that represents the target distribution. The n-qubit state |i⟩ = |in−1, . . . , i0⟩
encodes the integer i = 2n−1in−1 + . . .+ 2i1 + i0 ∈ {0, . . . , 2n − 1} with ik ∈ {0, 1}
for k = 0, . . . , n− 1. The probabilities pi(θ) approximate the random distribution
underlying the training data. It’s important to note that the outcomes of a random
variable X can be mapped to the integer set {0, . . . , 2n−1} using an affine mapping.
Moreover, this approach can be straightforwardly extended to handle multivariate
data, where a separate register of qubits is employed for each dimension. Another
advantageous aspect of using qGANs for loading probability distributions is the
flexibility to tailor the qGAN variational form to construct circuits with short
depths while maintaining an acceptable level of accuracy. This capability enables
the evaluation of the performance of option pricing quantum circuits on near-term
quantum hardware, where resources are still limited. While the use of Artificial
Neural Networks (ANNs) to represent probability distributions incurs a training cost
in both classical and quantum models, this cost can be efficiently amortized during
common business practices such as overnight risk assessment of large portfolios
comprising millions of option contracts. It’s also worth noting that qGAN training
tends to perform better when the initial distribution closely resembles the target
distribution. Therefore, as new market data becomes available and needs to be
incorporated into the probability distribution (e.g., for overnight risk assessment,
where many of the same options as the previous day need to be priced but with
an additional day’s worth of market data), the previously trained qGAN can be
utilized as the initial distribution, leading to faster convergence.
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3.3 Computing Payoff
We derive the expectation value of a linear function f of a random variable X
using QAE by constructing the operator A, such that a = E[f(X)], as illustrated
in Equation 3.17. Once A is implemented, we proceed to prepare the state outlined
in Equation 3.1 and define the Q operator, which relies solely on A and generic
quantum operations. In this section, we present the procedure for creating a
close counterpart of A and demonstrate how to integrate it with AE to compute
the expectation value of f . The payoff function for the option contracts under
consideration exhibits a piece-wise linear structure. Consequently, we only need
to consider linear functions f : {0, . . . , 2n − 1} −→ [0, 1], which can be expressed as
f(i) = f1i+ f0. We can effectively construct an operator that performs.

|i⟩n |0⟩ −→ |i⟩n (cos[f(i)] |0⟩ + sin[f(i)] |1⟩) (3.20)

Controlled Y-rotations are utilized for implementing the linear term of f(i). In
this approach, each qubit j (where j ∈ {0, . . . , n − 1}) in the |i⟩n register serves
as a control for a Y-rotation with an angle of 2jf1 applied to the ancilla qubit.
Meanwhile, the constant term f0 is implemented by rotating the ancilla qubit
without any controls, as illustrated in Figure 3.2. These controlled Y-rotations can
be realized using CNOT and single-qubit gates.

Figure 3.2: Quantum circuit that creates the state in Eq. 3.20.

We proceed to outline the method for computing E[f(X)] for a linear function f
of a random variable X, which is associated with integer values i ∈ {0, . . . , 2n − 1}
each occurring with a probability of pi. To accomplish this, we employ the procedure
detailed previously to generate the operator responsible for mapping q

i
√
pi |i⟩n |0⟩

to

2n−1Ø
i=0

√
pi |i⟩n [cos(cf̃(i) + π

4 ) |0⟩ + sin(cf̃(i) + π

4 ) |1⟩] (3.21)

and f̃(i) is a scaled version of f(i)
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f̃(i) = 2 f(i) − fmin
fmax − fmin

− 1, (3.22)

With fmin = minif(i) and fmax = maxif(i), and c ∈ [0, 1] being an additional
scaling parameter, the relation in Equation 3.22 is selected to ensure that f̃(i) ∈
[−1, 1]. Consequently, sin2[cf̃(i) + π/4] is an anti-symmetric function around
f(i) = 0. With these definitions, the probability of finding the ancilla qubit in the
state |1⟩i, namely

P1 =
2n−1Ø
i=0

pisin
2

3
cf̃(i) + π

4

4
, (3.23)

approximated, for small values of cf̃(i), by

P1 ≈
2n−1Ø
i=0

pi

3
cf̃(i) + 1

2

4
= c

2E[f(X)] − fmin
fmax − fmin

− c+ 1
2 . (3.24)

To obtain this result we made use of the approximation

sin2
3
cf̃(i) + π

4

4
= cf̃(i) + 1

2 + O(c3f̃ 3(i)). (3.25)

With this first-order approximation, the convergence rate of AE is O(M−2/3)
when c is appropriately chosen, it is already faster than classical Monte Carlo
methods. We can restore the O(M−1) convergence rate of AE by utilizing higher
orders implemented with quantum arithmetic. However, the resulting circuits entail
more gates. This trade-off also provides a formula specifying the optimal value of c
to minimize the estimation error incurred when using AE. From Equation 3.25, we
can recover E[f(X)] since AE enables us to efficiently retrieve P1 and because we
possess the values of fmin, fmax, and c.
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Chapter 4

Experiments and Results

This chapter illustrates the experimental part of this thesis. It has been shown
how Amplitude Estimation (AE) is fundamental in the pricing of options using
quantum computers, now we will analyze how the different methods to implement
the amplitude estimation impact the computation of the payoff in terms both of
precision and quantum resources required. In this experimental phase, three of the
most relevant implementations have been analyzed:

• the Iterative Quantum Amplitude Estimation,

• the Maximum Likelihood Quantum Amplitude Estimation

• and the Faster Quantum Amplitude Estimation.

The goal of this experiment is to determine which one fits best the problem of
computing the payoff of an option. To implement a model able to perform the
following computations, the utilization of the Qiskit library was fundamental. Qiskit
enables regular users to develop, simulate, and execute quantum applications across
different platforms, providing a wide range of tools and functionalities for quantum
programming and experimentation [11].

4.1 QAE implementations
QAE has demonstrated superiority over traditional Monte Carlo methods in numer-
ical integration, particularly when tackling high-dimensional integration challenges.
Leveraging QAE enables the estimation of integrals with comparable precision
while extracting fewer samples, thereby substantially curtailing the computational
resources demanded for numerical integration. The efficacy of Monte Carlo methods
is inherently constrained by their reliance on the number of samples employed in
the simulation for approximation accuracy. This methodology grapples with the
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challenge of producing robust sampling from an arbitrary probability density func-
tion. Consequently, Monte Carlo methods often entail significant computational
overhead for achieving high-precision integration, rendering them less expedient for
specific applications.

Recent efforts aim to simplify its quantum counterpart (QAE) by eliminating
its dependence on QPE, with approaches such as Maximum Likelihood Quantum
Amplitude Estimation (MLQAE) and Iterative QAE (IQAE) showing promise.
While these variants offer theoretical advantages, their practical feasibility and
performance warrant empirical validation and comparison.

4.1.1 Iterative Quantum Amplitude Estimation
For IQAE, a quantum computer is used to approximate P [|1⟩] = sin2((2k + 1)θa)
for the last qubit in Qk |0⟩ ⟨0| , with |0⟩ for different powers k. The rationale
behind IQAE is formally presented in Algorithm 2 in Appendix A while its main
subroutine, the one to compute the next value k, is delineated in Algorithm 1.

Given a confidence interval [θl, θu] ⊆ [0, π/2] for θa and a power k of Q, along
with an estimate for sin2((2k+1)θa), we exploit the trigonometric identity sin2(x) =
(1 − cos(2x))/2 to translate our estimates for sin2((2k + 1)θa) into estimates for
cos((4k + 2)θa). However, unlike in Kitaev’s Iterative QPE, we cannot estimate
the sine alone, and the cosine alone is only invertible without ambiguity if we
know the argument is restricted to either [0, π] or [π, 2π], i.e., the upper or lower
half-plane. Thus, the aim is to find the largest k such that the scaled interval
[(4k + 2)θl, (4k + 2)θu]mod2π is fully contained either in [0, π] or [π, 2π]. If this
condition is met, we can invert cos((4k + 2)θa) and enhance our estimate for θa
with high confidence [25]. This implies an upper bound of k, and the core of the
algorithm lies in the procedure used to find the next k given [θl, θu], as formally
introduced in Algorithm 1.

In essence, the key aspect of the algorithm - the FindNextK subroutine - enables
to maximize Fisher Information I on a given iteration in a greedy manner. This is
evident from the observation that any summand of I is proportional to NshotsK

2,
where K := 4k + 2 [25].

4.1.2 Maximum Likelihood Quantum Amplitude Estima-
tion

MLQAE consists of a Grover-like circuit and a Maximum Likelihood estimation
on a classical processor. The fundamental concept behind this algorithm entails
crafting a likelihood function derived from measurements conducted on multiple
quantum states, each subjected to the amplitude amplification process. While
the probability of measuring favorable or unfavorable states hinges on the number
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of amplitude amplification operations, it is noteworthy that the outcomes are
interrelated, as each amplified probability is contingent upon a singular parameter
[26].

The MLQAE algorithm approximates P [|1⟩] for powers k of Q, where k = 2j
and j = 0, 1, 2, . . . ,m−1, for a given m, using Nshots measurements from a quantum
computer for each j. In total, Q is applied Nshots(M − 1) times, where M = 2m.
Previous studies have demonstrated that the corresponding Fisher information
scales as O(NshotsM

2), implying a lower bound of the estimation error scaling as
Ω(1/(

√
NshotsM)). Confidence intervals can be derived from the measurements

using methods such as the likelihood ratio approach.

4.1.3 Faster Quantum Amplitude Estimation
The faster quantum amplitude estimation is an algorithm without phase estimation
that reaches the Heisenberg scaling and the constant factor proportional to 1/ϵ ln 1/ϵ.
Despite the algorithm’s ability to diminish circuit depth compared to the quantum
phase estimation algorithm, the necessary depth still scales as O(1/ϵ), and noise
effects cannot be disregarded. Therefore, investigating methods to mitigate noise
within the algorithm becomes crucial for evaluating its practicality, a task that
remains open for future endeavors [29].

Similar to previous literature, we employ the quantum amplitude amplification
technique 3.1.1. This technique enables us to estimate the values of cos(2(2m+ 1)θ)
for each non-negative integer m directly through measurements, with resulting
estimation errors of cos(2(2m+1)θ) being of the order O(

√
s) with high probability

when s measurements are executed for each m.
The algorithm iteratively estimates the values of cos(2(2m + 1)θ) for each

m = 2j−1 (j = 1, 2, . . . , l). Similar to Kitaev’s iterative phase estimation, if
2(2j + 1)θmod2π are estimated and the estimation errors are within approximately
π/2, then the value of θ can be iteratively estimated with an error of O(1/2l),
achieving Heisenberg scaling. However, determining 2(2j + 1)θ|mod2π solely from
the estimate of cos(2(2j + 1)θ) is ambiguous because it is uncertain whether
2(2j + 1)θ|mod2π lies in [0, π] or [π, 2π].

To resolve this ambiguity, the algorithm employs a two-stage method. In the
first stage, when 2(2j + 1)θ < π, 2(2j + 1)θ|mod2π can be obtained unambiguously
from the estimate of cos(2(2j + 1)θ) using the inverse cosine function. In the second
stage, when the estimate of 2(2j0 + 1)θ is approximately π/2 at iteration j = j0,
2(2j+1)θ might be larger than π, hence 2(2j+1)θ|mod2π cannot be determined solely
from the measurements of cos(2(2j + 1)θ). However, by combining measurements
of cos(2(2j + 2j0 + 1)θ) with those of cos(2(2j + 1)θ), the value of sin(2(2j + 1)θ)
can be estimated using the trigonometric addition formula, enabling determination
of 2(2j + 1)θ|mod2π without ambiguity. As a result, the algorithm can estimate the
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value of θ with an error less than O(1/2l) [29].

4.2 The setting of the experiment
For this experiment we are going to take into consideration a standard European
Call Option, with a strike price K, a stock price that at maturity is equal to ST ,
which is given by a random distribution. The payoff is given by:

max(ST −K; 0) (4.1)

The quantum model is constructed to estimate the expected payoff, through
usage of Amplitude Estimation.

E[max(ST −K; 0)] (4.2)

4.2.1 Uncertainty model
The first step to set the ground for the experiment is the definition of certain
fixed variables. The first one is a certain number of qubits which represents the
uncertainty in the price of the underlying asset. The higher the number of qubits,
the higher the accuracy in the representation of uncertainty. In this case, the
number of qubits is equal to 3. Then all the fixed variables already present in all
the standard models used to price options and fundamental to construct the random
distribution: the initial stock price, the volatility (which measures the dispersion
of the returns), the annual interest rate, and the days to maturity, considering an
annual base.

Variables Values
Number of qubits that represents
uncertainty

3

Stock price (S) 2.0
Volatility (vol) 0.4
Annual interest rate (r) 0.05
Days to maturity (T) 40/365

Table 4.1: Uncertainty model fixed variables

The parameters for the log-normal distribution are subsequently defined: the
mean, the standard deviation, and all the values correlated to them, for example,
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the variance. To load this distribution on a quantum circuit, the lowest and highest
values are set, considering in the middle an equidistant discretization.

The last step of this part is to build up the A for the Amplitude Estimation,
which is the fundamental element to compute the payoff. The fixed number of
qubits in the constructed circuit reflects the inherent uncertainty of the model.
Utilizing this predetermined number of qubits along with the previously computed
value of the log-normal distribution, the circuit is systematically constructed.

4.2.2 Payoff computation
The payoff function, as defined before, is represented by 0 for each value of ST for
which is valid the inequality ST ≤ K, and then increases linearly. To represent and
control the linearity is used a comparator, that flips an ancilla qubit from |0⟩ to
|1⟩.

This is the approximation of the linear part [30]:

sin2 (y + π

4 ) ≈ y + 1
2 for small |y| (4.3)

Hence, when considering a particular scaling factor for approximation, denoted
as capprox ∈ [0,1], and x ∈ [0,1], we contemplate the following:

sin2 (π2 ∗ capprox ∗ (x− 1
2) + π

4 ) ≈ π

2 ∗ capprox ∗ (x− 1
2) + 1

2 , for small capprox
(4.4)

We can readily devise an operator that functions as:
|x⟩ |0⟩ ↣ |x⟩ (cos (a ∗ x+ b) |0⟩ + sin (a ∗ x+ b) |1⟩) (4.5)

using controlled Y-rotations. The concern lies in determining the likelihood of
measuring |1⟩ in the final qubit, which corresponds to sin (a ∗ x+ b). Coupled with
the aforementioned approximation, this facilitates the approximation of the values
of interest. The smaller the choice of capprox, the more precise the approximation
becomes. This is estimating a property scaled by capprox so the number of qubits
m needed for the evaluation, must be adapted consequently. The fixed variables
necessary for this part are the strike price and the approximation scaling capprox
for the payoff function.

Variables Values
Strike price (K) 1.896
Approximation (capprox) 0.25

Table 4.2: Payoff fixed variables
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Then we set up the breakpoints, slopes, offsets, fmin and fmax that are used to
construct the A operator for the Amplitude Estimation and define the number of
qubits of this circuit. Finally, the exact expected value is estimated through the
classical Monte Carlo simulation.

4.2.3 Expected payoff computation

The computation of the expected payoff is the most important part of the ex-
periment, because it is the one, with the delta evaluation, in which the different
kinds of amplitude estimation are implemented. The fixed variables defined for
this problem are the epsilon ϵ, which represents the maximum error accepted, and
alpha α, which determines the confidence interval of our model.

In this case, to construct the circuit representing the problem, the Qiskit Finance
module called EuropeanCallPricing was used [31], giving it the following parameters:
the number of qubits that express the uncertainty, the strike price, the rescaling
factor, which regulates the interval of uncertainty to maximize the efficiency of
the algorithm, the bounds, which define the interval in which the price of the
underlying asset is going to fluctuate, and the uncertainty model used to modulate
the behavior of the asset over time.

The goal of this experiment is to implement different kinds of Amplitude
Estimation with different characteristics and try to determine which is the best
one for this kind of problem analyzing how the results change, changing the way
they are obtained.

IQAE is the most commonly used. Its computation requires the following
parameters: epsilon target which is the target precision of the algorithm and alpha
which determines the confidence interval.

Moreover, the number of shots represents the number of times the circuit is
run to obtain the statistic of the results, and a seed is used to generate random
numbers during the execution of the program, useful to guarantee that the results
of the simulation are deterministic.

MLQAE instead, to be implemented needs an evaluation schedule, that defines
the number of evaluations to be done during the execution of the algorithm.

For his part, the Faster Quantum Amplitude Estimation (FQAE) needs the
following parameters to be implemented: ∆, which represents the maximum allowed
difference between the real amplitude estimation and the estimated one, and the
maximum number of iterations that are permitted during the execution of the
algorithm.

48



Experiments and Results

4.2.4 Delta Evaluation
The delta of a call option is a derived measure used in finance to quantify the
sensitivity of the option’s price to changes in the price of the underlying asset and
for assessing the associated trading risks and opportunities. It is defined as the
change in the option price relative to a unit change in the price of the underlying
asset.

For this kind of option, the delta ranges between 0 and 1. A delta equal to
0 indicates that the option has little or no intrinsic value when the price of the
underlying asset is near the strike price, while a delta of 1 indicates that the option
perfectly tracks the price of the underlying asset, and its value is directly linked to
the price of the underlying asset.

The delta measures the probability that a call option will be in-the-money at
expiration, which means the option has a positive intrinsic value. For instance, a
delta of 0.6 indicates a 60% probability that the option will be in the money at
expiration, assuming all other variables remain constant.

The Delta evaluation is constructed using a comparator circuit and an ancilla
qubit to identify the cases in which the ST > K, that are the cases in which the call
option is exercised. Thanks to the environment chosen to develop the experiment,
it is possible to use the library that contains the EuropeanCallDelta class [32] to
define the quantum circuit associated. After the construction of the circuit and the
setting of epsilon and alpha, the amplitude estimation implementation to estimate
delta is defined. As in the case of the computation of the payoff, in this experiment
was analyzed how the three different kinds of QAE behave.

4.3 Results
The "exact" (baseline) values obtained using the uncertainty model defined before
and the classical MC simulation1 are:

Table 4.3: EXACT VALUES

Exact Expected Value Exact Delta Value
0.1688 0.8098

To analyze the methods more effectively, it was decided to set the total program
executions to 50 runs for each method. To be precise, since the number of shots
for each run is equal to 100, this entails analyzing a sample of 5000 executions.

12 million classical samples were taken
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For the circuit that is used to solve the payoff problem, the number of qubits is
equal to 7, instead for the one solving the delta value the number of qubit used is 6.
These values remain the same for the method and the different situations analyzed.

Table 4.4: ITERATIVE method results: expected payoff calculated with 100
shots and 50 runs

Estimated
Value

∆EV % ∆EV Depth of the
circuit

Average 0.1654 0.0066 4.07% 4008
St.Deviation 7.846 10−3 5.193 10−3 3.200 10−2 522

Table 4.5: MAXIMUM LIKELIHOOD method results: expected payoff calculated
with 100 shots and 50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.1684 0.0069 4.24% 5171
St.Deviation 4.126 10−3 2.521 10−3 1.553 10−2 0

Table 4.6: FASTER method results: expected payoff calculated with 100 shots
and 50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.1687 0.0065 4.02% 4545
St.Deviation 3.852 10−3 3.634 10−3 2.239 10−2 0
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Figure 4.3: Estimated Payoff distribution - scenario with 100 shots and 50 runs

As discerned from the graph in Figure 4.3, which has on the x-axes the estimated
payoff and on the y-axes the frequency, the ML and faster methods manifest a
mean value that most closely converges with the estimate derived from the classical
Monte Carlo simulation method, in contrast to the other methodology (IQAE)
that slightly deviates from the exact defined value, which serves as a reference.
Regarding standard deviation and variance, the iterative method yields a variance
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sufficient to encompass the exact value within the estimated values, albeit notably
high as we can clearly see in Figure 4.2, leading to results that diverge from the
exact value. On the other hand, the ML and faster methods, manage to encompass
the estimated value obtained from the Monte Carlo simulation but with a lower
variance than the iterative case, resulting in the ML method being the best one if
we just consider the estimated payoff accuracy and the variance associated.

In Figure 4.1, the graph distinctly highlights how the values attained through
the iterative method oscillate considerably more, deviating from the mean value.

Conversely, in the case of the ML and faster methods, a substantially lesser
oscillation is discernible, corroborated by the values of their standard deviations.
Here, the iterative method exhibits a standard deviation practically double that
of the faster method. The differences between the values obtained with MC and
those obtained with the different QAE methods are approximately the same for all
three methods, but in the case of the iterative method, there is a higher variance.

From Table 4.4, it becomes apparent that in the iterative method, the average
depth remains consistently lower compared to the other three methods employed.
However, its standard deviation is significant with a value of 522 , indicating a
greater variability and uncertainty relative to the mean value. Despite the ML
method being the best in terms of performance, since it possesses the highest depth
value, it turns out to be the worst in terms of scalability.

Table 4.7: ITERATIVE method results: delta value calculated with 100 shots
and 50 runs

Estimated
Value

∆EV % ∆EV Depth of the
circuit

Average 0.8084 0.0051 0.62% 1461
St.Deviation 6.844 10−3 4.768 10−3 5.888 10−3 195

Table 4.8: MAXIMUM LIKELIHOOD method results: delta value calculated
with 100 shots and 50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.8088 0.0018 0.23% 1901
St.Deviation 2.134 10−3 1.450 10−3 1.790 10−3 0
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Table 4.9: FASTER method results: delta value calculated with 100 shots and 50
runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.8097 0.0024 0.29% 1901
St.Deviation 2.908 10−3 1.650 10−3 2.037 10−3 0
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Regarding the delta estimates, all three mean values calculated are very close
to what we defined as "exact", this is evident in the estimated delta distribution
graph in Figure 4.6. However, the one computed with the faster method turns
out to be the closest to it. Taking into account the standard deviation, ML
method emerges as the one with the lowest standard deviation, while the iterative
method, once again, ranks as the method with the highest standard deviation,
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with a value that is almost three times higher than the others. This aspect is
clearly observable in the estimated delta box aggregation graph depicted in Figure
4.5. These statements are further confirmed by the average percentage differences
calculated: the iterative method has the highest percentage, reaching 0.62%, nearly
double the value computed with both other methods. This reflects the significant
variability of this method, stemming from its iterative calculation approach.

4.4 Effectiveness of the quantum method
To analyze the obtained data and its precision, both an absolute and a percentage
distance between the "exact" values and the estimated ones were calculated. With
"exact" value, we refer to the value, both in terms of expected payoff and the delta
of the option, calculated through the classical Monte Carlo simulation.

Meanwhile, the "estimated" value corresponds to that computed using the
quantum method. Regarding the utilization of resources to achieve the desired
outcome, the depth (in terms of sequential quantum gates) and number of qubits of
the circuit employed were computed. In defining the efficacy of a quantum method
using these parameters, we must consider three criteria: computational complexity,
quantum error, and scalability.

Computational complexity informs us that, all else being equal in terms of result
precision, a method that utilizes fewer resources, hence fewer qubits and a lower
depth, is preferable.

Quantum error, on the other hand, underscores how, despite a method appearing
superior in accuracy, if it exhibits significantly higher depth than a method of
comparable precision, it may not be deemed the better method. This is because
higher depth increases the likelihood of errors, particularly in the presence of noise
and decoherence. Therefore, it is crucial to consider a method’s structure relative
to quantum errors and hardware imperfections.

Scalability, instead, focuses on the ability to scale the utilized method to larger
quantum systems. When a method requires fewer qubits and lower depth, it
becomes easier to scale while maintaining good performance.

From the reported data, it is evident that in terms of accuracy, the faster
implementation emerges as the superior method, followed closely by ML with a
little increase in standard deviation. Conversely, the iterative method exhibits
lower precision compared to the former two. Despite utilizing the same number of
qubits, the three methods demonstrate varying depths. The iterative method boasts
an average depth of 4008 with a standard deviation of 522. On the other hand,
the faster method, despite proving more accurate, showcases a higher depth. As
mentioned earlier, this may negatively impact scalability, computational complexity,
and quantum error. The MLQAE method emerges as the weakest of the three, as
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it exhibits the highest depth.
When we examine the estimated value, we can observe minimal differences

among the three methods. However, what significantly impacts the analysis is the
standard deviation, which is lower in the case of the faster method.

Moreover, we collected data also for the delta value. As mentioned above, the
delta of an option gauges how much the option price will change for every unit
increase in the underlying asset price and it can be seen also as the probability
that the stock price will be higher than the strike price, letting be the option in
the money. Therefore, the delta is valuable in assessing the risk associated with
the option. It can be regarded as an index of the precision of estimating the option
price concerning variations in the underlying asset price. A higher delta signifies
a greater sensitivity of the option price to changes in the underlying asset price,
whereas a lower delta indicates less sensitivity. In this instance, the Monte Carlo
simulation estimates a delta of 0.8098, indicating that if the underlying asset price
were to increase by $1, then the option price would increase by $0.8098. The
calculated delta appears to have a relatively high value, implying greater risk for
the investor but also the potential for higher rewards, as fluctuations in the asset
price have a more significant impact on the payoff, both positively and negatively.
Therefore, it is crucial to accurately estimate the delta, as it allows for assessing
the level of risk one is willing to undertake.

For the delta values, the faster method confirms itself as the most accurate
in terms of precision, boasting a commendable depth as well. The ML method
positioned itself in the middle ground, displaying good precision and a depth on
par with that of the faster method. Conversely, the iterative method proved to
be the least precise, albeit with a markedly lower average depth compared to the
others (1461 instead of 1901).

Upon analyzing the obtained mean values, the faster method emerges as the
one that yields the result closest to the exact value, coupled with a low standard
deviation, thereby indicating higher precision for both of the problems analyzed.

4.5 Results with different number of shots

In this instance, it was decided to maintain a consistent number of runs at 50, while
incrementing the number of shots taken for each run to 1024. Studies conducted
have examined that increasing the number of shots, one approaches more closely
the current value [33].
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Table 4.10: ITERATIVE method results: expected payoff calculated with 1024
shots and 50 runs

Estimated
Value

∆EV % ∆EV Depth of the
circuit

Average 0.1679 0.0077 4.75% 4058
St.Deviation 8.814 10−3 6.998 10−3 4.312 10−2 478

Table 4.11: MAXIMUM LIKELIHOOD method results: expected payoff calcu-
lated with 1024 shots and 50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.1687 0.0064 3.92% 5171
St.Deviation 1.890 10−3 1.890 10−3 1.165 10−2 0

Table 4.12: FASTER method results: expected payoff calculated with 1024 shots
and 50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.1688 0.0067 4.14% 4545
St.Deviation 4.400 10−3 4.120 10−3 2. 539 10−2 0
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Figure 4.9: Estimated Payoff distribution - scenario with 1024 shots and 50 runs

In the case of the iterative method, the mean value is 0.1679, featuring the
presence of an outlier as the minimum value, recorded at 0.1095, and a maximum
value of 0.1773.These aspects are readily appreciable in the estimated payoff run
sequence graph shown in Figure 4.13. As evident, both the maximum and minimum
values encompass the exact value, albeit the mean deviates a bit from it. The
faster method instead, with a mean of 0.1688, represents exactly the MC result,
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with a lower standard deviation compared to the iterative method. Conversely, the
maximum likelihood method does not exactly represent the MC result, but it is
very close to it, reducing further the standard deviation. This is further confirmed
by the percentage distance, which is the lowest among the three methods employed.

With 1024 shots, the distribution tightens, reducing the variance. However, it is
possible to see an alignment among the outcomes of the three algorithms.

In figure 4.8 it is possible to see how the higher standard deviation in the faster
method becomes apparent, resulting in the exact value being encompassed within
the range of values. Conversely, in the other two methods with a lower standard
deviation, this does not occur, as reflected in the sample values. The iterative
method stands out as the only one with an outlier, with a value significantly distant
from the mean at 0.1095, while both other methods tend to yield results clustered
around their mean values.

Compared to the previously analyzed scenario with a lower number of shots, the
standard deviation increases in the case of the iterative and faster methods, while it
significantly decreases in the case of maximum likelihood estimation. This ensures
a less variable outcome compared to the previous two cases, while still maintaining
an average in line with the other two methods and an average percentage difference
that is the lowest among the three methods analyzed.

Regarding the circuit depth, as analyzed previously, that of the iterative method
turns out to be the lowest, while in the other two methods, it remains constant
even when changing the number of shots. This cannot be said for the iterative
method: in this case, where the number of shots increases and the number of
executions remains the same, this method presents a higher average depth and a
lower standard deviation, indicating a lower variability of this value compared to
the previously analyzed case. Focusing on this aspect is crucial, especially in terms
of errors and model scalability, which are essential elements to consider for our
analysis.

Table 4.13: ITERATIVE method results: delta value calculated with 1024 shots
and 50 runs

Estimated
Value

∆EV % ∆EV Depth of the
circuit

Average 0.8100 0.0014 0.17% 1489
St.Deviation 1.218 10−3 9.147 10−4 1.131 10−3 177
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Table 4.14: MAXIMUM LIKELIHOOD method results: delta value calculated
with 1024 shots and 50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.8097 0.0009 0.11% 1901
St.Deviation 6.417 10−4 5.357 10−4 6.622 10−4 0

Table 4.15: FASTER method results: delta value calculated with 1024 shots and
50 runs

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.8103 0.0030 0.37% 1901
St.Deviation 3.280 10−3 1.906 10−3 2.357 10−3 0
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Figure 4.12: Estimated Delta distribution - scenario with 1024 shots and 50 runs

As for the delta value, the maximum likelihood method emerges as the best in
terms of both the estimated value, which closely approximates the "exact" value
calculated with Monte Carlo simulation, and the standard deviation, as it has the
lowest value. Therefore, having a mean value very close to the classically estimated
one, a small standard deviation is desirable. These assertions are also supported
by the average percentage difference, which turns out to be the lowest among
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the analyzed methods. The circuit depth consistently shows the lowest value for
the iterative method with a low standard deviation. However, even though the
ML method has a higher depth value, it’s not so high as to render the precision
advantages negligible. This is because the iterative method may have a lower depth
but with a mean value further from the exact one and a higher standard deviation.

However, currently, it’s challenging to successfully run a circuit with a depth of
1901 or even 1489 on real quantum hardware due to the issues related to noise and
decoherence mentioned earlier. Hence, for such analysis, it is preferable to consider
elements that assess the accuracy of the method, even if methods with lower depth
will certainly be executable earlier on quantum hardware.

4.6 Results with different volatility

In the latest case under analysis, the retention of 50 runs and 1024 shots per run
remains constant. However, it was decided to alter the volatility from 0.4 to 0.8, a
crucial parameter in option pricing calculation, and observe how elevating it affects
the behavior of our methods.

Table 4.16: EXACT VALUES calculated with a volatility equal to 0.8

Exact Expected Value Exact Delta Value
0.2739 0.4393

Table 4.17: ITERATIVE method results: expected payoff calculated with 1024
shots, 50 runs and a volatility equal to 0.8

Estimated
Value

∆EV % ∆EV Depth of the
circuit

Average 0.2739 0.0135 5.17% 3709
St.Deviation 5.628 10−3 5.430 10−3 2.085 10−2 469
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Table 4.18: MAXIMUM LIKELIHOOD method results: expected payoff calcu-
lated with 1024 shots, 50 runs and a volatility equal to 0.8

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.2727 0.0126 4.84% 5071
St.Deviation 4.702 10−3 3.361 10−3 1.290 10−2 0

Table 4.19: FASTER method results: expected payoff calculated with 1024 shots,
50 runs and a volatility equal to 0.8

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.2752 0.0149 5.72% 4457
St.Deviation 8.533 10−3 8.244 10−3 3.165 10−2 0
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Table 4.20: ITERATIVE method results: delta value calculated with 1024 shots,
50 runs and a volatility equal to 0.8

Estimated
Value

∆EV % ∆EV Depth of the
circuit

Average 0.4387 0.0020 0.45% 1335
St.Deviation 2.523 10−3 1.625 10−3 3.699 10−3 171

Table 4.21: MAXIMUM LIKELIHOOD method results: delta value calculated
with 1024 shots, 50 runs and a volatility equal to 0.8

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.4392 0.0007 0.17% 1831
St.Deviation 9.188 10−4 5.563 10−4 1.266 10−3 0

Table 4.22: FASTER method results: delta value calculated with 1024 shots, 50
runs and a volatility equal to 0.8

Estimated
Value

∆EV %∆EV Depth of the
circuit

Average 0.4393 0.0012 0.28% 1831
St.Deviation 1.556 10−3 9.232 10−4 2.101 10−3 0
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Figure 4.18: Estimated Delta distribution - scenario with 1024 shots, 50 runs
and a volatility equal to 0.8

In this scenario, it was decided to modify the value of volatility and increase it,
as it is the parameter that can exert the most stress on our experiment, representing
the fluctuation in the price of the underlying asset over time. Greater volatility can
lead to a higher potential payoff in the future, as the value of the stock may increase
more significantly compared to a stock with lower volatility. This is evident from
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the result obtained through the Monte Carlo simulation, which reports a payoff
of 0.2739, significantly higher than the value calculated with half the volatility.
However, while the payoff nearly doubles, the delta is halved, as it represents the
precision of the calculated payoff. With high volatility, the stock’s value fluctuates
more, both positively and negatively, which can also lead to a decrease in its value
and thus a loss, but as previously analyzed in the Black-Scholes model, higher
volatility has a positive effect on the option price. We are examining a scenario
where the strike price and the initial stock price are close, so by increasing the
volatility, we significantly raise the probability that the option ends up out of the
money and therefore not exercised. This is why the delta decreases.

In this case, with a delta of approximately 0.5, we can infer that the option
exhibits a moderate sensitivity to changes in the underlying asset price. Given that
the option in question is a call, this implies that the option price will vary roughly
half as much as the underlying asset price. Generally, a delta of 0.5 suggests a
balanced position between risk and potential gain concerning the movement of the
underlying asset. Conversely, in the previous scenario with lower volatility, we had
a delta of approximately 1, indicating that the option price would vary exactly in
tandem with the underlying asset price. However, this entails a higher exposure to
risk and price fluctuations.

The iterative method presents an average value of 0.2739, the faster method at
0.2752, and the ML method at 0.2727; except for the first one, which matches the
value estimated with MC, the last two diverge considerably from it, considering
the previously analyzed values.

Nevertheless, as depicted in 4.13, the variation in estimated values is greater
compared to the case with lower volatility, except for the iterative method. This is
because the values tend to oscillate more and deviate further from the calculated
mean for each method. However, the minimum and maximum values of all three
methods tend to encompass what is the exact value.

Regarding the circuit depth for calculating the estimated payoff, it consistently
remains at a very high value for all three methods but is lower compared to the
scenario with lower volatility. The mean depth of the iterative method always
ranks lower than the others, even though it exhibits a significantly higher standard
deviation when compared to the previous cases.

The average delta calculated using the different QAE methods is very close to
the one defined as exact, and in the case of the faster method, this mean value
coincides with it, with a relatively low standard deviation as well. The circuit depth
used in the faster method is equal to that of the maximum likelihood method but
greater than that of the iterative method. Despite having lower values compared
to the case with lower volatility, they still exhibit a very high value to be executed
on hardware.
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Chapter 5

Conclusion

The Monte Carlo method represents a pivotal technique employed to probabilis-
tically assess the properties of a system by generating statistical samples of the
system’s realizations. Within the realm of finance, Monte Carlo simulations play a
crucial role in modeling the impact of uncertainties influencing financial instruments,
whether they are individual stocks, portfolios, or options. This stochastic approach
allows for a comprehensive examination of the potential outcomes under various
scenarios, aiding in risk assessment, decision-making, and strategy formulation
within the financial domain. When aiming to derive the most likely outcome from
a broad distribution or to minimize the associated error to a negligible level, the
demand for Monte Carlo simulations can escalate significantly. This challenge is
particularly pronounced in scenarios such as stock market simulations, where the
simulations can extend over entire trading days due to the need for an extensive
number of iterations to achieve precise results.

In Option Pricing, leveraging a quantum speedup could significantly alter the
landscape. Pioneering steps in this direction were taken by Brassard, Hoyer, Mosca,
and Tapp [22]. Initially, they expanded Grover’s search algorithm to develop
an algorithm for Quantum Amplitude Amplification (QAA). By starting with a
target state with a probability p, Brassard et al. demonstrated the capability to
amplify this probability to nearly one within 1/√p operations, essentially achieving
a quadratic acceleration compared to the most efficient classical algorithm. In the
subsequent segment of their study, Brassard et al. introduced their Quantum Ampli-
tude Estimation (QAE) algorithm. QAE plays a crucial role in numerous advanced
quantum algorithms and notably facilitates a potential quadratic enhancement in
computing expectation values through Monte Carlo sampling.

Montanaro demonstrated that using QAE, Monte Carlo simulations can be
executed on a quantum computer, achieving equivalent accuracy, but with nearly
quadratically fewer samples, denoted as O(σ/ϵ) samples (with polylogarithmic
adjustments) [23]. This acceleration stems from the QAE algorithm, which lies at
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the core of efficiently estimating the distribution’s mean [34].
How QAE is implemented can impact the algorithm’s outcome, prompting an

analysis of various implementations and scenarios to discern the most effective
method. This work aimed at identifying the optimal implementation approach to
ensure enhanced efficiency and accuracy in the quantum estimation process.

5.1 Comments on results
The MLQAE (Maximum Likelihood Quantum Amplitude Estimation) and IQAE
(Iterative Quantum Amplitude Estimation) demonstrate comparable accuracy but
they exhibit contrasting characteristics. IQAE operates under control by specifying
an error bound, providing a distinct advantage over MLQAE, which lacks direct
control over the error bound, leading to ambiguity regarding its upper error bound.
The capability to regulate the error endows IQAE with significant superiority.
Conversely, IQAE’s circuit depth is not always controllable due to occasional
occurrences of excessively large powers of Q, presenting a limitation absent in
MLQAE. [35]

In this experiment, such assertion found validation in the implementation of the
methods themselves: within the iterative method, we defined an epsilon parameter
dictating the error, along with an alpha parameter facilitating the specification
of the confidence interval. Conversely, for the maximum likelihood estimation,
such control was not attainable, as the only parameter that could be defined was
the number of iterations to be executed. Additionally, in terms of depth, the
literature’s assertions were corroborated: while in the iterative method, depth
fluctuates with each run, in the ML method, this variability is absent, with the
depth being controlled and maintaining a consistent value throughout.

The pivotal parameter governing the application of MLQAE is the evaluation
schedule, which denotes the number of Q applications. For consistency with
other employed methods, it was set to 4; however, empirical testing [33] revealed
that this value introduces noise in the results due to decoherence and gate errors.
For our use case, a value equal to 3 emerges as the threshold where results are
efficiently computed on a real-world device while minimizing the adverse effects of
aforementioned errors.

This is one of the reasons why the experiment was conducted on a simulator
rather than real hardware, as only noise would have been observed on the latter.
This phenomenon reflects the current stage of quantum computing evolution known
as "Noisy Intermediate-Scale Quantum". This phase delineates a period wherein
devices lack a high number of qubits and sufficient power to execute various
algorithms without succumbing to quantum and calibration errors, more commonly
referred to as noise. Naturally, during this phase, until more powerful computers
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are constructed, efforts primarily revolve around mitigating the error’s impact
through various error-mitigation techniques.

For the IQAE method, as mentioned, the crucial parameter is epsilon, which
indirectly defines the power of Q. Naturally, the lower the value of epsilon, the
greater the computational difficulty of the result. For the sake of coherence, epsilon
is set to 0.03, a value higher than the standard value of 0.01 (and that corresponded
on average to 4 applications of Q) yet not excessively high to yield significantly
divergent results from the exact value.

The faster quantum amplitude estimation method, similarly to the two previously
outlined approaches, tackles the AE problem without employing phase estimation.
This implementation without phase estimation also allows for a reduction in circuit
depth, albeit still at the O(1/ϵ) depth requirement. Despite the constant depth,
noise effects persist. In terms of actual values, the depth of the faster method
is only lower compared to the ML method. However, when comparing it to the
iterative method, the average depth, with a standard deviation of 522, suggests
that this method isn’t always able to achieve a lower depth for solving the problem.

The analysis of the collected data has further revealed how both the ML and
faster methods consistently demonstrate higher accuracy compared to the iterative
method across multiple contexts. However, the significantly lower depth of the
latter method gives it a predominant position over the others. Considering the
concepts of error, computational complexity, and scalability, the iterative method,
with its considerably lower depth, emerges as preferable to the other methods,
particularly in a context where available quantum computers have not yet reached
a level of development where this aspect is negligible concerning method accuracy.

5.2 Future works
This analysis of QAE can be extended not only including put options, but also
by varying other parameters such as stock price, strike price, and expiration date,
and can be applied to more complex classes of options beyond simple European
puts and calls, such as basket options or path-dependent options. For this work,
as highlighted, such experiments have been conducted solely on a simulator and
not on hardware, because currently available quantum computers are unable to
support such computations without producing noise that makes result analysis
impossible. Naturally, progress will enable the execution of increasingly complex
calculations; however, methods analyzed requiring fewer quantum resources will
have the advantage of being verifiable on hardware earlier than those with higher
depth.

New algorithms and methods of implementing QAE can further contribute to
enhancing what is already a functioning algorithm, allowing for faster MC execution
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with practically equal accuracy, but with additional margins for improvement.
However, the true innovation brought by QAE lies in terms of convergence speed,
particularly evident in path-dependent options, which are financial derivatives
whose value depends not only on the price of the underlying asset at the expiration
date but also on the path followed by that price over time, where an MC simulation
method requiring a large number of random samples and considerable time to find a
result can be replaced by a method that guarantees accurate results at a significantly
increased speed. Furthermore, using this methodology is also advantageous in
terms of evaluating the risk associated with the option, which is a significant factor
in managing the options portfolio owned.

Finally, in future investigations, a fine-tuning process of hyperparameters could
be conducted within the context of QAE and its variants. This process entails the
exploration and adjustment of parameters aimed at maximizing the algorithm’s
performance and effectiveness in executing its amplitude estimation tasks.
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Appendix A

IQAE Subroutines

Algorithm 1 Procedure for finding ki+1

function FindNextK(ki, θl, θu, upi, r = 2):
Ki = 4ki + 2 // current θ-factor
θmin
i = Kiθl // lower bound for scaled θ
θmax
i = Kiθu // upper bound for scaled θ

Kmax =
ê

π
θu−θl

ë
// set an upper bound for θ-factor

K = Kmax − (Kmax − 2)mod4 // largest potential candidate of the form 4k+ 2
while K ≥ rKi do

q = K/Ki // factor to scale [θmin
i , θmax

i ]
if {q · θmax

i }mod 2π ≤ π and {q · θmin
i }mod 2π ≤ π then

//
è
θmin
i+1 , θ

max
i+1

é
is in upper half-plane

Ki+1 = K
upi+1 = True
ki+1 = (Ki+1 − 2) /4
return (ki+1 , up i+1)

if {q · θmax
i } mod 2π ≥ π and {q · θmin

i } mod 2π ≥ π then
//

è
θmin
i+1 , θ

max
i+1

é
is in lower half-plane

Ki+1 = K
upi+1 = False
ki+1 = (Ki+1 − 2) /4
return (ki+1 , up i+1)

K = K − 4
return (ki, upi) // return old value
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IQAE Subroutines

Algorithm 2 Iterative Quantum Amplitude Estimation
function IQAE(ϵ, α,Nshots , ci) :

// ci is a chosen confidence interval method, which can be either Clopper-
Pearson or Chernoff-Hoeffding.

i = 0 // initialize iteration count
ki = 0 // initialize power of Q
upi = True // keeps track of the half-plane
[θl, θu] = [0, π/2] // initialize conf. interval
T = ⌈log2(π/8ϵ)⌉ //max. number of rounds
calculate Lmax // max. error on every iteration; depends on ϵ, α,Nshots and

choice of confidence interval
while θu − θl > 2ϵ do

i = i+ 1
ki, up i = FindNextK

1
ki−1, θl, θu, upi−1

2
set Ki = 4ki + 2
if Ki > ⌈Lmax/ϵ⌉ then

N = ⌈Nshots Lmax/ϵ/Ki/10⌉ // No-overshooting condition
else

N = Nshots

approximate ai = P[|1⟩] for the last qubit of QkiA|0⟩n|0⟩ by measuring N
times

if ki = ki−1 then
combine the results of all iterations j ≤ i with kj = ki into a single

results, effectively increasing the number of shots
if ci = "Chernoff-Hoeffding" then

ϵai
=

ò
1

2N log
1

2T
α

2
amax
i = min (1, ai + ϵai

)
amin
i = max (0, ai − ϵai

)
if ci = "Clopper-Pearson" then

amax
i = I−1

1
α

2T ;Nai, N (1 − ai) + 1
2

amin
i = I−1

1
1 − α

2T ;Nai + 1, N (1 − ai)
2

calculate the confidence interval [θmin
i , θmax

i ] for {Kiθa} mod 2π from
[amin
i , amax

i ] and boolean flag up ui by inverting a = (1 − cos (Kiθ)) /2
θl = ⌊Kiθl⌋ mod 2π+θmin

i

Ki

θu = ⌊Kiθu⌋ mod 2π+θmax
i

Ki

[al, au] = [sin2 (θl) , sin2 (θu)]
return [al, au]
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