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Abstract 
Dosimetry represents a key aspect in the radioprotection field for nuclear related activities: people working 

with ionising radiation need to monitor their exposure to be able to optimise their doses and to keep them 

below the dose limits. Such dosimeters are provided by approved dosimetry services, like SCK CEN. These 

dosimetry services need to prove that the doses they measure are correct. In this process, the validation of the 

personal dosimeter results is of major importance. The validation process ensures a reliable measurement of 

the personal dose equivalent and guarantees the correct operation of the dosimeter. In this project the focus is 

on Instadose dosimeters, which is a novel type of hybrid personal Dosimeters.  

SCK nuclear research centre provides currently ~ 2000 Instadose dosimeters to different costumers, such as 

hospitals and companies. These Instadose dosimeters transfer the measured doses automatically to the 

dosimetry services once per week. Once per month a validation process is performed manually for each 

dosimeter by means of Microsoft Excel sheets. The latter contain information on the status of the device, details 

on the last measurements, and graphs with dose trends during the last months. In particular, these graphs permit 

an easy control of measurements that deviate from expected values or that present anomalies. Thanks to this 

modality, it is straightforward to classify these dosimeters in 10 different classes, based on the actions that 

have to be adopted for the dosimeter. This process is remarkably time consuming and the need to fasten it up 

is required since an increase of the number of these dosimeters is foreseen in the incoming years. 

In order to allow a faster validation, Machine Learning algorithms have been developed and tested in this 

project. The main idea is to identify all dosimeters results that are in line with the expected performances, for 

which no actions need to be taken. Although the remaining results will still require manual evaluation, the 

automatic validation would reduce the workload significantly. The implementation process starts from a 

careful cleaning and rearranging of the data containing all the measurements of the previous year. The latter 

has been later used to create a unique database for training and testing of the models. Information collected 

inside this database are based on the validation process performed manually. Four different supervised 

classification models have been implemented: Decision Trees, Random Forest, K-Nearest Neighbours and 

Neural Networks. This first implementation was based on a binary classification approach to distinguish well-

performing dosimeters from faulty ones.  

For each model, many combinations of hyperparameters have been implemented for the tuning of the 

algorithms. This approach has been followed in order to find a subset of combinations that can be easily applied 

on new incoming data, providing confidence intervals for the dosimeter’s classification. Although Decision 

Tree model for classification is rather straightforward, with respect to other developed models, it provides 

slightly better results concerning precision for binary classification. It is difficult to declare an overall best 

model based on the results obtained: small changes can be observed and no explicit correlations are always 

present. Therefore, a set of hyperparameter combinations has been identified for each model, in order to be 

implemented on new unseen data for monthly validations.  
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1. Introduction 
Since the discovery of radioactivity of uranium in 1896 by Henri Becquerel [1] and from further 

exploration of this phenomena thanks to Marie and Pierre Curie, ionizing radiations have been adopted 

for multiple purposes, spacing from medicine to energy production. Since the beginning of the 20th 

century, it has been clear that exposure to radiation posed potential health risks. For this reason, many 

studies have been conducted in order to categorize, standardize and report quantities and phenomena 

that belongs to this branch of nuclear physics. In 1928 the International Commission on Radiological 

Protection (ICRP) published the first document that provides recommendations and guidance regarding 

radiological protection, titled "Recommendations of the International Commission on Radiological 

Protection". Updated documents have been published by ICRP from that moment forward, combining 

latest findings and new information, latest document dates back to 2007 [2]. In June of 1962, Basic 

Safety Standards have been approved for the first time by International Atomic Energy Agency (IAEA) 

Board of Governors. These standards guarantee fundamental principles, requirements and 

recommendations to ensure nuclear safety. Latest safety standards for occupational radiation protection 

have been published in 2018 [3]. All the states that are currently members of the IAEA take these 

principles as global reference for the aspects that concern nuclear safety.  

The need to understand and measure the effects of radiation exposure on living organisms led to the 

establishment of the Dosimetry field, defined as the measurement of radiation doses. The latter is 

fundamental in order to ensure the safety of individuals working with radioactive materials, as well as 

with diagnostic procedures. Over time, advancements in technology led to the parallel improvement in 

dosimeters manufacture. These advancements have enhanced precision and accuracy of radiation dose 

measurements, enabling better monitoring and regulation of exposure levels. This is the case of new 

Electronic Personal Dosimeters (EPDs), and one important example is represented by the new Direct 

Ion Storage dosimeters, which will be further analysed in detail since it has been extensively used as 

reference for this thesis work.  

The introduction of electronic devices in the Dosimetry field launches new possibilities regarding the 

treatment of the data resulting from the exposure measurements. Indeed, data regarding the equivalent 

dose can be used in combination with Machine Learning (ML) algorithms. Nowadays, Artificial 

Intelligence is spreading above a large portion of research fields, in order to ease computations and tasks. 

In this thesis, ML algorithms have been implemented in order to simplify the validation process of 

innovative electronic dosimeters. 

1.1. Radiation protection: standards and regulations 

The term radiation protection indicates the practices, principles and measures that are taken in order to 

ensure protection of individuals, communities and environment from effect of ionizing and non-ionizing 

radiations. In first instance, the use of ionizing radiations was related to clinical purposes: John Hall-

Edwards was the first to use X-rays for medical purposes creating a new profession called radiologist, 

specialized in medical imaging. However, first patients and radiologists suffered from hair loss, skin 

burns and other physical effects, later justified as related to ionizing radiation exposition. In the early 

stage of X-ray imaging, just superficial layers of the human body were assumed to present biological 

side-effects. Once the radiological community realised that a considerable amount of radiation could be 

absorbed by the deeper tissues, even without showing superficial damages, deep effects were 

contemplated, finding a correlation between ionizing exposition and induction of carcinoma. 

It became of primary importance to set an exposure level that did not cause any biological effect. For 

this purpose, the first International Congress of Radiology took place in 1925, in order to standardize 

measurements and units related to radiations. Figure 1.1 shows the official photo taken for the 5th 

International Congress of radiology. During this congress, the later on called International Commission 

on Radiation Units and Measurements (ICRU) was founded. Consequently, the ICRP was founded in 

1928, during the second International Congress of Radiology. Contextually, a limit, for the ionizing rate 

exposure was established for a person in normal health, based on absence of reported biological effects. 
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This event marked a milestone in radioprotection. In order to combine radiation deposition to the tissue 

and damage to the tissue itself, absorbed dose concept has been adopted afterwards. In paragraph 1.2, 

the concept of absorbed dose will be described. 

 

Figure 1.1: 5th congress of International Society of Radiology [4] 

In the years that follow the 2nd World War, radiation protection knowledge and techniques/tools 

experienced radical changes. New techniques have been discovered, allowing to retrieve more 

information on the type of radiation exposure. 

From the 40s, thanks to the contribution of Louis Harold Gray and John Read, neutrons effect on tissue 

was studied. The main idea was to compare effects of 𝛼-particles and neutrons with respect to gamma 

and X rays. From these studies, the Relative Biological Effectiveness (RBE) of neutrons was retrieved 

and a new unit of measurement, called energy unit, was proposed. This definition represented a 

milestone in the dosimetry history since it was the precursors of the later called absorbed dose, based on 

the radiation interaction with matter instead of pure radiation exposure or intensity. This led to the 

awareness that biological effects were related to the equivalent dose. 

In the following years, ICRP and ICRU have decided to standardize the unit of measures for absorbed 

dose adopting the [rad] unit. This measure has been later introduced in the recommendation document 

published by ICRP in 1954 [5]. Due to the rising concern regarding radiation-related effects, in 1959 

the ICRP released a document in which eye lenses, gonads and blood forming organs have been 

described as critical organs due to their sensitivity to radiations [6]. Sensitivity of blood forming organs 

are related to a publication, back in 1906, by Jean Bergonié and Louis Tribondeau. This publication 

highlights that “cells are inasmuch radiosensitive as they grow fastly”. Although this empirical law has 

never been fully validated “it has made a significant contribution to the advances in radiation biology 

and the relationship between proliferation and radiosensitivity” [7]. With the previously cited 

publication of 1959, by ICRP, a list of permissible doses to these sensitive tissues for a large quantity of 

nuclides was included. 
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Until those years, a tolerance dose was adopted below which it was thought that no harmful effects could 

be detected. This attitude changed after the publication of an updated recommendation document by 

ICRP in 1966: the idea of a linear relationship between dose and somatic or genetic effects seemed to 

be a more reasonable option. This no-threshold model has been proved to avoid underestimation of 

harmful effects and led to a change from deterministic to stochastic effects. Consequently, in the 

recommendations released in 1977 by ICRP [8], the three main principles of radioprotection have been 

eventually coined: 

• Justification: any exposure to radiation must bring greater benefits to the community with respect 

to damages; 

• Optimization: any justified exposure must include the minimum reasonably possible doses to the 

population, according to the dictates of the good technique. This is also called the ALARA (As 

Low As Reasonably Achievable) principle; 

• Dose Limit: any justified and minimised exposure must not result in any dose exceeding the legal 

limits. [9] 

According to these principles a cost-benefit analysis should lead to the optimum level of protection. 

After the first introduction in 1975 by Wolfgang Jacobi, the concept of effective dose was adopted [10]. 

The current knowledge about cancer risk was adequate to permit the calculation of a weighted whole-

body dose, leading, in 1977, to the adoption in ICRP recommendations of the new quantities named 

dose equivalent and effective dose equivalent, evaluated in sievert [Sv]. 

Report number 39  and 43  provided by ICRU, respectively in 1985 and 1988, set a standard for the 

evaluation of the dose equivalents resulting from exposure by sources external to the body [11], [12]. 

The first report states the definitions of the quantities used for the monitoring including ambient, 

directional and individual dose equivalent, while the second report focuses on supporting the selection 

of these quantities and on providing the basis for their definition. In order to implement these dosimetric 

quantities for radiation protection, IAEA held a technical meeting in the following years: the 

International Organization for Standardization (ISO), as well as the International Electrotechnical 

Commission (IEC), whose objective is to release standardization regarding dosimetry and 

radioprotection. The first ISO standard (ISO 8963:1988) on dosimetry of X and gamma rays has been 

constantly updated during the years, leading to the latest standards, released in 2019 (ISO 4037-2:2019). 

The IEC 61066:1991 standard on test and performance criteria for dosimeters has been replaced in 2006. 

During the years, many standards have been published and updated from ISO and IEC, covering all the 

aspects regarding radiation protection.  

In the 90s, concepts of Equivalent Dose and Effective Dose have been introduced to replace previous 

defined quantities with averaged ones, extensively explained in paragraph 1.2.   

1.2. Dosimetry 

Dosimetry represents a fundamental aspect of radiation protection. It is centred on measuring, assessing 

and understanding radiation doses, due to exposure to ionizing or non-ionizing radiations, in order to 

ensure safety for individuals, populations and environment. This practise is of crucial importance in 

many sectors including medicine, industry, environmental protection and research. 

1.2.1. Dosimetric and protection quantities 

Dosimetric quantities are established by ICRP recommendations, which latest version refers to 2007 [2]. 

The following list defines the main quantities used nowadays in personal dosimetry and explains the 

relationships between them. Dosimetric quantities are used to quantitatively assess the radiation 

exposures to humans, which are necessary to retrieve the biological effects related to a certain level of 

exposition by means of protection quantities. These are fundamental for the risk estimation and are used 

to specify exposure limits that ensure low levels of stochastic biological effects. All the quantities 

summarized afterwards are universally defined by ICRU in “Fundamental quantities and units for 

ionizing radiation” [13]. 
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Exposure 

“Exposure is a measure of the ability of an X-ray beam to ionize a mass of air; i.e., it expresses the 

amount of electrical charge of electrons (Q) generated per unit mass of air (m)” [14]. It is identified by 

𝑋 and has been defined as the ratio between the absolute value of the total charge of the ions, 𝑑𝑄, that 

are produced in air, and the mass 𝑑𝑚: 

𝑋 =
𝑑𝑄

𝑑𝑚
 (1.1) 

The International System of Unit (SI) unit is [C/kgair], while the conventional unit for exposure is the 

röentgen [R], equivalent to 2.58 ∗ 10−4 C/kg. This quantity can be measured but does not provide 

information regarding the biological damage provided to the individuals due to the exposition.  

Absorbed dose 

This quantity is identified by 𝐷 and it has been defined as the following ratio: 

𝐷 =
𝑑𝜀̅

𝑑𝑚
 (1.2) 

in which 𝑑𝜀 ̅ identifies the mean energy imparted to the mass 𝑑𝑚 by ionizing radiations. The unit of 

measure for the Absorbed dose in SI unit is [J/kg], also called gray [Gy], equivalent to 100 rads (unit of 

measurement previously used). This quantity represents the basic dose evaluation, and it has been 

defined for all types of ionizing radiation and geometry. 

For practical applications the averaged value of absorbed dose on a tissue is evaluated. In practise, for 

the purpose of biological effects evaluation, is worthless to take into account values of absorbed dose in 

specific points of the body. The mean absorbed dose in a specific region of organ or tissue 𝑇 has been 

defined as following: 

𝐷𝑇 =
1

𝑚𝑇
∫ 𝐷 𝑑𝑚

 

𝑚𝑇

 (1.3) 

In this definition 𝑚𝑇 represents the mass of the organ or tissue. 

Kinetic Energy Released to MAtter (KERMA)  

The KERMA (Kinetic Energy Released to MAtter) is identified by 𝐾 and it has been defined as: 

𝐾 =
𝑑𝐸𝑡𝑟

𝑑𝑚
 (1.4) 

in which 𝑑𝐸𝑡𝑟 identifies the mean sum of the initial kinetic energies of all the charged particles liberated, 

in a mass 𝑑𝑚 of a certain material, by the uncharged particles incident on that same mass. The unit of 

measure for the kerma is equal to the one of Absorbed dose: [J/kg] also called gray [Gy]. Assuming 

some hypothesis, kerma can be used as an approximation of the absorbed dose. 

Linear Energy Transfer (LET) 

The LET has been defined as the mean energy lost by charged particles due to electronic interactions 

𝑑𝐸 in a travelled distance 𝑑𝑙. The definition is the following: 

𝐿𝐸𝑇 =
𝑑𝐸

𝑑𝑙
 (1.5) 

The SI unit for LET is [J/m], often given in [keV/μm]. 

Relative Biological Effectiveness (RBE) 

The latest definition of RBE outlined by ICRP in their annals is reported in publication 136, published 

in 2017. It defines RBE as “the ratio of absorbed dose of a low-linear-energy-transfer reference 
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radiation to absorbed dose of the radiation considered that gives an identical biological effect. RBE 

values vary with absorbed dose, dose rate, and biological endpoint considered” [15]. Accordingly, the 

RBE factor related to a radiation type 𝑅 has been evaluated as: 

𝑅𝐵𝐸 =
𝐷𝑋

𝐷𝑅
 (1.6) 

Where 𝐷𝑋 is the reference absorbed dose of radiation of standard type 𝑋 and 𝐷𝑅 is the absorbed dose of 

the radiation of type 𝑅 that causes the same amount of biological damage. Different types of radiation 

have different biological effectiveness since they transfer energy to the tissue by different mechanisms. 

Equivalent dose 

Equivalent dose quantifies the biological damage that relates the absorbed dose and the type of ionizing 

radiation: same dose coming from different types of radiation can result in different effects. In order to 

evaluate the equivalent dose, the biological effectiveness of the radiation has been taken into account. 

This term depends on the type and energy of radiation. These information are contained in the so-called 

radiation weighting factor 𝑊𝑅. The equivalent dose for a specific tissue (𝐻𝑇) is evaluated as: 

𝐻𝑇 = ∑ 𝑊𝑅 𝐷𝑇,𝑅

𝑅

 (1.7) 

The term 𝐷𝑇,𝑅 represents the absorbed dose in tissue 𝑇 by radiation type 𝑅. The SI unit for the equivalent 

dose is [J/kg], commonly known as sievert [Sv]. Weighting factors for different types of radiations have 

been defined by ICRP and ICRU [2], [16]  and are summarized in Table 1.1. 

Radiation type Weighting factor (𝑊𝑅) 

Photons 1 

Electrons and muons 1 

Protons and charged pions 2 

Neutrons Continuous function of energy 

𝛼-particles, fission fragments and heavy ions 20 

Table 1.1: radiation weighting factors for equivalent dose evaluation [2] 

Weighting factors for photons (X and 𝛾 rays), electrons, muons and secondary particles generated by 

photons has been set equal to 1. For safety purposes a weighting factor equal to 2 has been given to 

protons of all energies. While, due to strongly dependence of biological effectiveness of neutrons with 

energy, a continuous function has been used for evaluation of neutron weighting factors, as reported in 

Figure 1.2. Further analytic details on the function can be found in the ICRP publication number 103 

[2]. For what concern 𝛼-particles, heavy ions and fission fragments, since they can cause significant 

damage to tissue and organs in case of internal emitters, a higher weighting factor of 20 has been given.  
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Figure 1.2: weighting factor function for neutron radiation [2] 

Effective dose 

The effective dose is identified by 𝐸 and represent a tissue-weighted sum of the equivalent doses. 

According to ICRP the effective dose is obtained from equivalent dose applying defined weighting 

factors to take into account differences in biological effectiveness of various organs and tissues. Thanks 

to this approach, differences in sensitivities to stochastic health effects for different organs and tissues 

have been also considered. The expression for the evaluation of the effective dose is the following: 

𝐸 = ∑ 𝑊𝑇

𝑇

∑ 𝑊𝑅 𝐷𝑇,𝑅

𝑅

= ∑ 𝑊𝑇

𝑇

𝐻𝑇 (1.8) 

The factor 𝑊𝑇 represents the sex-averaged tissue weighting factor: all the possible values for this term 

are listed in Table 1.2. The evaluation of the effective dose is performed over organs deemed sensitive 

to stochastic effects induction. The SI unit of measure is still [J/kg], commonly called sievert [Sv].  

Organ or tissue 
Weighting factor 

(𝑊𝑇) 
Sum of weighting factors 

(∑ 𝑊𝑇𝑇 ) 

Red bone marrow, Colon, Lung, Stomach, Breasts, 
remainder tissues 

0.12 0.72 

Gonads 0.08 0.08 

Bladder, Liver, Esophagus, Thyroid 0.04 0.16 

Skin, Bone surface, Salivary glands, Brain 0.01 0.04 

Total  1 

Table 1.2: tissue weighting factor for effective dose evaluation values [2] 
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The remainder tissues cited in the table refer to: adrenals, extrathoracic region, gall bladder, heart, 

kidneys, lymphatic nodes, muscle, oral mucosa, pancreas, prostate (just for male individuals), small 

intestine, spleen, thymus, uterus/cervix (just for female individuals). The sum of the weighting factor 

𝑊𝑇 for these remainder tissues and organs is equal to 0.12. All weighting factors sum up to 1 in order 

to have effective dose equal to the equivalent one when the body is uniformly irradiated by penetrating 

external radiations. Higher weighting factors have been given to tissues and organs that are more 

sensitive to radiations, as the red bone marrow. 

Dose limits 

In 2007, publication 103 [2] has been released by ICRP containing an updated version of radiation and 

tissue weighting factors and a new limit on effective dose. The limits have been set, by this publication, 

to 20 mSv per year averaged over 5 years for occupational exposure. Limit for eye lenses have been set 

equal to 150 mSv, while, for what concern skin and extremities, a limit of 500 mSv has been adopted. 

Regarding public exposure, limit on effective dose is equal to 1 mSv per year, but in special 

circumstances a higher value could be allowed in a single year provided that the average over 5 years 

does not exceed 1 mSv/y. These limits apply only to doses received above the local natural background 

radiation and, in addition, these limits have to be intended for planned exposure radiations, in other cases 

reference levels have been specified. These levels assure the flexibility needed in emergency and 

existing exposure situations. 

1.2.2. Operational quantities 

Due to the fact that the previously defined quantities cannot be measured directly, the so-called 

operational quantities have been defined. In the reports released in 1985 and 1988 by the ICRU [11] 

[12], a set of operational measurements has been defined: these quantities are directly measurable in 

individual monitoring and can be used to retrieve the protection quantities defined in the previous 

paragraph. In order to achieve this purpose, Individual dose equivalent penetrating, 𝐻𝑝(𝑑) and 

Individual dose equivalent superficial, 𝐻𝑠(𝑑) have been defined.  

These quantities are defined at an appropriate location and not as average quantities or over an extended 

mass. The estimation, for the protection quantities defined above, is meant to be conservative, related to 

exposures or potential exposures. They are calculated based on fluence knowledge at the locations of 

interest, allowing a calibration process based on these quantities. 

Personal dose equivalent 

Concerning individual monitoring, the established quantity is called personal dose equivalent, identified 

as 𝐻𝑝(𝑑). This represents the dose equivalent in soft tissue at an appropriate depth 𝑑, below a specified 

point on the individual body. Recommended depths are: 0.07 mm for superficial radiations, 3 mm for 

eye lens dose and 10 mm for penetrating radiations. 𝐻𝑝(0.07) is used to evaluate skin effects and dose 

given to the extremities, 𝐻𝑝(3) provide information about eye lens dose and 𝐻𝑝(10) gives information 

about the effective dose intake by the individual. As for effective and equivalent dose, the SI unit of 

measure is [J/kg], commonly called sievert [Sv]. The specified point at which this dose is evaluated 

depends on the location at which the personal dosimeter is placed on the individual’s body. Formulas 

for the evaluation of this personal dose equivalent will be explained in detail for the dosimeter of interest 

in paragraph 2.1. 

Ambient dose equivalent 

The ambient dose equivalent, identified as 𝐻∗(𝑑), is defined in the ICRP publication 103. It is defined 

as the “dose equivalent at a point in a radiation field that would be produced by the corresponding 

expanded and aligned field in the ICRU sphere” at a depth (𝑑) on the radius vector “opposing the 

direction of the aligned field” [2]. 

The unit of measure for the ambient dose equivalent is [J/kg], but commonly called sievert [Sv]. 
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1.2.3. Dosimeters 

In order to prevent the occurrence of deterministic effects as well as reduce the probability of stochastic 

effects, a dose evaluation is needed for all the individuals that are exposed to radiations daily or 

occasionally. This dose assessment for external irradiation is commonly performed by means of 

individual monitoring. Major milestones for personal dosimetry are represented by ICRP publications 

60 [17] and 103 [2], respectively published in 1991 and 2007. 

Personal dosimeters are usually provided to workers in order to evaluate the dose by direct measuring. 

In some peculiar cases, computational dosimetry has been allowed by EURATOM (EURopean ATOMic 

energy community) directives for individual dose assessment, as for aircrew dose assessment. 

Computational tools such as Monte Carlo simulation or Machine Learning algorithms are nowadays 

used to evaluate the dose received from patients and medical personnel.  

Briefly summarizing the history of dosimeters, the continuous development of instruments and 

quantities has been decisive along the history of dosimetry. First dosimeters were developed in the 20s 

and they were constituted by a pocket ionization chamber and a film, ancestors of the modern pencil 

dosimeters. In 1934, some years after the foundation of the ICRP, the “dose-meter” name was given to 

an instrument used to measure X-ray quantities, calibrated in röentgens. In Figure 1.3 one of the first 

dosimeters is represented. 

 

Figure 1.3: dosimeter patent by Arthur Mutscheller n° US-2036072-A [18] 

During the Manhattan project, film dosimeters were adopted, although it was already clear that low 

energetic photons were difficult to detect. At the end of the project, previously used pocket ionization 

chamber have been substituted with direct-reading chambers, allowing the worker to evaluate the 

exposure received at any time [19]. After the 2nd World War, dosimeters based on new techniques were 

proposed, such as Thermo-Luminescence Detectors (TLDs), proposed in 1953 by F. Daniels [20]. 
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In 1997, ICRP released publication 75 [21], in which the maximum permissible measurement deviation 

of a personal dosimeter, depending on dose, have been specified. From 1997 onwards, several new 

passive and electronic dosimeters have been developed alongside with standardized calibration 

procedures. Concerning direct reading dosimeters, in 1997 IEC have released their standard for design 

requirements and performances evaluation named IEC 61526:1997 (revised in 2017). Film-badges have 

been commonly used as personal dosimeters, however, from the beginning of the new century, they 

have been replaced. This was related to a no longer sufficient performance for complying with the new 

regulations, mainly due to energy dependence and sensitivity to humidity.  

As far as the measurement is concerned, effective dose is assessed by means of 𝐻𝑝(10) measurements 

on a representative location of the body. Personal dosimeters are usually worn around the chest to 

represent the “whole-body” dose, however they can also be worn on extremities or near the eyes in 

peculiar cases, as shown in Figure 1.4. 

 

 

Figure 1.4: whole-body and extremities dosimeters provided by and used at SCK CEN [Photo courtesy of SCK CEN] 

Dosimeters can be divided in two major groups: passive dosimeters, which accumulate the dose over a 

certain period of time, and active dosimeters, which instead provide a real-time measurement, useful to 

improve radiation-protection measurements. The following paragraphs briefly explain the operation of 

the main passive dosimeter technologies, focusing on new generation technologies such as the Direct 

Ion Storage (DIS) dosimeters.  

Film-badge dosimeter 

As previously mentioned, film-badge dosimeters have been introduced for the first time around the 30s. 

They are small portable devices based on the presence of photographic film sensitive to ionizing 

radiations. They are able to monitor cumulative radiation dose: radiations that struck the film cause a 

progressive darkening of the film itself due to the reduction of the silver halide contained in the material 

[21]. After a certain period of time, the dosimeter is withdrawn: thanks to the developing of the 

photographic film and its darkness it is possible to estimate the radiation dose received by the individual. 

Dosimeters based on these technologies are passive, and real-time measurements are not possible since 

the dosimeter has to be collected and processed. However, these film processing techniques are time 

consuming and requires specialized equipment. 
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Dosimeters of this kind were one of the most commonly used due, for example, to low cost of the utilized 

films and the ease of use and construction. In addition, they are sensitive to many different types of 

radiations, such as 𝛼, 𝛽 and 𝛾. Usually, the photographic film is covered with various filters in different 

positions: in this way a part of the film remains uncovered in order to measure the total exposure, while 

other part of the film manage to measure different contributions related to distinct kind of radiations 

[22]. A representative example of film-badge dosimeter is reported in Figure 1.5. 

 

Figure 1.5: film-badge holder and processed film [23] 

Nonetheless, many drawbacks have led to the substitution of these devices during the years. Main 

disadvantages are: 

• Lack of real-time measurements: as specified before, these devices are not able to provide real-

time measurements. The period of time that elapses from the shipment of the device back to the 

laboratory and the assessment of the dose received could be significant; 

• Limitation on the measurement of high levels of radiations: in high radiation environments the 

film can saturate leading to problems in the evaluation of exposure levels; 

• Susceptibility on environmental factors: photographic film is sensible to environmental factors 

such as humidity [24], temperature and light exposure. For this reason, it is of primary 

importance to store and use the dosimeter properly; 

• Possibility of errors during the processing: film development procedure can be subjected to 

errors that impact the accuracy of radiation dose assessment leading to inaccuracies in the 

results; 

• Single use of photographic films: in order to maintain reasonable levels of detection, new 

unexposed films must be used each time [22]. 

Thermo-Luminescence Detectors (TLDs) 

Thermo-luminescence detectors have been proposed for the first time in 1953 by F. Daniels. 

Contextually, he also provided a definition of Thermoluminescence: “Thermoluminescence is the 

emission of light produced by heating a solid to a temperature below that of incandescence. It is 

exhibited by crystals, such as alkali halides, that have been exposed to x-rays or radioactivity and then 

heated rapidly”. This definition has been lately proved by F. Daniels, C. A. Boyd and D. F. Saunders: 

they discovered that high-energy radiations dislodge electrons in the lattice of these crystals. Once the 

necessary amount of kinetic energy is supplied, in case of TLDs due to the increase of temperature, the 

previously excited atoms return to ground state providing emission of photons. Several ways can be 

used to supply the required amount of energy, leading to several types of scintillation detectors that rely 

upon different technologies to measure luminescence. Most common technologies are Optically 
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Stimulated Luminescence (OSL), Radio Photo Luminescence (RPL) and TLD: in the first two, the 

luminescence process is triggered by a light flash, while heating is used for TLDs. 

Once the energy has been supplied, the emitted light has to be quantified in order to assess the amount 

of absorbed dose. This process has been named luminescence dosimetry: “Luminescence dosimetry is 

the process of quantifying the absorbed dose of ionizing radiation using detectors that exhibit 

luminescence” [25]. Various thermoluminescent materials can be used inside the detector, most common 

are lithium fluoride (𝐿𝑖𝐹) activated with magnesium and titanium and calcium fluoride (𝐶𝑎𝐹2). Filters 

can be used in case of calcium fluoride to make it tissue-equivalent [24]. In Figure 1.6 the relative 

thermoluminescent intensity is plotted with respect to temperature, the plot refers to lithium fluoride. 

 

Figure 1.6: thermoluminescent glow curve for 𝐿𝑖𝐹: 𝑀𝑔, 𝑇𝑖 [26] 

Concerning the capability of retaining the information, TLD are less affected by environmental factors 

with respect to photographic films. Even if some fading effects are inevitable, with any kind of TLD 

material, these are not of primary importance for personnel monitoring due to short time intervals 

between two reads, usually limited to a couple of months. Problems could arise if these dosimeters are 

used in environmental or workplace monitoring in which larger intervals are used [22]. 

Moreover, this kind of dosimeter have many advantages: 

• Good linear response and high sensitivity: TLDs response to dose is mainly linear. In addition 

they have a good sensitivity to low doses leading to a great range of doses that can be measured, 

compared to film-badges dosimeters [27]; 

• Ease of reading: dose assessment is obtained easily and can be carried out on site, without 

shipping the dosimeter for assessment; 

• Reusability: unlike film-badge dosimeters, TLDs can be easily reused; 

However, a main drawback is related to thermoluminescent dosimeters: due to the physical phenomena 

on which the reading process is based, each read cancels the information stored in the dosimeter with a 

zeroing of the TLD device. In addition, due to thermoluminescence phenomena, TLD devices are 

sensitive to high temperatures: accidental exposure to heat sources can affect accuracy and calibration 

of the device. 

Direct Ion Storage (DIS) dosimeters 

“The Direct Ion Storage (DIS) dosimeter is based on the coupling of a gas-filled ion chamber with a 

semiconductor non-volatile memory cell” [28]. This technology has been developed to overcome the 
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aging and problems of the widely spread TLDs and to substitute them with an electronic alternative. In 

particular, these devices are passive dosimeters able to store information regarding the accumulated dose 

and to be read, after a certain period of time, without losing these stored information. In addition, DIS 

dosimeters can be read directly on site, avoiding the periodical shipment of dosimeters to the laboratory 

for the estimation and validation of the dose. This also allows daily reads of the dosimeter that were not 

possible with previous technologies. However, the DIS dosimeters have to be recollected to the 

laboratory in case of too high doses, low battery, unusual behaviour or after a certain period of time. 

The basic detection unit inside the DIS dosimeters is composed by an ionization chamber combined 

with a modern electronic DIS memory cell. These kind of memory cells, called EEPROM (Electrically 

Erasable Programmable Read-Only Memory) and represented in Figure 1.7 a, have spread in the 90s 

thanks to the possibility of analogic storage. Indeed, contrary to standard memory cells, these devices 

can store a variable analogic voltage for indefinite time. These memory cells could be used as detector, 

since highly energetic radiations manage to penetrate inside the oxide layer and change permanently the 

voltage. However, in order to create a detector that has a sensitivity that could be useful for radiation 

protection purposes, changes have been applied. As shown in Figure 1.7 b, the control gate has been 

removed, as well as one side of silicon oxide layer, moreover an ionization chamber has been added. 

These changes allow the exposition of the top surface of the floating gate to the gas of the ionization 

chamber. In this way, an easier transportation of ion-electron pairs from the gas to the gate is achieved. 

As in a normal ionization chamber, the gas is contained within a conductive outer casing and gets ionized 

by incoming radiations. An electric field is generated by the initial voltage applied to the floating gate, 

this manage to drift the ion-electron pairs that have been created. The deposition of these ionization 

charges on the floating gate modifies the charge on the floating gate causing a change in the source-

drain conduction. In order to avoid recombination within the gas, the electric field should be high enough 

in all the area of the chamber. For this reason the maximum dimensions of ionization chambers in DIS 

dosimeters is limited to few millimetres, based on typical voltages applied on the floating gate [28].  

Measuring the resistivity variation of the channel, shallow part of material that connect source and drain 

(shown in Figure 1.7), it is possible to read the stored information without interfering with the charge 

on the floating gate, as mentioned before.  

 

Figure 1.7: (a) EEPROM memory cell  (b) DIS memory cell [29] 

DIS dosimeters are usually constituted by different detection units that aim to collect deep and shallow 

doses, respectively 𝐻𝑝(0.07) and 𝐻𝑝(10), on different ranges. These ranges can vary from one 

dosimeter to another. Since these devices are based on ionization chambers, they are able to detect 𝛼-

particles, 𝛽-particels, 𝛾-rays and X-rays. Clearly, sensitivity of these detection units changes with the 

type of incoming radiation. In addition, thanks to the design of these dosimeters, they are not affected 

by very strong electro-magnetic or radio frequency fields [30]. 

Active Personal Dosimeters (APD) 

Eventually, Active Personal Dosimeters (APD) are going to be briefly introduced since they represent 

one of the most recent dosimeter technologies. They aim to remedy limitations of passive dosimeters: 
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lack of direct dose display and absence of alarm indication for high dose rate. Indeed, among the many 

advantages presented by this technology the major one regards the possibility of an immediate read-out. 

Thanks to this feature, the workers may be more aware of the dose they are receiving. This dosimeters 

type is also generally characterized by a lower detection limit and data transfer possibilities.  

However, some disadvantages are present, and they are mainly related to the dosimeter cost, mass and 

size. Due to the system used for storing and transferring of data, lack of security can be also foreseen 

[31]. 

1.3. Machine Learning 

Machine learning is a subset of Artificial Intelligence (AI) field, which is based on the concept of 

developing computational algorithms to execute any kind of tasks, in order to make them learn the 

structures underneath data feed to the algorithms and perform different predictions and decisions without 

following explicit instructions. Machine learning field is huge and continuously growing, leading to 

development of modern algorithms and technologies. It is possible to distinguish among three main 

subfields in ML called: unsupervised learning, reinforcement learning and supervised learning, as 

summarized in Figure 1.8. 

 

Figure 1.8: scheme for description of machine learning subgroups [32] 

1.3.1. Unsupervised learning 

Unsupervised learning aims to find hidden patterns or structures within provided unlabeled data. These 

data do not include any output: the model aims to provide them. In order to organize and understand 

complex data, clustering and dimensionality reduction techniques are commonly adopted. Clustering 

processes aim to group similar data points based on similarities or distances in a feature space, as 

represented in Figure 1.9, where it may be possible to appreciate also the difference between supervised 

and unsupervised learning. The term “feature” in machine learning relates to a variable or attribute of 
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the data that is used for prediction purposes. The implementation of unsupervised learning models with 

complex datasets makes use of dimensionality reduction techniques and Principal Component Analysis 

(PCA), which aims to reduce the number of features, for more efficient computational purposes, 

preserving the important information. Many other techniques are typical of unsupervised learning but 

are not objects of this study [33]. 

 

Figure 1.9: general scheme for distinction of supervised and unsupervised learning [34] 

1.3.2. Reinforcement learning 

Reinforcement learning algorithms aim to perform sequential decisions supported by interaction with 

an environment. These models try to replicate the “learning by experience” process of human and 

animals in which they maximize the reward while navigating through the environment. In this field the 

concept of environment relates to an external system with which the learner, or decision-maker, interacts 

and where actions are taken. Decisions about the actions to take are based on the environment and the 

state: the term state, in reinforcement learning, identify a specific configuration or situation perceived 

by the learner from its environment at a particular time during the learning process. Reinforcement 

learning is typically applied to robotics or game playing, like chess or video games. For example, in a 

chess game the environment is represented by the chess board, the state by the surrounding pieces and 

each action taken by the model has a certain “reward” related to the environment itself. One of the main 

peculiarities of these models is the ability to take into account a long-term reward [35].  

1.3.3. Supervised learning 

Supervised learning involves the use of labeled dataset for model training purposes. It is also defined as 

inductive reasoning method since it is opposed to deductive methods. In this case, labeled outputs are 

provided for each input data. Basically, many examples are feed to the model, in order to make it learn 

the intrinsic relations on which input and correspondent output rely, providing procedures or rules to 

follow in order to make future predictions of new unlabeled data. The algorithms used for these tasks 

aim to minimize the error between provided and predicted results adjusting the parameters that the model 

use for making the predictions. Supervised learning is widely used in many fields, such as business, 

medicine and public policy. Algorithms that belong to this realm are broadly categorized in classification 

and regression. These two types are based on the nature of the predictive task: regression aims to predict 
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continuous and numerical values, while classification aims to assign a certain class or label to the input 

data, therefore the output is discrete and categorical [33]. 

Many algorithms have been implemented during the years for regression and classification purposes. 

Linear and polynomial regression are commonly used in the regression field, such as decision trees and 

random forests. These last two models are also implemented for classifications alongside with k-nearest 

neighbors, support vector machine and neural networks. An example of decision trees implementation 

for classification is shown in Figure 1.10. In chapter 3 the classification algorithms implemented in this 

project are described in detail. 

 

Figure 1.10: example of decision tree [36]  

Many steps precede and follow the implementation of these models. Dimensionality reduction 

techniques are applied to the initial dataset in order to: select the main features among the provided ones, 

clean and pre-process the data that will be used as input. These and other preliminary data analysis steps 

are fundamental in order to obtain good results. Moreover, techniques for overfitting control are utilized 

such as cross validation and model score analysis. 

Overfitting is one of the main concerns in the training of ML models: it describes a tendency of the 

models to follow not only the hidden patterns in training data, but also the outliers, or noise, of the data. 

In this case, the model essentially memorizes the training data rather than learning the underlying 

relations between features and target. Cross validation techniques aim to train and test the models with 

different portions of the initial dataset highlighting overfitting where present. Figure 1.11 shows how 

increasing the model complexity may lead to overfitting. Indeed, a too high complexity of the model 

could result in a very small training error, since the model follow deeply the intrinsic noise in the training 

data. On the counterpart, the model cannot generalize well on new unseen data, leading to a higher error 

on the testing dataset. 
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Figure 1.11: training and testing error related to model complexity [37] 

1.3.4. Deep Learning 

Another important subfield of ML that must be cited is Deep Learning (DL), which essentially utilizes 

so-called artificial neural networks formed by multiple layers of computation, with the purpose of 

performing different, and usually complex, tasks. Deep learning can be used in the same fields as of 

machine learning including classification, regression, clustering and generation. Many applications 

nowadays use these powerful tools, common examples are autonomous vehicles driving, computer 

vision and recommendation algorithms. The functioning of a neural network is based on a multi-layer 

network composed of nodes that interacts among them, as shown in Figure 1.12. The set up of bias 

parameters, activation functions and algorithms for minimization of errors and specific functions tasks 

is required. The complexity of the functions reproduced by the models could be elevated thanks to non-

linearity of activation functions employed: these models are able to replicate highly nonlinear patterns 

found in the data. On the counterpart, DL models usually need a lot of data for training and, in addition, 

a lot of intrinsic parameters have to be defined. In these cases, the so-called “hyper-parameter tuning” 

may be challenging.  

 

Figure 1.12: an illustration of a deep learning neural network [38] 
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2. Validation process and database configuration 
In order to accomplish the aim of simplifying the validation process of the Instadose dosimeters 

performed at SCK CEN, a deep understanding of how the latter is performed is a primary requirement. 

This has allowed a further comprehension of the main features that are regularly taken into account 

during the validation by personal dosimetry experts. The following paragraphs contain a brief 

introduction of the data acquisition and of the manual validation process performed by personal 

dosimetry experts at the SCK CEN Belgian Nuclear Research Centre, along with the measures taken for 

the configuration of the database. 

2.1. Instadose dosimeters 

The validation process considered in this thesis concerns semi-electronic dosimeters. At the moment, 

SCK CEN provides two different kinds of Instadose dosimeters, both supplied by Mirion Technology. 

These are dosimeters based on the direct-ion-storage technology briefly described in paragraph 1.2.3. 

There are two types of dosimeters, called Instadose + and Instadose 2, they differ for some 

characteristics summarized in Figure 2.1. Both dosimeters have been taken into account for the 

improvement of the validation process considered in this thesis. 

 

Figure 2.1: differences between Instadose + and Instadose 2 dosimeters [39] 

As previously mentioned, the readout of each dosimeter is carried out without recalling it to the 

laboratory, thanks to internal readout by the dosimeter and wireless data transmission by means of an 

acquisition system used by the customers. Three possibilities for the acquisition are offered: via the 

mobile app, via the InstaLink hotspot or via the InstaLink USB device. The data transfer is performed 

wirelessly by means of the Bluetooth Low Energy (BLE) technology integrated in the devices. 

These dosimeters have been configured in order to perform a read once a week and at the end of each 

month, all labelled as “hard reads”. Hence, the monthly dose of a dosimeter can be validated. The 

customer might also decide to perform additional manual readings, which are also registered as “hard 

reads” on the Structured Query Language (SQL) database and on the Excel sheet created for the 

validation process, described in details in paragraph 2.2. Hard reads are the readings that are effectively 

validated. In addition, a reading is automatically performed once a day. These latter measures, labelled 

as “soft reads”, are considered less reliable with respect to the previously cited hard reads due to lack of 

temperature compensation, moreover they are also less accurate. However, they are useful to obtain 

information on temperatures and dose trends within one hard read and another. This distinction is 

fundamental for the creation of the database, as explained in paragraph 2.3.  

As shown in Figure 2.1, two different values of personal dose equivalent are obtained by these 

dosimeters: Instadose + gives information regarding the before-called “deep dose” (𝐻𝑝(10)), while 
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Instadose 2 provides information also regarding the so-called “shallow dose” (𝐻𝑝(0.07)). For what 

concerns the validation process, since the deep dose value is considered as main reference, the shallow 

one has not been taken into account in the database. A unique database has been created for both the 

dosimeter types, containing information regarding only the deep dose, eventually evaluated by both 

dosimeter types. 

As briefly explained in paragraph 0, Instadose dosimeters are passive dosimeters. Dose evaluation is 

therefore performed by means of a formula that takes into account the difference between the cumulative 

doses evaluated at two different times. For the evaluation of dose intake coming from the working 

activities, the natural background radiation, the fluctuation in the dosimeter reads and an individual 

calibration factor of the dosimeter have to be taken into account. Consequently, the formula used for the 

dose calculation is reported below: 

𝑌 =
(∆𝑈 − 𝑈𝑏𝑔 − 𝑈𝑖𝑛𝑡𝑟) ∙ 𝑓1 ∙ 𝑓2 ∙ 𝑓3

𝐼
 (2.1) 

In this formula, 𝑌 represent the personal dose equivalent (𝐻𝑝(10) or 𝐻𝑝(0.07)) in a specified time 

interval, evaluated in [mSv], Δ𝑈 represents the cumulative shallow or deep dose difference between two 

consecutive reads, while 𝑈𝑏𝑔 and 𝑈𝑖𝑛𝑡𝑟 are the dose amounts related to backgrounds – radiations and 

intrinsic background respectively – of the dosimeter. All these quantities are expressed in [Mirion mSv]. 

This peculiar unit of measure is used since the raw data read from the dosimeter have to be corrected 

with an individual calibration factor 𝐼, that is specific for each dosimeter and converts the raw data, 

measured in [Mirion mSv], to personal dose equivalent in [mSv]. In addition, some factors that take into 

account energetic dependence (𝑓1), angular dependence (𝑓2) and non-linearity (𝑓3) are considered. These 

latter factors are dimensionless. 

The terms 𝑈𝑏𝑔 and 𝑈𝑖𝑛𝑡𝑟 can be reformulated as the product between the time interval within two 

consecutive reads (𝑛), expressed in [days], and background doses related to natural background (𝐵𝑏𝑔) 

and intrinsic effects (𝐵𝑖𝑛𝑡𝑟). These last quantities are expressed in [mSv/day]. 

𝑌 =
∆𝑈 ∙ 𝑓1 ∙ 𝑓2 ∙ 𝑓3

𝐼
− 𝑛 ∙ (𝐵𝑏𝑔 + 𝐵𝑖𝑛𝑡𝑟) (2.2) 

The intrinsic background 𝐵𝑖𝑛𝑡𝑟, addressed in this formula, refers to a variation, within dosimeter and 

time, in the observed background dose measured by the dosimeter. Although no studies related to this 

effect have been found and no information have been provided by Mirion Technology company, 

preliminary analyses conducted by SCK CEN link this effect to the variation in environment humidity, 

even if the dosimeters should be hermetically sealed. This evaluated factor is hereafter addressed as 

intrinsic background factor and changes for measures of 𝐻𝑝(10) or 𝐻𝑝(0.07). However, as reported 

previously, for the sake of this thesis just the deep dose one has been taken into account. 

2.2. SCK CEN validation process 

Dosimeters provided to customers by SCK CEN are validated monthly. The validation process is 

performed manually based on data collected by means of an SQL database. To ease the validation 

process to the experts, Microsoft Excel sheets containing relevant information and graphs are 

automatically generated by a Python script. 

During the validation process, a class is assigned to each dosimeter based on the results of the collected 

measurements. Ten different classes have been identified and are reported below: 

A) The dosimeter performs perfectly and can be validated without further actions; 

B) The dosimeter does not perform well and should be kept under control during the next 

validations, no actions have to be taken for the moment; 

C) A value in the measurements, or several, need to be adjusted due to small problems (e.g. 

temperature jumps). Apart from that, the dosimeter performs well and no further actions have 

to be taken; 
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D) One value, or several, in the measurements need to be adjusted. The dosimeter must be taken 

out of use; 

E) Values in the measurements can be approved but the intrinsic background factor, (𝐵𝑖𝑛𝑡𝑟) in 

formula 2.2, used for dose calculation has to be adjusted; 

F) The intrinsic background factor needs to be adjusted and values in the measurements has to be 

recalculated; 

G) The dosimeter can be validated but it has to be recalled to the SCK CEN laboratory; 

H) Fake readings have to be inserted before the dosimeter can be validated. This is usually related 

to lack of the end-month measurement: this reading is created thanks to an interpolation of 

previous and next readings; 

I) No validation can be performed usually due to data missing or necessity of next month’s values 

for proper judgement; 

Z) The dosimeter performs well and a dose is detected. 

Three different radiation protection experts are in charge of the validation process: the head of dosimetry 

lab, the head of the Radiation Protection Dosimetry and Calibration group, and head of Dosimetric and 

Calibration Services Unit at SCK-CEN. Usually, the customers are divided in three groups, based on 

companies, and each expert performs validations always on the same companies. By attending some 

examples of validation process performed, a subjective bias has been discovered concerning the above-

mentioned classification. Indeed, since some classes do not have precise boundaries, different persons 

could validate the same dosimeter adopting different classes. Although this bias should be considered 

for the implementation of the ML models, it has not been possible to take it into account since the 

classification that is performed is also deeply linked with the customer group that is validated. For 

example, one expert is usually performing validation for hospitals: higher values of dose are expected 

by these kinds of customers with respect to other companies. This results in a higher number of 

dosimeters classified as Z with respect to dosimeters validated with the same class by other validators. 

For this reason, no information regarding who validated the measurements has been inserted in the 

training and test database.  

2.2.1. SQL database 

SQL is a programming language for storing and processing information in a relational database. In this 

kind of databases, information are stored in tabular form, with rows and columns representing different 

data attributes, and the various relations between the data values. Specific information can be retrieved 

by keywords used to manipulate the data stored inside the database [40]. Two main keywords used in 

the SCK CEN database are represented by “Group number” and “Dosimeter serial number”. All the 

dosimeters that are provided to the same company are identified by the same group number, in addition, 

each dosimeter is identified by a unique serial number. A reading ID (IDentification) is also assigned to 

each collected measurement in order to uniquely labelled it: fake readings generated for validation class 

H have a read ID equal to -1. 

This SQL database provides different views in order to simplify the search of information on a specific 

dosimeter or measurement. For the sake of validation, not all the information stored in the database are 

relevant: Table 2.1 provides a resume of all the parameters and values that could be useful for the 

validation process. These parameters have been taken into account for the creation of the database used 

for the ML models implementation. 

 

Information 
regarding the 

dosimeter type 
and customer 

Group number Number of the group to which the dosimeter belongs 

Dosimeter serial 

number 
Serial number of the dosimeter 

Dosimeter type ID 
Dosimeter ID used to identify the type of dosimeter: 

Instadose + or Instadose 2 
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Carrier 

information 

First and last name of the person to which the dosimeter is 

assigned. A registration number and a spare ID are also 

stored 

Reporting level Level above which a dose value is reported to the customer 

Wearing location 
Wearing location of the dosimeter: it distinguishes among 

above, below or without lead apron 

Information 
regarding the 

reading 

Read ID ID assigned to identify different reads 

Read type ID ID that identifies the type of readings: hard or soft read 

Exposure and 

created date 

Date on which the reading is performed and date at which 

the reading is stored in the database 

Deep and shallow 

raw dose values 

Raw dose values evaluated in [Mirion mSv] for deep and 

shallow dose depending on dosimeter type 

Battery percentage Battery percentage at the moment of the reading 

Temperature Temperature measured at the moment of the reading 

Free space 

percentage 

Free memory space in the device at the moment of the 

reading 

Information 
regarding 
validation 

process 

Flags for anomaly 

or initial read 

Flags used to assess anomalies or first reads of new 

dosimeters 

Validation status Flags used to determine the status of the validation 

Name of validator 

expert, validation 

message and 

remarks 

Information on the validation process such as: name of the 

validator, comments and remarks on the validation 

Begin and end 

linking period 

Information regarding the month to which the validation 

refers 

Calculated dose 

Dose evaluated with formula 2.2 within two consecutive 

hard reads based on raw dose, correction factors and time 

interval 

Background and 

individual factors 
Factor used for dose calculation 

Intrinsic factor for 

deep and shallow 

dose 

Intrinsic factor used for dose evaluation 

Begin and end 

date 
Dates at which the individual factor has been modified 

Table 2.1: information retrieved by the SQL database for validation process 
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As before mentioned, these information have been used to generate Microsoft Excel sheets in order to 

assist the validation process. 

2.2.2. Microsoft Excel sheets 

The Microsoft Excel sheets used for the validation process are automatically created by a Python script 

developed within SCK CEN. One Excel file is created for each group number and it contains all the 

sheets that refer to that group number. One sheet is produced for each dosimeter evaluated and contains 

the main information resumed in Table 2.1 with different forms. An example of this Excel sheet is 

reported in Figure 2.2.  

 

Figure 2.2: table with hard reads in Microsoft Excel sheet 

Figure 2.2 reports how the hard reads are shown inside the sheet, the table has been divided in two 

pictures, for better representation. In Figure 2.2, the cell highlighted with a bold border shows the value 

of the dose taken in the entire month, and it marks also the last measurement of the month, therefore the 

last two rows in the figure have not been taken into account in the current validation process and will be 

validated only once all readings from that month are available. Along with this table, a box containing 

main information on the dosimeter status and calibration are reported, as shown in Figure 2.3. 

 

Figure 2.3: main information regarding dosimeter in Microsoft Excel sheet 
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However, the most significant part of the Excel sheet is constituted by the graphs, generated from all the 

measurements collected in the previous months, related to the dosimeter that has been taken into 

account. Different graphs are generated in order to retrieve different information, where all the 

measurements from the previous months are used along with the newly acquired ones. 

Figure 2.4 shows the total dose calculated by the dosimeter: as expected, the curve grows with time. The 

red dots in the graph represent the previously called hard reads, while the blue ones represent the soft 

reads. 

 

Figure 2.4: real dose graph with no filters for dosimeter validation 

Figure 2.5 shows, instead, filtered values in order to have a better comprehension of the dose received 

by the customers. In details, this graph is evaluated subtracting the background contribution to the dose 

evaluation and the values of dose that exceed 1 𝑚𝑆𝑣. In this way, the dose from the customers related 

to their working activities is clearly visible. In the graph reported in Figure 2.5, other peculiarities can 

be noticed: along with the dose values, the temperature is plotted (small light blue dots). Temperature 

values are fundamental to validate the dosimeter since very high or low temperatures influence deeply 

the dosimeter behaviour, leading to odd measurements. If these are encountered, it is important to 

recognise if they are related to temperature jumps or not, in order to carefully classify the dosimeter. 

Two vertical lines are also drawn: the green line takes into account changes in the intrinsic background 

effect of the dosimeter, while the purple one outlines changes in the natural background. 

Before delivering the dosimeter to the customers, those are left for a certain period of time in a controlled 

environment in the SCK CEN facility, where the natural background is known and equal to 2.2 μSv/day. 

During this period the intrinsic effect mentioned in chapter 2.1 is estimated, subtracting the natural dose 

from the measured one. This effect is taken into account in the dose calculation by means of the 𝐵𝑖𝑛𝑡𝑟 

factor reported in formula 2.2. For this reason, a green line is present after the first months of 

measurements in Figure 2.5. For what concerns instead the purple line, the natural background has 

changed from 2.2 μSv/day to 2.0 μSv/day. This has been done because the dosimeter was sent to a 

customer where the natural background dose rate was estimated to be 2.0 μSv/day, this estimation is 

based on a statistical analysis of the dosimeters used by this customer. 
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Figure 2.5: dose graph filtered from outliers and background contribution 

Moreover, the graph in Figure 2.6 is used to check the necessity of intrinsic background recalibration. 

In order to do so, the dose readings with values higher than 150 μSv are deleted: in this graph just the 

dose related to background radiation should appear.  

 

Figure 2.6: dose graph filtered with jumps higher than 150 𝜇𝑆𝑣 

As above-mentioned, these graphs contain the main information on which the validators base the 

classification process. In order to classify a dosimeter as well-performing (class A), the graphs reported 

above should present clear trends with small variations and just few outliers, mainly related to 

temperature jumps. The graph that takes into account background contribution (Figure 2.6) should 

present a constant behavior, high slopes must be corrected changing the intrinsic background factor with 

class E or F. During this process, data contained in Figure 2.2 and Figure 2.3 are used along with these 

graphs to choose the most suitable validation class.  

2.3. Configuration of final database for ML implementation 

With the purpose of model implementation, a labelled database has to be provided as input. This 

database has been later on divided in training and testing datasets. The first have been used to fit the 

parameters and hyperparameters of the model, which will be later validated thanks to the testing dataset. 

Since the supervised classification models that have been later implemented are non-parametric models, 

predictions of the classes will deeply depend on the data that are used for the training. Indeed, non-
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parametric models do not make assumptions on the structure of the data: this topic have been explained 

in detail in chapter 3. In this way, there is a high dependency of the model parameters on the data 

provided for model training, which means that the training dataset must be representative of all the 

possibilities that can be encountered in the testing, and later on during the application of the model to 

new unseen data. 

In addition, the necessity of structuring the dataset in order to give more importance to hard reads with 

respect to soft ones emerged from the validation process analysed in the previous paragraphs. In the 

following paragraphs the measures taken to build the final database have been summarised. 

2.3.1. Data rearranging and grouping 

As mentioned previously, the models that have been implemented are supervised models, meaning that 

the database on which they are trained and tested contains previous validated data for which the classes 

have been already identified. The steps of the validation process described before have been developed 

during the last years, and they are more or less unchanged since the beginning of 2023. For this reason, 

it has been chosen to consider just the validations performed from 1st January 2023 onwards. 

In order to give a smoother reading, the several databases created as intermediate steps in order to 

configure the final one, have been named progressively (𝐴, 𝐵, and so on). First of all, during the 

validation process the assigned class is reported just on the Excel sheets, for this reason, the first step 

that has been performed concern the retrieving of this information from all the Excel sheets in a small 

database, hereafter recalled database 𝐴. 

This 𝐴 database contains just the serial number of the dosimeters, the assigned validation class, the 

validation date and the name of the Excel sheet, as reference. In this first process, validations that do not 

have a class, or have class information located in different parts of the sheet, have been discarded. The 

database that has been used to obtain the results reported in chapter 4, contains measurements up to the 

end of November 2023. In the eleven months going from January to November 2023, the total amount 

of validations retrieved from these Excel sheets were ~ 11 980. Afterwards, the information collected 

inside this first database have to be merged with the information retrieved by the SQL database, resumed 

in Table 2.1. 

It is important to clarify that the validation process is usually performed one month after the 

measurements: a validation of a dosimeter performed around mid-December refers to all the 

measurements collected from the previous validation session up to the end of November. Usually (but 

not always) the dosimeters are validated monthly, so these measurements refer just to one month. 

Dosimeter serial numbers and validation dates have been used in order to link hard and soft reads 

contained in the SQL database with the related validation classes, based on what has been explained 

above. 

Since the validation process is performed only on hard reads, no dose evaluation has been automatically 

included inside the SQL database for soft reads. However, since they have to be inserted in the final 

database used for the implementation of the ML models, it is required to evaluate the dose for these soft 

reads. Formula 2.2 has been used for this purpose: factors and dose values retrieved by the SQL database 

have been employed. The time interval that has been considered for this dose calculation has been 

evaluated taking into account the closest hard or soft read. Factors 𝑓1, 𝑓2 and 𝑓3 contained in formula 

2.2 have been all assumed to 1 for this calculation. At the end of the implementation process, it has been 

found out that one of these factors was incorrect. Indeed, the energy correction factor used for dose 

evaluation is equal to 0.86 for 𝐻𝑝(10) evaluation in Instadose +, and equal to 0.98 for 𝐻𝑝(10) 

evaluation in Instadose 2. However, multiplying all the values by the same factor, even if not correct, 

do not influence the implementation of the ML model. An implementation with the corrected dataset 

has been performed for some of the models leading to comparable results. Because of lack of time, the 

overall models have not been re-trained on the corrected dataset, based on the test previously performed. 

In order to give an order of magnitude concerning the size of the database up to this point, the merging 

of readings in SQL database with the ~11 980 validations, contained in database 𝐴, produce a new 

database, named 𝐵, containing ~ 484 250 rows and 33 columns: each row refers to a soft or hard 
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measurement while each column -or feature- refers to an information on that measurement. 

Nevertheless, database 𝐵 is not clean yet and other measures have to be implemented in order to generate 

the final one. 

As previously pointed out, hard reads are more significant with respect to soft ones. In database 𝐵, the 

major part of the rows contains soft reads, since they are daily reads, therefore, once the data are feed to 

the ML models, a too high importance is given to soft reads. In order to overcome this problem, a data 

grouping has been performed: all the soft reads collected within two consecutive hard reads have been 

grouped in a single row. In this way, information regarding validation class, dosimeter and factors for 

dose evaluation remain unchanged (since these remain fixed within two hard reads). On the other side, 

information regarding the readings, such as temperature, dose, battery percentage and free memory have 

been added to the database. In particular, the latter have been added taking into account the mean, the 

maximum and the minimum values, as well as the standard deviation and the variance of the selected 

soft reads. In addition, it has been decided to add a column containing information on the number of soft 

reads that has been grouped during this process: examples are reported in the below list under the name 

of “Class size”. 

After rearranging columns order, a database containing ~ 138 000 rows and 37 columns has been 

obtained, named database 𝐶. In data analysis and ML implementation, the columns of a database are 

usually called features, as cited in paragraph 131.3.1. An exhaustive list shows the cited features 

contained in the final database: 

• Validation class: class assigned to the measurement after the validation; 

• Class size: number of measurements taken into account in that row. This value is equal to 1 for 

what concern hard reads (1 row is related to just 1 measurement), and equal to the number of 

soft reads grouped together, for what concern soft reads; 

• Dosimeter serial number; 

• Validator: a number that uniquely addresses who validated the reading; 

• Group number: the group number to which the dosimeter belongs; 

• 𝐻𝑝(10) mean value: value of deep dose for what concern hard reads while, for soft reads, 

contains the mean value of the grouped readings; 

• 𝐻𝑝(10) maximum value: value of deep dose for what concern hard reads while, for soft reads, 

contains the maximum value of the grouped readings; 

• 𝐻𝑝(10) minimum value: value of deep dose for what concern hard reads while, for soft reads, 

contains the minimum value of the grouped readings; 

• 𝐻𝑝(10) standard deviation value: value of deep dose for what concern hard reads while, for soft 

reads, contains the standard deviation evaluated with the grouped readings; 

• 𝐻𝑝(10) variance value: value of deep dose for what concern hard reads while, for soft reads, 

contains the variance evaluated within the grouped readings; 

• Background factor: background factor retrieved from the SQL database view for hard read dose 

evaluation; 

• Intrinsic factor: 𝐵𝑖𝑛𝑡𝑟 value, retrieved by the SQL database, cited in formula 2.2 for the deep 

dose evaluation; 

• Individual factor: individual factor retrieved by the SQL database used to calculate the deep 

dose; 

• Wearing location: number that uniquely define the location of the dosimeter (above, below or 

without lead apron); 

• Read type ID: as described in Table 2.1, it contains information on the type of reading collected 

in the rows: hard or soft reads; 

• Battery percentage features: as for the 𝐻𝑝(10) dose, also in this case there are 5 different 

features taking into account mean, maximum, minimum, standard deviation and variance; 

• Temperature features: as for the 𝐻𝑝(10) dose and battery percentage also in this case 5 different 

features are present; 
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• Free space percentage features: as for the previously cited information also in this case there are 

5 different features; 

• Anomaly flag: flag taken by the SQL database that identifies anomalous readings; 

• Initial reads flag: flag taken by the SQL database that identifies first readings of the dosimeters; 

• Begin month: number of the month retrieved by the Begin Linking Period (BLP) field in the 

SQL database cited in Table 2.1. It provides information on the months to which the validation 

process refers; 

• End month: number of the month retrieved by the End Linking Period (ELP) field in the SQL 

database cited in Table 2.1. It provides information on the months to which the validation 

process refers, it usually is equal to the “Begin month” cited above, since validation is performed 

monthly; 

• Exposure day: number of the day retrieved from the Exposure Date (ED) field in the SQL 

database; 

• Exposure month: number of the month retrieved from the ED field in the SQL database; 

• Grouping key: number that has been previously added in order to allow the grouping of the soft 

reads; 

All the steps cited up to now, as well as the one contained in the next paragraphs, have been performed 

by Python scripts by means of Pandas library [41]. 

Simplifications and cleaning 

Outliers and anomalies can appear during the process, while working with real data. Since the created 

database 𝐶 is extensive, rows presenting missing information are present and have been deleted for the 

sake of ML models implementation. This cleaning process is fundamental in order to create a suitable 

dataset for ML algorithms libraries. 

The cleaned dataset does not contain measurements validated as class I: this has been done since, for 

the sake of automatization of the validation process, class I can be simply detected without the necessity 

of a prediction from a ML model. In addition, in order to be correctly classified as validated in the SQL 

database, two flags have been assigned to each measurement, therefore a correct validation process 

results in both flags equal to 0: measurements that do not belong to this group have not been taken into 

account. 

During the grouping process some soft measurements have been deleted since there is a long gap 

between two subsequent hard reads: around 700 measurements have been cancelled for this reason. 

Updating process 

With the aim of automatization using Machine Learning implementation, an updating process of the 

database has been developed. Up to now it has been used to insert newly validated measurements inside 

the previously cited database 𝐶. For this reason, it is performed at the beginning of the month, when the 

validation process for the entire previous month is finished. It follows the steps described in the previous 

paragraphs, taking into account just the readings acquired in the last month.  

For what concern the future implementation of these ML models on newly acquired data, the updating 

process can be used to retrieve also not validated measurements. Afterwards, developed models will be 

used to provide a prediction of the validation class easing the validation process. 

2.3.2. Dimensionality reduction 

A good practise for the pre-processing of datasets, for the subsequent implementation in ML algorithms, 

is the implementation of dimensionality reduction techniques, on the grouped database 𝐶, previously 

described. These techniques are fundamental in order to reduce the run time of the models and to lower 

the complexity of the data presented to the algorithms. Indeed, the aim is to decrease the number of 

features present in the database without deleting information that could be important for the 

interpretation of the data structure by ML models. The process of selecting the features that are essential 
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for describing the database is called Feature Selection, and in this project it has been performed by means 

of correlation matrices. A correlation matrix shows the correlations that are present between two features 

that belong to the same dataset. Indeed, each entry of the matrix shows a coefficient that expresses the 

strength of the correlation between two intersecting features. The term “correlation” refers to a “mutual 

relationship or connection between two or more things” [42], features in this case. In this way, it’s also 

possible to quantify which feature mostly influence the validation class. Two types of correlation have 

been studied in this analysis: Pearson’s and Spearman’s correlation. 

“The Pearson correlation coefficient is a measure of the linear association between two variables. It 

quantifies the strength and direction of the relationship between these variables. The coefficient ranges 

on values between – 1 and + 1: a value of ± 1 indicates a perfect linear relationship between the two 

variables. Negative values simply indicate that, as one variable increases, the other decreases. A value 

of 0 indicates no linear relationship, while coefficients that differ from 0 but are not equal to ± 1 indicate 

a linear relationship, although not a perfect one” [43].  

A first analysis of correlation between features has been performed by means of a Python library named 

Sweetviz [44]. Thanks to this library, the Pearson’s correlation matrix, reported in Figure 2.7, was 

retrieved. However, since some features in the database are categorical, Pearson’s correlation cannot be 

applied on all the features. Associations that involve categorical features, such as the validation class, 

are evaluated based on uncertainty coefficients and correlation ratios with a value that goes from 0 to 1. 

These kinds of correlation are represented by squares in the matrix, reported in Figure 2.7: bigger is the 

square, stronger is the correlation. Circles represent numerical features associations evaluated by means 

of Pearson’s correlation coefficients, which goes from -1 to 1, as reported in the colour-bar on the right 

side of Figure 2.7. For what concerns the uncertainty coefficients, used to evaluate categorical 

associations, they are asymmetrical. This means that each values on a specific row represents how much 

the row taken into consideration provides information on the column (i.e. feature) that is intersecting. In 

particular, the first column on the left of Figure 2.7, informs about which features (on the intersecting 

rows) give more information on the validation class. 
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Figure 2.7: correlation matrix for grouped database evaluated with Sweetviz library 

Concerning Spearman’s correlation, it has been proposed as a “measure of the strength of an association 

between two variables”. “It assesses how well an arbitrary monotonic function can describe a 

relationship between two variables, without making any assumptions about the frequency distribution 

of the variables” and, unlike Pearson’s, it does not imply that the relationship has to be linear [45]. The 

correlation matrix reported in Figure 2.8 contains Spearman’s correlation coefficients, and it must be 

noted that, in order to create it, the categorical features have been temporarily deleted. 
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Figure 2.8: Spearman’s correlation matrix for grouped database 
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Results from these correlation matrixes have been compared with the information used in the manual 

validation process in order to decide which features can be deleted without losing essential information. 

During this process, a conservative approach has been adopted in order to delete just the features that 

surely do not affect the validation class prediction. 

Eventually, features that have low correlation coefficients reported in Figure 2.7 and Figure 2.8 have 

been removed. They are listed below: 

• Validator: deleted because the subjective bias described in paragraph 2.2 cannot be implemented 

in the ML models. This information is somehow distorted for the validation process; 

• Wearing location: this feature shows very low correlation coefficients and does not significantly 

influence the validation class; 

• Anomaly and Initial read flags: looking at the data contained in these columns, just few 

measurements in the database present a value different than 0 (just 1 measurement for the 

Anomaly flag and 26 for the Initial read flag). This make it useless for a ML implementation 

since this information is not present for a sufficient amount of measurements; 

• Exposure day: correlation coefficients for this feature are low. In addition, the day of the 

exposition should not influence the measurement, while the month can be related to temperature 

and humidity variations that influence the performances of the dosimeter; 

• Grouping key: this feature has been inserted during the creation of the database and does not 

regard the measurements, therefore it has been deleted; 

Although the features have been selected via feature selection, some of them are barely used during the 

manual validation process. Other features present low correlation coefficients, such as the background, 

intrinsic and individual factor. Even though these coefficients are small, intrinsic factor is important for 

the model, since it is one of the main reasons for dose recalculation. Therefore, they have been kept in 

the database for this first ML implementation. In future updates of this study, they might be carefully 

removed looking at the model performance. Correlation matrices retrieved after the Feature selection 

process are finally reported in Figure 2.9 and Figure 2.10. 
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Figure 2.9: correlation matrix for grouped database evaluated by Sweetviz library after feature selection 



32 

 

  

Figure 2.10: Spearman’s correlation matrix for grouped database after feature selection 
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2.3.3. Pre-processing of the database 

In order to implement ML models, the training and testing datasets have to be perfectly clean, without 

presence of NaN (Not a Number) variables that can cause errors during the implementation. With this 

final cleaning process, database 𝐶 analysed before, decreased from ~ 137 000 rows to ~ 130 000 (5.65 

% of the measurements have been deleted for lack of information). 

The main concept behind this ML implementation is to classify the well-performing dosimeters from all 

the other classes: this led to a binary classification between class 𝐴 and the sum of all the other classes, 

grouped in a newly formed class 𝐿. This process is also important for class balancing: in order to obtain 

reliable results from supervised classification models, the training dataset should contain comparable 

classes sizes. As shown in Figure 2.11, class 𝐴 counts the main contribution. It has to be noticed that, as 

discussed previously, there are no measurements validated as class 𝐼 since they have been deleted. 

 

Figure 2.11: histogram with classes distribution in grouped database 

Figure 2.11 reports the classes contained in the database after the cleaning process. In this database the 

measurements validated with class 𝐴 represent the 55.96 %. After the grouping process, distribution of 

the classes in the database is reported in Figure 2.12. 
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Figure 2.12: histogram with classes distribution in grouped database after class balancing process 

A last step has to be performed before the ML models implementation: the database provided needs to 

be standardized. This process has been performed by means of the StandardScaler class contained in the 

sklearn.preprocessing module provided by scikit-learn [46]. This tool standardizes the values of each 

feature by setting the mean to zero and scaling to unit variance. This standardization process does not 

involve the target feature, that in this case is represented by the validation class. The terminology “target 

feature” refers to the feature that will be the output of the ML classification models. 
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3. Machine Learning algorithms 
For the purpose of automatizing the validation process, supervised classification models have been 

implemented. As briefly explained in paragraph 1.3, supervised ML models use labelled inputs in order 

to predict outputs. Indeed, they are based on an inductive process for which the algorithm “learns” 

independently how to perform, in this case, the validation process without giving instructions on how to 

perform it: the model based its learning process on the relationship present among the labelled data 

provided in the training dataset. For this study, the models need to perform a classification process: the 

requested output is categorical, and it is represented by the validation classes. 

Various supervised classification algorithms are available and deeply described in literature. In the 

following paragraphs, the models used in this study are briefly described: K-Nearest Neighbours (KNN), 

Decision Tree (DT), Random Forest (RF) and Neural-Networks (NN). “Often, the methods used for 

classification first predict the probability that the observation belongs to each of the categories of a 

qualitative variable”, in this sense these models also behave like regression methods [33]. For this 

reason, all the cited models can be also used in regression problems.  

The models that are used in this study are all defined as nonparametric models, this means that they do 

not make assumptions about the form or structure of the function that maps inputs to outputs and so also 

about the distribution of the data. This is fundamental for the implementation of data that do not follow 

a normal distribution, as in this case. 

These models have been implemented following a procedure developed for providing the best possible 

results. The main steps of this procedure are reported below: 

• Creation of the dataset: assumptions and measures taken for the creation of the dataset has been 

extensively explained in paragraph 2.3; 

• Splitting the dataset in training and testing ones: the dataset has been split in two. One dataset, 

containing the majority of the measurements (usually ~ 80 %) is used for the training of the 

models. The remaining part (~ 20 %) is used for testing. The mentioned percentages are 

commonly used in literature, they are related to best possible results and have been evaluated 

empirically and then demonstrated [47]; 

• Hyperparameter selection: any ML model needs a certain amount of hyperparameters. 

Hyperparameters of a model, are those that remain unchanged during training, therefore, being 

in another level of abstraction, are called “hyper”. Indeed, an hyperparameter is defined as a 

parameter that is assessed before the learning process of the model begins [48]. Values for these 

parameters have been chosen a priori and directly affect how accurate a model can be. For the 

sake of simplification, just the most important hyperparameters for each model are going to be 

described. Since it is unfeasible to know a priori which are the best values for each 

hyperparameter, a selection of the most appropriate or suggested values has been carried on. In 

this way, all the possible combinations between these values of the selected hyperparameters 

have been generated; 

• Implementation of the models: once the combinations have been defined, a model for each 

combination has been implemented on the training and testing datasets defined before. This 

process allows to identify the best combinations based on the results of these models; 

• Hyperparameter tuning: looking at the implementation results, the combinations of 

hyperparameters that results in the highest performances have been identified. These will serve 

to build a much smaller subset of combinations that can be implemented easily on new incoming 

data. This step is essential in order to accelerate the actual validation process: it is unfeasible 

for the dosimetry experts to run every month all the possible combinations of hyperparameters 

described above, therefore a sorting of the hyperparameters which perform better has been 

introduced, to provide just the latter to the final user for a faster running of the models; 

• Cross-validation process: this is an heuristic method used to assess the model’s performance on 

new unseen data, in order to understand how well the model can deal with generalization. It is 

used to point out overfitting phenomena assuring that the model is not learning the noise inside 
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the data. In cross-validation, a fixed number of folds (or partitions) of the dataset are created, 

the analyses are then performed on each fold averaging the overall error estimation. This process 

involves dividing the available data into multiple folds or subsets, using one of these folds as a 

validation set, and training the model on the remaining folds. This process is repeated multiple 

times, each time using a different fold as the validation set, in order to have each fold used as 

testing once. The cross validation process has been performed only on the subset of the 

hyperparameter combinations retrieved in the previous step. This has been made necessary due 

to lack of time during the final stages. 

As a reminder, to understand properly why cross-validation is performed, it is important to give a 

definition of overfitting. “Overfitting is a fundamental issue in supervised machine learning which 

prevents us from perfectly generalizing the models to well fit observed data on training data, as well as 

unseen data on testing set” [49]. A good generalization of the model is fundamental to have ML models 

that provide reliable results on new and unseen data. Various techniques are performed to prevent 

overfitting, like early-stopping, network-reduction and others. 

It has to be noticed that, since the scikit-learn Python libraries have been used for the implementation of 

these ML models, the terminology used in the following chapters refers to this particular library. 

3.1. K-Nearest Neighbours 

This is the first and most straightforward method that has been implemented in this study. It is called K-

nearest neighbours because it classifies a new data point, which belongs to the testing dataset, based on 

the K nearest data points contained in the training one. 

A small digression should be added regarding classifiers: the most accurate one that can be adopted is 

the Bayes classifier [33]. The latter is a statistical classifier that has the smallest probability of 

misclassification among all classifiers based on the same set of features. It is based on the Bayes theorem 

allowing the inversion of the conditional probabilities. However, in order to implement such algorithm, 

the conditional distributions of the features, given the class labels, are needed, and it cannot be applicable 

in this case. “Many approaches attempt to estimate these conditional distributions and then classify a 

given observation to the class with the highest estimated probability. One such method is the KNN 

classifier” [33]. Indeed, given the positive integer K and a test observation 𝑥0, this classifier first 

identifies the K points in the training data that are closest to 𝑥0, represented by 𝑁0. Consequently, it 

estimates the conditional probability for a class 𝑗 as the fraction of points contained in 𝑁0 whose response 

values equal 𝑗. Finally, KNN categorises the test observation 𝑥0 as the class with the largest conditional 

probability [33].  

However, for high-dimensional parameter spaces, this method becomes less effective due to the so-

called “curse of dimensionality” [50]. High-dimensional parameter space refer to a mathematical space 

that is used to model datasets with many attributes. Each attribute -or feature- of the dataset represents 

a dimension in this space. 

3.1.1. Hyperparameter definition 

As previously mentioned, in order to implement these supervised classification models various 

hyperparameters have to be defined. Table 3.1 reports the main hyperparameters that have been tuned 

for this study, concerning KNN models. 
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Hyperparameter Values 

K [2: 15] 

Weight “Uniform”, “Distance” 

Algorithms  “Brute”, “K-D tree”, “Ball tree”, “Auto”, 

Metrics “Euclidean”, “Manhattan”, “Chebyshev”,  

Table 3.1: main hyperparameters values for KNN classifier 

K value 

This hyperparameter refers to the number of nearest points that have been taken into account for the 

classification of new measurements. An optimal values of K should be found for each application. 

Generally, a small value of K leads to a model that follows the variations in the data too closely, being 

more prone to overfitting possibility. On the other side, a larger value of K tends to suppress the effects 

of statistical noise but makes the classification boundaries less distinct. Effects of these two distinct 

cases are shown in Figure 3.1: the picture shows the change in the decision boundary with respect to the 

value of K. The purple dashed line represents the decision boundary obtained by the Bayes classifier. 

 

Figure 3.1: comparison of KNN decision boundaries with 𝐾 = 1 and 𝐾 = 100 [32] 

As reported in Table 3.1, the values assumed for this hyperparameter range from 2 to 15. It is important 

to remember that the optimal choice of the K value is highly data dependent. 

Weight function 

The K points selected could have different weights in the classification process for the new data, based 

on the function selected in this hyperparameter. With a “Uniform” weight function all the K points in 

the neighbourhood have the same importance for the prediction. Instead, a “Distance” weight function 

assigns a weight to these points based on the inverse of the distance between these and the new point: 

higher is the distance, smaller is the importance assigned to that training point. 
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Algorithm 

This hyperparameter selects which algorithm has to be used for the selection of the nearest neighbours. 

Different possibilities are present in the scikit-learn library and all of them have been included, they are 

listed below: 

• “Brute”: this algorithm evaluates the distance from the point 𝑥0 in the naivest way and it is very 

competitive for small data samples. However, as the number of samples grows, the brute-force 

approach quickly becomes infeasible, as reported in scikit-learn user guide [46]; 

• “K-Dimensional (KD) tree”: this algorithm is tree-based and is implemented in order to 

overcome the computational inefficiencies of the “Brute-force” algorithm reducing the required 

number of distance calculations. The KD recursively partitions the parameters space, along the 

data axes, into regions in which data points are filled. The construction of the tree is very fast, 

however, if the dimension D of the dataset grows fast (D > 20), the algorithm becomes 

inefficient due to the previously cited “curse of dimensionality”; 

• “Ball tree”: it was developed to address the inefficiencies of KD trees in higher dimensions. 

Ball trees partition data in a series of nesting hyper-spheres, while previously mentioned KD 

trees use cartesian axes. In this case, data are divided into nodes defined by radius and centroid 

position; 

• “Auto”: tries to implement the most appropriate algorithm based on the measurements used to 

fit the model; 

Metrics 

This hyperparameter selects the type of metric that has been used to evaluate the distance between points 

inside the model. All the various possibilities have been selected: 

• “Euclidean”: refers to the “ordinary” straight-line distance between two points in a Euclidean 

space (𝐿2) norm; 

• “Manhattan”: also known as the 𝐿1 norm. It is a metric in which the distance between two points 

is the sum of the absolute differences of their Cartesian coordinates; 

• “Chebyshev”: it is a metric defined on a real coordinate space, where the distance between two 

points is the greatest of their differences along any coordinate dimension. It is also known as 

the maximum metric or 𝐿∞. 

3.2. Decision Trees 

A decision tree is a model of supervised machine learning used for both classification and regression 

tasks. It presents a flowchart-like structure where each internal node denotes a test on an attribute of the 

data, each branch represents an outcome of the test, and each leaf node (terminal node) holds an outcome 

(validation class in this case). It starts from the root, like an upside-down tree, and branches off to 

represent various realizations, as reported schematically in Figure 3.2. In this study, DT has been used 

fundamentally to recreate the validation process subdividing it into simple and elementary choices, 

based on the data provided as input. 



39 

 

 

Figure 3.2: example of a basic decision tree [48] 

 

DTs present several advantages: small data preparation is required, and thanks to their simplicity, they 

are requiring less time to train with respect to more complex models, such as NNs. The main 

disadvantage is instead represented by the risk of producing over-complex trees that do not manage to 

generalize the data structure, leading to overfitting. An example of this issue is shown in Figure 3.3, 

where the reported decision tree presents an exaggerated number of branches with respect to the 

validation process that has to be reproduced. Indeed, this was one of the first attempts of DT 

implementation. For this reason, the pruning process of DT models is fundamental for overfitting 

control. 

 

Figure 3.3: decision tree implemented in early stages during this thesis project 
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3.2.1. Hyperparameter definition 

As done for the KNN model, the main hyperparameters taken into account for DT models are briefly 

described in this paragraph. The correspondent values for these hyperparameters have been summarised 

in Table 3.2. Explanations for the following hyperparameters are mainly retrieved by the scikit-learn 

guide [46]. 

Hyperparameter Values 

Tree depth None – (15, 20, 25, 30, 40) 

Maximum leaf nodes None – (2, 5, 10, 30, 50) 

Criterion “Gini”, ”Entropy” 

Minimum samples per leaf [1: 7] 

Max features “None”, “sqrt”, “log2” or 0.90 

Table 3.2: main hyperparameters values for DT classifiers 

Tree depth 

It identifies the maximum number of layers contained in the generated tree. If this hyperparameter is set 

to “None”, nodes are expanded until all leaves are pure or until all leaves contain a number of samples 

that is lower than the minimum number of samples set for a split (other hyperparameter that has to be 

defined). A leaf node is considered pure if all the training samples that reach it belong to the same class. 

Maximum leaf nodes 

This hyperparameter addresses the maximum number of leaf nodes present in the model. Limiting the 

number of leaf nodes effectively controls the complexity of the model: smaller number of leaf nodes 

can simplify the model and prevent overfitting, while a larger number allows the model to fit the data 

more closely. When this hyperparameter is set to “None”, no limitation concerning the number of leaf 

nodes is posed. 

If the maximum leaf node is different with respect to “None”, the tree is constructed in the so-called 

best-first fashion. In this case, at each step, the algorithm selects the split that maximally reduces the 

impurity among all the possible splits. The sequence by which the tree expands is determined by the 

quality of the splits, i.e., not all nodes at the current level of the tree need to be split before a node at the 

next level is split. 

Criterion 

It defines the function used to measure the quality of a split. Criterions that have been selected in this 

study are “Gini” and “Entropy”. Concerning the “Gini” criterion, it uses the Gini index, also known as 

Gini impurity, as a measure to determine the quality of a split. It calculates the probability that a 

randomly chosen instance would be incorrectly classified. While, the entropy, used in the “entropy” 

criterion, is a measure of disorder or uncertainty in a dataset. It helps to build an appropriate tree by 

selecting the best splitter and can be defined as a measure of the purity of the sub-split. 

Minimum samples per leaf 

This hyperparameter sets the minimum number of samples that are required to be at a leaf node. In 

particular, a split point, at any depth, would be considered just if it leaves at least a number of training 

samples in each of the left and right branches that is equal to this parameter. The tuning process of this 
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hyperparameter affects the smoothness of the model, and for the sake of this study, this hyperparameter 

has been set to vary from the minimum possible value (equal to 1) to 7. 

Max features 

It is used to choose the number of features that has to be taken into account for the so-called “best split”. 

In case of “None”, all the features are used for the split. While, the square root of the number of features 

are used (in case of “sqrt”) or the logarithm with base equal to 2 of it is used (in case of “log2”). If a 

float number is given, as done for 0.90, that fraction of the features is used for the choice. 

3.3. Random forest 

Random forest methods are categorized as ensemble methods, since they merge predictions from 

multiple base estimators constructed using a specific learning algorithm. This fusion aims to enhance 

generalizability and robustness, compared to the use of a single estimator. Essentially, RF comprises 

multiple DT models, having each tree constructed from a sample drawn with replacement from the 

training dataset. Consequently, RF algorithms are often referred to as perturb-and-combine techniques. 

The splitting of each node, carried out during tree construction, implies an exhaustive search for the best 

split based on feature values. The number of features considered in this process can range from all input 

features to a randomly selected subset of a specified size. The feature randomness introduced in this 

process results in a random subset of features, which minimizes correlation among the DTs contained 

in the RF model. In particular, individual DTs typically demonstrate high variance and a tendency to 

overfit, as discussed in paragraph 3.2. The definition of variance, in this context, is the extent to which 

a model prediction would change if it was trained on a different set of data [33]. High variance can lead 

to overfitting and individual DTs are known to have high variance and a tendency to overfit. However, 

when they are combined into a RF model, the ensemble can help to reduce this variance. This is because 

the RF model averages the predictions of all the individual DTs, which can balance out their individual 

errors and lead to a more robust and accurate prediction. Thus, RF effectively mitigates variance by 

amalgamating diverse trees [51]. 

Concerning classification purposes, the class that obtains the highest number of votes from all the DTs 

in the forest is chosen as the final prediction, as reported in Figure 3.4. This model has been adopted 

thank to its simplicity, versatility, and robustness. Indeed, RF can handle large datasets with high 

dimensionality assessing which variables are important in the classification process. 

  

Figure 3.4: example of a basic random forest classifier [50] 



42 

 

3.3.1. Hyperparameters definition 

RF models require the definition of many hyperparameters. Table 3.3 contains the most important ones 

with the related chosen values. 

Hyperparameter Values 

Number of estimators (10, 50, 100, 150, 200) 

Tree Depth None – (5, 10, 25) 

Bootstrap “True” or “False” 

Warm start “True” or “False” 

Table 3.3: main hyperparameters values for RF classifiers 

Other hyperparameters referred to the DTs created inside each RF model have been selected. However, 

not all these parameters are reported in Table 3.3, to avoid unnecessary repetitions. 

Number of estimators 

It can be considered the most important hyperparameter since it establishes the number of DTs that are 

constructed for each RF model. In order to have a representative study, this value has been set to range 

from models that present few estimators (number of estimators equal to 10) to models constituted by a 

significant number of trees (number of estimators equal to 200). Clearly, this hyperparameter deeply 

influences the training time of the model. 

Tree depth 

As for the DT models, it establishes the depth of the estimators. Values for this parameter have been 

decreased in number with respect to the one assumed for DT models, contained in Table 3.2. This was 

necessary in order to obtain a feasible number of hyperparameter combinations. 

Bootstrap 

This hyperparameter establishes if bootstrap sampling is used for the construction of the trees. This 

terminology refers to a method used in statistics that involves the sampling process of a dataset with 

replacement. This means that some measurements may be used multiple times in a single bootstrap 

sample, while others may not be used at all. If the hyperparameter is set to “False”, the whole training 

dataset is used to build each tree. 

Warm start 

When it is set to “True”, the algorithm reuses the solution of the previous call to fit and add more 

estimators to the ensemble. This means that the model continues the training where it stopped, allowing 

the addition of more estimators incrementally. If it is set to “False” a whole new forest is trained from 

scratch. This parameter is mainly useful in parameter search, as the one that has been performed in this 

thesis; for this reason, it has been added in this discussion. 

3.4. Neural Networks 

In the framework of ML models, neural networks represent a crucial method. With respect to the 

previously mentioned models, NN contains a higher level of complexity concerning the architecture of 

the model, as well as the underlying mathematical concepts. As cited in paragraph 1.3.4, NN constitute 

the so-called deep learning subfield of AI. NN try to mimic the human brain synapses, it is indeed based 

on an interconnection of several nodes, called neurons. The latter are schematic representations of a 
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weighted sum of the incoming connections from other neurons. The neurons are organized in layers in 

such a way that, for the simplest case, every neuron belonging to the 𝑛 layer receives a connection from 

the neurons in the 𝑛 − 1 layer. The output of a neuron is then supplied to the neurons of the 𝑛 + 1 layer. 

To introduce non-linearity, a transformation in the output, known as activation function can be applied. 

Artificial NNs are based on a supervised learning algorithm called Multi-Layer Perceptron (MLP). A 

brief schematization of a single layer MLP is shown in Figure 3.5. The first layer of the network, on the 

left, is called input layer and is followed by a certain number of so-called hidden layers (in the case of 

Figure 3.5, just one), connecting the input and the output ones. 

 

Figure 3.5: schematization of a single layer MLP [51] 

Figure 3.5 shows how the information inside the networks are transported from one layer to the next 

one. Within a neuron, the inputs from preceding layer neurons or initial features, in the case of the input 

layer, are aggregated considering their respective weights (denoted as 𝑤𝑖 in the illustration). 

Additionally, a bias term 𝑏𝑖 must be included into this calculation, as depicted. An activation function 

(represented as 𝜙 in the figure) is applied to this weighted aggregation within each node, generating the 

output of the neuron. This output is then utilized in subsequent layers or as part of the final output. The 

activation function serves the crucial role of introducing non-linearity within two adjacent layers in the 

neural network architecture. Eventually, the only difference between a single layer and a multi-layer 

(MLP) structure lays on the number of hidden layers that are present. A representation of a multi-layer 

network is shown in Figure 3.6. 
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Figure 3.6: schematization of a multi-layer MLP [51] 

Back Propagation (BP) algorithms, along with forward propagation ones are used to adjust the weights 

inside the NN during the training process. “Idea behind BP algorithm is quite simple, output of NN is 

evaluated against desired output. If results are not satisfactory, connection (weights) between layers 

are modified and process is repeated again and again until error is small enough.” [52]. On the contrary, 

during forward propagation, outputs are calculated and compared with desired outputs.  

NNs use backpropagation as a learning algorithm to compute a gradient descent, which is an 

optimization algorithm that guides the user to the maximum or minimum of a function. In a ML context, 

the gradient descent helps the system minimize the gap between desired outputs and achieved system 

outputs adjusting the weight values for various inputs. More specifically, a gradient descent algorithm 

uses a gradual process to provide information on how a network’s parameters need to be adjusted to 

reduce the disparity between the desired and achieved outputs. An evaluation metric called loss function 

guides this process [53]. 

Several hyperparameters are requested for the implementation of a NN, which represents the main 

drawback concerning this model: the complexity of the structure. On the counterpart, all these 

parameters permit a very detailed particularization of the model allowing an efficient adaptation to 

highly non-linear problems. Indeed, different kind of activation function can be used, as described in 

paragraph 3.4.1, allowing the reproduction of complex sub-structures within the data. 

3.4.1. Hyperparameters definition 

As previously mentioned, many hyperparameters have to be defined for a NN implementation. Since it 

is not feasible to describe all the parameters in this discussion, only the main ones are reported in Table 

3.4 and therefore described. 
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Hyperparameter Values 

Number of layers and neurons 

(200 × 1), (100 × 2), (100 × 1),  

(75 × 2), (50 × 4), (50 × 3), (50 × 2), 

(50 × 1), (33 × 3), (25 × 8), (25 × 4), 

(25 × 2), (17 × 3) 

Activation functions “ReLU”, “𝑡𝑎𝑛ℎ”, “Logistic” 

Solver for weight optimization “Adam”, “Sgd” 

Scheduling strategy “Constant”, “Adaptive”, “Invscaling” 

Batch size (32, 64, 128, 256) 

Table 3.4: main hyperparameters values for NN classifiers 

Number of layers and neurons 

These are the first and most important hyperparameters: together, they establish the NN architecture 

defining the number of layers and the number of neurons contained in each layer. As it can be inferred 

from the terminology, the number of layers establishes the number of hidden layers in the NN: while 

each layer can be constituted by a different number of neurons. Concerning this study, NNs with the 

same number of neurons in all the hidden layers have been implemented, for this reason a compact 

notation is adopted in this document. In Table 3.4, the notation used denotes: 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠) 

For example, (50 × 4) means that the NN is constituted by four layers and each one is formed by 50 

neurons. Concerning scikit-learn notation [46], this type of NN is described by (50, 50, 50, 50). 

Activation functions 

Activation functions are included in order to take into account non-linearity between one layer and the 

subsequent one. Different kind of activation functions are usually implemented in NN models, the most 

common ones, concerning classification problems, are used in this study. They are explained below and 

the correspondent graphs are shown in Figure 3.7: 

• “Logistic” (or sigmoid) function: it outputs values that lays inside the range [0:1]. The sigmoid 

function is especially useful in models that require a probability as output, since it is the same 

function used in logistic regression to convert a linear function into probabilities [33]; 

• Rectified Linear Unit (“ReLU”): it is the state of art for activation function. It is defined as 

max(0, 𝑥): if the input 𝑥 is positive, it will output the input directly, otherwise, it will output 

zero. The main advantage of using the ReLU function, over other activation functions, lays on 

the capability to not activate all the neurons at the same time: converting the output of a neuron 

to zero, in case of negative input, does not activate the neuron [54]. This activation function 

does not present the vanishing gradient problem peculiar of models that use sigmoid activation 

function; 

• Hyperbolic tangent (“𝑡𝑎𝑛ℎ”): it outputs values that lays inside the range [-1:1]. It became 

preferred over the logistic function as it gave better performance for multi-layer NNs. Indeed, 

the tanh function is often recommended because it is a zero-centred function, meaning its output 

values range from -1 to 1. This can make learning for the next layers easier because the gradients 

are not restricted to move in a certain direction [55]. In fact, gradients are computed for back 

propagation algorithms. The highest gradient for the tanh function is found at 0, which means 

that: small changes in the input around 0 will result in larger changes in the output. This 
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peculiarity avoid one of the main problems that concern logistic function: 0 is the lowest point 

of the gradient, meaning changes in the input around 0 will result in very small changes in the 

output [56]; 

 

 

Figure 3.7: activation functions shape [57] 

Solver 

As previously mentioned, weights (depicted as 𝑤𝑖 in Figure 3.5) have to be defined for the 

implementation of a NN model. The goal of the solver described by this hyperparameter is to optimize 

the choice of these weights minimizing the loss function. The term “loss function” refers to a function 

that quantifies the difference between the expected outcome and the outcome produced by the ML 

model. 

For the purpose of this study two of the most used optimizers have been adopted: “Adam” optimizer 

and “Stochastic Gradient Descent (SGD)”. Adam typically provides good results, in terms of training 

time and validation score, on relatively large datasets (as the one used in this case, described in paragraph 

2.3). Indeed, “Adam” solver has been created updating the “SGD” solver. The difference lays on the 

adjustment of the learning rate that is performed individually on each weight, in order to not generate 

unresponsible neurons during this process [57].  

Scheduling strategy 

This hyperparameter is called “learning rate” in the scikit-learn implementation and it links to the 

scheduler used for weights updating. This scheduler assesses how the learning rate, used for weights 

update, varies during the NN training process. Indeed, weights are updated at each iteration of the 

learning process, aiming to reduce the loss function. The formula used for the weight update is reported 

below: 

𝑤𝑖
∗ = 𝑤𝑖 − 𝛼 ∗ (

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑤𝑖
) (3.1) 

In formula 3.1, weight 𝑤𝑖 is updated thanks to a learning rate (𝛼) and to the gradient of the loss function. 

The rate at which the NN weights are updated can change during the learning process varying the 

learning rate, affecting how quickly a NN model learns a problem. 

Concerning scikit-learn implementation, three different schedulers can be selected. The learning rate 𝛼 

can be kept constant (“constant” scheduler), it can gradually decrease following an exponential law 

(“invscaling” one) or it can adapt to the problem based on the learning process of the NN (“adaptive” 

one). 

Batch size 

It defines how many values are seen by the NN prior to weights update process, constituted by one cycle 

of forward and back propagation. “While smaller batch sizes generally converge in fewer training 

epochs, larger batch sizes offer more parallelism and hence better computational efficiency” [58]. 

Indeed, big values for this batch size results in more data points provided to the model previous to the 
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update process, this make the training process faster, but the weights are updated on an average of the 

gradients computed on this large batch. On the contrary, a small batch size results in a slower training 

process. However, because there is more variability in the small batches, the path towards the minimum 

of the loss function can be noisier. For these reasons, different values for this batch size affect indicators 

such as overall training time, training time per epoch, and quality of the model. 
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4. Results 
This chapter is devoted to the analysis of the results obtained implementing the ML methods described 

in chapter 3, with the dataset specified in paragraph 2.3. As largely disclosed, the aim of this thesis is to 

implement ML models for binary classification, in order to reproduce the validation process, predicting 

the class of pertinence of the dosimetry under evaluation. In order to assess the performance of a model, 

few metrics have been used and described in paragraph 4.1. The following paragraphs analyse the results 

obtained, aiming to retrieve a proper subset of hyperparameter combinations for the specific problem 

examined, as explained in the introduction of chapter 3. 

4.1. Metric description 

Regarding classification problems, the performance of a specific ML model can be measured in different 

ways: the most used ones are accuracy and precision. For each measurement in the testing dataset, the 

model provides a predicted class which may differ from the real one. Therefore, after the implementation 

of the model on the whole testing dataset, a so-called confusion matrix can be constructed. This matrix 

quantifies how many measurements have been predicted correctly and how many have been instead 

misclassified: graphically, correct predictions lay on the diagonal elements of the matrix, while incorrect 

ones fill the remaining positions. An example of confusion matrix for binary classification is reported 

in Figure 4.1, the dimension of the confusion matrix depends on the number of classes for the 

classification. Since this discussion focuses on binary classification, a 2×2 schematization of a confusion 

matrix is reported in Figure 4.1. 

  

Figure 4.1: schematic confusion matrix for binary classification [60] 

The confusion matrix is fundamental to understand the concept of accuracy and precision for classifiers. 

In Figure 4.1 the correctly predicted measures are labelled as “True”, while the misclassified ones are 

labelled as “False” leading to “True Positive” (TP), “True Negative” (TN), “False Positive” (FP) and 

“False Negative” (FN). Measurements labelled as TP belong to the positive class and are correctly 

classified as positive, analogously to the negative class in case of TN. This means that the quality “True” 

define a measurement that has been classified in the correct way. Concerning FP, they are measurements 

that have been classified as negative, even though they belong to the positive class. On the contrary, FN 

are measurements that belong to the negative class but have been classified in the positive one. The 

quality “False” describe misclassified measurements. 

In order to link this confusion matrix to the current case study: the positive class is represented by 

dosimeters class 𝐴, while the negative one refers to class 𝐿. Hence, in the entry previously called TP, 
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hereafter called “True 𝐴” (TA), the measurements that have been validated as class 𝐴 and have been 

correctly predicted by the model with class 𝐴 are collected. On the contrary, measurements validated 

and predicted as class 𝐿 belongs to the cell “True 𝐿” (TL), previously called TN. Entries named FN and 

FP have become respectively “False 𝐴” (FA) and “False 𝐿” (FL). 

Accuracy 

For a ML classifier, accuracy is expressed as the ratio between the sum of measures correctly classified, 

divided by the whole number of classified measurements. According to the notation used in Figure 4.1 

and in the previous paragraph, the accuracy (𝐴) is evaluated as follows: 

𝐴 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
=

(𝑇𝐴 + 𝑇𝐿)

(𝑇𝐴 + 𝐹𝐴 + 𝐹𝐿 + 𝑇𝐿)
(4.1) 

In fact, accuracy gives information on the performance of the classifier regarding all the classes. If the 

classification process concerns more than two classes, the accuracy will be calculated considering all 

the entries of the confusion matrix.  

The accuracy 𝐴 is defined as a dimensionless quantity, since it is evaluated as a ratio between numbers, 

and it is generally expressed as a percentage.  

Precision 

The precision of the classifier is a measure of how precisely the model classifies measurements inside 

the so-called positive class (considering then both TP and FP). Indeed, it is evaluated considering just 

the column of the confusion matrix related to the positive class (i.e., the left one in the example in Figure 

4.1). Below, the formula for the evaluation of the precision (𝑃) is reported: 

𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
=

𝑇𝐴

(𝑇𝐴 + 𝐹𝐴)
 (4.2) 

For the definition of precision, it is important to establish which class is defined as positive, which was 

not mandatory for the concept of accuracy, as retrieved by formula 4.1. Similarly, in this instance the 

precision is a dimensionless quantity usually expressed as a percentage. 

4.2. Cross validation 

As briefly explained at the beginning of chapter 3, Cross-Validation (CV) is performed in order to assess 

the presence of overfitting. Typically, CV is performed dividing the dataset in 𝑘 folds: 𝑘 − 1 folds are 

used for training, while the remaining one is used for testing. Then the same model is trained on the 

training set and validated against the testing set, and this process is iterated 𝑘 times in order to use all 𝑘 

folds once for model testing. At the end of this process, accuracy and precision retrieved from the 𝑘 

implementations are compared with the results pointed out previously. This CV technique is usually 

called K-Fold cross validation, although this kind of CV is the only one performed in this study, it is not 

the only choice available. 

A first CV process has been performed for the hyperparameter subset combinations set for KNN models, 

dividing the dataset in 5 folds (𝑘 = 5). Five folds are created leading to a testing dataset that contains 

20% of the whole values of the dataset. Following this first approach, results from the cross validation 

were remarkably high in precision and accuracy, as described in paragraph 4.4.1. The reason could be 

related to the fact that, if the whole database is shuffled and split casually in 5, there is a high probability 

that measurements that has been validated together are divided within training and testing dataset. This 

could cause some bias for classifiers such as KNN: these measurements have same dosimeter serial 

number as well as validation month and other features. For this reason, the accuracy and precision in 

these cases have risen due to “proximity” of these measurements. 

In order to overcome this problem, CV for all the implemented models has been performed dividing the 

dataset per month in 11 folds (𝑘 = 11), since the measurements in the dataset range from January to 

November 2023. In this way, the percentage of 80 - 20% training-testing is not respected, leading to the 
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percentages reported on Table 4.1. In the following table, the two columns on the right report the 

percentage of values contained in testing and training datasets with respect to the whole values in the 

original dataset. 

Month used for testing 
Testing dataset 

[% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠] 
Training dataset 

[% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠] 

January 4.27 95.73 

February 4.28 95.72 

March 15.87 84.13 

April 9.34 90.66 

May 8.98 91.02 

June 9.61 90.39 

July 8.77 91.2 

August 8.52 91.48 

September 9.16 90.84 

October 9.69 90.31 

November 11.51 88.49 

Table 4.1: folds percentage of the whole database for cross validation 

To take into account the difference in percentage present within the testing datasets that refers to 

different months, the accuracy and precision that result from this cross validation process have been 

weighted on the percentage of values contained in each testing dataset presented in Table 4.1. 

4.3. Binary classification 

As mentioned in paragraph 0, in order to perform a binary classification analysis, the classes in the 

dataset have been grouped in class 𝐴 and class 𝐿. This last one contains all the classes but 𝐴 and 𝐼, as 

extensively described previously.  

Prior to the implementation, the dataset has been split in training and testing datasets. In order to mimic 

the final aim of this study, i.e., validating the measurements of the last incoming month, the testing 

dataset is constituted by measurements that refers just to the last validated month, i.e., November in this 

study. The resulting training dataset contains 87.87% of the whole measurements, while the testing one 

contains the remaining 12.13%. 

It is also important to check that the classes contained in these datasets are balanced, i.e. the two classes 

are present in a percentage that is close to 50%. Percentages of the 𝐴 and 𝐿 classes in these datasets are 

reported in Table 4.1. Imbalanced classification problems (i.e. problems in which the classes are 

inherently not balanced in the datasets) pose a challenge for predictive modelling, such as the ML 

algorithms used in this thesis. Indeed, these have been designed around the assumption of an equal 

number of examples for each class, resulting in models that have poor predictive performance in case 

of class imbalance, specifically for the minority class. Regarding binary classification, the minority class 

is defined as the class that present lower number of examples. Samples in this class are usually harder 

to predict because there are few examples, by definition, meaning it is more challenging for a model to 
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learn the characteristics of examples from this class, and to differentiate examples from this class with 

respect to the other [59]. As shown in Table 4.2, both the datasets can be considered balanced. 

Dataset 𝐴 classes [%] 𝐿 classes [%] 

Training 58.41 41.59 

Testing 41.02 58.98 

Table 4.2: percentages of 𝐴 and 𝐿 classes in the datasets 

Once the datasets are ready, the implementation of all the hyperparameter combinations is performed. 

In Table 4.3, the number of models implemented, as well as highest accuracy and highest precision 

obtained from all the combinations, are summarised. Detailed analysis of the results is conducted in the 

following paragraphs. 

Model 
Number of 

combinations 
Highest accuracy [%] Highest precision [%] 

KNN 2 016 64.29 59.58 

DT 112 896 69.64 88.74 

RF 262 440 69.63 70.32 

NN 42 120 68.43 72.32 

Table 4.3: results summary concerning number of combination, highest accuracy and precision 

4.4. K-Nearest Neighbour implementation 

As mentioned in Table 4.3, 2 016 different KNN models have been implemented on the previously 

described training and test datasets. In order to detect which hyperparameters lead to better results, plots 

have been created and reported in the following paragraphs. In Table 4.4, the five best models obtained 

from the 2 016 combinations are reported, with the relative accuracy and precision. These have been 

selected as best models since they present the highest precision, but it has to be noticed that these results 

are obtained disregarding the cross-validation. In addition, in the column that concerns the algorithm 

hyperparameter “//” is reported: models with the same hyperparameters but different algorithms values 

give same results in this case, implying that, concerning KNN models, the algorithm used does not 

change the results.  

K Weights Algorithm Metric Accuracy [%] Precision [%] 

12 “Distance” // “manhattan” 63.82 59.58 

13 “Distance” // “manhattan” 63.53 59.33 

10 “Distance” // “manhattan” 63.92 59.29 

8 “Distance” // “manhattan” 64.16 59.20 

11 “Distance” // “manhattan” 63.60 59.11 

Table 4.4: best KNN models from all hyperparameter combinations 
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Number of neighbours K 

Concerning the best value for the 𝐾 hyperparameter, extensively described in paragraph 0, it is difficult 

to identify an overall best value. As shown in Figure 4.2, higher values of 𝐾 provide slightly higher 

values of precision. In this scatter plots, each dot represents one model implementation, reporting its 

accuracy and precision on the 𝑥 and 𝑦 axis respectively. The highest value of precision, reported in 

Table 4.4, is obtained with a 𝐾 value equal to 12, as also depicted in Figure 4.3. In this last figure, it is 

also clear that KNN models with highest accuracies provide also highest precisions. 

 

Figure 4.2: scatter plot of KNN models with accuracy, precision and K hyperparameter 

 

Figure 4.3: scatter plot of KNN models with accuracy, precision and K hyperparameter 
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Weight 

Concerning the weight hyperparameter, no significant differences can be noticed between the two 

possibilities: “uniform” and “distance”, although the “distance” option is normally preferred by the 

algorithm. In Figure 4.4, the differences in the results related to this hyperparameter are reported, based 

on the precision of the models. 

 

Figure 4.4: box plot of KNN models with precision and weight hyperparameter 

Box plots, as the one illustrated in Figure 4.4, show many information within the same framework. 

Highest and lowest horizontal lines denote respectively the maximum and minimum values, concerning 

precision in this case. The box part of the plot lays between the first and third quartile, with the horizontal 

middle line equal to the median of the dataset. Quartiles are values that divide a dataset into four equal 

parts, each containing 25% of the data, without taking into account outliers. For this reason, the second 

quartile corresponds to the median. 

Algorithms 

As redeemed by Figure 4.5, there is not a best algorithm for KNN implementation. All the possibilities 

perform approximately in the same way and for this reason, all the possible algorithms have been 

inserted in the subset of hyperparameter combinations, described in paragraph 4.4.1. Indeed, in Table 

4.4 all the models with same hyperparameter but the algorithm one result in the same accuracy and 

precision. Probably, all the implemented algorithms converge to the same solution since there is no more 

possibility of improvement. 
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Figure 4.5: box plot of KNN models with precision and algorithm hyperparameter 

Metric 

From Figure 4.6, it is straightforward to identify the “Manhattan” metric as the one that provide better 

results. For this reason, it has been chosen as the only metric implemented inside the subset of 

hyperparameters. 

 

Figure 4.6: scatter plot of KNN models with accuracy, precision and metric hyperparameter 

4.4.1. Results of K-Nearest Neighbours models 

Following the analysis performed on the results on the whole set of hyperparameters, summarised in the 

previous paragraphs, a further subset of the latter has been identified in order to facilitate and accelerate 
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the implementation on future unseen data. The hyperparameters that have been selected are described 

in Table 4.5. 

 Hyperparameter Values 

K (2, 8, 10, 12) 

Weight “Distance” 

Algorithms  “Brute”, “K-D tree”, “Ball tree”, “Auto”, 

Metrics  “Manhattan”  

Table 4.5: hyperparameter subset for KNN classifiers 

Considering these selected values, the number of KNN implementations decreased from 2 016 to 16. 

Therefore, the best results explored so far, for what concern precision of the models, retrieved by this 

subset, are shown in Table 4.6. These are representative of the 2016 combinations previously 

implemented. Indeed, the results shown are in line with the highest accuracy and precision shown in 

Table 4.3 and Table 4.4. 

K Weights Algorithm Metric Accuracy [%] Precision [%] 

12 “Distance” “auto” “manhattan” 63.82 59.58 

12 “Distance” “Ball tree” “manhattan” 63.82 59.58 

12 “Distance” “K-D tree” “manhattan” 63.82 59.58 

12 “Distance” “brute” “manhattan” 63.82 59.58 

10 “Distance” “auto” “manhattan” 63.92 59.29 

Table 4.6: 5 best KNN models from selected subset of hyperparameter combinations 

Cross validation 

As cited in paragraph 4.2, a first cross validation process has been performed for the previously 

mentioned 16 KNN models, dividing the dataset in five folds. Results from this first cross validation 

approach were surprisingly high in precision and accuracy, reaching an average value around ~ 88%. 

Reasons have been extensively explained in paragraph 4.2, and the newly described cross validation 

approach has been applied to the 16 KNN models.  

The accuracies and precisions that result from this new cross validation process are now closer in value 

to the results shown in the previous paragraph for what concern KNN models. Indeed, from the 16 

models, a mean accuracy of ~ 67% has been retrieved, as well as a precision of ~ 64%. 

4.5. Decision Tree implementation 

112 896 different DTs has been implemented for this study. Following the same logic introduced for the 

KNN models, the best five DT models are reported in Table 4.7 citing the hyperparameters analysed in 

chapter 3.2.1, these are the models that present the highest precisions. As described in the KNN 

implementation, results in this table are obtained without applying cross validation. 
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Tree depth 
Maximum 
leaf nodes 

Criterion 
Minimum 

samples per 
leaf 

Max 
features 

Accuracy 
[%] 

Precision 
[%] 

40 50 “entropy” 2 “sqrt” 60.13 88.74 

None 50 “entropy” 6 “sqrt” 59.77 88.68 

25 30 “gini” 1 “log2” 60.34 80.29 

40 50 “gini” 7 None 60.08 79.18 

40 50 “entropy” 4 “sqrt” 59.21 78.69 

Table 4.7: best DT models from all hyperparameter combinations 

Tree depth 

Concerning the hyperparameter that regulate how many layers are present in the DT, it is challenging to 

find an overall best value, as shown in Figure 4.7. 

 

Figure 4.7: scatter plot of DT models with accuracy, precision and tree depth hyperparameter 

However, it is possible to plot the maximum precision obtained with different values of tree depth, in 

Figure 4.8. It is fundamental to underline that DT models with tree depth hyperparameter equal to 

“None” are not reported in this graph. However, the latter option presents good results, as shown in 

Table 4.7, in addition from the same table it may be noticed that a tree depth value equal to 40 provide 

good results as well, as reported in Figure 4.8. 
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Figure 4.8: line plot with highest precision for DT models related to tree depth hyperparameter 

Maximum leaf nodes 

Figure 4.9 shows how accuracy and precision of the DT models are related to the maximum leaf node 

hyperparameter. A minor trend has been identified: higher values of this parameter are related to higher 

values of precision. On the counterpart, if it is set to “None”, reported as grey dots in the graph, the 

related accuracy increases. Considering that the objective of this study is to focus mainly on precision, 

higher values of the maximum leaf node hyperparameter are selected for the hyperparameter subset. 

 

Figure 4.9: scatter plot of DT models with accuracy, precision and maximum leaf nodes hyperparameter 
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Criterion 

Concerning the criterion hyperparameter, no fundamental differences could be appreciated from results 

analysis. From Figure 4.10 and Figure 4.11 it can be inferred that the results concerning this 

hyperparameter are substantially similar, thus, not a single criterion has been chosen for the final subset 

of hyperparameters that concern the DT models. It has to be noticed that the box plot shown in Figure 

4.11 does not present the typical box shapes due to high dispersion of the results values.  

 

Figure 4.10: scatter plot of DT models with accuracy, precision and criterion hyperparameter 

 

Figure 4.11: box plot of DT models with precision and criterion hyperparameter 



60 

 

Minimum samples per leaf 

The same considerations can be deducted for the minimum samples per leaf hyperparameter, hence no 

specific options can be selected looking at the scatter plot reported in Figure 4.12. However, looking at 

the line plot in Figure 4.13, containing the maximum precision values for DT implementations, slightly 

better results have been achieved with minimum samples per leaf values of 2 and 6. Nevertheless, the 

range of precisions reported in this graph is small, meaning that the change in the results is not largely 

notable. 

 

Figure 4.12: scatter plot of DT models with accuracy, precision and minimum samples per leaf hyperparameter 

 

Figure 4.13: line plot with highest precisions for DT models related to minimum samples per leaf hyperparameter 
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Max features 

Regarding scatter plot in Figure 4.14, the only information that can be retrieved concerns the value of 

maximum features hyperparameter equal to 0.9. Indeed, this choice gives relatively high values of 

accuracy, as shown in the picture, while precision values remain concentrated around 60%. However, 

the box plot reported in Figure 4.15 does not show substantial differences among the three values chosen 

for this hyperparameter.  

 

Figure 4.14: scatter plot of DT models with accuracy, precision and max features hyperparameter 

 

Figure 4.15: box plot of DT models with precision and max features hyperparameter 
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4.5.1. Results of Decision Tree models 

As shown in the previous paragraphs, for the majority of the hyperparameters selected the possibilities 

analyzed cannot be reduced. However, one of the advantages of the DT models concerns the limited 

amount of time needed for the training. Thanks to this property, it is possible to not decrease drastically 

the amount of hyperparameter combinations. Table 4.8 reports the hyperparameter values chosen for the 

subset. As explained in paragraph 3.2.1, these are not all the hyperparameters selected, since some others 

are not addressed in this discussion. 

Hyperparameter Values 

Tree depth None - (25, 30, 40) 

Maximum leaf nodes  (30, 50) 

Criterion “Gini”, ”Entropy” 

Minimum samples per leaf (2, 5, 6) 

Max features  “sqrt”, “log2” 

Table 4.8: hyperparameter subset for DT classifiers 

Thanks to these measures, hyperparameter combinations are reduced from 112 896 to 576. These are 

mostly representative of the best models obtained by the implementation of the whole set of 

combinations. The five best models based on precision results, are reported in Table 4.9. 

Tree 
depth 

Maximum 
leaf nodes 

Criterion 
Minimum 

samples per 
leaf 

Max 
features 

Accuracy [%] Precision [%] 

40 30 “entropy” 2 “sqrt” 60.28 78.06 

30 50 “entropy” 6 “sqrt” 60.17 77.13 

30 30 “gini” 6 “sqrt” 60.75 66.39 

30 30 “gini” 6 “sqrt” 60.76 66.16 

30 30 “entropy” 2 “sqrt” 59.70 64.52 

Table 4.9: 5 best DT models from selected subset of hyperparameter combinations 

Cross validation 

These 576 DT models have been subjected to cross validation, following the specifications described 

for the KNN in previous paragraphs. Highest accuracy and precision obtained from these models are 

respectively equal to 72.30% and 70.42%.  

4.6. Random Forest implementation 

Concerning RFs, a massive number of models have been implemented: 262 440. Even though a lot of 

combinations have been tried, results for accuracy and precision are not promising. Indeed, the five best 

models, for what concern precision, are reported in Table 4.10, from where it can be inferred that the 

precisions of these models are lower than the DT ones. 
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Number of 
estimators 

Tree Depth Bootstrap Warm start Accuracy [%] Precision [%] 

10 None “True” “False” 59.55 70.32 

10 10 “False” “True” 60.46 69.95 

50 5 “True” “True” 61.19 69.54 

10 5 “True” “True” 59.62 69.11 

10 None “True” “True” 61.25 68.79 

Table 4.10: best RF models from all hyperparameter combinations 

Number of estimators 

The number of estimators hyperparameter is fundamental for the RFs model implementation, however 

no clear trends can be highlighted from the scatter plot reported in Figure 4.16. In order to carry on a 

more insightful analysis, a violin plot has been created and shown in Figure 4.17. The width of the violin 

in these kind of plots gives information about the number of models that give as result that particular 

value of precision: larger is the violin, higher is the number of models with that result. Even from this 

plot, no substantial differences are observed, like for the previously mentioned scatter plot. 

 

Figure 4.16: scatter plot of RF models with accuracy, precision and number of estimators hyperparameter 



64 

 

 

Figure 4.17: violin plot of RF models with precision and number of estimators hyperparameter 

Based on these results, just three values for this hyperparameter have been taken into account for the 

further subset. They are equal to 10, 50, and 200 since, from Table 4.10, a number of estimators equal 

to 10 in the RF models provided the best values of precision. In addition, the highest number of 

estimators value (200) has been taken into account for the subset in order to have models with the widest 

possible range. Concerning this hyperparameter also the value equal 50 has been inserted, since it 

provides the third highest precision from Table 4.10. 

Furthermore, the line plot reported in Figure 4.18 shows the mean values of precision for different 

number of estimators. When this hyperparameter is set to 10 it provides a slightly highest mean precision 

along all the values taken into account. 

 

Figure 4.18: line plot with mean precisions for RF models related to number of estimators hyperparameter 
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Tree depth 

Concerning the max depth of the tree contained in the RF models, the following plots (Figure 4.19 and 

Figure 4.20) have been created to reduce the number of possibilities for this hyperparameter. As done 

previously, a scatter plot is reported in Figure 4.19, although no useful information can be retrieved from 

it. In addition, a box plot is shown in Figure 4.20. Unfortunately, this box plot does not contain the 

models that have a tree depth parameter equal to “None”. However, no trend or better values can be 

identified by this box plot. For this reason, values for this hyperparameter selected for the subset of 

combination are: “None”, 10 and 5, since they give the best results as shown in Table 4.10.  

 

Figure 4.19: scatter plot of RF models with accuracy, precision and tree depth hyperparameter 

 

Figure 4.20: box plot of RF models with precision and tree depth hyperparameter 
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Bootstrap 

For what concern the bootstrap hyperparameter, the box plot, depicted in Figure 4.21, shows better 

results for what concern “True” value. No further information have been retrieved by the scatter plot 

reported in Figure 4.22.  

 

Figure 4.21: box plot of RF models with precision and bootstrap hyperparameter 

 

Figure 4.22: scatter plot of RF models with accuracy, precision and bootstrap hyperparameter 

Warm start 

The warm start hyperparameter can vary within two values: “True” and “False”, as described in 

paragraph 3.3.1. Scatter plot reported in Figure 4.23, as well as the violin plot reported in Figure 4.24, 

shows no change in the results with the variation of this parameter. In order to select a value for this 
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hyperparameter, the most common value in the five best models reported in Table 4.10 has been chosen, 

i.e.  equal to “True”. 

 

Figure 4.23: scatter plot of RF models with accuracy, precision and warm start hyperparameter 

 

Figure 4.24: violin plot of RF models with precision and warm start hyperparameter 

4.6.1. Results of Random Forest models 

Concerning RF, the combinations need to be reduced significantly in order to have a feasible subset of 

models. As for DTs, also RF models are rapid for what concern the training time, for this reason the 

final amount of hyperparameter combinations in the subset is equal to 576. Table 4.11 reports the 
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hyperparameter values chosen for the combination subset. As explained also in paragraph 4.5.1 for DT 

results, these are not all the hyperparameters selected, since many are not addressed in this discussion. 

Hyperparameter Values 

Number of estimators (10, 50, 200) 

Tree Depth None  (5, 10) 

Bootstrap “True” 

Warm start “True” 

Table 4.11: hyperparameter subset for RF classifiers 

The models contained in this subset are quite representative of the best models obtained by the 

implementation of the whole set of combinations, resumed in Table 4.10. The highest precision changed 

from 70.32% to 65.18% and the five best models from the subset implementation, based on precision 

results, are reported in Table 4.12. 

Number of 
estimators 

Tree Depth Bootstrap Warm start Accuracy [%] Precision [%] 

50 10 “True” “True” 59.99 65.18 

200 10 “True” “True” 59.83 64.88 

200 5 “True” “True” 59.96 64.80 

50 5 “True” “True” 60.18 64.68 

200 None “True” “True” 59.75 64.13 

Table 4.12: 5 best RF models from selected subset of hyperparameter combinations 

Cross validation 

CV has been performed on these 576 RF models following the specifications described in detail for 

KNN models. Highest accuracy and precision obtained from these models are respectively equal to 

73.81% and 73.58%.  

4.7. Neural Networks implementation 

Due to the intrinsic complexity of the architecture, as well as the time needed for the training, the number 

of NN models that have been implemented is smaller with respect to DT and RF ones: 42 120. The five 

best models, concerning precision, retrieved by these implementations are reported in Table 4.13. As 

previously done in Table 4.4, in the third row, the “//” symbol is inserted with the same aim explained 

previously. The notation used for what concern the number of layer and neurons hyperparameter has 

been already explained in paragraph 3.4.1. 
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Number of 
layers and 
neurons 

Activation 
functions 

Solver for 
weight 

optimization 

Scheduling 
strategy 

Batch 
size 

Accuracy 
[%] 

Precision 
[%] 

(50, 50) ReLU “sgd” “constant” 32 60.40 72.32 

(25, 25) tanh “sgd” “adaptive” 32 61.47 70.63 

(17, 17, 17) ReLU “adam” // 256 59.93 70.52 

(25, 25) tanh “sgd” “constant” 64 62.23 70.01 

(50, 50) ReLU “sgd” “invscaling” 64 60.15 69.76 

Table 4.13: best NN models from all hyperparameter combinations 

Number of layers and neurons 

Concerning the number of layers, several values have been taken into account during the 

implementation. Scatter plot shown in Figure 4.25 is not informative for founding a best value for this 

parameter, no definite trends or patterns have been identified. On the other hand, the box plot reported 

in Figure 4.26 gives a better idea of the performance of NNs with different number of layers and neurons. 

From the latter graph it is possible to assess that (50, 50), (17, 17, 17) and (25, 25) are the best values 

for what concern precision results, followed by (50) and (50, 50, 50). For the sake of completeness, it 

is important to mention that the dimension of the output layer is equal to 1. 

 

Figure 4.25: scatter plot of NN models with accuracy, precision and number of layers and nodes hyperparameter 
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Figure 4.26: box plot of NN models with precision and number of layers and nodes hyperparameter 

Activation functions 

As done for the previous hyperparameters analysis, also in this situation a scatter plot is reported in 

Figure 4.27. However, as well as the previous one, it is difficult to retrieve a trend from this kind of plot. 

On the contrary, box plots are slightly more informative as shown by Figure 4.28. Indeed, this plot shows 

how the “ReLU” activation function provided the best precision values, while activation function which 

provided a higher median is “tanh”.  

 

Figure 4.27: scatter plot of NN models with accuracy, precision and activation function hyperparameter 
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Figure 4.28: box plot of NN models with precision and activation function hyperparameter 

Solver for weight optimization 

Considering the following plots an analysis regarding the best solver for weight optimization is carried 

on. The tested possibilities are represented by “adam” and “sgd” solvers. A scatter and a box plot are 

reported, respectively in Figure 4.29 and Figure 4.30. From the box plot it is clear that more precise 

models are related to “sgd” solvers, on the counterpart the “adam” solver presents a higher median value 

for precision results. 

 

Figure 4.29: scatter plot of NN models with accuracy, precision and solver hyperparameter 
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Figure 4.30: box plot of NN models with precision and solver hyperparameter 

Scheduling strategy 

Concerning the kind of scheduling strategy adopted, defined as “learning rate” in scikit-learn library, it 

is not well defined which one performs better. This is shown in the scatter and box plot reported below, 

respectively in Figure 4.31 and Figure 4.32.  

 

Figure 4.31: scatter plot of NN models with accuracy, precision and learning rate hyperparameter 
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Figure 4.32: box plot of NN models with precision and learning rate hyperparameter 

Batch size 

The analysis of the batch size hyperparameter has been performed considering a scatter and a box plot, 

as the other hyperparameters shown for NN models. These are reported respectively in Figure 4.33 and 

Figure 4.34. No clear patterns have been identified from the scatter plot, but concerning the box plot, it 

is evident that a batch size of 32 produced the highest precision, while models with value of this 

parameter equal to 256 results in the higher median value concerning precision.  

 

Figure 4.33: scatter plot of NN models with accuracy, precision and batch size hyperparameter 
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Figure 4.34: box plot of NN models with precision and batch size hyperparameter 

4.7.1. Results of Neural Networks models 

The results retrieved by the analysis performed on the NN hyperparameters, reported in the previous 

paragraph, lead to a decrease in the number of hyperparameter combinations. A subset of 240 

combinations has been obtained and implemented. It is also important to underline how big these NNs 

are. In order to do so, the dimensions of the dataset are summarised as: 

[0, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠]
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

 (4.3) 

Dimensions is another term to indicate the number of features used to train the NN. In this case study, 

the dataset has a dimension equal to: 

[0,128 875] 30  

The values of the hyperparameters chosen in order to form this subset of combinations are reported in 

Table 4.14. 

Hyperparameter Values 

Number of layers and nodes 
(50 × 3), (50 × 2), (50 × 1) 

(25 × 2), (17 × 3) 

Activation functions “ReLU”, “𝑡𝑎𝑛ℎ” 

Solver for weight optimization “Adam”, “Sgd” 

Scheduling strategy “Constant”, “Adaptive”, “Invscaling” 

Batch size (32, 256) 

Table 4.14: hyperparameter subset for NN classifiers 

This subset takes a significant time to run, however further refinement cannot be carried on. The five 

best results from this implementation, concerning precision, are reported in Table 4.15. 
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Number of 
layers and 

nodes 

Activation 
functions 

Solver for weight 
optimization 

Scheduling 
strategy 

Batch 
size 

Accuracy 
[%] 

Precision 
[%] 

(50, 50, 50) “tanh” “adam” // 32 59.96 68.80 

(17, 17, 17) “tanh” “adam” // 32 66.11 65.85 

(17, 17, 17) “tanh” “adam” // 256 65.65 65.09 

(50) “ReLU” “sgd” “constant” 256 59.72 64.64 

(50) “ReLU” “sgd” “adaptive” 256 59.98 64.17 

Table 4.15: 5 best NN models from selected subset of hyperparameter combinations 

Cross validation 

CV has been performed on the selected 240 NNs following the specifications described for previous 

models. Highest accuracy and precision obtained from the CV of these models are respectively equal to 

76.85% and 74.56%, slightly higher than what expected. 
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5. Discussion and conclusions 
Throughout this thesis, the implementation process of ML models for Instadose dosimeters validation 

has been described. In order to carry on this project, a deep understanding of radiation protection, 

dosimetry, and machine learning is fundamental. For this reason, chapter 1 provides to the reader a brief 

introduction of these concepts. Dosimetry represents a key aspect in radiation protection, since it is 

centered on measurement, assessment, and comprehension of radiation doses associated with exposure 

to ionizing or non-ionizing radiations. This aspect is crucial in ensuring the safety of individuals, 

populations, and environment. 

Within the dosimetry domain, the role of ML algorithms is increasing, facilitating the development of 

new techniques along with emerging technologies. These permit the exploration of new paths and the 

enhancement of existing methodologies, thus contributing to the evolution of the field. 

Inside this developing framework, ML algorithms have been implemented to mimic the validation 

process performed by radiation protection experts in SCK CEN. This thesis project aimed to validate 

the incoming dosimeter measurements in just two classes (well-performing dosimeters and dosimeters 

to be revised), hence performing a binary classification. To accomplish this task, it has been necessary 

to study in depth the latter process. Different manual validation sessions, carried on by different experts, 

have been supervised: this allowed the detection of subjective biases and slight differences within 

different expert validations. The supervision of this process also allowed to understand which were the 

main features on which the validation is based in order to consider them during the creation of the 

dataset. 

Dataset creation process was mainly devoted to the merging of information retrieved by the Microsoft 

excel sheets, currently used for the manual validation, and from the SQL database, where the 

measurements are stored. Many challenges have been encountered during the creation of the previously 

mentioned dataset, mainly linked to information retrieving, merging and suitable preparation for the 

further adoption of ML methods. Python language programming has been extensively used for the 

creation of the final dataset, along with the Pandas library. 

Once the dataset has been configured, dimensionality reduction and pre-processing techniques have 

been implemented. Dimensionality reduction aims to reduce the training time of ML models, deleting 

features in the database which do not add significant information. Dimensionality reduction techniques, 

for this project were mainly based on the use of Pearson’s and Spearman’s correlation matrices, as well 

as uncertainty coefficients and correlation ratios. Concerning the pre-processing measures, they are 

fundamental to retrieve reliable results from the model’s implementation. They are constituted by class-

balancing, cleaning and standardization measures of the database.  

Following the dataset configuration, a deep study of the models to be implemented has been carried on 

in order to select proper values for the required hyperparameters concerning each model analysed. The 

ML methods chosen for this thesis project are: k-nearest neighbours, decision trees, random forests and 

neural networks. For each of them many hyperparameter combinations have been identified and 

implemented. 

Results retrieved by these implementations have been reported and analysed in chapter 4, based on the 

concepts of accuracy and precision metrics. Thanks to the analysis of these preliminary results, a subset 

of hyperparameters have been identified for each model and the ML methods have been re-implemented. 

This is crucial for a future usage of these models, since it is not viable to implement all the analysed 

models (considering all hyperparameter combinations) in a practical scenario by the radioprotection 

experts, for each validation process. Therefore, for each method, the hyperparameter subsets which led 

to the best results, have been later selected in order to be the baseline on which the future dosimeters 

validation would be predicted.  

Cross validation has been later on performed, only on the previously mentioned subsets, in order to 

assess the absence of overfitting phenomena and identify final precision and accuracy values for these 

models. 
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Following figures report a comparison between accuracies and precisions retrieved by the 

implementation of the selected subset of hyperparameter combinations with and without CV process. 

More in details, Figure 5.1 shows a comparison between the precisions obtained from these subsets of 

hyperparameters. Figure 5.2 shows the comparison, regarding accuracy results. On the other hand, 

Figure 5.3 and Figure 5.4 show, respectively, precision and accuracy results obtained after the cross 

validation.  

 

Figure 5.1: precision comparison between all the 4 ML models based on selected subset of hyperparameter combinations 

 

Figure 5.2: accuracy comparison between all the 4 ML models based on selected subset of hyperparameter combinations 
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Figure 5.3: weighted CV precision comparison between all the 4 ML models based on selected subset of hyperparameter 

combinations 

 

Figure 5.4: weighted CV accuracy comparison between all the 4 ML models based on selected subset of hyperparameter 

combinations 

Concerning the results reported in the previous figures, it is straightforward to observe how the highest 

precision, without CV, is achieved by a DT model, as reported in Figure 5.1. However, applying CV, 

the method that reach better performances, in terms of highest precision and median value, is the NN, 

as depicted from Figure 5.3. Regarding accuracy, NNs show more accurate results, as reported in Figure 

5.2 and Figure 5.4. 

The overall implementation shows some differences among the models. Nevertheless, the majority of 

the selected models showed a precision, weighted overall the CV folds, that range from ~ 65% to ~ 75%. 

No models managed to reach higher precisions meaning that, with the current models and setting of 

database, no further information from these data can be retrieved to achieve better performances. Table 

5.1 reports the classifiers with highest precisions, and relative accuracies, for each model type after CV 

implementation. 
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Model Weighted CV accuracy [%] Weighted CV precision [%] 

KNN 66.68 64.57 

DT 71.90 70.42 

RF 69.45 73.58 

NN 76.85 74.56 

Table 5.1: highest precisions and relative accuracies for all 4 models after CV process 

Several possibilities can be introduced in order to improve this thesis project. Starting from the dataset 

configuration, several choices that have been made could surely influence the models results. A further 

study implying different grouping methodology for soft reads can be carried on. Indeed, in this project 

soft reads have been grouped within two subsequent hard reads, and this approach could be changed, 

grouping the soft reads monthly. Another possible path that can be followed for the handling of soft 

reads concern the application of a different weight on these measurements. It is important to outline that 

this possibility regards the model implementation and not the dataset configuration. 

In addition, principal component analysis can be implemented for further dimensionality reduction. 

Indeed, PCA identifies a set of principal components (orthogonal axis obtained by linear combinations 

of original data) that captures the maximum variance contained in the dataset. The number of features 

is reduced selecting just the principal components that contains the highest variance. Despite reducing 

the dimensions, PCA aims to maintain as much of the original information as possible. This is another 

approach that could be introduced as a future step of this project [33]. 

Other simplifications can also be applied to the dataset, getting rid of classes 𝐻 and 𝑍. Indeed, they can 

be identified without a ML model implementation, as done with class 𝐼. 
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