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I 

 

Abstract 
 

The aim of this work is to improve an existing lane recognition system 

for autonomous driving. Such system lacks reliability when facing intersections, 

roundabouts or complex road segments. To overcome this failure, it is possible 

to make use of the concept of map-matching which exploits the GPS sensor 

data to provide a high-level guidance to the vehicle, enabling the existing 

method to cope with a large variety of road environments. Map-matching is 

required due to the poor precision and accuracy of the sole Global Positioning 

System location which is not sufficient for autonomous driving tasks. The 

challenge came from the research of a time and memory-efficient algorithm 

suitable for the project’s requests.  

The proposed method consists in determining a high-level trajectory 

between two geographical locations, complying to the criterion of shortest 

possible path, which is improved and refined by a series of further steps. The 

existing camera-based lane recognition system is in this way used at low level 

only. With this enhancement, the failures detected before in correspondence of 

complex road scenarios are no longer an issue since the vehicle is able to proceed 

relying on the reference trajectory only. 

The backbone of this method is surely simplicity: it has been an essential 

criterion in the design of this algorithm enabling reliability and high-speed 

operation at the same time. Another key factor came from the availability of 

predefined online libraries used to ease and speed up the process of functions 

design. 

After this first phase, the method has been redeployed to the Robotic 

Operating System environment to evaluate its performances in an autonomous-

driving simulation scenario. Particular attention has been devoted to the 

communication between the various components of the algorithm, relying also 

in this case either to predefined and user-defined interfaces. 
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Introduction 

The automotive sector plays a pivoting role in today’s industry 

panorama due to its implication in many worldwide concerns, such as 

environmental protection, economics, and road safety. To tackle all these 

challenges, this field is in constant evolution and one of the central topics of 

research is for sure Autonomous Driving. 

This technology envisions a world where vehicles are able to perceive the 

surrounding environment, make intelligent decisions, and navigate 

autonomously from point A to point B without the need for human 

intervention. This allows to eliminate the so-called “human error”, consequently 

reducing the occurrence of road accidents, mainly caused by it. Furthermore, 

driverless vehicles increase the traffic flow capacity in congested areas and the 

pollutant emissions related to the transport sector. 

Another often neglected application can be found in the development 

phase of new vehicles: driverless cars can perform any test on behalf of human 

drivers with a much higher level of consistency and in shorter times. 

To achieve these promising results, cutting-edge technologies are needed 

in the field of perception sensors and processing units which must be well 

integrated and cooperated to accomplish all the subtasks leading to 

autonomous driving. 

Among these subtasks, one of the most important is devoted to lane 

recognition. Its aim is to provide to the central unit the information related to 

the lane in which the vehicle is traveling (road markings, left and right 

boundaries, presence of obstacles, etc.) so that it can safely follow the defined 

path. 
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This task is relatively easy in highways or roads without intersections 

but when it comes to roundabouts or complex road geometries, the lane 

recognition system may encounter some difficulties. 

One of the solutions of this problem is the fusion of camera and GPS 

signals to provide a robust perception knowledge to the algorithm and let it 

perform well in a large variety of environments. 



 

 

 

 

 

 

Chapter 1  

 

1. Autonomous driving 

evolution 

In this first chapter, a brief overview of the development of autonomous 

vehicles is presented. A deep focus on the Advanced Driver Assistance Systems 

then follows, supported by the definitions and the regulations provided by the 

Society of Automotive Engineers. In the end, the state-of-the-art technological 

enablers are analyzed one by one. 

1.1 History of Autonomous Vehicles 

The concept of Autonomous Vehicle (AV) dates way back before the 

concept of the car itself. In fact, in the 16th century Leonardo Da Vinci designed 

a small, three-wheeled, self-propelled cart which is today referred not only as 

the first driverless vehicle but also the first robot of any kind. 

It took a long time before the next example of a driverless car showed 

up, when in 1925 the inventor Francis P. Houdina proposed a radio-controlled 

vehicle riding in the streets of New York. Unfortunately, the car crashed into 

another vehicle and the project lost credibility soon after. 
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The Big Apple gave birth to another ambitious project in 1939 when 

the industrial designer Norman Bel Geddes showcased a mobility concept based 

on magnetized freeways. Semi-autonomous vehicles were supposed to travel on 

them, exploiting an electromagnetic field capable of controlling a current flow 

and act on the commands of the vehicle. 

In the next years academic researches produced a series of concepts as 

the Standford Cart of 1961 (a small autonomous cart designed for the Moon 

capable to detect obstacles and follow a predefined path), the first autonomous 

passenger vehicle produced by the Japanese University of Tsukuba (the first 

employment of cameras in a driverless vehicle) and the Eureka PROMETHEUS 

Project  of the early ‘90s (consortium of universities and car makers culminated 

in 1994 with a thousand kilometer ride on the Parisian highways in self-driving 

mode). 

Through its Defense Advanced Research Projects Agency (DARPA), the 

U.S. Department of Defense promoted the research on AVs but the floodgates 

really opened when the Agency launched a series of competitions for driverless 

cars on desert roadways for 150 miles. In the first attempt of 2004, no one 

succeeded in completing the race, but the following year five contestants arrived 

at the end, led by the Standford University’s car. 

By the mid-2010s a new trend started to emerge, namely the cooperation 

between IT leaders like Apple or Google with automaker incumbers to tackle 

the challenges brought by AVs [1]. It yielded to the presentation of key products 

such as Waymo’s autonomous taxi in San Francisco in 2016 [2]. Despite its 

initial hype, real autonomy proved to be more difficult to achieve than 

originally planned: as of 2022 leading companies in the driverless panorama 

such as Aurora and Intel with its Mobileye have lost up to 75 billion dollars, 

causing a chasm that has almost taken over the sector [3]. Nevertheless, the 

rush recently seems to be started over not only in the Silicon Valley but also 

in many R&D research centers all over the Europe. On the other hand, besides 

the technological challenges, customers psychology must surely be taken into 

account when considering the spreading of AV. Public acceptance and trust are 

key factors for a large-scale diffusion of driverless cars and they can be achieved 

only with honest transparency about the potential risks and the good outcomes 

that the adoption of such technology may bring with itself. Another remarkable 

aspect is represented by the blame in case of accident. Legal issues are involved 
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in this topic and the recipient of the law implications deriving from an accident 

is still difficult to determine with clarity [4]. 

In the end, as of today, SAE level 31 vehicles are ready for 

commercialization, but it seems too early to speculate about the diffusion of 

cars with a higher level of automation [5].  

1.2 SAE levels  

The Society of Automotive Engineers (SAE) provides a comprehensive 

set of definitions and regulations that represent a pillar in the field of self-

driving vehicles. It developed 5 levels of driving automation, with the number 

of tasks demanded to the vehicle rising from level 0 to 5. 

1.2.1   Preliminary definitions  

To understand the concepts presented in Table 1.1 and Table 1.2, it is 

necessary to provide a few preliminary definitions, as reported in [6]. 

 

▪ Automated Driving System (ADS ): “The hardware and software 

that are collectively capable of performing the entire DDT on a 

sustained basis, regardless of whether it is limited to a specific 

operational design domain (ODD); this term is used specifically 

to describe a Level 3, 4, or 5 driving automation system.” 

▪ Dynamic Driving Task (DDT ): “All of the real-time operational 

and tactical functions required to operate a vehicle in on-road 

traffic […] including, without limitation, the following subtasks: 

1. Lateral vehicle motion control via steering (operational). 

2. Longitudinal vehicle motion control via acceleration and 

deceleration (operational). 

3. Monitoring the driving environment via object and event 

detection, recognition, classification, and response 

preparation (operational and tactical). 

 
1
 See the following chapter for more details 
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4. Object and event response execution (operational and 

tactical).2 

5. Maneuver planning (tactical). 

6. Enhancing conspicuity via lighting, sounding the horn, 

signaling, gesturing, etc. (tactical).” 

 

▪ DDT Fallback: “The response by the user to either perform the 

DDT or achieve a minimal risk condition […] after occurrence of 

a DDT performance-relevant system failure(s), or […] upon 

operational design domain (ODD) exit, or the response by an 

ADS to achieve minimal risk condition, given the same 

circumstances.” 

▪ Operational Design Domain (ODD): “Operating conditions under 

which a given driving automation system or feature thereof is 

specifically designed to function, including, but not limited to, 

environmental, geographical, and time-of-day restrictions, and/or 

the requisite presence or absence of certain traffic or roadway 

characteristics.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2
 Both tasks (3) and (4) are referred to collectively as object 

and event detection and response (OEDR) 
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1.2.2   SAE levels tables 

Level Name 
Narrative 

definition 

DDT 

DDT 

Fallback O
D

D
 

Sustained 

Lateral and 

Longitudinal 

vehicle 

motion 

control 

OEDR 

Driver Performs Part or All of the DDT 

 0 No Driving 

Automation 

The performance 

by the driver of 

the entire DDT, 

even when 

enhanced by 

active safety 

systems 

Driver Driver Driver 

n
/a

 

D
ri
ve

r 
S
u
p
p
or

t 

1 Driver 

Assistance 

The sustained 

and ODD-specific 

execution by a 

driving 

automation 

system of either 

the lateral or the 

longitudinal 

vehicle motion 

control subtask of 

the DDT (but not 

both 

simultaneously) 

with the 

expectation that 

the driver 

performs the 

remainder of the 

DDT. 

Driver and 

System 

Driver Driver 

L
im

it
ed
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2 Partial 

Driving 

Automation 

The sustained 

and ODD-specific 

execution by a 

driving 

automation 

system of both 

the lateral and 

longitudinal 

vehicle motion 

control subtasks 

of the DDT with 

the expectation 

that the driver 

completes the 

OEDR subtask 

and supervises 

the driving 

automation 

system. 

System Driver Driver 

L
im

it
ed

 

Table 1.1: Summary of levels of driving automation – [6] 
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Level Name 
Narrative 

definition 

DDT 

DDT 

Fallback O
D

D
 

Sustained 

Lateral and 

Longitudinal 

vehicle 

motion 

control 

OEDR 

ADS (“System”) Performs the Entire DDT (While Engaged) 

A
u
to

m
a
te

d
 d

ri
v
in

g 

3 Conditional 

Driving 

Automation 

The sustained 

and ODD-specific 

performance by 

an ADS of the 

entire DDT with 

the expectation 

that the DDT 

fallback ready 

user is receptive 

to ADS issued 

requests to 

intervene, as well 

as to DDT 

performance 

relevant system 

failures in other 

vehicle systems, 

and will respond 

appropriately. 

 

System System Fallback 

ready 

user 

(becomes 

the 

driver 

during 

fallback) 

L
im

it
ed
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4 High 

Driving 

Automation 

The sustained 

and ODD-specific 

performance by 

an ADS of the 

entire DDT and 

DDT fallback 

without any 

expectation that 

a user will need 

to intervene. 

System System System 

L
im

it
ed

 

A
u
to

m
a
te

d
 d

ri
v
in

g 

5 Full Driving 

Automation 

The sustained 

and 

unconditional 

(i.e., not ODD-

specific) 

performance by 

an ADS of the 

entire DDT and 

DDT fallback 

without any 

expectation that 

a user will need 

to intervene. 

System System System 

U
n
li
m

it
ed

 

Table 1.2: Summary of levels of driving automation (continued) 
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1.3   ADAS  

Advanced Driver Assistance Systems (ADAS) cooperate and help the 

drivers at the wheel, increasing their perception capability, reducing the 

reaction time, or detecting the onset of drowsiness. On the majority of 

Countries, the legislative framework allows SAE level 2 of automation only, but 

much more is yet to come, and these systems are paving the way for 

autonomous vehicles. 

The following section will give an overview of the most popular systems. 

Figure 1.1: SAE levels of automation - Source [6] 
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1.3.1   Blind Spot Detection  

This system increases the driver’s perception capability to detect 

obstacles in the vehicle’s blind spots (dark blue areas in Figure 1.2) in order to 

increase the safety during lane changes. 

The basic variant of Blind Spot Detection can be implemented with 

ultrasonic sensors or one single corner radar sensor. They monitor the blind 

area and alert the driver in case of presence of an obstacle with a visual signal 

on the side mirror. 

The advanced variant employs two corner radar sensors embedded in 

the rear bumper. The signals coming from them are merged to provide a 

complete picture of the traffic behind the car, alerting the driver even in case 

of fast-approaching vehicles. 

 

1.3.2 Driver drowsiness detection 

It can detect the driver’s fatigue or microsleep from the steering wheel 

movements. Through a steering angle-sensor and a complex algorithm that 

takes into account many other parameters, the system is able to warn the driver 

that he or she is better have a break. A typical sign of fatigue is represented 

by a constant and slow steering, followed by a slight, yet quick and abrupt 

maneuver to keep the vehicle on track. 

Figure 1.2: Blind Spot areas - Source [69] 
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1.3.3 Traffic Sign Recognition 

Traffic signs display useful information for the driver, but at the same 

time, they may be difficult to be properly detected. This system uses an all-

purpose camera (usually installed on the windscreen of the vehicle) to recognize 

and classify round, rectangular or triangular road signs. Then, the 

corresponding signal is displayed on the cluster and easily read by the driver. 

Traffic sign recognition proves particularly useful when detecting the 

start and the end of stretches where speed limits are in force. 

1.3.4 Forward Collision Warning 

This system is capable of warning the driver in case it is approaching a 

rear-end collision with an obstacle in its forward path. Camera and radar detect 

the possibility of a collision when the distance between the vehicle and the 

obstacle in front is closing too quickly and the relative speeds are too different 

from each other. The driver is alerted with acoustic, visual, or haptic signals 

and when possible, emergency braking is activated. 

1.3.5 Adaptive Cruise Control 

The aim of this driver assistance system is to maintain a minimum safe 

distance from the preceding vehicle by adjusting the speed set by the cruise 

control. A front radar monitors the traffic ahead of the vehicle and if no 

obstacles are detected, the system maintains the driver’s desired speed. If 

otherwise, a slower preceding car is revealed, ACC slightly reduces the speed 

so as to keep a safe distance from it. In case the vehicle in front accelerates 

again, the ACC increases the speed until it reaches the one set by the driver. 

This system may be improved by implementing a multi-purpose camera that 

allows to detect with larger advance another vehicle entering in driver’s own 

lane and act consequently. 

1.3.6 Intersection Turn Assistance 

Another system that leverages on the operation of a radar and a camera 

is the Intersection Turn Assistance. Its goal is to warn the driver (or when 
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possible, execute an emergency braking maneuver) in case of danger when 

performing a left turn. It is demonstrated that this maneuver causes a large 

number of accidents because the drivers usually underestimate the speed of the 

vehicle coming from the opposite direction or are not aware of the presence of 

vulnerable road users3 in the intersection. 

1.3.7 Lane Keeping Assist 

Tiredness or distraction may lead to unintentional lane departure with 

consequent severe danger for the driver and the other road users. Lane Keeping 

Assist (LKA) uses a video camera to detect the lane boundaries ahead (road 

markings, curbs, etc.) and acts on vehicle lateral motion control to keep it on 

track. In vehicles equipped with electronic power steering, LKA gently, but 

noticeably, countersteers to maintain the trajectory, otherwise, it intervenes 

through the Electronic Stability Program (ESP) by braking some wheels and 

achieving the same effect. 

1.3.8 Emergency Braking 

This system is reasonably listed as one of the most effective in reducing 

the number and the severity of road accidents. It employs a camera, a front 

radar and a corner radar, to achieve a wide-ranging awareness of the 

surroundings and detect the possible onset of a collision. In this case, the 

system first alerts the driver with acoustic and visual warnings while it prepares 

the braking system for an emergency operation. Then, if the driver does not 

react, it initiates a slight braking and as soon as the brake pedal is pressed, the 

system provides the correct pressure in the brake circuit to bring the vehicle to 

a standstill before a collision occurs. 

This operation specifically refers to rear-end collision situation. 

Nevertheless, the Emergency Braking intervenes in many other scenarios, as 

the backing-up impact. Using corner radar data, it detects the vehicle driving 

past (possibly not noticed by the driver) and activates the brakes to avoid a 

collision. 

 
3
 The term refers to pedestrians and cyclists. 
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1.3.9 Park Assist 

The Park Assist system employs ultrasonic sensors installed in the 

corners of the front and rear bumpers to scan the environment along the side 

of the vehicle. When sufficient room for a parallel or perpendicular parking is 

found, the system takes control of the vehicle acting on the steering wheel and 

provides instructions to the driver who is usually still in control of the 

accelerator and the brake pedal. 

1.4   Sensors  

The enabling technology for the achievement of any level of driving 

automation includes state-of-the-art perception sensors. They consists in 

ultrasonic sensors, radars, lidars, cameras and inertial measurement units. 

When it comes to their choice, many parameters must be considered such as 

accuracy, sampling rate, range, field of view (FoV) and cost to reach the best 

trade-off in terms of performance and complexity.  

In the following section a more detailed description of the 

aforementioned systems is provided. 

1.4.1   Ultrasonic sensor 

They exploit not-human-audible ultrasounds in the form of soundwaves 

with frequency of 40 kHz. These sensors have a range between 15 cm and 6 m 

and are usually installed inside the bumpers to detect low-profile obstacles or 

vulnerable road users in proximity of the vehicle. 

Their working principle is based on the generation of an ultrasonic pulse 

which is reflected by the obstacle and then detected back by a piezoelectric 

receiver. 

 𝐷 =
𝜏𝑓
2⁄ ∙ 𝑣𝑠𝑜𝑢𝑛𝑑(𝑇) [ 1.1 ] 

The distance (𝐷) from the obstacle is calculated by multiplying half the 

flight time (𝜏𝑓) by the speed of sound at given temperature (𝑣𝑠𝑜𝑢𝑛𝑑(𝑇)).  
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Nevertheless, ultrasonic sensors lack accuracy because if the obstacle’s 

surface is not perpendicular to the sensor itself, the time-to-flight information 

will record the distance from the nearest point within the emission cone and 

not from the actual target. 

The strongest points of these systems are their low cost, low dimension 

and high level of integration with the vehicle body. 

The main weak point is the sensitivity to dirt. 

1.4.2   Radar  

The first employment of this technology dates back to the 1940s for 

aircraft applications. The working principle is similar to the one of ultrasonic 

sensors, but the radio waves’ frequency is much higher (20÷70 GHz), thus the 

flight time is too short to be simply detected by a microprocessor. 

A transmitting module (TX) emits a radio wave that is reflected by the 

obstacle and then caught by the receiving module (RX). The process of distance 

evaluation is firstly carried out by the mixer, which evaluates the time delay 

between the two radio signals, and then the Low Pass Filter (LPF), which 

outputs a sinusoidal wave known as IF tone. 

Using a Fast Fourier Transform (FFT) it is possible to identify the 

different IF tones and calculate the related distances. The output of this first 

step is fed to another FFT block which allows to evaluate the relative velocity 

with respect to the target. 

Figure 1.3: Schematic block of radar operation principle 
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Nevertheless, relative distance and speed are not enough to properly 

detect obstacles. The last information that is needed is the angular direction 

of the target. This is achieved with two RX antennas installed in the same 

radar device that, exploiting the phase difference between the received radio 

waves, return the desired information. The accuracy of the measurement can 

be increased by using more antennas. 

The range of radars can extend up to 300 m. 

1.4.3   LiDAR 

Laser Imaging Detection and Ranging is a method to perceive the 

surroundings based on a laser pointing an object and measuring the time for 

the reflected light to return to the receiver. The distance from the reflecting 

target can be estimated via time-to-flight calculation (as for ultrasonic 

sensors) or through phase shift evaluation (as for radars). 

This process is repeated with a certain frequency to create a detailed 

map of the surroundings, the so-called point cloud. Depending on the 

arrangement of the sensor, 3D or 2D maps can be generated. The processing 

unit uses then these data to guide the vehicle in the detected environment.  

Taking a look inside the equipment, two main components can be found: 

the Vertical Cavity Surface Emitting Laser (VCSEL) and the Single Photon 

(a) (b) 

Figure 1.4: radar (a) and ultrasonic sensors (b) - Source [69] 
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Avalanche Diode (SPAD). Their tasks are respectively creating the laser arrays 

and generating an avalanche current when hit by the reflected light. 

Lidars have evolved massively in the last years and represent now the 

major technological enabler for automated driving. Nevertheless, their high cost 

still represent a major constrain for a wide-scale adoption. 

1.4.4   Camera 

Cameras have found in the automotive field a large number of 

applications. They may be employed to support systems complying with 

Automotive Safety Integrity Level (ASIL)4 requirements, or to simply assist the 

driver while maneuvering. Additionally, for the majority of the autonomous 

driving tasks, a proper perception of the surroundings is mandatory, and it is 

often performed by images. For this reason, cameras play such an important 

role in this field.  

Their operating principle is based on the production of a bidimensional 

image of the surroundings by capturing the light reflected by 3D objects. Many 

views from different cameras are anyway needed to properly reconstruct a 3D 

scene of the environment in which the vehicle is operating. The principle at the 

basis is known as stereo vision. It is carried out by finding corresponding pixels 

on the images produced by the different devices and subsequently putting in 

relation the outputs through appropriate geometry calculations. More details 

about stereo vision are provided by [7]. 

In the end, it is worth remembering that the acquired image quality is 

always susceptible to environmental conditions, like weather and level of 

illumination. Therefore, the visual information retrieved from other sensors is 

required for robust environmental perception. 

  

 
4
 They define a risk classification as specified in ISO26262 Standard for functional 

safety of road vehicles.  



Autonomous driving evolution 

19 

 

1.4.5   Inertial Measurement Unit 

Unlike the previously listed items, IMUs are often neglected when 

considering sensor equipment inside a vehicle while their contribute is pivotal. 

They allow to measure accelerations and angular rotations up to six degrees of 

freedom along the three cartesian axes. They can be divided in two main 

categories: two-sensor-types equipped, and three-sensor-types equipped. The 

first kind of unit is made up of an accelerometer and a gyroscope for the 

evaluation of accelerations and rotations respectively. The latter additionally 

contains a magnetometer for the determination of the yaw angle “thus it can 

be calibrated to the gyroscope data to improve the big drift issue” [8]. Today’s 

IMUs are capable of valuable performances in terms of precision and 

responsiveness, working up to 200 Hz all of it inside very small and light 

packages.  

The operating principle differs for acceleration and rotation. In the first 

case, it relies upon micromechanical structures able to change their capacitance 

in relation to acceleration indeed. In the second case instead, it exploits the 

Coriolis principle, i.e. hinges on the inertia force of an oscillating mass placed 

in a rotating system. This ensures an accurate evaluation since mechanical 

interferences are greatly reduced by the high resonance frequency of the 

measuring element.  

 1.5   Actuators 

The second major component of an autonomous driving vehicle 

technological asset is represented by the actuators. Their role is to translate 

the electric signals received from the ECU into physical commands to control 

the vehicle’s longitudinal and lateral motion. To do so, the actuators leverage 

on the electronic nature of most of the commands (electronic power steering, 

shift by wire, electronically controlled throttle, etc.) which employ wires instead 

of steel cables, valves, or gears to transmit driver’s input to the mechanical 

organs. Nevertheless, also bulky hundreds of meters of cables may represent a 

problem in modern vehicles where lightness is a key design criterion. Hence, in 

today’s applications the communication among ECU and the actuators is 
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performed through serial protocols as CAN and LIN buses which employ fewer 

and lighter electric cables as physical layer.  

1.6   Software architecture  

Along with hardware (sensors, actuators, mechanical components of the 

vehicle) the realization of a driverless car would not be possible without the 

software component. For organization and standardization purposes it has been 

modeled in different architectures like Stanley [9], Junior [10], Boss [11] and 

Tongji AC [12]. The five ingredients shared among all these schemes can be 

identified into perception, localization and mapping, prediction, planning and 

control whose interaction is showed in Figure 1.5.  

The perception block oversees the analysis of sensors’ output to produce 

a comprehensive understanding of the environment. Such process can be 

compared to human vision and usually includes the recognition of lane 

markings, vehicles or other road users as cyclists or pedestrians. The state-of-

the-art technologies in this field can be broken into two main categories: 

computer vision-based and machine learning-based. The former address visual 

perception problems by employing geometrical models that show to be the 

Figure 1.5: Tongji-like software architecture - Source [2] 
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best-fitting ones after an optimization process. The latter provide the solution 

of a perception problem exploiting data-driven classification or regression 

models like Convolutional Neural Networks (CNNs). The literature is plenty of 

examples of perception software based on CNNs such as SegNet [13] and U-

Net [14].  

 The localization and mapping block handles instead the estimation of 

the position of the vehicle in the space and the recreation of the surroundings. 

The concept at the basis is the Simultaneous Localization and Mapping 

(SLAM). Introduced in 1986 [15], SLAM systems can be either filter-based and 

optimization-based. The first ones iteratively estimate the car pose by 

continuously integrating the sensor data, while the others tackle the problem 

by finding correspondences between observations and the map, updating the 

environment recreation accordingly.  

The prediction block is responsible for the analysis of motion patterns 

to predict future trajectories. Its task involves either the AV itself or the other 

road users. The model-based prediction systems hinge on kinematic and 

dynamic mathematical models to predict the future state of a moving object 

but may fail in long-term prediction [16]. Data-driven-based methods perform 

better in this context relying upon Artificial Intelligence and High-Performance 

Computing [17, 18].  

The planning module determines viable safe navigation routes based on 

the output of the previous blocks. Its operation can be broken down into three 

steps: path, maneuver, and trajectory. The first is a sequence of geometrical 

points in the space that the vehicle has to follow to avoid collisions and safely 

reach its destination; the second is a high-level motion characterization process 

that takes into account also traffic conditions and rules; the last is instead a 

sequence of AV states.  

Finally, the control block sends commands to throttle, brakes and 

steering to let the vehicle follow the planned trajectory as closely as possible 

avoiding abrupt actions at the same time. The mostly employed controllers are 

Proportional Integral Derivative (PID) [19], Linear Quadratic Regulator (LQR) 

[20] and Model Predictive Control (MPC) [21]. All of them have in common 

the closed-loop structure and the minimization of the error function paradigm. 

 



 

 

 

 

 

 

Chapter 2  

 

2. Current state review 

In this chapter a deep analysis of the state of the project where the new 

system has been built on is provided. First, it is thoroughly described, with 

particular attention to the installed components. Furthermore, the camera-

based lane detection algorithm is studied along with its strongest and weakest 

points. 

 

2.1   Project generalities 

The project object of study has been launched by FKFS5 with the aim 

of creating an autonomous vehicle capable of driving without human 

intervention in a controlled environment. Such project is acknowledged as eWolf 

and at the current level of development is meant to operate in the road network 

around and inside the Campus of the University of Stuttgart (DE). It achieved 

promising results so far, but its full operability has still to be met. In this 

context the developed project offers an opportunity to enhance the 

 
5
 Forschungsinsitut fur Kraftfahrwesen und Fahrzeugmotoren Stuttgart  
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functionalities of the vehicle, hopefully enlarging the spectrum of conditions in 

which it can reach a satisfactory operation. 

2.2   Vehicle overview 

The hosting infrastructure for the eWolf project is represented by a 

minivan which offers enough room to fit all the needed hardware components. 

In the front part of the van, which usually hosts the driver and the passengers, 

are installed the processing units and the actuators controlling the longitudinal 

and lateral dynamics of the vehicle. In the rear portion instead, the seats have 

been removed to leave space to the RC control unit and the GPS receiver. 

Figure 2.1 and Figure 2.2 provide visual description of the outline and the 

internal layout of the eWolf respectively. 

Figure 2.1: eWolf vehicle - Source FKFS 
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The three cameras installed on the dashboard enable stereovision, 

ensuring a wide-ranging awareness of the environment in front of the vehicle. 

This makes possible to detect the road markings essential for lane detection. 

The Nvidia® processing unit elaborates the images caught by the cameras and, 

after the implementation of the developed algorithm, builds the command 

signals provided to the different actuators. The BreakOut-Box serves as a 

diagnostic tool to find any anomalies in the serial communication among the 

installed components, enabling to test each communication channel and 

connect or disconnect devices. The U-Supply serves as an additional processing 

unit to manage the signal coming from the GPS sensor. 

Figure 2.2: internal eWolf layout - Source FKFS 

Figure 2.3: BreakOut box detail - Source FKFS 
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2.3   Lane detection algorithm 

The algorithm used in the case-study and mentioned in the previous 

section is known as LaneDet [22]. It is an open-source lane detection toolbox 

with the aim of combining a comprehensive range of state-of-the-art lane 

recognition models. It supports many neural networks as backbones, such as 

ResNet, ERFNet, VGG, MobileNet and DLA (coming soon) and many 

detectors as well: SCNN [23], UFLD [24], RESA [25], LaneATT [26], CondLane 

[27] and CLRNet (coming soon). Included in the main framework, an object 

detection branch can be found as well. It is based on the YOLO network and 

makes the algorithm capable of recognizing in real time the surrounding objects 

like other cars, pedestrians or cyclists. 

If the main branch of the code is analyzed the following sequence of 

steps can be outlined: 

1. Implementation of the stereo vision process: it is necessary to 

combine the images from the three different cameras and provide 

tridimensionality to the recorded snapshot. 

2. Retrieval of the frame: instant by instant the 2D frame must be 

extracted from the output of the previous step. 

3. Denoising of the frame: with the utilization of a kernel, the picture 

noise is drastically reduced. 

4. Grayscaling and edge detection: first converting the frame into a 

black-and-white image, the edges of the objects contained in it are 

outlined. 

5. Determination of the region of interest: to increase the computational 

efficiency, the process of detection is carried out on a limited region 

of the frame only. 

6. Perspective warping: to properly perform the further operations, the 

perspective of the image must be converted into a birds-eye-view 

(BEV) angle6. 

 
6
 This view emulates a top view, as a bird would have from above the vehicle  
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7. Lanes segmentation: this step plays a pivoting role in the process 

because allows to determine the position of the lane boundaries 

considering the distribution of the frame pixels.  

8. Determination of the fitting model: a quadratic model is used to fit 

the detected lane boundaries in order to display them in vehicle’s 

coordinate system. 

9. Draw and display lines on the frame: this last passage accounts for 

visualization purposes. 

2.4   Strong and Weak points  

As mentioned in the introductive paragraph of this chapter, the system 

has remarkable capacities of autonomous driving in many different scenarios. 

The tests have demonstrated its capability to properly detect the lane 

boundaries and follow the shape of the road accordingly. On the other hand, 

when complex road geometries as roundabouts or intersections come up, the 

system is no longer capable of recognizing the lane boundaries and fails its task 

of guiding the vehicle. This happens because the camera alone does not provide 

Figure 2.4: Schematics of SCNN architecture - Source [23] 
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sufficient information to the algorithm to distinguish the actual lane boundaries 

in case of missing or complex features as in those situations. 

 

In Figure 2.5 (a) it is possible to understand how the algorithm works: 

once recognized the lane boundaries it fits them with the quadratic model 

mentioned in the previous section. At this point, the method compares the 

(a) 

(b) 

Figure 2.5: different behavior of the lane recognition algorithm in 

correspondence of a straight road (a) and intersection (b) 
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heading of the vehicle (represented by red and blue dots) to the direction of 

the route. The system then intervenes on the lateral dynamics control to close 

the gap between these two quantities. Figure 2.5 (b) represents instead a failure 

case in which the algorithm is not able to identify the road boundaries in 

correspondence of the intersection, thus the quadratic model parameters are 

not defined with the final consequence of no guidance to the eWolf. 

2.5   Applicable enhancements  

Acknowledging that there is this flaw in the system, the objective of this 

work is to provide an additional source of environmental perception to guide 

the vehicle in the challenging scenarios. Considered the unavailability of a 

Lidar, the only adoptable option was represented by the Global Positioning 

System. It enables map-matching which may be employed to guide the vehicle 

when the camera signal is not sufficient.  

By generating a high-level reference route for the vehicle, the system 

would be capable to operate also when the existing method fails. This 

trajectory is the result of a refined path finding algorithm based on digital 

maps. The process is then completed by matching the GPS coordinates 

provided by the installed receiver to localize the vehicle on the route. 



 

 

 

 

 

 

Chapter 3 

 

3. Sensor fusion 

In this chapter an introductory section is devoted to describe the 

technological enablers for the GPS-based method. Subsequently, the method 

employed to merge the information coming from the stereo camera and the 

GPS receiver is outlined. A very simple yet effective algorithm has been 

developed to achieve the capability to work in real time and build a successful 

guidance trajectory for the automated vehicle. The whole process has been 

subdivided into a number of simpler steps to ease the comprehension. 

Note that the development of the algorithm has been carried out in a 

Python environment to cope with the existing code related to camera-based 

only lane detection. 

3.1   Technological enablers 

To adopt the GPS signal as the basis for a lane detection algorithm, it 

is necessary to understand how it works, the nature of its output and how it 

can be related to the road map of the surroundings. In the following paragraph 

the operation of the Global Positioning System is described, followed by a focus 

on the coordinates systems, the digital maps and the process of map-matching.  
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3.1.1   GPS 

The Global Positioning System origins date back to the 1980s, when the 

Department of Defense of the United States of America started the first 

experiments. Originally conceived for military usage only, during the years its 

availability has grown up and it is currently widely employed for civil 

applications as well. The GPS consists of three segments: 

• Space: the 24 satellites constellation surrounding the Earth 

• Control: tracking, master and up-loading stations with data monitoring, 

processing, and transmitting tasks 

• Users: wide set of different receivers determining their own position, 

velocity, and time  

 

The determination of the position is based on a pulse exchange between 

the orbiting stations and the receivers which have the task of identifying the 

satellites in view and perform triangulation. This last process is essential since 

the location of the user is given by the intersection of the spheres generated by 

each satellite’s signal on the Earth surface. It goes without saying that at least 

three satellites are needed to accomplish the task.  

Performing a more accurate analysis of the phenomenon, everything 

starts with the distance estimation between the satellite and the user. It is 

obtained by multiplying the pulse speed (𝑐, speed of light) by the delay time 

between its emission and its reception (𝜏): 

 𝐷 = 𝑐 ∙ 𝜏 [ 3.1 ] 

The accuracy of the estimation depends on the accuracy in the 

estimation of 𝜏. Nevertheless, this arises a problem since the perfect 

synchronization between emitter and receiver’s clock is often not ensured. For 

this reason, the distance is affected by an error (𝛿𝑡𝑈) that takes this 

misalignment into account. 

 𝑅 = 𝑐 ∙ 𝜏 + 𝑐 ∙ 𝛿𝑡𝑈 = 𝐷 + 𝑐 ∙ 𝛿𝑡𝑈 [ 3.2 ] 

The result of [ 3.2 ] is referred to as the pseudorange.  
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To determine the user coordinates on the Earth’s reference system it 

must be considered that the distance between the satellite and the receiver is 

given by [ 3.3 ]:  

 𝜌 = √(𝑥𝑠 − 𝑥𝑟)2 + (𝑦𝑠 − 𝑦𝑟)2 + (𝑧𝑠 − 𝑧𝑟)2 + 𝑐 ∙ 𝛿𝑡𝑈 [ 3.3 ] 

Where (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) are the known coordinates of the satellite and 

(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) are the unknown receiver coordinates. Considering that also the 

synchronization error is not known, and that triangulation must be performed, 

it comes up with four equations with four independent variables: 

 

 

{
 
 

 
 𝜌1 = √(𝑥𝑠1 − 𝑥𝑟)

2 + (𝑦𝑠1 − 𝑦𝑟)2 + (𝑧𝑠1 − 𝑧𝑟)2 + 𝑐 ∙ 𝛿𝑡𝑈

𝜌2 = √(𝑥𝑠2 − 𝑥𝑟)2 + (𝑦𝑠2 − 𝑦𝑟)2 + (𝑧𝑠2 − 𝑧𝑟)2 + 𝑐 ∙ 𝛿𝑡𝑈

𝜌3 = √(𝑥𝑠3 − 𝑥𝑟)2 + (𝑦𝑠3 − 𝑦𝑟)2 + (𝑧𝑠3 − 𝑧𝑟)2 + 𝑐 ∙ 𝛿𝑡𝑈

𝜌4 = √(𝑥𝑠4 − 𝑥𝑟)2 + (𝑦𝑠4 − 𝑦𝑟)2 + (𝑧𝑠4 − 𝑧𝑟)2 + 𝑐 ∙ 𝛿𝑡𝑈

 [ 3.4 ] 

 

Figure 3.1: GPS coordinate determination - Source [70] 
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The result of [ 3.4 ] is a set of coordinates (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) which locates the 

user in a reference system belonging to the family of Conventional Terrestrial 

Reference Systems (CRTS). This category is characterized by the origin located 

into the center of mass of the Earth, the z-axis in correspondence of the rotation 

axis as it was at the beginning of the past century, the x-axis in correspondence 

of the plane defined by the Greenwich meridian and the y-axis that complies 

to the right-hand rule. The World Geodetic System 1984 (WGS-84) is a great 

example of a CRTS, but it actually locates the x-axis on a plane 5.3 arc seconds 

east of the Greenwich meridian and considers the datum surface as an oblate 

spheroid7. Nonetheless, to a large percentage of users, these systems are not as 

familiar as geographic coordinates like latitude (λ), longitude (φ), and altitude. 

Figure 3.2 shows how the coordinates are related each other. 

In the end, it is worth mentioning that the accuracy of the estimated 

location, whichever is the reference system used, is still too poor for almost all 

technological applications. The solution to this problem comes from an 

augmentation system known as differential GPS. It relies on a series of stations 

to increase the reliability of the position information hinging on the evidence 

that the relative error between the location of two users that are not too far 

apart each other is theoretically null. Hence, a reference station calculates its 

position and compares it to its actual coordinates, then it broadcasts the 

resulting error (differential corrections) to all the receivers in the range of 100-

150 km enabling them to correct their estimation. 

 
7
 Ellipsoid of revolution obtained by rotating an ellipse around its minor axis. 
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3.1.2   UTM coordinates system  

When the geographical coordinates are used for navigation, their three-

dimensional nature loses importance since the altitude information is usually 

not as fundamental as the other two. For this reason, bidimensional 

representations as maps are used. They constitute a projection of the geoid8 

for a delimited area, but it is clear that errors and distortions are prone to 

appear. For many centuries cartographers devised a large scale of projections, 

some of them fitting better for some purposes than the others. If navigation is 

concerned, the most valuable one is the Mercator Projection. It dates back to 

1569 and “projects the Earth onto a concentric cylinder tangent to it along the 

equator. The meridians […] are equally spaced and straight. The parallels […] 

are also straight but unequally spaced, closest together at the equator and 

cutting the meridians at right angles.” [28] From this representation, four 

 
8
 The solid best approximating the Earth surface 

Figure 3.2: Relation between WGS84 and latitude and longitude 

coordinates - Source [71] 
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centuries later the US army developed the Universal Transvers Mercator 

(UTM) reference system. As it happened with the GPS, it was initially 

conceived for military purposes, but it has been later widely adopted in civil 

applications as well. It divides the Earth into 60 zones each of which is small 

enough to neglect the distortion errors inside its borders. Each point is then 

defined with its X and Y coordinates inside each zone, often referred to as 

eastings and northings respectively. Their deployment opens the doors to 

algebraic and geometric calculations which would be otherwise not feasible with 

latitude and longitude coordinates, particularly when low distances are 

involved. A great example is provided by the possibility of building a spline to 

smooth a trajectory constituted by a set of coordinates, made only possible by 

the employment of the UTM system. 

3.1.3   Digital maps 

In modern times many applications rely on digital maps, from 

smartphone navigation apps and arcade videogames to driver assistance 

systems. They are 2D-graphs made up by a series of edges, representing road 

segments and a set of nodes, indicating road intersections or edges terminal 

points. These graphs may be correlated with databases that associate 

additional information to the road segments, such as width, number of lanes, 

restricted areas, etc. 

The standardized description of the digital maps is given by the 

Geographic Data Files (ISO 14825:2004). GDF have no scale, can present the 

desired level of detail and are application independent, all features that make 

them very effective for the employments mentioned before.  

A GDF may present three levels of detail: 

• Level 0 (topology): includes low level description of features. 

• Level 1 (features):  contains information on road elements, river 

boundaries, etc.  
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• Level 2 (complex features): describes the elements in the most abstract 

way. 

3.1.4   OpenStreetMap 

Among the constellation of digital map providers available these days, 

OpenStreetMap has been chosen for this project. It is an open-source database 

created by volunteer users that contains road data collected around the Globe. 

OSM represents physical features on the ground with basic data structures 

referred to nodes and edges, and associating tags to them. All these data are 

represented in WGS-84 coordinate system, as GPS does.  

• Node: it consists of a single point defined by its latitude, longitude, and 

node ID. It can be used to indicate point features but is more often 

employed in sequence with others to build the path of a way. 

• Way: although it can be defined as a line, it technically consists in an 

ordered list of nodes representing linear features on the ground. 

• Relation: it is an element containing a group of members, namely an 

ordered list of nodes, ways and/or relations. It defines logical or 

geographical relationships between these elements. 

Figure 3.3: Three levels of abstraction in GDF - Source [72] 
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• Tag: it describes a geographical attribute of the feature it is attached to. 

There is a list of standard tags which include a comprehensive set of 

features, nevertheless users are free to create their own tag, if necessary. 

The full list of standard tags can be found at the organization’s wiki 

website. [29] 

 

To make use of the database offered by OpenStreetMap, it is sufficient 

to specify the desired bounding box on the source website [30] and download 

the resulting file. By default, it is set as an XML-like format which is 

manageable by the majority of applications and allows to easily implement the 

graph representation which characterizes the OSM data. 

Digital maps play a pivoting role in the presented project, functioning 

as dynamic reference for the improved lane detection algorithm allowing it to 

operate in various road scenarios. 

 

3.1.5   Map Matching  

In the majority of applications, the sole GPS coordinates are quite 

useless due to their poor accuracy and large noise affection. To be employed in 

the field of autonomous driving, the GPS results must be matched with the 

digital map information, to properly locate the user on a defined path and 

perform the required operations. This activity is known as map matching, and 

it has been actively studied since the 1990s. Map matching is the result of two 

sub-activities: selection of candidate roads and identification of the best 

matching segment. For what concerns the first step, the state-of-the-art 

methods include geometrical [31, 32], topological [33, 34], and probabilistic [35 

- 37] approaches. The first ones rely on the definition of a searching area in the 

neighborhood of the GPS point to determine the matching road, while 

topological approaches select candidates on the basis of the connections inside 

the road network. The latter ones instead, make use of static parameters to 

establish confidence intervals and determine the matching road. The outcome 

of this selection process may consist in one or more segments, according to the 

complexity of the road scenario. In case of multiple outputs, the identification 
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of the best matching one becomes imperative. The methods found in literature 

can be categorized into four groups:  

1. Direct projection algorithm, which directly projects the locating 

point on the nearest road.  

2. Curve fitting algorithm, calculating the similarity between the 

driving path and the candidate road. [38, 39] 

3. Advanced map matching algorithms that adopt intricate 

mathematical models to identify the best matching road. [40 - 44] 

4. Weights-based algorithms, determining the right match through the 

association of weights to certain parameters. [37, 45 - 48] 

3.2   Literature review 

Before exposing the method developed for this project, an overview of 

the methodologies reported in the literature is provided. It serves as a 

background of the activities presented in this work and enables a better 

understanding of the steps taken.  

The papers mentioned in the following review adopt the concept of 

sensor fusion mostly considering the combination between GPS signal and 

camera images. The only exception to this statement is represented by the 

second method of [49] which employs a LiDAR point cloud to perform map 

matching in conjunction with the geographical information. An interesting 

approach is presented in [50], leveraging on a High-Definition Map. Containing 

more detailed information about the road characteristics, traffic signs and 

street surroundings than a conventional map, it offers more cues to associate 

the recorder camera image with geographical data. The main drawback is 

represented by the availability of such source which in the majority of cases 

must be generated in advance with in-depth inspections of the driving scenario. 

More focused on the ego-lane detection in case of missing features, is instead 

[51]. This paper addresses the problem of identifying the lane in which the 

vehicle is driving when the road markings are not clearly visible or not present 

at all. This issue is also encountered in the case study, but the main focus of 

the work is on a wider range of circumstances. One of the most captivating 

methods is exposed in [52], which aims at creating a Relational Local Dynamic 
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Map to develop the concept of map-matching upon it. It represents a projection 

of the content of a digital map, so as to create candidates to compare with the 

actual recorded camera image and detect the position of the vehicle accordingly. 

In the end, the approach that mostly resembles the one adopted in this work 

is described by [53], that bases the operation of map-matching on a simple yet 

effective strategy: associate the coordinates provided by the GPS sensor to the 

closest point on the reference trajectory. The main difference stands in the 

generation of such trajectory: in the reported paper it is recorded with in-the-

field acquisitions, while in this project it is generated with a path-finding 

algorithm.  
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3.3   Method abstract 

At this point of the discussion, it is possible to deep dive into the main 

logic behind the implemented method. As explained before, the camera-based 

lane detection algorithm is not sufficient to provide guidance to the vehicle in 

every environment, thus the intervention of another system is required. The 

idea at the basis of the project is to find and draw a high-level trajectory that 

the vehicle must follow by default, which is improved and refined by the 

information coming from the camera-based lane detection system whenever it 

is available. Figure 3.4 depicts this logic in a flow chart.  

At the beginning, the vehicle is considered to lay in correspondence of 

the first geographical location constituting the reference trajectory and not to 

Figure 3.4: flow chart illustrating the logic of the project 
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be in the middle of an intersection, a junction, or a complex road scenario. 

These assumptions yield to the immediate availability of the lane detection 

algorithm. As soon as the vehicle sets off, the camera-based lane detection 

keeps it on track by comparing its heading with the detected road boundaries. 

When this method gets no longer available in presence of the conditions listed 

above, the GPS-based algorithm intervenes, providing guidance through the 

comparison between the vehicle’s yaw angle and the direction imposed by the 

reference trajectory. It is worth mentioning that the second method keeps the 

vehicle in the correct lane identified before with the stereo camera since it does 

not force it to follow the trajectory virtually drawn in the middle of the road, 

but it is confined to keep the vehicle parallel to the direction indicated by the 

route.  

In the end, whenever the GPS or the IMU data are not available, the 

algorithm preserves the direction imposed in the previous time instant and 

reattempts the whole process in the next step. 

Diving deeper into the GPS-based method, its nature can be inspected. 

The underlying idea is extremely simple but it showed promising results. 

Basically, a reference trajectory is drawn between two geographical points so 

as to respect the criterion of the shortest path and taking into account the 

Figure 3.5: GPS-based lane detection process 
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preferred mean of transport (with the associated viable ways) as well. After 

this first step, map matching phase takes place. It consists in nothing but 

localizing the vehicle on the map, task that is accomplished through the 

application of a straightforward concept: being the vehicle forced to follow a 

predefined trajectory, its exact position will surely be in correspondence of one 

of the points constituting such trajectory. Of course, this idea cannot be 

implemented as-is and requires a sequence of refinement, which are listed in 

the following paragraphs. 

3.4   Determination of the shortest path  

The first thing to take into account when considering routing tasks is 

the representation of geospatial data which is crucial to design an efficient 

algorithm. Representing geospatial information has consistently presented a 

complex challenge, and as the quantity of location data expands, this intricacy 

is set to persist. When it comes to visualizing geospatial data, a couple of 

crucial aspects must be considered: 

• When zoomed in at higher scales, it becomes imperative to present a 

condensed or restricted perspective of the data. Conversely, at lower 

scales, the majority of the data should be displayed in comprehensive 

detail. 

• The capacity of the routing processor presents constraints concerning 

the efficient management of substantial data sets. 

 

For those reasons the implementation of map tiles becomes imperative. 

Map tiles are conceived as square portions of a map (256 x 256 pixels), 

employed in map visualization browsers to drastically reduce the computational 

effort in visualizing geospatial data. Their concept can be extended to routing 

algorithm, for which just the map tiles involved in the pathfinding process are 

loaded with consequent advantages in terms of efficiency. More details about 

map tiles and their implementation can be found at [54]. 

Leveraging on the graph nature of the OpenStreetMap data, a routing 

method to find the shortest path between two locations can be effortlessly 

implemented with the python library pyroutelib3 [55]. It first receives as 
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input the source and destination coordinates, then finds the nearest map nodes 

to them, and finally employs the A* search algorithm to determine the shortest 

path. It is a widely used pathfinding and graph traversal method that finds the 

shortest path from a starting point to a goal node in a graph but differentiates 

from the others because “it incorporates an estimate of the cost of ‘path-

completion [56]. 

The outcome of this step is a list of nodes constituting the shortest route 

from the source to the destination location but if the relative coordinates are 

not inherently linked to them, their usefulness is diminished. 

For this reason, this conversion is performed creating a reference 

trajectory in the so-called global map. For visualization purposes an example 

route is plotted in Figure 3.6. 

Figure 3.6: set of nodes (blue dots) constituting the shortest path between two 

points 
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3.5   Trajectory refinement  

The set of points obtained from the previous procedure represents 

nothing more than just a reference for the vehicle guidance. The first problem 

is represented by the fact that it presents a non-constant distribution of points, 

which are much more dense in correspondence of turns or road intersections; 

additionally, the edgy sequence of segments seen in Figure 3.6 must be 

converted into a smooth trajectory, meant at avoiding abrupt changes in 

direction that would be critical for the vehicle dynamics control. Finally, the 

sole coordinates are lacking information for the task of automated driving, thus 

an augmentation process must be carried out. Specifically, the method is 

subdivided into three sub-steps: 

• Point density increment 

• Sharp corners rounding  

• Data augmentation 

 

3.5.1   Point density increment  

This passage plays a role in the trajectory refinement process since it 

allows to increase the exploitability of the drawn path, incrementing the 

number of points it is made of. Precisely, it finds its application in the map-

matching phase, in which the vehicle’s coordinates system must be associated 

to a point of the trajectory it is following. It is easy to understand that the 

higher the number of points constituting the route, the higher the accuracy of 

the map matching process. 

The designed algorithm firstly takes as input a set of coordinates, 

namely the trajectory returned by the router function, and calculates which is 

the minimum distance between two consecutive points that occur in the whole 

set. Once found this parameter, the number of items to be inserted between 

two consecutive points in the list is calculated as the closest integer to the ratio 

between the distance from a point to its subsequent one and the minimum gap 

in the list discovered before. The result of this operation can be visualized as a 

set of coordinates almost equally spaced along the trajectory. 
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Another version of the method, which may fit better in some cases, 

instead of calculating the minimum distance in the list, fixes the number of 

points to be inserted to a predefined value. Figure 3.7 shows the different 

outcomes of the two approaches. 

Figure 3.7: density incrementation with dynamic (a) and fixed parameter (b) 

(b) 

(a) 
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As clearly visible in the figure, the density of points is much higher in 

the first case, while in the second method it only increases in the contour of 

road direction changes. The reason lies in the nature of the OpenStreetMap 

graph that is characterized by denser segments (thus more points bounding 

them) in correspondence of bends, intersections, or roundabouts. 

 

3.5.2   Sharp corners rounding 

The subsequent step is represented by the creation of a smooth 

trajectory to replace the edgy sequence of segments returned by the previous 

passages. The reason why it is so necessary is closely related to the vehicle 

dynamics: since the drawn route must work as a reference to guide the vehicle 

through the driving environment, it must be as smooth as possible to avoid 

abrupt changes of direction. On the other hand, the rounding operation must 

not create a new trajectory that crosses non-drivable or potentially dangerous 

areas such as sidewalks, roadside barriers, or curbs. To fulfill these 

requirements, two state-of -the-art methods are available: the Bézier Curve and 

the spline. 

A Bézier curve is a parametric curve used in computer graphics and 

related fields [57], that took the name from its inventor Dr. Peter Bézier. It has 

been originally developed in 1960 to provide a mathematical model to the 

curves that shape the body of motor cars, but soon its application extended in 

many other fields. The basic concept consists in creating a set of control points, 

representing themselves the vertices of a sharp corner, in order to define a curve 

that approximates the bend. On the other hand, the formal definition describes 

the Bézier Curve as a “mapping from 𝑠 ∈  [0,1] to convex combinations of points 

𝑣0, 𝑣1, . . . , 𝑣𝑛 in some vector space […]”.[58] 

 
𝐵(𝑠) =∑(

𝑛

𝑗
) 𝑠𝑗(1 − 𝑠)𝑛−𝑗 ⋅ 𝑣𝑗

𝑛

𝑗=0

 [ 3.5 ] 
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As visible in Figure 3.8, the Bézier Curve requires 3 control points to be 

built, thus the algorithm must take this number of items into consideration in 

every iteration on the list of coordinates. To do so, to every object in the list 

are associated two control points at a certain distance (dependent from the 

parameter alpha), aligned with the previous and subsequent points. Then, since 

the curve is defined in a vector space, it must be evaluated in real-world 

coordinates, with the desired accuracy for the independent variable. It is 

understandable that the higher the accuracy, the more precise the trajectory 

but the more computationally demandant the algorithm at the same time. It 

is also worth noticing that not only the accuracy and the distance at which the 

control points are drawn, but also the density of points represents a parameter 

to be fine-tuned to obtain the best outcome. The result of the whole process is 

a trajectory that shows smooth corners in correspondence of sharp changes of 

direction but preserving the straightness when not necessary at the same time. 

Figure 3.8: Bézier Curve and its control points - Source [58] 



Sensor fusion 

47 

 

 Figure 3.9: Fine-tuning outcomes 
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figure alpha accuracy density 

(a) 0 10 5 

(b) 0.5 5 5 

(c) 0.2 10 10 

(d) 0.5 10 2 

Table 3.1: Parameters associated to Figure 3.9: Fine-tuning outcomes 

As clearly visible in Figure 3.9 the definition of the parameters has a 

strong impact on the final result. If alpha is too low, namely close to 0, the 

smoothing action is not appreciable, while if it is too large (maximum 

acceptable value is 0.5) and in combination to a low value of point density 

incrementation, the final path ends up lying on a non-drivable area. Depending 

on the final needs, the choice may fall on a medium-range value of alpha 

combined with a larger value of accuracy and density. For sake of comparison 

with the spline method, the parameters reported in example (c) have been 

used.   

 

The alternative to this method is represented by splines. They are 

“piecewise polynomial curves that are differentiable up to a prescribed order” 

[59]. Their implementation ranges from data science to graphics and they are 

involved whenever it comes to interpolation or approximation of points. A 

particular case of spline, known as B-spline (abbreviation for basic spline) may 

be somehow associated to the Bézier curve since it can be described as an affine 

combination of control points 𝑐𝑖, namely: 

 𝑠(𝑢)  =  ∑𝑐𝑖𝑁𝑖
𝑛 (𝑢) [ 3.6 ] 

A more refined definition of B-splines and the way they are constructed 

involves complex mathematical notions, that are not worth to mention here. 

What is relevant is the outcome of the implementation of such a curve to 

approximate the trajectory returned by the router algorithm. Note that also 
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this technique involves parameters to tune, among the others the smoothing 

factor s.  

(a) (b) 

(c) (d) 

Figure 3.10: B-Spline approximation with factor s=2 (c), s=10(d), s=25(b), 

s=100(a) 
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After a deep analysis, the output of the spline turned out to be more 

effective, smoother and more efficient with respect to the Bézier method. For 

this reason, it has been chosen to proceed with the algorithm development. 

3.5.3   Data Augmentation 

As stated at the beginning of this chapter, the previous steps are not 

sufficient to provide a comprehensive set of information for the automated 

vehicle. Firstly, to create a smooth path using a B-spline the geographical 

coordinates (latitude and longitude) must be converted into UTM values which 

allows an easier manipulation. Secondly, beside the self-localization mission, 

the vehicle must be instructed about the direction it has to keep or follow, so 

as whenever the received GPS information is associated to a point on the 

trajectory, it is acquainted with the correction to apply to its yaw angle. To 

accomplish this task, each point of the reference route comes with an additional 

information: the direction towards the next point.  

  

Figure 3.11: direction toward the next point for two subsequent segments 
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This quantity is calculated by a function that receives as input a point of the 

trajectory and once determined its position in the list (i.e. its index), memorizes 

the following one. At this stage, the x and y coordinates of the two points are 

considered to calculate their difference which is in turn fed to the atan2() 

function to determine the angle in radians between the two points.  

 
𝛼 = 𝑡𝑎𝑛−1 (

𝑥1 − 𝑥0
𝑦1 − 𝑦0

) [ 3.7 ] 

3.6   Closest point determination   

In this section the process of map-matching is broken down into its 

details and exposed in all its simplicity. As reported in the previous paragraphs, 

the idea is to compare the received GPS signal to the coordinates constituting 

the reference trajectory built before and find the closest point on it. In this 

way the vehicle is localized on a specific point of the route. The adopted method 

is not far from the one described in [53]. At first, each point provided by the 

GPS sensor 𝑝𝑘 is considered as a list of its three geographical coordinates, even 

though the altitude is not considered for simplicity.  

 𝑝𝑘 = (𝑥𝑝𝑘 , 𝑦𝑝𝑘, 𝑧𝑝𝑘) [ 3.8 ] 

After the previous tweaking to the points of the reference trajectory, 

they appear like a list of four elements: the three geographical coordinates and 

the reference direction. 

 
𝑟𝑗 = (𝑥𝑟𝑗, 𝑦𝑟𝑗, 𝑧𝑟𝑗, 𝜓𝑟) [ 3.9 ] 

Since the assumption of bidimensionality of the process always applies, 

in the next step only the first two elements of each list will be taken into 

consideration. At this point, around each GPS point a buffer of 10 meters of 

radius is built (green circles in Figure 3.12), which is supposed to enclose 

some coordinate couples belonging to the reference trajectory. They are 

identified as follows. 

 
𝑟𝑗
𝑏 = (𝑥

𝑟𝑗
𝑏 , 𝑦𝑟𝑗

𝑏) [ 3.10 ] 
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Among them, the Euclidean distance is iteratively calculated with 

respect to GPS coordinates to find the minimum value, thus the closest point. 

 

𝐶𝑃𝑝𝑘
𝑏 = 𝑟𝑗

𝑏 , 𝑤ℎ𝑒𝑟𝑒 𝑗 =  argmin

{
 

 
√∑(𝑝𝑘𝑡 − 𝑟𝑗𝑡)

2
2

𝑡=1
}
 

 
 [ 3.11 ] 

The result of these operations enables to localize the vehicle on a specific 

point of the trajectory with sufficient accuracy, considering the acquisition 

frequency of the GPS signal equal to 1 Hz and the relatively small velocity of 

the vehicle, especially in correspondence of junctions or roundabouts.  

3.7   Coordinate conversion  

Once the map-matching task is accomplished and consequently the 

reference direction is retrieved, it becomes imperative to put in relation the 

different reference systems involved. Either if the yaw angle of the vehicle is 

Figure 3.12: closest point determination 
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converted to global coordinates frame, or the reference direction is converted 

to vehicle’s coordinates, this step cannot be missed. 

Such problem may be solved borrowing some concepts from the robotics 

field, namely the Homogeneous Transform Matrix [60]. Nevertheless, before 

diving into this topic it is necessary to take a step behind. To perform a 

coordinate conversion from a fixed reference frame to a moving one (as in this 

case) it is first necessary to describe the configuration of the latter. This task 

responds to the questions “where is it located?" and “which is its orientation?”, 

and to do so the couple of algebraic quantities (𝑅, 𝑝) is needed. 𝑅 ∈ ℝ3,3 and it 

is the rotation matrix representing the orientation of the moving frame with 

respect to the fixed one, while 𝑝 ∈ ℝ3 and defines the position of the moving 

frame in fixed RF coordinates. Once 𝑅 and 𝑝 are stacked together in a single 

entity, the Homogeneous Transform Matrix 𝑇 is obtained. 

 

𝑇 =  (
𝑅 𝑝
0 1

) = (

𝑟11 𝑟12 𝑟13 𝑝1
𝑟21 𝑟22 𝑟23 𝑝2
𝑟31 𝑟32 𝑟33 𝑝3
0 0 0 1

) [ 3.12 ] 

 

Figure 3.13: Fixed and moving reference frames  
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Figure 3.13 graphically shows the meaning of the configuration concept. 

The fixed frame is identified by the subscript F, while subscript M indicates 

the moving one. The angles 𝜃, 𝛼, 𝛽 are associated to the orientations of the 

three axes of the moving frame with respect to the fixed one. Anyway, this 

representation may be reduced to a two-dimensional space for the case study, 

decreasing the computational effort and increasing consequently the process 

efficiency. The Homogeneous Transform Matrix will be reduced, so 𝑇 ∈ ℝ3,3. 

 

𝑇 =  (
𝑅 𝑝
0 1

) = (
𝑟11 𝑟12 𝑝1
𝑟21 𝑟22 𝑝2
0 0 1

) [ 3.13 ] 

 

At this point it is possible to define with more accuracy the components of the 

rotation matrix 𝑟11, 𝑟12, . . . , 𝑟𝑛𝑛 since the angle 𝜃 is enough to define the 

orientation.  

Figure 3.14: Fixed and moving reference frames in 2D 
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𝑇 = (

cos 𝜃 − sin 𝜃 𝑝1
sin 𝜃 cos 𝜃 𝑝2
0 0 1

) [ 3.14 ] 

Now that the transformation operator has been fully defined, the coordinate 

conversion can be performed straightforwardly.  

Defining 𝑣𝐹 and 𝑣𝑀 as the vectors describing the position of point P in 

the fixed and moving reference frame respectively, from the application of the 

Homogeneous Transform Matrix, it comes that: 

 𝑣𝐹 = 𝑇𝑀
𝐹  𝑣𝑀 [ 3.15 ] 

Note that [ 3.15 ] performs a conversion from moving to fixed RF, thus if the 

opposite operation is needed, it is sufficient to invert the equation by 

multiplying both sides for the inverse of 𝑇 

 𝑇𝑀
𝐹 −1 𝑣𝐹 = 𝑇 𝑀

𝐹 𝑣𝑀 𝑇 𝑀
𝐹 −1 [ 3.16 ] 

 𝑇𝑀
𝐹 −1 𝑣𝐹 = 𝑣𝑀 [ 3.17 ] 

Where  

 
𝑇𝑀
𝐹 −1 = 𝑇𝐹

𝑀 = (𝑅
𝑇 −𝑅𝑇𝑝
0 1

) [ 3.18 ] 

 

Figure 3.15: coordinate conversion process 
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3.8   Vehicle lateral dynamics control 

To guide the vehicle and keep it on track, the lane detection algorithm 

leverages on the control of its lateral dynamics, thus a dissertation about this 

topic is well deserved. 

The design of a proper control system is of paramount importance when 

it comes to keep a vehicle on track. It is based on a mathematical vehicle model 

which must describe the reality with a sufficient level of approximation without 

introducing useless and computationally-demandant complexity. The mostly-

used model to fulfill this requirement is the so-called Dynamic Single-Track 

Model (DST). It is characterized by a single-track (two wheels, one in front 

and one in the rear axle), that is equivalent to a four-wheeled car symmetrical 

with respect to the longitudinal x axis. 

Figure 3.16: Dynamic Single Track Model - Source [73]  
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The vehicle variables visible in Figure 3.16 are: 

• 𝛿𝑓: steering angle 

• 𝛽: vehicle side slip, i.e. angle between the vehicle’s longitudinal axis 

and the vector of velocity 

• 𝛽𝑓 , 𝛽𝑟: tire side slip, i.e. the angle between the tire’s longitudinal axis 

and the vector of velocity 

• 𝑣𝑥, 𝑣𝑦: longitudinal and lateral velocity 

• 𝜓: yaw angle 

The vehicle parameters are instead identified as: 

• 𝑙𝑓: distance between the center of gravity and the front axle 

• 𝑙𝑟: distance between the center of gravity and the rear axle 

• 𝑚, 𝐽: vehicle mass and moment of inertia 

 

The resulting state equations of the DST model are shown in [ 3.19 ] 

 

{
 
 
 
 

 
 
 
 

𝑋̇ = 𝑣𝑥 𝑐𝑜𝑠 𝜓 − 𝑣𝑦 𝑠𝑖𝑛𝜓

𝑌̇ = 𝑣𝑥 𝑠𝑖𝑛 𝜓 + 𝑣𝑦 𝑐𝑜𝑠 𝜓

𝜓̇ = 𝜔𝜓
𝑣𝑥̇ = −𝑣𝑥𝜔𝜓 + 𝑎𝑥

𝑣𝑥̇ = −𝑣𝑥𝜔𝜓 +
2

𝑚
(𝐹𝑦𝑓 + 𝐹𝑦𝑟)

𝜔𝜓̇ =
2

𝐽
(𝑙𝑓𝐹𝑦𝑓  −  𝑙𝑟𝐹𝑦𝑟)

 [ 3.19 ] 

Where 𝑎𝑥 is the longitudinal acceleration, 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are the lateral 

forces exchanged between the tires and the ground, calculated with linear 

relations from the side slip angle. If the latter is relatively small and 𝑣𝑥 is 

constant, such definition is sufficient. For a more precise model the Pacejka’s 

magic formula must be adopted [61]. The state of the system is instead 

represented by 𝜁 = (𝑋, 𝑌, 𝜓, 𝑣𝑥 , 𝑣𝑦, 𝜔𝜓) and the input by 𝑢 = (𝑎𝑥, 𝛿𝑓). 

 

The control quantity differs according to the algorithm that is 

considered. The camera-based lane detection leverages on the cross-track error 

𝑒𝑐𝑡 while the GPS-based method exploits the heading error 𝑒ℎ. The first is 

defined as the orthogonal distance between the vehicle’s left side and the 
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detected left lane boundary (see Figure 2.5 for better understanding). The 

latter refers instead to the angle between the vehicle longitudinal axis and the 

reference trajectory tangent. 

To properly compute this error, it is necessary to introduce the following 

quantities: 

• 𝑝𝑎 =̇ (𝑋𝑎, 𝑌𝑎, 𝜓): vehicle front axle pose  

• 𝑃𝑟 =̇ {𝑝𝑟
𝑖 , . . . , 𝑝𝑟

𝑁}: reference trajectory  

• 𝑝𝑟
𝑖 =̇ (𝑋𝑟

𝑖 , 𝑌𝑟
𝑖 , 𝜓𝑟

𝑖) ∈ 𝑃𝑟 

• 𝑝𝑟
𝑐 = (𝑋𝑐

𝑐, 𝑌𝑟
𝑐, 𝜓𝑟

𝑐), 𝑐 = argmin𝑖‖(𝑋𝑟
𝑖 , 𝑌𝑟

𝑖) − (𝑋𝑎, 𝑌𝑎)‖ 

 

Finally, the heading error is defined by: 

 𝑒ℎ =̇ 𝜓𝑟
𝑐 − 𝜓 [ 3.20 ] 

And the cross-track error by: 

 𝑒𝑐𝑡 =̇ (𝑌𝑟
𝑐 − 𝑌𝑎) 𝑐𝑜𝑠 𝜓𝑟

𝑐 − (𝑋𝑟
𝑐 − 𝑋𝑎) 𝑠𝑖𝑛 𝜓𝑟

𝑐 [ 3.21 ] 

Figure 3.17: heading and cross-track error 
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At this point it is possible to implement a closed-loop control system 

able to provide the steering angle to the actuators controlling the lateral 

dynamics of the eWolf. 

The reference trajectory calculated from the target geographical 

locations is fed into the closest point block which determines the reference pose 

with the procedure described in the previous sections. It is then compared to 

the actual pose of the vehicle to calculate the heading and/or the cross-track 

error, used as input by the controller. In the final block the front axle pose is 

eventually determined and augmented with the information coming from the 

GPS sensor. Such block scheme is tailored depending on the adopted algorithm.  

The study of the controller is not the main scope of this work, but it 

can be of the Proportional Integrative Derivative (PID) or Stanley Kinematic 

kind. More details are available at [62, 63]. 

 

Figure 3.18: closed-loop control scheme 



 

 

 

 

 

 

Chapter 4  

 

4. ROS implementation 

The operations listed in the previous pages serve as background 

framework for the final implementation of autonomous driving in the 

simulation environment adopted for the case study: ROS. The Robot Operating 

System has originally been conceived for the development of robot systems, as 

the name suggests, but with the proper tweaking it can be seamlessly used to 

test autonomous vehicles. In the next sections the components and the 

functionalities of the middleware will be listed and analyzed, followed by the 

actual implementation of the system.  

4.1   ROS Basics 

ROS is a free and open-source robotics middleware employed in many 

applications spanning from commercial to research fields. The ROS framework 

offers a list of robot-programming features listed in the following. [64] 

• Process intercommunication: ROS provides a message-passing 

interface to allow communication between processes and programs, 

core feature for robot programming 

• Operating system features: even though ROS does not properly work 

as an operating system, it provides many functionalities as 
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multithreading9, low-level device control and hardware abstraction 

which allow the programmers to write a single source code, fitting at 

the same time for multiple environments 

• High-level programming language support: the most popular 

programming languages as C++ or Python are supported in ROS 

with specifically designed libraries and functionalities enabling 

programmers to save time and enhance their productivity 

• Availability of third-part libraries: beyond the aforementioned 

standard libraries, ROS accepts packages coming from different 

sources as well, enlarging its range of capabilities 

• Easy prototyping: the availability of pre-defined robot models makes 

possible to adopt them on a variety of different projects with simple 

tweaking 

• Community support: the ROS community is worldwide spread and 

along with its constant support, it maintains and develops packages 

and libraries to provide cutting-edge features every time 

 

The first version of ROS was released in 2009, with the name of ROS 

0.4. Soon later, in 2010, ROS 1.0 saw the light and its development continued 

for 5 years, until the appearance on the market of ROS2, which is the version 

used in this project. The sub-versions of each release are known as distributions 

and represent “versioned set of ROS packages” [65]. They are published 

following the alphabetical order, e.g. Foxy (2020), Galactic (2021), Humble 

(2022) and Iron (2023). The distribution adopted for the project is ROS2 Foxy. 

As anticipated above, ROS offers an invaluable process 

intercommunication feature which allows many processes and programs to work 

and exist independently and exchange the useful data among each other. This 

feature is enabled by the structure of ROS itself based on nodes, messages, 

topics, services and actions.  

Nodes are “processes that perform computation” and usually each system 

is composed by many nodes. Nodes communicate each other through messages 

which are formally defined as a “strictly typed data structure”. Messages are 

 
9
 This concept refers to the capability of executing different tasks independently but 

sharing the same process’ resources 
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based on primitive data types (integer, floating point, Boolean, etc.) but can 

easily be constituted by arrays or compositions of these basilar types, nested 

arbitrarily deep. Each node “sends a message by publishing it to a given topic”. 

A node that writes on a topic is called publisher, while a node that is interested 

and then reads the data sent on that topic is known as subscriber. Each topic 

can include multiple subscribers and/or publishers. 

When more complex features are involved, like synchronous 

transactions, the nature of nodes and topics is not sufficient anymore. Hence, 

a more refined design of the node is required. This approach introduces the so-

called services that are defined as “a string name and a pair of strictly typed 

messages: one for the request and one for the response”. Note that unlike topics, 

services accept only one publisher and one subscriber. [66] 

Figure 4.1: ROS nodes and topics - Source [74] 
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The last communication type that is part of the Robotic Operating 

System framework is represented by the actions. They are designed for long-

running tasks and are composed of three parts: goal, feedback and result. 

Actions are built on topics and services and their functionality is similar to 

them indeed. They differentiate from the services from their possibility to be 

preemptable (i.e. cancellable while executed) and the feedback that they 

provide in addition to the single response. Actions are based on a client-server 

model similar to the publisher-subscriber one described in Figure 4.1. An action 

server node sends a request (also known as goal) to the action server node, 

which replies with a response and a feedback data stream. 

  

Figure 4.2: ROS services - Source [74] 
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Given the complexity of the structure mentioned above, ROS offers a 

useful tool to visualize graphically the nodes and their interactions inside the 

system. It is known as rqt and represents an alternative graphical user 

interface to the command line to ease the interaction with the robot system. It 

includes many sub-tools as the rqt_graph and the rqt_console. The first 

prints down the active nodes, topics, services or actions in the system with a 

layout similar to the one shown in the pictures above. It enables the designer 

to immediately understand which are the publisher-subscriber relations and 

efficiently operate with them. The latter allows instead to introspect log 

messages. They are usually shown in the terminal, but with this GUI tool they 

can be collected over time, visualized in a more organized manner, filtered, and 

saved for further usage.  

Figure 4.3: ROS actions - Source [74] 
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4.2   TF library 

The TF library, acronym of Transform library, was designed to keep 

track of the reference frames in a complex robotic system, commonly recognized 

as a source of problems by many users. The task of this library is to manage 

the coordinate frames and transform data within a whole system in such a way 

that users working with individual component can be confident that the data 

is in the correct and desired reference frame without the need of being 

acquainted with all the ones in the system. When working with robots, 

whichever their level of complexity is, it is essential to be aware of their position 

over time and of the relative location of the objects in the space. Since any 

system is made up of many components, like sensors, actuators, rotating parts, 

motors, etc., each of them with its own coordinate frame, it becomes imperative 

to manage the existing relations between them to accomplish this task. In 

addition to that, as a robotic system grows in complexity the ability of any 

subsystem to be totally aware of the rest of the system reduces, and the 

designers of a single-standing component must properly take into account what 

information is necessary for their module to perform an action. The TF library 

does just that, since it enables programmers to know which is the relation 

between two or more RF of their interest without considering intermediate links 

or other components playing a side role in that specific task.  

The library is constituted by two basic modules: the broadcaster and the 

listener. The first part is spreading transform data to the entire system. The 

second part receives the transform information and stores it for further usage. 

It is then able to provide an answer to the request about the resultant transform 

between different coordinate systems. More precisely, the listener fills a sorted 

list with the collected values and when queried can interpolate between the two 

nearest ones. Since the broadcaster sends transforms at regular intervals, the 

listener does not ever assume the future presence of a coordinate frame. The 

broadcasting frequency should be selected so as to be high enough that 

spherical linear interpolation (SLERP) is capable of approximating the joint 

motion between the two samples. [67] 

The transform library can be closely related to scene graphs, a common 

data structure employed in 3D rendering. Scene graphs typically consist of a 
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tree of objects connected with some relations of a kind. Every item is attached 

to a parent object with a position and another additional information. 

Depending on the application this second datum may vary from visualization 

meshes for pure rendering purposes to inertial properties for the simulators. 

Translating this concept to reference frames, the nodes inside the graph can be 

intended as coordinate systems and the connections between them represent 

instead the transformations. To enable immediate look ups the tree must be 

quickly inspectable. If the graph is limited to a tree this feature is met. This 

becomes important as graph complexity increases. An example of these trees is 

provided in Figure 4.4. One key distinction between the scene graph and the 

TF tree data structure lies in their respective purposes: the scene graph is 

intentionally designed for periodic iteration, whereas the if tree is tailored for 

asynchronous querying of specific values. 

Another benefit of the tree structure lies in the possibility to manage 

dynamic changes and continuous updates without the need of any additional 

information. 

For the proper functioning of the if library, it is imperative that all data 

candidate to transformation includes two critical pieces of information: firstly, 

Figure 4.4: tf example - Source [74] 
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the coordinate frame in which it is initially defined, and secondly, the 

timestamp denoting its validity. Collectively, these two essential components 

are referred to as a Header. Any data incorporating this information can then 

undergo transformation for known data types. 

The most critical step is represented by the transformation itself. When 

it comes to operate with two nodes of the tree only, the transformation is 

performed as described in 3.7   Coordinate conversion, while when multiple 

nodes are involved, the nature of the graph is exploited, considering the 

intermediate links. [ 4.1 ] shows an example of transform with 3 coordinate 

frames. 

 𝑇𝑐
𝑎 = 𝑇𝑏

𝑎 ∙ 𝑇𝑐
𝑏 [ 4.1 ] 

In the use case the TF library has been employed to manage the relations 

between the global reference frame in which the trajectory is written, the stereo 

camera RF and the vehicle one, to properly considering its heading. 

4.3   RVIZ 

ROS plugin RVIZ serves as a powerful and versatile visualization 

platform that plays a pivotal role in facilitating the development, debugging, 

and testing of robotic applications. RVIZ, short for "ROS Visualization," offers 

an extensive array of features and functionalities meticulously designed to assist 

engineers and researchers. This dynamic tool provides a comprehensive three-

dimensional visualization environment where users can interactively display 

and manipulate a wide range of data generated by robots and their associated 

sensors. RVIZ's versatility allows for the simultaneous visualization of robot 

models, sensor data, occupancy grids, point clouds, and trajectory paths, 

among others, thus enabling a comprehensive understanding of the robot's 

behavior and environment. Its user-friendly graphical interface, accompanied 

by a vast library of visualization displays, markers, and configuration options, 

empowers users to tailor the visualization environment precisely to their 

specific needs. 

Furthermore, while RVIZ primarily caters to the visualization needs of 

robotics and engineering effort, its applications extend into industrial 
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engineering and beyond. It serves as a foundational tool in the development of 

automation systems, industrial robots, and other mechatronic applications. 

 

In Figure 4.5 it is possible to visualize two of the different reference 

frames playing a role in the project. In RVIZ environment they are identified 

as links and here the camera and the radar ones are showed. Despite the actual 

presence of three cameras installed on the dashboard of the vehicle, the process 

of stereo vision allows to merge their outputs as if it was one single perception 

element, whose reference frame is centered in the position depicted by the 

figure. 

4.4   URDF 

The definition of the vehicle’s model seen in Figure 4.5 has been possible 

thanks to a powerful tool offered by ROS: URDF. Acronym for Unified Robot 

Figure 4.5: Vehicle representation in RVIZ 
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Description Format, it represents a standardized format for robot modelling in 

a simulation environment. Its origins coincide with the appearance of ROS in 

2009 and since then it is employed to describe the “kinematics, dynamics, and 

geometries of robots, independently of software programs” [68]. This unified 

description comes with a file with .urdf extension which is accepted by a large 

variety of tools. It is a human-readable XML file which contains indeed the 

dynamic and kinematic parameters of the robot, its visual representation and 

the employed collision model. The robot model is organized in links and joints. 

The former indicate rigid bodies with inertia and mass properties, identified by 

a reference frame. The latter refer instead to the entities connecting the links 

and can be of various types (planar, revolute, continuous, etc.). 

The visual description of the robot is instead made possible by the 

URDF Bundle. It includes the urdf file itself and the mesh file describing the 

3D geometry of the model. Also in this case, many extensions are accepted 

such as .dae, .obj or .stl. 

It comes without saying that the vehicle model used in this project 

cannot be strictly compared to a robot, but with the proper tweaking, its 

URDF model has been created. First, the shape of the vehicle has been 

imported from a mesh file, then the position of the camera and the radar sensor 

has been fixed to determine the respective reference frames. See A5 - URDF 

file to visualize the urdf file.  

4.4   GPS Emulator  

As clearly deducible from the description of the project provided so far, 

the whole algorithm relies on the acquisition of the GPS signal from the devoted 

sensor installed on the eWolf. It represents the starting point for the map-

matching phase, which plays a pivotal role in the lane detection process. 

Unfortunately, the sensor was not yet available at the time of this 

project, thus an emulator was utterly needed in order to test the performance 

and the capabilities of the designed system. The first step consists in a manual 

extraction of a series of geographical coordinates from the OpenStreetMap 

website around the trajectory run by the test vehicle. Such trajectory has been 

retrieved from the recorder stereo camera images employed in the simulation 
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environment of ROS, while the logic of extraction of the coordinates tries to 

resemble the sparse nature of the GPS acquisition. After this non-automatized 

phase, the emulator employs a function defined above in 3.5.1   Point density 

increment, precisely the one with fixed density parameter. It fills the gaps 

between each location obtained on the map with the desired number of points. 

The result is a series of geographical coordinates almost randomly distributed 

around the trajectory followed by the eWolf. It does not exactly replicate the 

behavior of a real GPS sensor but provides a great base for the following steps. 

Figure 4.6 offers a graphical representation of the aforementioned 

concept. 

Figure 4.6: Emulated GPS coordinates around the followed path 



ROS implementation  

71 

 

4.5   IMU Emulator  

As well as the GPS signal, the Inertial Measurement Unit output plays 

a crucial role in the algorithm framework. It is necessary to compare the current 

heading of the vehicle (sometimes also referred to as yaw angle as seen in 3.8   

Vehicle lateral dynamics control) to the direction imposed by the reference 

trajectory. If an ideal situation is considered, this signal is provided by a 

specifically designed sensor as a digital quantity that once elaborated returns 

the yaw, pitch and roll angles of the vehicle with a predefined frequency. 

Nevertheless, as with the GPS sensor, this information was not available 

at the moment of the project, so the design of an emulator was needed also in 

this case. It starts from the acquisition of the reference directions embedded in 

the trajectory data generated by the path_finder module. Then a random 

float number in the range [2 ; −2] is subtracted to each direction value to 

emulate the data acquired by the IMU sensor instant by instant. 

This leads to the final goal of comparing the reference direction and the 

simulated IMU output to provide a correction for the heading of the vehicle, 

quantity used as input in the lateral dynamics controller. 

4.6   Actual project implementation 

With thanks to the previous introductory part, it is now easier to 

understand the framework of the project in the Robot Operating System. At 

the beginning an overview on the elements and the content of the different 

topics is given, followed by an in-depth study of each node. 

4.6.1   RQT Graph 

As reported in 4.1   ROS Basics, the rqt_graph tool enables the 

programmer and other users to visualize the connections between nodes and 

topics inside the ROS framework. It comes particularly useful when such 

connections are multiple, and it is not immediately evident which node is 
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subscribed or publishes to which topic. Figure 4.7: rqt graph for the case-study 

shows the output of the rqt_graph command for the case-study. 

The blocks depicted with ovals represent the nodes, while the 

rectangular entities stand for the topics. Analyzing the arrows, it can be stated 

that either imu, path_finder and gps nodes only publish on one topic each, 

respectively “/imu”, “/route_coord” and “/gps”. The first carries a standard 

message of type Float32 representing the emulated yaw angle caught from the 

IMU sensor. The second one contains a user-defined message of type Mypath2: 

 
# custom_messages/msg/Mypath2.msg 

 

# Indication of the frame where the trajectory is 

published  

 

std_msgs/Header frame_id 

 

# Definition of the array 

MyPose[] poses 

 

It comprises two main components: a header which identifies the frame where 

the trajectory is published and a list of custom messages of type MyPose: 

 

Figure 4.7: rqt graph for the case-study 
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# custom_messages/msg/MyPose.msg 

 

float64 x 

float64 y 

float64 z 

float64 theta 

 

Each item in the previous list is a set of four floating point values representing 

a point of the trajectory in terms of its x, y, and z10 coordinates with the 

addition of the reference direction towards its subsequent. As the first topics, 

“/gps” is populated by a message of type Float32 as well, constituting the 

output of the GPS receiver emulator. 

4.6.2   Imu node 

The task of this node is very simple yet fundamental. As described in 

4.5   IMU Emulator it reads a text file containing a list of values and, after 

converting them to floating-point values, publishes on the appropriate topic 

what it has just read. See appendix A1 - IMU emulator for the full script. 

4.6.3   GPS node 

Its working principle is strictly similar to the imu node since it is an 

emulator as well, but with the difference that the output values are not read 

from a text file but are produced starting from a list of manually extracted 

coordinates later refined with a point density increment function. See appendix 

A2 – GPS emulator for the full script. 

4.6.4   Path_finder node  

Even though the output of this node may seem simple, it is the result 

of a large set of nested functions. First, it must fetch the file containing the 

portion of digital map of interest, then it applies the A* search algorithm to 

find the set of nodes constituting the shortest path between the two input 

locations. After that, the trajectory points density is incremented using the 

 
10

 Always equal to zero since the vehicle is supposed to work in 2D 
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functions outlined in 3.5.1   Point density increment, and finally the spline 

method can be applied to sharp the corners of the route. Nevertheless, this 

only produces the geographical coordinates of each point of the trajectory, so 

a further step is needed to enrich these data with the reference directions. See 

appendix A3 – Path_finder for the full script. 

4.6.5   Correction node 

The operation of this node is the core of the whole framework since it 

produces the control quantity that is fed to the controller which rules the lateral 

dynamics of the vehicle. Subscribing to the imu, gps and route topics it fetches 

the information about these quantities to complete a series of steps. First, this 

node checks the correct reception of the three messages and initializes 

appropriate variables with them once the check is completed. If the three 

variables do not contain null values, the first operation is carried out, i.e. the 

research of the closest point on the trajectory based on the GPS signal. As 

soon as it is found, the direction associated to it is compared with the IMU 

signal and their difference in degrees is published on the output topic to feed 

the controller block. This output can be visualized in Figure 4.8. See appendix 

A4 – Correction for the full script. 
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Figure 4.8: /correction topic content 



 

 

 

 

 

 

Conclusions and future work  

At this point of the dissertation, it is possible to analyze the goals that 

have been met and the ones that require additional work on.  

The aim of the project was to develop an algorithm able to cooperate 

with the camera-based lane detection system and aid it in its failure situations. 

This requirement has been successfully met since the proposed method provides 

high-level guidance to the eWolf, empowering it to overcome intersections, 

roundabouts or other complex driving scenarios leveraging on the concept of 

map-matching. After gathering data from the GPS and the IMU sensors, the 

algorithm is able to acquaint the Electronic Control Unit of the vehicle with 

the right direction to follow, comparing the pose of the vehicle itself with the 

reference trajectory.  

The achievement of this result has been possible thanks to the design of 

two emulators, aimed at simulating the behavior of real sensors. It is the case 

of the Global Positioning System and the Inertial Measurement Unit sensors. 

There is much space for development in this domain since the utilization of 

non-simulated data makes possible to evaluate the behavior of the system in 

the real environment with higher reliability. Additionally, the IMU sensor can 

provide a large number of supplementary details which can be employed to 

estimate the pose of the vehicle more accurately.  

Furthermore, the Robot Operating System simulation environment 

turned out to require high-performing hardware to run and visualize the results 

properly. Hence, due to lack of sufficiently-capable parts of the available 

equipment, it has not been possible to plot the output of the algorithm in a 

more user friendly way, rather than just a bunch of numbers on the command 

line. 
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In the end, a validation phase is needed to test the designed system on 

the real vehicle. In fact, this is the only way to assess its capabilities and 

performances in a real-world scenario, closing the V-cycle of the product. 
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Appendix 

A1 - IMU emulator node 

# import statements 

import rclpy 

from rclpy.node import Node 

from std_msgs.msg import Float32 

 

class IMU(Node): 

     

    # Node initialization 

    def __init__(self, filename): 

        super().__init__("imu_api")      

        self.imu_pub = self.create_publisher(Float32, '/imu', 10) 

        self.timer_ = self.create_timer(1, self.spinner) 

        self.filename = filename 

        self.i = 0 

     

    # Creation of the function that every second publishes the value of 

the yaw angle reading from the default file, emulating the IMU sensor 

    def spinner(self): 

        msg = Float32() 

        imu_list = [] 

        with open(self.filename, 'r') as f: 

            lines = f.readlines() 

            for line in lines: 

                theta = float(line) 

                imu_list.append(theta) 

        msg.data = imu_list[self.i] 

        self.imu_pub.publish(msg) 

        self.i += 1 

 

def main(args=None): 

    rclpy.init(args=args) 
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    filename = 

'/home/andrea/Master_Thesis/ROS2/ros2_ws/src/my_traj/my_traj/thetas_ran

domized.txt' 

    node = IMU(filename) 

    rclpy.spin(node) 

    rclpy.shutdown() 

 

if __name__ == '__main__': 

    main() 

 

A2 – GPS emulator node 

# import statements 

import rclpy 

from rclpy.node import Node 

from geometry_msgs.msg import Point 

import utm 

import numpy as np 

 

class GPS(Node): 

     

    # Node initialization with the set of coordinates 

    def __init__(self): 

        super().__init__("gps_api") 

        self.coords = [(48.75093,9.10330), 

               (48.75081,9.10311), 

               (48.75070,9.10323),  

               (48.75050,9.10288),  

               (48.75030,9.10299), 

               (48.75014,9.10322), 

               (48.74999,9.10311), 

               (48.74990,9.10296), 

               (48.74974,9.10320), 

               (48.74967,9.10290), 

               (48.74944,9.10282), 

               (48.74927,9.10320), 

               (48.74895,9.10295), 

               (48.74886,9.10306), 
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               (48.74845,9.10278), 

               (48.74813,9.10303), 

               (48.74777,9.10258), 

               (48.74717,9.10300), 

               (48.74684,9.10291), 

               (48.74629,9.10262), 

               (48.74585,9.10244), 

               (48.74534,9.10255), 

               (48.74515,9.10269), 

               (48.74499,9.10242), 

               (48.74469,9.10260), 

               (48.74462,9.10216), 

               (48.74480,9.10169), 

               (48.74457,9.10122), 

               (48.74472,9.10061), 

               (48.74454,9.10007)] 

         

        self.gps_pub = self.create_publisher(Point, '/gps', 10) 

        self.timer_ = self.create_timer(1, self.spinner) 

        self.i = 0 

 

    # Function used to add points between every item in the list above 

    def increase_density_fixed(self, route, density=4): 

        smoothed_x, smoothed_y = [], [] 

 

        for (x0, y0), (x1, y1) in zip(route, route[1:]): 

            smoothed_x.extend([x0 + k * (x1 - x0) / density for k in 

range(1, density)]) 

            smoothed_y.extend([y0 + k * (y1 - y0) / density for k in 

range(1, density)]) 

 

        smoothed_x.append(route[-1][0]) 

        smoothed_y.append(route[-1][1]) 

        route = list(zip(smoothed_x, smoothed_y)) 

         

        return route 

     

    # Cooridnates conversion to UTM values for better handling 

    def to_utm(self, route): 

        x, y = zip(*route) 

        out = utm.from_latlon(np.array(x), np.array(y)) 
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        route_conv = list(zip(out[0], out[1])) 

 

        return route_conv 

     

    # Function publishing the GPS coordinate every second, emualting 

the GPS receiver 

    def spinner(self): 

        msg = Point() 

        route_new = 

self.to_utm(self.increase_density_fixed(self.coords)) 

        msg.x = route_new[self.i][0] 

        msg.y = route_new[self.i][1] 

        self.gps_pub.publish(msg) 

        self.i += 1 

 

def main(args=None): 

    rclpy.init(args=args) 

    node = GPS() 

    rclpy.spin(node) 

    rclpy.shutdown() 

 

if __name__ == '__main__': 

    main() 

 

A3 – Path_finder node  

# import statements 

import rclpy 

from rclpy.node import Node 

from pyroutelib3 import Router 

import numpy as np 

import bezier 

import math 

from custom_messages.msg import Mypath2, MyPose  

import utm 

from scipy.interpolate import splprep, splev 

 

class MyPathFinder(Node): 
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    # Node initialization with the default locations and map 

    def __init__(self): 

        super().__init__("path_finder") 

        self.declare_parameter('source_geo', [48.75115,9.10454]) 

        self.declare_parameter('dest_geo', [48.74422,9.09843]) 

        self.declare_parameter('filename', '/home/andrea/campus.osm') # 

change directory according to the position of the .osm file in your pc  

        start = 

self.get_parameter('source_geo').get_parameter_value().double_array_val

ue 

        end = 

self.get_parameter('dest_geo').get_parameter_value().double_array_value 

        filename = 

self.get_parameter('filename').get_parameter_value().string_value 

        self.route_publisher_ = self.create_publisher(Mypath2, 

'/route_coord',10) 

        timer_period = 1  # seconds 

        self.timer = self.create_timer(timer_period, lambda: 

self.router_callback(start, end, filename)) 

     

    # Function generating the reference trajectory 

    def router_callback(self, source_geo, dest_geo, filename):  

 

        # Message initialization 

        msg = Mypath2() 

 

        # Initialize the router with the desired mean of transport and 

the map file  

        router = Router('car', filename) 

        start = router.findNode(source_geo[0],source_geo[1]) # Find 

start and end nodes 

        end = router.findNode(dest_geo[0],dest_geo[1]) 

 

        status, route = router.doRoute(start, end) # Find the route - a 

list of OSM nodess 

 

        if status == 'success': 

            routeLatLons = list(map(router.nodeLatLon, route)) # Get 

actual route coordinates 
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        # Increase the density of points 

        distances = [math.dist((x0, y0), (x1, y1)) for (x0, y0), (x1, 

y1) in zip(routeLatLons, routeLatLons[1:])]  # Calculate distances 

        minimum = min(distances) 

 

        # Precompute range values 

        ranges = [range(math.floor(dist / minimum)) for dist in 

distances] 

 

        augm_x, augm_y = [], [] 

        for (x0, y0), (x1, y1), r in zip(routeLatLons, 

routeLatLons[1:], ranges): 

            augm_x.extend(np.linspace(x0, x1, len(r))) 

            augm_y.extend(np.linspace(y0, y1, len(r))) 

 

        routeLatLons = list(zip(augm_x, augm_y)) 

        routeLatLons = self.to_utm(routeLatLons) 

 

        # Create the spline  

        no_rep = list(dict.fromkeys(routeLatLons)) 

        coords = np.array(no_rep) 

        tck, u = splprep(coords.T, s=25) 

        new_points = splev(u, tck) 

        routeLatLons = list(zip(new_points[0], new_points[1])) 

 

        # Define the message  

        poses = [] 

        for coord in routeLatLons: 

            pose = MyPose() 

            pose.x = coord[0] 

            pose.y = coord[1] 

            pose.theta = self.yaw(routeLatLons, coord) 

            poses.append(pose) 

              

        msg.poses = poses 

        msg.frame_id.stamp = self.get_clock().now().to_msg() 

        msg.frame_id.frame_id = 'map' 

 

        self.route_publisher_.publish(msg) 

         

    # Cooridnates conversion to UTM values for better handling     
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    def to_utm(self, route): 

        x, y = zip(*route) 

        out = utm.from_latlon(np.array(x), np.array(y)) 

        route_conv = list(zip(out[0], out[1])) 

 

        return route_conv 

 

    # Function determining the angle between two consecutive points 

    def yaw(self, traj, pt): 

        ind = traj.index(pt) 

        if ind + 1 < len(traj): 

            next_point = traj[ind + 1] 

            delta_x, delta_y = next_point[0]-pt[0], next_point[1]-pt[1] 

            yaw = math.degrees(math.atan2(delta_y, delta_x)) 

        else: 

            yaw = 0.0 

 

        return yaw 

 

def main(args=None): 

    rclpy.init(args=args) 

    node = MyPathFinder() 

    # node.use_parameters() 

    rclpy.spin(node) 

    rclpy.shutdown() 

 

if __name__ == '__main__': 

    main() 

 

A4 – Correction node 

# import statements 

import rclpy 

from rclpy.node import Node 

from custom_messages.msg import Mypath2 

from geometry_msgs.msg import Point 

from std_msgs.msg import Float32 
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import math 

 

class Correction(Node): 

     

    # Node initialization with the subscription to the desired topics 

    def __init__(self): 

        super().__init__("correction") 

        self.pose_subscriber = self.create_subscription(Mypath2, 

'/route_coord', self.route_callback, 10) 

        self.gps_subscriber = self.create_subscription(Point, '/gps', 

self.gps_callback, 10) 

        self.imu_subscriber = self.create_subscription(Float32, '/imu', 

self.imu_callback, 10) 

        self.correction_publisher = self.create_publisher(Float32, 

'/correction',10) 

         

        # Initialization of the GPS, path and IMU messages   

        self.latest_gps_msg = None 

        self.latest_route_msg = None 

        self.latest_imu_msg = None 

        self.timer = self.create_timer(1, self.try_compute_and_publish) 

         

    # Verify the correct reception of the GPS message      

    def gps_callback(self, msg: Point): 

        self.latest_gps_msg = msg 

        self.try_compute_and_publish() 

        # self.get_logger().info("I heard: " + 

str(self.latest_gps_msg)) 

 

    # Verify the correct reception of the route message      

    def route_callback(self, msg: Mypath2): 

        self.latest_route_msg = msg 

        self.try_compute_and_publish() 

        # self.get_logger().info('I heard: "%s"' % msg.poses[1]) 

 

    # Verify the correct reception of the IMU message      

    def imu_callback(self, msg: Float32): 

        self.latest_imu_msg = msg 

        self.try_compute_and_publish() 
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        # self.get_logger().info("I heard: " + 

str(self.latest_imu_msg)) 

 

    # Once correctly received all the messages, compute the correction 

to be applied to vehicle's heading 

    def try_compute_and_publish(self): 

        if self.latest_gps_msg is not None and self.latest_route_msg is 

not None and self.latest_imu_msg is not None: 

            result = self.correction(self.latest_route_msg, 

self.latest_gps_msg, self.latest_imu_msg) 

            self.correction_publisher.publish(result) 

            self.latest_gps_msg = None 

            self.latest_route_msg = None 

            self.latest_imu_msg = None 

         

    def correction(self, msg1: Mypath2, msg2: Point, msg3: Float32): 

         

        # Message initialization 

        out = Float32() 

         

        # Research of the closest point on trajectory, compared to the 

GPS singal 

        closest_point = None 

        min_distance = float('inf') 

        buffer_radius = 20 

        for i in range(len(msg1.poses)): 

            distance = math.sqrt((msg1.poses[i].x - msg2.x)**2 + 

(msg1.poses[i].y - msg2.y)**2) 

 

            if distance <= buffer_radius and distance < min_distance: 

                min_distance = distance 

                closest_point = msg1.poses[i] 

         

        # Retrieval of the correct direction value 

        theta_correct = closest_point.theta 

         

        # Retrieval of the emulated IMU sinal 

        theta_actual = msg3.data 

         

        # Application of the correction 

        out.data = theta_actual-theta_correct 
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        return out 

 

def main(args=None): 

    rclpy.init(args=args) 

    node = Correction() 

    rclpy.spin(node) 

    rclpy.shutdown() 

 

if __name__ == '__main__': 

    main() 

A5 - URDF file  

<?xml version="1.0"?> 

<robot name="car" xmlns:xacro="http://ros.org/wiki/xacro"> 

  <!-- Define car constants --> 

  <xacro:property name="base_width" value="2.5"/> 

  <xacro:property name="base_length" value="5.0"/> 

  <xacro:property name="base_height" value="1.8"/> 

 

  <!-- Car Base --> 

  <link name="base_link"> 

    <visual name="base_visual"> 

      <origin xyz="1.0 0.0 0.0" rpy="1.57 0 4.71" /> 

      <geometry> 

        <mesh filename="package://my_model/meshes/estima_white.stl" 

scale="0.01 0.01 0.01"/> 

      </geometry> 

    </visual> 

     

    <collision> 

      <geometry> 

        <box size="${base_length} ${base_width} ${base_height}"/> 

      </geometry> 

    </collision> 

  </link> 

   

  <!-- Footprint --> 



Appendix 

xi 

 

  <link name="base_footprint"/> 

   

  <joint name="base_joint" type="fixed"> 

    <parent link="base_link"/> 

    <child link="base_footprint"/> 

    <origin xyz="1.0 0.0 0.0" rpy="0 0 0"/> 

  </joint> 

   

  <!-- Sensor Link --> 

  <!-- IMU Link --> 

  <!-- 

  <link name="imu_link"> 

    <visual> 

      <geometry> 

        <box size="0.1 0.1 0.1"/> 

      </geometry> 

    </visual> 

     

    <collision> 

      <geometry> 

        <box size="0.1 0.1 0.1"/> 

      </geometry> 

    </collision> 

  </link> 

   

  <joint name="imu_joint" type="fixed"> 

    <parent link="base_link"/> 

    <child link="imu_link"/> 

    <origin xyz="0 0 1.5"/> 

  </joint> 

  --> 

   

  <!-- radar Link --> 

  <link name="radar_link"> 

    <inertial> 

      <origin xyz="0 0 0" rpy="0 0 0"/> 

      <mass value="0.125"/> 

      <inertia ixx="0.001"  ixy="0"  ixz="0" iyy="0.001" iyz="0" 

izz="0.001" /> 

    </inertial> 
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    <collision> 

      <origin xyz="0 0 0" rpy="0 0 0"/> 

      <geometry> 

         <cylinder radius="0.0508" length="0.055"/> 

      </geometry> 

    </collision> 

 

    <visual> 

      <origin xyz="0 0 0" rpy="0 0 0"/> 

      <geometry> 

         <cylinder radius="0.0508" length="0.055"/> 

      </geometry> 

    </visual> 

  </link> 

     

  <joint name="radar_joint" type="fixed"> 

    <parent link="base_link"/> 

    <child link="radar_link"/> 

    <origin xyz="3.0 0 0.5" rpy="0 0 0"/> 

  </joint> 

   

  <!-- camera Link --> 

  <link name="camera_link"> 

    <visual> 

      <origin xyz="0 0 0" rpy="0 0 0"/> 

      <geometry> 

        <box size="0.015 0.130 0.022"/> 

      </geometry> 

    </visual> 

 

    <collision> 

      <origin xyz="0 0 0" rpy="0 0 0"/> 

      <geometry> 

        <box size="0.015 0.130 0.022"/> 

      </geometry> 

    </collision> 

 

    <inertial> 

      <origin xyz="0 0 0" rpy="0 0 0"/> 

      <mass value="0.035"/> 
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      <inertia ixx="0.001"  ixy="0"  ixz="0" iyy="0.001" iyz="0" 

izz="0.001" /> 

    </inertial> 

  </link> 

   

  <joint name="camera_joint" type="fixed"> 

    <parent link="base_link"/> 

    <child link="camera_link"/> 

    <origin xyz="1.5 0 1.5" rpy="0 0 0"/> 

  </joint> 

   

     

</robot> 
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