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Abstract

Hand rehabilitation represents a significant priority for individuals with tetraple-
gia and stroke survivors, given the debilitating impacts of these conditions that
persist in 45 % of cases after 18 months. However, current rehabilitation practices,
e.g. repetitive Transcranial Magnetic Stimulation (rTMS), show limited evidence
of their effectiveness. Therefore, the need for new approaches, such as using Func-
tional Electrical Stimulation (FES) systems, emerges. This active rehabilitation
technique uses low-intensity electrical pulses to stimulate skeletal muscles, acting
on the nervous system by promoting new synaptic connections.

The purpose of the thesis is the development of an event-driven sEMG-based
system for real-time FES control, aimed at recovering hand functionalities. The
project focused on identifying the muscles required for hand motor control, defin-
ing the integration of the devices into the acquisition system, and their placement.
For synchronous operation of the acquisition units, a control unit, from an exist-
ing version, was developed that employs Object-Oriented Programming (OOP) in
Python programming language and controls a Graphical User Interface (GUI).

The surface ElectroMyoGraphic (sEMG) signal is extracted using two types of
devices, made available by the eLiONS Lab. research group. The first is a wearable
device, and four of them were used, while the second is a circular ring made up of
seven units designed to fit around the forearm.

The acquisition units acquire the sEMG signals, which go through direct process-
ing using the Average Threshold Crossing (ATC) technique. Subsequently, ATC
data are wirelessly transmitted to the control unit where they are used to com-
pute the stimulation parameters. The ATC paradigm is considered optimal for the
sEMG-based FES system as it maintains a high correlation with muscle contraction.

The FES system operates with therapist-patient as the main usage mode. This
modality enables patients to replicate rehabilitative movements performed by the
therapist, as the stimulation patterns applied to the patient’s muscles are defined
based on the muscle activation of the therapist.
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To select the stimulation channels based on the movement performed by the
therapist, a classifier was developed. At this stage, an artificial neural network was
developed for the multi-class classification of executed movements. These move-
ments were systematically organized within a carefully defined acquisition protocol,
delineating the precise timing and execution mode. This protocol includes a selec-
tion of nine movements chosen to enhance motor recovery and hand functionality.

Data collection was required for the training and testing phases of the classifier.
Two types of datasets were then generated: the first comprised signals acquired
from 12 subjects, while the second contained data from a single subject, a scenario
that could simulate the use of the system personalized to a specific therapist.

The classifier’s performance was evaluated in terms of average accuracy, reaching
59.3% and 86.1% for multi-subject and single-subject datasets, respectively. In the
first case, accuracy shows high variability in individual movements and overall does
not reach an appropriate level for the use of the model. Instead, the results on the
single subject enable the integration of the classifier into the control unit. Therefore,
hand movement recognition was tested in real-time, showing promising prospects
for integration into the FES system.
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Chapter 1

Introduction

1.1 Anatomy and Function of the Hand
The distinctive features of humans, setting them apart from other primates

within the biological taxonomy as "higher-level mammals" or Homo sapiens, are
intricately linked to the remarkable anatomy of the hand.

With more than 20 degrees of freedom [1] and the opposable thumb, the hand
serves as a highly sophisticated and complex grasping organ. This intricate struc-
ture allows for a diverse range of movement combinations, facilitating the adap-
tation of force, speed, and dexterity. Additionally, the hand boasts a specialized
sensory and tactile capacity, crucial for humans to perceive and evaluate themselves
and their surroundings.

To achieve the mobilization of hand functionality, an exceptional interaction
is required between the central control system and anatomical structures such as
bones, muscles, joints, tendons, nerves, and blood vessels. This intricate coordina-
tion renders the hand an exceptionally complex organ. The distal region of the lower
arm encompasses the distal radioulnar joint, thumb and finger carpometacarpal
(CMC) joints, palm, and fingers. Comprising a total of 27 bones with 36 artic-
ulations and 39 active muscles, these structures must harmonize for the hand to
translate its wide range of motor capabilities into complex motion.

1.1.1 Proximal and Distal Radioulnar Joints
The forearm skeleton consists of two bones: the ulna (elbow bone) and the

radius. These two bones form two radioulnar joints, one near the elbow (proximal
radioulnar joint) and one near the wrist (distal radioulnar joint), as shown in Figure
1.1.
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Figure 1.1: Distal and Proximal radioulnar joints [2]

In functional terms, both the proximal and distal radioulnar joints function
as pivot joints. The distal radioulnar joint comprises the convex semicylindrical
surface of the ulnar articular circumference, fully covered with cartilage, and the
corresponding concave joint surface of the ulnar notch on the distal radius.

Stabilization of the distal radioulnar joint occurs on the palmar side, primarily
by the pronator quadratus muscle, the tendon, and tendon sheath of the extensor
carpi ulnaris muscle, and mostly by the triangular fibrocartilage complex (TFCC).

The TFCC serves to stabilize the distal radioulnar joint during pronation and
supination movements and supports the carpal side of the ulna, along with its
associated ligaments, during proximal and distal wrist movements. Additionally, it
regulates pressure in the wrist.

Pronation and supination movements are facilitated by these two joints, with
the shoulder joint also contributing to these motions.

1.1.2 Wrist Joint
Structure and Function of the Wrist Joint

From a functional perspective, the wrist is considered a singular joint. However,
morphologically, it is comprised of two distinct joints: the proximal and distal wrist
joints. These joints, each having two degrees of freedom, consist of eight carpal
bones shown in Figure 1.2, including seven "regular" bones and one sesamoid bone.
The proximal row includes the scaphoid, lunate, triquetrum, and pisiform, while
the distal row comprises the trapezium, capitate, trapezoid, hamate.
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1.1 – Anatomy and Function of the Hand

Figure 1.2: Carpal bones [2]: (a) Right hand and palm in the palmar view. (b)
Right hand and palm in the dorsal view

The proximal wrist joint links the hand to the forearm’s two bones, the ra-
dius and the ulna, involving the ulnocarpal disc. Together, these bones form the
proximal biconcave socket, primarily from the bifaceted radial surface (scaphoid
and lunate facets) and secondarily from the concave surface of the ulnocarpal disc.
Approximately three-quarters of this surface corresponds to the radius, and one-
quarter to the ulna. The distal ovoid convex joint head is comprised of the scaphoid,
lunate, and triquetrum bones, which are covered by hyaline cartilage. Ligaments
such as the scapholunate and lunotriquetral ligaments are responsible for holding
these bones together, giving the illusion of a uniform cartilage covering. Although
not directly involved in arthrokinematics, the pisiform serves as a sesamoid bone
that aids in stabilizing the joint through the action of ligaments and muscles [2].

Muscles of the Wrist

Muscles play a pivotal role in stabilizing, regulating pressure, and influencing
wrist kinematics during radial and ulnar deviation of the hand.

Carpal muscles are categorized into those involved in flexion and ulnar deviation,
and those engaged in extension, radial deviation, and joint rotation.

1. Muscles Involved in Flexion and Ulnar Deviation of the Wrist:
The most important muscles involved in flexing the wrist are the flexor carpi
ulnaris and flexor carpi radialis, along with the palmaris longus muscle. The
muscle primarily responsible for ulnar deviation is the extensor carpi ulnaris,
with the involvement of the flexor carpi ulnaris and the extensor digitorum
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communis muscles. Some of the finger flexor muscles are also involved in these
movements to some extent.

(a) Flexor Carpi Ulnaris
(b) Flexor Carpi Radialis
(c) Palmaris Longus
(d) Extensor Carpi Ulnaris

2. Muscle Involved in Extension and Radial Deviation of the Wrist:
The extensor carpi radialis brevis and extensor carpi radialis longus muscles are
the most important wrist extensors. In contrast, radial deviation is performed
only by the extensor carpi radialis longus muscle.

(a) Extensor Carpi Radialis Longus
(b) Extensor Carpi Radialis Brevis

The muscles mentioned are shown in the following Figure 1.3 showing the
muscle structure of the dorsal and palmar forearm.
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Figure 1.3: (a) Forearm palmar muscles. (b) Forearm dorsal muscles [2]

1.1.3 Thumb Joint
In contrast to nonhuman primates, whose thumbs can only adduct but not

oppose, the human thumb signifies a significant evolutionary advancement. As
the foremost and most robust digit of the hand, it holds a unique status due to its
extensive range of motion capabilities.
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Movements and Range of Motion

The opposition capability of the thumb enables powerful fist closure, making
it an essential grasping tool [3]. When using a pinch grip, the force exerted is
approximately one-fourth that of a full fist closure. Overall, the thumb significantly
enhances both gross motor and fine motor grasping functions of the hand. This
complexity arises from the thumb’s carpometacarpal (CMC) joint and the diverse
functions of its nine muscles, distinguishing it from the other fingers. Moreover,
the brain areas responsible for thumb movement and sensitivity exhibit greater
prominence compared to those of the wrist and other fingers.

The functional joints of the thumb are divided into the CMC joint of the thumb,
which belongs to the wrist joint, and the thumb metacarpophalangeal (MCP) and
interphalangeal (IP) joints, which belong to the digit itself.

Kapandji (1982) distinguished three functional units between the thumb and the
other fingers of the hand:

Movements of the Thumb , Figure 1.4:

1. The first degree of freedom comprises abduction and adduction around an axis
through the base of the first metacarpal.

2. The second degree of freedom comprises flexion and extension. The axis for
this movement takes a radiopalmar toulnodorsal course through the trapezium.

3. The most typical movements of the thumb involve opposition a repositioning.
In the opposition movement, the thumb, together with the first metacarpal, is
opposed to the other fingers.

Figure 1.4: Thumb Movements [2] (a) Abduction and adduction. (b) Extension
and flexion. (c) Opposition.
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Thumb CMC Joint

• Structure and Function of the Thumb CMC Joint:
Numerous studies [4] [5] have examined the structure and function of the
carpometacarpal joint (CMC) of the thumb. The CMC joint is commonly
described as a saddle joint, with the articular surface of the trapezium ranging
from convex to concave. During opposition, the contact surface between the
two joints is maximum (53 %), decreasing during adduction (28%) and radial
deviation (25%). The capsule of the CMC joint is broad, allowing a wide range
of movements despite its low stability, thanks to various stabilizing ligaments.

• Muscle of the Thumb CMC Joint:
Nine muscle act on the thumb CMC joint. Each movement sequence is per-
formed by at least two muscles groups. The muscles are divided into an ex-
trinsic group and an intrinsic group.
The first muscles of the thumb are located outside the hand in the area of the
forearm, the latter are places in the hand and originate in the wrist or carpus.

Table 1.1: Thumb intrinsic and extrinsic muscles

Extrinsic Muscles Intrinsic Muscles
• Abductor Pollicis Longus • Flexor Pollicis Brevis
• Flexor Pollicis Longus • Opponens Pollicis
• Extensor Pollicis Brevis • Abductor Pollicis
• Extensor Pollicis Longus • Adductor Pollicis
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Figure 1.5: Thumb intrinsic and extrinsic muscles [2]

The depicted Figure 1.5 illustrates the muscles involved in thumb control.
Notably absent from the illustration is the Flexor Pollicis Longus muscle, which
stands out from the rest due to its distinct positioning. This flexor muscle
is situated adjacent to the finger flexors on the palmar side of the forearm.
Additionally, the figure includes the extensor of the index finger, positioned
near the other extrinsic muscles associated with thumb movement.

Thumb MCP and IP Joints

• Structure and Function of the Thumb MCP and IP Joints:
The thumb MCP and IP joints are involved in all movements of the thumb.
The opposition of the thumb is only possible through the combination of exten-
sion and flexion with abduction and adduction of the MCP joint in cooperation
with the IP joint. Without the thumb MCP and IP joints, opposition of the
thumbnail would not be possible. In contrast to the fingers, the thumb has
only two anular ligaments with a Y-shaped ligament in between.

1.1.4 Palm
The palm comprises five short tubular bones known as metacarpal bones, sit-

uated adjacent to the angular carpal bones. These metacarpal bones are divided
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into three segments: the base, body, and head, each featuring articular surfaces
facilitating connections with both the carpal bones and neighboring metacarpals.
Notably, the thumb metacarpal articulates with the carpal bones through a saddle
joint.

The primary function of the metacarpal bones is to provide structural support for
the hand’s grasping function. Together with the palm, they offer a stable foundation
for gripping and holding objects securely. Additionally, they create space for the
two vascular arches and serve as conduits for sensory nerves and tendons to reach
the finger joints. Moreover, the metacarpal bones serve as attachment sites for the
intrinsic muscles of the hand, essential for finger movement and joint stabilization.

Structure and Function of the Second to Fifth Metacarpals

Incorporating the thumb, the hand comprises five metacarpal bones, which are
short tubular bones of different lengths. The bases of the third to fifth metacarpals
exhibit a rectangular shape, whereas the base of the second metacarpal is triangular.
This comparatively rigid structure gives rise to a convex arch on the dorsal aspect
and a concave arch on the palmar side, collectively referred to as the palmar carpal
arch, as depicted in the accompanying Figure. 1.6. This concavity flattens out to
some extent at the level of the metacarpal heads or the metacarpal arch.

The first to fifth metacarpal bodies are somewhat convex dorsal wards and have
a strongly concave shape palmar ward, which reinforces the formation of the palm.
The metacarpals fan out from proximal to distal, which additionally increases the
breadth of the hand’s grip. With their convex heads, they form the proximal
sections of the second to fifth MCP joints.

Figure 1.6: Function of the Palm: palmar arch [2]
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Muscles of the Metacarpals

Various muscles insert onto the bases of the metacarpals (e.g., extensor carpi
ulnaris), while other muscles arise from these bones. These include the dorsal and
palmar interossei and adductor pollicis with its transverse head, which arise from
the shaft. In addition, some intrinsic muscle bellies lie on the metacarpal bones
in order to insert into the fingers further on (lumbricals, abductor digiti minimi,
flexor digiti minimi brevis and opponens digiti minimi muscles).

1. Dormsal and Palmar Interossei

2. Lumbricals

3. Abductor Digiti Minimi

1.1.5 Finger Joints
The fingers contribute to providing various functionalities, such as the sense

of touch and the ability to grasp objects. Specifically, the fingers are the five
terminations of the human hand named: thumb, index finger, middle finger, ring
finger, and little finger. The thumb consists of two phalanges, while each of the
fingers is composed of three phalanges: proximal, middle, and distal phalanges.

Structure and Function of the MCP Finger Joints

The metacarpal bones allow various movements including abduction-adduction,
extension-flexion, and circumduction. They facilitate precision grip and grasping
objects. The second metacarpal’s prominence decreases towards the ulnar direction,
leading to ulnar deviation of the proximal phalanx. Supination of the fourth and
fifth metacarpals enlarges the circumduction movement of the corresponding MCP
joints, aiding in grasping larger objects. Conversely, for precision grip, the second
metacarpal assumes a somewhat pronated position, causing the index finger to
rotate slightly into supination during flexion.

Structure and Function of the PIP Finger Joints

The proximal interphalangeal joints (PIP joints), together with the MCP joints,
are the most important functional unit for grasping, gripping, and making a fist, and
play a significant role in the undisturbed movement of the fingers and the hands.
The PIP joint is a hinge joint and it allows only flexion and extension, although
slight side-to-side and rotational motions are also possible. The PIP joints of the
index and middle fingers exhibit ulnar deviation in flexion and the PIP joints of
the ring and little fingers exhibit radial deviation. The second, third, and fifth
PIP joints supinate slightly and the fourth PIP pronates slightly. Therefore, only
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the PIP joint of the little finger with the fifth metacarpal rotates in the form of
supination, which tends to move the little finger palmar ward, brings it closer to
the ring finger and can contribute significantly to forcefully making a fist.

Structure and Function of the DIP Finger Joints

The DIP joints are similar to the PIP joints. On the whole, the joint structures
are smaller. As with the PIP joints, the distal bases of the DIP joints have two
concave facets, although the eminences are not pronounced and therefore allow for
lateral translation. In addition, the base of the distal phalanx is somewhat wider
than the head of the middle phalanx.

Extrinsic Muscles Finger Joints

In addition to the interossei and the lumbricals muscles, the extrinsic muscles of
the finger (flexors and extensors) are particularly important.

• The extensors of the finger comprise the Extensor Digiti Minimi, the Extensor
Digitorum Communis and the Proper Extensor Indicis, the latter was previ-
ously shown in Figure 1.5.

• The extrinsic flexors of the fingers are divided into four layers. The Flexor Dig-
itorum Superficialis muscle lies in the second layer and the Flexor Digitorum
Profundus muscle lies in the third layer.

Figure 1.7: Finger extrinsic muscles [2] (a) Extensors (b) Flexors
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1.2 Skeletal Muscle
There are three different types of muscles in the human body: skeletal, cardiac,

and smooth. Skeletal muscles constitute the majority of our muscle mass, approx-
imately 40% of body weight. They are attached to the bones of the skeleton via
tendons and are responsible for posture and movement of skeletal bone segments.

Skeletal muscle, like cardiac muscle, is classified as striated due to its characteris-
tic alternating light and dark bands visible under the microscope. Skeletal muscles
only contract in response to stimuli from motor neurons, and when two bones at-
tached to a muscle are connected by a movable joint, the muscle contraction causes
skeletal movement.

There are flexor muscles, which bring the centers of bones closer together during
contraction, and extensor muscles, which cause the opposite movement. These two
categories of muscles are found in numerous joints. Indeed, the contraction of a
muscle can move the skeletal segment it is attached to, but it cannot return it to
the starting position. The flexor-extensor muscle pair is referred to as antagonistic:
as in the case of the biceps acting as flexor and the triceps as extensor.

This chapter will describe the anatomy and contractile mechanism of skeletal mus-
cle.

1.2.1 Skeletal Muscle Architecture
The skeletal muscle is composed of muscle cells or muscle fibers, each char-

acterized by a large number of nuclei arranged superficially along the elongated
cylindrical structure of the fiber [6]. Within the muscle, the fibers are arranged
with their longitudinal axes in parallel. Each fiber is surrounded by connective
tissue, called endomysium, which groups together a set of muscle fibers forming
fascicles. Among the various fascicles are collagen, elastic fibers, blood vessels, and
nerves.
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Figure 1.8: Skeletal muscle architecture [7]

Anatomy of Muscular Fibers

Striated muscle fibers are cylindrical and vary in length from a few millime-
ters to several centimeters, with a diameter ranging from 10 to 150 µm. Each
fiber is enveloped by the sarcolemma, a specialized plasma membrane involved in
the transport, exchange, and reception of synaptic signals at the neuromuscular
junction [6].

The main intracellular structure consists of myofibrils, bundles of contractile
and elastic proteins responsible for contraction. Furthermore, skeletal muscle cells
contain a sarcoplasmic reticulum (SR), composed of terminal cisternae, which sur-
rounds each myofibril. The SR manages the concentration of calcium ions (Ca2+)
with the help of the enzyme Ca2+-ATPase, providing signals crucial for contraction.

Closely associated with the terminal cisternae is an intricate network of trans-
verse tubules known as T-tubules. The membranes of the T-tubules derive from
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invaginations of the sarcolemma, allowing the lumen of these tubules to be in di-
rect communication with the extracellular fluid. These T-tubules facilitate the
rapid propagation of action potentials from the cellular surface into the interior of
the fiber, thus playing a crucial role in the dynamics of muscle cell function.

To conclude, the sarcoplasm, the cytoplasm within muscle fibers, contains nu-
merous mitochondria, essential in the process of oxidative phosphorylation of glu-
cose that produces ATP for muscle contraction.

Figure 1.9: Skeletal muscle fiber [7]

Myofibrils: The Fundamental Contractile Structures of Muscle Fibers

Each myofibril is composed of several proteins organized into repeated contrac-
tile structures called sarcomeres. The proteins involved include the motor protein
myosin, which forms the thick filaments, and the actin microfilament, the main
component of the thin filaments.

Myosin provides movement, and its various isoforms differentiate muscle types
and characterize contraction speed. A myosin filament is composed of a pair of
protein chains that intertwine to form a long tail with two globular heads. Together,
these myosin molecules create a thick filament.

Actin is the protein that makes up the thin filament in the muscle fiber; it is
a globular protein and polymerizes to form long filaments called F-actin, which,
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when wrapped together, form the filament.
The most common configuration assumed by the described filaments involves

them being interconnected by means of cross-bridges, where the bridge forms when
the myosin head binds to the actin site. The repeated arrangement of the filaments
gives rise to the alternating light and dark bands, visible under the optical micro-
scope, which characterize the myofibril. Each repetition of the bands constitutes a
sarcomere, in turn formed by the following elements [6]:

• Z-line or Z-disc: A sarcomere is formed by the filaments located in the area
delimited by two successive Z-lines.

• I-bands: These bands are exclusively formed by thin filaments and are lighter.
Each of these bands is crossed by the Z-disc.

• A-band: They are the longest part of the sarcomere and cover the entire length
of the thick filament.

• H-zone: The central region of the A-band, occupied solely by myosin filaments.

Figure 1.10: The Sarcomere, functional unit of skeletal muscle fiber [7]
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1.2.2 Muscolar Contraction Mechanism
Muscle contraction, namely the generation of tension by the muscle, is an active

process that requires energy produced from the hydrolysis of ATP. The steps leading
to the contraction of skeletal muscle are:

1. The release of acetylcholine by a somatic motor neuron at the neuromuscular
junction. This event is converted into an electrical signal, called an action
potential, in the membrane of the muscle cell. The action potential induces
the release of calcium from the sarcoplasmic reticulum.

2. Increase in intracellular calcium concentration that initiates the excitation-
contraction coupling by binding to troponin.

3. Contraction-relaxation cycle, individually termed a twitch, explained by the
sliding filament theory. According to this model, the actin and myosin fila-
ments, overlapping and of fixed length, slide past each other, and the Z-discs
of the sarcomere move closer together.

Muscle contraction is initiated by the release of calcium ions from the sarcoplas-
mic reticulum, triggering a series of events that lead to the interaction between
actin and myosin filaments. A protein called troponin controls the position of
tropomyosin, an elongated protein polymer that, in the resting muscle situation,
is positioned along the groove of the thin filament, covering the binding sites for
myosin (tropomyosin ’off’). For contraction to begin, tropomyosin must transition
to the ’on’ conformation, a situation that occurs when the intracellular calcium
concentration increases, triggering a process called the cross-bridge cycle theory.

The initial state of the cycle is defined as the rigor state, in which myosin heads
are tightly bound to G-actin molecules, while no nucleotides such as ATP or ADP
are bound.

1. ATP binds to the binding site present in the head of the myosin, causing the
detachment of myosin from actin.

2. ATP hydrolysis provides the energy for the extension of the myosin head and
its reattachment to the actin site. The ATPase site of myosin binds and
hydrolyzes ATP into ADP and inorganic phosphate (Pi), and the two elements
remain bound to myosin. The release of energy allows the rotation of actin,
forming a 90° angle with the longitudinal axis of the filament. In this way, the
formed bridge is weak because tropomyosin is partially occupying the actin
site. Nevertheless, the bridge represents an accumulation of potential energy,
ready to trigger contraction upon an increase in calcium concentration.

3. The power stroke initiates following the calcium-troponin binding, releasing
the binding sites. The binding force between actin and myosin is increased,
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resulting in the release of inorganic phosphate, allowing the head to rotate
towards the M line, generating greater force.

4. Myosin releases ADP, and myosin is again strongly bound to actin in the rigor
state, and the cycle can begin again.

Figure 1.11: Cross Bridge Cycle [8]

1.2.3 Skeletal Muscle Classification
Skeletal muscle fibers can be classified based on their contraction speed and

resistance to fatigue following repeated stimulation. Currently, the classification
depends on the isoform of the thick filament myosin ATPase:

• Slow-twitch fibers, type I fibers

• Fast oxidative-glycolytic fibers, type 2A fibers

• Fast glycolytic fibers, type 2X fibers

Further sources of differentiation among muscle fiber types relate to their re-
sistance to fatigue. Glycolytic fibers utilize anaerobic glycolysis as their source
of ATP. The hydrolysis of glycolysis contributes to the accumulation of H+ ions,
leading to acidosis, a condition of fatigue.
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Conversely, oxidative fibers preferentially utilize oxidative phosphorylation as
their ATP source. These fibers are more densely vascularized, enhancing the effi-
ciency with which they receive oxygen, thereby favoring their preferred metabolic
cycle for glucose. ATP production in this case occurs within mitochondria, reached
by oxygen diffusing into muscle fibers through a protein called myoglobin, which
imparts a characteristic red coloration.

Due to the abundance of myoglobin within them, oxidative fibers are termed
"red" fibers. Conversely, glycolytic fibers, with lower myoglobin concentrations, are
also referred to as "white" fibers.

The distribution of these fiber types within the human body adapts according
to the subject’s lifestyle.

1.2.4 Force generated during a contraction
The fundamental unit for skeletal muscle contraction is called a motor unit and

consists of a somatic motor neuron and the muscle fibers it innervates, all of the
same type. The generation of an action potential by the motor neuron triggers
the contraction of all fibers associated with it. The number of fibers constituting
a motor unit varies and allows for the gradual regulation of force developed in
movements.

Figure 1.12: Motor Unit [9]
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The force generated by a single fiber can be increased by increasing the fre-
quency of action potentials that stimulate it. In this way, the fiber does not have
enough time to relax, and the phenomenon of summation is initiated, culminating
in tetanus. Therefore, the tension developed by a single fiber is modulated by the
frequency of action potentials.

The motor units of skeletal muscle fibers are capable of contracting exclusively
in an all-or-none manner. How, then, is the modulation of force and duration of
contractions achieved?

The modulation of force and duration of contractions is achieved using two
mechanisms [10]:

1. Recruitment of motor units of different types

2. Variation in the number of motor units activated at the same time

Recruitment is under the control of the central nervous system and depends
on the intensity of the stimulus. Starting from low-threshold stimuli, slow-twitch
fibers, which are fatigue-resistant and develop little force, are initially recruited. As
the intensity of the excitatory stimulus increases, motor neurons innervating fast
oxidative-glycolytic fibers are also activated.

At this point, in order to maintain contraction over time by attenuating the onset
of fatigue, the mechanism of asynchronous recruitment comes into play. The ner-
vous system modulates the recruitment of motor neurons whose activation occurs
alternately.

1.2.5 Types of contraction
A muscle contraction can manifest in two distinct ways: isometric or isotonic.

In an isometric contraction, muscle tension equals the applied load. During this
phase, the muscle length remains constant, and no movement occurs. Therefore, no
work is performed as there is no change in position. Conversely, isotonic contrac-
tion involves movement as muscle tension exceeds the applied load. If the muscle
shortens to support the load, the contraction is termed concentric. If, on the other
hand, the muscle lengthens, the contraction is considered eccentric.

1.3 Electromyographic signal
During a muscle contraction, the activation of motor units can be controlled,

with each unit generating a single motor unit action potential (MUAP). Each motor
unit is associated with its own MUAP, thus the electromyographic (EMG) signal
is an interfering signal, resulting from the summation of action potentials from all
motor units that activate asynchronously [11] [12]. By studying the EMG signal, it
is possible to distinguish between central (CNS) and peripheral control information.
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EMG signals can be acquired in two modes [13]:

• Invasive: Needle electrodes are used to record a signal very close to the source
in a limited volume, but the global view of the muscle is lost.

• Surface: Electrodes are placed on the skin, allowing for a global view of muscle
activation but creating a signal rich in interference.

The sEMG signal contains information from a large number of motor units,
making it difficult to distinguish between central or peripheral information [14].
In order to obtain optimal results from sEMG, it is crucial to have a thorough
understanding of the muscles from which the EMG signal is being extracted. Addi-
tionally, proper electrode placement on the skin requires careful consideration and
skin preparation beforehand.

1.3.1 sEMG Signal Morphology
The peak-to-peak amplitude of the electromyographic signal reaches values up

to 10 mV. The bandwidth is up to 500 Hz, but the predominant energy content is
between 50 and 150 Hz [15]. The nature of the signal is stochastic and this makes
it mathematically describable through Gaussian probability distribution functions.

Figure 1.13: Raw sEMG signal [15]

1.3.2 sEMG Acquisition Electrodes
Surface EMG sensors are electrochemical transducers that can detect potential

differences generated by ionic currents associated with muscle contraction. They
employ metallic conductors placed on the skin, creating the metal-electrolyte in-
terface (the skin being rich in electrolytes such as synovial fluid and sweat).

By placing a conductive material within an electrolyte, an oxidation-reduction
reaction occurs. Some surface atoms of the metal go into solution in ionic form,
leaving electrons in the conductive bar. At their interface, a potential difference
forms, known as the half-cell potential.

The potential of a single electrode cannot be directly determined and is expressed
relative to a reference value, such as the Standard Hydrogen Electrode (SHE).
Therefore, another electrode must be used. The most commonly used electrodes
are Ag/AgCl electrodes due to their stability, tissue tolerance, and ease of modeling
[16].
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1.3.3 Electrode-skin interface
In order to accurately model the electrode-skin contact, it is necessary to un-

derstand the structure of the skin. The skin consists of three layers: the epidermis,
dermis, and subcutaneous tissue.

Of particular interest for our analysis is the epidermis, as it is in direct contact
with the electrode. The epidermis itself is composed of three layers:

1. Corneum layer, composed of cells at the end of their life cycle and with rela-
tively low conductivity. This layer can be considered insulating, which is why
the use of conductive gels is sometimes required.

2. Granular layer

3. Basal layer, where epidermal cells are generated.

At the dermal level, the presence of sweat glands with ducts is important, making
this layer of skin highly conductive.

Finally, the layer of conductive gel, often used as an interface between the elec-
trode and epidermis, must be considered. Based on this information, it is possible
to accurately model the electrode-skin interface[17][18].

Figure 1.14: Electrode-skin interface model [18]

Considering, however, the current values involved in the extraction of the elec-
tromyographic signal and the frequencies of interest, it is possible to neglect the
two parallel models.

Noise sources of the surface Electromyographic signal

During sEMG signal acquisitions, it is necessary to consider several factors that
may contribute to an increase in signal noise.
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• Power line interference (PLI): This disturbance is created by the acquisition
equipment and is also known as Power Line Interference. It appears as a
sinusoid with variable amplitude and a fixed frequency, which in European
countries corresponds to 50 Hz. This problem can be addressed using selective
filtering techniques, such as the Notch filter or more advanced adaptive algo-
rithms. Additionally, it is recommended to twist the cables connected to the
sampling electrodes to reduce the disparity in parasitic capacitances between
the source of interference and the cables. If the capacitive effects on the two
cables are similar, the interference will be treated as common mode and not
subjected to differential amplification.

• Motion artifact: This consists of the formation of momentary potentials at
the metal-electrolyte interface due to the reciprocal movement between the
skin and the cables. It can typically be removed with careful skin preparation
during electrode adhesion.

• Stimulation artifact: If the surface electromyographic signal is acquired during
stimulation, this artifact occurs. Its characteristic is an initial peak followed
by a tail. The peak is not problematic as long as it is recorded prior to the
myoelectric response, while the tail may overlap with the signal. To attenuate
this type of artifact, stimulators with voltage stimulation are preferred, with
a faster discharge constant.

• ECG artifacts: The electrocardiographic signal, being based on biopotentials,
can influence the sEMG signal during acquisitions. To remove this artifact, it
is necessary to work on common mode rejection.

1.3.4 sEMG signal acquisition circuitry and configurations
After comprehensively understanding the characteristics of the target muscle,

preparing the skin, and positioning the EMG electrodes, the next step involves the
acquisition of the EMG signal.

The EMG signal is acquired using a differential amplification technique. This
amplifier should ideally have high input impedance and very low output impedance.
In an ideal scenario, a differential amplifier would possess infinite input impedance
and zero output impedance.

The instrumentation amplifier accomplishes differential amplification by sub-
tracting the voltages from two input sources (V1 and V2), Figure 1.15. This ef-
fectively eliminates common noise signals present at both electrode inputs, such as
power line interference. The determination of a differential amplifier’s capacity to
dismiss signals shared between both inputs relies on its common mode rejection
ratio (CMRR). A CMRR of 90 dB is generally sufficient for eliminating common
signals in instrumentation amplifiers.
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Figure 1.15: Instrumentation Amplifier Vout = (V2 - V1) x Gain [19]

The gain of the instrumentation amplifier can be adjusted using a single resistor
(Rgain).

The placement of the EMG electrodes can be done using three different config-
urations: monopolar, bipolar, and multipolar.

• Monopolar configuration [20]: This configuration involves using a single elec-
trode on the skin with respect to a reference electrode. While simple, this
method is not recommended as it picks up all electrical signals in the vicinity
of the detecting surface.
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Figure 1.16: Monopolar Configuration [19]

• Bipolar configuration [20]: In the bipolar configuration, two EMG electrodes
are used along with a reference electrode. The signals from these two elec-
trodes are connected to a differential amplifier. The electrodes are placed
approximately 1-2 cm apart. The differential amplifier suppresses common
noise signals and amplifies the difference between the two inputs. This con-
figuration addresses the limitations of the monopolar setup and is the most
commonly used electrode configuration.

Figure 1.17: Bipolar Configuration [19]

• Multipolar configuration: This configuration utilizes more than two EMG elec-
trodes along with a reference electrode. It further reduces crosstalk and noise
concerns. The signals from three or more electrodes, placed 1-2 cm apart,
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undergo multiple stages of differential amplification. This configuration is em-
ployed in comprehensive research studies aimed at studying EMG muscle fiber
orientation, conduction velocity, and motor point localization.

1.4 Average Threshold Crossing (ATC)
The recognition of movements through the analysis of surface electromyographic

signals (sEMG) is a significant area of research in the field of bio-potentials and
human-machine interactions. In this context, it is crucial to synchronously acquire
and process force levels from various muscles, preferably locally to minimize inter-
ference. The processed information is then transmitted to external hardware with
robust computational capabilities for real-time gesture analysis. The use of wear-
able systems, powered by one or more batteries, emphasizes the critical considera-
tion of power consumption, especially during prolonged continuous recording. This
consumption is closely linked to circuit implementation, the number of channels,
and the sampling frequency. A suitable methodology to meet these requirements is
the Average Threshold Crossing (ATC).

Figure 1.18: Average Threshold Crossing (ATC) technique: following the Event-
Based (EB) paradigm, the threshold crossing (TC) points are identified as the
events carrying the information of muscle activation, and they can be represented by
a time distribution of electrical spikes, as it happens in the biological communication
among neuron cells, i.e., a Bio-Inspired (BI) process. Information Synthesis (IS) is
achieved by applying a time-window (Twindow) approach to the TC distribution
to compute the ATC parameter, which summarizes the state of muscle contraction
(e.g., high, low or no activity).
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Figure 1.18 explains the process of generating an event, represented as a digital
pulse in our system, every time the sEMG potential exceeds a predefined threshold.
The resulting sequence of pulses constitutes an almost digital signal, referred to
as "Threshold Crossing" (TC), which utilizes only the temporal dimension and
disregards amplitude.

Subsequently, the TC signal information is compressed by counting how many
events have been generated in an observation window, thus defining the ATC pa-
rameter[21] as in Eq.1.1, where TC-events represents the number of TC events, and
Twindow normalizes the parameter to the duration of the observation window.

ATC = TCevents

Twindow
(1.1)

ATC has demonstrated a significant correlation with motor unit firing rates in
muscles and, consequently, with generated force [22]. This unique feature allows for
the monitoring of muscle activation by reducing the volume of data managed by the
hardware, leading to a decrease in circuit complexity, size, and power consumption.
The event-driven approach of Average Threshold Crossing (ATC) incorporates three
design paradigms [23]:

1. Event-based: Designed to identify, capture, or respond to significant events
rather than operate continuously or cyclically.

2. Bio-inspired: Transfers information from biological processes, encoding elec-
tronic signals as digital pulses, referring to neural spike communication.

3. Information synthesis: Significantly reduces the overall amount of acquired
data through a feature extraction process directly on the sensor node to reduce
transmission load and provide high-level user information.

The choice of the threshold value plays a crucial role in extracting Threshold
Crossing (TC) events. Proper threshold calibration should enable the identification
of the maximum number of sEMG events, capturing the entire informational con-
tent while maintaining high robustness against environmental noise and artifacts
related to biological signals. From the results of various investigations, the strat-
egy has emerged of setting the threshold slightly above the baseline of the sEMG
signal during muscle rest, proving effective in detecting the most relevant muscle
activation events with minimal effort.

1.5 Functional Electrical Stimulation (FES)
Damage to the central nervous system (CNS) due to injury or disease, in conjunc-

tion with other health problems (e.g., muscle atrophy, joint contractures, increased
frequency of bladder infections, decreased cardio-vascular capacity), can lead to
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decreased sensory–motor performance [24]. A sensory–motor disability directly af-
fects the patient’s lifestyle and limits life activities.

Functional electrical stimulation (FES) was introduced as a method to artifi-
cially trigger the sensory-motor system after a CNS injury/disease and alleviate
the resulting disability. FES systems are often used in neural motor prostheses and
can be engineered as surface or implantable stimulation units for upper limb control
or for assistance in standing positions or walking. FES devices directly assist in
the performance of disrupted functions in humans with CNS lesions; furthermore,
FES causes changes in cortical excitability and stimulates cortical reorganization
(carry-over effects). Electrical stimulation can act directly on the central nervous
system or it can be applied to the peripheral nervous system.

FES devices aid in the performance of primary functions, in individuals with
central nervous system lesions, aiming to restore muscle function and facilitate cor-
tical reorganization. By utilizing electrical current, FES triggers muscle contraction
in paralyzed muscles, ultimately aiming to activate specific nerve fibers and elicit
motor responses. For efficient stimulation, FES must target the undamaged nerve
fibers that connect the spinal cord to the muscles.

FES is a potential treatment option for individuals experiencing impaired limb
movement due to various neurological. It is essential for the nerve fibers connecting
the spinal cord to the muscles to remain intact for FES to be effective, allowing
electrical impulses to travel along the nerves and stimulate the muscles. In such
cases, FES holds promise as a rehabilitation tool.

FES is distinguished into three functional categories:

• FES neuroprosthetics

• FES training

• FES therapy

1.5.1 FES Therapy
FES therapy aims at neurostimulation and, as previously mentioned, cannot be

utilized in patients with complete spinal lesions since it requires afferents reach-
ing the CNS. Peripheral areas are stimulated to induce adaptations at the central
nervous system level.
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Figure 1.19: FES, in line with Hebbian theory [25], aims to strengthen the connec-
tions between the brain and affected muscles after Spinal Cord Injury (SCI). This
involves guiding adaptive plasticity, activating damaged networks through spared
fibers, and inducing neuronal plasticity via cortical neuron-controlled FES. FES
facilitates the restoration of function by enhancing communication along sensory
(shown in blue) and motor (shown in red) pathways, promoting recovery of paretic
and paralyzed muscles.

It has been suggested that the advantages of functional electrical stimulation
(FES) during rehabilitation partly arise from neuroplastic changes in motor circuits
[26], as previously discussed. The Hebbian principle proposes that linking cortical
and peripheral activity could reinforce intact descending pathways and result in
sustained enhancement of motor function over time [25].

Moreover, employing electromyography (EMG) or motion tracking can help iden-
tify and monitor any residual movements, allowing for tailored customization of
FES therapy for each individual.

The main issue with FES is fatigue. In the case of voluntary contraction, the
neuromuscular system employs mechanisms to compensate for the reduction in
performance:

• Increased firing frequency of motor units.

• Recruitment of new motor units.
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• Substitution of active motor units.

In the case of electrically stimulated contraction, none of these strategies can
be applied. Particularly, the recruitment order of muscle fibers does not follow
the Henneman principle but is random or inverse. Another difference concerns
the activation frequency of motor units which, in the case of stimulation, occurs
synchronously. This creates greater variability in the force profile at the same
frequency; therefore, to achieve tetanic force, a higher frequency is required.

1.5.2 FES Therapy for Hand Rehabilitation
In the context of functional electrical stimulation (FES) therapy for hand reha-

bilitation, the application focuses on retraining voluntary movements and grasping
functions in individuals with conditions such as stroke and spinal cord injury. The
FES therapy targets both proximal and distal muscles of the upper extremity to
restore functional abilities.

Initially, the therapy begins with training proximal shoulder muscles, including
the deltoid, biceps, and triceps. This phase aims to recover proximal function,
with participants progressing to gain functional strength in these muscles. Once
sufficient strength is attained, FES is applied to distal muscles of the forearm and
hand.

A key aspect of the therapy involves training voluntary extension of the fingers,
crucial for tasks requiring manipulation of objects. Participants are guided through
exercises aimed at successfully opening their hand with assistance from FES. Low-
amplitude stimulation of the finger flexors is then used to facilitate hand closing.

Throughout the treatment process, the intensity of FES assistance is gradu-
ally reduced as participants show improvement, eventually being phased out. Ses-
sions typically last around 45 minutes, including electrode application and removal.
Physiotherapists provide guidance and assistance to ensure movements are per-
formed as close to physiological patterns as possible.

FES-reaching protocols have evolved to encompass various functional reach pat-
terns, including sideways reaching, forward reaching and retrieving, reaching over
opposite shoulder or knee, and hand-to-mouth movements. These protocols can be
combined with grasping protocols to train reaching and grasping together, facili-
tating comprehensive hand rehabilitation.

Overall, FES therapy for hand rehabilitation utilizes a combination of targeted
muscle stimulation and functional tasks to promote recovery of voluntary move-
ment and grasping function, to improve independence and activities of daily living
for individuals with neurological impairments.

45



Introduction

Figure 1.20: The contralaterally controlled functional electrical stimulation
(CCFES) enables stroke survivors to open their paretic hand. The stroke survivor
controls the rate of hand opening using a CCFES glove worn on the non-impacted
hand, which controls the strength of electrical stimulation provided to the extensor
muscles of the fingers and thumb of the paretic hand. [27]

1.5.3 Fatigue reduction methods applied to FES
In the context of research activities, the issue of random recruitment of mo-

tor units (MUs) during stimulation has been encountered, highlighting the need
for a more physiological approach. The proposal focuses on inducing stimulation
through the activation of reflexes, particularly leveraging the patellar reflex. In this
scenario, the tap applied to the tendon generates stretching of muscle receptors,
known as muscle spindles, resulting in a train of afferent stimuli. This process se-
lectively activates motor neurons, based on the Hennemann theory, which suggests
the activation of muscle fibers in relation to their recruitment threshold.

The practical implementation of this methodology involves stimulating the afferent
nerve, aiming to activate the pathway of type I fibers. The main challenge lies in
ensuring exclusive stimulation of afferents while avoiding efferent activation. This
distinction is based on the different intensity-duration curve of afferents compared
to motor axons. It is crucial to find an optimal balance in stimulation to generate
a reflex response with Hennemann-type recruitment, but without causing complete
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muscle contraction, limiting motor axon recruitment to 20-30

Despite the promising outlook of this approach, an additional challenge related
to intra- and inter-subject variability has been identified, making the method less
repeatable. Therefore, further avenues are explored to refine the effectiveness of
stimulation, ensuring a controlled response of sensory afferents and minimizing
unwanted activation of motor axons. This study aims to contribute to the under-
standing and optimization of physiological stimulation techniques in research in the
field of muscle neurophysiology.

1.6 Machine Learning and Neural Network
This section introduces the process of implementing a classifier using machine

learning techniques, with a specific focus on Artificial Neural Networks (ANNs).
ANNs serve as potent and flexible tools, drawing inspiration from the complex
workings of the human brain. By utilizing ANNs, we aim to harness their capabil-
ity to learn intricate patterns from data and generalize acquired knowledge, thereby
facilitating the classification process.

Neural networks, inspired by the intricate workings of the human brain, are pow-
erful and versatile tools for approximating real-valued, discrete, and vector-valued
target functions. They excel in handling complex input data and have demon-
strated remarkable success across various domains, including handwritten character
recognition, speech recognition, object recognition, and natural language process-
ing tasks. Conceptually, neural networks can be viewed as mappings from input
space X to output space Y, functioning as classifiers or function approximators
for real-valued functions. Despite being named and inspired by biological systems,
neural networks primarily function as machine learning algorithms with distinct
architectures, lacking substantial parallels to actual neural systems.

In recent years, there has been a resurgence of interest in neural network architec-
tures, driven by advancements in computer architecture (e.g., GPUs, parallelism)
and the availability of vast amounts of data. While minor algorithmic tweaks have
been made since the late 1980s, particularly in optical character recognition, the
recent resurgence owes much to architectural innovations. An intriguing emerging
perspective on neural networks revolves around the significance of intermediate rep-
resentations. Previously viewed merely as function approximators, neural networks
are now being recognized for the meaningful representations they develop at hidden
layers during learning.
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1.6.1 Artificial Neuron
The artificial neuron serves as a fundamental unit within artificial neural net-

works, inspired by the structure and functionality of biological neurons found in
biological neural networks like the brain, spinal cord, and peripheral ganglia. While
the biological neuron receives information through dendrites, processes it within
the soma, and transmits it via the axon, the artificial neuron receives inputs, each
weighted individually, processes them along with a bias using a activation function,
and produces outputs as shown in Figure 1.21. This simplified model of artificial
neurons allows facilitating their incorporation into neural network architectures.

Figure 1.21: Artificial Neuron

In the thesis work, the activation function used for artificial neurons was the
ReLU, an acronym for Rectified Linear Unit. This activation function is one of the
most common and widely used in artificial neural networks, especially in hidden
layers. Its mathematical formula is simple: ReLU(x) = max(0, x), where x is the
neuron’s input.

The main characteristic of the ReLU function is that it returns 0 for all negative
input values and returns the input itself for positive values. This means that the
function is linear for positive values and non-linear for negative values. This allows
ReLU to overcome some of the gradient vanishing problems encountered with other
activation functions, such as the sigmoid or hyperbolic tangent, especially in deep
neural networks.

1.6.2 Multilayer Perceptron
A Multilayer Perceptron, also known as a neural network, is a structure com-

posed of several layers of neurons, where the output of one neuron in a layer becomes
the input for the neurons in the next layer.

In the last layer, called the output layer, the activation may vary depending on
the type of problem: for regression, no activation function is generally applied, while
for binary classification, the Sigmoid function is commonly used. For multiclass
classification, the Softmax function is often adopted to ensure that the sum of the
predictions for all classes equals 1. The basic architecture of Multilayer Perceptrons
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involves each unit in one layer being connected to all units in the next layer, with
key parameters of the architecture including the number of hidden layers and the
number of neurons in each layer.

Figure 1.22: ANN Basic Architecture
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Chapter 2

State of Art

2.1 sEMG Wearable Devices in Rehabilitation
In the field of rehabilitation, evaluating patients presents significant challenges,

primarily due to constraints within clinical settings [28] [29]. In response to these
challenges, wearable technology emerges as a compelling solution for the objective
assessment and monitoring of patients both within and outside clinical environ-
ments. Leveraging wearable devices, healthcare professionals can access a wealth
of detailed information on patients’ impairments, facilitating the identification and
optimization of rehabilitation therapies.

In addition, wearable technology plays a crucial role in stroke rehabilitation [30],
addressing the specific challenges faced by patients recovering from this debilitat-
ing condition. By providing objective data on patients’ motor capabilities, these
devices enable healthcare professionals to tailor interventions more effectively to
individual needs. For stroke survivors, wearable technology facilitates continuous
monitoring of motor function, allowing for early detection of progress or setbacks.
Moreover, the portability and convenience of wearable devices empower patients to
engage in rehabilitation exercises outside of supervised sessions, promoting inde-
pendence and active participation in their recovery journey.

In the field of wearable real-time monitoring systems, signals such as ECG,
EMG and EEG are also used. These biosignals are acquired and analyzed to ex-
tract relevant information for observation, diagnosis and treatment of patients [31].
However, traditional monitoring systems often suffer from drawbacks such as slow
data acquisition and transmission, inefficient power consumption, and bulky size,
which limit their versatility and widespread adoption.

An example of the use of biosignals within a wearable system for monitoring
and rehabilitation of upper limbs is provided by Zhao et al. [32], who introduced a
robotic glove for assisted training capable of capturing EMG and ECG signals. The
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ECG/EMG signals collected undergo a series of processing steps including filtering,
amplification, and digitization before being wirelessly transmitted to a smartphone
or laptop using a low-energy Bluetooth module. Additionally, a dedicated soft-
ware platform is developed to analyze and visualize the ECG/EMG data, which is
seamlessly integrated into the control system of the robotic glove. Throughout the
training process, the EMG sensor monitors various hand activities, while the ECG
sensor tracks changes in the user’s physiological status. This innovative system
showcases its feasibility and effectiveness in monitoring physiological signals dur-
ing upper limb rehabilitation, offering valuable insights for tailoring rehabilitation
strategies to meet individual treatment needs.

Regarding the proposed portable and wireless acquisition system, Smith et al.
[33] proposed a solution to register important physiological signals. The acquisition
system mainly consists of a portable device, a graphic user interface (GUI), and an
application program for displaying the signals on a notebook (NB) computer or a
smart device. Essential characteristics of the portable device include eight measur-
ing channels, a powerful microcontroller unit, a lithium battery, Bluetooth 3.0 data
transmission, and a built-in 2 GB flash memory. Major advantages of the proposed
system are the capability of combining it with an NB computer or a smartphone
to display the signals being measured in real-time, and superior mobility due to
its independent power system. Briefly, this acquisition system offers consumers or
users a convenient and portable studying tool to measure dynamic vital signals of
interest in psychological and physiological research fields."

The Myo armband gathers EMG signals and motion-related inertial data, trans-
mitting them via Bluetooth to the gateway (Intel UPS-GWS01). The gateway
filters and extracts information from the data before sending it to the cloud server.

2.2 sEMG-based classification of hand motions
using deep-learning techniques

The classification of hand motions based on surface electromyography (sEMG)
signals using deep-learning techniques represents a cutting-edge approach in the
field of prosthetics and rehabilitation engineering. By harnessing the power of deep-
learning algorithms, which excel at extracting complex patterns from large datasets,
researchers aim to develop robust and accurate systems capable of decoding the
user’s intended hand movements with high precision.

In a study [34] conducted on patients with trans-radial amputation, it was
demonstrated that it is possible to decode individual flexion and extension move-
ments of each finger with an accuracy greater than 90 % using exclusively surface
electromyography signals. An EMG array of bipolar Ag–AgCl electrodes was placed
on the subject’s right arm according to the European recommendations for sEMG.
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This was implemented by dividing the forearm into five distinct levels where levels
I through V were characterized by 32, 28, 24, 19, and 12 electrodes, respectively.

The central theme in the field of hand movement classification is the optimal
configuration for signal acquisition and in this context, paper [35] gives a compar-
ison of six acquisition setups. The article aimed to assist researchers in selecting
the appropriate acquisition setup for the classification of hand movement class.
The acquisition setups are based on four different sEMG electrodes and were used
to record more than 50 hand movements from intact subjects with a standard-
ized acquisition protocol. Comparable classification results are obtained with three
acquisition setups, including the Delsys Trigno, the Cometa Wave, and the cost-
effective configuration composed of two Myo armbands. The Myo armband consists
of 8 medical-grade stainless steel sEMG single differential electrodes. Implementing
the Double Myo Setup required overcoming two main difficulties: managing times-
tamps and software limitations. The Double Myo configuration involves wearing
two armbands, positioned on the upper and lower arm, respectively, providing uni-
form muscle mapping.

Myo Armband is also used individually in [36] for the classification and recogni-
tion of hand gestures using electromyography (EMG) signals to control upper limb
prostheses. In this research, EMG signals were captured via an embedded system
while wearing the Myo Armband, enabling the observation of hand movements.
The study involved 10 healthy subjects performing various upper limb movements,
and after extracting EMG data, supervised classification techniques were applied
to recognize different hand gestures. The classification achieved an overall accuracy
of 83.9 % using ensemble (bagged tree) classifier.
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Chapter 3

System Description

The thesis project focuses on applications of real-time Functional Electrical
Stimulation (FES) and online modulation of stimulation patterns. The primary
objective is to develop a bio-mimetic system for FES control based on surface Elec-
troMyoGraphic (sEMG) signals aimed at rehabilitating hand movements.

The starting point of the project is an existing system, designed for event-driven
sEMG-based FES control, which employs the Average Threshold Crossing (ATC)
technique. This paradigm allows an online and real-time FES intensity modulation
[37].

In this setup, the surface ElectroMyoGraphic (sEMG) signal goes through direct
processing, extracting the ATC profile, on a wearable acquisition board before
being wirelessly transmitted to the control unit. By integrating the ATC method
directly on-board, there is a reduction in both data size and transmission load. This
integration facilitates the development of energy-efficient biomedical acquisition
systems.

The control platform enables the modulation of stimulation current intensity
solely based on ATC information, which has demonstrated a high correlation with
muscle force, as evidenced in previous research [22]. Subsequently, the control unit
is capable of dynamically updating stimulation parameters with each transmission
of new ATC data points. Furthermore, the system is equipped with a user-friendly
graphical interface (GUI), providing oversight of the stimulation process and allow-
ing for parameter selection.
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Figure 3.1: System Overview: the hardware part is composed of the sEMG acqui-
sition system and the electrical stimulator. The acquisition devices communicate
via Bluetooth with the control platform, while the stimulator uses a USB cable for
the connection.

The goal of this thesis project is to extend the applicability of the previous system
to the hand-forearm region to create a system useful for the recovery of hand motor
functionality. This primarily requires the development of an acquisition system
suitable for the intricate motor control of the hand, which involves the coordination
of numerous muscles. This implies an increase in the overall complexity of the
system.

The thesis work focused on the development of the acquisition system for FES
control, integrating the synchronous management of acquisition devices required
for monitoring muscles in the hand-forearm district. To this end, a dedicated soft-
ware for the interaction with the acquisition units was developed, starting from an
existing version provided by the research group. The software was further improved
with the introduction of a classifier, obtained using Machine Learning techniques.

The classifier, in the final system, will be interposed between the acquisition
unit and the stimulation unit, at the level of the control unit. Its introduction is
necessary to manage the system’s complexity and make the information derived
from the input ATC signals, usable for stimulation. The classification result can
be used to select the stimulation channels to be activated, using the parameters
obtained from the processing of ATC data in the control unit.

In conclusion, the stimulation phase was introduced, trying to simulate the op-
eration of the integrated system, to set the stimulation channel selection according
to the classification result obtained by the control unit.

The primary approach through which the system is conceived is the therapist-
patient application [38], where the therapist utilizes the muscle information from
a healthy individual to configure the stimulation parameters to be applied to a
second individual (the patient), Figure 3.2.
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Figure 3.2: Therapist-Patient controlled stimulation [39].The acquisition devices
are applied on the therapist’s muscles, to extract the sEMG signal and determine
the ATC values. These data are sent to the control unit where they are displayed
in the Graphic User Interface (GUI). The control unit computes the stimulation
parameters that are sent via USB to the RehaStim 2 stimulator and applied through
the stimulation electrodes on the patient.

3.1 Acquisition System Devices
This section will describe the devices included in the FES acquisition system.

The design of the acquisition system architectures for the FES system is derived
from an anatomical study described in 1.1. Subsequently, the bio-electric signal
extracted from the muscles identified as pivotal for hand motor control was indi-
vidually acquired to determine optimal electrode placement conditions and verify
their effective activation and associated movements.

Following these targeted acquisitions, the muscles to be included in the overall
acquisition system have been definitively identified. These muscles can be divided
into 3 subgroups based on their location in the hand-forearm region, which also
determines the type of acquisition device used. All acquisition devices were made
available by the eLioNS Laboratory research group.

The first subgroup includes the following muscles: Extensor Pollicis Longus,
Extensor Pollicis Brevis, Abductor Pollicis Longus, and Proper Extensor Indicis.
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These muscles are located in close proximity, in the distal part of the dorsal forearm,
Figure 1.5. Therefore, their sEMG/ATC signals were acquired using the same de-
vice, called Apollux. This wearable acquisition unit applies the Average Threshold
Crossing (ATC) parameter extraction technique to the sEMG signal and transmits
the result to the control unit.

The Apollux device, used as shown in the Figure 3.3, consists of two essential
elements [40]:

• Analog Front End (AFE): This circuit detects the sEMG signal and extracts
the quasi-digital Threshold Crossing (TC) signal. The raw signal conditioning
circuit is designed for differential signal acquisition, applying signal filtering
with a passband between 70 Hz and 400 Hz and a default gain of 500V/V
(which can be increased by x2, x3, or x4). The last stage of AFE is a threshold
comparator used to obtain the TC signal, an intermediate stage of the ATC
technique. The threshold applied by the comparator is established following
calibration.

• Digital Processing Unit: This component performs the calculation of ATC
values and their transmission. The Apollux3 Blue MCU [41] is utilized for its
extremely low-power characteristics.

The components of the device are housed within a case that gives it a compact
shape with size 57.8mm × 25.2mm × 22.1mm [23], facilitating the wearability of
the Apollux without causing limitations in the execution of movements. Finally,
data transmission to the control unit occurs via Bluetooth Low Energy (BLE)
technology [42], with ATC values updated every 130 ms.

Figure 3.3: Real-time acquisition using Apollux devices: two ATC profile extracted
from Gastrocnemius Medialis and Soleus muscles [43]
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The second subgroup of muscles, necessary for motor control of the hand, is
located within the hand itself. These muscles are referred to as intrinsic, and
among them, those of interest for the acquisition system are located in the thumb,
e.g. Opponens Pollicis, Abductor Pollicis Brevis, and little finger, e.g. Abductor
Digiti Minimi. Bio-electrical signals from the thumb muscles are extracted with
two acquisition devices, while an additional device is used for those in the little
finger. During the preliminary study of these muscles, the need to modify the
structure of the integrated Apollux emerged. The case is poorly suited for such
a distal application, making electrode adhesion unstable and hindering accurate
signal acquisition.

To extend the acquisition area and include the hand, it was decided to separate
the components within the case and connect the cables to allow the acquisition area
to be occupied only by the active electrodes. The resulting device configuration is
shown in Figure 3.4

Figure 3.4: Modification of the Apollux device by removing the components from
the case so that only the electrodes can be applied at the acquisition point. Im-
proved adhesion and preservation of electrode skin contact.
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Finally, a device called Armband, again made available by the eLiONS Lab. re-
search group, was chosen to complete the acquisition system. The third subgroup
of muscles comprises the extrinsic musculature located in the forearm, Figure 1.7.
These muscles are responsible for controlling the flexion and extension movements
of the fingers; moreover, there are additional muscles that, although mainly respon-
sible for motor control of the wrist, are important for the recognition and execution
of finger movements.

The Armband, Figure 3.5, has been designed as a circular ring to fit around the
forearm, consisting of seven units: one acting as the master board, responsible for
providing a wireless interface with the user and controlling all operations, and the
remaining six serving as its slaves, which execute commands sent by the master.

Figure 3.5: Armband acquisition device. Power and I2C communication wires
electrically connect the boards, while the elastic band physically keeps the modules
in the proper position [44].

The overall acquisition system architecture and the studies leading to the precise
positioning of the acquisition units will be described in detail in Chapter 4.

3.2 Classifier for Hand Movement Recognition
During the project’s development, a classifier was integrated at the control unit

level. In this way, the control platform has additional information related to the
movement being performed, predicted through the ATC data sent from the acqui-
sition devices.
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The information on the predicted movement can be useful for the overall control
of the electrical stimulator. This allows stimulation to be administrated in the
patient only after movements have been recognized through the distribution of
ATC values among the acquisition channels.

Another application of the predicted class parameters involves the employment
of the electrical stimulator, which, in the previous FES control system, required the
modulation of stimulation parameters (e.g. pulse width, amplitude). In that case,
the one-to-one relationship between stimulation channels and acquisition channels
allows for stimulation to be conducted by updating stimulation parameters exclu-
sively in correspondence to channels where muscle activation is recorded.

Due to the complex architecture of the acquisition system developed in this
project, movement classification can be employed to determine the channels of the
stimulator to activate. Consequently, the selection of activated channels, applying
the stimulation parameters computed using the same procedure as the previous
system, is movement-dependent.

Hence, the additional information required for stimulator control can be obtained
by using a classifier capable of determining the performed movement. In this con-
text, the classifier, by providing information regarding the movement performed
during its acquisition, acts as a filter between the acquisition and stimulation unit.

Therefore, the classifier must be capable of providing real-time predictions to
align with the overall system’s use. The control unit should provide the ATC data
as input to the classifier, which should base its prediction on the ATC data.

3.3 Functional Electrical Stimulation
The FES system utilizes the RehaStim2 [45], manufactured by HASOMED@,

as its electrical stimulator. This device is compliant with EU guidelines MDD
93/42/EWG and is classified as a class IIa medical device, with an applied part type
BF (body floating). Equipped with a built-in rechargeable battery, the RehaStim2
is portable, making it suitable for integration with bio-signal acquisition systems,
which are often susceptible to power-line interference.

The RehaStim2 can interface with a PC via the ScienceMode2 serial commu-
nication protocol, enabling direct control of stimulation parameters. It features
two independent current generators, each connected to 4 stimulation channels, to-
taling 8 stimulation channels that can operate simultaneously. To ensure safety,
the stimulator conducts a tissue impedance check before each stimulation pulse.
If the impedance deviates from the expected range, stimulation is automatically
halted. Additionally, an emergency button is provided for immediate cessation of
stimulation if needed.

The stimulation waveform produced by the RehaStim2 is biphasic rectangular
pulses with a balanced charge, ensuring effective and controlled muscle activation.
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The user-controlled stimulation parameters are reported in Table 6.1.

Parameter Range Step
Current Intensity 0 - 130 mA 2 mA

Pulse Width 20 - 500 µs 10 µs
Frequency 10 - 50 Hz 5 Hz

Table 3.1: RehaStim2 stimulation parameters

Figure 3.6: Stimulator RehaStim2 [46]

The following chapters will be organized as follows:

• Chapter 4: "Acquisition System Description". This chapter will outline the
structure of the acquisition unit and its devices, explaining the preliminary
study phase. Finally, the protocol used for the acquisitions carried out on the
subjects will be described.

• Chapter 5: "Acquisition protocol & software adaptation". This chapter will
describe in the first part the software and its functioning. Next, information
regarding the experimental protocol and selected movements will be provided.

• Chapter 6: "Machine Learning and Neural Network". In this chapter, the
characteristics of the developed classifier and the training methods used will
be described.
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Chapter 4

Acquisition System
Description

4.1 Study on Electrode Placement for sEMG Sig-
nal Acquisition in the Forearm-Hand Region

This chapter will focus on describing the architecture of the acquisition system,
designed in the thesis work. Starting from the anatomical structure of the hand,
Section 1.1, the steps that led to the definition of the system will be outlined. This
includes the selection of appropriate devices, introduced in Section 2.1, their posi-
tioning, and ultimately, the definition of the overall architecture of the acquisition
system.

4.1.1 Muscle Identification and Signal Acquisition
Understanding the anatomical structure of the hand is crucial as it forms the

foundational premise for subsequent phases of this thesis. Building upon this theo-
retical foundation, a practical investigation followed to capture the essential muscles
involved in hand movements. Efforts were directed at identifying pivotal muscles
for motor control of the hand in the forearm-hand region using the Apollux de-
vice [23], introduced in the previous Section 3.1, for sEMG/ATC signal acquisition.
This phase involved meticulous probing to identify optimal locations for acquisition
devices, ensuring accurate capture of muscle activation patterns.

Subsequent analysis aimed to elucidate the relationship between muscle acti-
vation profiles and corresponding movements, studying the interaction between
muscle activity and motor control.
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• Flexor muscles of the fingers: these muscles are situated in the anterior fore-
arm. Particularly, the objective was to activate the Flexor Digitorum Superfi-
cialis and Flexor Digitorum Profundus muscles through flexion of the fingers
at all joint levels and evaluate the intensity of acquisitions while moving along
the proximal fiber. Two Apollux devices were employed to assess any differ-
ences in acquisition intensity as shown in Figure 4.1. From this analysis, it
emerged that a more distal positioning better identified the activation of these
muscles, information that will be utilized subsequently in the development of
the thesis project.

Figure 4.1: The image shows the comparison of signals taken along the muscle fibers
of the Flexor Digitorum Superficialis at different distances along the forearm. The
two Apollux have the same amplification value to show the difference in signals
amplitude. (red line proximal device - yellow line distal device)

• Extension movement of the fingers, Figure 4.2: according to theoretical infor-
mation, this movement is controlled by the muscles Extensor Digiti Minimi
and Extensor Digitorum Communis. These muscles are located in the dorsal
forearm, and following the placement of the device, based on visual and tac-
tile analysis of muscle morphology it was possible to test the activations of
these muscles. At this stage, it emerged that it was indeed possible to detect
the activation of the mentioned muscles associated with the extension of the
fingers, including Little Finger, even in a selective mode.
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Figure 4.2: Investigation of the extensor muscles of the fingers. Acquisition device
placed at muscles Extensor Digiti Minimi and Extensor Digitorum Communis.

• Muscular structure of the Thumb: In this case, the study was more intricate
due to the thumb’s complex muscular structure, which is divided between in-
trinsic (located within the hand) and extrinsic (located within the forearm)
musculature, Figure 1.5. Additionally, the thumb possesses a high degree of
freedom, necessitating an examination of the connection between muscle and
controlled movement, as depicted in Chapter 1. Following this analysis, the
first limitation of the existing acquisition unit, the integrated Apollux, was
encountered, as it did not allow for the acquisition of intrinsic musculature.
Subsequently, modifications were made to the device to overcome these lim-
itations, already shown in Figure 3.4, whose application will be illustrated
below.
As a result, the extrinsic musculature at the distal level of the forearm was
initially analyzed to assess the contribution of these muscles to movements
such as abduction, extension, and opposition of the thumb using the device in
the following placement, Figure 4.3.
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Figure 4.3: Electrode placement on the distal region of the forearm for thumb
extrinsic muscles acquisition.

After this step, the significance of the acquisition point analyzed for movement
such as thumb abduction and extension was confirmed. The extension of the
index finger, individually is also visible with this device placement.

To complete the study of the thumb and its movements, information on the
acquisition of its extrinsic musculature, represented by the long flexor of the
thumb, located proximate to the anterior forearm, was added. This muscle
lies adjacent to the flexor muscles of the fingers, situated at a more superficial
level. By increasing the amplification value of the Apollux, it became possible
to detect the activation of thumb flexion movement, thereby highlighting the
feasibility of monitoring such movement via extrinsic musculature.

4.1.2 Device modifications for intrinsic muscle acquisition
To extend the acquisition area and include the hand, it was decided to separate

the components within the container of the Apollux device and connect cables to
allow for the acquisition zone to be solely occupied by the active electrodes. This
modification enabled the extension of acquisitions to the intrinsic muscles of the
hand.

In particular, the involvement of muscles controlling thumb movement was stud-
ied. Subsequently it was decided to use two acquisition devices in this region of
the hand, as shown in Figure 4.4. This makes it possible to optimize the distinc-
tion of movements under thumb control, considering the large number of degrees
of freedom, creating the following split between muscle and acquisition point:

• Thumb external: Opponens Pollicis Brevis and Abductor Pollicis Brevis

• Thumb internal: Flexor Pollicis Brevis and Adductor Pollicis Brevis
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Figure 4.4: The figure shows the optimized acquisition system with the positioning
of the electrodes about the intrinsic muscles of the thumb.

The described analysis confirmed the central role of selected muscles, in con-
trolling thumb movements e.g. opposition, extension, abduction and adduction.
In addition, modifications of the wearable device and the use of the glove allowed
extended acquisitions to be carried out while maintaining high signal quality.

Following this, activation of muscles controlling little finger movement was tested,
confirming the ability to extract the ATC signal from this hand region as well.

In conclusion, the delineation of muscle activation patterns and their correla-
tion with hand movements represent a milestone in the search for robust signal
acquisition methodologies. The information gained at this stage not only facili-
tates the identification of optimal signal acquisition locations but also deepens our
understanding of the intricate interplay between muscle activity and motor con-
trol. With this knowledge, subsequent chapters will move into the development of
a comprehensive hand motion recognition system, taking advantage of the insights
gathered in this work.
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4.2 Overall Electrode Placement and Acquisition
Devices

Following the specific muscle trials described earlier and the insights gained, it
is necessary to define the electrode placement for the entire hand-forearm region.
This will enable us to obtain muscular information regarding the activated muscles
responsible for hand movement during various hand motions.

4.2.1 Intrinsic Muscles Acquisition Units
Starting from the intrinsic hand muscles, based on the studies outlined in the

previous section, it was decided to allocate three devices for signal acquisition within
the hand. Specifically, two acquisition points are placed in the thumb positioned
internally and externally, respectively. This decision was made considering the
presence of a high number of muscles to assess the activation breadth across the
two devices. Additionally, a device will be added to monitor little finger activity.

As previously explained, for the acquisition of intrinsic hand muscles, the mod-
ified Apollux device is utilized.

The described devices will occupy channels 8 to 10 in the overall system. Specif-
ically:

• CH 8: Thumb Internal

• CH 9: Little Finger

• CH 10: Thumb External

4.2.2 Extrinsic Muscles Acquisition Units
The first group of extrinsic muscles considered for acquisition is located distally

in the forearm and is formed by the following muscles:

• Extensor Pollicis Longus/Brevis

• Abductor Pollicis Longus

• Proper Extensor Indicis

This set of muscles is in close proximity, therefore it has been decided to dedicate
a single device for the control of this region, which will occupy channel 11 (CH 11
Forearm Distal) in the overall system.

The muscles directly involved in the selective control of the fingers are as follows:
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• Flexor Digitorum Superficialis/Profundus

• Extensor Digitorum Communis

• Extensor Digiti Minimi

Although the muscles responsible for wrist control are not explicitly mentioned,
they play a secondary stabilizing role and should therefore be considered in this
study. The muscles in question are:

• Extensor Carpi Ulnaris

• Extensor Carpi Radialis

• Flexor Carpi Ulnaris

• Flexor Carpi Radialis

Due to the number of muscles involved in finger movements, it was decided to
utilize a device provided by the research group. The device is an armband [44], 3.1,
designed as a circular ring, intended to encircle the forearm. It comprises seven
units, covering channels 1 to 7 of the global system.

• CH 1: Central Anterior

• CH 2: Radial Anterior

• CH 3: Radial Posterior

• CH 4: Central Posterior

• CH 5: Ulnar Posterior

• CH 6: Medial

• CH 7: Ulnar Anterior

This decision was made following verification of the feasibility of acquiring the
above-mentioned muscles at the same longitudinal position on the forearm.

4.2.3 Overall Acquisition System
The following Figure 4.5 shows the overall architecture of the acquisition system,

with the optimal placement of the selected devices. The use of the system and the
analysis of the extracted data will be described in the following chapters.
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Figure 4.5: Overall Acquisition System. The figure depicts the positioning of the
acquisition devices in the hand-forearm region. From distal to proximal: channels 8
to 10 for intrinsic muscles, channel 11 for the distal forearm position, and channels
1 to 7 for the armband.
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Chapter 5

Acquisition protocol &
software adaptation

This chapter will detail the protocol and software used to obtain the acquisitions.
This software allows interaction with the acquisition system outlined in Chapter4,
facilitating the synchronous usage of the five acquisition units (1 Armband and 4
Apollux).

5.1 Software and Acquisition Unit Interaction
The first section of this chapter introduces the architecture of the software uti-

lized, which represents the merging of the two versions previously developed for
controlling the identified devices individually.

Furthermore, the graphical user interface (GUI) has been customized to effec-
tively monitor the ATC values extracted from the selected muscles during acqui-
sitions and to set crucial parameters (e.g. AFE gain, threshold for TC) for the
proper employment of the devices.

An additional interface has been adapted with the function of serving as a guide
for the user during movement execution. This screen provides the subject with
detailed information on the movement to be performed and the timing to follow,
aiding in distinguishing between muscle contraction execution and maintaining the
resting position.

5.1.1 Software Architecture
The control software has been developed using the Python programming lan-

guage and is designed to run on a standard laptop, allowing direct processing of
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acquired muscle data. This configuration also allows for establishing a BLE connec-
tion with the acquisition units. For this purpose, a USB BLE dongle is employed,
specifically, the Nordic Semiconductors nRF52840 [47].

The distinctive feature of the software is its modularity, attributable to the
architectural design that involves the use of independent units capable of commu-
nicating with each other through application programming interfaces (APIs). This
approach is made possible by the Object-Oriented Programming (OOP) paradigm
[48].

Method callbacks initiate all top-down functions, whereas internal bottom-up
data communication relies on queues. Each layer is equipped with one or more
queues tailored to the type of data and recipient, ensuring structured and orga-
nized data flow control throughout the system.

The software relies on the interaction of four main components: the BLE, the
acquisition units, the System, and the Graphical User Interface (GUI).

The BLE object, situated at the lowest level of the architecture, is implemented
using the Blatann module and manages device scanning and connection. During
this phase, connection management is organized by dividing the connected devices
(4 Apollux and 1 Armband) across two different BLE dongles. A specific connection
strategy is adopted to ensure that the Armband and a single Apollux are connected
to the same dongle, to balance device distribution. The acquisition unit objects
are instantiated for each device, thus creating a group of objects at a parallel level.
During system operation, this level comprises 5 objects: 1 Armband and 4 Apollux,
which, once instantiated correctly, interface between BLE and the system, as shown
in Figure 5.1.

The System object manages input/output communications with peripheral de-
vices and their interaction. In this module, ATC data from all connected peripherals
converge and can be processed differently. The first operation performed with the
ATC data is their transmission to the graphical interface to obtain their real-time
representation. Also at this level of the system, the classifier will be used to obtain
predictions on the movement executed by the subject on the acquisition side. The
implementation of the classifier within the control platform will be illustrated in
the next Chapter 6.

The Graphical User Interface (GUI) was developed using the Kivy Python-
compatible framework. This constitutes the user interaction level and includes
widgets such as spinners, buttons, graphs, and popups.
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Figure 5.1: Software Architecture.The figure shows the software architecture, with
the highest level occupied by the GUI, followed by the System level and acquisition
devices, and finally, at the lowest level, two BLE objects.

5.1.2 Graphic User Interface (GUI)
In this section, the main functionalities of the interface, employed for conduct-

ing acquisitions, will be elucidated. Figure 5.2 showcases the initial screen of the
interface, serving as the starting point for its utilization.

Figure 5.2: Graphical user interface (GUI)
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• The Connection button begins the Bluetooth Low Energy (BLE) connection
procedure with peripheral devices. During this phase, the system initially
scans for peripheral devices, presenting them to the user via checkboxes. Users
can then select the desired devices for connection. The connected devices are
distributed in a specific order to the two BLE dongles used.

• The Calib all button begins the threshold calibration procedure, a fundamen-
tal operation for the proper utilization of the ATC paradigm. Conducting
calibration post-connection enables users to immediately proceed with acqui-
sitions without altering the amplification values of the acquisition units, which
remain set to default values.

• The Start button to commence the system, initiating signal acquisition and
processing following the previously described procedure until obtaining the
ATC value. ATC data are displayed in the graphical interface, organized into
two main columns: on the left are the acquisitions made by the wristband,
while on the right are signals derived from other devices. Figure 5.3 shows the
GUI while the software is running.

• The Set Up button allows for the modification, at any time, of the gain value
applied to each acquisition device. This functionality is utilized during the
setup phase of the acquisition system to tailor it to the subject.

Note the presence of two checkboxes labeled "save session" and "protocol inter-
face," both essential for acquisitions. The former allows data to be saved in text
file format, while the latter initiates an additional screen that guides the subject
through the protocol."
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Figure 5.3: Graphical user interface (GUI) during use for performing the acquisition
protocol

5.2 Experimental Protocol
After defining the positioning of the acquisition electrodes and the devices uti-

lized, it was necessary to determine the movements to be replicated by the subjects
during the acquisition protocol. For this selection, were chosen movements suitable
for rehabilitation and capable of inducing selective control over individual fingers
[49] [50]. The chosen movements are depicted in the following Figure 5.4.
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Figure 5.4: Selected Movements. Thumb Opposition, Thumb Extension, One, Two,
Three, Four, Hand Open, Hand Close, Grip

The procedure for preparing the subjects for the acquisitions has been divided
into several phases. Initially, the correct positioning of the armband was carried
out, which, in addition to considering the distance on the longitudinal axis, must
ensure a correspondence between the channels and the muscles involved in the
acquisition. Therefore, this phase is divided into two steps:

• Measurement of the palmar forearm, particularly the junction axis between
the elbow and wrist. Identification of the point at approximately one-third
of the total calculated distance, starting from the elbow. This serves as the
reference for positioning along the longitudinal axis.
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• To ensure correspondence between channels and acquired muscles, it was cho-
sen to maximize activation of the finger flexors on CH 1 and extensors on CH
4. Therefore, the placement of the ’Flexor Digitorum Superficialis’ muscle on
the forearm was identified, through palpation and visual analysis of activated
muscle fibers with a specific movement. For this measurement, the actual
positioning of the acquisitions was reproduced to avoid issues due to relative
displacement between electrode and muscle fiber.

Based on the explained measurements, the preliminary positioning of the arm-
band was carried out.

Subsequently, pairs of electrodes were placed for the acquisition of signals from
the intrinsic muscles (CH8 - CH9 - CH10 in Figure 4.5), using a latex glove to
ensure electrode adherence throughout the protocol duration. Holes were made in
the glove corresponding to the electrodes to allow cable connection, and reference
electrodes were positioned on the palmar side of the wrist.

Finally, the integrated Apollux for CH11 in Figure 4.5 was placed on the distal
forearm. Once the electrode positioning phase was completed, the cables were con-
nected, and the acquisition system was ready for use. Throughout the procedure,
proper positioning of the hand-forearm district was maintained, with the forearm
horizontally positioned and the hand in a neutral position, supported to maximize
the range of motion and allow relaxation during rest phases. Additionally, the el-
bow was slightly elevated to maintain the armband in place.

Once the positioning for ATC signal acquisition is completed, the devices are
connected to the control unit and undergo an initial calibration, keeping all gains
at a unity value. Next, by starting the ATC signal acquisitions and verifying the
activations on the GUI, the second step of verifying the correct positioning of the
armband takes place. The subject is then asked to perform finger flexion and ex-
tension movements, making sure that the maximum activation occurs on CH1 and
CH4 channels, respectively. In this regard, the armband can be rotated slightly
until the desired result is achieved.

At this point, all the necessary operations for conducting the acquisitions cor-
rectly have been completed, and the subject can undergo the general test. This
latter consists of executing the nine movements depicted in Figure 5.4. Each move-
ment is performed for 3 consecutive repetitions and must be maintained for a total
time of 5 seconds. There are also 5 seconds of rest between repetitions of the same
movement, while the rest period at the change of movement lasts ten seconds. Dur-
ing the rest phase, the subject must completely relax the hand, maintaining the
ATC profile on the baseline.

All subjects underwent a trial acquisition to become familiar with the procedure
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and movements, considering the difficulties in properly relaxing the hand and ad-
hering to the timing of movement execution precisely. Additionally, the trial was
used to adjust the gains of the devices, if necessary.

Figure 5.5: ATC profiles obtained from the acquisition system with the execution
of the protocol.
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Chapter 6

Machine Learning and
Neural Network

The main advantage brought by the classifier concerns the overall control of the
electrical stimulator. Indeed, this allows inducing an impulse in the patient only
after verifying that the input ATC data into the control unit are related to the
execution, by the therapist, of a movement for rehabilitative purposes.

Furthermore, the class predicted by the classifier can be integrated into the
processing of incoming ATC data in the control unit, adding a stimulation control
factor to it.

In the original FES system, the control unit modulates the stimulation param-
eters that are transmitted to the stimulator. The presence of a one-to-one corre-
spondence between acquisition and stimulation channels implies that stimulation
is induced at the channels that have recorded muscle activation.

Using the classifier is possible to detect motion information and, based on this,
select the muscles to be stimulated. This will ensure the maintenance of the stim-
ulation pattern defined by the control unit. Therefore, the decision was made to
integrate a classifier capable of distinguishing the nine movements performed dur-
ing the protocol and the idle state.

It is important to emphasize that the neural networks were trained using only
the ATC values as the sole feature. This enabled real-time classification leverag-
ing the ATC data transmitted to the control unit every 130 ms. To evaluate the
performance of the models, the index associated with each sample during acqui-
sition, identifying the movement performed, was used. This allowed assigning a
corresponding class of membership to each ATC sample, using the same samples
to segment the signals based on the associated movement.
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This chapter initially examines the preliminary analyses conducted on the ac-
quired signals to assess the suitability of a machine learning-based approach. Subse-
quently, the databases used for training the models and the methodologies employed
to optimize the neural networks will be described.

6.1 Preliminary Analysis
This section will describe the preliminary analysis conducted, using MATLAB®,

to assess the feasibility of applying machine learning methods to the acquired sig-
nals for classifier development. For preliminary analysis, two main aspects were
considered:

1. Variability of muscle activation across different channels during the performed
movements.

2. The repeatability of executing repetitions within the same movement.

6.1.1 Variability of muscle activation across different chan-
nels

To compute the first information, the starting point is the ATC profile from the
acquisitions, organized to obtain a dataset containing the ATC values associated
with each channel and the reference index called Class. The latter is saved by the
software during its operation and allows each ATC sample to be associated with
the corresponding motion.

Next, the labeling of the dataset is adjusted based on the norm parameter,
which is associated with each sampling instant. This parameter allows to evaluate
the muscle activation that occurred on the overall acquisition system, computed
on the ATC value group belonging to the same instant. The Equation 6.1 shows
the expression used to calculate NormValue, where Chx is the Xth channel of the
acquisition system [44].

NormValue =

⌜⃓⃓⎷Nchannels∑︂
i=1

Ch2
i (6.1)

By applying a threshold to the obtained norm value, the labeling of the dataset
can be changed. The overthreshold values are kept with unchanged Class values
while the remainder are associated with the class that corresponds to the rest status
(Idle), having a low overall activation value. The approach described is as follows
6.2:
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Class =

⎧⎨⎩Actual Class, if NormV alue > Th
Idle, if NormV alue ≤ Th

(6.2)

Next, indexes are used to segment signals by movement. The signal segments
associated with the same movements are used to extract the median and 40th and
60th percentile values. These values are represented within a Radar Plot Figure
6.1 that combines information from all acquired channels, extracted from the raw
signals of each subject. The graph illustrates the spatial distribution of activations
for each movement executed during the protocol.

Figure 6.1: Radar-Plot Single-Subject obtained from a dataset with idle norm
threshold 7
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Figure 6.2: Radar-Plot Single-Subject obtained from a dataset with idle norm
threshold 7

Figure 6.3: Radar-Plot Single-Subject obtained from a dataset with idle norm
threshold 7
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Figure 6.4: Radar-Plot Single-Subject obtained from a dataset with idle norm
threshold 7

Figure 6.5: Radar-Plot Single-Subject obtained from a dataset with idle norm
threshold 7

Through the analysis of the Radar Plot results, it is possible to examine the spa-
tial distribution of muscle activations within the acquisition system. It is crucial
to verify any differences in activation profiles among various movements to develop
a reliable classifier. This constitutes a fundamental assumption for the classifier,
which will rely on the distribution of ATC values across different acquisition chan-
nels to accurately predict the executed movement.

83



Machine Learning and Neural Network

The Radar Plot shown in Figure 6.1 displays distinct profiles for each movement
overall. Therefore, this can be considered a positive result for the preliminary
analysis before implementing the classifier.

6.1.2 Movements Repeatability
The second element of interest for the preliminary analysis concerns the ver-

ification of the movement’s repeatability belonging to the same movement. To
accomplish this, the signals have been processed to obtain measures of similarity
following the procedure outlined in [9].

The following steps are executed:

1. Creation of movement matrices referenced to the repetition of a specific move-
ment as shown in Figure 6.6. The procedure for motion segmentation is based
on Class values. The obtained signal windows, matrices containing the ATC
values extracted from all channels of the acquisition system, are norm-checked
to exclude low activation instants.

Figure 6.6: The segmentation result for each movement, a similarity matrix con-
taining the ATC values of the channels from Ch1 to Chn. Rows highlighted in green
represent activations, while the red box denotes the extracted matrix following the
initial segmentation with the application of norm value control, excluding phases
of low activation [51].

2. Computation of Normalized Channel-wise Cross-correlation (NCC) defined in
Equation 6.3 between X and Y, which provides the measure of channel-by-
channel similarity as a function of the relative lag (τ) [51].

CCxy[ch, (τ)] =
∑︁

m(Xch[m + τ ]Ych)
max{|Xch|2, |Ych|2}

(6.3)

3. Computing W xy vector, defined in 6.4, quantifies the contribution of each
channel to the whole movement with values from 0 to 1 [51].
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Wxy[ch] =
∑︁

κ(Xch[ch + κ]) + ∑︁
m(Ych[ch + m])∑︁

ch(∑︁
k(Xch[ch + κ]) + ∑︁

m(Ych[ch + m])) (6.4)

4. Calculation of the matrix product of the matrices obtained in the previous
steps, extraction of the maximum value to obtain the Similarity Index (SIxy)
6.5. This measure represents the overall similarity between two movement
matrices (X,Y ) and lies within the range of 0 to 1 [51].

SIxy = max(CCT
xy × Wxy) (6.5)

The following figures show the results of the similarity values obtained from
the comparison of 12 subjects. Each submatrix, sized 9x9, represents the similarity
value obtained from comparing individual repetitions (9 for each subject) performed
by a pair of subjects. The matrices on the diagonal, which have higher average
values, refer to the comparison between repetitions performed by the same subject.

Figure 6.7: Opposition movement similarity matrix
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Figure 6.8: Extension movement similarity matrix

Figure 6.9: One movement similarity matrix

86



6.1 – Preliminary Analysis

Figure 6.10: Two movement similarity matrix

Figure 6.11: Three movement similarity matrix
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Figure 6.12: Four movement similarity matrix

Figure 6.13: Hand Open movement similarity matrix

88



6.1 – Preliminary Analysis

Figure 6.14: Hand Close movement similarity matrix

Figure 6.15: Grip movement similarity matrix
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Referring to the figures provided, a notable inter-subject variability is observed
across all movements. However, in some movements e.g. opposition, extension,
three, hand open, hand closed, and grip, there are pairs of subjects with similarity
values in the sub-matrix that display values ranging between 0.55 and 0.7 in the
majority of comparisons.

Based on these observations, it was decided to evaluate whether a classifier could
effectively handle the high inter-subject variability, partially leveraging information
from subjects with higher similarity. Additionally, it will be significant to examine
how the distribution of subjects between the training and test sets impacts the
performance of the developed classifier.

Furthermore, regarding intra-subject variability, numerous instances are noted
where repetitions executed by individual subjects exhibited high repeatability, with
similarity values between 0.65 and 0.85. A comprehensive analysis of such occur-
rences will be conducted, with an expansion of available data associated with a
single individual.

6.2 Database Preparation
During the thesis project, two distinct datasets were created. In the first case,

12 different subjects were involved, while in the second case, all the signals used
were derived from the same subject.

Data collection adhered strictly to ethical guidelines, approved by the Bioethics
Committee of the University of Turin [52]. Every participant received detailed infor-
mation regarding the physical safety of the acquisition devices and the anonymiza-
tion procedures applied to their data. This was done in compliance with the ex-
perimental protocol and for the purposes permitted by the study.

In both cases, the procedure for preparing the dataset for the neural network
training phase was the same. The acquisition data, saved by the software in text
file format, were organized to form a labeled dataset where each group of ATC val-
ues, belonging to the same instant, has a Class value associated with the performed
movement. Starting from the labeled dataset, two procedures were adopted to vary
the dataset type and assess its performance. In the first case, the labeling was
modified by applying different thresholds to the norm. In the second case, datasets
were created by excluding the contribution of some acquisition channels.

Threshold-based labeling applied to the norm

The labeling was modified, as previously explained, by applying a threshold to
the norm value. This operation was performed for threshold values of 1, 3, 5, 7, 9,
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and 11, resulting in 6 datasets, varied only by the threshold value applied during
labeling 6.2.

This allows for classification to be performed on an optimized dataset, finding
the threshold value that best fits the classification.

By varying the threshold value applied to the norm, an imbalance in the classes
is observed in the resulting datasets. An increase in the threshold value leads to
a greater number of ATC values associated with the Idle Class during labeling.
Therefore, to maximize classifier performance, class balancing was implemented
during dataset preparation [53].

As the threshold value increases, the subject must also increase the intensity
of the contraction to maintain the presence of the movement within the dataset
and prevent all samples associated with the movement from being classified as
idle. This condition creates a too high dependence on the force generated by the
subjects. Therefore, threshold values higher than those listed above were not tested.

Dataset reduction: Channel subset generation

Datasets containing a subset of available acquisition channels were created. This
approach was adopted to precisely evaluate the actual contribution of each channel
in the classification task.

The objective of the project is to achieve accurate classification while minimiz-
ing the number of input channels. Since wearability [54] is a key element in the
development of the overall system for FES control.

Channels with the following characteristics were excluded:

• High variability in activations. Assessment of variability was initially observed
during subject acquisitions by visually checking activations and considering
inter-subject differences. In addition, a more analytical analysis was con-
ducted by examining the percentile values represented in the radar plot 6.1.
From this analysis, the decision was made to exclude the device placed on the
little finger (CH9). Indeed, the activations recorded by this acquisition unit
show significant variability in several movements, e.g. four, hand open, hand
close and grip. In addition, removing this device could improve the overall
wearability of the acquisition system.

• Low activation values were observed across all movements. For this assessment,
the radar plot was also utilized, leading to the decision to exclude the device
positioned on the thumb internal (CH8). In this case, limited activation was
recorded across multiple movements.

In this way, the following datasets were obtained:

1. Dataset All Channel: All Channel used.
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2. Dataset Little Finger Out: Channel of the little finger excluded.

3. Dataset Thumb Internal Out: Channel of the thumb internal excluded.

4. Dataset Thumb Internal and Little Finger Out: Both previous channels ex-
cluded.

Through this process, a set of datasets was obtained, each of which was adapted
to specific criteria, enabling in-depth analysis and optimization for the classification
task under study.

6.2.1 Multi Subject Dataset
For the construction of the dataset, 12 subjects, all aged between 24 and 27 years

old, were involved. Each subject completed three full sessions of data collection,
resulting in a total of nine repetitions for each movement. This approach facilitated
gathering a diverse range of data from multiple sources, ensuring a comprehensive
representation of muscle activation.

The next step is to apply this dataset configuration by varying the distribution
of subjects in the training and testing phases. Considering the large number of
possible solutions, five distributions were randomly evaluated.

6.2.2 Single Subject Dataset
Conversely, the second dataset was assembled solely from acquisitions of a single

subject. This dataset configuration was designed with future application of the
developed device in mind within the thesis project. As the system is intended for
therapist-patient interaction, with classification applied to signals exclusively from
the same individual, this specific dataset setup was adopted.

However, despite this focus on a single subject, it is imperative to consider the
classification problem from a broader perspective. Potential future developments
may necessitate extending the analysis to multiple subjects. Such an approach
would enable the exploration of challenges and opportunities in classification across
a broader population, facilitating more generalizable conclusions and preparation
for potential future scenarios [art26].

6.3 Offline Training and Network Optimization
The training phase of the machine learning model, utilizing the various datasets

obtained, was conducted within the MATLAB® environment.
To optimize the efficiency of the Artificial Neural Network (ANN), the Deep

Learning™ Toolbox was used, allowing for precise customization of the network
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structure and training parameters. A 5-fold cross-validation [55] strategy was
adopted, where the dataset is divided into five equal parts. Each part is alter-
nately used as a test set, while the remaining four are used for training. This
process is repeated for all possible combinations of dataset parts, ensuring a com-
prehensive evaluation of the model’s performance on different data.

This methodology helps to reduce the risk of overfitting [56] and provides a more
accurate assessment of the model’s performance. The chosen gradient optimizer is
the Adam algorithm, with an initial learning rate set to 0.03, which automatically
decreases every 10 epochs to enhance training accuracy. Additionally, a patience
parameter of 5 was set, which interrupts the training process if the validation error
remains stagnant for 5 consecutive samples, optimizing the overall efficiency of the
procedure.

Subsequently, a training phase was initiated to evaluate various network architec-
tures to optimize performance. During this process, various network configurations
were examined, varying the number of hidden layers from 2 to 4 and the number of
neurons in each layer from 10 to 150. These different configurations were applied to
all datasets, each characterized by different normalization values of the idle state,
to also perform optimization of this parameter.

In the next paragraphs, the results obtained from the training and optimization
phase of the network architecture will be reported.

To maximize the performance of the classifier, according to the accuracy value,
the following parameters should be selected:

• Optimal value used as threshold for rest condition in the dataset (Idle Norm).

• Hidden layer size.

• Number of neurons within the hidden layers

Two types of graphs are used to determine the listed parameters:

1. The first figure (Figure 6.16 and 6.19) illustrates the various ANN architec-
tures, characterized by variations in the number of hidden layers and the num-
ber of neurons within each layer. The graph relates the accuracy achieved from
each network, trained using datasets varying in terms of the threshold used
to normalize the "idle" state in the dataset. Linear interpolation of the trend
curves is performed, focusing on central idle values, to identify a potential
plateau. This graph enables us to determine the most suitable idle-norm value
for the dataset to enhance classification performance.

2. The second figure (Figure 6.16 and 6.18) presents the accuracy values obtained
from three distinct neural models, each with a different number of hidden
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layers. These models have been trained with a specific idle-norm value selected
based on the first graph. This graph allows us to evaluate which number of
neurons within the hidden layers maximizes classification performance.

This procedure was applied to all types of datasets, varying by idle-norm value
and selected channels.

6.3.1 Network Optimization Multi-Subject Dataset

Figure 6.16: ANN validation accuracy of all configurations trained. Each line
represents a single network structure, which is trained with an input dataset ranging
from idle norm 1 up to 11

From the observation of Figure 6.16, it emerges that idle norm values between
7 and 9 are the most effective for classifying movements using this dataset. Higher
values tend to deviate from the increasing trend of linear interpolation. Addition-
ally, models with two hidden layers generally exhibit higher accuracy values. Based
on these observations and the identification of optimal idle-norm values, further ex-
amination of the remaining parameters is conducted to select the optimized model.
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Figure 6.17: ANN validation accuracy for a defined idle norm (i.e., 7). The perfor-
mance behavior is highlighted at varying the network configuration.

This graph confirms that having two hidden layers is the best choice for the
network architecture. Furthermore, it facilitates the identification of the optimal
number of neurons used, which corresponds to the vertical red line in the figure.
The choice of neuron numbers should be based on the concept of balancing model
complexity and generalization ability, which is fundamental in the field of machine
learning and neural networks [57]. Model complexity refers to its ability to fit
the training data, while generalization ability refers to its ability to make accurate
predictions on data not seen during training.
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6.3.2 Network Optimization Single Subject Dataset

Figure 6.18: ANN validation accuracy of all configurations trained. Each line
represents a single network structure, which is trained with an input dataset ranging
from idle norm 1 up to 11

In the figure, a less pronounced division is observed, compared to the multi-
subject case, based on the number of hidden layers that define the network archi-
tecture. In this case, as well, the values for the idle state limits that best fit the
characteristics of the dataset are 7 and 9, just like in the previous Figure 6.16.
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Figure 6.19: ANN validation accuracy for a defined idle norm (i.e., 7). The perfor-
mance behavior is highlighted at varying the network configuration.

The irregular trend in accuracy values shown in Figure 6.19 could be attributed
to overfitting, which increases as the number of neurons in the hidden layers in-
creases [42]. The graph displays that maximum accuracy values are achieved with
a lower number of neurons in the hidden layers, compared to the multi-subject
dataset.

This trend implies an overfitting problem, in which the neural network may
excessively adjust its parameters to the training data, thereby compromising its
generalization ability. This tendency to overfitting is justified by considering the
characteristics of the dataset. The latter includes signals from the same subject,
thus exhibiting reduced variability. Therefore, it is plausible that a less complex
structure is sufficient to achieve good performance, as shown by the results.

Network Optimization
Single-Subject Dataset Multi-Subjects Dataset

Hidden Layers Size 2-4 2
Hidden Layers Nodes 20-30 60-80

Idle-Norm Value 7-9 7-9

Table 6.1: The table shows the values identified, with the previously described
analysis, which will be used in the testing phase.
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Chapter 7

Results and Discussion

This chapter presents the results obtained from classifying movements in offline
and online modes. During the testing phase, in both modalities, the acquisition
protocol described in Section 5.2 was followed, using the acquisition system previ-
ously described in Chapter 4.

For the execution of the offline test, the optimized models based on the proce-
dure described in Section 6.3 were used. The classifier results (Pred Class) were
compared with the movement indices (True Class), which constitute the labeling
of the databases and were assigned to each ATC value by the software during the
acquisitions.

The classification performance was evaluated considering four parameters:
• Accuracy (ACC): Measures the ratio of correctly predicted instances to the

total number of instances.

Accuracy = Number of correct predictions
Total number of predictions (7.1)

• Precision: Measures the ratio of correctly predicted positive observations to
the total predicted positive observations.

Precision = True Positives
True Positives + False Positives (7.2)

• Recall: Measures the ratio of correctly predicted positive observations to the
all observations in actual class.

Recall = True Positives
True Positives + False Negatives (7.3)

• F1-score: Harmonic mean of precision and recall, providing a balance between
the two metrics.

F1-score = 2 × Precision × Recall
Precision + Recall (7.4)

99



Results and Discussion

The online tests were conducted following the implementation of the classifier
with the best performance in the software. To evaluate the classification, a visual
approach was used, comparing in real-time the classification result, which appears
as an image within the graphical interface, with the movement performed by the
subject.

7.1 Multi Subjects
This section of the results is dedicated to the analysis of the performance ob-

tained considering the datasets composed of the 12 subjects involved. In this case,
four types of datasets were used, varying the number of selected channels. Each of
them was trained and tested by varying the distribution of subjects between the
training and test sets, with five random distributions.

The first part explains the selection of the best dataset in terms of subject
distribution and channels used. The second part, on the other hand, reports the
performance obtained by the best model.

7.1.1 Database Reduction and Subjects Distribution
The classification of hand movements using the dataset consisting of 12 sub-

jects was conducted by randomly varying the distribution of subjects between the
training and test sets, maintaining a ratio of 9 and 3 subjects, respectively. The
following table 7.1 summarizes the five distributions applied for the creation of the
test sets. The complementary subjects to those included in the table were included
in the training set of the respective models.

Random Subjects Distribution
Testset - 1 Subject 9 - 10 - 11
Testset - 2 Subject 1 - 8 - 12
Testset - 3 Subject 2 - 3 - 12
Testset - 4 Subject 3 - 7 - 8
Testset - 5 Subject 1 - 2 - 9

Table 7.1: The table displays the distribution of subjects, obtained randomly,
within the test set.

Furthermore, datasets were created using subsets of channels compared to those
available using the full version of the acquisition system. This was done to assess the
actual improvement in performance brought about by the use of specific acquisition
devices. Four types of datasets were therefore obtained, applying variations in the
number of channels used, the versions used are as follows:

• Type I: Testset All Channel:
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• Type II: Testset Little Finger Out

• Type III: Testset Thumb Internal Out

• Type IV: Testset Little Finger & Thumb Internal Out

These two modes of dataset manipulation have been previously described in Section
6.2.

Figure 7.1: The histogram represents the average accuracy value obtained from the
best models, trained for each type of dataset. Test sets differ in the distribution of
subjects and acquisition channels used.

Analyzing the best performances obtained, with the distribution of subjects
that optimizes the classifier’s capabilities, comparable results are observed from
the first three types of datasets. The accuracy value, considering the all system,
reaches 59.3%, 58.4%, and 57.5% respectively. However, excluding two devices, the
classifier fails to maintain the level of previous cases and its performance slightly
decreases to 54.8%.

Considering the results related to the same dataset type, a strong variability is
observed due to the distribution of subjects used. Therefore, an investigation has
been initiated to understand the cause of this difference and identify justifications
within the dataset and the signals acquired from individual subjects.
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To this end, datasets containing the maximum number of channels, which achieve
the best performance, were considered. Among these, two random subject distribu-
tion scenarios characterized by significant differences in terms of overall accuracy
and selected subjects were chosen. Consequently, datasets with distributions 4 and
5, represented respectively in violet and green in the figure, were examined.

The analysis’s starting point was observing the confusion matrix to identify
potential divergences in the recognition of specific movements.Figure 7.2 and Figure
7.3 report confusion matrices of subjects distribution 5 and 4 respectively.

RandomSubject – Dataset All Channel – System Accuracy = 59.3 % 
Opposition Extension One Two Three Four Hand Open Hand Close Grip Idle
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Figure 7.2: Offline test results of classifying 9 movements and the idle state.Subjects
Distribution number 5.The hand open and hand close movements are highlighted
in the table.
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RandomSubject – Dataset All Channel – System Accuracy = 47.7 % 
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Figure 7.3: Offline test results of classifying 9 movements and the idle state. Sub-
jects Distribution number 4.The hand open and hand close movements are high-
lighted in the table.

From this initial observation, two movements, hand open and hand closed, were
identified. With the first distribution, these movements are correctly classified in
76.3% and 95.9% of cases respectively (recall percentage values). However, with
the second distribution of subjects, these same movements achieve only 19% and
24.2% of correct classifications.

Based on this finding, similarity matrices were analyzed to verify if this type
of result was reflected in the similarity values obtained, Figure 6.14, Figure6.13.
Therefore, it was checked whether, with the distribution used, there was a corre-
spondence between the train and test sets of at least one pair of subjects with high
similarity values (ranging between 0.5 and 0.7). It is observed that the distribu-
tion that optimizes performance has this correspondence, while it is lacking in the
second case, where for the movements in question, none of the subjects included in
the test set share a subject with high similarity in the training set. Therefore, even
the analysis of similarity measures confirms the results obtained in the confusion
matrix.

To conclude the analysis, the spatial distributions of muscle activations were
observed considering the individual subjects of the test set, compared with the
average activations obtained from the training set subjects. The following Figure
7.4 and Figure 7.5 show these comparisons applied to the two distributions of the
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subjects under examination, distribution 5 and 4 respectively.

Acquisition System

Figure 7.4: The figure shows the spatial distributions of activations on individual
subjects comprising the test set, referring to the hand open movement. The radar
plot represents, for each channel, the median value and the 40th and 60th percentiles
extracted from the ATC profile. On the right side, there is the general radar
plot of the training set and the image of the overall acquisition system. Subjects
Distribution number 5.
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Acquisition System

Figure 7.5: The figure shows the spatial distributions of activations on individual
subjects comprising the test set, referring to the hand open movement. The radar
plot represents, for each channel, the median value and the 40th and 60th percentiles
extracted from the ATC profile. On the right side, there is the general radar
plot of the training set and the image of the overall acquisition system. Subjects
Distribution number 4

In Figure 7.4, which considers the case where movement classification yields the
best results, there is a greater similarity between the activations. Indeed, the shape
drawn by the radar plots related to the subjects of the test set is comparable to
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the representative radar plot of the training set. This does not happen with the
distribution of subjects number 4, Figure 7.5, where subjects exhibit significantly
different activations in some channels, e.g., CH1 Armband Central Anterior, CH8
Little Finger.

In conclusion, these divergence, at the level of specific channels identified through
the radar plot, were confirmed by observations of the ATC profiles obtained from
the acquisitions.

The differences identified in the case of CH8 associated with the little finger
are due to the variability in the activation of the Abductor Digiti Minimi, which is
strongly dependent on the way the movement is performed and difficult to control
compared to other muscles. The use of this channel may therefore lead to an
improvement in classifier performance, but it also makes them more susceptible to
variability.

The differences in CH1, associated with the Flexor Digitorum Superficialis re-
sponsible for finger flexion, may be specific to the subject and unpredictable, as
they involve flexor muscles not directly involved in the hand opening movement.

7.1.2 Best Classifier Performance
The results, pertaining to all three subjects in the test set, for the classifier that

achieved the best performance, are presented. Figure 7.6 displays the confusion
matrix, providing an overview of the model’s predictions at the individual class
level. Subsequently, a Table 7.2 is presented containing the average precision,
recall, and F1-score values, as well as those for each individual movement. The
accuracy parameter has been exclusively calculated in relation to the overall system
in order to evaluate the overall performance of the classifier, and therefore it is not
included in the table. The chosen model architecture features two hidden layers,
each comprising 90 neurons.
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Opposition Extension One Two Three Four Hand Open Hand Close Grip Idle

Opposition

Extension

One

Two

Three

Four

Hand Open

Hand Close

Grip

Idle

Tr
ue

 C
la

ss

Predicted Class

Recall

Figure 7.6: Confusion Matrix reporting the classification results obtained on the
three subjects of the test set. The best model trained using the Dataset All Channel
is utilized.

Table 7.2: Evaluation metrics (%)

Movement Precision(%) Recall(%) F1-score(%)
Opposition 47.56 92.62 62.88
Extension 88.83 76.30 82.09
One 25.71 9.87 14.26
Two 26.65 13.01 17.49
Three 69.36 57.91 63.12
Four 37.66 33.26 35.32
Hand Open 50.10 74.34 59.86
Hand Close 60.35 95.94 74.09
Grip 45.31 18.59 26.37
Idle 98.13 98.97 98.55
Avg 55.0 57.1 56.0

The recognition of movements is subjected to high variability. Some classes ex-
hibit high recall values, as seen in the case of opposition and hand close with 92.6%
and 95.9%, respectively. Other movements such as extension and hand open have
intermediate values of 76.3% and 74.3%. However, the remaining movements are
poorly recognized by the model used, which is why it was not feasible to utilize the
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classifier for real-time testing.

In conclusion, the tests aimed at verifying the feasibility of using a classifier
capable of handling inter-subject variability were not satisfactory for extending
applications by integrating the classifier within the control unit. This was noted
considering the significant impact on performance caused by the distribution of
subjects, as described previously. To optimize classification, it is necessary to stan-
dardize movements in order to limit variability that cannot be entirely mitigated
by considering anatomical differences among subjects.

7.2 Single Subject
This second part of the results is dedicated to the performance obtained based on

the dataset constructed for a single subject. The subject underwent the acquisition
protocol eight times, two of which were used for the offline testing phase.

7.2.1 Best Classifier Performance
For the test to be conducted, it is necessary to first establish the threshold value

applied in the normalization process of the dataset’s resting state (idle norm),
which optimizes the distinction of the performed movements. Figure 7.7 shows the
threshold value set at 7 as the best solution.
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Figure 7.7: The histogram represents the results, in terms of accuracy, obtained
from different types of datasets, in terms of Idle norm value as threshold applied
on the rest condition.

In this case, all the results are comparable, showing a variability ranging from
76.5% in the case of datasets with the exclusion of two channels to 86.1% in the
case of the complete dataset. There is coherence in terms of performance compared
to the multi-subject scenario, as the use of the complete acquisition system also
yields the best results in predicting movements in this case. The following Figure
7.8 presents the confusion matrix where the classifier can be evaluated based on the
previously indicated parameters (precision, recall, f1-score), considering individual
movements. As in the previous case, accuracy is computed only on average terms,
for the general evaluation of multi-class prediction.
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Figure 7.8

Table 7.3: Evaluation metrics (%)

Movement Precision (%) Recall (%) F1-Score (%)
Opposition 78.03 70.73 74.2
Extension 92.56 91.06 91.8
One 91.78 79.76 85.35
Two 73.61 78.88 76.15
Three 88.49 92.92 90.65
Four 84.94 82.52 83.71
Hand Open 85.93 95.36 90.4
Hand Close 96.26 81.42 88.22
Grip 94.04 89.47 91.7
Idle 80.06 100 88.93
Avg 86.97 85.32 85.9

From the offline test, it is observed that, on average, all movements exhibit high
probabilities of being correctly predicted by the classifier. The movement with the
lowest recall value, equivalent to 70.7%, is opposition. The remaining classes are
identified correctly between 78.9% (One) and 95.4% (Hand Open). Considering
these reported values, the classifier was tested online as reported in the following
paragraph
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7.2.2 Real-time Hand Movements Classification
To achieve the online test, the best model of the classifier has been integrated

into the software. This allows verifying the system’s ability to correctly predict the
movement executed by the subject from the acquisition side. The classification is
based solely on the ATC values sent to the control unit every 130 ms. The classifier
is integrated at the System layer, and the predicted class value is subsequently sent,
through a queue, to the GUI where it is used to update the image associated with
the predicted movement.

In order to stabilize the classification and minimize the probability of error,
it was decided to introduce a control within the system. Each predicted class
value is compared with a group of the last obtained class values; only if the group
of values matches the last predicted one, the movement is effectively considered
classified. It remains to establish the number of consecutive predictions necessary
to consider the classification occurred, using the predicted class value. A higher
value increases the likelihood of accurately recognizing the performed movement
but creates a longer latency time in the predicted movement variation. Conversely,
lower numbers of consecutive predictions of the same type may not allow stable
classification, which would be problematic for the use of the classifier within the
overall system. Numbers of consecutive classifications equivalent to 3-4-5 have been
evaluated to assess actual changes in classification performance.

In order to evaluate hand movement recognition, two complete acquisition ses-
sions were conducted for each consecutive prediction value (3-4-5). The results
obtained are displayed through a confusion matrix from which precision, recall,
and f1-score values are extracted for each movement.
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Hand Gesture Recognition – Online Test CP: 3 – System Accuracy = 79.8 % 

Figure 7.9: The Confusion Matrix reports the real-time classification results for
two sessions of the experimental protocol. The value of consecutive predictions of
the same class required to obtain the actual classification. Consecutive Prediction
(CP) = 3.

Table 7.4: Movement Recognition Metrics - Consecutive Prediction (CP): 3

Movements Precision (%) Recall (%) F1-Score (%)
Opposition 90.15 61.03 72.78
Extension 89.29 93.08 91.15
One 23.35 23.83 23.59
Two 29.63 12.97 18.05
Three 86.51 61.58 71.95
Four 75.34 52.89 62.15
Hand Open 67.57 96.15 79.37
Hand Close 41.47 96.69 58.04
Grip 89.05 64.55 74.85
Idle 92.58 92.66 92.62
Avg 68.50 65.50 67.00
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Figure 7.10: The Confusion Matrix reports the real-time classification results for
two sessions of the experimental protocol. The value of consecutive predictions of
the same class required to obtain the actual classification. Consecutive Prediction
(CP) = 4.

Table 7.5: Movement Recognition Metrics - Consecutive Prediction (CP): 4

Movements Precision(%) Recall(%) F1-Score(%)
Opposition 91.80 91.33 91.56
Extension 82.07 86.29 84.12
One 40.74 52.11 45.73
Two 100.00 20.77 34.40
Three 100.00 0.54 1.08
Four 84.49 80.61 82.51
Hand Open 47.32 88.33 61.63
Hand Close 62.69 92.31 74.67
Grip 90.45 89.44 89.94
Idle 90.14 92.26 91.19
Avg 79.00 69.40 73.90
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Figure 7.11: The Confusion Matrix reports the real-time classification results for
two sessions of the experimental protocol. The value of consecutive predictions of
the same class required to obtain the actual classification. Consecutive Prediction
(CP) = 5.

Table 7.6: Metriche di riconoscimento dei movimenti - Consecutive Prediction (CP):
5

Movements Precision (%) Recall (%) F1-Score (%)
Opposition 87.37 90.58 88.95
Extension 89.31 88.83 89.07
One 31.80 29.38 30.54
Two 87.50 3.78 7.25
Three 54.17 13.13 21.14
Four 88.28 66.67 75.96
Hand Open 41.18 79.79 54.32
Hand Close 56.54 89.39 69.26
Grip 85.56 77.67 81.43
Idle 85.53 89.85 87.64
Average 70.70 62.90 66.60
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Analyzing the results, movements e.g. opposition, one, two, three, four, grip,
are observed to have been recognized differently in the three tests.This variability is
due to the precision with which the movement must be executed for correct recog-
nition by the classifier; in these cases, variability in execution leads to performance
instability.

Other movements, such as extension, hand open, hand close, consistently showed
high performance across all three tests. This is attributed to the clear distinction in
their recognition compared to other movements and the greater reproducibility of
the gesture. In these cases, observing the confusion matrix, it is noticed that clas-
sification errors occur during the transition phase from the resting phase preceding
the movement activation. However, these errors are inherent in the classification
technique implemented. The movement remains classified correctly without being
identified as a different type of gesture.

From the results obtained based on classification data collected from online tests,
the CP value that yielded the best performance is 4. Utilizing this parameter, six
out of the ten target movements were successfully recognized. It is observed from
the confusion matrix that the sources of error, as anticipated, stem from a delay
in the transition between muscle activation and rest states during the execution of
the experimental protocol.

The remaining movements (One, Two, Three) were recognized in an unstable
manner by the control unit. This instability is attributed to the complexity of the
movements and their similarity to others, necessitating selective control of individ-
ual fingers during gesture execution.

Despite this, real-time classification analysis allows testing hand movement recog-
nition in the real context of use within the system, highlighting the need to increase
the stability of the mentioned movements to be able to use the system with all nine
selected gestures.
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Chapter 8

Conclusion and Future
Perspective

During the thesis project, the development of a real-time and sEMG-based sys-
tem for Functional Electrical Stimulation (FES) control was initiated. The anatom-
ical area targeted by the system is the hand. Therefore, following a detailed study of
hand anatomy and muscular structure, the architecture of the sEMG signal acquisi-
tion system was defined. The architecture consists of 5 independent devices, which
are used synchronously through software enabling interaction with the devices and
visualization of the obtained data within a Graphical User Interface (GUI).

The data of interest, transmitted to the control unit via bluetooth, are obtained
from the sEMG signal to which the ATC paradigm is applied. This paradigm al-
lows computing parameters closely related to muscle activation and generated force.
The extracted parameters are used for modulating stimulation parameters.

After completing the initial phase dedicated to the development of the acquisi-
tion system and software adaptation, the project focused on integrating a classifier
within the control unit. Therefore, 9 movements were selected and performed by
12 subjects involved in the experimentation, suitably organized within an acquisi-
tion protocol. The classifier training phase was divided into two areas: the first
focused on creating a multi-subject dataset, while the second focused on a specific
and personalized dataset for a single individual.

The specific approach to individual subjects was adopted based on the primary
mode of system usage, the therapist-patient mode. This method of carrying out
rehabilitation activities involves using the acquisition system on the therapist, who,
by performing movements, directly determines the stimulation parameters admin-
istered to the patient. This way, the stimulation is directly controlled by the infor-
mation obtained from the therapist’s muscle activations.
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To maximize performance, a phase of model optimization was conducted to de-
fine key elements of the neural network architecture, chosen as the machine learning
model for multi-class classification. Additionally, different types of datasets were
evaluated based on the number of devices used. For the multi-subject case, vari-
ous subject distributions between training and test sets were also randomly tested,
maintaining a distribution of 9 and 3 subjects, respectively, between the two train-
ing and test set.

Finally, classifier performance was evaluated based on the results obtained in
the previous optimization phase. At this stage of the work, criticalities emerged in
the classifier’s ability to address the high intersubject variability, already observed
in the preliminary phases of model training analysis. Therefore, integration of the
multi-class model within the control unit was not pursued, and no online tests were
conducted in this regard.

In the context of the dataset built on the individual subject, however, the results
were significantly better, with an average accuracy value of 86.1%. The best model
was then integrated into the control unit and tested in real-time mode, showing
promising prospects for integrating the classifier into the overall system.

The continuation of the project has, as its primary objective, the integration of
the classifier within the overall system, in order to test its functionalities applied
to electrical stimulation.

The classifier primarily serves as a control function for the application of electri-
cal stimulation to the patient. In this way, stimulation can only be initiated after
the movement has been recognized, ensuring that the ATC signals input into the
control unit derive from the execution of a movement for rehabilitative purposes.

Furthermore, considering the high number of acquisition channels, it will be
necessary to condense the information contained in the ATC data within the stim-
ulation channels, which are different in number and positioning compared to the
acquisition channels. Therefore, the predicted class information from the classifier
can be used as an additional parameter for modulating the FES parameters.

The integration with FES was initiated in the final phase of the project, provid-
ing a preliminary solution for integrating the predicted class index for stimulation
control.
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