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Summary

Stress is defined as a physiological response to mental, physical, or emotional
stimuli and affects many people all over the world compromising their health. This
study aims to develop a closed-loop neurostimulation system based on binaural
beats (BB) for stress reduction exploiting heart rate variability (HRV) features
and chest acceleration data collected with the Polar H10 chest strap. Twenty-two
healthy participants took part in a protocol consisting of four separate acquisitions.
The first was aimed at training an artificial intelligence model for real-time stress
recognition, the successive two evaluated the effects of a fixed stimulation at
16 Hz and our proposal, the last session was performed to evaluate any habit
effects of the protocol. During a session, each candidate performed an arithmetic
test, then watched a sequence of relaxing, stressful, and relaxing videos, and
performed a Stroop test. At the beginning of each session, candidates observed
three minutes of rest (baseline). Six types of artificial intelligence models were
trained, each using multiple feature extraction strategies. The best-trained model
was the Random Forest (RF) classifier which achieved more than 84% accuracy in
recognizing three levels of stress. However, in subsequent sessions, the accuracy
decreased significantly (to 44%, 41%, and 49%, respectively), probably due to the
normalization of the data, based on the specific baseline of each session instead
of that used in the initial training. A statistical analysis of HRV features showed
that the protocol was designed properly to induce stress. In contrast, the use of
BBs did not show significant effects, contrary to the literature. This result may be
due to the heterogeneity of the studied group and the complexity of the proposed
cognitive tests. In conclusion, this study explored an innovative neurostimulation
technique exploiting BBs and low-cost portable devices. Future work will allow to
optimize the performance of this system extending its application also to a wider
population.
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Chapter 1

Introduction

Mental stress is an issue that compromises the mental and physical health of
people worldwide. The increasing complexity of social, economic and occupational
pressures, has led to an increase in the manifestations of stress and related disorders.
Chronic stress has been linked to numerous health problems such as hypertension,
coronary artery disease, high heart rate, high blood pressure, muscle tension,
depression, anxiety, and irritability [1, 2, 3]. A report by EU-OSHA reported the
estimated costs due to work stress-related illnesses for each state: estimates differ
among countries but the costs are in the millions and even billions of euros [4].
For these reasons, measuring mental stress has become crucial to fully understand
its impacts on human health and to develop effective prevention and management
strategies.

Stress can be described as the body’s response to physical, mental or emotional
stimulus [5]. This unexpected stimulus causes the activation of a cascade of
biological responses (stress response) in the brain and in the body [6]. The current
gold-standard for stress assessment is the Cortisol response magnitude [6], but in
[7] has been found that an indicator based on HRV (Heart Rate Variability) is
consistent with the results obtained from Cortisol response magnitude. In addition,
HRV has the advantage of being very easy to record, being noninvasive and being
able to obtain it from wearable devices.

This master’s thesis aims to develop a method for real-time stress detection
using HRV and accelerometer data, and to react through binaural beats (BB)
modulated stimulation with the aim of stress reduction. Since the most widely
used stress detection methods in the literature exploit artificial intelligence [8],
algorithms such as Support vector machines (SVM), Random forests (RF), and
Multilayer perceptron (MLP) will also be explored in this thesis.
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1.1 Heart Rate Variability (HRV)

1.1.1 Heart

The heart is a vital organ that acts as a pump for the circulatory system, ensuring
the circulation of blood throughout the body. It is located in the mediastinum,
i.e. the central compartment of the thoracic cavity. Within this organ there are
myocardial cells, a type of muscle cell that can generate and conduct electrical
impulses, enabling the heart to contract in a coordinated and rhythmic manner.
Cardiac activity, therefore, does not depend directly on stimulation by the nervous
system, however, the autonomic nervous system is able to regulate it, modulating
the frequency and the force of contraction of the heart muscle [9].

The heart is divided into four chambers: the right and left atrium, located at
the top, which receive blood from the veins; the right and left ventricle, located
at the bottom, which pump blood into the arteries. The heartbeat consists in the
rhythmic contraction (systole) and relaxation (diastole) of the entire muscle mass
of the heart. Electrical activity begins in the sinoatrial node (SA) and propagates
from cell to cell, contracting first the atria and then the ventricles [9]. See Fig. 1.1.

Figure 1.1: Heart’s electrical conduction system.
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The depolarization and the following repolarization of myocardial cells generates
electric fields that are able to propagate from the heart to the epidermis. The
electrocardiogram (ECG) is a noninvasive cardiological examination that allows to
record this electrical activity by placing electrodes on the subject’s skin. Analysis
of the ECG tracing provides valuable information about cardiac function.

1.1.2 Electrocardiogram (ECG)

A "standard" ECG includes 12 different leads, each describing the same heartbeat
at the same instant, but from different viewpoints. 12-lead ECG is obtained by
connecting 10 electrodes to the patient: 1 electrode on each limb (Right Arm (RA),
Left Arm (LA), Right Leg (RL), Left Leg (LL)) and 6 electrodes on the chest (V1,
V2, V3, V4, V5, V6) [10].

There are three limb leads, see Fig. 1.2 (first row):

1. Lead I: measured between the positive electrode on the left arm (LA) and
the negative electrode on the right arm (RA).

I = LA − RA

2. Lead II: measured between the positive electrode on the left leg (LL) and
the negative electrode on the right arm (RA).

II = LL − RA

3. Lead III: measured between the positive electrode on the left leg (LL) and
the negative electrode on the left arm (LA).

III = LL − LA

These 3 limb leads form the Einthoven’s triangle, named after Willem Einthoven
who invented the first practical ECG [10].

There are three Augmented limb leads, see Fig. 1.2 (second row):

4. Lead augmented vector right (aVR): measured between the positive
electrode on RA and the negative pole that is a combination of LA and LL.

aV R = RA − 1
2(LA + LL)

3
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5. Lead augmented vector left (aVL): measured between the positive elec-
trode on LA and the negative pole that is a combination of RA and LL.

aV L = LA − 1
2(RA + LL)

6. Lead augmented vector foot (aVF): measured between the positive
electrode on LL and the negative pole that is a combination of RA and LA.

aV F = LL − 1
2(RA + LA)

Figure 1.2: Limb leads and Augmented Limb Leads.

Six Precordial Leads (V1, V2, V3, V4, V5, V6), see Fig. 1.3, where Vi is the
positive electrode and the common virtual electrode also known as Wilson’s central
terminal (Vw) is the negative pole.

VW = 1
3(RA + LA + LL)

The limb leads and Augmented limb leads are used to study the sagittal plane
of the heart, while the precordial leads allow the study of the transverse plane of
the heart. It is important to notice that there is also an electrode on the Right Leg
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Figure 1.3: Precordial leads placement. (Mikael Häggström, CC0, via Wikimedia
Commons)

(RL), but it is used as a grounding lead that helps minimize ECG artifact, therefore
it is not present in ECG reading [10]. In the following I will refer exclusively to the
limb lead I signal.

One heartbeat creates an ECG signal like in Fig. 1.4. All the waves in the ECG
have a physiological meaning:

• P wave: it is the first wave of the heartbeat, it represents depolarization of
the atria after SA node activation.

• PR interval: it is the time the electrical impulse takes to travel from the SA
through the AV node.

• QRS complex: represents the rapid depolarization of the right and left
ventricles. Since ventricle muscles are stronger than atria muscles, QRS
complex usually has a much larger amplitude than the P wave.

• ST segment: it is the period when the ventricles are depolarized.

• T wave: it represents the repolarization of the ventricles.

5
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Atria repolarization is not visible in the tracing as it is obscured by the depolarization
of the ventricles.

Figure 1.4: ECG of a heartbeat in normal sinus rhythm. (Created by Agateller
(Anthony Atkielski), converted to svg by atom., Public domain, via Wikimedia
Commons)

1.1.3 RR intervals
Heart Rate Variability is the variation in time interval between heartbeats [11] and
it can be measured from the ECG. First the R peaks of each heartbeat are identified,
either by algorithms such as Pan-Tompkins [12] or wavelet transforms [13] or by
visual inspection. Once the R peaks are detected, RR intervals, i.e. the time
intervals between successive R peaks, are calculated. Using the RR intervals, the
tachogram is created: RR intervals series vs progressive number of beats [11]. RR
intervals can also be referred to as NN (Normal to normal) intervals, i.e. intervals

6
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between QRS complexes resulting from sinus node depolarizations. Example of
tachogram in Fig. 1.5.

Figure 1.5: ECG and RR Tachogram example.

1.1.4 HRV measures
To study HRV, several parameters can be calculated from the tachogram. The 2
main methods of HRV analysis are:

• Time Domain Methods [11]: derived directly from the analysis of RR
intervals in the tachogram. Most used parameters are described in Table 1.1.

• Frequency Domain Methods [11]: they derive from power density spectrum
(PSD) analysis, which can be obtained by nonparametric methods (like FFT,
simpler approach) or parametric methods (smoother spectra, but more complex
to use), as shown in Fig. 1.6. Most used parameters are described in Table
1.2.

To properly analyze HRV using frequency domain parameters, it is necessary
that the recording lasts 10 times the wavelength of the lowest frequency to be
investigated. Thus, to assess HF components (lower frequency 0.15 Hz) is needed
at least 1 min of recording (1/0.15 ∗ 10 ≈ 67 s), even more for LF components [11].

7
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Variable Description
SDNN Standard deviation of RR intervals

SDANN
Standard deviation of the average NN intervals
calculated over short periods, usually 5 minutes

RMSSD
Root mean square of successive differences,

i.e. differences between adjacent NN intervals
SDSD Standard deviation of successive differences

NN50 The number of pairs of successive NNs
that differ by more than 50 ms

pNN50 The proportion of NN50
divided by total number of RR intervals

NN20 The number of pairs of successive NNs
that differ by more than 20 ms

pNN20 The proportion of NN20
divided by total number of RR intervals

Table 1.1: HRV parameters for Time Domain methods.

Variable Description Frequency range
V LF Power in very low frequency range 0 ↔ 0.04 Hz
LF Power in low frequency range 0.04 ↔ 0.15 Hz
HF Power in high frequency range 0.15 ↔ 0.4 Hz

Variable Description Formula

LFnorm LF power in normalised units LF

total power − V LF
∗ 100

HFnorm HF power in normalised units HF

(total power − V LF ) ∗ 100

LF/HF Ratio LF/HF

Table 1.2: HRV parameters for Frequency Domain methods.
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Figure 1.6: PSD estimation with FFT (non parametric) and order 20 autoregres-
sive model (parametric).

1.1.5 How HRV is linked to stress?

HRV is the temporal variation between heartbeats, a phenomenon underlying heart
rate that reflects the balance between the sympathetic (SNS) and parasympathetic
(PNS) nervous systems [14]. The biological stress response is characterized by
the synchronized activity of the autonomic nervous system (ANS) and hypothala-
mic–pituitary–adrenal (HPA) axis.

Stimulation of the ANS immediately activates the sympathetic nervous system
branch, resulting in the releasing of epinephrine and norepinephrine [11] that
cause increased heart rate, blood pressure, and secretion of salivary alpha-amylase.
Activation of the slower acting HPA axis results in the secretion of corticotropin-
releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol [15].
Instead, the parasympathetic influence on heart rate is mediated via release of
acetylcholine by the vagus nerve [11].

HRV thus represents the ability of the heart to respond to physiological and
environmental stimuli. A low HRV is due to a very regular heartbeat and is
associated with impaired regulatory functions of the ANS, indicating low adaptive
capacity. In contrast, high HRV is associated with increased activity of the PNS
and reduced activity of the SNS, which is cardioprotective [16, 17]. To summarize,
during a stressful stimulus, heart rate increases, i.e. RR intervals decrease, and
HRV decreases leading to lower values of SDNN and RMSSD, decreasing HF-band
power, increasing LF-band power. Normative data of some HRV parameters [18,
19] are shown in table 1.3.
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Parameter Range
RR interval 650 ↔ 1000 ms

SDNN 32 ↔ 93 ms
RMSSD 19 ↔ 75 ms

LF 193 ↔ 1009 ms2

HF 83 ↔ 3630 ms2

Table 1.3: Normative data of RR interval, SDNN, RMSSD, LF and HF power.

1.2 Accelerometer
An accelerometer is a sensing device used to measure acceleration, i.e. the change
in the velocity of an object as a function of time. This makes them useful for
monitoring the motion of an object. The working principle of an accelerometer is
based on the use of a mass inside a device, connected through a spring to the outer
case (Fig. 1.7).

Figure 1.7: Working principle of an accelerometer.

The external case will be applied to the object whose acceleration has to be
studied. When the object moves, the mass inside the accelerometer is subjected to
an inertia force that will oppose the movement (1.1a). The inertia is balanced by
the force exerted by the deformed spring (1.1b), therefore obtaining (1.2).

F = ma (1.1a)
F = kx (1.1b)
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ma = kx (1.2)

From (1.2) it is possible to derive (1.3), thus by knowing k and m and measuring
x (the deformation of the spring), it is possible to obtain the acceleration of the
object.

a = k

m
x (1.3)

The system described is only able to detect acceleration along one axis, but to
obtain the acceleration in three-dimensional space it is possible to replicate the
same device 3 times, placing each device along 3 perpendicular spatial directions
(Fig. 1.8).

Figure 1.8: Example of a triaxial accelerometer.

For stress detection may be useful to measure acceleration of the subject chest
in order to obtain:

• chest movement with respect to the body trunk, i.e. subject’s breathing rate
[20];

• body trunk movement.

1.3 Binaural Beats
When two sinusoids of constant amplitude but slightly different frequencies are
added together, they interfere creating a new wave whose amplitude varies over
time with a frequency equal to the frequency difference between the sinusoids ∆f

11
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(Fig. 1.9). When this sound is heard through ears, the perception is to hear beats
at ∆f frequency, and those are called "Acoustic beats" [21].

Figure 1.9: Example of an acoustic beat.

Instead, when a sinusoid with constant amplitude and frequency f0 is presented
to one ear, and another sinusoid with constant amplitude and frequency f0 + ∆f
is presented to the other ear, even though both sinusoids are steady there is a
perception of amplitude modulated beats, with frequency ∆f located in the center
of the head. Those beats are called "Binaural Beats" (BB) [21], as shown in Fig.
1.10. The reason why Binaural Beats can be perceived is due to auditory pathways.
It shows that the discharge of the neurons in the auditory nerve preserve the
acoustic wave phase information, and in the point where auditory system from both
ears are combined, the signals are combined together with their respective phase
[22]. In [23] has been found that Binaural beats are present when the stimulating
tones frequency are less than 1000 Hz and ∆f is less than 40 Hz.

The electroencephalogram shows 5 main frequency bands for neural activity:
delta band (< 4 Hz), theta band (4 - 8 Hz), alpha band (8 - 13 Hz), beta band (13
- 30 Hz), gamma band (> 30 Hz). BB waves can be used to stimulate neuronal
activity of a specific band by exploiting the ∆f frequency of the beats. A few
examples in [24, 25, 16].
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Figure 1.10: Example of Binaural Beats.

1.4 Machine Learning Algorithms
In this section [26] is used as a reference. Machine learning is a field of study in
artificial intelligence concerned with developing methods to enable computers to
learn without being explicitly programmed. Classification and regression are two
common task in machine learning. Classification is the problem of identifying to
which category (or class) an observation belongs to. Regression is the estimating
of the relationships between a dependent variable and one or more independent
variables. In our case observations or independent variables will be referred to as
"features", while the dependent variable or category will be referred to as "label".

Machine learning approaches are usually divided into three categories:

• Supervised learning: is the task of learning a general rule that maps an input
(features) to an output (labels) based on numerous examples of input-output
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pairs.

• Unsupervised learning: unlike supervised learning, no labels are given to
the learning algorithm. Algorithms are free to discover data structures data
on their own.

• Reinforcement learning: the algorithm interacts with a dynamic environ-
ment in which it must perform a certain goal. As it navigates its problem
space, the algorithm receives feedback, analogous to rewards, which it tries to
maximize.

There are several algorithms that enable machine learning. In this thesis 3
supervised learning algorithms are explored: Support Vector Machine, Random
Forest and Multilayer Perceptron.

1.4.1 Support Vector Machines
The following information come mainly from [27]. Support Vector Machines (SVM)
are supervised learning models able to perform classification and regression. In
order to understand the basics, let’s consider a 2 class classification problem. SVM
maps training examples to points in N-dimensional space, where N is the number
of feature used as input, and its goal is to separate such points with an hyperplane,
that is a linear surface whose dimension is N-1. For this reason SVMs are considered
linear classifiers. Teoretically there are many hyperplanes that might classify the
data but a reasonable choice is the one that represents the largest separation, or
margin, between the two classes, i.e. the hyperplane that maximizes the distance
between itself and the nearest data points on each side. An example in Fig. 1.11.

It may happen that the sets to discriminate are not linearly separable in that
space. The solution proposed is the "kernel trick": a mathematical trick that takes
advantage of a kernel function which projects data from a low-dimensional space
to a space of higher dimension [28]. Simply put, it is like adding extra features
obtained from combination of starting feature, thus increasing the dimensionality
of the space. This allows to separate data in a non-linear way in the original space.
An example in Fig. 1.12.

The SVM algorithm used in this thesis is the one implemented within the
scikit-learn library for Python [29, 30].
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Figure 1.11: SVM binary classification example.

Figure 1.12: Example of kernel trick on a 2D non-linear classification problem.
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1.4.2 Random Forest
Before understanding random forest it is important to understand what is a Decision
Tree (DT). Decision tree is a supervised learning approach used for classification
and regression. A general structure of a DT is shown in Fig. 1.13.

Figure 1.13: Structure of a Decision Tree.

A tree is built by splitting the dataset, represented by the root node, into
subsets, thus creating the successor children. This process is repeated on each
derived subset in a recursive manner (Decision Node). The recursion ends when
the subset at a node has all the same values of the target label or when splitting
no longer improve prediction performance (Leaf Node). There are several splitting
rules based on different metrics and the best one may vary from case to case. Some
metrics examples are: Gini impurity, Information gain, Variance reduction [31].

Decision trees that are grown very deep tend to overfit their training sets. It
is possible to overcome this issue by using random forest. Random Forests (RF)
or random decision forests is an ensemble learning method that can be used for
classification and regression. An ensemble learning method use multiple learning
algorithms to obtain better predictive performance than could be obtained from
any of the constituent learning algorithms alone [32]. For classification tasks, the
output of the random forest is the class selected by most trees, while for regression
tasks, the mean prediction of the individual trees is returned. Random forest is
thus a set of decision trees, hence the name "forest". While "Random" is what really
takes care of the overfitting issue. Two source of randomness are used:

• Bagging (or bootstrap aggregating): consists of giving to each tree of the
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forest only a subset of the original dataset. Random sampling with replacement
is used, thus allowing to select multiple times the same sample while creating
the subset. Then each tree is trained and the results are aggregated.

• Random features subset: each tree uses a different subset of the features
used in the dataset.

This randomness is what ensures that the trees are highly differentiated from one
another [32]. A single tree can overfit on its subset, but the whole forest won’t.

The RF algorithm used in this thesis is the one implemented within the scikit-
learn library for Python [29, 30].

1.4.3 Multilayer Perceptron
A multilayer perceptron (MLP) is a feedforward artificial neural network, consisting
of a system of simple interconnected neurons, as illustrated in Fig. 1.14. The nodes
(neurons) of each layer are fully connected with each node of the next layer. Each
connection has its weight. Within a neuron, the weighted inputs are added together
and an activation function is applied to the sum. The result obtained is the output
of the neuron (see Fig. 1.15) [33]. The "Activation function" is the function that
links the input of neurons to their output. Using simple non-linear function on lots
of neurons enables the multilayer perceptron to approximate extremely non-linear
functions [33]. Most commonly used activation function are "Sigmoid" and "ReLU"
(Fig. 1.16).

Figure 1.14: Structure of the MLP with k hidden layers.

Modern feedforward networks are trained using the backpropagation method
[33]. In supervised learning the learning process is possible by changing connection
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Figure 1.15: MLP neuron structure.

Figure 1.16: Sigmoid and ReLU activation functions for MLP neuron.

weights of every neuron after each piece of data is processed, based on the amount
of error in the output compared to the expected result, as illustrated in 1.17.

The MLP algorithm used in this thesis is the one implemented within the
scikit-learn library for Python [29, 30].
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Figure 1.17: Backpropagation in MLP.

1.5 Overview of Previous Studies

The scientific literature has extensively explored the topic of stress through the
analysis of HRV as a physiological indicator. The aim of this thesis is to broaden
its understanding by examining the effects of BB modulation on stress. The review
conducted by Vos et al. [8] highlights the presence of numerous scientific articles
that identify stress in a binary manner using machine learning techniques such as
SVM, RF, MLP, k-Nearest Neighbors (kNN), and Principal component analysis
(PCA), after signal acquisition. Regarding BB stimulation, studies by Katmah et
al. [5] and Al-Shargie et al. [24] are of interest, as they observed reduced mental
stress and improved performance in cognitive tasks through the use of BB at a fixed
frequency and volume. The work of Choi et al. [34] deserves special attention, as
they developed a system based on wearable sensors for the simultaneous collection
of various physiological signals, including HRV and Electrodermal Activity (EDA).
The experimental protocol used, similar to the one adopted in this research, involves
the application of various stressful tasks such as the Stroop test, public speaking
and memory search, alternating each stressful task with more relaxing activities,
such as deep breathing exercises.
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1.6 Objective
The goal of this study is to create a closed-loop system that can modulate a BB
stimulation in real-time with the aim of reducing detected stress. To achieve the
goal 3 steps are required:

1. creation of a protocol that is able to induce both stress and relaxation in
subjects, so that the model can learn from data of different types;

2. creation of a model that can estimate the stress level in real-time;

3. development of a method to adapt binaural beat stimulation according to the
estimated stress.
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Chapter 2

Methodology

2.1 Participants
Twenty-two healthy subjects (13 males and 9 females, age 35 ± 16 years old)
participated in this study. Inclusion criteria were normal hearing, no heart problems,
not color blind and accustomed to use a computer. All inclusion criteria were based
on the subject’s self-report. Participants were asked not to take coffee, alcohol
and smoke 3 hours before the test. Participants are aware of collected data and
have signed an informed consent. The study protocol was prepared following the
principles of ethical research as of the declaration of Helsinki.

2.2 Collected data
The following data were collected from each participant:

• age;

• biological sex;

• RR intervals tachogram;

• tri-axial accelerometer;

• outcome responses during arithmetic and stroop tests;

• response times during arithmetic and stroop tests;

• estimation of self-reported stress level at the end of each task.
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Age and biological sex allow us to understand how stress may vary among
different demographic groups. RR intervals and tri-axial accelerometer measure-
ments are used to train and use the artificial intelligence model that will detect, in
real-time, the participant’s stress level. Outcome responses, thus the percentage of
correct answers, and response times during the arithmetic and stroop tests are used
to assess any improvements due to the effect of binaural stimulation or learning.
Finally, estimation of self-reported stress level at the end of each task enables
labeling of data that will be used to train and test the machine learning model (see
section 2.6.6).

2.3 Equipment
Equipment used includes:

• Polar H10 heart rate sensor;

• ASUS laptop computer;

• Mi In-ear Headphones Basic with jack connector.

The Polar H10 heart rate sensor is a chest strap, which records and transmits
data in real-time to the computer (see section 2.3.1). The computer is needed
throughout the test (see section 2.6) and is where relaxing and stressful videos will
be shown and arithmetic and Stroop tests will be performed, while headphones are
necessary to be able to listen to BBs and videos while isolating outside noise. Fig.
2.1 shows the equipment used during the protocol.

2.3.1 Polar H10
The Polar H10 chest strap, in Fig. 2.2, is a heart-rate monitoring device specialized
in fitness and physical activity monitoring. This chest strap is designed to accurately
measure heart rate during physical activity and send data to compatible devices
via Bluetooth and ANT+ technology [35]. The PolarH10 sensor is equipped with a
comfortable elastic band that does not bother during physical activity and it is
adjustable to fit different chest sizes. It is water-resistant and has a long battery
life. In addition, the PolarH10 band also has a triaxial accelerometer inside that
can be streamed in real-time [36]. How RR intervals are extrapolated from the
heart signal is not a public information, but the resolution appears to be less than 2
ms and tests with ECGs and other wearable devices show that the Polar H10 chest
strap is an excellent sensor for HRV measures both at rest and during physical
activity [37, 38].
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Figure 2.1: Equipment setup for protocol.

Figure 2.2: Polar H10 chest strap.

2.4 Feature Extraction
Since one of the objective of this thesis is to develop a system that can estimate
stress in real-time, the sliding window technique is exploited, i.e. only the last few
seconds of the recorded signal are analyzed to extract features of interest.
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Extracted feature for RR intervals are in table 2.1. Extracted feature for the
acceleration are in table 2.2.

Variable Description Formula

SDNN
Standard deviation

of RR intervals

ó
1

N − 1
qN

i=1 (RRi − RR)2

RMSSD
Root mean square

of successive differences

ó
1

N − 1
qN

i=1 (RRi+1 − RRi)2

RR Mean value of RR intervals 1
N

qN
i=1 RRi

pNN50 The proportion of NN50
divided by total number of RR intervals

Count((RRi+1 − RRi) > 50ms)
N − 1

pNN20 The proportion of NN20
divided by total number of RR intervals

Count((RRi+1 − RRi) > 20ms)
N − 1

last RR Most recent RR value in the window RRN

Table 2.1: Tachogram and HRV features extracted from the window. The window
has N RR intervals. RRi is the i-th interval in the window.

Variable Description Formula

Acc
Mean value

of the acceleration
1
N

qN
i=1 Acci

SDAcc
Standard deviation
of the acceleration

ó
1

N − 1
qN

i=1 (Acci − Acc)2

change Acc
Number of sign changes

of the derivative (Dacc) of acceleration Count((Dacci+1 · Dacci) < 0)

Hs(ACC) Shannon Entropy
of the acceleration − q

i p(Acci) · ln p(Acci)

Table 2.2: Acceleration features extracted from the window. Each feature is
extracted on all 3 signals of the accelerometer (x-axis, y-axis, z-axis). Acci is the
i-th sample in the window. p(Acci) is the probability of a specific sample of the
signal and it is simply calculated as the number of time Acci appears in the window
divided the length of the window.

It is important to note that since the length of the window used is at most 10
seconds (section 2.7.1), an analysis in the frequency domain is not possible, since the
frequency resolution obtained is, at best, 1/10 = 0.1 Hz. Such low resolution does
not allow for proper frequency analysis. A simple workaround used for acceleration
is the change Acc feature, that tries to give a little information about the rate of
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change of the signal. A visual example is shown in Fig. 2.3

Figure 2.3: Visual example of change Acc feature. In this window there are 26
direction changes of acceleration (red arrows).

2.5 Data Pre-processing
The PolarH10 heart rate sensor connects via Bluetooth to the PC and allows
real-time streaming of RR intervals and tri-axial acceleration. The pre-processing
is done on the analysis window. The typical range of RR intervals is between 300
ms and 1300 ms range of 300 ms, equivalent to a range of 46 to 200 beats per
minute (bpm) [39], therefore RR intervals outside this range are discarded and
replaced by interpolation with Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) technique. If more than 30% of RR intervals in the analyzed window are
discarded in this way, the whole window is discarded.

The accelerometer is sampled at 25 Hz. The accelerometer signal is filtered in
real time using data from the last 60 seconds (less if a minute is not passed). This
is to reduce the distortion effects that filtfilt filtering introduces both because of
the filter transient and because of the inability to set the initial filter conditions in
the scripts used. Fig. 2.4 shows filtering from the recorded accelerometer signal
over a random window of 10 and 60 seconds. This figure emulates the filtering that
occurs in real-time, using the last 10 and 60 seconds. The full filtered signal has
been included as a reference.

The signal is high-pass filtered at 0.04 Hz (second-order Butterworth filter) to
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remove the component due to gravity: gravity causes a constant acceleration along
the axes into which it can be decomposed, but a simple removal of the mean value
does not take into account a possible slight rotation, during the acquisition, of the
accelerometer reference system that leads to changes in the decomposition of the
force of gravity in the 3 axes. The signal is low-pass filtered at 2.5 Hz (second-order
Butterworth filter) to reduce noise; the threshold at 2.5 Hz was chosen by looking
at the power spectrum of the signal and trying to preserve the highest frequency
that had a significant contribution. The goal is to record the respiratory signal,
whose normal bandwidth is ≈ [0.1 ↔ 0.5] Hz [40], and torso movements as well.
The accelerometer signal is filtered in the same way for all 3 axes.

Figure 2.4: Simulation of real-time filtered accelerometer signal. In blue the
entire signal is filtered (reference), in black the last 60 seconds are filtered, in red
the last 10 seconds are filtered. The black signal is closer to the reference, except
for the end of the window where it is closer to the red one.

2.6 Protocol
The participant wears the PolarH10 chest strap, sit in front of the computer, in a
dimly lit room, and wears headphones. The protocol consists of 4 acquisitions, to
be made on different days, waiting at least 5 days between each acquisition. The
first acquisition has the purpose of acquiring data to build an artificial intelligence
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model that can estimate stress in real time. In the second acquisition, half of
the participants will be randomly selected and will be exposed, throughout the
test (baseline excluded), to binaural beats (BB) modulated according to the stress
detected by the trained model. The other half will be exposed to fixed binaural
beats. The third acquisition is the opposite of the second: participants who had
been exposed to modulated BB will now be exposed to fixed BB and vice versa.
Finally, the fourth acquisition is used to verify that any reductions in stress are
actually due to BB rather than a protocol habit effect.

A single acquisition involves performing 6 tasks, lasting approximately 3 minutes
each. The tasks are: baseline, arithmetic test, relaxing video, stressful video,
relaxing video and Stroop test. At the end of each task, the participant is asked
to rate the average stress level perceived (self-reported stress level). Between
acquisitions, the order of the 6 tasks is randomized, but there are some constraints
to be met:

• the baseline must be first: it serves as a reference to normalize all data acquired
in subsequent tasks.

• the last task should be either the arithmetic test or the Stroop test: these
tasks stimulate a sense of challenge within people and can help keep the
participant’s interest high until the end.

• there must be alternation between stressful task and relaxing task: this allows
the participant to recover from the stressful state.

Before starting the acquisition, the subject is required to adjust the computer
brightness and volume to be comfortable. Participants are informed of the type of
tasks in the protocol, but not the order in which they will be performed. The task
order for each acquisitions is shown in Fig. 2.5.
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Figure 2.5: Task order in each acquisition. Used videos are listed in appendix A.

2.6.1 Baseline

The baseline consists of a video without audio. Kuijsters et al. [41] suggest the use
of kaleidoscope videos instead of a blank screen to avoid boredom and annoyance
to participants. Different videos are used for different acquisitions. Used videos are
listed in appendix A. This task serves to acclimatize the participant and to have
an initial reference to normalize the data of subsequent tasks. From the baseline,
all features necessary for the artificial intelligence model are extracted and are
normalized using the Standard Scaler algorithm of the scikit-learn library [29, 30].
The algorithm applies the transformation:

z = (x − u)
s

where x is the sample of the baseline, u is the mean and s is the standard deviation
of the samples, thus removing the mean and scaling to unit variance. As indicated
by the scikit-learn library, this step is a necessary pre-processing to be applied to
all input data before feeding the model.

28



Methodology

2.6.2 Arithmetic Test
Arithmetic test is one of the most widely used mental stressor [42, 43, 44, 45],
but in this protocol it was slightly modified to further increase the time pressure.
This test involves answering a series of multiple-choice mathematical calculations
within a time limit. The time limit is reduced by 0.5 s for each correct answer and
increased by the same amount for each error. The minimum time is 3 s and the
maximum time 5 s. The timer is always visible during the task. As soon as the
subject gives an answer, a new random question is immediately generated, and in
case of an error in the previous answer, the text "Risposta sbagliata!" or "Risposta
non data!" is shown in red on the screen for 1 s. A screenshot is shown in Fig. 2.6.

Figure 2.6: Screenshot of the Arithmetic Test. Time left in the upper right
corner.

Each question has the following structure:

N1 operator N2 = Result

where N1, N2 and Result are integers and operator is one of the four basic arithmetic
operators (addition +, subtraction -, multiplication ·, division /). In the case of
addition and subtraction, N1 is a random number between 200 and 2000, while
N2 is a random number between 10 and 100. In the case of multiplication, N1 is
a random number between 11 and 20, while N2 is a random number between 5
and 15. In the case of division, N2 is a random number between 5 and 9, while
Result is a random number between 5 and 15, consequently N1 is obtained from
Result · N2. To further increase the difficulty, wrong answers are taken within a
range of ±20 in the case of addition, subtraction and multiplication, while the
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range is reduced to ±5 for division.
At the end of the test, the result obtained is shown compared with the ones

obtained by other participants, thus stimulating participants’ competition. To have
reproducibility among different subjects within the same acquisition, a random
seed was set. The random seed is different between acquisitions.

2.6.3 Relaxing Video
The relaxing video task requires to watch a relaxing video. The goal is to induce a
relaxation state in the participant in order to recover from the previous stressful
task. Two videos per acquisition are shown, but different between acquisitions.
Used videos are listed in appendix A.

2.6.4 Stressful Video
The stressful video requires to watch a horror video. The goal is to induce a
stressful state in the participant. Different videos are used for different acquisitions.
Used videos are listed in appendix A.

2.6.5 Stroop Test
Stroop test is often used as mental stressor [5, 24], but in this protocol it was
slightly modified to further increase the time pressure. This test consists of a series
of words written in different colors (e.g., the word "red" written in blue or the word
"green" written in red) and the subject must respond with the color of the word,
ignoring the meaning of the word itself. There are 5 possible answer (i.e. colors) to
choose from, within a time limit. The time limit is reduced by 0.5 s for each correct
answer and increased by the same amount for each error. The minimum time is 1
s and the maximum time 3 s. The timer is always visible during the task. As soon
as the subject gives an answer, a new random question is immediately generated,
and in case of an error in the previous answer, the text "Risposta sbagliata!" or
"Risposta non data!" is shown in red on the screen for 1 s. A screenshot is shown
in Fig. 2.7.

Furthermore, occasionally the response mode changes, thus having to respond
with the word itself, ignoring its color. This is useful in reducing task habit effects,
in which simply stopping reading is enough to success: the change of mode forces
the mind to have to readapt each time. The difficulty of the test lies in the fact
that the human brain tends to automatically process the meaning of words, which
can interfere with the ability to identify colors.

Five colors are used: red, blue, green, yellow and purple. One random color and
one random word are selected. There is a 30% chance that the color and the word
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Figure 2.7: Screenshot of the Stroop Test.

match. This, too, aims to reduce task habit: if the word and color never match,
the subject may be inclined to immediately rule out what he or she reads, whereas
if they may happen to coincide, one is less likely to discard that information.

Before the next question is generated, if sufficient time has passed, the mode is
changed and the subject is warned with an on-screen message for 1 s (see Fig. 2.8).
The "Color" mode, that is, the one in which one has to answer with the color of
the answer, can last a random time between 30 and 45 seconds. The "Word" mode,
that is, the one in which one has to answer with the word itself, can last a random
time between 15 and 20 seconds.

Figure 2.8: (Stroop test) Change warning on screen.

At the end of the test, the result obtained is shown compared with the ones
obtained by other participants, thus stimulating participants’ competition. To have
reproducibility among different subjects within the same acquisition, a random
seed was set. The random seed is different between acquisitions.
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2.6.6 Self-Reported Stress Level
At the end of each task, the participant is asked to rate the average stress level
perceived. This value is used as the reference stress label for that specific task
during training and testing sessions of the model. The answer is given as a number
between -4 and +4, where -4 is high relaxation and +4 is high stress. Screen shown
in Fig. 2.9.

Figure 2.9: Self-Reported Stress Level screen.

2.6.7 Binaural Beats Stimolation
Binaural Beats (BBs) at 16 Hz have been shown to be effective in increasing
mental concentration and decreasing stress [5, 24]. Therefore BBs at 16 Hz will
be used in this protcol. One of the goals of this thesis is to understand whether
subject-adapted stimulation can be more effective in reducing stress and increasing
concentration than fixed stimulation. For this reason, two types of BBs stimulation
are provided:

• Fixed BBs: given at a constant 50% volume throughout the test, excluding
baseline.

• Modulated BBs: given at a volume 0%, 50% or 100%. Two stress thresholds
S50 and S100 are set. Every 5 seconds the stress detected in the previous 5
seconds is analyzed and if the stress is greater than S100, the volume is raised
to 100%. If the stress is greater than S50 but less than S100, the volume is
raised to 50%. If the stress is less than S50, the volume goes down to 0%.
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2.7 Model Training
After performing the first acquisition on all participants, the collected data are
used to train a machine learning model to be able to predict stress in real-time. In
practice, it is impossible to know a priori which parameters to choose in order to
get the best possible model, so it is necessary to do a lot of training by varying the
starting parameters each time.

2.7.1 Real-time Feature Extraction
When the model will be used in subsequent acquisitions, only the last few seconds
of the recorded signals will be available to predict the subject’s stress level. For
this reason, the training will have to reflect this limitation.

Let’s define some parameters for feature extraction:

• W L (window length) as the length of the time window.

• T BW (time between windows) as the time distance between two successive
windows.

• overlap = WL − TBW

WL
· 100 as the overlap percentage of two successive

time windows.

A graphic explanation is shown in Fig. 2.10. The chosen parameters are listed in
the table 2.3.

Figure 2.10: Window Length (WL), Time between windows (TBW ) and Overlap.
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W L [s] T BW [s] overlap
5 1 80%
5 2 60%
10 1 90%
10 2 80%

Table 2.3: Explored parameters for feature extraction.

2.7.2 Labeling Protocol
As written in the subsection 2.6.6, 9 labels are extracted from the protocol (-4 ↔
4). In the literature, the most commonly used labeling protocol is binary labeling
(stress or non-stress), but it is possible to find papers that use 3 classes (low, mid,
high stress) [8]. It has been shown that a 3-class classification is significantly less
accurate than a 2-class classification [46]. A high number of labels would allow
more precise identification of the subject’s true stress level, but there is a strong risk
that the model would fail to have sufficiently high accuracy. Therefore, alongside
the 9-class labelling protocol, the 3-class labelling protocol was also tested. The 3
classes are obtained by applying a simple transformation to the original labels:

9-class Label 3-class Label
(-4, -3, -2) ⇒ -1 (low stress)
(-1, 0, +1) ⇒ 0 (mid stress)

(+2, +3, +4) ⇒ +1 (high stress)

2.7.3 Feature Matrix
Starting from the recorded signals, we slide by TBW seconds and extract the
previous WL seconds. Let’s define as t0 the time at the beginning of the extracted
window and as tc (current time) the time at the end of the window. From this
window all the features described in the section 2.4 are calculated, thus obtaining a
vector 1×18, 6 feature deriving from HRV and 12 feature deriving from acceleration
(4 features × 3 axis). The assigned label to this vector corresponds to the label the
subject gave to the task performed at time tc.

Repeating this step for all the windows that can be extracted from the individual
subject and on all participants in the protocol, we construct the feature matrix
N samples × 18 features and the vector of labels N samples × 1. Then the data
are shuffled so that the machine learning algorithms are not affected by the order
in which the data were extracted.

The resulting dataset is not balanced. It is therefore necessary to balance
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it before training the model. The technique used is Random Undersampling,
implemented in the python imbalanced-learn library [47]. Random undersampling
it is the simplest undersampling technique and it involves randomly deleting samples
from the majority class. This technique reduces the bias in selecting which samples
to delete, but may remove valuable information for training.

2.7.4 Machine Learning Training

As already mentioned in the subsection 1.4, three supervised learning algorithms
are explored: SVM, RF and MLP. For all three, the scikit-learn library has already
implemented the classifier and the regressor algorithms. Therefore, 3 classifiers and
3 regressors will be used as machine learning models. Before starting model training,
the feature matrix (i.e., the starting dataset) is further divided into Training set
(80% of the dataset) and Testing set (20% of the dataset). These machine learning
algorithms need hyper-parameters, i.e. parameters that are not directly learned
during training. To fine-tune the hyper-parameters, a grid search is performed,
exploiting the GridSearchCV algorithm from the scikit-learn library [29, 30]. Once
all the hyper-parameters to be explored have been chosen, the GridSearchCV
algorithm uses every possible combination of the parameters and trains the models
using 5-Fold Cross-Validation to reduce overfitting. The score used to evaluate the
performance of a trained classifier is accuracy, while for a trained regressor R2 is
used.
Hyper-parameters searched for the SVM Classifier are listed in table 2.4.
Hyper-parameters searched for the RF Classifier are listed in table 2.5.
Hyper-parameters searched for the MLP Classifier are listed in table 2.6.
Hyper-parameters searched for the SVM Regressor are listed in table 2.7.
Hyper-parameters searched for the RF Regressor are listed in table 2.8.
Hyper-parameters searched for the MLP Regressor are listed in table 2.9.

SVM Classifier
Parameters Search Values

C [0.01, 0.1, 1, 10, 20]
gamma [0.001, 0.01, 0.1, ’scale’, ’auto’]
kernel [’linear’, ’rbf’]

Table 2.4: SVM Classifier hyper-parameters used in grid search.
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RF Classifier
Parameters Search Values
n_estimators [50, 75, 100, 150, 200, 500, 750, 1000]

criterion ["gini", "entropy", "log_loss"]
max_features [’sqrt’,’log2’, None]

bootstrap [True]
n_jobs [-1]

Table 2.5: RF Classifier hyper-parameters used in grid search.

MLP Classifier
Parameters Search Values

hidden_layer_sizes
[(15), (15, 15), (20), (20, 20),

(15, 12, 9, 6, 3, 2), (20, 15, 10, 5, 2),
(15, 13, 11, 9, 7, 5, 3)]

activation [’logistic’, ’tanh’, ’relu’]
solver [’adam’]
alpha [0.0001, 0.0005, 0.001, 0.05, 0.01, 0.05, 0.1, 0.5]

learning_rate [’constant’, ’invscaling’, ’adaptive’]
max_iter [1000]

early_stopping [True]
n_iter_no_change [20]
validation_fraction [0.1]

Table 2.6: MLP Classifier hyper-parameters used in grid search.

SVM Regressor
Parameters Search Values

C [0.001, 0.01, 0.1, 1, 10]
gamma [0.0001, 0.001, 0.01, 0.1, ’scale’, ’auto’]
kernel [’linear’,’rbf’, ’sigmoid’]

Table 2.7: SVM Regressor hyper-parameters used in grid search.
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RF Regressor
Parameters Search Values
n_estimators [50, 75, 100, 200, 400, 700, 1000]

criterion ["friedman_mse", "squared_error"]
max_features [’sqrt’,’log2’, None]

bootstrap [True]
n_jobs [-1]

Table 2.8: RF Regressor hyper-parameters used in grid search.

MLP Regressor
Parameters Search Values

hidden_layer_sizes [(5, 5), (10, 10), (15, 12, 9, 6, 3, 2),
(20, 15, 10, 5, 2)]

activation [’identity’, ’logistic’, ’tanh’, ’relu’]
solver [’adam’]
alpha [0.0001, 0.001,0.01, 0.1]

learning_rate [’constant’, ’invscaling’, ’adaptive’]
max_iter [1000]

early_stopping [True]
n_iter_no_change [20]
validation_fraction [0.1]

Table 2.9: MLP Regressor hyper-parameters used in grid search.

2.7.5 Feature Selection
Feature selection will be applied only on the final trained model. The reason for
this choice is simply due to the need of reducing computational costs, which are
already very high due to grid search, feature extraction parameters, and different
types of labeling. The method used for feature selection will depend on the winning
model, i.e., the one with the highest accuracy or R2.
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Results

3.1 Trained machine learning model
To search for the optimal model, several feature extraction and labeling strategies
were employed on six machine learning models, divided between classifiers (SVM,
RF and MLP) and regressors (SVM, RF and MLP). This approach resulted in
a total of 48 trained models, each characterized by a GridSearchCV analysis to
identify the most effective set of hyper-parameters (see section 2.7).

From each model, performance on the test set were evaluated. In table 3.1 is
shown the accuracy of the 24 trained classifiers. In table 3.2 is shown the R2 value
for the 24 trained regressors.

Classifier - Accuracy (%)
N° Label WL [s] TBW [s] SVM RF MLP

3
5 1 57.81 76.42 49.65

2 51.99 71.76 48.96

10 1 71.48 84.85 58.11
2 64.19 78.73 53.99

9
5 1 42.55 67.62 27.68

2 36.67 63.50 25.80

10 1 61.54 79.27 36.46
2 45.96 69.42 32.47

Table 3.1: Classifier accuracy on test set.

The chosen model, highlighted in bold in table 3.1, is the random forest clas-
sifier with WL = 10[s], TBW = 1[s] and 3 Label. This model has the highest
performance on test set. The hyper-parameters of the chosen model are given in
table 3.3.
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Regressor - R2

N° Label WL [s] TBW [s] SVM RF MLP

3
5 1 0.2211 0.4600 0.1591

2 0.1215 0.3569 0.1314

10 1 0.3761 0.5547 0.1960
2 0.3019 0.4285 0.1557

9
5 1 0.2138 0.4761 0.2101

2 0.1226 0.3592 0.064

10 1 0.4046 0.5670 0.1961
2 0.2348 0.4563 0.1506

Table 3.2: Regressor R2 on test set.

RF Classifier
Parameters Values
n_estimators 750

criterion "entropy"
max_features "log2"

bootstrap True
n_jobs -1

Table 3.3: RF Classifier hyper-parameters used in grid search.

It is important to point out that in 9-class labeling the random undersampling
(see section 2.4) greatly reduces the number of dataset samples used in learning, so
it may not be suitable for model generalization.

3.1.1 Feature selection
The random forest implemented in the scikit-learn library [29, 30] has the property
"feature_importances_" and it is specified that the greater the value, the more
important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. The importance of each
feature used in the chosen model are shown in the tables 3.4 and 3.5.

In order to reduce the number of features needed, one feature at a time was
removed, starting with the least important ones and re-training an RF model
each time. Although not the best approach, for computational cost issues the
models were trained without the use of GridSearchCV, but directly using the
hyperparameters from the table 3.3. No training was able to obtain better results
than the model with 18 features, and since in the current protocol reducing the
number of features brings no real advantages in terms of real-time processing, since
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real-time analysis is performed once per second, it was decided to keep all the
features.

HRV Feature Importance (%)
SDNN 5.58

RMSSD 5.51
RR 9.06

pNN50 5.27
pNN20 3.88
last RR 5.46

Table 3.4: HRV feature importance.

Acc Features Importance (%)
Accx 3.51

SDAccx 5.91
change Accx 5.11
Hsx(ACC) 6.97

Accy 3.68
SDAccy 5.70

change Accy 4.81
Hsy(ACC) 6.93

Accz 3.76
SDAccz 6.36

change Accz 5.52
Hsz(ACC) 6.98

Table 3.5: Acceleration features impor-
tance.

3.1.2 Performance on subsequent acquisitions
In order to evaluate the generalization capabilities of the RF model, the accuracy
on the whole dataset was calculated for each of the four acquisitions. The results
obtained indicate an accuracy of 77.94% on the first acquisition, 44.37% on the
second, 41.90% on the third and 49.18% on the fourth. It can be observed that the
accuracy obtained in the first acquisition is lower than that obtained in the test
set because, in this case, no undersampling was applied. This approach favored a
balanced training of the model, however, the starting dataset did not have intrinsic
balance, which negatively affected the overall performance when the model was
tested on the entire dataset. An example of data obtained during acquisition, along
with real-time prediction, are shown in Fig. 3.1.
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Figure 3.1: Data obtained from one acquisition: RR intervals, acceleration and
real-time stress prediction. Gaps between tasks are the time periods in which the
participant provides the self-reported stress level of the previous task.

3.2 Assessment of Stress Induction
It is important to verify that the protocol described in section 2.6 succeeds in
inducing stress in participants. Three HRV parameters were used as physiological
indicators of stress: SDNN, RMSSD and the mean value of RR intervals, hereafter
referred to as MEAN RR. All three indicators decrease in presence of stress (see
section 1.1.5). In Figure 3.2, individual indicators extracted during relaxation
phases (baseline + two relaxing videos) and during stress phases (stressful video +
arithmetic test + Stroop test) are compared. The statistical analysis performed
involves checking the gaussianity of the distributions by Lilliefors test, followed
by a paired sample t-test if both distributions were found to be gaussian, or a
Wilcoxon signed-rank test if they were not. Lilliefors test was implemented via
statsmodel library [48], while both Wilcoxon and t-test used are those implemented
by scipy library [49].

In Fig. 3.2 can be observed that all 3 differences were statistically significant (p
< 0.001), so it is likely to infer that the proposed protocol was able to induce stress
within the participants.

Instead, comparing individual tasks with the baseline results in the graphs in
Fig. 3.3 for stressful tasks and in Fig. 3.4 for relaxing tasks. SDNN, RMSSD and
MEAN RR show statistically significant differences between each stressful task
and baseline (p < 0.001), with the stressful video being the least impactful task
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Figure 3.2: Relax vs Stress comparison. Mean value of box plots illustrated with
a dashed line. *** ⇒ p < 0.001.

and with MEAN RR greater than baseline (823.3 [ms] vs 835.9 [ms], p < 0.01). In
contrast, looking at the comparison with relaxing tasks, there are few statistically
significant differences: RMSSD in both relaxing videos is lower than baseline (p
< 0.001), while MEAN RR is lower than baseline only in the first relaxing video
(823.3 [ms] vs 815.3 [ms], p < 0.05).
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Figure 3.3: Baseline vs stressful tasks comparison. Mean value of box plots
illustrated with a dashed line. ** ⇒ p < 0.01, *** ⇒ p < 0.001.

Figure 3.4: Baseline vs relaxing tasks comparison. Mean value of box plots
illustrated with a dashed line. * ⇒ p < 0.05, *** ⇒ p < 0.001.
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3.3 Statistical Comparison of Different Acquisi-
tions

In Fig. 3.5, the trend of SDNN, RMSSD and MEAN RR between acquisition for
each task is shown. In order to evaluate the effectiveness of fixed and modulated
BB stimulation in reducing stress, a statistical analysis was conducted for each
task in the protocol. For each task, the parameter distribution related to each
acquisition were evaluated for gaussianity by applying a logarithmic transformation
and using the Lilliefors test. In case all distributions were gaussian, the anova RM
test was used to identify any statistical differences within the group; otherwise,
the Friedman test was employed. If statistically significant differences emerge, a
post-hoc analysis is performed using the Wilcoxon signed-rank test. A graphical
explanation is shown in Fig. 3.6. The Lilliefors test was implemented with the
statsmodel library [48], the anova RM test and the Friedman test with the pingouin
library [50], and the Wilcoxon test with the scipy library [49].

No significant statistical differences (p > 0.05) emerged from the results of the
analysis, except for the arithmetic test where the MEAN RR is significantly lower
in the first acquisition compared to the acquisition with fixed BBs (731.4 [ms] vs
783.5 [ms], p < 0.05) or the fourth one (731.4 [ms] vs 778.8 [ms], p < 0.01). In
contrast, the acquisition with modulated BBs presents a MEAN RR value of 779.2
[ms], very close to that with obtained with fixed BBs or in the fourth acquisition.
In fact, no statistical differences are present. Interesting, however, is the absence
of statistical significance with the first acquisition (p = 0.079).
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Figure 3.5: Differences of HRV parameters between acquisition for each task. 1°No
BB, Fixed, Modulated and 4° No BB are the 4 acquisitions that each participant
completed. The x-axis shows the tasks present in each acquisition. Mean value of
box plots illustrated with a dashed line. * ⇒ p < 0.05, ** ⇒ p < 0.01.

Figure 3.6: Graphical explanation of the statistical analysis performed in each
task.
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Performance (i.e. the percentage of correct answers) and response times related
to the arithmetic test are presented in Fig. 3.7, while those of the Stroop test are
shown in Figure 3.8. The same statistical approach described above was employed
to find statistical differences in performance and response times between different
acquisitions.

Statistically significant differences emerged mainly with the fourth acquisition,
suggesting a cognitive task learning effect. Accordingly, a linear correction was
performed to compensate for this learning. The corrected graphs of the arithmetic
test and Stroop test are shown in Fig. 3.9 and Fig. 3.10, respectively. Linear
correction ensures that the first and last acquisitions are equal. Statistically
significant differences were found only in arithmetic test performance between the
first acquisition and the one with modulated BBs (52.47 % vs 50.17 %, p < 0.01)
and, consequently, also with the fourth acquisition.

Figure 3.7: Performance and response time during arithmetic test for each
acquisition. Mean value of box plots illustrated with a dashed line. * ⇒ p < 0.05,
** ⇒ p < 0.01, *** ⇒ p < 0.001.
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Figure 3.8: Performance and response time during Stroop test for each acquisition.
Mean value of box plots illustrated with a dashed line. * ⇒ p < 0.05, ** ⇒ p <
0.01, *** ⇒ p < 0.001.

Figure 3.9: Corrected performance and response time during arithmetic test for
each acquisition. Mean value of box plots illustrated with a dashed line. ** ⇒ p <
0.01.
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Figure 3.10: Corrected performance and response time during Stroop test for
each acquisition. Mean value of box plots illustrated with a dashed line.
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Discussion

4.1 Machine Learning Model Performance
The performance of the model, as shown in the section 3.1.2, declined significantly
in acquisitions following the first one, although it maintained an accuracy above
33.33%, which represents the probability of randomly identifying the correct label.
This decline is mainly attributable to two factors: the normalization performed
through the baseline of the single acquisition and the constraint of assigning only
one label every 3 minutes, despite the fact that the model makes a prediction every
second.

As explained in section 2.6, the first 3 minutes of each acquisition are devoted
exclusively to collecting data that will be used by the standard scaler to normalize
the data collected in the remaining 15 minutes. This procedure aims to capture the
natural variability of each participant and use it as a reference point for subsequent
tasks to detect variation and identify the participant’s stress level. To further clarify,
during the first acquisition, the data collected for each participant is normalized
to their personal baseline, and the model is trained on that specific normalization.
However, in subsequent acquisitions, the normalization used to predict stress level
depends on the baseline of that specific session, which might reflect a different
emotional state than the previous one. For example, if the participant, for personal
reasons, started out more stressed than during the previous acquisition, an external
stressful stimulus might simply maintain his stress level, without significantly
increasing it compared to the baseline, thus the normalization of the data would
make the physiological response to the stressful stimulus similar to that of the
baseline, hindering the model’s predictions.

The problem with labeling derives from the impracticality of requiring the
subject to frequently assess his stress level, as repeatedly interrupting a task for this
assessment could be both annoying and stressful, especially during tasks designed
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to induce relaxation. Consequently, the labels assigned to tasks do not reflect the
instantaneous stress level, but rather an average of those 3 minutes.

4.2 Protocol effectiveness
As evidenced in Fig. 3.2, the decrease in the three HRV parameters (SDNN,
RMSSD and MEAN RR) indicates the effectiveness of the protocol in generating
a stressful state in participants. Specifically, three types of stressful tasks were
employed: an arithmetic test, the Stroop test and a stressful video.

As can be seen in Fig. 3.3, all three of the proposed stimuli elicited a state of
stress relative to the neutral (baseline) condition. It is interesting to note that the
stressful video is the least stimulating task. This is probably because, as detailed
in appendix A, the selected videos all came from horror movies, which makes the
response extremely subjective and, in addition, there is the risk that the subject
has already seen those movies, further reducing the effectiveness of the stimulus.
Instead, in Fig. 3.4 it is observed that the SDNN do not differ significantly from
the neutral baseline video. However, it emerges that the RMSSD parameter, and
the MEAN RR parameter but only with the first relaxing video, indicate a higher
state of stress compared to the baseline condition, suggesting that the subject may
be in recovery phase from the previous stimulus.

4.3 Binaural Beat effects
Katmah et al. [5] and Al-Shargie et al. [24] reported that the use of 16 Hz BB
reduced stress and improved concentration during cognitive tasks. However, in
Fig. 3.5, the three HRV parameters examined showed no statistical difference
between the four acquisitions, regardless of the task, with the only exception for
the arithmetic task and the MEAN RR parameter, where the first acquisition has
a significantly smaller value than with the fixed BBs or the fourth acquisition.
Nevertheless, this one difference is not sufficient to claim that BBs benefited the
physiological parameters studied, because the difference is present only in a single
task and in a single parameter of the 3 studied, and the difference is also seen with
the fourth acquisition, where BBs were not used. This suggests, therefore, that both
fixed and modulated stimulation caused no changes in the physiological parameters
considered, and the only differences found should be explained in other ways. In
addition, the results shown in Fig. 3.9 and Fig. 3.10 seem also to indicate that BB
stimulation did not produce the expected benefits: acquisitions with modulated
BBs have a significantly lower performance of 2.3 % than those without BBs, but
fixed BBs did not bring the improvements predicted in the literature [5, 24], and
there is no significant difference between acquisition with fixed and modulated BBs.
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There could be three explanations for this results:

• The heterogeneity in terms of age and educational level of the group used
in this study, in contrast to the homogeneity of the groups studied in the
aforementioned studies, which consisted mainly of university students.

• The cognitive tasks proposed in the protocol have strict time limits, this is to
make the task more stressful and challenging, but potentially obscuring the
modest effects of BB.

• A 2.3 % reduction in arithmetic test performance could be explained either
by a higher complexity of the random generated questions compared with
acquisitions without BBs, or by an incorrect approximation of the learning
effect, which for simplicity was considered linear, or by the possibility that a
volume modulation of a sound wave could distract the participant, reducing
their performance.

4.4 Limitations
As also highlighted by the review done by Vos et al. [8], stress is commonly treated
as a binary variable, and the proposed machine learning models focus on identifying
stressful phases only once the data have been collected, without concern for their
reusability in future contexts. Moreover, there is no standardized protocol for
inducing stress and many studies in the literature rely on a single type of stressful
stimulus, used throughout the experiment (as in [5, 24]).

This study faced precisely these challenges:

• devising a protocol that could repetitively induce stress in the same partici-
pants, while minimizing habit effects;

• develop a machine learning model that was also applicable in future acquisi-
tions.

Another limitation of this study is due to the type of data collected: in order to
simplify data acquisition and minimize participant discomfort, we opted to use only
the polar H10 band, which allows only the acquisition of HRV and chest acceleration.
This allowed the experiment to be conducted on an extremely heterogeneous group
of people, but it also limited the ability to describe the physiological response to
stress, which is not limited to HRV and acceleration alone, but also involves other
aspects, such as electrodermal activity.
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Conclusion

This study implemented a closed-loop system that modulates a BB stimulation
according to the subject’s stress, measured in real-time. To achieve this result, it
was necessary to:

• design a protocol that alternately induced stress and relaxation in the partici-
pant, in a repeatable manner over multiple acquisitions;

• develop a model that predicted stress level in real time;

• implement a system that adjusted BB stimulation according to the detected
stress.

A protocol consisting of 6 tasks was tested: the baseline, required for data
normalization, 1 horror video and 2 cognitive tasks (arithmetic test and Stroop
test) to induce stress, and 2 relaxing videos, to promote recovery from stressful
phases. The protocol was shown to be effective in inducing stress in participants.
However, BB stimulation did not affect the studied physiological parameters and
did not lead to an increase in cognitive performance, contrary to what has been
reported in the scientific literature. This phenomenon could be attributed to the
intrinsic difficulty of cognitive tasks, which, while designed to induce stress even in
the presence of habit or learning, could obscure the positive effects of BBs.

Future studies could focus on refining the proposed protocol, maintaining the
ability to induce stress in successive acquisitions while still allowing the effects of
BBs to be observed and studied. Moreover, in this thesis, BB modulation seems to
have slightly reduced the performance in the arithmetic task compared with no
BBs: this may have been caused by the fact that volume modulation distracted
the participant. To overcome this problem, it may be interesting to combine BBs
with music, as already explored in [25]. This option was not investigated in this
study because of the use of videos, particularly horror videos, which require audio
for full effectiveness.
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The ability to estimate stress using a simple wearable sensor such as Polar H10
chest strap is of significant importance, as it facilitates further research aimed
at reducing the amount of instrumentation required or integrating other sensory
technologies, while keeping research costs low and allowing for a larger study
sample, as minimal preparation for the experiment is required, and individuals less
familiar with experimental research tend to feel less intimidated by such a simple
device. This allows for the acquisition of more heterogeneous data and a deeper
understanding of the physiological response to stress.
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Appendix A

Protocol Videos

This appendix lists, within tables, all the videos used in the protocol. The tables
have 5 columns:

• Name: the name given to the video in this thesis, useful for reference.

• # Acq: the acquisition number where the video was used. It is important to
point out that in each acquisition there are 2 relaxing video that alternate
stressful tasks. In that case it will be specified whether it is the first or the
second video of that acquisition.

• Source: the link or reference from which the video was taken.

• Start: the minute at which the video starts.

• End: the minute at which the video ends.

It is important to point out that the order in which the videos were displayed
was purely random (but the same for everyone), and the order actually used was
reported in the tables.
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Baseline Videos
Name # Acq Source Start End

Abstract Liquid 1 https://www.youtube.com/
watch?v=jgm58cbu0kw 0:00:15 0:03:15

Fractal Zoom 2 https://www.youtube.com/
watch?v=pCpLWbHVNhk 0:35:30 0:38:30

Kaleidoscope 3 https://www.youtube.com/
watch?v=q2fIWB8o-bs 1:04:13 1:07:13

Bubbles 4 https://www.youtube.com/
watch?v=14XxolEJloE 2:53:20 2:56:20

Relaxing Videos
Name # Acq Source Start End

Fire and rain 1-1° https://www.youtube.com/
watch?v=uRWacmxGIIc 0:01:15 0:04:15

River bird 1-2° https://www.youtube.com/
watch?v=F1gK85IEeDI 0:00:37 0:03:43

Rain 2-1° https://www.youtube.com/
watch?v=mPZkdNFkNps 1:51:15 1:54:15

Forest 1 2-2° https://www.youtube.com/
watch?v=XJZ-ENsgWyI 0:01:17 0:04:17

Fire popping 3-1° https://www.youtube.com/
watch?v=6j3hPg0t5fo 0:00:00 0:03:00

River city 3-2° https://www.youtube.com/
watch?v=E8fiyj1hNwk 0:00:00 0:03:00

Forest 2 4-1° https://www.youtube.com/
watch?v=XJZ-ENsgWyI 0:04:22 0:07:20

Waterfall 4-2° https://www.youtube.com/
watch?v=sa2JCQ1Dils 0:00:00 0:03:00

Stressful Videos
Name # Acq Source Start End

Witch 1 Film "The Blair Witch project –
Il mistero della strega di Blair (1999)" 1:14:32 1:17:29

Host 2 Film "Host -
Chiamata mortale (2020)" 0:53:43 0:56:52

Pulse 3 Film "Pulse – Kairo (2001)" 0:25:58 0:29:04

Rec 4 Film "Rec (2007)" 1:06:55 1:10:04
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