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Abstract
Neurostimulation in closed-loop represents a promising technique for enhancing hu-
man cognitive functions. This thesis aims to explore its effectiveness in boosting the
working memory (WM) of healthy individuals through virtual reality. The focus is
on the improvement of specific aspects of WM such as the ability to maintain and
manipulate information, sustained attention, and real-time information updating.
These elements are crucial for a wide range of cognitive functions, directly impacting
the efficient management of mental information, a critical aspect in daily life.

Through a meticulous methodological approach, users are presented with an n-
back task implemented in virtual reality with Unity, a platform that enables the
development of interactive games. During the task, users’ EEG signals are recorded
using an 8-channel Enobio device and NIC2, software that controls the device from a
computer. In the initial calibration phase, these tools operate offline. The recorded
signal is then processed in Matlab, from which the most relevant features are ex-
tracted. These features, along with performance labels, are used to create a con-
struction set for the training of an SVR. In the subsequent real-time phase, users
undergo 5 testing trials with conscious and unconscious stimuli, including neurostim-
ulation with fixed or adaptive alpha-band Binaural Beats (BB), adaptive theta-band
pulsed light, visual neurofeedback with a fill bar, and adaptive BB combined with
neurofeedback. Additionally, a control condition without stimuli is included. During
this phase, NIC2 transfers the signal to Matlab in real-time, where it is processed
to calculate the working memory level (WML) every 500 ms. Unity compares this
index with personalized thresholds for the user and decides any changes to stimula-
tion parameters to optimize performance. By recalculating subsequent WMLs, the
positive or negative effect of this change is evaluated, thereby closing the loop.

Task outcomes are assessed by considering the percentage of correct responses
(PC), reaction time (RT), and the inverse efficiency score (IES), a metric that syn-
thesizes the first two. In the 2-back test, no significant differences are observed in
the PC, RT, and IES parameters, possibly due to the test’s simplicity, which limits
errors, making it challenging to detect substantial improvements. Conversely, in the
3-back test, significant differences emerge, with notable improvements in IES under
alpha-band adaptive BB, both individually and in combination with neurofeedback
(p < 0.05). The use of adaptive BB also lead to a significant reduction in RT com-
pared to both the control conditions (p < 0.05) and the traditional use of constant
BB (p < 0.05).

Results suggest that alpha-band adaptive BB may contribute to the improvement
of working memory performance in healthy subjects. Furthermore, they could prove
beneficial for cognitive rehabilitation of pathological subjects, even in situations with
limited conscious interactions, harnessing the power of ’unconscious brain entrain-
ment’.
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Chapter 1

Nervous System Anatomy
and Electrophysiology

The study of the human brain is fundamental to the discipline of biomedical
engineering because it sheds light on its memory and cognitive processing abil-
ities. This chapter explores the complex electrophysiology and architecture of
the nervous system, providing a foundational understanding that is essential
for the implementation of user-adaptive neurostimulation methods intended
to improve working memory that is described in the last section. The intri-
cate structure and functions of the brain are at the center of this investigation.
The brain’s distinct architecture, which is made up of an enormous network
of neurons and synapses, has an important effect on how well it processes and
remembers information. Understanding the processes involved in memory
creation and retrieval is largely dependent on this neuronal interconnections
[1].

Moreover, electroencephalography (EEG) plays a crucial role in recording
the electrical activity of the brain. EEG technology records and analyzes
brainwave patterns in a non-invasive manner. This is especially pertinent since
customized neurostimulation techniques can be developed with the help of
EEG data, which offers insightful information about the electrophysiological
state of the brain [2].

The physiological processes that underpin working memory are also covered
in this chapter. Working memory is a dynamic process where information
is temporarily stored and manipulated. It is essential to comprehend these
mechanisms in order to design targeted neurostimulation protocols [3].

By means of this investigation, we establish a connection between the intri-
cate biological functions of the brain and the inventive technical approaches
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aimed at enhancing human cognitive capacities.

1.1 Nervous System Anatomy
In this section, we explore the structure of the brain, outlining its main com-
ponents and its various lobi, each of which performs unique and essential
functions for memory and thought processes.

1.1.1 Main Tissues of the Human Brain
There are two types of neural tissue that make up the human brain: grey
matter and white matter as in Figure 1.1. These two types of tissue play vital
roles in the nervous system’s operation.

Figure 1.1. Section of a human skull where it is possible to observe the
distinction between the tissues that make up the brain [4].

Unmyelinated axons, dendrites, and neuronal cell bodies make up the ma-
jority of grey matter. The brain’s ability to integrate and process information
depends on this structure. The cerebral cortex and a few subcortical regions,
including the thalamus and basal nuclei, contain grey matter [1]. In contrast,
myelinized nerve fibres found in white matter connect various brain regions
to one another, enabling quick communication and effective information pro-
cessing. Myelin, which envelops axons, is essential for the quick transmission
of nerve impulses [5].

There is a close relationship between the white and grey matter’s functions.
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Coordinated and integrated processing of sensory, motor, and cognitive infor-
mation is ensured by the white matter, which transmits information to various
brain regions while the grey matter processes and interprets it [1].

Academic investigations into the ways in which changes in grey and white
matter may impact a range of neurological and psychiatric disorders under-
score the significance of these anatomical regions in preserving both mental
and physical well-being. Understanding grey and white matter in-depth is
essential for understanding the intricate workings of the human brain and
creating specialised treatments for a range of neurological conditions [6].

1.1.2 Key Elements of the Brain
The human brain can be divided into three main parts 1.2:

Figure 1.2. Lateral view of the cerebral hemisphere depicting
the main components [7]

Cerebrum: is the largest and most superior part of the brain and performs
multiple functions, including muscle movement, language and the processing
of sensory information. It comprises grey matter (cerebral cortex) and white
matter at its centre and is the largest part of the brain, initiating and co-
ordinating movement and regulating temperature. Other areas of the brain
enable speech, judgement, thinking and reasoning, problem solving, emotions
and learning [8]. The left and right cerebral hemispheres make up the two
structural halves of the brain, which are divided by the dura mater’s sickle
cerebri. Two thirds of the weight of the brain is made up of these hemispheres.
The cerebral cortex is in charge of controlling higher order intellectual func-
tions, integrating sensory impulses, and directing motor activity. Four regions

3
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of the brain are referred to as lobes: the frontal, temporal, parietal, and oc-
cipital. Every one of these lobes performs distinct roles and duties:

1. Frontal lobe is involved in executive functions such as abstract think-
ing and planning; it is fundamental to working memory (WM) and is
responsible for temporarily retaining information for periods of several
seconds. Although distinct from long-term memory (LTM), there is con-
siderable overlap between the frontally mediated processes involved in
both. Investigations of the encoding and retrieval image in the LTM of-
ten involve the retention and manipulation of information in the WM.
Conversely, information maintained in the WM may be encoded in the
LTM. Moreover, working memory is often used to describe the ability to
retain information in the service of a specific task or goal [9].

2. Temporal lobe essential for the processing of language and hearing, and it
is situated in the lower part of the brain. Long-term memory is greatly
influenced by this lobe, particularly through the hippocampus and other
structures. It also plays a role in the perception of music and language.
Among its many duties are the integration of sensory data and a major
role in memory formation, both of which are critical for learning and
recognition [9].

3. Parietal lobe essential to the processing of sensory inputs, including touch,
temperature, and pain, is situated in the upper central region of the
brain. It contributes to the comprehension and processing of spatial and
mathematical information and is essential for body awareness, navigation,
and spatial orientation [9].

4. Occipital lobe positioned at the rear of the brain, serves as the primary
hub for processing visual information including the identification of col-
ors, shapes, and motions, all of which are critical for navigating and
interacting with one’s environment [9].

Cerebellum. It is a central nervous system structure located at the base of
the brain. It plays a key role in motor control, and is particularly active in co-
ordination, precision and timing of movements, as well as motor learning. Its
dysfunction is often manifested by motor signs, underscoring its importance
in the regulation of voluntary movements [10]. The cerebellum is situated in
the posterior cranial fossa, positioned behind the fourth ventricle, as well as
the pons and the medulla oblongata. The tentorium cerebelli, an extension
of the dura mater, separates the cerebellum from the brain. This strategic
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location allows the cerebellum to interact effectively with other parts of the
central nervous system [10]. The cerebellum also contributes to the refine-
ment of motor movements, making them smooth and precise. It also plays a
role in some cognitive functions, such as attention and language processing.

Brainstem. It is a crucial structure connecting the cerebrum of the brain to
the spinal cord and cerebellum. Composed of three sections — the midbrain,
pons, and medulla oblongata — it is responsible for many vital life functions,
such as breathing, consciousness, blood pressure, heart rate, and sleep. The
brainstem contains critical collections of white and grey matter, essential for
various neural functions. This structure is also where ten of the twelve cranial
nerves arise from their cranial nerve nuclei [11].

Meninges. They are crucial in safeguarding the brain and spinal cord. They
are protective membranes that surround the central nervous system. They
consist of three separate layers:

• The outermost layer, known as the dura mater, is made of resistant, dense
tissue. This membrane acts as a barrier to prevent harm from mechanical
sources.

• Cerebrospinal fluid can pass through the thin, transparent arachnoid
membrane that makes up the middle layer.

• The innermost layer, the pia mater, adheres to the surface of the spinal
cord and brain. Tiny blood vessels that supply the central nervous system
are present in this membrane.

In addition to providing physical protection for the brain, the meninges aid in
the movement of cerebrospinal fluid, which is necessary to keep the nervous
system’s homeostasis intact [1].

1.2 Brain Neurophysiology
The two main cell types that make up the central nervous system (CNS) are
neurons, which are the main component of computation, and glia, which are
the most abundant and have a regulatory, protective, and supportive role [12].

The neuron is a cell specialized in transmitting signals, playing a key role
in the functioning of the nervous system. As can be seen in Figure 1.3, it is
composed mainly of three parts: the cell body or soma, the dendrites, and
the axon.
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• The nucleus and various organelles necessary for cellular operations are
located in the soma [13].

• From the cell body, the dendrites branch like a tree to receive messages
from neighboring neurons and send them centripetally towards the cell
body. The shape and signal-receiving capacity of a neuron are influenced
by the dendritic tree’s complexity [13].

• In contrast, the signal is transmitted by the axon to other cells in a
centrifugal motion. Its homogeneous diameter and myelin sheath enhance
the speed at which nerve impulses are sent. The terminal part of the axon
is called the synaptic button, through which tiny substances known as
neurotransmitters are released, which bind to receptor molecules on the
receiving neuron. The chemical code is subsequently transformed by the
latter into an electrical signal that can be sent through the following
axon. The ability of synapses to change based on previous activity in
the system is a crucial characteristic. They thus play a crucial part in
memory, learning, and damage adaptation [13].

Figure 1.3. Structure of a typical neuron.

The glia are multicellular structures that carry out a wide range of vital
tasks. The most prevalent are the astrocytes, which are long, star-shaped pro-
cesses that may play a role in nutrient transfer when they come into contact
with neurons. Also, some astrocytes may line the outside of blood capillaries
and form the blood-brain barrier, which controls which chemicals from the
blood are allowed to enter the brain. Additionally, astrocytes appear to play
a significant role in controlling the potassium ion concentration surrounding
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neurons, which is crucial in regulating the voltage across the neuronal mem-
brane. They also play a role in the uptake of neurotransmitters following
their release from synapses and in the synthesis of the precursor molecules
that neurons convert into neurotransmitters. In order to protect neurons and
facilitate the conduct of their electrical impulses, two additional types of glia
are involved: Schwann cells and oligodendrocytes. The latter cover the axons
in the CNS with their membrane, resulting in the formation of the myelin
sheath, a specialized membrane differentiation. On the other hand, Schwann
cells surround peripheral neurons, or nerves that are not part of the brain and
spinal cord. Each neuron is contacted by many Schwann cells, each of which
spans the distance between two nodes of Ranvier, periodic interruptions in
the myelin sheath that covers the axon of a neuron. These nodes enhance
the propagation of the nerve impulse by enabling it to leap from one node
to the next, consequently boosting the overall velocity of signal transmission
along the axon (achieving speeds exceeding 100 m/s). Finally, immune cells
called microglia phagocytose and eliminate germs and viruses to help prevent
infection and harm to the brain [12].

1.2.1 Classification of Neurons
Neurons can be classified based on both their structural characteristics and
their operational functions.

Functional Classification

There are three categories of neurons based on the way nerve impulses prop-
agate and their function.

1. Sensory or afferent neurons take part in the process of acquiring stimuli
and transfer data from sensory organs to the central nervous system [14].

2. Interneurons, also known as intercalating neurons, are neurons with input
and output neurons. They combine information from sensory neurons
and send it to motor neurons in the central system.

3. Efferent neurons or motor neurons send out motor-like impulses to the
body’s peripheral organs [14].

Morphological Classification of Neurons

In terms of shape, the most representative types of neurons are described
below and represented in Figure 1.4:
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• The gray matter consists of pyramidal cells, which are surface neurons
of the cortical region with a truncated pyramidal soma that gives rise to
function. While the fundamental dendrites are distributed horizontally,
the apical dendrite rises upward. The axon frequently pushes into deeper
regions of the cortex, often entering the subcortical white matter. Elec-
trodes to pick up the EEG signal primarily detect the electrical activity
of neighboring neurons when placed to the scalp; thus, the pyramidal
neurons are the primary sources [15].

• Stellate cells are interneurons present in the cerebral cortex. They are
smaller in size (compared with pyramidal cells), polygonal in shape, and
possess multiple branching dendrites with a relatively short axon.

• Fusiform cells are also a type of interneuron, predominantly situated
in the deepest layers of the cortex, farthest from the cortical surface.
These cells extend dendrites towards the cortex’s surface, branching out
to influence neurons located in the outermost layers of the cortex.

• The outermost layer of the cortex contains the horizontal cells. These are
tiny, horizontally oriented fusiform cells. These axons connect with the
ascending dendrites of pyramidal cells as they run parallel to the cortex’s
surface.

• Martinotti cells are found throughout the cortex at various levels. They
send axons that terminate in the cortex’s outermost layers.

Figure 1.4. Cortical neurons. (1) corresponds to cortical surface; (6) inner-
most area of the cortex; (2),(3),(4),(5) intermediate zones.
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1.2.2 Transmission of the Electrical Impulse

Axons in the CNS transmit information through all-or-none electrical im-
pulses known as action potentials. They are very brief (1 ms) electrical
event. These impulses begin at the initial segment of the cell body and are
initiated by processed inputs from dendrites [13]. Larger axons’ diameters
result in a proportionally smaller membrane capacitance and internal elec-
trical resistance, speeding up the depolarization of adjacent sections of the
membrane. Every neuron has an electrical potential across its membrane,
meaning that its inside is approximately 70 mV negative relative to its exte-
rior. Variations in the concentration of charged ions, especially Na+ and K+,
between the inside and exterior are what generate the potential. A unique
pump called the Na+/K+ moves K+ into the cell membrane and Na+ out
of that [13]. The concentrations of Na+ and K+ ions play a crucial role.
Na+ concentration outside the neuron is approximately 10 times higher than
inside, while K+ concentration inside is about 20 times higher than outside.
The membrane is considerably impermeable to Na+ and K+, establishing a
net negative charge inside due to large proteins and amino acids. Continu-
ous ion pumping is required to maintain concentration differentials, and any
interruption leads to the disappearance of membrane potential [12].

The key to the process is the voltage-sensitive Na+ channel. As shown in
the Figure 1.5, at a resting state(1), the channel is closed, so sodium and potas-
sium ions cannot cross the membrane and the neuron’s interior is negatively
charged (-70 mV). Immediately after the triggering of the action potential, the
neuron depolarizes beyond the threshold potential (-55 mV) (2), opening the
sodium channel and permitting sodium ions to flow across its membrane. This
process leaves the neuron positively charged and the extracellular fluid nega-
tively charged. Following the attainment of the action potential, the neuron
initiates repolarization (3), a process in which the potassium channels open
and the sodium channels close, permitting potassium ions to permeate the
membrane and overflow into the extracellular fluid. This results in a positive
charge within the extracellular fluid and a negative charge inside the neuron
that is beneath his resting potential. Ultimately, during the refractory phase
(4), the potassium channels closes and the membrane potential returns to
its resting condition. By exchanging three sodium ions for every two potas-
sium ions across the plasma membrane, the sodium-potassium pump keeps
the concentration gradient constant over time [16].
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Figure 1.5. Membrane permeability of a neuron during an action po-
tential [16]. (a) Na+ ion. (b) K+ ion. (c) Na+ channel. (d) K+

channel. (e) Na+/K+ pump.

1.2.3 Synapses
The location of transmission of information between two neurons is called
synapse (or synaptic cleft). It consists of an tiny gap through which chemicals
(neurotransmitters) released from the specific axon ending diffuse, transmit-
ting information. Molecules on the other side of the gap that are introduced
into the dendrite detect them. Information sent as electrical impulses must
be converted into a chemical code in the presynaptic axon, and the opposite
transformation must occur in the postsynaptic dendrite, where the chemical
code must be converted back into an electrical code. Synapses are extremely
intricate regions of neurons that can be altered based on previous activity
patterns in the pre- and postsynaptic neurons [17].

The term synapse can also be used to refer to communication between cells
of different types. Taking into consideration this second meaning, synapse can
either stimulate or inhibit the other cell. When the action potential arrives,
the target cell becomes excitatory, and when it suppresses it, it becomes
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inhibitory.
The Figure 1.6 that follows illustrate the specifics of transmission at the

synapse. Voltage-sensitive Ca2+ channels are present in the presynaptic axon
in the synapse area, and they open when the action potential’s wave of depo-
larization reaches the synapse. The concentration of Ca2+ ions is significantly
larger outside the neuron than it is inside, so when the action potential ar-
rives, it induces an inflow of these ions. A neurotransmitter is kept in tiny,
membrane-enclosed pockets called vesicles within the presynaptic terminal.
These vesicles fuse with the neuronal membrane with a rapid Ca2+ influx
through a sequence of intermediate processes, releasing their contents into
the synaptic space. Receptor molecules on the dendrites can bind to neu-
rotransmitters on the postsynaptic membrane, initiating the opening of ion
channels that bring about changes in the postsynaptic membrane potential.
The specific ion channels that are open and their duration are determined
by the neurotransmitter and receptor that they bind to. Postsynaptic mem-
brane polarizations usually last between 10 and 20 milliseconds, while some
might go on for several hundred ms. In comparison, an action potential’s
depolarization lasts for roughly 5 milliseconds [12].

Figure 1.6. Schematic of a synapse [18]

The fact that an action potential is the result of the summation of inputs
from numerous synapses that are all active at the same time is a crucial
characteristic of the synaptic connections between the majority of neurons.
The input from any one synapse has only a very little effect on the potential
at the trigger zone in the axon hillock. To put it simply, the neuron counts
the synaptic inputs that come in and generates an impulse that moves on to
the next set of synapses if they ever cross the threshold. This elementary
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model of a functioning neuron has undergone numerous improvements [17].

It is commonly acknowledged that synapses contribute to memory forma-
tion. Because of the signaling mechanisms of the receptors, which are trig-
gered by neurotransmitters across the synaptic cleft, when two neurons are
activated simultaneously, the link between them is reinforced. Memory is as-
sumed to be the outcome of information being stored in two connected brain
pathways. Long-term potentiation is the term used to describe this process
of synapse strengthening [17].

1.3 EEG: Deciphering Brain Activity

In the field of brain investigation, several tools have played crucial roles in
improving our understanding of how the brain works. The introduction of
advanced imaging techniques such as functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET) have provided significant
insights and revolutionised clinical routines [19, 20]. Electroencephalography
stands out remarkably for its long-term use and significant simplicity of im-
plementation. With its high temporal resolution, EEG remains a crucial tool
in the diagnosis and monitoring of epilepsy, as well as in the real-time observa-
tion of brain activity during surgery [21]. Recently, there has been a renewed
interest in the use of EEG, especially in the development of innovative appli-
cations such as adaptive neurofeedback and brain-computer interfaces [22].
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1.3.1 From Origins to Clinical Practice

Figure 1.7. (a) The first work on electroencephalography. (b) Hans Berger

Electroencephalography originated in the last quarter of the 19th century
with the discovery of electrical potentials that could be recorded from acti-
vated nerves and muscles in animals and from the cerebral cortex. In the
1920s, Hans Berger (Figure 1.7), a German neuropsychiatrist, recorded po-
tentials from the scalp of patients with cranial defects and, later, with more
sensitive equipment from intact subjects. Berger noted how the signals ac-
quired depended strongly on the positioning of the electrodes on the scalp and
the mental state of the subject acquired. At the same time, American phys-
iologists introduced vacuum electron tube amplification and the cathode ray
oscilloscope, which were interested in peripheral nerve recordings. Berger’s
findings were independently confirmed by Lord Adrian in England and Hal-
lowell Davis at Harvard, USA, in the early 1930s. In the United States, initial
advancements in the study of human electroencephalography were contributed
by notable figures including Hallowell Davis, Herbert H. Jasper, Frederic A.
Gibbs, William Lennox, and Alfred L. Loomis. Following the Harvard group’s
1935 report, which linked electrographic findings with clinical observations in
patients suffering from absence seizures and changes in consciousness, EEG’s
utility as a clinical instrument saw substantial progress. The technical aspects
of the EEG and further clinical correlations were clarified by these investiga-
tors and many others. Further studies led to meetings of EEG pioneers in
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Loomis’ laboratory in New York (1935-1939), the formation of regional EEG
societies and the American Clinical Neurophysiology Society in 1946. Over
time, the EEG has been refined to become more sensitive and precise, ex-
panding its use in various fields, from the diagnosis of neurological disorders
to sleep monitoring and understanding cognitive functions such as memory
and attention [23].

1.3.2 EEG Sampling Systems

In the field of biomedical engineering, EEG technology plays a crucial role in
monitoring brain activity. The EEG signal is acquired through the use of elec-
trodes, which are typically made of silver/silver chloride (Ag/AgCl). These
electrodes are placed on the scalp following internationally standardised posi-
tions, the purpose of which is to ensure a uniform and replicable acquisition of
brain signals. The number of electrodes used varies according to the specific
requirements of the application: in standard clinical practice, 21 electrodes
are used, while in more sophisticated applications, such as high-density EEG,
up to 128 or 256 electrodes can be used [24].

To facilitate the placement of the electrodes, specially designed caps are
often used, which allow them to be quickly identified and placed on the scalp.
Electrodes can be disposable or reusable, the latter often having a cup shape
that facilitates the insertion of the conductive gel. These cups also have a
hole at the top, which is useful for adding the conductive gel even after the
electrodes have been placed [25].

Before applying the electrodes, the skin must be carefully prepared: it must
be cleaned and the surface layer of grease removed to ensure optimal contact.
However, the use of conductive gel can sometimes cause short circuits between
adjacent electrodes, especially when electrode density is high. To mitigate this
problem, ’dry’ electrodes have been developed, which improve contact with
the skin without the use of gel [26].

In the analysis of EEG signals, the electrical potentials detected by individ-
ual channels are measured with respect to one or more reference electrodes,
whose potential is considered to be zero Volt. Ideally, these reference elec-
trodes should be placed infinitely far away from the signal source, a condition
that is not feasible in practice. Therefore, it is common to position them as
far as possible from the cortical areas of interest, to minimise any interference
in the signal detected [25, 26].

These practices and considerations in the use of EEG electrodes are fun-
damental to ensuring the accuracy and reproducibility of the data collected,
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which are essential aspects in the research and clinical application of elec-
troencephalography.

1.3.3 International 10-20 Electrode Positioning System
The most popular standardised technique for EEG electrode insertion is the
International 10-20 System. The basis of this approach, which was first pre-
sented by Jasper in 1958, is the partition of the skull into proportionate zones,
which makes it easier to place electrodes in the same location among the pa-
tients. The electrodes in the 10-20 system of EEG electrode placement are
positioned at particular sites on the skull. Repere points, which are measures
based on anatomical landmarks, are used to determine these locations. Main
locations that are used are:

• The Nasion, which is located at the root of the nose.

• The Inion, located at the base of the skull on the midline.

• Pre-ear points, which are located on the sides of the head, aligned with
the ear.

The two most important distances measured are the separation between the
left and right pre-auricular locations and the distance from Nasion to Inion.
As a proportion (10% or 20%) of these observed distances, electrode sites are
determined. Two separate components make up the 10-20 system’s electrode
location nomenclature:

1. The first element indicates the underlying brain region, represented by
abbreviations such as:

• Fp for the polar frontal region;
• F for the frontal region;
• C for the central sulcus;
• P for the parietal region;
• O for the occipital area;
• T for the temporal region.

2. The second element differentiates electrodes based on their relative posi-
tion to the midline of the skull:

• The letter ’z’ identifies electrodes placed on the midline.
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• A number is assigned to other electrodes: even numbers for those
located to the right of the midline, odd numbers for those to the left.
Higher numbers indicate a position farther from the midline, while
lower numbers indicate a position closer.

This nomenclature and positioning system, originally proposed by Jasper, is
crucial to ensure consistency and precision in EEG execution [27].

The 10-20 system holds paramount importance in clinical and scientific con-
texts. It provides a common framework for localizing recording sites, enabling
clinicians to reliably compare EEG results across patients and over time. As
technology has advanced, variants such as the 10-10 and 10-5 systems have
been developed, offering a higher electrode density for more comprehensive
brain mapping [28].

The 10-10 system represents a significant advancement, contributing to the
improvement of spatial resolution in EEG recordings and allowing for a more
detailed coverage of various brain regions, as depicted in Figure 1.8.

Figure 1.8. The positioning and naming of the 10-10 intermediate
electrodes, as established by the standards of the American Elec-
troencephalographic Society [29].

This increased precision in electrode placement across the extensive area
of the head translates to a greater ability to map and analyze brain activity
accurately.
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The widespread adoption of the 10-10 system underscores its relevance and
utility in neurophysiological research. Through its extensive use, it has proven
to be an essential tool for the precise and reliable study of brain activity,
significantly contributing to our understanding of neurological processes and
clinical diagnosis.

1.3.4 EEG Signal Amplitude and Frequency Bands
The amplitude of the EEG signal, a key indicator of the intensity of brain
electrical activity, is generally measured in microvolts (µV), typically ranging
between 10 µV and 100 µV. This parameter reveals the power of intercepted
neural signals, with a frequency band ranging from 0.1 Hz to 80 Hz.

It is important to note that the amplitude of the EEG signal can show
significant variations not only among different individuals but also for the
same person across various moments or in differing situations. Factors such
as wakefulness or sleep states, the age of the subject, and the presence of neu-
rological or psychiatric conditions can greatly influence these measurements
[30].

Furthermore, brain rhythmic activity, reflected in the EEG, results from the
temporal synchronization of cortical pyramidal neurons. This synchronization
manifests in characteristic frequencies, leading to the traditional analysis of
the EEG signal in terms of five main rhythms, classified based on their specific
frequency bands and represented in Figure 1.9:

• Delta wave (δ): characterized by frequencies between 0.1 Hz and 4 Hz
with amplitudes typically ranging from 20 µV to 150 µV. It is present in
children and adults during deep sleep and is pathological during wake-
fulness.

• Theta wave (θ): with frequencies from 4 Hz to 8 Hz and amplitudes
between 5 µV and 10 µV, theta waves are common in the early stages of
sleep in adults and predominantly in children.

• Alpha wave (α): characterized by frequencies between 8 Hz and 13 Hz and
amplitudes from 20 µV to 50 µV, these waves are detectable in healthy
adults when in a relaxed state with closed eyes, mainly located in parietal
and occipital regions.

• Beta wave (β): these waves, with frequencies between 13 Hz and 30
Hz and amplitudes between 5 µV and 30 µV, emerge in response to
sensory stimuli, eye opening, or during states of increased concentration
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and cognitive activity. They can be further divided into β1 (13 Hz - 22
Hz) and β2 (23 Hz - 30 Hz) waves.

• Gamma wave (γ): with frequencies between 40 Hz and 80 Hz, gamma
waves manifest during cognitive activities that require the integration of
activity across different brain areas and are linked to phenomena such as
memory consolidation and brain plasticity [26, 31].

Figure 1.9. Representation of the different frequency contents
of the EEG signal [32].

1.3.5 EEG Artifacts
In the context of EEG, artifacts pose a significant challenge, impacting the
quality and interpretability of data. These unwanted signals, often originating
outside of brain activity, can mask or distort true EEG signals, leading to
incorrect interpretations or imprecise conclusions. Despite the refinement of
EEG techniques over time, the presence of artifacts remains a crucial issue,
especially in clinical and research studies.

These artifacts can be divided into different categories, such as physiolog-
ical artifacts (e.g., eye movements, muscle activity), environmental artifacts
(e.g., electromagnetic interference), or equipment-related artifacts (e.g., elec-
trode connection issues). Each type of artifact exhibits unique characteristics
in terms of frequency, amplitude, and morphology, necessitating specific ap-
proaches for identification and removal [33].

Physiological Artifacts

Muscular: caused by muscle contractions, especially in facial and neck mus-
cles. Characterized by high amplitudes (50-300 µV) and high frequencies
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(20-100 Hz). Due to their high-frequency contribution, they can be easily
removed through a low-pass filter [34].

Ocular: arise from eye movements and blinking, which can be voluntary
or involuntary. Typically detected by frontal electrodes (F7 and F8). Pro-
duce amplitudes ranging from 50 to 200 µV with low frequencies (<4 Hz for
slow movements, up to 20-30 Hz for rapid movements). Eye movements can
overlap with the delta band, and artifact removal techniques often involve
simultaneous acquisition of an Electrooculogram (EOG).

Cardiac: the electrical activity of the heart can be picked up by EEG
electrodes. Manifests as regular peaks with variable amplitudes. Since the
source is distant from the recording point, cardiac electrical activity is nearly
equipotential on the scalp, and thus not present in bipolar derivations but
clearly recognizable using monopolar derivations. A simple method for their
removal is to simultaneously acquire an ECG channel to identify the QRS
complex and then remove the portions containing the artifact [26].

External Artifacts

Electrical: caused by electromagnetic interference, such as electrical equip-
ment or unshielded cables. Often have fixed frequencies, such as 50 or 60 Hz
(power line frequency). Removal of such artifacts is achieved, for example,
with a Notch filter.

Motion: movements of the electrodes can cause impedance variations and
transient artifacts appearing as a rapid increase and slow decrease in potential.
Also called pop artifact [34].

Technical Artifacts

Baseline Drift: slow, low-frequency variations (<0.5 Hz) due to amplifier
instability or impedance changes.

Electrode Jumps: sudden changes in EEG signal due to poor electrode
contact. These can appear as sharp spikes or sudden signal dropouts. If they
occur, it is necessary to reposition the electrode correctly before proceeding
with new acquisitions [33].

In Figure 1.10 the visualization offers a detailed analysis of the impacts
of common artifacts, contributing to the understanding and mitigation of
interferences in recording brain activity through EEG.
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Figure 1.10. Graphic representation of major artifacts in EEG the five traces
depict: 1) Normal condition, 2) Blink Artifact, 3) Blink + 60Hz Interference,
4) ECG Artifact, and 5) EMG Artifact [34].

1.4 Working Memory
Working memory is an essential cognitive function that enables the temporary
processing and manipulation of information. Essential for reasoning, learning,
and understanding, working memory is the mental ’workspace’ we use to
carry out daily cognitive tasks. It acts as a bridge between perception, long-
term memory, and action, allowing us to maintain information ’online’ while
engaging in complex mental processes. This section explores its theoretical
foundations, the cognitive models that describe its structure and functioning,
and how age and pathologies impact this critical ability.

1.4.1 Theoretical Models in Working Memory
Working memory, a fundamental concept in cognitive psychology, has been
the subject of intense study and research over the years.

Success in working memory tasks requires more than just undivided atten-
tion; it demands an intricate blend of several mental processes. The initial
steps involve paying attention and recognizing incoming stimuli, setting the
groundwork for further cognitive engagement. The journey continues with the
encoding and storage of information, transforming and maintaining the stim-
uli in a usable form. Active rehearsal helps keep this information fresh and
accessible, ensuring it remains at the forefront of our minds. The complexity
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increases as we must constantly monitor and match this stored information
against new inputs, maintaining a vigilant comparison. Meanwhile, the abil-
ity to inhibit irrelevant details and update the memory with pertinent data
becomes crucial. This cycle of comparison, suppression, and renewal is a deli-
cate balancing act, reflecting the sophisticated interplay of cognitive functions
necessary for handling intricate tasks [35].

Among the various models proposed, two have had a significant impact:
Baddeley and Hitch’s multi-component model and Cowan’s integrated pro-
cesses model [36].

Multi-Component Model of Baddeley and Hitch

Introduced in the 1970s, this model revolutionized the understanding of work-
ing memory. It proposes that working memory consists of three primary com-
ponents: the phonological loop, the visuospatial sketchpad, and the central
executive.

The phonological loop is responsible for the manipulation and maintenance
of verbal information. It is further divided into two subcomponents: a phono-
logical store that preserves information in verbal form and an articulatory
rehearsal buffer that repeats this information to maintain it in memory.

The visuospatial sketchpad, on the other hand, manages visual and spatial
information. This component allows individuals to mentally visualize objects
or paths, playing a crucial role in activities such as navigation and spatial
understanding.

The central executive acts as a control system, coordinating and directing
attention among various cognitive tasks and the other two components of
working memory. Its function is crucial in multitasking and solving complex
problems [36].

Cowan’s Integrated Processes Model

In an attempt to integrate and expand on Baddeley and Hitch’s model, Cowan
proposed a different approach. His integrated processes model suggests that
working memory is not a separate system but rather a subset of interconnected
cognitive processes that include both short-term memory and elements of
long-term memory.

According to Cowan, working memory consists of the temporary activation
of a portion of long-term memory and the attentive control over this activa-
tion. From this perspective, the capacity of working memory is influenced not
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only by the amount of information that can be actively maintained but also
by an individual’s ability to control attention and inhibit distractions [36].

Both models have provided fundamental insights into the functioning of
working memory but differ in terms of emphasis and proposed mechanisms.
Baddeley and Hitch’s model focuses on specific subsystems and their func-
tions, while Cowan emphasizes the role of attention and integration with
long-term memory.

1.4.2 Aging and Working Memory
Aging leads to significant changes in working memory. These changes are
due to neurobiological and structural factors, such as the reduction in gray
matter volume and alterations in neuronal connectivity. Studies show that
working memory capabilities decrease with age, affecting the ability to retain
and manipulate information. These declines are often related to reduced
efficiency in brain areas involved in multitasking and problem-solving [36].

Working Memory and Brain Pathologies Neurological and psychiatric
conditions such as ADHD (attention deficit hyperactivity disorder), major de-
pression, and traumatic brain injuries can significantly impact working mem-
ory. These conditions lead to a decline in the ability to actively manage and
manipulate information. Changes at the neuronal level in these conditions
can be identified through brain imaging, providing insights into the underly-
ing mechanisms affecting working memory [36].

Rehabilitation and working memory training can be fundamental tools
to counteract cognitive decline associated with aging and brain pathologies.
Some studies [37] have shown that cognitive training can significantly improve
working memory capabilities in children with ADHD. Another research [38]
indicates that adults can also benefit from working memory exercises, with
observed improvements in general cognitive functions. These studies suggest
that structured training programs, which include activities such as memory
exercises and cognitive tasks, can be effective in enhancing working memory
capabilities in both young people and adults.

1.4.3 Improving Working Memory
From the variety of studies analyzed in [39], it is evident that different fre-
quencies of brain waves influence various aspects of cognitive processes and
memory, with variable effects. In particular, the alpha, beta, and theta fre-
quencies exert a certain degree of influence on our domains of working memory.
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During tasks involving working memory, alpha and theta waves coexist in dif-
ferent brain regions, where theta increases in the frontal region, and alpha
increases in the posterior and bilateral regions of the brain.

It is essential to emphasize that the nature of brain waves plays a crucial
role in shaping behavioral outcomes, especially in cognitive activities such as
memory and attention. For example, theta waves are associated with the
process of assimilating new information, while beta waves reflect cognitive
control. Additionally, the role of alpha waves is noteworthy, often correlated
with promoting a state of mental relaxation. However, recent research sug-
gests that an effective increase in alpha amplitude may also contribute to
improving performance in updating working memory. This suggests a poten-
tially significant role of alpha waves in enhancing working memory capacity
during complex cognitive tasks.
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Chapter 2

Biofeedback,
Neurofeedback and
Neurostimulation

Within the realm of neurophysiology, beyond the exploration and description
of the intricate human brain, there is a considerable interest in enhancing
and modulating its activity for various purposes, ranging from therapeutic
applications for illnesses to performance enhancement in healthy individuals.
The focus will then shift to neurofeedback and neurostimulation (NS). In the
following sections, we will delve into the characteristics of both approaches,
highlighting their respective differences. However, before delving into neu-
rofeedback, let us commence from an earlier point by closely examining the
concept of biofeedback.

2.1 Biofeedback
In the late 1950s, a number of disciplines and fields came together to form
biofeedback in the United States. These included behavioral therapy, psy-
chophysiology, instrumental training for autonomic nervous system responses,
and stress coping techniques [40]. Biofeedback is primarily used to offer instru-
ments for the detection and control of psychophysiological arousal processes,
including electrodermal activity, peripheral vasoconstriction, and muscle ten-
sion. Three activities in particular are performed by a biofeedback instrument:
1) observe a relevant physiological process; 2) give an unbiased measurement
of the process under observation; 3) provide meaningful information based on
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what is being tracked and measured.
Biofeedback is an advanced medical methodology that melds principles

from complementary and alternative medicine with the latest developments
in biotechnology [41]. It is a non-invasive method that empowers individuals
to acquire the skills to modify their physiological activities, aiming to improve
their overall performance, general health, and the physiological alterations
often associated with behavioral, emotional, and cognitive changes. During
biofeedback sessions, individuals are attached to electrical sensors that are
subsequently connected to biofeedback apparatus, as in Figure 2.1. They
provide information about physiological processes back to the user, helping
them become more conscious of these processes and take deliberate control
of their body and mind. It is possible to monitor blood pressure, heart rate,
heart rate variability, muscle contraction, skin temperature, electrodermal
activity (sweat gland activity), blood flow and electrical activity of the brain
(EEG). According to research, biofeedback is useful for treating a wide range
of medical and psychological conditions, including headache, hypertension,
temporomandibular disorders, and attentional problems. It can also be used
alone or in conjunction with other behavioral therapies [41].

Figure 2.1. Biofeedback protocol

2.2 Neurofeedback
Neurofeedback, also known as EEG Biofeedback, is a non-invasive method
that was developed from biofeedback: it focuses on teaching individuals how
to take control of the electro-physiological functions of the human brain. EEG
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data is used in neurofeedback to display current patterns in the trainee’s
cortex. Aberrant cortical activity patterns are present in many neurologi-
cal and medical conditions. A baseline EEG and occasionally a multi-site
quantitative EEG (QEEG) are used in neurofeedback assessment to detect
defective patterns. The person is then able to adjust those patterns through
clinical training using EEG feedback, regulating or optimizing brain activity.
With the most acceptability for applications for ADHD, learning difficulties,
seizures, depression, acquired brain injuries, substance misuse, and anxiety,
neurofeedback treatment is expanding quickly [42]. Several treatment meth-
ods are available for neurofeedback training (NFT), summaries in a review
[43]: alpha training is typically used to treat a variety of diseases including
pain relief, anxiety and stress reduction, memory and, specifically, working
memory enhancement, cognitive performance enhancement, and brain injury
treatment. The purposes of beta training include enhancing cognitive pro-
cessing, focus, and attention. Additionally, it results in a decrease in anxiety,
obsessive compulsive disorder (OCD), overthinking, drinking, and insomnia.
In the meanwhile, this kind of neurofeedback lessens stress and exhaustion
while also enhancing sleep-related cognitive function. Beta waves with a fre-
quency range of 12–15 Hz (sensorimotor rhythm) are known to alleviate stress,
anxiety, and epilepsy [43]. One of the most commonly used neurofeedback
trainings for reducing stress is alpha/theta training. In addition, this ther-
apy is utilized to treat severe cases of anxiety, addiction, and depression. It
also facilitates recovery from traumatic reactions and improves musical perfor-
mance, creativity, and relaxation [43]. Delta waves are applied to treat strong
and sharp muscle contractions, learning difficulties, headaches, and traumatic
brain damage. They also reduce worries and enhance sleep [43]. Gamma
training is intended to enhance problem-solving abilities, mental acuity, brain
activity, short-term memory and information processing speed. Lastly, it de-
creases the frequency of migraine attacks [43]. Theta training has been found
to alleviate emotional disorders, ADHD, depression, anxiety, daydreaming,
and distractibility. Additionally, it has been observed to be associated with
enhanced information encoding during working memory tasks [43].

2.3 Brainwave Entrainment
Brainwave entrainment, which is also called brainwave synchronization or
neural entrainment, describes the observation that periodic external stimuli
such flickering lights, speech, music, or tactile stimuli will cause brainwaves to
automatically synchronize to their rhythm [44]. The concept of entrainment
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is rooted in the principles of complex systems theory. This theory elucidates
a phenomenon in which two or more autonomous oscillators, each possessing
its distinct rhythm or frequency, can exert mutual influence on one another.
The extent of this interaction is contingent upon the potency of the coupling
force and materializes when these oscillators are in close proximity for an
extended period, facilitating a gradual synchronization of their rhythms or
frequencies. Consequently, they adjust to oscillate harmoniously at the same
frequency [45]. Thus, brainwave entrainment is thought to be able to gen-
erate a desired state since different dominant brainwave frequencies can be
linked to distinct conscious states. Numerous research show the benefits of
applying this technique to various populations, indicating that different brain
entrainment states may have distinct consequences on behavior and cognition
[44].

2.4 Neurostimulation
Non-invasive brain stimulation methods, such as transcranial magnetic stim-
ulation, transcranial direct current stimulation, and different forms of sensory
stimulation, are effectively employed as therapeutic instruments in neurology
and psychiatry. Additionally, they have been used extensively in recent years
on healthy subjects in an effort to improve their cognitive ability [46]. To do
this, the most consolidated and widely used frequency bands in the literature
for sensory stimulation correspond to those previously outlined for NFT.

In order to better understand the neuronal mechanisms underpinning cog-
nition, treat neuropsychiatric illnesses, and enhance cognitive rehabilitation
following a stroke, non-invasive brain stimulation, for instance, is being em-
ployed more and more in clinical settings [47]. Brain-computer interface de-
vices can be used to effectively use tactile, auditory, and visual stimulation
as well as other sensory brain stimulation modalities to give paralyzed peo-
ple an alternate channel of communication [48]. Electroencephalography and
transcranial magnetic stimulation combined provide a non-invasive way to
examine changes in cortical connection and signal propagation from healthy
to disordered brains [49]. It also allows for an investigation of responses and
cortical connectivity in the human brain.

Open Loop - Neurostimulation. The first generation of brain stimula-
tion systems operated in an open loop mode, meaning that the stimulation
parameters (such as amplitude, duration, and frequency) did not change over
time in response to any physiological variables that occur in real-time [50].
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However, depending on the underlying condition, the same stimulus may have
different consequences due to the dynamic nature of the nervous system’s or
the modulated organ’s physiology. Open-loop stimulation may therefore not
be able to restore the intended function or result in adverse effects [51].

Closed Loop - Adaptive Neurostimulation. Based on closed-loop tech-
nologies, second-generation brain stimulation methods can dynamically mod-
ify therapeutic stimulation in real-time in response to the patient’s brain
activity [46]. This method, called closed-loop therapy, uses an algorithm
or device to control stimulation, allowing for more specialized and targeted
treatments. A closed-loop system synchronizes stimulation with the patient’s
instantaneous brain state by only initiating stimulation in response to abnor-
malities in brain activity. When compared to open-loop therapy, this type
of neurostimulation may have advantages like higher efficacy, better clinical
outcomes, and fewer side effects [46].

It is noteworthy that neurofeedback training, in which participants are
given instructions to adjust a sensory measure of their brain activity, also em-
ploys closed-loop sensory stimulation. However, a number of issues, such as
accurately interpreting human cognition and utilizing efficient learning tech-
niques, limit the effectiveness of NFT. Automated adaptive stimulation struc-
tures, which can dynamically adapt to the changing properties of the brain,
are proposed as a solution to these constraints. Customizing these treatments
can be made easier by using the closed-loop neurostimulation technology, in
which stimulation parameters are automatically adjusted based on feedback
from biomarkers. In the development of closed-loop systems, choosing appro-
priate biomarkers to guide stimulation parameters has become a top priority
[46].

Numerous research [52, 53] proposed the use of online automatic sensory
stimulation, with parameters controlled by the patient’s endogenous rhythms,
such as heart rate, respiration rate, and EEG rhythms, to close the feedback
loop in adaptive neurostimulation methods. These rhythms are interdepen-
dent and necessary for physiological efficiency, balance, and flexibility in re-
sponse to environmental and internal changes. They are essential for recover-
ing cerebral plasticity, training, and regulation of brain activity, as well as for
the rhythmic facilitation of sensory processing. Remarkably, these rhythms
are essential interoceptive signals for an individual’s emotional state [52].
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Chapter 3

Artificial Intelligence,
Machine Learning and
Deep Learning

3.1 Artificial Intelligence

The term "Artificial Intelligence" (AI) is generally used to describe the ca-
pacity of a machine to carry out tasks that are often associated with human
minds, such as "learning" and "problem solving" [54]. Ensuring a machine can
efficiently do a complex human task is the aim of any AI system. AI technol-
ogy is widely employed in industry, government, and science. Historically, AI
research has been centered on various core domains, including reasoning, the
representation of knowledge, planning, learning, processing natural language,
perception, and providing support in robotics [54]. Machine Learning (ML)
and Deep Learning (DL) are subsets of Artificial Intelligence: this relationship
is illustrated in Figure 3.1.

Figure 3.1. Relationship between AI, ML and DL.
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3.2 Machine Learning
The discipline of creating statistical models and methods that enable com-
puter systems to carry out complicated tasks without explicit guidance is
known as Machine Learning [55]. Several algorithms are used in ML to
solve data-related issues. The optimal kind of algorithm to tackle an issue
is never a one-size-fits-all solution, as data scientists like to emphasize [55].
The type of method used will vary depending on the type of problem you
want to solve, how many variables there are, what form of model works best,
and other factors. Machine learning algorithms can be classified based on the
type of output they produce: if a categorical output is desired, a classifier is
employed; whereas, for a continuous output, a regressor is more suitable.

ML algorithms can also be categorized based on their learning approach,
distinguishing between supervised and unsupervised learning.

3.2.1 Supervised Learning

The ML task of learning a function that translates an input to an output
using exemplar input-output pairs is known as supervised learning. From
labeled training data, which consists of a collection of training instances, it
infers a function. Algorithms for supervised machine learning are those that
require outside support. The train and test datasets are separated from the
input dataset. An output variable from the train dataset needs to be classified
or predicted. Every algorithm uses the training dataset to identify patterns
of some sort, which it then applies to the test dataset for classification or
prediction. Most famous supervised ML algorithms are Decision Tree, Naive
Bayes and Support Vector Machine.

3.2.2 Unsupervised Learning

In contrast to the supervised learning described above, unsupervised learning
lacks both an instructor and right responses. It is up to the algorithms to find
and display hidden patterns in unlabeled data. Few features are learned from
the data by the unsupervised learning algorithms. It recognizes the class of
the data when it is introduced by using the previously learned features. Its
primary applications are in feature reduction and clustering. Some examples
of these two applications are, respectively, Principal Component Analysis and
K-Means Clustering.
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3.3 Deep Learning
Deep Learning is a subset of Machine Learning. In contrast to shallow Ma-
chine Learning, Deep Learning extracts and transforms features via a cascade
of layers of nonlinear processing units, based on neural networks. With a hi-
erarchical data representation, where higher level features are generated from
lower level features (backpropagation algorithm [56]), it enables computers
to learn [57]. A basic example of a deep neural network is shown in Figure
3.2, where inputs from DL algorithms are processed through several hidden
layers, with the outputs coming from the computation of those layers.

Figure 3.2. A Deep Neural Network is made up of at least two hidden layers.

When provided with an image, for example, a deep neural network can
discern various features at each hidden layer. To illustrate, when given the
pixels of an image as input, the initial layer can pinpoint edges by contrast-
ing colors or brightness among neighboring pixels. Subsequently, the second
hidden layer has the capability to identify corners and contours based on the
edge descriptions. Following this, specific object components can be identi-
fied through the examination of particular collections of contours and corners.
Ultimately, the objects within the input image can be successfully recognized
[58].
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Chapter 4

Materials and Methods

In this chapter, we will present the tools and methods used during the de-
velopment of this thesis, outlining a clear and structured path. We will start
with the presentation of the signal acquisition systems, then move on to the
development environments for virtual reality tasks, and the calculators and
visualization systems used. We will continue by examining the communica-
tion protocols established between the actors involved in the process and will
provide a detailed description of the adopted experimental protocol. Sub-
sequently, we introduce signal preprocessing, highlighting all the extracted
features and delving into the adopted methodology. We will also delve into
feature selection and the algorithm used, and then move on to a detailed dis-
cussion of regression and Support Vector Regression. We will conclude the
chapter with an overview of the statistical methods employed for the analysis
of the results.

4.1 Software and Instrumentation
The devices used in this research includes the 8-channel Enobio to take the
EEG signal on the test subjects, NIC2 software downloaded to the computer
to be able to communicate with the Enobio, the Oculus Meta Quest 2 visor
for playing the virtual reality scenario developed on Unity, and a computer
with certain specifications necessary to communicate properly with the virtual
reality viewer.

4.1.1 Enobio
The 8-channels Enobio is a portable wireless device for monitoring EEG sig-
nals. It has a bandwidth of 0 to 125 Hz and a sampling rate of 500 SPS.
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This system includes many accessories: a neoprene headcap with 64 holes,
in which to place a maximum of 8 electrodes, according to the 10-10 system;
Ag/AgCl electrodes for each of the 8 channels to fill with conductive
electrolyte gel, adhesive electrodes for CMS and DRL references; con-
ductive gel is injected inside the electrodes with a curved syringe; to these
electrodes will be connected a 8-channel connector, which actually consists
of 10 cables, i.e., the 8 for signal monitoring and two for reference ones; the
Enobio Necbox (Neuroelectrics Control Box) that is the actual device,
to which the 8-channel connector is linked. It has an internal rechargeable
battery, and thus also has its own charger in the kit. The complete system
can be seen in the Figure 4.1.

Figure 4.1. 8-channels Enobio [59].

4.1.2 NIC2 Software

Neuroelectrics’ NIC2 software [60] is designed to control devices—including
the Enobio—from a computer. There are three modes available to connect it
to a suitable device: USB cable, Bluetooth, and Wi-Fi. Once it’s connected
to the device, various settings can be set, among which the main ones are
the Line noise filter to remove line interference at 50 or 60 Hz and the
TCP connection, to send the collected data to other software (in this case,
Matlab). In addition, Default visualisation filter (Hz) can be enabled
to set the filter cutoff values for real-time signal display. These and other
settings are visible in the Figure 4.2.

33



Materials and Methods

Figure 4.2. NIC2 settings.

There is also the possibility of including markers in the settings, so that
they can be entered via the keyboard, to mark the signal and then be able
to segment it later thanks to them. After all this has been set up, a new
acquisition protocol can be created, in which you enter the name of the step,
the step total duration and you select the desired channels in the order in
which they will be mounted on the subject. Then you can finish and save the
protocol. It can be seen in Figure 4.3.

The Figure 4.4 shows EEG signal for each of the 8 channels chosen: here it
is possible to see the goodness of the signals acquired in real-time, having as
an indication of this also the colors related to the signals (green if it is a very
good signal, orange if it is good, red if of bad quality) and their corresponding
quality index. There are three options available for signal display: amplitude
scale in µV/div, time window in seconds, and channel reference (CMS or any
other suitable channel). The protocol can be started, stopped and its name
can be modified at the top of the screen.
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Figure 4.3. NIC2 protocol.

Figure 4.4. NIC2 channels.
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4.1.3 Unity and Visual Studio

Unity Technologies has created a platform called Unity that facilitates the
real-time development of interactive games and simulations in two- and three-
dimensional spaces. Its use has grown over time to include a wide range
of industries, including engineering, the film business, and the automobile
industry. One of its main benefits is that, because of its easy-to-use editing
features, its sophisticated visual editor and easy-to-use drag-and-drop feature
let developers create complex virtual environments without requiring a lot of
coding experience. The Unity Asset Store, a marketplace where creators may
exchange or sell the environments and resources they have made, is another
feature that improves its usability [61].

Unity utilizes the C# (C Sharp) programming language to cater to more
experienced users who are interested in undertaking intricate projects and
defining specific actions. C# is an object-oriented language that enables de-
velopers to script complex functionalities within Unity [62]. The process of
writing scripts is made easier with the assistance of Visual Studio, a develop-
ment environment created by Microsoft [63]. Visual Studio supports various
programming languages, including C#, C++, Java, and JavaScript. This in-
tegration of user-friendly editing, a thriving marketplace for shared resources,
and the ability to delve into advanced scripting languages positions Unity as a
versatile tool that caters to a wide range of users, from beginners to seasoned
developers, across multiple industries beyond gaming [64].

Unity Interface

Unity’s interface is a sophisticated and versatile toolset, serving as the cor-
nerstone for the creation of interactive multimedia and game development
projects. The intuitive design and adaptability of Unity’s interface, partic-
ularly highlighted through its Hierarchy and Inspector components, plays a
pivotal role in enhancing the user experience and efficiency in interactive mul-
timedia and game development, as visually represented in the Figure 4.5.

Hierarchy: The Hierarchy, a hierarchical representation of every element
in the scene, is the central component of Unity’s interface. This part gives
developers a structural perspective of the game objects, making it easier for
them to manage and arrange the many components in their project. The
foundation for a logical and well-organized project structure is laid by the
relationships between different game elements, which are established in large
part thanks to the Hierarchy.
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Scene: A dynamic, interactive depiction of the virtual world under de-
velopment is provided by Unity’s Scene View. This part gives developers
real-time scene navigation and manipulation capabilities, giving the place-
ment and interaction of game items a visual backdrop. A key element of level
design is the Scene View, which enables programmers to see and maximise
the spatial arrangement of their creations.

Game: The Game View, which provides a preview of the project as it will
appear to end users, complements the Scene View. This part is essential for
assessing and testing the interactive features of the programme, giving devel-
opers instant access to information about how users engage with it. For visual
aspects to be refined and the final product to be seamless and immersive, the
Game View is essential.

Inspector: One dynamic element that is essential to Unity’s UI is the
Inspector panel. It displays the attributes, parts, and scripts of the game item
that is presently selected and offers comprehensive information about it. The
Inspector is a tool that developers use to adjust and modify the properties of
materials, game objects, and other scene elements. This fine-grained control
enables developers to precisely iteratively improve their works.

Console:Developers rely heavily on the Console component in Unity’s UI
to monitor and troubleshoot their projects. It offers immediate feedback on
problems, warnings, and log messages that are produced while the application
is running. To guarantee the stability and robustness of the development
process, the Console is a vital tool for problem-solving.

Project:The Unity interface’s Project panel acts as a complete storehouse
for all project-related resources and assets. It makes asset management easier
by providing an organised view of directories, scripts, textures, and other
project components. The Project panel is utilised by developers to arrange,
import, and modify project materials, guaranteeing an efficient workflow and
productive teamwork.
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Figure 4.5. Example of a Unity interface in which the main compo-
nents have been highlighted.

4.1.4 Virtual Reality
Virtual Reality (VR) represents an innovative technology that transports in-
dividuals into digitally simulated environments, providing an engaging and
immersive experience. This advanced technology has found applications in
various areas, from gaming to the simulation of complex training scenarios.
In the context of scientific and psychological research, VR is utilized to ex-
plore and understand human behavior in controlled environments. In the
current context, we delve into the design of a virtual reality scenario, focusing
on the goal of creating an environment that emulates a study or workplace,
with the aim of facilitating concentration and enhancing participants’ cogni-
tive performance. The combination of realistic and relaxing elements aims
to provide an authentic experience, while also enabling the observation of
mind-environment interactions under controlled conditions.

Virtual Reality Scenario

The design of the virtual reality scenario began with the intent to create an
environment reminiscent of a study or workplace, where daily tasks requiring
focus can be performed. This approach aims to immerse participants in a set-
ting that mirrors real-life, offering familiarity and comfort to facilitate easier
and more immediate concentration. In the Figure 4.6, it is possible to observe
the set of elements that make up the virtual scenario. Instead of a bland and
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sterile office environment, which could be unengaging and monotonous, the
room includes elements that convey tranquility. This is expected to positively
impact the participants’ ability to achieve greater concentration. Therefore,
objects reminiscent of work and study, such as a desk, a computer screen,
and various books, were incorporated. At the same time, the room features a
sofa, a fireplace, and various decorative items. Additionally, a large window
allows participants to view a natural landscape, creating a sense of calm and
promoting well-being.

Figure 4.6. Virtual reality scenario: (a) Front View; (b) Left Side
View; (c) Right Side View.

Research has shown that creating conditions for relaxation can enhance
cognitive processes and, consequently, improve working memory levels. To
amplify this effect, calm and soothing music is played throughout the virtual
reality stimulation phase. This not only makes the sessions more immersive
but also minimizes potential external distractions [65].
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Oculus Meta Quest 2

Meta Quest 2 is a revolutionary virtual reality headgear represented in Figure
4.7. This technical analysis will examine the architecture, processing power,
user interface, and underlying engineering principles of the Quest 2, delv-
ing into the complexities of its hardware and software components and their
astounding performance [66, 67].

Figure 4.7. Meta Quest 2 [68].

The Snapdragon XR2 processor, which powers the Meta Quest 2, is a
key component that contributes to the headset’s powerful processing capac-
ity. The XR2 CPU is designed with extended reality (XR) applications in
mind. It offers better graphics rendering, lower latency, and increased energy
efficiency. This technological development is essential for giving consumers
a smooth and engaging virtual reality experience, especially in demanding
applications like intricate simulations and high-fidelity games [69, 70]. The
Meta Quest 2’s engineering achievement is the use of inside-out tracking tech-
nology. Without the use of external sensors, the headset’s array of integrated
sensors—which includes gyroscopes and accelerometers—allows it to precisely
trace the user’s movements in three dimensions. This engineering solution
increases the overall resilience and reliability of positional tracking during
dynamic VR experiences, while simultaneously improving user comfort by re-
moving the setup complications associated with additional sensors [66, 67].
The wireless capabilities of the Meta Quest 2, made possible by state-of-the-
art communication protocols, is an important engineering aspect. Wi-Fi 6
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technology integration ensures a snappy VR experience by minimizing la-
tency and enabling high-speed data flow between the headset and the host
device. This wireless feature, along with the device’s portability, opens up
new possibilities for the user’s range of motion. It’s an important engineering
accomplishment that increases the VR system’s total versatility [66]. Meta
Quest 2 also shows great promise for rehabilitation and cognitive training,
which makes it a flexible instrument for improving human well-being. The
engineering principles that are integrated into the headset are in perfect har-
mony with the needs of applications that are designed to improve cognitive
skills and motor rehabilitation [71, 72]. Furthermore, the immersive quality of
virtual reality makes it a perfect medium for practicing working memory. The
robust processing capabilities of the Meta Quest 2 make it easier to develop
cognitive training programmes that test and enhance users’ working memory.
Interactive exercises in a virtual setting can be made to target particular cog-
nitive functions, encouraging neuroplasticity and possibly helping people with
illnesses that impact cognitive functions, like age-related cognitive decline or
attention deficit disorders [72]. The Meta Quest 2’s wireless and portable
design increases its suitability for use in rehabilitation environments. Re-
habilitation programmes are more flexible and accessible when patients can
carry out prescribed exercises or cognitive training routines in a variety of set-
tings. This feature is especially helpful for home-based rehabilitation since it
makes it possible for patients to easily incorporate therapeutic activities into
their regular routines [73]. Enabling Developer Mode in the Meta Quest 2
presents an amazing opportunity for users to fully utilise Unity’s capabilities
and dive into the virtual reality realm. This feature opens up the possibility
of developing experiences and apps that are specifically suited to a user’s in-
terests, needs in terms of education, or leisure. Turning on Developer Mode
on the Meta Quest 2 basically lets you create games with Unity, a powerful
game engine that’s highly regarded for its adaptability and streamlined user
interface. Unity is the perfect platform for individuals who are eager to learn
about VR creation but do not have a strong experience in coding because it
makes it very simple for developers to build immersive and interactive con-
tent. Custom app development for the Meta Quest 2 has an almost infinite
range of possibilities, from entertainment and educational applications to re-
alistic simulations and experiences. The communication between a computer
and the Meta Quest 2 is achieved either through a USB 3.0 cable or via WiFi.
This connection is known as Quest Link, enabling access to the Rift interface,
allowing users to launch their Unity-developed applications directly on the
VR headset.
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4.1.5 Computer
The connection via Oculus Link requires a computer with good performance
and a compatible graphics card for the connection. In this study, a Personal
Computer in Figure 4.8 with the following specifications was used:
CPU: Intel I7 12700F, 4.9 GHz.
GPU: NVIDIA 4060Ti 8GB.
RAM: DDR4 32GB.
Memory: SSD NVMe 1TB.
OS: Windows 11 Pro.
Cooling System: 240mm liquid cooling system.

Figure 4.8. Breunor Avalon [68].

4.1.6 Matlab Toolkit
MatNIC2 For advanced researchers, MatNIC2 is a Matlab toolkit for flex-
ible, programmatic control of Neuroelectrics devices. You can receive and
process EEG data, for example, and change any stimulation setting in real-
time [74].

Functions from the MatNIC2 library must be loaded and started in order
to connect Matlab to the NIC2. The TCP/IP protocol previously described
is used to accomplish remote control. In this instance, the NIC2 functions as
the server and Matlab as the client. The NIC2 Remote Stimulation Server
is accessed with the function MatNICConnect. The server is running on the
machine where the NIC2 application runs on the port 1235. This function
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accepts the host, or IP address, as input and outputs three variables: socket,
status, and ret. Whether the connection was successful (ret = 0) or not (ret
< 0) is indicated by the value of "ret". On the other hand, the connection
is identified by the "socket". Then, the functions MatNICLoadProtocol and
MatNICStartProtocol respectively send to NIC2 the name of the protocol
to be loaded and request NIC2 to start the protocol. After establishing the
connection, you can utilize MatNICEEGConnectLSL, which creates an "inlet"
for initiating the retrieval of "chunks".

4.2 Communication Protocols
Two types of communication protocols were utilized in this work, which are
TCP/IP protocol, to ensure communication between Matlab and Unity, and
LSL protocol, to enable communication between NIC2 software and Matlab.
These are described as follows.

4.2.1 Transmission Control Protocol/Internet Protocol
The communication protocols known as TCP/IP, or Transmission Control
Protocol/Internet Protocol, are used to link network devices on the internet.
In this study we used those for a real-time communication between Matlab
and Unity. This protocols provide end-to-end data communication [75]. In
reality, TCP/IP is actually composed of two protocols, the Transmission Con-
trol Protocol (TCP) and the Internet Protocol (IP), often referred to as the
TCP/IP suite. Each of these two protocol has a distinct purpose. Applica-
tions can establish communication channels over a network according to TCP
specifications. Additionally, it controls the process of breaking up a message
into smaller packets so that they may be sent across the internet and assem-
bled correctly at the destination address. Each computer or device connected
to the network is assigned a unique IP address (Internet Protocol address)
by TCP/IP. This allows each IP address to establish a connection on one or
more ports, up to a maximum of 65535, for the purpose of sending and receiv-
ing data to and from other network devices. This creates a private, two-way
channel of communication between devices that are referenced by an IP ad-
dress. To ensure that a packet reaches its intended location, IP specifies how
to address and route each packet. This IP address is checked by each network
gateway computer to determine where the message should be forwarded [76].
In order to make a connection over TCP/IP, a device known as the client—in
our study, Matlab—and the server— i.e. Unity—are required. The server (or
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listener) is the computer that "listens" for all incoming connections from the
various clients. The client must know the port number via which it intends to
send and receive data, in addition to the IP address of any server it wants to
connect to. The server waits for connections to arrive and decides whether to
accept or reject them. A connection is open until either the client or the server
chooses to break it. Data can be transferred and received via the designated
port number between the Client and the Server during this time [76].

4.2.2 Lab Streaming Layer
A set of libraries and tools known as the Lab Streaming Layer (LSL) provide
multi-modal time-synchronization, real-time data streaming, and triggering.
Several computer languages (C, C++, Python, Java, C#, Matlab) and oper-
ating systems (Mac, Windows, Unix) can be used to control the connection.
Any software sending or receiving data must be connected to the same network
in order for LSL to function [77]. The liblsl library is used in the communi-
cation protocol. The following abstractions are available for usage by client
applications through the liblsl library [77]:

• Sample. It is a single measurement of every channel from a device.

• Chunk. For better latency, a sample can be transferred alone; for better
throughput, it can be transferred in segments comprising many samples,
called chunks.

• Metadata. In addition to the raw data, XML data—which is similar
to a file header—are stored and transferred with information about the
stream. They are known as Metadata.

• Stream. A stream is made up of the Metadata and sampled data from
a device. A stream may consist of one or more channels with either a
regular or irregular sampling rate. A stream’s data must all be of the
same type (integers, floats, doubles, or strings).

• Stream Outlet. Its function is to provide lab network users with access to
time series data streams. Sample-by-sample or chunk-by-chunk, the data
is sent into the outlet. A group of computers (specified by the network
configuration) can see the stream when an outlet is created, and they can
subscribe to it by using a Resolver to locate it and connecting a Stream
Inlet to it.
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• Stream Inlet. Receiving time series data from a single connected outlet is
done using a stream inlet. It permits the orderly retrieval of samples from
the stream, along with optional failure recovery, type conversion, and
dependable (re-)transmission. In addition to the samples, the Metadata
is also available.

• Resolver. Streams on the lab network can be resolved using LSL functions
based on content-based queries (e.g., by name, content-type, or meta-data
queries).

• Built-in clock. It enables mutual synchronization of the sent samples by
providing a time-stamp.

4.3 Study Protocol

4.3.1 Memory Task
The n-back test, an integral part of neuropsychological assessments, serves
to evaluate working memory and its capacity. It challenges participants to
monitor and respond to sequences of stimuli, with difficulty levels adjusted
by altering ’n’, the number of steps back in the sequence for recall. This test
offers crucial insights into an individual’s cognitive functions, particularly in
working memory and executive function. Originating as a simple memory
test, the n-back task has evolved into a pivotal tool in cognitive psychology
and neuroscience research, with applications in clinical diagnosis. It caters
to a diverse demographic, including children, adults, and the elderly, and is
used for understanding cognitive processes in both healthy individuals and
those with impairments, such as ADHD, schizophrenia, and dementia [78,
79]. The simplicity of the n-back task design belies its execution complexity.
In a typical setup, participants are shown stimuli like letters or numbers and
must identify matches with those presented n steps earlier. For example, in a
2-back task with a sequence of 5-8-5, the participant identifies the second 5 as
matching the first. This task assesses not only memory capacity but also at-
tention control and response inhibition. Its adaptability allows researchers to
tailor the task for specific needs, like using different stimuli types or increas-
ing the n-back level for greater challenge. This has led to a variety of n-back
task versions, enhancing its utility in cognitive assessments. Furthermore, the
n-back task has been key in mapping brain areas involved in working memory
through functional MRI studies, enhancing understanding of how these areas
function in various neurological conditions [80]. Overall, the n-back test is
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not merely a memory measurement tool; it provides a comprehensive view
of the human brain’s complex functioning, offering valuable insights for both
theoretical and practical applications in cognitive health.

2-back

In this thesis, the 2-back memory task is employed to challenge and assess
working memory. Participants are presented with a sequence of digits from 1
to 9, identifying if the current digit matches the one shown two steps back.
This task necessitates continuous memory updating and monitoring, exempli-
fied by identifying a repeating digit in a sequence like 3-5-3. It effectively tests
attention, concentration, and the ability to manage and manipulate tempo-
rary information in the mind.

3-back

The 3-back task, a more demanding version of the n-back, is also included in
this thesis to rigorously evaluate working memory. Participants see a series
of digits from 1 to 9, determining if the current digit matches the one three
steps prior. This task, exemplified by recognizing a digit repeating after
two intermediate digits, like in 4-2-7-4, demands a higher level of cognitive
processing, challenging participants to retain and manipulate information over
an extended period.

4.3.2 EEG Acquisition
The EEG signal acquisition is the starting point and a crucial part of the
entire study. Using the NIC2 acquisition software, connected via Bluetooth
to the Enobio Necbox device, two protocols are set up: one for calibration
and the other for real-time operation. These protocols, identical in terms of
electrode placement, differ in their duration and operating type.

Open-Loop Phase

During the calibration phase, the signal is recorded ’offline’ by NIC2 using an
open-loop protocol and stored in .easy format files. These files can be easily
loaded into Matlab for further processing. Markers, detailed in the ’NIC2
software’ section, are inserted during recording to temporally align the signal
with the VR viewer test performed by the subject. This temporal alignment
is crucial for the functionality of the calibration phase, upon which the overall
system’s performance heavily relies.
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Following this offline recording obtained through Bluetooth communication
between Enobio Necbox and NIC2, the signal is imported and processed in
Matlab. Relevant features specific to the user are now extracted from the
EEG signal, and a regression model is trained to be used in the subsequent
real-time phase.

Closed-Loop Phase

To initiate the real-time phase, the TCP/IP protocol must be activated on
the NIC2 interface. This enables direct communication between Matlab and
NIC2 using the MatNIC functions (described in the corresponding section).
These functions allow the loading and initiation of a new recording proto-
col on the NIC2. Following this setup, Matlab establishes a connection via
LSL to receive data packets (chunks) comprising approximately 250 samples
each, acquired at 500Hz. Matlab processes the received chunks and then
transmits parameters to Unity through the TCP/IP protocol for modulating
various stimulations. Unity subsequently delivers the modulated stimuli in
the virtual reality environment. This protocol is then defined as a closed-loop
system. The following Figure 4.9 schematically depicts the operational differ-
ence between the open-loop and closed-loop phases, highlighting the various
modes of interaction and data flow among the system components.

4.4 EEG Signal Preprocessing and Analysis
This thesis incorporates a comprehensive approach to EEG signal prepro-
cessing and analysis using a custom Matlab script, designed to extract and
evaluate various EEG parameters. The script initiates with an environment
setup, followed by detailed steps for signal preprocessing, feature extraction,
and data analysis. The preprocessing of the EEG data is a critical step,
involving several sub-processes.

4.4.1 Signal Filtering Process
Filtering is a pivotal process in EEG signal preprocessing, crucial for enhanc-
ing signal quality and isolating meaningful data for analysis. This section
describes the filtering techniques applied to EEG data, focusing on the types
of filters used and their role in the preprocessing workflow.

Interpreting the EEG signal is challenging due to its non-linear and non-
stationary characteristics. Simply examining the EEG trace visually does not

47



Materials and Methods

Figure 4.9. Representative diagram of the open loop phase (indicated by
black arrows) and the closed loop phase (indicated by red arrows) in the com-
munication between Enobio Necbox, NIC2, Matlab, and Unity. (1) Acquiring
the EEG signal using Enobio Necbox and recording via NIC2. (2) Transferring
the signal from NIC2 to Matlab for processing. (3) Transmitting data from
Matlab to Unity. (4) Delivering the stimulus in virtual reality.

provide enough information for meaningful analysis. The complexity arises
primarily because the raw signal (referenced in Figure 4.10) contains over-
laid non-brain-related signals. These include artifacts from eye movements
(EOG), artifacts from movements of facial muscles (EMG), electrical noise,
and disruptions resulting from incorrect placement of electrodes.

Types of Filters Used

Chebyshev filters play a significant role in refining the EEG data for accurate
analysis. These filters are a type of digital filter with distinct characteristics,
making them particularly suitable for specific EEG processing needs. Cheby-
shev filters are part of the IIR (Infinite Impulse Response) filter class and are
categorized as ARMA (autoregressive moving average) types, as their trans-
fer function includes both poles and zeros. Chebyshev filters come in two
types: Type I and Type II. Both are known for their sharp cutoff character-
istics, which means they can more precisely separate the desired signal from
unwanted frequencies.

1. Type I Chebyshev Filters: These filters exhibit a ripple effect in
their passband, which refers to the range of frequencies they allow to
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Figure 4.10. Raw EEG Signal. The graph represents a raw EEG signal over
a time period of seconds. The x-axis represents time in seconds and the y-axis
represents amplitude in µV.

pass through. The ripple is a series of peaks and troughs in the fil-
ter’s response, offering a sharper cutoff at the expense of a less uniform
passband. This feature can be advantageous in EEG processing when
a sharp delineation between frequency bands is needed, such as sharply
differentiating between alpha and beta waves.

2. Type II Chebyshev Filters: In contrast, Type II filters, also known
as inverse Chebyshev filters, show a ripple in the stopband instead of the
passband. This means they maintain a flat response within the frequency
range of interest (passband) but have a variable response in the range of
frequencies being filtered out (stopband). This characteristic is beneficial
when a uniform signal within a specific band is crucial, and variations in
the stopband are less of a concern.

Both types of Chebyshev filters are characterized by their fast roll-off, mean-
ing they transition quickly from the passband to the stopband. This makes
them highly effective in EEG applications where separating closely spaced fre-
quency bands is essential, such as distinguishing between overlapping neural
oscillations.

In this thesis, the choice was made to utilize two Chebyshev Type I fil-
ters, as it was crucial to distinctly eliminate frequencies not pertinent to the
study, which could include artifacts such as muscular and ocular movements.
Therefore, a high-pass filter (HPF) and a low-pass filter (LPF) are employed
in a cascading sequence:
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1. High-Pass Filter (HPF) using Chebyshev Type I: The function
[b_high, a_high] = cheby1(n, Rp, wp, ’high’) is utilized to design
the high-pass filter. The cheby1 function in Matlab is specifically tailored
for creating a Chebyshev Type I filter. The parameters of this function
are:

• n: This determines the order of the filter, influencing the steepness
of the filter’s response curve. A higher order indicates a more abrupt
cutoff at the designated frequency.

• Rp: This is the pass-band ripple, defining the maximum permissible
ripple within the pass band, measured in decibels (dB). It balances
the sharpness of the cutoff with the pass-band’s frequency response
uniformity.

• wp: This represents the cutoff frequency for the high-pass filter, mark-
ing the frequency below which signals are attenuated.

• ’high’ : This parameter specifies the filter type as high-pass.

2. Low-Pass Filter (LPF) using Chebyshev Type I: The function
[b_low, a_low] = cheby1(6, Rp, wp, ’low’) is used for generating
the coefficients of the low-pass filter. This function is similar to the pre-
vious one, with the only change being the last parameter switching from
’high’ to ’low’. In this context, wp indicates the frequency above which
the signal’s components will be attenuated, playing a vital role in defining
the frequency range the filter will effectively allow. The function returns
b_low and a_low, arrays that contain the numerator and denominator
coefficients of the filter’s transfer function, respectively. These coefficients
are crucial for the implementation of the filter in digital signal processing
tasks.

The integration of high-pass and low-pass Chebyshev Type I filters in this
thesis constitutes a cascading system, pivotal for the precise isolation of tar-
get frequency ranges in EEG signal analysis. This meticulously designed sys-
tem ensures the elimination of extraneous frequencies and artifacts, thereby
enhancing the purity and relevance of the data. A notable aspect of this
approach is the preference for IIR (Infinite Impulse Response) filters over
FIR (Finite Impulse Response) filters. This choice is strategically made due
to the IIR filters’ proficiency in achieving the desired specifications with a
lower order, resulting in a significantly reduced transient response. However,
a challenge with IIR filters is their inherent non-linear phase characteristic,
which can introduce phase distortion into the signal. To adeptly counteract

50



Materials and Methods

this issue, the study employs anticausal zero-phase rotation filters, exempli-
fied by the utilization of Matlab’s ‘filtfilt‘ function, which effectively negates
any phase distortion, ensuring the fidelity of the signal processing. The dual
arrangement of the Chebyshev filters brings forth multiple advantages. En-
hanced precision in frequency isolation is achieved as each filter’s cutoff fre-
quency can be finely tuned. This level of control is invaluable in EEG analysis
for the accurate identification of specific brainwave frequencies.

Moreover, the system offers a flexibility surpassing that of a single band-
pass filter, allowing for tailored adjustments to suit various research needs
and EEG data types. The cascading structure also significantly elevates the
integrity of the EEG signal. By dedicating each filter to a specific task – filter-
ing out either high or low-frequency noise – the system yields a cleaner, more
accurate representation of the desired signal. This approach effectively min-
imizes the risk of artifact-induced distortions, a critical factor in the validity
of EEG data analysis.

In addition to these technical merits, the stability of the filter system is
paramount. Stability is verified through Matlab’s ‘freqz‘ function, which pro-
vides a detailed visual representation of the frequency response masks, as
illustrated in Figures 4.11 and 4.12. These visualizations are not just graphi-
cal representations but are instrumental in affirming the filter’s performance
and stability over the intended frequency range. They are vital in ensur-
ing that the filters operate as intended, thereby upholding the accuracy and
reliability of the EEG data analysis.

After undergoing the described processing steps, the filtered signal is pre-
sented as shown in Figure 4.13. This graph illustrates the impact of filtering
across time, where the x-axis denotes time in seconds and the y-axis measures
the amplitude in microvolts.
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Figure 4.11. Frequency response of HPF.

Figure 4.12. Frequency response of LPF.

Figure 4.13. Comparison of the Raw Signal (in black) and the
Filtered Signal (in red).
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4.4.2 Power Spectrum Analysis
The EEG signal, a mirror of neural activity, exhibits oscillations across a
range of frequencies. Spectral analysis, often employed for its quantification,
is rooted in extensive research linking the EEG’s frequency spectrum to var-
ious cognitive states and neurological pathologies. The core aspects of this
analysis are the measurement of power and its spatial distribution within the
brain. Here, ’power’ measures the intensity of specific frequency bands in
the signal, while ’spatial distribution’ addresses the dispersion of this power
throughout different brain regions, a key factor for decoding certain cerebral
functions. The process of spectral estimation typically relies on the Fourier
Transform (FT). This technique breaks down a signal into separate sinusoidal
components, each with its own frequency and phase. Together, these compo-
nents form the signal’s power spectrum. The goal is to determine the power
spectral density (PSD), essentially the frequency-wise distribution of the sig-
nal’s power. A common approach for this analysis is the periodogram, offering
a non-parametric PSD estimation by computing the squared magnitude of the
signal’s FT. It’s important to note, however, that spectral analysis is ideally
suited for signals that are stationary or at least ’weakly’ stationary. The EEG
signal, inherently random and non-stationary, does not fulfill this criterion,
thus posing unique challenges in its spectral analysis. Nonetheless, a viable
approach involves segmenting the signal into sufficiently short epochs (a few
seconds) to at least ensure quasi-stationarity. In this thesis, power calcula-
tions were performed using a simple periodogram with 1-second signal epochs,
equivalent to 500 samples. The implementation of the simple periodogram in
Matlab utilizes the function:

[P, f] = pwelch(x, w, noverlap, NFFT, f c)

Where the input variables are:

• x: the time-series data, representing the signal for which the power spec-
trum is to be estimated.

• w: the windowing function applied to each data segment. This func-
tion mitigates the spectral leakage effect, enhancing the accuracy of the
estimation.

• noverlap: the number of points by which consecutive data segments over-
lap. A higher overlap can increase the resolution but also the computa-
tional load.
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• NFFT: the number of Fast Fourier Transform points used to calculate
the power spectrum. This determines the frequency resolution of the
analysis.

• f_s: the sampling frequency of the signal. This is crucial for correctly
scaling the frequency axis of the power spectrum.

The function outputs two variables:

• P: the power spectral density estimate of the signal, providing insights
into the power present at different frequencies.

• f: the frequency vector corresponding to the PSD estimates, facilitating
the mapping of power distribution across the frequency spectrum.

This function is integral in analyzing EEG data, particularly in understanding
the distribution of power across different frequency bands within the signal.
In this study, it was decided to introduce no overlap in the spectral analysis,
setting the noverlap parameter to zero. This approach ensures distinct and
independent evaluation of each signal segment. The sampling frequency em-
ployed is 500 Hz, providing a detailed capture of the EEG signal’s nuances.
Furthermore, the NFFT was set to 500, aligning the apparent resolution with
the theoretical resolution. This configuration allows for a precise and consis-
tent analysis of the frequency components within the EEG signal, crucial for
the accurate interpretation of the spectral characteristics.

Theoretical Resolution = 1
T

= fc

N
(4.1)

where T represents the duration of the window in seconds, and N is the length
of the window in samples.

Apparent Resolution = fc

NFFT (4.2)

To achieve an apparent resolution equal to the theoretical resolution, it is nec-
essary to set NFFT equal to N, the length of the signal segment. In this study,
the selection of a 1-second window length ensures a theoretical resolution of
1 Hz. This resolution is particularly effective for the EEG signal, allowing
for the discrimination of frequencies that are typically 1 Hz apart within the
various EEG frequency bands. Upon estimating the power spectral density of
the EEG signal, the next step involves calculating the relative power within
specific frequency bands. These include the theta band (4 Hz - 7 Hz), alpha
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band (8 Hz - 14 Hz), beta 1 band (15 Hz - 21 Hz), and beta 2 band (22 Hz -
30 Hz). They can be seen in Figure 4.14.

Figure 4.14. Power Spectral Density of the 8 Channel.
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This process is crucial for understanding the distribution and dominance
of different frequency bands in the EEG signal, which can be indicative of
various cognitive states or neurological conditions

4.4.3 Feature Extraction
The primary objective of this study is to enhance the performance of work-
ing memory in the subjects participating in the research. To achieve this,
the chosen strategy involves the development of an index through regression
algorithms. This index aims to capture the trajectory of each subject’s mem-
ory performance while they engage in the n-back memory task. To construct
this index, it is essential to first extract predictive features from the EEG
signals that are relevant to the phenomenon under investigation. Specifically,
for all 8 channels recorded using the Enobio system, 348 total features are
extracted. These features will be discussed in greater detail in the subse-
quent paragraphs, offering a comprehensive insight into their relevance and
application in improving working memory performance.

Time Domain Features

This segment of the thesis examines the mathematical and statistical at-
tributes extracted from the EEG signals in the time domain, offering a mul-
tifaceted understanding of their characteristics. Each feature extracted is
pivotal for comprehensive EEG analysis:

1. Mean: the mean of the data, calculated as the average value of the EEG
signal in a given segment. Mathematically, it is expressed as:

x̄ = 1
n

nØ
i=1

xi (4.3)

where xi represents the signal values and n is the number of values.

2. Variance: this represents the extent to which the signal values deviate
from the mean. Computed as

σ2 =
qn

i=1(xi − x̄)2

n − 1 (4.4)

it measures the dispersion of the EEG signal values.

3. Standard Deviation: the square root of the variance, it provides a measure
of the signal’s volatility around the mean.
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4. Minimum Value: the smallest value in the EEG signal segment, indicative
of the lowest signal amplitude observed in the given time-frame.

5. Maximum Value: conversely, this is the highest value in the signal seg-
ment, representing the peak amplitude within the segment.

6. Range: computed as the difference between the maximum and minimum
values, this feature reflects the overall amplitude variability of the EEG
signal in the segment.

7. Kurtosis: a measure of the ’tailedness’ of the signal’s probability distri-
bution. Kurtosis indicates how outlier-prone the signal distribution is,
with higher values suggesting more outliers.

8. Skewness: this feature measures the asymmetry of the signal distribution.
A skewness value different 5from zero indicates a distribution that is not
symmetric around the mean.

9. 25th Percentile (Lower Quartile): this statistic represents the value below
which 25% of the data falls, providing insights into the lower range of the
EEG signal distribution.

10. 75th Percentile (Upper Quartile): analogously, this is the value below
which 75% of the data falls, offering a perspective on the upper range of
the EEG signal distribution. It helps in understanding the distribution’s
higher amplitude characteristics.

11. Median: the median provides a robust measure of the central tendency
of the signal, representing the value at the middle of the dataset when
ordered from lowest to highest. It is less sensitive to outliers than the
mean, often giving a better representation of a ’typical’ value in skewed
distributions.

Each of these features contributes to a comprehensive understanding of
the EEG signal’s characteristics in the time domain. The mean, variance,
and standard deviation offer insights into the signal’s central tendency and
variability. In contrast, the minimum and maximum values, along with the
range, provide information about the signal’s amplitude fluctuations. Kurto-
sis and skewness offer deeper insights into the shape of the signal’s distribu-
tion, indicating the presence of outliers and the symmetry of the distribution,
respectively. The percentiles and median give a more nuanced view of the
signal’s distribution, especially in the presence of non-normal distributions.
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Collectively, these time-domain features provide a multi-faceted view of the
EEG signals, facilitating a more nuanced analysis and interpretation. This
detailed approach to feature extraction lays a solid foundation for subsequent
analyses, such as feature selection and regression.

Mobility e Complexity

In the nuanced study of cognitive states using EEG signals, the metrics of
Mobility and Complexity are invaluable for their detailed insight into signal
characteristics. Mobility, represented mathematically as M , is defined by the
formula

M =
öõõôvar(dX(t))

var(X(t)) . (4.5)

Here, var(dX(t)) is the variance of the first derivative of the EEG signal
X(t). This derivative represents the rate of change of the signal, which is
indicative of its frequency content. Therefore, Mobility is a measure of the
average frequency or the ’speed’ of the EEG signal, with higher values indi-
cating more rapid fluctuations.

Complexity, denoted as C, builds upon this concept and is calculated as:

C = Mobility(dX(t))
Mobility(X(t)) . (4.6)

This ratio compares the Mobility of the signal’s first derivative to the
Mobility of the signal itself. Essentially, Complexity measures the relative
smoothness of the signal’s waveform; a higher Complexity value suggests a
more intricate and less smooth waveform. This is particularly useful in EEG
analysis as it reflects the intricacies of the neural activities and interactions
underpinning different cognitive processes.

By applying these measures to EEG signals, researchers can gain a nuanced
understanding of brain activities associated with specific cognitive tasks. For
instance, variations in Mobility and Complexity across different tasks can
reveal how neural dynamics change in response to cognitive load or attentional
focus. This deeper analysis paves the way for advanced interpretations and
applications in the field of cognitive neuroscience and related disciplines [81].

Power Domain Features

In the pursuit of understanding the complex states of the human mind through
EEG analysis, we have extracted power measures across various frequency
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bands that are indicative of distinct cognitive states. The bands of particular
interest in our study are theta, alpha, beta 1, and beta 2. Theta activity
typically emerges during deep sleep or profound relaxation, alpha waves are
prominent during wakefulness and moments of relaxation, while beta waves
are associated with concentration and attentiveness. For each channel, power
within these four bands was extracted, resulting in a set of 32 features that
encapsulate the power distributions.

However, these power features, while emblematic of certain mental states,
do not suffice to accurately differentiate between relaxed states and those
involving active working memory tasks, nor do they precisely predict perfor-
mance. This limitation necessitated a multimodal approach through machine
learning, which enables the integration of diverse variables and datasets to
form a more complete picture of mental state transitions.

To enhance the interpretative power of our analysis, we combined these
power measures to create ratios that could more sensitively reflect shifts in
mental states. Notably, we focused on the ratios between theta and alpha
powers, theta and beta powers, as well as beta and theta powers, aiming to
cover the full spectrum of possible combinations. These ratios, particularly
the beta/theta ratio, have been implicated in various cognitive phenomena,
including attention and mental workload. During the computational analysis,
it became evident that the power in the beta 1 band was particularly influen-
tial in the machine learning model training process. This finding underscored
the significance of the beta 1 frequency band in relation to cognitive effort
and attentional states.

Figure 4.15, with its topographic maps for different frequency bands, il-
lustrates this complex interplay of brain activities during resting states and
cognitive tasks. The visual representation vividly demonstrates the spatial
power variations that correspond to the engaged mental processes, providing
a compelling confirmation of our analytical findings.

This integrative approach, combining raw power features with calculated
power ratios , offers a potent method for delving into the intricacies of EEG
data and deciphering the nuanced patterns that underlie cognitive function
and mental state transitions.
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Figure 4.15. Topographic distribution of EEG power across various fre-
quency bands during different cognitive states. EEG Power Distribution
at P3, T7, C3, F7, Fz, F8, C4, P4 electrodes during from top to bottom
respectively:rest, 2-back, and 3-back.

In addition to calculating power in various frequency bands, two other
crucial features were extracted: the Individual Alpha Frequency (IAF) and
the Individual Theta Frequency (ITF). The IAF, a term introduced in 1999 by
Klimesh [82], represents the peak frequency in the alpha band and is obtained
by selecting, from the frequency spectrum between 9 and 13 Hz, the frequency
corresponding to the maximum power. More precisely, it was calculated as
the average IAF during the task phase, further averaged across electrodes P3
and P4, following the recommendations of recent studies [35], which suggest
that alpha power is prominently observable in the parietal region.

On the other hand, the ITF represents the counterpart of the IAF but in
the theta band. This frequency was extracted from the Fz channel (frontal
midline area), as proposed in [83].

Imaginary Coherence Index

In the domain of electrophysiological studies, particularly those investigat-
ing the neural substrates of cognitive functions like attention and working
memory, Imaginary Coherence (ICH) stands out as a sophisticated analytical
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tool. ICH is used to gauge the linear relationship, or the degree of synchrony,
between two EEG signals at specific frequencies, thus providing insights into
the frequency-specific interactions among different brain regions. Unlike tra-
ditional coherence measures, ICH is not influenced by volume conduction,
thus offering a more genuine depiction of connectivity by negating false cor-
relations arising from extraneous coherence or self-interaction [84].

To compute ICH, the cross-power spectral density (CPSD) between two
channels is determined, and the imaginary part of this complex quantity is
taken:

ICH = imag{CPSD(x, y)}ñ
PxxPyy

(4.7)

Here, CPSD(x, y) represents the cross-power spectral density between
channels x and y, while Pxx and Pyy denote the power spectral densities
of channels x and y, respectively. The ICH can manifest as either positive or
negative values; a positive ICHx→y implies a flow of information from channel
x (source) to channel y (sink), while a negative ICHx→y suggests that channel
x acts as a sink [84].

To procure these measures, the Welch’s averaged modified periodogram
method is employed. The frequency resolution achieved is a function of NFFT,
set at 500 in the referenced study to obtain a resolution of 1Hz with a sampling
rate of 500 Hz [84].

The absolute values of ICH are indicative of the strength of connectivity,
while the sign delineates the directionality of the flow, adding a layer of in-
terpretation to the data. By separating and averaging the absolute values of
ICH across channels within specific frequency bands—theta (4–7 Hz), alpha
(8–14 Hz), beta1 (15–21 Hz), and beta2 (22–30 Hz) it is possible to infer the
intricate patterns of neural interactions that underlie cognitive processes [84].

In the context of our thesis, the application of ICH to EEG data reveals
nuanced insights into the neurodynamics associated with working memory
and attentional states. As Fig. 4.15 illustrates, the topographic maps of EEG
power in various frequency bands during resting and cognitive engagement
states are complemented by the ICH analysis, which elucidates the inter-
regional connectivity that underpins these power distributions. This multi-
faceted approach, combining topographical and connectivity analyses, permits
a comprehensive understanding of how different brain regions coordinate and
communicate during cognitive tasks, furthering our grasp of the underlying
neural mechanisms.
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Spectral Entropy

Spectral Entropy (SE) serves as a profound measure of complexity within a
signal’s spectral power distribution, deeply rooted in the concept of Shannon
entropy from information theory. Shannon entropy, often regarded as a cor-
nerstone of communication and complexity science, quantifies the amount of
information or uncertainty present in a signal. In the context of Spectral En-
tropy, the power spectrum of a signal, when normalized, is treated akin to a
probability distribution. This normalization is fundamental because it allows
the signal’s power distribution across frequencies to be interpreted probabilis-
tically, where the sum of all probabilities equals one, reflecting the complete
signal energy.

Mathematically, for a given signal x(n), the power spectrum S(m) is de-
rived from the magnitude squared of its discrete Fourier transform X(m),
given by S(m) = |X(m)|2. From this power spectrum, the probability distri-
bution P (m) is obtained through normalization:

P (m) = S(m)q
i S(i) . (4.8)

Subsequently, Spectral Entropy H is computed as:

H = −
NØ

m=1
P (m) log2 P (m), (4.9)

where N is the total number of frequency points. To ascertain the nor-
malized Spectral Entropy Hn, which allows for comparison across different
systems or signals, we use:

Hn = −qN
m=1 P (m) log2 P (m)

log2 N
, (4.10)

with the denominator log2 N representing the maximal Spectral Entropy
achievable by white noise, which exhibits a uniform distribution in the fre-
quency domain [85].

In our thesis, the exploration of Spectral Entropy extends to EEG signals
during cognitive tasks, where SE provides an objective metric to assess the
distribution of electrical power across various brain frequencies. The entropy
values serve as an index of mental workload and cognitive complexity, differ-
entiating between states of focused attention and rest. As such, SE becomes a
crucial feature in the construction of predictive models that seek to interpret
and classify cognitive states based on EEG data.
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To compute SE in Matlab, the function:

[se] = pentropy(Data, Fs, ’Instantaneous’, false)

is employed, which adheres to the principles outlined above. This function
simplifies the computational process, taking a time-domain signal as input
and returning its Spectral Entropy as in Figure 4.16 that displays the Spec-
tral Entropy fluctuations over a duration of 400 seconds, as recorded from the
T7 electrode, positioned in the temporal region of the scalp. Each point on
the horizontal axis marks a second in time, while the vertical axis represents
the Spectral Entropy value, reflecting the complexity and unpredictability of
the EEG signal at that instant. The data illustrates a characteristic pat-
tern of entropy variation, which may correlate with shifts in cognitive states
and underlying neural activity during the EEG session. The application of
pentropy aligns with the methodological rigor required in advanced signal
processing, granting us a robust feature that encapsulates the dynamism of
brain activity.

Figure 4.16. Temporal Variation of Spectral Entropy in EEG Channel T7.
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Phase Locking Value

The Phase Locking Value (PLV) is a robust statistical tool used in EEG to
quantify the phase synchronization between different neuronal populations. It
serves as a measure of the consistency with which two signals, or signal com-
ponents, lock in phase, irrespective of their amplitude. This synchronization
is particularly telling of the functional connectivity within the brain, which
is central to understanding how different regions communicate during various
cognitive tasks.

In mathematical terms, starting from a signal x(t), the analytic signal is
obtained by applying the Hilbert transform:

xa(t) = Hilbert(x(t)) (4.11)

The instantaneous phase ϕ(t) is calculated from the analytic signal:

ϕ(t) = angle(xa(t)) (4.12)

In the same manner, the process is applied to the signal y(t). Therefore,
for two signals x(t) and y(t) with instantaneous phases ϕx(t) and ϕy(t), PLV
is defined as the absolute value of the average phase difference between the
signals over time:

PLV =
------ 1
N

NØ
t=1

ei(ϕx(t)−ϕy(t))

------ (4.13)

where N is the total number of samples, and i is the imaginary unit. This
formula captures the extent to which the phase difference remains constant
over time; a PLV of 1 indicates perfect phase synchronization, while a PLV
close to 0 suggests no synchronization.

In the computational exploration of our thesis, the PLV serves as a pivotal
measure, and its calculation is executed through a custom Matlab function
computePLV. This function is adeptly designed to process filtered EEG data,
iterating over defined epochs to calculate the phase synchronization between
channels.

The function computePLV(eeg_filt, num_iterations, Ns, Fs) takes a
matrix of EEG data, eeg_filt, with dimensions [num_samples x num_channels]
and other parameters such as the number of iterations num_iterations, the
number of samples per iteration Ns, and the sampling frequency Fs. Within
each iteration, it selects an epoch for analysis and applies the Hilbert trans-
form to compute the instantaneous phase. This phase information is then
used to determine the phase differences between every pair of channels.
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The function intricately constructs a matrix of PLV values, capturing the
essence of neural connectivity. By concentrating on the lower triangular por-
tion of this matrix, the function efficiently compiles a vector of unique PLV
values, thus avoiding redundancy as phase locking between channels is sym-
metric.

This custom function computePLV embodies the methodological sophistica-
tion necessary for advanced EEG signal processing, granting a nuanced analy-
sis of the phase relationships intrinsic to cognitive processes. By incorporating
this function into our signal processing pipeline, we ensure a robust, repeat-
able computation of PLV, a critical step in establishing a reliable biomarker
for cognitive state differentiation based on EEG data.

Higuchi Fractal Dimension

The Higuchi Fractal Dimension (HFD) serves as a pivotal tool in the math-
ematical analysis of time series data, particularly EEG signal analysis, to
understand the complexity of brain activity. This technique quantifies the
irregularity or complexity of signals, shedding light on the intricate dynamics
of neural oscillations. It is particularly effective in revealing subtle changes in
EEG recordings associated with different cognitive states [86].

To compute the HFD, a time series is segmented into subsequences:

(X(1), X(2), . . . , X(N)). (4.14)

From these, new sequences are formed for each initial time m and time interval
k, creating k new series:

Xmk = X(m), X(m + k), X(m + 2k), . . . , X

A
m +

C
N − m

k

D
· k

B
(4.15)

where m ranges from 1 to k. For each k, the length Lm(k) is the normalized
sum of the absolute differences between consecutive points spaced k units
apart:

Lm(k) =

[N−m
k ]Ø

i=1
|X(m + ik) − X(m + (i − 1) · k)|

 × N − 1è
N−m

k

é
· k

(4.16)

The HFD is derived from the proportionality of Lm(k) to k−F D:
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FD = − log L(k)
log k

(4.17)

In this thesis, the HFD is utilized to evaluate working memory regions
in the brain during task performance. A higher HFD indicates increased
complexity, suggesting a higher cognitive load or concentration. This aligns
with the observation that EEG signals become more irregular with increased
cognitive demand.

Our empirical analysis employs HFD to assess EEG data during specific
working memory tasks, such as the n-back task. Variations in HFD reflect
changes in cognitive load, with higher dimensions indicating periods of height-
ened working memory engagement.

Katz Fractal Dimension

The Katz Fractal Dimension (KFD) is instrumental in EEG signal analysis
within cognitive neuroscience, enabling the assessment of structural complex-
ity in neural oscillations. This thesis applies KFD to quantify the complexity
of EEG waveforms, correlating fractal dimensionality with cognitive states
during working memory and concentration tasks.

The Katz method calculates the fractal dimension as a scalar index, reflect-
ing the waveform’s form and dimensionality. Typically, fractal dimensions
range between 1 and 1.5, where lower values indicate simpler waveforms and
higher values denote increased complexity [87].

The KFD is calculated from the total length of the waveform, L, the sum
of distances between consecutive points, and d, the maximum distance from
the waveform’s origin to its furthest point:

L =
Ø

dist(i, i + 1) (4.18)

d = max dist(1, i) (4.19)

The fractal dimension (FD) is determined by the logarithmic ratio of L to
d:

FD = log(L)
log(d) (4.20)

For EEG analysis, scale normalization is essential, where an average inter-
point distance a is used to adjust the FD calculation:
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FD = log(L/a)
log(d/a) (4.21)

This thesis hypothesizes that increased cognitive activity, as in working
memory tasks, corresponds to higher KFD values. Cognitive engagement is
believed to induce less regular and more complex signal patterns, elevating
the KFD.

Computational analysis confirms the KFD’s effectiveness in differentiating
cognitive workload levels. It provides insights into brain activity dynamics
as subjects perform tasks challenging their working memory. KFD not only
deepens our understanding of signal processing but also aids in developing
predictive models reflecting the brain’s functional state.

Modified Approximate Entropy

Traditional complexity measures like Approximate Entropy (ApEn) have sig-
nificantly contributed to the study of electroencephalogram by providing sta-
ble insights into the irregular patterns of EEG signals, especially when dealing
with short and noisy data epochs [88]. However, the efficacy of ApEn in EEG
analysis is often hampered by its sensitivity to a variety of parameters, such as
sampling rate, embedding dimension, tolerance, and epoch duration. These
parameters, if not optimally set, can lead to inconsistent and even contra-
dictory results, posing a significant challenge in the interpretation of EEG
studies [88].

To overcome these challenges and enhance the reliability of EEG complex-
ity analysis, the concept of Modified Approximate Entropy was introduced.
This innovative approach fine-tunes the original ApEn formula, resulting in
more stable and consistent measurements. Such stability is particularly cru-
cial for the nuanced analysis of EEG data during cognitive tasks, where subtle
changes in complexity can yield significant insights into brain function.

One of the key improvements in Modified ApEn lies in its approach to han-
dling the parameters that significantly influence the original ApEn’s results.
The time delay τ between coordinates in Modified ApEn is adjusted to be in
linear relation to the sampling frequency. This change addresses the issue of
oversampling that can skew ApEn results and ensures that the time delay is
optimally set to match the specific frequency of the EEG data.

Furthermore, the tolerance level r in Modified ApEn is dynamically chosen
to ensure a specific percentage of recurrence points are found in the embedding
dimension m. This approach avoids arbitrary selection and guarantees an
adequate number of recurrences for reliable complexity estimation, a method
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that aligns with approaches like the minimum numerator count method, which
has been proven to provide stable estimations even with short data series [88].

Additionally, the Modified ApEn maintains a uniform number of embedded
vectors across two embedding dimensions (m and m+1). This uniformity is
achieved by discarding the last vectors in the lower dimension, thus ensuring
that the index remains non-negative and stable.

Incorporating a high-pass filter to remove low frequency trends is another
critical adjustment in the Modified ApEn algorithm. This filter, with a cutoff
frequency proportional to the inverse of the epoch duration, tailors the anal-
ysis to the specific time frame of the EEG data, ensuring that only relevant
frequency components are considered.

A Theiler window is also introduced in the Modified ApEn calculation to
address the issue of self-recurrences. By ensuring that points too close in
time are not considered neighbors, this modification is particularly crucial in
EEG data analysis, where temporal proximity can lead to false indications of
complexity.

Mathematically, Modified ApEn can be expressed as:

ApEn(m, r, N) = Φm(r) − Φm+1(r) (4.22)

Here, Φm(r) represents the correlation integral, m is the embedding di-
mension, r is the tolerance (distance) threshold, and N is the number of data
points. The modifications in Modified ApEn revolve around optimizing these
parameters to enhance the stability of the measure.

In the broader context of this thesis, applying Modified ApEn to EEG
data during cognitive tasks, such as working memory exercises or attention
tests, offers a more accurate and reliable measure of complexity; an example
of this measure in Figure 4.17 that illustrates the complexity of EEG signals
during ’Relax’, ’2-back’, and ’3-back’ cognitive tasks, and during a ’Pause’
period. The x-axis represents the progression of time in seconds (s), while
the y-axis indicates the Modified ApEn values, reflecting the complexity of
the neural oscillations. The vertical red lines demarcate the distinct phases
of the experiment, showcasing the variations in signal complexity associated
with each task and rest period. This enhanced measurement allows for a
deeper understanding of how the brain’s functional state changes in response
to varying cognitive loads.

Moreover, the Modified ApEn extends the range of parameters for which
stable complexity indications can be achieved, adapting to the variability
inherent in cognitive neuroscience.
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Figure 4.17. Distribution of Modified Approximate Entropy (Modified
ApEn) values across different cognitive states.

4.4.4 Outlier Detection and Elimination

In data analysis, the presence of outliers can significantly skew results and im-
pede accurate interpretations. An outlier is an observation that significantly
deviates from the majority of data, suggesting it may have been generated
under different conditions or by a different mechanism. In EEG data, outliers
can arise due to various factors, such as external noise, artifacts from subject
movements, or equipment malfunctions.

To address this issue, Matlab’s ‘isoutlier‘ function offers a robust solution
for identifying and removing outliers, specifically through the Median Abso-
lute Deviations (MAD) method. The MAD method is particularly effective in
handling outliers in data that may not be normally distributed. This method
calculates the median of the absolute deviations from the data’s median, pro-
viding a measure of variability. An observation is typically classified as an
outlier if a value is more than three scaled median absolute deviations (MAD)
from the median [89] .

The isoutlier function in Matlab, when configured to use the MAD
method, identifies outliers by evaluating how far data points deviate from
the median in terms of MAD. The function’s syntax for employing the MAD
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method is as follows:

TF = isoutlier(A, ’median’) (4.23)

In this command, A represents the input data set (such as a vector or matrix
of EEG signal values). The specification ’median’ directs the function to use
the MAD method for outlier detection. The function then returns a logical
array TF of the same size as A, where true indicates an outlier.

In our EEG data analysis, we utilized the isoutlier function with the
MAD method to preprocess the data. This step was crucial for ensuring the
integrity of our data set. By effectively identifying and removing outliers as
in figure , we improved the reliability of subsequent analyses, including the
computation of various complexity measures and the interpretation of EEG
signals in relation to cognitive states.

4.5 Feature Selection
Feature selection, or "feature selection" in English, in the context of machine
learning, is a critical process that involves choosing the most relevant features
to use in building a predictive model. This process is critical for several
reasons: it improves model performance, reduces model complexity by making
it faster to train and easier to interpret, and can also help avoid overfitting
when a model is too complex by also capturing the "noise" in the data rather
than just the relevant signal.

There are several feature selection techniques, which can be grouped into
three main categories:

1. Filter Methods: filter methods evaluate features based on univariate
statistics and select them independently of the machine learning algo-
rithm that will be used later. These methods are generally fast and used
as a preliminary step in feature selection. Examples of metrics used in-
clude the Chi-square test, Pearson correlation coefficient for continuous
variables, and mutual information score. Filter methods are effective in
removing irrelevant or redundant features but may not capture intricate
connections between the target and features.

2. Wrapper Methods: wrapper methods approach feature selection as an
issue of conducting searches, where different combinations are evaluated
to determine the optimal one. They use a predictive model to evaluate
the performance of a subset of features, iterating through different com-
binations to find the best subset. Examples of wrapper methods include
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Forward Selection, Backward Elimination, and exhaustive search such as
the RFE (Recursive Feature Elimination) method. These methods can
be very efficient but are also computationally intensive, especially with a
large number of features.

3. Embedded Methods: intrinsic methods integrate the process of feature
selection as an integral part of model training, concurrently optimizing
both feature selection and model training. These methods exploit specific
algorithms that have feature selection "built in" to their construction. A
classic example is LASSO regression, which adds an L1 penalty on the
size of the model coefficients, pushing some coefficients to be exactly
zero, which is equivalent to feature selection. Other examples include
decision trees and tree-based models such as Random Forest and Gradient
Boosting, which select features based on the importance of those features
during tree construction [90].

4.5.1 Chi-Square Feature Selection Method
The Chi-square (χ2) test provides a systematic method for ranking features
based on their statistical significance. This method is based on the principle
of conducting individual Chi-square tests between each feature and the corre-
sponding class of an observation. The essence of this technique is quantified
by computing p-values, which indicate the probability of observing the data
if the null hypothesis (which suggests no association between the feature and
the outcome) were true.

In mathematical terms, the χ2 statistic for each feature is calculated as:

χ2 =
Ø (Oi − Ei)2

Ei
, (4.24)

where Oi represents the observed frequency and Ei denotes the expected
frequency under the assumption of independence. The sum is taken over all
categories or groups within the feature.

The method’s applicability extends to both categorical and continuous vari-
ables. For continuous variables, the Chi-square method entails discretizing the
data into intervals. This discretization process involves segmenting continuous
values into bins, a step that necessitates careful optimization. The number
of intervals or bins is a critical parameter that can significantly influence the
model’s final performance.

The Chi-square method is primarily employed for classification tasks. While
it can be adapted for regression, its utility shines in classification problems
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where the objective is to identify features that have the most significant re-
lationship with the categorical outcome variable. The selection procedure
assesses the independence of each predictor variable from a response variable
through individual Chi-square tests. A low p-value from the test statistic
suggests that the associated predictor variable is dependent on the response
variable and is considered a significant feature. The output is represented
as –log(p). Hence, a higher score value signifies the importance of the corre-
sponding predictor, as in the Figure 4.18.

Figure 4.18. Feature Importance Ranking as Determined by Chi-square Scores.

This method provides a transparent and statistically sound approach to
feature selection. By filtering out irrelevant or weakly associated features,
the Chi-square method aids in reducing model complexity and improving
interpretability. It ensures that the resultant predictive model is both efficient
and robust, built upon features that are genuinely influential in determining
the target variable [91].
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4.6 Regression
In this thesis, a regressor was chosen instead of a classifier to compute the
working memory level (WML), as a continuous output index was required to
modulate parameters for neurostimulation. Various regressors were experi-
mented with, and it was found that the Support Vector Machine was not only
the most effective but also sufficiently fast and efficient to make real-time
predictions.

4.6.1 Support Vector Machine
Support Vector Machines (SVMs) are a popular modern machine learning ap-
proach. They are supervised learning models that examine data for regression
and classification and have learning algorithms linked with them. In the case
of regression, they are called ε-Support Vector Regression (ε-SVR) [92]. Our
task requires nonlinear regression, but to explain the operational complexity
of this regressor, we begin with the description of the linear case.

Linear SVR: Primal Formula

Suppose we have a certain training set {(x1, y1), . . . , (xN , yN)}, in ε-SVR the
objective is to find a function f(x) that is as flat as possible while deviating
from yn (in which n = 1, . . . , N), by a value no larger than ε for each training
data. We should find the linear function

f(x) = x′β + b (4.25)

with the smallest norm value (β′β) to make sure it is as flat as feasible. The
goal of this convex optimization problem is to minimize

J(β) = 1
2β′β (4.26)

while ensuring that every residual has a value less than ε, i.e.

∀n : |yn − (x′
nβ + b)| ≤ ε (4.27)

In simpler terms, the optimization problem involves finding a kind of regres-
sion tube (with ε radius) such that all points are inside the tube, as it can
be clearly seen in Figure 4.19. During the training process of an SVR model,
support vectors are identified, which are data points contributing to the def-
inition of the optimal margin. These support vectors directly influence the
shape of the regression function.
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Figure 4.19. The illustration of SVM for linear regression problem.

It’s possible, however, that there isn’t a function f(x) that can meet the
above-mentioned requirements at every point. Consequently, for each point,
introduce slack variables ξn and ξ∗

n to handle otherwise unfeasible constraints.
Regression errors up to ξn and ξ∗

n are now permitted by the slack variables.
Adding slack variables results in the primal formula, or objective function
[93].

J(β) = 1
2β′β + C

NØ
n=1

(ξn + ξ∗
n), (4.28)

subject to the following constraints:

∀n : yn − (x′
nβ + b) ≤ ε + ξn

∀n : (x′
nβ + b) − yn ≤ ε + ξ∗

n

∀n : ξ∗
n ≥ 0

∀n : ξn ≥ 0.

The box constraint, represented by the constant C, is a positive number that
regulates the penalty applied to observations outside of the epsilon margin ε,
which is useful in avoiding overfitting. This number establishes the trade-off
between the flatness of f(x) and the tolerance limit for deviations greater than
ε. Errors within ε of the observed value are ignored by the linear ε-insensitive
loss function, which treats them as equal to zero. The distance between the
observed value y and the ε boundary is used to calculate the loss function.
This is explained in formal terms by

Lε =
0 if |y − f(x)| ≤ ε

|y − f(x)| − ε otherwise
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Linear SVR: Dual Formula

In its Lagrange dual formulation, the previously described optimization issue
is computationally easier to solve. A lower bound on the primal (minimiza-
tion) problem’s solution is given by the dual problem’s solution. The "duality
gap" is the difference between the optimal values of the primal and dual is-
sues, which need not be equal. However, the dual problem’s solution provides
the value of the optimal solution to the primal problem when the problem is
convex and satisfies a constraint qualification condition. Create a Lagrangian
function from the primal function and add nonnegative multipliers αn and α∗

n

for every observation xn to get the dual expression. This results in the dual
formula, where we minimize

L(α) = 1
2

NØ
i=1

NØ
j=1

(αi −α∗
i )(αj −α∗

j)x′
ixj +ε

NØ
i=1

(αi +α∗
i )+

NØ
i=1

yi(α∗
i −αi), (4.29)

subject to the constraints
NØ

n=1
(αn − α∗

n) = 0

∀n : 0 ≤ αn ≤ C

∀n : 0 ≤ α∗
n ≤ C.

The following equation can be used to fully characterize the β parameter as
a linear combination of the training observations:

β =
NØ

n=1
(αn − α∗

n)xn. (4.30)

Only the support vectors are necessary for the function that predicts new
values to work:

f(x) =
NØ

n=1
(αn − α∗

n)(x′
nx) + b. (4.31)

The optimization constraints necessary to achieve optimal solutions are the
Karush-Kuhn-Tucker (KKT) complementarity conditions. These requirements
apply to linear SVR and are

∀n : αn(ε + ξn − yn + x′
nβ + b) = 0

∀n : α∗
n(ε + ξ∗

n + yn − x′
nβ − b) = 0

∀n : ξn(C − αn) = 0
∀n : ξ∗

n(C − α∗
n) = 0.
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Under these circumstances, all observations that are rigidly contained inside
the epsilon tube have Lagrange multipliers of αn = 0 and α∗

n = 0. A sup-
port vector is the equivalent observation if either αn or α∗

n is non-zero. A
trained SVM model’s attribute alpha stores the difference between two sup-
port vectors’ Lagrange multipliers, αn – α∗

n. SupportVectors and Bias are two
properties that store xn and b, respectively.

Nonlinear SVR: Primal Formula

A linear model is not sufficient to capture some regression situations, such
as the one in this study. However, the previously mentioned method can
be extended to nonlinear functions using a technique known as the "kernel
trick". This permits SVMs to effectively conduct non-linear regression by
implicitly translating their inputs into high-dimensional feature spaces. Re-
place the dot product x′

1x2 with a nonlinear (Gaussian or Polynomial) Kernel
function G(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩ to create a nonlinear SVR model. ϕ(x)
is a transformation that maps x to a high-dimensional space. In this the-
sis we use a Gaussian, or RBF Kernel, which has the formula: G(xj, xk) =
exp

1
−∥xj − xk∥2

2
. The elements of the Gram matrix, which is an n-by-n

matrix, are gi,j = G(xi, xj). Every element gi,j is equivalent to the predictors’
inner product after being converted by ϕ. Nevertheless, since we can create
the Gram matrix directly using the kernel function, we do not need to know
ϕ.

Nonlinear SVR: Dual Formula

The corresponding element of the Gram matrix gi,j is substituted for the inner
product of the predictors x′

ixj in the dual formula for nonlinear SVR. Regres-
sion using nonlinear SVM determines thus the coefficients that minimize

L(α) = 1
2

NØ
i=1

NØ
j=1

(αi − α∗
i )(αj − α∗

j)G(xi, xj) + ε
NØ

i=1
(αi + α∗

i ) −
NØ

i=1
yi(αi − α∗

i ),

(4.32)
subject to the same constraints as before:

NØ
n=1

(αn − α∗
n) = 0

∀n : 0 ≤ αn ≤ C

∀n : 0 ≤ α∗
n ≤ C.
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In the same way, the prediction function for new values is equal to

f(x) =
NØ

n=1
(αn − α∗

n)G(xn, x) + b. (4.33)

The conditions for KKT complementarity are

∀n : αn(ε + ξn − yn + f(xn)) = 0
∀n : α∗

n(ε + ξ∗
n + yn − f(xn)) = 0

∀n : ξn(C − αn) = 0
∀n : ξ∗

n(C − α∗
n) = 0.

4.7 Performance Metrics
In the context of ML, evaluating a model’s performance is a crucial step to
understand its behavior and generalization capability. Various metrics are
employed to measure different perspectives of a model’s performance. The
key metrics for a classifier are described below:

• Recall focuses on the correct identification of positive examples, while
precision assesses the accuracy of positive predictions. Striking a balance
between these metrics is often crucial in scenarios where classes are imbal-
anced. Recall = True Positives

True Positives+False Negatives , Precision = True Positives
True Positives+False Positives .

• F1 Score represents the harmonic mean between precision and recall. It
is particularly useful in scenarios where balancing the accuracy of posi-
tive predictions and the ability to correctly identify positive examples is
important. F1 Score = 2 · Precision·Recall

Precision+Recall .

• Sensitivity (True Positive Rate) and Specificity (True Negative Rate)
measure, respectively, the model’s ability to correctly identify positive
and negative examples. Sensitivity = True Positives

True Positives+False Negatives , Specificity =
True Negatives

True Negatives+False Positives . They represent critical aspects in situations
where the cost of errors can vary considerably.

• Accuracy provides a global assessment of correct predictions relative to
the total predictions. However, it can be misleading in the presence
of imbalanced classes. Accuracy = True Positives+True Negatives

Total Predictions . Balanced
accuracy offers a corrected version of accuracy by considering imbalances
between classes, providing a fairer evaluation of the model’s performance.
Balanced Accuracy = Sensitivity+Specificity

2 .
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• Receiver Operating Characteristic (ROC) Curve is a graphical tool used
to evaluate the performance of a binary classifier on a dataset by varying
the decision threshold. The ROC Curve illustrates the trade-off between
Sensitivity and Specificity as the decision threshold changes. The ROC
curve is particularly useful for assessing the model’s ability to discrimi-
nate between classes in different threshold scenarios. An ideal classifier
will have an ROC curve extending towards the upper-left corner of the
graph (Figure 4.20) , indicating high Sensitivity and Specificity across
all possible decision thresholds. The Area Under the Curve (AUC) of
the ROC curve provides a quantitative measure of the classifier’s ability,
with an AUC of 1 indicating perfect performance and an AUC of 0.5
suggesting random performance.

Figure 4.20. Comparison between a "better" and "worse" clas-
sifier in the ROC space [94].

The main metrics for a regressor are instead:

• The coefficient of determination R2 quantifies the fraction of variance in
the data explained by the model. The coefficient of determination, R2,
spans from 0, indicating no explanatory power, to 1, signifying perfect
prediction. R2 = 1 −

qn

i=1(yi−ŷi)2qn

i=1(yi−ȳ)2 , where n is the total number of obser-
vations, yi are the observed values, ŷi are the values predicted by the
model, ȳ is the mean of the observed values.

• MSE (Mean Squared Error), RMSE (Root Mean Squared Error), e MAE
(Mean Absolute Error) assess the discrepancy between the model’s pre-
dictions and the actual data. MSE penalizes larger errors, while RMSE
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provides a square root version. MAE is less sensitive to outlier errors,
offering a robust perspective on the model’s accuracy. The related formu-
las are as follows: MSE = 1

n

qn
i=1(yi − ŷi)2, RMSE =

ñ
1
n

qn
i=1(yi − ŷi)2,

MAE = 1
n

qn
i=1 |yi − ŷi|, where n is the total number of observations, yi

are the observed values, ŷi are the values predicted by the model.

The choice of metrics depends on the specific nature of the problem and
the desired objectives. A thorough analysis of these metrics will contribute to
a comprehensive and informative evaluation of the machine learning model’s
performance.

4.8 Stimuli

This thesis makes use of the following kinds of stimulus, which are binau-
ral beats and pulsed light for user’s neurostimulation, while a bar is used as
neurofeedback.

4.8.1 Binaural Beats

A binaural beat is a type of auditory beat stimulation (ABS), a widely
used method to enhance mood and cognitive function. It is believed to cause
a frequency-following response in brainwaves [95]. Thus, it’s one of several
ways to achieve brain entrainment.

A binaural beat (BB) occurs when one tone is played to one ear and the
other tone is played to the other ear independently. The brain interprets the
sounds as having a frequency that is equal to the difference between the two
frequencies, which results in a binaural beat. This phenomenon has the poten-
tial to induce neural entrainment. It’s important to note that these auditory
sensations are generated by the brain, and they do not represent overlapping
physical waves. To avoid the perception of two distinct sounds (which is the
actual nature of the input), it is recommended to keep the frequencies not
too high and not too far apart. According to studies [96, 97], the largest
behavioral and psychological impacts are caused by frequencies around 400
Hz with a maximum difference of up to 35 Hz between two frequencies. For
instance, a BB sound of 10 Hz is produced when tones of 400 Hz and 410 Hz
are delivered to the left and right ears, respectively, as in Figure 4.21.
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Figure 4.21. Functioning of binaural waves.

4.8.2 Pulsed Lights
Another technique to induce brain entrainment is with pulsed light. A rhyth-
mic flickering light at a certain frequency can serve as a stimulating source.

Numerous research [98, 99] have already documented the psychophysiologi-
cal effects of naturalistic light stimulations on physical and mental well-being,
including sleep quality, as well as subjective well-being and cognitive perfor-
mance. However, there are two characteristics of rhythmic light stimulations
that need be taken into account from the standpoints of neuroergonomics and
user experience:

1. Constant exposure to the flickering light sources overloads the sensory
system, causing discomfort and weariness in the user both physically and
subjectively.

2. According to a number of studies [100, 101], the flickering light source
is most likely to elicit strong power modulations when it is positioned
in the center of the visual field and directly fixated (i.e., with focused
attention). However, because this configuration is so disruptive, it is not
recommended for use in the majority of everyday tasks and environments.

As such, it is imperative to investigate appropriate protocols that are typ-
ified by:

1. Reduced user discomfort and non-intrusiveness (e.g., by employing less
noticeable flickering stimulations);

2. Integration feasibility (e.g., by investigating entrainment effects during
a stimulation that does not necessitate the direct fixation on the light
source).

Numerous investigations [102] have shown that brain entrainment effects
persist even in the absence of direct fixation of the stimulation source and
when stimulated below the individual perceptibility threshold.
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Therefore, protocols that enable non-perceptible rhythmic stimulation are
particularly beneficial since they reduce eye fatigue and user discomfort.

Furthermore, it is important to investigate inter-individual variations (such
as age) in entrainment effects as well as traits of people who are not responsive
to or appropriate for rhythmic light stimulation (such as in the case of an
epileptic diagnosis [103].

4.8.3 Neurofeedback Bar
As explained in the section on neurofeedback, during the NFT, the EEG is
recorded, and key components are extracted. These components are then fed
back to the individual through a feedback loop, employing audio, visual, or
a combination of both. This format enables the distinct representation of
relevant electrophysiological components, such as a bar graph where the am-
plitude of a frequency corresponds to the bar’s size. The individual’s task may
then be to increase the size of the training-frequency bar while concurrently
reducing the size of bars associated with inhibitory frequencies. This process
provides real-time feedback, allowing the individual to learn and adapt their
neural responses to improve control over specific electrophysiological patterns.

4.9 Inverse Efficiency Score
In experimental cognitive psychology studies, participants often engage in
specific tasks, yielding two key dependent variables (DVs): the proportion of
errors (PE) and the reaction time (RT), which represents the time elapsed be-
tween the stimulus onset and the initiation of the correct response. Typically,
these variables are analyzed separately, introducing complexities in interpre-
tation.

To enhance clarity and simplify the interpretation, researchers have ex-
plored the integration of PE and RT into a unified DV. Townsend and Ashby
[104] proposed a solution known as the ’Inverse Efficiency Score’ (IES). This
score serves as an observable metric that assesses the average energy con-
sumption or power of the cognitive system over time. The IES is calculated
by dividing RT by either (1-PE) or by the proportion of correct responses
(PC). In practical terms, for a given participant, the mean (or median) RT of
correct responses in a specific condition is computed and then divided by (1-
PE) or by PC. This approach aims to provide a comprehensive measure that
appropriately balances the influence of both speed and accuracy in cognitive

82



Materials and Methods

tasks.
IES = RT

1 − PE
= RT

PC
(4.34)

The IES is represented in milliseconds, same like RTs are. The execution of
a test associated with better performance (low RT and high PC) is reflected
in a lower value of IES.

However, it is crucial to verify, prior to employing this index, whether the
observations derived from the PE and RT are congruent or if there are indica-
tions of a potential trade-off between speed and accuracy. In this latter sce-
nario, where faster responses are associated with higher error rates, reaching
definitive conclusions becomes particularly challenging. Furthermore, other
exceptions arise when error rates are exceptionally elevated (surpassing 25%).
In such instances, a more comprehensive examination is imperative to ensure
robust and accurate interpretations.

4.10 Statistical Tests
In the realm of empirical research and data analysis, statistical tests play a
pivotal role in drawing meaningful conclusions from collected data. These
tests provide a structured framework for making inferences about popula-
tions based on sample data, helping researchers assess the reliability and sig-
nificance of their findings. Statistical tests are essential tools for hypothesis
testing, enabling researchers to make informed decisions about the general-
izability of their results. The choice of a statistical test depends on various
factors, such as the nature of the data, the research question, and the un-
derlying assumptions. In this thesis, we explore two key statistical tests: the
Shapiro-Wilk test and the Wilcoxon test. Each test serves a specific purpose
and is applicable in different scenarios, providing researchers with versatile
tools to analyze data across various research domains.

4.10.1 Shapiro-Wilk Test
The Shapiro–Wilk test is a test of normality. It tests the null hypothesis,
according to which a sample x1, ..., xn represents a population with a normal
distribution. The test statistic is

W =
1qn

i=1 aix(i)
22

qn
i=1(xi − x)2 (4.35)

where
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• x(i) represents the i-th smallest value in the sequence.

• x = x1+···+xn

n is the sample mean.

• The constants ai are given by

(a1, . . . , an) = m⊤V −1

(m⊤V −1V −1m)1/2

where
m = (m1, . . . , mn)⊤

and m1, . . . , mn are the expected values of the ranks of a standardized
random variable, and V is the covariance matrix of these ranks [105].

The population’s normal distribution is the null hypothesis for this test.
The test can yield values of 1 (true) or 0 (false) respectively, based on whether
the null hypothesis can be rejected or not. Therefore, the null hypothesis is
rejected and there is evidence that the tested data are not normally distributed
if the p value is smaller than the selected significance alpha level. Conversely,
the null hypothesis cannot be rejected if the p value exceeds the selected alpha
level.

For instance, a dataset with a p-value below 0.05, at an alpha level of 0.05,
leads to the rejection of the null hypothesis, suggesting that there is evidence
against the assumption that the data is derived from a normally distributed
population; on the other hand, a data set with a p value greater than the 0.05
alpha value is unable to do so.

4.10.2 Wilcoxon Test
The Wilcoxon Test is a nonparametric statistical procedure used to compare
two paired samples. It is particularly useful when the data do not follow a
normal distribution, a common condition in many practical applications. The
test was developed by Frank Wilcoxon in 1945 [106].

Test Description

Wilcoxon’s Test is based on the ordering of differences between pairs of ob-
servations. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be two paired samples. The
first step is to calculate the differences Di = Xi − Yi. Next, we order these
differences in absolute value and assign ranks, from 1 to the smallest absolute
value to n to the largest.
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Calculation of Statistics

The Wilcoxon statistic, W , is obtained by summing the ranks of differences.
Traditionally, only the ranks of positive differences are summed. However, a
more comprehensive approach involves calculating two sums separately: one
for the ranks of positive differences (W +) and one for the ranks of negative
differences (W −). The test statistic W is then the lower of W + and W −. This
method ensures that the test is sensitive to differences in either direction and
reduces the risk of bias. The formula for W becomes:

W = min
 Ø

i:Di>0
R+

i ,
Ø

i:Di<0
R−

i

 (4.36)

where R+
i and R−

i are the ranks of positive and negative differences, respec-
tively.

Bicaudal and Monocaudal Testing

Wilcoxon’s Test can be applied in either bicaudal or monocaudal form. In a
bicaudal context, one tests the null hypothesis that the median of differences
is zero against the alternative hypothesis that it is nonzero. In a monocaudal
context, the alternative hypothesis may be that the median of differences is
greater (or less) than zero.
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Chapter 5

Virtual Reality
Experimental Protocol

Within this chapter, a detailed account of all phases of the experimental pro-
tocol is provided. The journey begins with calibration, a fundamental process
in establishing the foundation for subsequent personalized regression model
training. The latter represents a crucial step as it allows the development of
an ad-personam model tailored specifically to individual characteristics.

Subsequently, the focus shifts to threshold calculation. This step is of
particular importance as thresholds determine key parameters for modulat-
ing neurostimulation. Understanding and adapting these thresholds based on
individual needs are essential for optimizing the effectiveness of neurostimu-
lation within the experiment’s context.

Finally, the chapter concludes with a comprehensive analysis of real-time
testing phases. This process represents the pivotal moment where the exper-
imental protocol undergoes practical verification, allowing for the assessment
of the effectiveness and accuracy of measurements and adjustments made
during the preceding phases. In summary, the chapter provides a complete
overview of experimental activities, from the initial calibration phase to real-
time evaluation, thus offering an in-depth perspective on the overall experi-
mental process. All this process is visible in Figure 5.1.

86



Virtual Reality Experimental Protocol

Figure 5.1. Flowchart of the experimental protocol.

87



Virtual Reality Experimental Protocol

5.1 System Calibration Acquisition
This subsection outlines the protocol employed for acquiring the recording
used during the system calibration phase. In this critical stage, the primary
objective is to capture a prolonged and interference-free signal to ensure the
collection of high-quality data. These data serve as a crucial foundation for the
subsequent training of the regression model, which is essential for obtaining
an accurate index of working memory activity.

Mounting EEG System and Oculus on the User The arrangement of
the 8 electrodes follows the layout depicted in Figure 4.3, which displays a
snapshot of the NIC2 software interface. The elastic neoprene cap of the Eno-
bio allows for the insertion of electrodes in Ag/AgCl NG Geltrode, adhering
to the 10-10 positioning system. The decision regarding the electrode place-
ment was made through a meticulous review of scientific literature in the field
of working memory analysis through EEG signal acquisition. Specifically, the
selection was made to position the electrodes at P3, P4, T7, F8, F4, Fz, C3,
and C4 locations. Initially, participants are instructed to wear the positioning
cap. Subsequently, using cotton swabs soaked in medical disinfectant, hair is
gently moved to the predetermined positions of the electrodes. With the same
swab, the skin is disinfected and lightly rubbed to remove any superficial lay-
ers of grease, thus improving the contact between the electrodes and the skin.
Following this, Ag/AgCl electrodes are carefully filled with conductive gel
and positioned in their designated locations. Before connecting the 8-channel
connector to the electrodes, participants are asked to wear the Meta Quest 2
headset, previously initialized by creating a physical space. Once the partici-
pant has donned the headset, the 8-channel connector and the Necbox device
are connected, as shown in the Figure 5.2.

EEG Signal Recording After verifying all connections and ensuring the
electrode-skin connections are sound, the recording begins using the NIC2
software. Participants, through the VR headset, find themselves immersed in
the scenario as they prepare for the memory task. Following a brief 20-second
orientation and button trial phase, where participants familiarize themselves
with the controls, they are guided to relax for 100 seconds Following this,
two tasks of 120 seconds each are presented, separated by a 30-second break,
resulting in a total protocol duration of 6 and a half minutes. The initial
memory task involves a 2-back, succeeded by a 3-back. With the Oculus
controllers, participants can interact by selecting between two options (Yes
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Figure 5.2. Illustration of the Assembly of the EEG System and the Oculus
on the User: (a) Rear View; (b) Side View.

or No), with only one being correct. A 2-second response time is allowed,
after which the question updates. The outcomes "Correct" or "Try again" are
displayed based on the participant’s response.

5.2 Calibration Signal Preprocessing and SVR
Training

After this offline registration phase, signal pre-processing can be carried out.
The signal undergoes initial processing through a tandem arrangement of two
Chebyshev filters, each of order 6. The first filter serves as a high-pass filter,
allowing frequencies from 4 Hz and above to pass through. Subsequently, the
second filter, configured as a low-pass filter, permits frequencies below 30 Hz
to pass while attenuating higher frequencies. The signal is then segmented
based on markers manually inserted via the keyboard in the NIC2 software
during acquisition. Subsequently, parameters are extracted from the acquired
EEG signal, calculating a total of 348 features from the selected 8 channels
and concatenating them into a 2D matrix. The matrix will have the number
of rows equal to the number of features and the columns representing the
total seconds. Now, outliers are being removed: for each feature, outliers are
replaced with the value of that specific feature from the previous second. In
addition to these features, which will be used to train the model, the IAF and
the ITF are extracted. These frequencies will serve as starting frequencies to
be modulated for real-time neurostimulation. Afterward, the matrix, now free
from outliers, is standardized with respect to the baseline, which is the 100-
second resting phase with open eyes conducted before the two tasks. Now,
labels are being created to train the model: during the initial relaxation phase
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and the pause between the two tasks, the assigned label is zero. However,
during each task, a label is assigned based on the subject’s performance.
This information is derived from the report saved by Unity, which includes
a number for each response. The number is zero if the user’s response was
incorrect or not given, and one if it was correct. Subsequently, a sliding
window of 3 samples is generated, and these samples are averaged to obtain
a number reflecting the subject’s average performance in that specific time
interval. Once the labels are obtained, the process moves on to the data: a
feature selection is performed using the Chi-square method, selecting the top
30 features to be used as input, along with their corresponding labels, for the
SVR.

5.2.1 SVR

Hence, an SVM model has been trained to estimate the user’s WML in suc-
cessive real-time tests, using the following options:

K-fold cross-validation is performed to avoid potential overfitting of the
model to the training data. This approach helps the model generalize better
for subsequent real-time predictions on test data.

The radial basis function (RBF) is used as the Kernel Function.

The Bayesian optimizer is used as the algorithm for hyperparameter op-
timization, employing the expected-improvement-plus acquisition function. A
maximum of 100 objective functions are evaluated. The hyperparameters
include ranges for Box Constraint and Kernel Scale exploration, both con-
strained within the limits of [1 × 10−2, 1 × 102].

To speed up the training process, we also utilize the parallel pool pro-
cess, enabling the simultaneous use of 12 cores, reducing the total time to
approximately 10 seconds.

In the Table 5.1, there are the regression metrics for the just-mentioned
training.
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Table 5.1. Regression metrics on Users’ Training Set

R2 RMSE
User 1 0,65 0,27
User 2 0,56 0,31
User 3 0,39 0,36
User 4 0,57 0,29
User 5 0,82 0,20
User 6 0,71 0,24
User 7 0,84 0,19
User 8 0,71 0,25
User 9 0,42 0,34

User 10 0,86 0,18
User 11 0,34 0,35
User 12 0,34 0,36
User 13 0,73 0,25

5.2.2 Classification

Moreover, an associated classifier has been developed to differentiate between
relaxation and task states. This classifier employs an optimal threshold deter-
mined by maximizing the separability between activity and relaxation states,
to do this, the ROC curve was used. WML values below this cutoff are as-
signed a value of 0, while those above are set to 1, representing a relatively
low-performance level.

Another threshold is added corresponding to the mean WML during the
task phase, indicative of a high-performance level. This value is conveyed to
Unity for reference in parameter modulation for neurostimulation. The final
threshold is the mean of the first two thresholds, representing an average user
performance level. The obtained values for each user are visually presented
in the Figure 5.3.
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Figure 5.3. Users’ Thresholds.

The classification metrics, along with the selected optimal thresholds for
each user, are summarized in the Table 5.2.

Table 5.2. Classification metrics on Users’ Training Set.

User AUC Precision Specificity Recall Optimal
Threshold

1 0,85 97% 96% 73% 0,74
2 0,82 92% 90% 73% 0,71
3 0,82 90% 85% 78% 0,54
4 0,86 92% 88% 84% 0,56
5 0,94 99% 99% 89% 0,54
6 0,87 95% 94% 81% 0,46
7 0,94 99% 98% 90% 0,49
8 0,91 94% 90% 91% 0,51
9 0,77 93% 92% 60% 0,72

10 0,95 98% 97% 93% 0,62
11 0,79 89% 86% 70% 0,52
12 0,76 88% 85% 66% 0,49
13 0,93 95% 92% 93% 0,67

Once the specific model associated with a particular individual, including
the thresholds, is obtained, we proceed to the various phases of real-time
processing, which will now be explained below.
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5.3 Real-Time Phase
5.3.1 Virtual Reality Stimuli
In this thesis work, one type of neurofeedback-i.e., visual neurofeedback-and
two types of neurostimulation, one visual and one auditory, were chosen. The
chosen stimulation bands include:

• Alpha band, a frequency range that, as we delved into in the section on
neurofeedback and neurostimulation, has been associated with enhancing
working memory performance;

• Theta band, associated with enhanced information encoding for working
memory.

Neurofeedback Bar

The neurofeedback chosen, which falls under visual neurofeedback, is a fill bar,
implemented on Unity via a slider, which signals the subject’s instantaneous
working memory level. This coincides with the output of the SVR, which
provides a continuous value: this is sent to Unity every 500 ms via the TCP/IP
connection. The value is calculated over one second of signal, that is, over
500 samples, with a 50 percent overlap between one signal segment and the
next, so that a value is given every half second. In this way the subject
has immediate feedback, with negligible delay, on his level of memory and
attention. He must then try to raise the level of bar filling during the task to
try to improve his performance. The bar is placed vertically to the left in the
screen, to be as unobtrusive as possible but at the same time to be seen out
of the corner of the eye during the performance of the n-back test. It has the
filled part in white color, on a gray background of the remaining unfilled area
(Figure 5.4).

Figure 5.4. Visual feedback: fill bar.
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It appears only during the task phases and disappears in the relaxation
phases, as it could distract the subject and interfere with his or her state of
relaxation.

Neurostimulation with Binaural Beats

One of the chosen neurostimulation techniques is binaural beats. Unlike the
previous type of stimulus, which was obviously conscious, this subsequent
stimulus is instead unconscious, as in most cases, the user will not be aware of
the sound, which will serve to synchronize brain waves at a specific frequency
without the user even noticing. The alpha band was selected as the preferred
frequency range for implementing these stimuli among various available fre-
quency bands. Binaural beats were here used in two different configurations:
a closed-loop configuration, where the frequency of the sounds changed over
time based on the real-time brain responses of the user, and an open-loop
configuration, where the stimulation frequency remained fixed throughout
the task.

Variable Alpha Band Frequency. The starting frequency of binaural
beats (during the real-time test involving this stimulus), considered as the
difference between the frequency sent to the right ear and that sent to the
left ear, is the IAF extracted during the user’s calibration phase. At the be-
ginning of the real-time phase, the frequency sent to the left ear is 400 Hz
and remains constant throughout the test, while the frequency sent to the
right ear is 400 Hz + IAF, and it is this frequency that will be modulated
based on performance. This modulation is achieved through an optimization
algorithm implemented by us in a C# script assigned to the Binaural Beats
object. The value of IAF will be updated by the algorithm with a new IAF
value chosen by it. The value of IAF will be updated by the algorithm with a
calculated IAF_NEW value based on the working memory level, as described
earlier, and sent to Unity every 500 ms. More specifically, the IAF value is
increased or decreased by 1 Hz if, in the last 10 seconds (i.e., among the last
20 received WML values), at least 8 values are below a certain threshold. Af-
terward, another 10 seconds are waited, and the number of indices below the
threshold is compared to the previous count. If there are more indices below
the threshold than before, the algorithm decreases the frequency by 1 Hz if it
had previously increased it (or increases it by 1 Hz if it had decreased it), as it
would mean that the change was not in the right direction. If there are fewer
indices below the threshold compared to the previous step, the same type
of modification is made because it would indicate that the direction of the
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change was correct. Of course, the frequencies that the algorithm can choose
range between 9 and 13 Hz, precisely within the alpha band. This process
continues in this manner. By doing so, it should lead to a convergence con-
dition, resulting in a lower number of indices below the threshold, indicating
an improvement in performance. The threshold chosen for the comparison of
indices is calculated during the calibration phase and represents and average
level of user performance against which improvement can be sought during
the stimulation. It has been sent to Unity using the LSL protocol, always
through a specific port. Throughout the whole stimulation session, calming
music was played with binaural beats superimposed on top. This is because
there is a chance that these noises will cause pain for the subjects, and it is
important to stimulate the subjects subconsciously to ensure that they are
not affected by this element during the experiment. In the following graphs,
depicted in Figure 5.5, several examples of frequency modulation of stimuli
across six users are presented. These are overlaid on the graph alongside the
temporal trends of WML for the same users. It is evident that changes in
frequency align with periods of lower user performance within that specific
timeframe.

Figure 5.5. Alpha modulation for six example subjects.
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Constant Alpha Band Frequency. In addition to previous variable alpha
band stimulation, a phase of constant alpha band stimulation has also been
tested to compare the effects of the two different configurations with each
other. In this case as well, the binaural sounds will play only during the task
phase, while they will stop during the relaxation phases. At a theoretical level,
this type of configuration should be less effective than the previous one, as it
is a fixed stimulation that does not adapt to the real-time needs of the user.
The user’s working memory level could decrease at any moment, requiring an
almost instantaneous frequency modification to follow this change.

Neurostimulation with Pulsed Light

Regarding the pulsed light stimulation, we designed a Christmas tree with
lights that flash at a certain frequency, adapted to the real-time performance
of the subject, as explained in the previous paragraph about binaural sounds.
Entrainment was performed in the theta band, following the same type of
algorithm seen above, aiming to reach convergence for the highest possible
performance. It follows the same principles just described, with the only
difference being that instead of choosing IAF as starting frequency, it is chosen
the ITF. In this case, the algorithm will explore frequencies ranging from 4
to 8 Hz, which correspond to the theta band. Flashing occurs only during
the task phase, while in the relaxation phase, they are turned off to avoid
interference with the relaxation phase, which is very sensitive/delicate. The
tree is positioned on the desk and extends to the right side of the screen,
ensuring it is visible or even just perceptible during the exercises (Figure 5.6).

Figure 5.6. Pulsed light stimulation using Christmas lights.

The following Figure 5.7 illustrates the changes in the pulsating light fre-
quency over time for six users, overlaid with their instantaneous working
memory level (WML) trends, similar to what was described earlier for binau-
ral sounds. In the case of User 11, for instance, a consistently above-threshold
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WML suggests that no changes in stimulation frequency are needed, as it is
already appropriate for the user. Conversely, Users 1, 6, and 13 exhibit numer-
ous adjustments in the pursuit of an optimal frequency, as their performances
fall below the threshold for extended periods.

Figure 5.7. Theta modulation for six example subjects.

Neurofeedback and Neurostimulation

Finally, the combination of two different stimuli was also tested, which are
the neurofeedback provided by the fill bar, and the neurostimulation through
binaural beats in the alpha band. The expectations for this phase with com-
bined stimuli are high because the beneficial effects of these two stimuli, taken
separately, should here be positively summed. In this situation as well, an
analysis was conducted on the changes in modulation frequencies of binaural
sounds based on real-time user performance. Six sample users are represented
in the Figure 5.8.
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Figure 5.8. Alpha modulation for six example subjects.

5.3.2 Real-Time Acquisition

For each testing phase, the subject’s model, IAF, ITF, the top 30 selected
parameters, and the baseline from the calibration phase are loaded one by
one. The mean and standard deviation of the features are then calculated
on this baseline. These statistics are used to standardize the parameters that
will be computed in real-time.

Using the MatNIC functions, connection is created between the NIC2 pro-
gram and Matlab to enable real-time processing of the signal obtained through
Enobio Necbox. The TCP/IP connection is necessary for these operations.
Raw EEG data are transmitted utilizing an LSL protocol, where receives
chunks of approximately 250 samples at a time. To conduct signal analysis,
buffers of 500 samples are filled by concatenating incoming chunks and ana-
lyzing the latest 500. Through LSL connection, data can be received either
sample by sample or in chunks. We chose to use chunks as they allowed for
better script execution speed, i.e., better real-time performance. This is be-
cause, while we perform feature calculations on the latest arriving samples,
the NIC2 is already collecting an entire chunk of 250 samples, saving us from
having to wait for one sample at a time and concurrently executing these two
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tasks. As soon as the new chunk arrives, we are ready to analyze it immedi-
ately, concatenating it to the previous one, and in the meantime, the NIC2
is collecting another chunk. And so on. This approach results in almost zero
latency.

We use TCP/IP connection to send Unity some values that are used to
modulate neurostimulation: before the task starts we send the IAF, ITF and
the threshold corresponding to the average of the user’s WML during the
calibration phase. During the task we will send WML in real-time, every 500
ms.

After making these connections, reception of the signal within a while cy-
cle begins, which allows samples to be acquired indefinitely until there is a
stop by Unity, which, at the end of the task, will exit play mode and thus
stop communication. As soon as a buffer of 500 initial samples is filled, the
necessary calculations described below will begin. Filtering between 4 and
30 Hz is applied to each buffer, and the 30 parameters needed for the model
to make predictions are extracted and standardized. From these parameters,
the regressor outputs the WML values. This index is crucial for managing
the modulation of neurofeedback and neurostimulation in Unity. WML is
calculated over 1-second epochs with a 0.5-second overlap between successive
epochs, resulting in an index every half-second. This approach ensures that
the index is nearly instantaneous relative to the subject’s condition, mini-
mizing any significant delay. To avoid abrupt changes in visual and auditory
stimuli and obtain cleaner data with less noise, the calculated parameters for
the current second are averaged with those of the four previous ones. The
resulting value is then input into the regressor, and its output is sent to Unity.

This entire real-time acquisition protocol is repeated six times, once for
each designated Unity room, presented randomly to exclude any patterns
related to training from subsequent statistical tests. All rooms share the same
virtual reality scenario but have some different elements based on the type
of stimulation for which they were created. The order of the various phases
is the same as in the calibration, but the protocols have a shorter duration.
The relaxation phase will last for 60 seconds instead of 100, and each of the
two tasks will last 60 seconds instead of 120. In total, each complete protocol
will last for 4 minutes.

The following rooms are thus present:

• One of them presents features elements called ’binaural beat objects’,
which provide binaural sounds with a variable frequency in the alpha
band adapted to the user’s instant WML. This can be defined as a closed-
loop stimulation.

100



Virtual Reality Experimental Protocol

• Then, there is a room dedicated to stimulation with binaural sounds in
the alpha band but with a constant frequency, corresponding to the IAF
extracted during the calibration phase. It is useful for comparing the
effects of adapted stimulation with those obtained at a fixed frequency.

• Another room introduces an additional visual element, a Christmas tree
with lights that flash at a variable frequency in the theta band.

• An additional room features visual neurofeedback, consisting of a filling
bar displayed on the screen, indicating the level of instant WML. This
is useful for understanding whether neurostimulation leads to better im-
provements compared to simple neurofeedback.

• Then, a dedicated room was created to combine visual neurofeedback
and neurostimulation, containing both the filling bar and binaural sounds
with a variable frequency in the alpha band.

• Finally, there is a baseline room with no stimulation, providing a reference
against which to compare the performance obtained with the various
stimulations tried in the other rooms.
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Results and Discussions

This chapter details the results obtained in the course of the research and
provides an in-depth analysis of the effects of the neurostimulations exam-
ined. Beginning with the calibration phase and ending with a discussion of
the effectiveness of these stimulations on the subjects, the aim is to deter-
mine whether there is concrete evidence of improvement in cognitive abilities,
with a particular focus on working memory. Comparison will be made be-
tween participants’ basal working memory levels and those observed during
the stimulation sessions, as described in the Materials and Methods section.

6.1 Real-Time Regression Results

This section delves into the analysis of the regression model’s performance
during real-time testing phases where subjects underwent neurostimulation.
The evaluation employs regression metrics calculated across the real-time
phase, leveraging actual user performance during tasks as reference labels.

In Figure 6.1, the regression model’s output is illustrated in blue through-
out the six sessions of the real-time phase, while a low-pass filter at 0.1 Hz
applied to the same signal is shown in red, emphasizing the fluctuations in
working memory level. This method of representation, using the same scale
for modulating stimulations (every 10 seconds), allows for a clear visualiza-
tion of the model’s tracking ability with respect to the dynamic changes in
working memory. Graphs of the regression results for all subjects analyzed in
the thesis are given in Appendix A.
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Figure 6.1. Regressor report for user 9 for all six test conditions.

The primary metrics used to evaluate the regression model’s quality are the
coefficient of determination (R2) and the Root Mean Square Error (RMSE),
computed across the full duration of the WM task.

The Table 6.1 below summarizes the average evaluation metrics for each
subject across the six stimulation conditions, providing a comprehensive overview
of the model’s predictive performance.

The R2 values across subjects reveal varied efficacy of the regression model
in capturing the dynamics of working memory levels under different stimula-
tion scenarios. Notably, the model achieved its highest R2 value of 0.44 for
User 8, suggesting a robust ability to predict working memory levels, partic-
ularly under certain conditions.

In contrast, the lowest value observed was 0.12 for User 12, indicating
a substantial divergence between the predicted and actual working memory
levels for this individual. Analyses of model metrics highlight how much can
be done to increase the robustness of the protocol in order to make it more
accurate and stable during forecasting.
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Table 6.1. Classification metrics on Users’ Training Set

User R2 RMSE
1 0,34 0,42
2 0,30 0,45
3 0,33 0,39
4 0,15 0,40
5 0,26 0,41
6 0,41 0,38
7 0,38 0,35
8 0,44 0,37
9 0,32 0,42

10 0,25 0,41
11 0,17 0,42
12 0,12 0,45
13 0,40 0,38

6.1.1 Predominantly Selected Features

In the context of a comprehensive analysis of the problem under study, an
examination was conducted to identify signal features and channels most fre-
quently selected by the feature selection method.

This approach aimed to pinpoint those features and channels that could
warrant focused attention for future, more in-depth studies. Figure 6.2 presents
a histogram of feature occurrences across the 13 subjects, which reveals that
the developed method predominantly identifies the alpha power as the most
significant feature for addressing the problem across subjects. Additionally,
good performance is also observed in power ratios and phase locking value,
demonstrating that synchronizations between cerebral areas are crucial for
the proper functioning of working memory.
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Figure 6.2. Histogram of feature occurrences across the 13 subjects.

Figure 6.3 illustrates that the predominantly selected channels are F7, T7,
and P3, suggesting a higher involvement of the left lobe in this particular ac-
tivity. This observation aligns with existing literature, since working memory
tasks have shown hemisphere differences in parietal activations. Many stud-
ies have consistently found left-lateralized activity for verbal working memory
and right-lateralized activity for spatial working memory, using behavioral as-
sessments and PET scans during n-back tasks [107].
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Figure 6.3. Histogram of channel occurrences across the 13 subjects.

It’s worth noting that our n-back task employs numerical stimuli, establish-
ing a connection with verbal working memory. This adds a layer of specificity
to our findings, emphasizing the interplay between numerical processing and
left-lateralized activations in the working memory context.

6.2 Evaluation of Treatment Effects
During the next phase of the project, different neurostimulation methodolo-
gies were applied in order to evaluate the impact of these interventions on
working memory functions. Implementing a structured stimulation protocol
across six experimental sessions, different combinations of neurostimulation
and neurofeedback were examined and correlated with n-back cognitive tasks.
Analysis of the results was aimed at verifying any improvements in cognitive
performance, adopting statistical methods for significance analysis of the ob-
served differences.

The stimulation protocol, detailed in the preceding chapters, aimed to eval-
uate the effectiveness of different interventional approaches, with a particular
focus on their influence on working memory abilities. This phase of investiga-
tion assumes a critical role in exploring the potential effects of neurostimula-
tions, as well as allowing for a comparative evaluation of the effect of various
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neurofeedback techniques on cognitive performance.
Next, analysis of the collected data focused on identifying significant changes

in working memory performance by comparing sessions with stimulation to
control sessions, with the intent of quantifying the effectiveness of the applied
stimulation techniques. Through the use of statistical approaches, it was pos-
sible to rigorously examine the experimental hypotheses, providing a solid
quantitative foundation for the interpretation of the results.

The adoption of statistical analysis techniques proved indispensable in de-
termining the statistical significance of the differences between stimulation
and control sessions, offering the possibility of validating the experimental
methodologies used in this pilot research. This process facilitated the identi-
fication of improvements attributable specifically to the stimulation modali-
ties employed, contributing to the formulation of evidence-based conclusions
regarding their actual impact on working memory functions.

Assessment of Subject Accuracy

To preliminary investigate participants’ cognitive performance, accuracy was
analyzed in the 2-back and 3-back tasks. Accuracy was defined as the ratio
of the number of correct responses (NA) given by the subject to the total
number of stimuli presented (TQ), according to the formula:

Accuracy = NA

TQ
(6.1)

This metric made it possible to quantify participants’ performance in the
different experimental sessions. The graphical analyses, shown in Figure 6.4,
illustrate the results obtained by each subject in each test session.

Upon examination of the graphs, it is observed that for the 2-back task, no
significant differences emerge between sessions, presumably due to the relative
simplicity of the task that leads performance to saturate close to 100%. In
contrast, the 3-back task, characterized by greater difficulty, allowed the effect
of different stimulations to be more clearly distinguished. In particular, there
was a tendency for improvement in sessions with both constant and adaptive
binaural stimulation compared to control. This indicates that tasks of greater
complexity are more likely to reveal changes in performance, suggesting the
potential effectiveness of the neurostimulations examined.
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Figure 6.4. Distribution of subjects’ accuracy in 2-back and 3-back tasks,
illustrating changes in performance following different stimulations.

This observation underscores the importance of selecting appropriate tasks
when evaluating the effect of neurostimulation interventions, highlighting how
more demanding tasks can facilitate the identification of significant trends
related to the application of stimulation techniques.

Analysis of the Reaction Time

Reaction time analysis represents a crucial index of cognitive processing speed.
At this stage of the study, average reaction times associated only with correct
responses were considered in order to exclude possible biases due to hasty and
unreflective responses. The focus on correct reaction times ensured that the
analysis reflected cognitive processing speed under optimal conditions.

The graph in Figure 6.5 exhibits the reaction times, measured in millisec-
onds, for the 2-back and 3-back tasks. Examination of the graph reveals a
clear distinction in the average reaction times between the two tasks, with
3-back exhibiting greater variability than 2-back. In the case of 2-back, there
are no substantial differences that would indicate a definite effect of the stim-
ulations. However, in the more complex 3-back task, the data suggest the
emergence of differential trends between the stimulation and control condi-
tions.
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Figure 6.5. Comparison of average reaction times (RT) between 2-back and
3-back tasks under stimulation and control conditions.

In the detailed analysis of Figure 6.5, it is particularly evident how the
median of reaction times tends to be affected by experimental conditions.
It is observed that, for some stimulation modalities, the median of reaction
times is lowered, suggesting a potential efficacy in improving processing speed.
These results invite further investigation to establish the consistency of the
observed trends and to explore the causal relationship between neurostimula-
tion methodologies and cognitive performance as measured by reaction times.

Analysis of the Inverse Efficiency Score

In order to obtain a more holistic measure of cognitive performance that
integrates information on both speed and accuracy, the Inverse Efficiency
Score was employed. This index, previously defined in the Materials and
Methods section, provides a composite assessment of cognitive performance
by combining reaction time with subject accuracy. The IES is particularly
useful in that it provides a measure of efficiency that penalizes both slow and
inaccurate responses.

Figure 6.6 shows the distribution of IES for the 2-back and 3-back tasks
in the different stimulation conditions. Visual analyses indicate considerable
variation across sessions, with a general trend toward higher IES scores for
the more complex 3-back task. This suggests that while the 2-back may not
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have been sufficiently challenging to reveal significant differences, the 3-back
elicited a wider range of efficiency in participants, thus allowing the effect of
different stimulation techniques to be more clearly discriminated.

Figure 6.6. Distribution of the IES for the 2-back and 3-back tasks.

Detailed analysis of IES can reveal valuable information about the bal-
ance between speed and accuracy, offering additional perspective on cognitive
performance beyond what could be inferred from accuracy or reaction times
taken individually. These results underscore the importance of considering
composite measures such as IES for a more comprehensive assessment of the
impact of neurostimulation on cognitive function.

6.3 Study of Normality
In this section, the distribution of accuracy, reaction time and Inverse Ef-
ficiency Score data derived from the 2-back and 3-back tasks is examined.
Determining the normality of the distribution is critical to the choice of the
appropriate statistical test: for distributed data normally parametric tests
such as Student’s Test are preferred, while for non-normal distributions non-
parametric methods such as Wilcoxon test are used.

The Shapiro-Wilk test, used to test normality, considers "0" as indicative
of a normal distribution and "1" for a non-normal distribution. Below, the
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results of the Shapiro-Wilk test applied to the averages of accuracy, reaction
time and IES for each subject in the six evaluation sessions are shown in the
Table 6.2.

Table 6.2. Shapiro-Wilk normality test summary table.

2-back 3-back
Stimulations PC RT IES PC RT IES
No Stimuli 1 0 1 0 0 0
Adaptive BB 1 0 0 0 0 0
Constant BB 1 0 0 1 0 0
NF Bar 1 0 0 0 0 0
Adaptive BB & NF 1 0 0 1 0 1
Pulsed Light 1 0 0 0 0 0

The results indicate variation in the normal distribution of the data among
the variables analyzed. The presence of non-normal distributions for some
variables suggests the need to use non-parametric statistical tests for analysis.
Therefore, in the presence of mixed results regarding normality, Wilcoxon
tests for paired data were used to examine differences between stimulation
conditions.

This methodology ensures the reliability of the statistical analysis despite
the variation in the data distribution, ensuring rigorous evaluation of the
research hypotheses without assuming normality of the data.

6.4 Analysis of the Effects of Adaptive Neu-
rostimulation

Through statistical tests, the effects of the various stimulation modalities
tested on cognitive performance were evaluated.

The absence of complete normality in the data led to the use of a nonpara-
metric statistical procedure, i.e., the Wilcoxon test for paired data, orienting
the analysis toward a dual purpose: to deepen understanding of the effec-
tiveness of adaptive neurostimulation and to provide an empirical basis for
methodologically sound conclusions.

6.4.1 Wilcoxon Test
Wilcoxon test was used to determine the existence of statistically significant
differences between the stimulation and non-stimulation conditions, as well
as between the adaptive and constant stimulation conditions.
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The results of this analysis are presented in the following Table 6.3, which
summarizes the results obtained from the comparison tests for each parameter
used between the unstimulated and stimulated conditions.

Table 6.3. Wilcoxon test summary table.

2-back 3-back
Stimulations PC RT IES PC RT IES
No Stimuli/
Adaptive BB

0,08 0,23 0,12 0,12 0,25 0,04

No Stimuli/
Constant BB

0,12 0,15 0,15 0,15 0,50 0,25

No Stimuli/
NF Bar

0,23 0,32 0,19 0,01 0,21 0,03

No Stimuli/
Adaptive BB
& NF Bar

0,19 0,55 0,39 0,05 0,08 0,05

No Stimuli/
Pulsed Light

0,12 0,04 0,06 0,40 0,19 0,16

Constant BB/
Adaptive BB

0,31 0,73 0,53 0,75 0,34 0,42

Close examination of the results obtained from the 2-back test reveals the
absence of significant changes in the parameters of accuracy, reaction time
and Inverse Efficiency Score. It is hypothesized that the less complex nature
of this test led to a reduced incidence of errors on the part of the participants,
consequently limiting the possibility of observing noticeable improvements.

Otherwise, the analysis conducted on the 3-back test demonstrates a sub-
stantial change, showing statistically significant differences. In particular,
the Inverse Efficiency Score analysis shows that the comparison between the
conditions of no stimulation and those characterized by adaptive stimulation
using binaural beats in the alpha band, both alone and in combination with
neurofeedback, elicit statistically significant improvements (p < 0.05). These
results are illustrated effectively through the use of boxplots, as shown in
Figure 6.7.

However, this contrast between the results of the 2-back and 3-back tests
suggests a greater sensitivity of the latter to variations in individuals’ cognitive
conditions, attributable to its greater complexity. This aspect underscores the
importance of selecting appropriately challenging test protocols to evaluate
the effectiveness of cognitive stimulation techniques.

There is evidence of statistically significant changes in reaction times, with
a marked reduction observed in users subjected to adaptive stimulation con-
ditions. Specifically, the stimulation mode employing binaural beats in the
alpha band was shown to be particularly effective in facilitating faster response
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Figure 6.7. Boxplots comparing significative results for IES in 3-back: no
stimuli condition vs adaptive BB on the left; no stimuli condition vs adaptive
BB & neurofeedback bar on the right.

times to correct queries than the unstimulated condition.
These results are detailed in Figure 6.8, which represents a comparison

between the two conditions. The statistical significance of this reduction in
reaction time underscores the effectiveness of adaptive alpha-band stimulation
in enhancing responsiveness, highlighting the potential of such approaches in
optimizing cognitive function.

Comparative analysis of accuracy reveals differential improvements be-
tween the conditions without stimulation and those in which the Neurofeed-
back bar was applied, results that reach statistical significance (p < 0.05).
Although these increases are small in magnitude, their statistical significance
is clearly highlighted in Figure 6.9. This finding suggests that the use of
Neurofeedback bar can positively influence the accuracy of users’ responses,
albeit to a moderate extent.

The main objective of the present research work is to examine the ef-
ficacy of the individual-adaptive neuronal stimulation approach, evaluating
its improvements over unstimulated conditions and non-adaptive stimulation
modalities, the latter of which are widely discussed in the scientific literature.
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Figure 6.8. Boxplots comparing significative results for RT in 3-back: no
stimuli condition vs adaptive BB.

To this end, comparative tests were conducted between the adaptive stim-
ulation conditions and standard reference stimulation conditions in order to
identify any improvements introduced by treatment personalization.

Specifically, analysis of the Inverse Efficiency Score, as illustrated in Figure
6.10, showed no statistically significant differences in improvement, although
visual analysis of the boxplots suggests a slight tendency toward improvement
that may merit further investigation.

This result lays the foundation for future research to explore the potential of
adaptive stimulation in greater depth, with the aim of confirming or refuting
the observed trends and expanding the understanding of the effect of such
interventions on cognitive abilities.

Relative to reaction times, the analysis revealed the existence of statistically
significant differences between the conditions of stimulation using constant
binaural beats and those involving the use of adaptive binaural beats in the
alpha band (p < 0,05). In contrast, no significant differences were identified
in the context of combined stimulation with neurofeedback.

These results, illustrated in Figure 6.11, underscore the effectiveness of
adaptive stimulation specifically in the alpha band in improving reaction time,
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Figure 6.9. Boxplot comparing significative results for PC in 3-back: no
stimuli condition vs neurofeedback bar.

in contrast to configurations involving a combined approach with neurofeed-
back. These findings suggest the need for further investigation to fully under-
stand the potential and limitations of different brain stimulation modalities,
particularly with regard to their ability to influence cognitive response speed.

Wilcoxon tests were applied in order to determine whether the integration
of adaptive stimulation with neurofeedback led to improvements over the ex-
clusive use of neurofeedback. The results, detailed in Figure 6.12, showed
no significant improvements attributable to this combined approach. This
outcome suggests that, under the experimental conditions adopted, adaptive
stimulation, when combined with neurofeedback, does not outperform neuro-
feedback used in isolation.

This finding invites critical reflection on the synergistic potential between
different neurostimulation technologies and underscores the importance of fur-
ther research aimed at exploring the dynamics underlying the interaction be-
tween adaptive stimulation and neurofeedback in order to optimize interven-
tions for cognitive enhancement. The analyses conducted provide evidence in
favor of the effectiveness of adaptive stimulation in improving cognitive abili-
ties, with a particular focus on working memory. However, contrary to initial
expectations, the results did not demonstrate significant differences between
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Figure 6.10. Boxplots comparing significative results for IES in 3-back: con-
stant BB vs adaptive BB on the left; constant BB vs adaptive BB & neuro-
feedback bar on the right.

adaptive and constant stimulation modalities except for reaction time alone,
raising the need for further investigation to better understand the underlying
dynamics of these effects. Furthermore, the absence of significant improve-
ments in the integration of neurofeedback with adaptive stimulation compared
with the isolated use of neurofeedback raises questions about the synergy be-
tween these techniques, inviting a critical review of current strategies and
suggesting fertile ground for future research.

Significantly, it points out that further investigation of the effectiveness of
different stimulation modalities could benefit from the inclusion of a larger
sample of subjects and the adoption of cognitive tasks of greater complexity.
This approach could not only further emphasize the observed trends but also
help establish the normality of the data, thus providing a more solid basis
for interpreting the results. Therefore, we stress the importance of designing
future studies that take these aspects into consideration in order to enrich
the understanding of the impacts of neurostimulation and neurofeedback on
cognitive function.
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Figure 6.11. Boxplots comparing significative results for RT in 3-back: con-
stant BB vs adaptive BB on the left; constant BB vs adaptive BB & neuro-
feedback bar on the right.

Figure 6.12. Boxplots comparing significative results in 3-back for PC on
the left, RT in the centre, IES on the right. The compared stimuli are
neurofeedback bar vs adaptive BB & neurofeedback bar.
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Chapter 7

Conclusions and Future
Developments

In the following sections, the various steps taken throughout this thesis will
be meticulously examined, providing a thorough analysis of the associated
pros and cons, as well as potential perspectives for future developments.

7.1 Conclusions
During this pilot study, various stimulation approaches were explored with
the aim of enhancing users’ working memory capacities. To achieve this,
a Support Vector Regression was employed to dynamically modulate stim-
ulation parameters based on the working memory level calculated every 500
ms. Among the different modalities tested, neurostimulation with alpha-band
binaural beats, dynamically adapted according to the user’s WML, exhibited
the most significant improvement in overall performance. It is noteworthy
that, currently, there are no real-time-adaptive neurostimulations specifically
designed for working memory enhancement, positioning this research as an
innovative contribution in this direction.

In the context of this study, various feature selection methods were evalu-
ated to determine the most effective approach. Specifically, three filter meth-
ods, MRMR, PCA and Chi-square, along with a wrapper method, Backward
Elimination, were tested. Initial trials with available data quickly led to
the exclusion of MRMR and PCA due to their lower performance in con-
junction with our chosen regression method. Both Chi-square and Backward
Elimination showed comparable results; however, Backward Elimination was
ultimately deemed impractical due to its excessive computational time. This
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factor was particularly critical as it would prolong the duration subjects were
required to remain equipped with experimental apparatus, making it unsuit-
able for the experimentation phase. Consequently, the final decision favored
the Chi-square method, which offered a balance of efficiency and effectiveness
suitable for our research needs. In the process of selecting machine learning
algorithms, multiclass classifiers such as Random Forest, Decision Tree, and
SVM were initially explored. However, since these approaches did not pro-
vide a continuous output, essential for the precise modulation of stimulation
parameters in virtual reality, the focus shifted towards the use of regressors.
During this phase, thorough experiments were conducted on various models,
including LASSO (known for its feature selection capability), Random Forest
Regression, Linear Regression, and Neural Networks. Hyperparameter opti-
mization was crucial in this process, with significant time and effort dedicated
to maximizing the performance of each regressor. Comparative analysis of the
results then guided the selection of the most suitable model. This decision
was driven by the need to maximize the accuracy and robustness of the model
while maintaining good latency to enable real-time usage.

The distinctiveness of this work is primarily manifested through the use of
a regressor tailored for each individual, ensuring a high level of precision due
to customization for each user. This characteristic not only imparts remark-
able accuracy to the regressor but also makes it a highly adaptable tool to the
specific cognitive features of each subject. Additionally, the regressor demon-
strates a remarkable ability to adapt neurofeedback and neurostimulations
in real-time, maintaining minimal latency thanks to the nearly instantaneous
calculation of the WML. However, it was observed that the initial relaxation
phase poses a challenge, possibly due to variations in the user’s concentration.
This variability may be influenced by fleeting thoughts or other distractions,
aspects that are clearly reflected in the EEG signal. It is in this phase that
the regressor might encounter greater difficulties in predictions.

The use of virtual reality allowed the creation of an immersive environ-
ment, minimizing external distractions during task execution and stimulation
reception. This feature contributed to maintaining a high level of efficiency
in the neurostimulation process.

Among the various stimulations tested, the bar occasionally caused slight
discomfort due to its up-and-down movement, perceived as a distraction at
certain moments. Pulsed light, although often perceived, was generally con-
sidered non-annoying or distracting by participants. In contrast, binaural
sounds never proved bothersome to subjects, who were often unaware of them,
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proving advantageous even for non-aware individuals or in situations with lim-
ited conscious interaction. This "unconscious brain entrainment" underscores
the power of neurostimulation in positively influencing cognitive processes
without requiring conscious participation.

In conclusion, the results of this study provide a solid foundation for fur-
ther exploration and future developments in the field of personalized neu-
rostimulation for working memory enhancement. The combination of virtual
reality, real-time adaptation, and binaural sounds has proven to be a promis-
ing methodology, paving the way for additional research to fully exploit this
innovative approach.

7.2 Future Developments

This section outlines potential directions for the research conducted in the
thesis, covering both technical aspects, such as regression performance, and
considerations related to the experimental protocol.

Exploring more significant features related to working memory represents a
crucial area for further investigation. Further exploration of the details of the
EEG signal could lead to the identification of new relevant features, allowing
for greater precision in evaluating the WML.

Simultaneously, examining more advanced approaches for feature selection
in regression contexts could further optimize the model. The choice of more
suitable feature selection methods could help refine the process of extracting
crucial information from the EEG signal, thereby improving the robustness
of the regressor.

Additionally, exploring more effective optimizations of the hyperparame-
ters used for regression is a critical aspect of the improvement path. The
adjustment of these parameters could undergo a more in-depth analysis to
maximize the accuracy of the regression model during the training phase.

Further exploration of the most significant EEG channels for working mem-
ory is a promising research area. A more in-depth analysis of the spatial local-
ization of brain activities involved in working memory could provide valuable
insights to enhance the selection of EEG channels during feature extraction.
This approach aims to optimize the sensitivity of the regression model to
ensure a more accurate assessment of the WML.

Regarding neurostimulation frequencies, considering finer modulations, such
as decimal-level adjustments, could be a fundamental optimization. This
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modification might mitigate oscillations between whole frequencies, promot-
ing a more stable convergence towards the optimal frequency during stimula-
tion.

Expanding the variety of working memory tasks, such as incorporating 4-
back trials or focusing exclusively on 3-back, is crucial for gaining a more
detailed perspective on the effects of neurostimulation. Delving deeper into
this cognitive exploration aims to reveal substantial improvements that might
be overlooked in simpler scenarios. This expansion is particularly necessary
since the relative simplicity of 2-back has led to high performances, making
it challenging to identify potential improvements resulting from stimulations.
Including more complex tasks will highlight the impacts of neurostimulation
on working memory more precisely in scenarios requiring increased cognitive
effort.

Increasing the number of training sessions distributed over multiple days,
preferably non-consecutive, could provide a more accurate view of the long-
term effects of stimulation on working memory. This approach would help
isolate the specific effects of stimulation from potential interferences or accu-
mulations of effects over time.

Considering the need to broaden the participant sample is essential to
ensure the statistical representativity of the results. Expanding the sample
could contribute to consolidating the obtained conclusions, making the study
more generalizable and reliable.

Furthermore, evaluating and implementing improvements in the relaxation
phase is a crucial aspect for advancing the study. Focusing not only on per-
formance during the task but also on recovery during the relaxation phase
could contribute to optimizing the overall effectiveness of neurostimulation.

Finally, the potential use of neurostimulation to improve conditions in pa-
tients with cognitive disorders, like Alzheimer’s, or prevent them in at-risk
individuals, presents a promising avenue for future development. The inno-
vative approach of adapting neurostimulation based on WML could be incor-
porated into a commercial prototype aiming to enhance cognitive functions
across various cognitive disorders. This personalized prototype would dy-
namically adjust treatment to individual neurocognitive conditions, marking
a significant advancement in managing and preventing neurodegenerative dis-
eases. It offers an innovative and tailored solution to the challenges associated
with these conditions.
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Appendix A

Real-Time Regression
Results

This appendix presents the real-time regression analysis results for all user
trials conducted as part of this thesis, visible in the following Figure A.1.
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Figure A.1. Real-time regression analysis results for all user trials.
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